diff options
Diffstat (limited to 'Documentation/devicetree/bindings/powerpc')
37 files changed, 2304 insertions, 0 deletions
diff --git a/Documentation/devicetree/bindings/powerpc/4xx/cpm.txt b/Documentation/devicetree/bindings/powerpc/4xx/cpm.txt new file mode 100644 index 00000000000..ee459806d35 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/4xx/cpm.txt | |||
@@ -0,0 +1,52 @@ | |||
1 | PPC4xx Clock Power Management (CPM) node | ||
2 | |||
3 | Required properties: | ||
4 | - compatible : compatible list, currently only "ibm,cpm" | ||
5 | - dcr-access-method : "native" | ||
6 | - dcr-reg : < DCR register range > | ||
7 | |||
8 | Optional properties: | ||
9 | - er-offset : All 4xx SoCs with a CPM controller have | ||
10 | one of two different order for the CPM | ||
11 | registers. Some have the CPM registers | ||
12 | in the following order (ER,FR,SR). The | ||
13 | others have them in the following order | ||
14 | (SR,ER,FR). For the second case set | ||
15 | er-offset = <1>. | ||
16 | - unused-units : specifier consist of one cell. For each | ||
17 | bit in the cell, the corresponding bit | ||
18 | in CPM will be set to turn off unused | ||
19 | devices. | ||
20 | - idle-doze : specifier consist of one cell. For each | ||
21 | bit in the cell, the corresponding bit | ||
22 | in CPM will be set to turn off unused | ||
23 | devices. This is usually just CPM[CPU]. | ||
24 | - standby : specifier consist of one cell. For each | ||
25 | bit in the cell, the corresponding bit | ||
26 | in CPM will be set on standby and | ||
27 | restored on resume. | ||
28 | - suspend : specifier consist of one cell. For each | ||
29 | bit in the cell, the corresponding bit | ||
30 | in CPM will be set on suspend (mem) and | ||
31 | restored on resume. Note, for standby | ||
32 | and suspend the corresponding bits can | ||
33 | be different or the same. Usually for | ||
34 | standby only class 2 and 3 units are set. | ||
35 | However, the interface does not care. | ||
36 | If they are the same, the additional | ||
37 | power saving will be seeing if support | ||
38 | is available to put the DDR in self | ||
39 | refresh mode and any additional power | ||
40 | saving techniques for the specific SoC. | ||
41 | |||
42 | Example: | ||
43 | CPM0: cpm { | ||
44 | compatible = "ibm,cpm"; | ||
45 | dcr-access-method = "native"; | ||
46 | dcr-reg = <0x160 0x003>; | ||
47 | er-offset = <0>; | ||
48 | unused-units = <0x00000100>; | ||
49 | idle-doze = <0x02000000>; | ||
50 | standby = <0xfeff0000>; | ||
51 | suspend = <0xfeff791d>; | ||
52 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/4xx/emac.txt b/Documentation/devicetree/bindings/powerpc/4xx/emac.txt new file mode 100644 index 00000000000..2161334a7ca --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/4xx/emac.txt | |||
@@ -0,0 +1,148 @@ | |||
1 | 4xx/Axon EMAC ethernet nodes | ||
2 | |||
3 | The EMAC ethernet controller in IBM and AMCC 4xx chips, and also | ||
4 | the Axon bridge. To operate this needs to interact with a ths | ||
5 | special McMAL DMA controller, and sometimes an RGMII or ZMII | ||
6 | interface. In addition to the nodes and properties described | ||
7 | below, the node for the OPB bus on which the EMAC sits must have a | ||
8 | correct clock-frequency property. | ||
9 | |||
10 | i) The EMAC node itself | ||
11 | |||
12 | Required properties: | ||
13 | - device_type : "network" | ||
14 | |||
15 | - compatible : compatible list, contains 2 entries, first is | ||
16 | "ibm,emac-CHIP" where CHIP is the host ASIC (440gx, | ||
17 | 405gp, Axon) and second is either "ibm,emac" or | ||
18 | "ibm,emac4". For Axon, thus, we have: "ibm,emac-axon", | ||
19 | "ibm,emac4" | ||
20 | - interrupts : <interrupt mapping for EMAC IRQ and WOL IRQ> | ||
21 | - interrupt-parent : optional, if needed for interrupt mapping | ||
22 | - reg : <registers mapping> | ||
23 | - local-mac-address : 6 bytes, MAC address | ||
24 | - mal-device : phandle of the associated McMAL node | ||
25 | - mal-tx-channel : 1 cell, index of the tx channel on McMAL associated | ||
26 | with this EMAC | ||
27 | - mal-rx-channel : 1 cell, index of the rx channel on McMAL associated | ||
28 | with this EMAC | ||
29 | - cell-index : 1 cell, hardware index of the EMAC cell on a given | ||
30 | ASIC (typically 0x0 and 0x1 for EMAC0 and EMAC1 on | ||
31 | each Axon chip) | ||
32 | - max-frame-size : 1 cell, maximum frame size supported in bytes | ||
33 | - rx-fifo-size : 1 cell, Rx fifo size in bytes for 10 and 100 Mb/sec | ||
34 | operations. | ||
35 | For Axon, 2048 | ||
36 | - tx-fifo-size : 1 cell, Tx fifo size in bytes for 10 and 100 Mb/sec | ||
37 | operations. | ||
38 | For Axon, 2048. | ||
39 | - fifo-entry-size : 1 cell, size of a fifo entry (used to calculate | ||
40 | thresholds). | ||
41 | For Axon, 0x00000010 | ||
42 | - mal-burst-size : 1 cell, MAL burst size (used to calculate thresholds) | ||
43 | in bytes. | ||
44 | For Axon, 0x00000100 (I think ...) | ||
45 | - phy-mode : string, mode of operations of the PHY interface. | ||
46 | Supported values are: "mii", "rmii", "smii", "rgmii", | ||
47 | "tbi", "gmii", rtbi", "sgmii". | ||
48 | For Axon on CAB, it is "rgmii" | ||
49 | - mdio-device : 1 cell, required iff using shared MDIO registers | ||
50 | (440EP). phandle of the EMAC to use to drive the | ||
51 | MDIO lines for the PHY used by this EMAC. | ||
52 | - zmii-device : 1 cell, required iff connected to a ZMII. phandle of | ||
53 | the ZMII device node | ||
54 | - zmii-channel : 1 cell, required iff connected to a ZMII. Which ZMII | ||
55 | channel or 0xffffffff if ZMII is only used for MDIO. | ||
56 | - rgmii-device : 1 cell, required iff connected to an RGMII. phandle | ||
57 | of the RGMII device node. | ||
58 | For Axon: phandle of plb5/plb4/opb/rgmii | ||
59 | - rgmii-channel : 1 cell, required iff connected to an RGMII. Which | ||
60 | RGMII channel is used by this EMAC. | ||
61 | Fox Axon: present, whatever value is appropriate for each | ||
62 | EMAC, that is the content of the current (bogus) "phy-port" | ||
63 | property. | ||
64 | |||
65 | Optional properties: | ||
66 | - phy-address : 1 cell, optional, MDIO address of the PHY. If absent, | ||
67 | a search is performed. | ||
68 | - phy-map : 1 cell, optional, bitmap of addresses to probe the PHY | ||
69 | for, used if phy-address is absent. bit 0x00000001 is | ||
70 | MDIO address 0. | ||
71 | For Axon it can be absent, though my current driver | ||
72 | doesn't handle phy-address yet so for now, keep | ||
73 | 0x00ffffff in it. | ||
74 | - rx-fifo-size-gige : 1 cell, Rx fifo size in bytes for 1000 Mb/sec | ||
75 | operations (if absent the value is the same as | ||
76 | rx-fifo-size). For Axon, either absent or 2048. | ||
77 | - tx-fifo-size-gige : 1 cell, Tx fifo size in bytes for 1000 Mb/sec | ||
78 | operations (if absent the value is the same as | ||
79 | tx-fifo-size). For Axon, either absent or 2048. | ||
80 | - tah-device : 1 cell, optional. If connected to a TAH engine for | ||
81 | offload, phandle of the TAH device node. | ||
82 | - tah-channel : 1 cell, optional. If appropriate, channel used on the | ||
83 | TAH engine. | ||
84 | |||
85 | Example: | ||
86 | |||
87 | EMAC0: ethernet@40000800 { | ||
88 | device_type = "network"; | ||
89 | compatible = "ibm,emac-440gp", "ibm,emac"; | ||
90 | interrupt-parent = <&UIC1>; | ||
91 | interrupts = <1c 4 1d 4>; | ||
92 | reg = <40000800 70>; | ||
93 | local-mac-address = [00 04 AC E3 1B 1E]; | ||
94 | mal-device = <&MAL0>; | ||
95 | mal-tx-channel = <0 1>; | ||
96 | mal-rx-channel = <0>; | ||
97 | cell-index = <0>; | ||
98 | max-frame-size = <5dc>; | ||
99 | rx-fifo-size = <1000>; | ||
100 | tx-fifo-size = <800>; | ||
101 | phy-mode = "rmii"; | ||
102 | phy-map = <00000001>; | ||
103 | zmii-device = <&ZMII0>; | ||
104 | zmii-channel = <0>; | ||
105 | }; | ||
106 | |||
107 | ii) McMAL node | ||
108 | |||
109 | Required properties: | ||
110 | - device_type : "dma-controller" | ||
111 | - compatible : compatible list, containing 2 entries, first is | ||
112 | "ibm,mcmal-CHIP" where CHIP is the host ASIC (like | ||
113 | emac) and the second is either "ibm,mcmal" or | ||
114 | "ibm,mcmal2". | ||
115 | For Axon, "ibm,mcmal-axon","ibm,mcmal2" | ||
116 | - interrupts : <interrupt mapping for the MAL interrupts sources: | ||
117 | 5 sources: tx_eob, rx_eob, serr, txde, rxde>. | ||
118 | For Axon: This is _different_ from the current | ||
119 | firmware. We use the "delayed" interrupts for txeob | ||
120 | and rxeob. Thus we end up with mapping those 5 MPIC | ||
121 | interrupts, all level positive sensitive: 10, 11, 32, | ||
122 | 33, 34 (in decimal) | ||
123 | - dcr-reg : < DCR registers range > | ||
124 | - dcr-parent : if needed for dcr-reg | ||
125 | - num-tx-chans : 1 cell, number of Tx channels | ||
126 | - num-rx-chans : 1 cell, number of Rx channels | ||
127 | |||
128 | iii) ZMII node | ||
129 | |||
130 | Required properties: | ||
131 | - compatible : compatible list, containing 2 entries, first is | ||
132 | "ibm,zmii-CHIP" where CHIP is the host ASIC (like | ||
133 | EMAC) and the second is "ibm,zmii". | ||
134 | For Axon, there is no ZMII node. | ||
135 | - reg : <registers mapping> | ||
136 | |||
137 | iv) RGMII node | ||
138 | |||
139 | Required properties: | ||
140 | - compatible : compatible list, containing 2 entries, first is | ||
141 | "ibm,rgmii-CHIP" where CHIP is the host ASIC (like | ||
142 | EMAC) and the second is "ibm,rgmii". | ||
143 | For Axon, "ibm,rgmii-axon","ibm,rgmii" | ||
144 | - reg : <registers mapping> | ||
145 | - revision : as provided by the RGMII new version register if | ||
146 | available. | ||
147 | For Axon: 0x0000012a | ||
148 | |||
diff --git a/Documentation/devicetree/bindings/powerpc/4xx/ndfc.txt b/Documentation/devicetree/bindings/powerpc/4xx/ndfc.txt new file mode 100644 index 00000000000..869f0b5f16e --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/4xx/ndfc.txt | |||
@@ -0,0 +1,39 @@ | |||
1 | AMCC NDFC (NanD Flash Controller) | ||
2 | |||
3 | Required properties: | ||
4 | - compatible : "ibm,ndfc". | ||
5 | - reg : should specify chip select and size used for the chip (0x2000). | ||
6 | |||
7 | Optional properties: | ||
8 | - ccr : NDFC config and control register value (default 0). | ||
9 | - bank-settings : NDFC bank configuration register value (default 0). | ||
10 | |||
11 | Notes: | ||
12 | - partition(s) - follows the OF MTD standard for partitions | ||
13 | |||
14 | Example: | ||
15 | |||
16 | ndfc@1,0 { | ||
17 | compatible = "ibm,ndfc"; | ||
18 | reg = <0x00000001 0x00000000 0x00002000>; | ||
19 | ccr = <0x00001000>; | ||
20 | bank-settings = <0x80002222>; | ||
21 | #address-cells = <1>; | ||
22 | #size-cells = <1>; | ||
23 | |||
24 | nand { | ||
25 | #address-cells = <1>; | ||
26 | #size-cells = <1>; | ||
27 | |||
28 | partition@0 { | ||
29 | label = "kernel"; | ||
30 | reg = <0x00000000 0x00200000>; | ||
31 | }; | ||
32 | partition@200000 { | ||
33 | label = "root"; | ||
34 | reg = <0x00200000 0x03E00000>; | ||
35 | }; | ||
36 | }; | ||
37 | }; | ||
38 | |||
39 | |||
diff --git a/Documentation/devicetree/bindings/powerpc/4xx/ppc440spe-adma.txt b/Documentation/devicetree/bindings/powerpc/4xx/ppc440spe-adma.txt new file mode 100644 index 00000000000..515ebcf1b97 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/4xx/ppc440spe-adma.txt | |||
@@ -0,0 +1,93 @@ | |||
1 | PPC440SPe DMA/XOR (DMA Controller and XOR Accelerator) | ||
2 | |||
3 | Device nodes needed for operation of the ppc440spe-adma driver | ||
4 | are specified hereby. These are I2O/DMA, DMA and XOR nodes | ||
5 | for DMA engines and Memory Queue Module node. The latter is used | ||
6 | by ADMA driver for configuration of RAID-6 H/W capabilities of | ||
7 | the PPC440SPe. In addition to the nodes and properties described | ||
8 | below, the ranges property of PLB node must specify ranges for | ||
9 | DMA devices. | ||
10 | |||
11 | i) The I2O node | ||
12 | |||
13 | Required properties: | ||
14 | |||
15 | - compatible : "ibm,i2o-440spe"; | ||
16 | - reg : <registers mapping> | ||
17 | - dcr-reg : <DCR registers range> | ||
18 | |||
19 | Example: | ||
20 | |||
21 | I2O: i2o@400100000 { | ||
22 | compatible = "ibm,i2o-440spe"; | ||
23 | reg = <0x00000004 0x00100000 0x100>; | ||
24 | dcr-reg = <0x060 0x020>; | ||
25 | }; | ||
26 | |||
27 | |||
28 | ii) The DMA node | ||
29 | |||
30 | Required properties: | ||
31 | |||
32 | - compatible : "ibm,dma-440spe"; | ||
33 | - cell-index : 1 cell, hardware index of the DMA engine | ||
34 | (typically 0x0 and 0x1 for DMA0 and DMA1) | ||
35 | - reg : <registers mapping> | ||
36 | - dcr-reg : <DCR registers range> | ||
37 | - interrupts : <interrupt mapping for DMA0/1 interrupts sources: | ||
38 | 2 sources: DMAx CS FIFO Needs Service IRQ (on UIC0) | ||
39 | and DMA Error IRQ (on UIC1). The latter is common | ||
40 | for both DMA engines>. | ||
41 | - interrupt-parent : needed for interrupt mapping | ||
42 | |||
43 | Example: | ||
44 | |||
45 | DMA0: dma0@400100100 { | ||
46 | compatible = "ibm,dma-440spe"; | ||
47 | cell-index = <0>; | ||
48 | reg = <0x00000004 0x00100100 0x100>; | ||
49 | dcr-reg = <0x060 0x020>; | ||
50 | interrupt-parent = <&DMA0>; | ||
51 | interrupts = <0 1>; | ||
52 | #interrupt-cells = <1>; | ||
53 | #address-cells = <0>; | ||
54 | #size-cells = <0>; | ||
55 | interrupt-map = < | ||
56 | 0 &UIC0 0x14 4 | ||
57 | 1 &UIC1 0x16 4>; | ||
58 | }; | ||
59 | |||
60 | |||
61 | iii) XOR Accelerator node | ||
62 | |||
63 | Required properties: | ||
64 | |||
65 | - compatible : "amcc,xor-accelerator"; | ||
66 | - reg : <registers mapping> | ||
67 | - interrupts : <interrupt mapping for XOR interrupt source> | ||
68 | - interrupt-parent : for interrupt mapping | ||
69 | |||
70 | Example: | ||
71 | |||
72 | xor-accel@400200000 { | ||
73 | compatible = "amcc,xor-accelerator"; | ||
74 | reg = <0x00000004 0x00200000 0x400>; | ||
75 | interrupt-parent = <&UIC1>; | ||
76 | interrupts = <0x1f 4>; | ||
77 | }; | ||
78 | |||
79 | |||
80 | iv) Memory Queue Module node | ||
81 | |||
82 | Required properties: | ||
83 | |||
84 | - compatible : "ibm,mq-440spe"; | ||
85 | - dcr-reg : <DCR registers range> | ||
86 | |||
87 | Example: | ||
88 | |||
89 | MQ0: mq { | ||
90 | compatible = "ibm,mq-440spe"; | ||
91 | dcr-reg = <0x040 0x020>; | ||
92 | }; | ||
93 | |||
diff --git a/Documentation/devicetree/bindings/powerpc/4xx/reboot.txt b/Documentation/devicetree/bindings/powerpc/4xx/reboot.txt new file mode 100644 index 00000000000..d7217260589 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/4xx/reboot.txt | |||
@@ -0,0 +1,18 @@ | |||
1 | Reboot property to control system reboot on PPC4xx systems: | ||
2 | |||
3 | By setting "reset_type" to one of the following values, the default | ||
4 | software reset mechanism may be overidden. Here the possible values of | ||
5 | "reset_type": | ||
6 | |||
7 | 1 - PPC4xx core reset | ||
8 | 2 - PPC4xx chip reset | ||
9 | 3 - PPC4xx system reset (default) | ||
10 | |||
11 | Example: | ||
12 | |||
13 | cpu@0 { | ||
14 | device_type = "cpu"; | ||
15 | model = "PowerPC,440SPe"; | ||
16 | ... | ||
17 | reset-type = <2>; /* Use chip-reset */ | ||
18 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/board.txt b/Documentation/devicetree/bindings/powerpc/fsl/board.txt new file mode 100644 index 00000000000..39e941515a3 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/board.txt | |||
@@ -0,0 +1,63 @@ | |||
1 | * Board Control and Status (BCSR) | ||
2 | |||
3 | Required properties: | ||
4 | |||
5 | - compatible : Should be "fsl,<board>-bcsr" | ||
6 | - reg : Offset and length of the register set for the device | ||
7 | |||
8 | Example: | ||
9 | |||
10 | bcsr@f8000000 { | ||
11 | compatible = "fsl,mpc8360mds-bcsr"; | ||
12 | reg = <f8000000 8000>; | ||
13 | }; | ||
14 | |||
15 | * Freescale on board FPGA | ||
16 | |||
17 | This is the memory-mapped registers for on board FPGA. | ||
18 | |||
19 | Required properities: | ||
20 | - compatible : should be "fsl,fpga-pixis". | ||
21 | - reg : should contain the address and the length of the FPPGA register | ||
22 | set. | ||
23 | - interrupt-parent: should specify phandle for the interrupt controller. | ||
24 | - interrupts : should specify event (wakeup) IRQ. | ||
25 | |||
26 | Example (MPC8610HPCD): | ||
27 | |||
28 | board-control@e8000000 { | ||
29 | compatible = "fsl,fpga-pixis"; | ||
30 | reg = <0xe8000000 32>; | ||
31 | interrupt-parent = <&mpic>; | ||
32 | interrupts = <8 8>; | ||
33 | }; | ||
34 | |||
35 | * Freescale BCSR GPIO banks | ||
36 | |||
37 | Some BCSR registers act as simple GPIO controllers, each such | ||
38 | register can be represented by the gpio-controller node. | ||
39 | |||
40 | Required properities: | ||
41 | - compatible : Should be "fsl,<board>-bcsr-gpio". | ||
42 | - reg : Should contain the address and the length of the GPIO bank | ||
43 | register. | ||
44 | - #gpio-cells : Should be two. The first cell is the pin number and the | ||
45 | second cell is used to specify optional parameters (currently unused). | ||
46 | - gpio-controller : Marks the port as GPIO controller. | ||
47 | |||
48 | Example: | ||
49 | |||
50 | bcsr@1,0 { | ||
51 | #address-cells = <1>; | ||
52 | #size-cells = <1>; | ||
53 | compatible = "fsl,mpc8360mds-bcsr"; | ||
54 | reg = <1 0 0x8000>; | ||
55 | ranges = <0 1 0 0x8000>; | ||
56 | |||
57 | bcsr13: gpio-controller@d { | ||
58 | #gpio-cells = <2>; | ||
59 | compatible = "fsl,mpc8360mds-bcsr-gpio"; | ||
60 | reg = <0xd 1>; | ||
61 | gpio-controller; | ||
62 | }; | ||
63 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm.txt new file mode 100644 index 00000000000..160c752484b --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm.txt | |||
@@ -0,0 +1,67 @@ | |||
1 | * Freescale Communications Processor Module | ||
2 | |||
3 | NOTE: This is an interim binding, and will likely change slightly, | ||
4 | as more devices are supported. The QE bindings especially are | ||
5 | incomplete. | ||
6 | |||
7 | * Root CPM node | ||
8 | |||
9 | Properties: | ||
10 | - compatible : "fsl,cpm1", "fsl,cpm2", or "fsl,qe". | ||
11 | - reg : A 48-byte region beginning with CPCR. | ||
12 | |||
13 | Example: | ||
14 | cpm@119c0 { | ||
15 | #address-cells = <1>; | ||
16 | #size-cells = <1>; | ||
17 | #interrupt-cells = <2>; | ||
18 | compatible = "fsl,mpc8272-cpm", "fsl,cpm2"; | ||
19 | reg = <119c0 30>; | ||
20 | } | ||
21 | |||
22 | * Properties common to multiple CPM/QE devices | ||
23 | |||
24 | - fsl,cpm-command : This value is ORed with the opcode and command flag | ||
25 | to specify the device on which a CPM command operates. | ||
26 | |||
27 | - fsl,cpm-brg : Indicates which baud rate generator the device | ||
28 | is associated with. If absent, an unused BRG | ||
29 | should be dynamically allocated. If zero, the | ||
30 | device uses an external clock rather than a BRG. | ||
31 | |||
32 | - reg : Unless otherwise specified, the first resource represents the | ||
33 | scc/fcc/ucc registers, and the second represents the device's | ||
34 | parameter RAM region (if it has one). | ||
35 | |||
36 | * Multi-User RAM (MURAM) | ||
37 | |||
38 | The multi-user/dual-ported RAM is expressed as a bus under the CPM node. | ||
39 | |||
40 | Ranges must be set up subject to the following restrictions: | ||
41 | |||
42 | - Children's reg nodes must be offsets from the start of all muram, even | ||
43 | if the user-data area does not begin at zero. | ||
44 | - If multiple range entries are used, the difference between the parent | ||
45 | address and the child address must be the same in all, so that a single | ||
46 | mapping can cover them all while maintaining the ability to determine | ||
47 | CPM-side offsets with pointer subtraction. It is recommended that | ||
48 | multiple range entries not be used. | ||
49 | - A child address of zero must be translatable, even if no reg resources | ||
50 | contain it. | ||
51 | |||
52 | A child "data" node must exist, compatible with "fsl,cpm-muram-data", to | ||
53 | indicate the portion of muram that is usable by the OS for arbitrary | ||
54 | purposes. The data node may have an arbitrary number of reg resources, | ||
55 | all of which contribute to the allocatable muram pool. | ||
56 | |||
57 | Example, based on mpc8272: | ||
58 | muram@0 { | ||
59 | #address-cells = <1>; | ||
60 | #size-cells = <1>; | ||
61 | ranges = <0 0 10000>; | ||
62 | |||
63 | data@0 { | ||
64 | compatible = "fsl,cpm-muram-data"; | ||
65 | reg = <0 2000 9800 800>; | ||
66 | }; | ||
67 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/brg.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/brg.txt new file mode 100644 index 00000000000..4c7d45eaf02 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/brg.txt | |||
@@ -0,0 +1,21 @@ | |||
1 | * Baud Rate Generators | ||
2 | |||
3 | Currently defined compatibles: | ||
4 | fsl,cpm-brg | ||
5 | fsl,cpm1-brg | ||
6 | fsl,cpm2-brg | ||
7 | |||
8 | Properties: | ||
9 | - reg : There may be an arbitrary number of reg resources; BRG | ||
10 | numbers are assigned to these in order. | ||
11 | - clock-frequency : Specifies the base frequency driving | ||
12 | the BRG. | ||
13 | |||
14 | Example: | ||
15 | brg@119f0 { | ||
16 | compatible = "fsl,mpc8272-brg", | ||
17 | "fsl,cpm2-brg", | ||
18 | "fsl,cpm-brg"; | ||
19 | reg = <119f0 10 115f0 10>; | ||
20 | clock-frequency = <d#25000000>; | ||
21 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/i2c.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/i2c.txt new file mode 100644 index 00000000000..87bc6048667 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/i2c.txt | |||
@@ -0,0 +1,41 @@ | |||
1 | * I2C | ||
2 | |||
3 | The I2C controller is expressed as a bus under the CPM node. | ||
4 | |||
5 | Properties: | ||
6 | - compatible : "fsl,cpm1-i2c", "fsl,cpm2-i2c" | ||
7 | - reg : On CPM2 devices, the second resource doesn't specify the I2C | ||
8 | Parameter RAM itself, but the I2C_BASE field of the CPM2 Parameter RAM | ||
9 | (typically 0x8afc 0x2). | ||
10 | - #address-cells : Should be one. The cell is the i2c device address with | ||
11 | the r/w bit set to zero. | ||
12 | - #size-cells : Should be zero. | ||
13 | - clock-frequency : Can be used to set the i2c clock frequency. If | ||
14 | unspecified, a default frequency of 60kHz is being used. | ||
15 | The following two properties are deprecated. They are only used by legacy | ||
16 | i2c drivers to find the bus to probe: | ||
17 | - linux,i2c-index : Can be used to hard code an i2c bus number. By default, | ||
18 | the bus number is dynamically assigned by the i2c core. | ||
19 | - linux,i2c-class : Can be used to override the i2c class. The class is used | ||
20 | by legacy i2c device drivers to find a bus in a specific context like | ||
21 | system management, video or sound. By default, I2C_CLASS_HWMON (1) is | ||
22 | being used. The definition of the classes can be found in | ||
23 | include/i2c/i2c.h | ||
24 | |||
25 | Example, based on mpc823: | ||
26 | |||
27 | i2c@860 { | ||
28 | compatible = "fsl,mpc823-i2c", | ||
29 | "fsl,cpm1-i2c"; | ||
30 | reg = <0x860 0x20 0x3c80 0x30>; | ||
31 | interrupts = <16>; | ||
32 | interrupt-parent = <&CPM_PIC>; | ||
33 | fsl,cpm-command = <0x10>; | ||
34 | #address-cells = <1>; | ||
35 | #size-cells = <0>; | ||
36 | |||
37 | rtc@68 { | ||
38 | compatible = "dallas,ds1307"; | ||
39 | reg = <0x68>; | ||
40 | }; | ||
41 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/pic.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/pic.txt new file mode 100644 index 00000000000..8e3ee168161 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/pic.txt | |||
@@ -0,0 +1,18 @@ | |||
1 | * Interrupt Controllers | ||
2 | |||
3 | Currently defined compatibles: | ||
4 | - fsl,cpm1-pic | ||
5 | - only one interrupt cell | ||
6 | - fsl,pq1-pic | ||
7 | - fsl,cpm2-pic | ||
8 | - second interrupt cell is level/sense: | ||
9 | - 2 is falling edge | ||
10 | - 8 is active low | ||
11 | |||
12 | Example: | ||
13 | interrupt-controller@10c00 { | ||
14 | #interrupt-cells = <2>; | ||
15 | interrupt-controller; | ||
16 | reg = <10c00 80>; | ||
17 | compatible = "mpc8272-pic", "fsl,cpm2-pic"; | ||
18 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/usb.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/usb.txt new file mode 100644 index 00000000000..74bfda4bb82 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/usb.txt | |||
@@ -0,0 +1,15 @@ | |||
1 | * USB (Universal Serial Bus Controller) | ||
2 | |||
3 | Properties: | ||
4 | - compatible : "fsl,cpm1-usb", "fsl,cpm2-usb", "fsl,qe-usb" | ||
5 | |||
6 | Example: | ||
7 | usb@11bc0 { | ||
8 | #address-cells = <1>; | ||
9 | #size-cells = <0>; | ||
10 | compatible = "fsl,cpm2-usb"; | ||
11 | reg = <11b60 18 8b00 100>; | ||
12 | interrupts = <b 8>; | ||
13 | interrupt-parent = <&PIC>; | ||
14 | fsl,cpm-command = <2e600000>; | ||
15 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/gpio.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/gpio.txt new file mode 100644 index 00000000000..349f79fd707 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/gpio.txt | |||
@@ -0,0 +1,38 @@ | |||
1 | Every GPIO controller node must have #gpio-cells property defined, | ||
2 | this information will be used to translate gpio-specifiers. | ||
3 | |||
4 | On CPM1 devices, all ports are using slightly different register layouts. | ||
5 | Ports A, C and D are 16bit ports and Ports B and E are 32bit ports. | ||
6 | |||
7 | On CPM2 devices, all ports are 32bit ports and use a common register layout. | ||
8 | |||
9 | Required properties: | ||
10 | - compatible : "fsl,cpm1-pario-bank-a", "fsl,cpm1-pario-bank-b", | ||
11 | "fsl,cpm1-pario-bank-c", "fsl,cpm1-pario-bank-d", | ||
12 | "fsl,cpm1-pario-bank-e", "fsl,cpm2-pario-bank" | ||
13 | - #gpio-cells : Should be two. The first cell is the pin number and the | ||
14 | second cell is used to specify optional parameters (currently unused). | ||
15 | - gpio-controller : Marks the port as GPIO controller. | ||
16 | |||
17 | Example of three SOC GPIO banks defined as gpio-controller nodes: | ||
18 | |||
19 | CPM1_PIO_A: gpio-controller@950 { | ||
20 | #gpio-cells = <2>; | ||
21 | compatible = "fsl,cpm1-pario-bank-a"; | ||
22 | reg = <0x950 0x10>; | ||
23 | gpio-controller; | ||
24 | }; | ||
25 | |||
26 | CPM1_PIO_B: gpio-controller@ab8 { | ||
27 | #gpio-cells = <2>; | ||
28 | compatible = "fsl,cpm1-pario-bank-b"; | ||
29 | reg = <0xab8 0x10>; | ||
30 | gpio-controller; | ||
31 | }; | ||
32 | |||
33 | CPM1_PIO_E: gpio-controller@ac8 { | ||
34 | #gpio-cells = <2>; | ||
35 | compatible = "fsl,cpm1-pario-bank-e"; | ||
36 | reg = <0xac8 0x18>; | ||
37 | gpio-controller; | ||
38 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/network.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/network.txt new file mode 100644 index 00000000000..0e426944658 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/network.txt | |||
@@ -0,0 +1,45 @@ | |||
1 | * Network | ||
2 | |||
3 | Currently defined compatibles: | ||
4 | - fsl,cpm1-scc-enet | ||
5 | - fsl,cpm2-scc-enet | ||
6 | - fsl,cpm1-fec-enet | ||
7 | - fsl,cpm2-fcc-enet (third resource is GFEMR) | ||
8 | - fsl,qe-enet | ||
9 | |||
10 | Example: | ||
11 | |||
12 | ethernet@11300 { | ||
13 | device_type = "network"; | ||
14 | compatible = "fsl,mpc8272-fcc-enet", | ||
15 | "fsl,cpm2-fcc-enet"; | ||
16 | reg = <11300 20 8400 100 11390 1>; | ||
17 | local-mac-address = [ 00 00 00 00 00 00 ]; | ||
18 | interrupts = <20 8>; | ||
19 | interrupt-parent = <&PIC>; | ||
20 | phy-handle = <&PHY0>; | ||
21 | fsl,cpm-command = <12000300>; | ||
22 | }; | ||
23 | |||
24 | * MDIO | ||
25 | |||
26 | Currently defined compatibles: | ||
27 | fsl,pq1-fec-mdio (reg is same as first resource of FEC device) | ||
28 | fsl,cpm2-mdio-bitbang (reg is port C registers) | ||
29 | |||
30 | Properties for fsl,cpm2-mdio-bitbang: | ||
31 | fsl,mdio-pin : pin of port C controlling mdio data | ||
32 | fsl,mdc-pin : pin of port C controlling mdio clock | ||
33 | |||
34 | Example: | ||
35 | mdio@10d40 { | ||
36 | device_type = "mdio"; | ||
37 | compatible = "fsl,mpc8272ads-mdio-bitbang", | ||
38 | "fsl,mpc8272-mdio-bitbang", | ||
39 | "fsl,cpm2-mdio-bitbang"; | ||
40 | reg = <10d40 14>; | ||
41 | #address-cells = <1>; | ||
42 | #size-cells = <0>; | ||
43 | fsl,mdio-pin = <12>; | ||
44 | fsl,mdc-pin = <13>; | ||
45 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe.txt new file mode 100644 index 00000000000..4f8930263dd --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe.txt | |||
@@ -0,0 +1,115 @@ | |||
1 | * Freescale QUICC Engine module (QE) | ||
2 | This represents qe module that is installed on PowerQUICC II Pro. | ||
3 | |||
4 | NOTE: This is an interim binding; it should be updated to fit | ||
5 | in with the CPM binding later in this document. | ||
6 | |||
7 | Basically, it is a bus of devices, that could act more or less | ||
8 | as a complete entity (UCC, USB etc ). All of them should be siblings on | ||
9 | the "root" qe node, using the common properties from there. | ||
10 | The description below applies to the qe of MPC8360 and | ||
11 | more nodes and properties would be extended in the future. | ||
12 | |||
13 | i) Root QE device | ||
14 | |||
15 | Required properties: | ||
16 | - compatible : should be "fsl,qe"; | ||
17 | - model : precise model of the QE, Can be "QE", "CPM", or "CPM2" | ||
18 | - reg : offset and length of the device registers. | ||
19 | - bus-frequency : the clock frequency for QUICC Engine. | ||
20 | - fsl,qe-num-riscs: define how many RISC engines the QE has. | ||
21 | - fsl,qe-num-snums: define how many serial number(SNUM) the QE can use for the | ||
22 | threads. | ||
23 | |||
24 | Optional properties: | ||
25 | - fsl,firmware-phandle: | ||
26 | Usage: required only if there is no fsl,qe-firmware child node | ||
27 | Value type: <phandle> | ||
28 | Definition: Points to a firmware node (see "QE Firmware Node" below) | ||
29 | that contains the firmware that should be uploaded for this QE. | ||
30 | The compatible property for the firmware node should say, | ||
31 | "fsl,qe-firmware". | ||
32 | |||
33 | Recommended properties | ||
34 | - brg-frequency : the internal clock source frequency for baud-rate | ||
35 | generators in Hz. | ||
36 | |||
37 | Example: | ||
38 | qe@e0100000 { | ||
39 | #address-cells = <1>; | ||
40 | #size-cells = <1>; | ||
41 | #interrupt-cells = <2>; | ||
42 | compatible = "fsl,qe"; | ||
43 | ranges = <0 e0100000 00100000>; | ||
44 | reg = <e0100000 480>; | ||
45 | brg-frequency = <0>; | ||
46 | bus-frequency = <179A7B00>; | ||
47 | } | ||
48 | |||
49 | * Multi-User RAM (MURAM) | ||
50 | |||
51 | Required properties: | ||
52 | - compatible : should be "fsl,qe-muram", "fsl,cpm-muram". | ||
53 | - mode : the could be "host" or "slave". | ||
54 | - ranges : Should be defined as specified in 1) to describe the | ||
55 | translation of MURAM addresses. | ||
56 | - data-only : sub-node which defines the address area under MURAM | ||
57 | bus that can be allocated as data/parameter | ||
58 | |||
59 | Example: | ||
60 | |||
61 | muram@10000 { | ||
62 | compatible = "fsl,qe-muram", "fsl,cpm-muram"; | ||
63 | ranges = <0 00010000 0000c000>; | ||
64 | |||
65 | data-only@0{ | ||
66 | compatible = "fsl,qe-muram-data", | ||
67 | "fsl,cpm-muram-data"; | ||
68 | reg = <0 c000>; | ||
69 | }; | ||
70 | }; | ||
71 | |||
72 | * QE Firmware Node | ||
73 | |||
74 | This node defines a firmware binary that is embedded in the device tree, for | ||
75 | the purpose of passing the firmware from bootloader to the kernel, or from | ||
76 | the hypervisor to the guest. | ||
77 | |||
78 | The firmware node itself contains the firmware binary contents, a compatible | ||
79 | property, and any firmware-specific properties. The node should be placed | ||
80 | inside a QE node that needs it. Doing so eliminates the need for a | ||
81 | fsl,firmware-phandle property. Other QE nodes that need the same firmware | ||
82 | should define an fsl,firmware-phandle property that points to the firmware node | ||
83 | in the first QE node. | ||
84 | |||
85 | The fsl,firmware property can be specified in the DTS (possibly using incbin) | ||
86 | or can be inserted by the boot loader at boot time. | ||
87 | |||
88 | Required properties: | ||
89 | - compatible | ||
90 | Usage: required | ||
91 | Value type: <string> | ||
92 | Definition: A standard property. Specify a string that indicates what | ||
93 | kind of firmware it is. For QE, this should be "fsl,qe-firmware". | ||
94 | |||
95 | - fsl,firmware | ||
96 | Usage: required | ||
97 | Value type: <prop-encoded-array>, encoded as an array of bytes | ||
98 | Definition: A standard property. This property contains the firmware | ||
99 | binary "blob". | ||
100 | |||
101 | Example: | ||
102 | qe1@e0080000 { | ||
103 | compatible = "fsl,qe"; | ||
104 | qe_firmware:qe-firmware { | ||
105 | compatible = "fsl,qe-firmware"; | ||
106 | fsl,firmware = [0x70 0xcd 0x00 0x00 0x01 0x46 0x45 ...]; | ||
107 | }; | ||
108 | ... | ||
109 | }; | ||
110 | |||
111 | qe2@e0090000 { | ||
112 | compatible = "fsl,qe"; | ||
113 | fsl,firmware-phandle = <&qe_firmware>; | ||
114 | ... | ||
115 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/firmware.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/firmware.txt new file mode 100644 index 00000000000..249db3a15d1 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/firmware.txt | |||
@@ -0,0 +1,24 @@ | |||
1 | * Uploaded QE firmware | ||
2 | |||
3 | If a new firmware has been uploaded to the QE (usually by the | ||
4 | boot loader), then a 'firmware' child node should be added to the QE | ||
5 | node. This node provides information on the uploaded firmware that | ||
6 | device drivers may need. | ||
7 | |||
8 | Required properties: | ||
9 | - id: The string name of the firmware. This is taken from the 'id' | ||
10 | member of the qe_firmware structure of the uploaded firmware. | ||
11 | Device drivers can search this string to determine if the | ||
12 | firmware they want is already present. | ||
13 | - extended-modes: The Extended Modes bitfield, taken from the | ||
14 | firmware binary. It is a 64-bit number represented | ||
15 | as an array of two 32-bit numbers. | ||
16 | - virtual-traps: The virtual traps, taken from the firmware binary. | ||
17 | It is an array of 8 32-bit numbers. | ||
18 | |||
19 | Example: | ||
20 | firmware { | ||
21 | id = "Soft-UART"; | ||
22 | extended-modes = <0 0>; | ||
23 | virtual-traps = <0 0 0 0 0 0 0 0>; | ||
24 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/par_io.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/par_io.txt new file mode 100644 index 00000000000..60984260207 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/par_io.txt | |||
@@ -0,0 +1,51 @@ | |||
1 | * Parallel I/O Ports | ||
2 | |||
3 | This node configures Parallel I/O ports for CPUs with QE support. | ||
4 | The node should reside in the "soc" node of the tree. For each | ||
5 | device that using parallel I/O ports, a child node should be created. | ||
6 | See the definition of the Pin configuration nodes below for more | ||
7 | information. | ||
8 | |||
9 | Required properties: | ||
10 | - device_type : should be "par_io". | ||
11 | - reg : offset to the register set and its length. | ||
12 | - num-ports : number of Parallel I/O ports | ||
13 | |||
14 | Example: | ||
15 | par_io@1400 { | ||
16 | reg = <1400 100>; | ||
17 | #address-cells = <1>; | ||
18 | #size-cells = <0>; | ||
19 | device_type = "par_io"; | ||
20 | num-ports = <7>; | ||
21 | ucc_pin@01 { | ||
22 | ...... | ||
23 | }; | ||
24 | |||
25 | Note that "par_io" nodes are obsolete, and should not be used for | ||
26 | the new device trees. Instead, each Par I/O bank should be represented | ||
27 | via its own gpio-controller node: | ||
28 | |||
29 | Required properties: | ||
30 | - #gpio-cells : should be "2". | ||
31 | - compatible : should be "fsl,<chip>-qe-pario-bank", | ||
32 | "fsl,mpc8323-qe-pario-bank". | ||
33 | - reg : offset to the register set and its length. | ||
34 | - gpio-controller : node to identify gpio controllers. | ||
35 | |||
36 | Example: | ||
37 | qe_pio_a: gpio-controller@1400 { | ||
38 | #gpio-cells = <2>; | ||
39 | compatible = "fsl,mpc8360-qe-pario-bank", | ||
40 | "fsl,mpc8323-qe-pario-bank"; | ||
41 | reg = <0x1400 0x18>; | ||
42 | gpio-controller; | ||
43 | }; | ||
44 | |||
45 | qe_pio_e: gpio-controller@1460 { | ||
46 | #gpio-cells = <2>; | ||
47 | compatible = "fsl,mpc8360-qe-pario-bank", | ||
48 | "fsl,mpc8323-qe-pario-bank"; | ||
49 | reg = <0x1460 0x18>; | ||
50 | gpio-controller; | ||
51 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/pincfg.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/pincfg.txt new file mode 100644 index 00000000000..c5b43061db3 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/pincfg.txt | |||
@@ -0,0 +1,60 @@ | |||
1 | * Pin configuration nodes | ||
2 | |||
3 | Required properties: | ||
4 | - linux,phandle : phandle of this node; likely referenced by a QE | ||
5 | device. | ||
6 | - pio-map : array of pin configurations. Each pin is defined by 6 | ||
7 | integers. The six numbers are respectively: port, pin, dir, | ||
8 | open_drain, assignment, has_irq. | ||
9 | - port : port number of the pin; 0-6 represent port A-G in UM. | ||
10 | - pin : pin number in the port. | ||
11 | - dir : direction of the pin, should encode as follows: | ||
12 | |||
13 | 0 = The pin is disabled | ||
14 | 1 = The pin is an output | ||
15 | 2 = The pin is an input | ||
16 | 3 = The pin is I/O | ||
17 | |||
18 | - open_drain : indicates the pin is normal or wired-OR: | ||
19 | |||
20 | 0 = The pin is actively driven as an output | ||
21 | 1 = The pin is an open-drain driver. As an output, the pin is | ||
22 | driven active-low, otherwise it is three-stated. | ||
23 | |||
24 | - assignment : function number of the pin according to the Pin Assignment | ||
25 | tables in User Manual. Each pin can have up to 4 possible functions in | ||
26 | QE and two options for CPM. | ||
27 | - has_irq : indicates if the pin is used as source of external | ||
28 | interrupts. | ||
29 | |||
30 | Example: | ||
31 | ucc_pin@01 { | ||
32 | linux,phandle = <140001>; | ||
33 | pio-map = < | ||
34 | /* port pin dir open_drain assignment has_irq */ | ||
35 | 0 3 1 0 1 0 /* TxD0 */ | ||
36 | 0 4 1 0 1 0 /* TxD1 */ | ||
37 | 0 5 1 0 1 0 /* TxD2 */ | ||
38 | 0 6 1 0 1 0 /* TxD3 */ | ||
39 | 1 6 1 0 3 0 /* TxD4 */ | ||
40 | 1 7 1 0 1 0 /* TxD5 */ | ||
41 | 1 9 1 0 2 0 /* TxD6 */ | ||
42 | 1 a 1 0 2 0 /* TxD7 */ | ||
43 | 0 9 2 0 1 0 /* RxD0 */ | ||
44 | 0 a 2 0 1 0 /* RxD1 */ | ||
45 | 0 b 2 0 1 0 /* RxD2 */ | ||
46 | 0 c 2 0 1 0 /* RxD3 */ | ||
47 | 0 d 2 0 1 0 /* RxD4 */ | ||
48 | 1 1 2 0 2 0 /* RxD5 */ | ||
49 | 1 0 2 0 2 0 /* RxD6 */ | ||
50 | 1 4 2 0 2 0 /* RxD7 */ | ||
51 | 0 7 1 0 1 0 /* TX_EN */ | ||
52 | 0 8 1 0 1 0 /* TX_ER */ | ||
53 | 0 f 2 0 1 0 /* RX_DV */ | ||
54 | 0 10 2 0 1 0 /* RX_ER */ | ||
55 | 0 0 2 0 1 0 /* RX_CLK */ | ||
56 | 2 9 1 0 3 0 /* GTX_CLK - CLK10 */ | ||
57 | 2 8 2 0 1 0>; /* GTX125 - CLK9 */ | ||
58 | }; | ||
59 | |||
60 | |||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/ucc.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/ucc.txt new file mode 100644 index 00000000000..e47734bee3f --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/ucc.txt | |||
@@ -0,0 +1,70 @@ | |||
1 | * UCC (Unified Communications Controllers) | ||
2 | |||
3 | Required properties: | ||
4 | - device_type : should be "network", "hldc", "uart", "transparent" | ||
5 | "bisync", "atm", or "serial". | ||
6 | - compatible : could be "ucc_geth" or "fsl_atm" and so on. | ||
7 | - cell-index : the ucc number(1-8), corresponding to UCCx in UM. | ||
8 | - reg : Offset and length of the register set for the device | ||
9 | - interrupts : <a b> where a is the interrupt number and b is a | ||
10 | field that represents an encoding of the sense and level | ||
11 | information for the interrupt. This should be encoded based on | ||
12 | the information in section 2) depending on the type of interrupt | ||
13 | controller you have. | ||
14 | - interrupt-parent : the phandle for the interrupt controller that | ||
15 | services interrupts for this device. | ||
16 | - pio-handle : The phandle for the Parallel I/O port configuration. | ||
17 | - port-number : for UART drivers, the port number to use, between 0 and 3. | ||
18 | This usually corresponds to the /dev/ttyQE device, e.g. <0> = /dev/ttyQE0. | ||
19 | The port number is added to the minor number of the device. Unlike the | ||
20 | CPM UART driver, the port-number is required for the QE UART driver. | ||
21 | - soft-uart : for UART drivers, if specified this means the QE UART device | ||
22 | driver should use "Soft-UART" mode, which is needed on some SOCs that have | ||
23 | broken UART hardware. Soft-UART is provided via a microcode upload. | ||
24 | - rx-clock-name: the UCC receive clock source | ||
25 | "none": clock source is disabled | ||
26 | "brg1" through "brg16": clock source is BRG1-BRG16, respectively | ||
27 | "clk1" through "clk24": clock source is CLK1-CLK24, respectively | ||
28 | - tx-clock-name: the UCC transmit clock source | ||
29 | "none": clock source is disabled | ||
30 | "brg1" through "brg16": clock source is BRG1-BRG16, respectively | ||
31 | "clk1" through "clk24": clock source is CLK1-CLK24, respectively | ||
32 | The following two properties are deprecated. rx-clock has been replaced | ||
33 | with rx-clock-name, and tx-clock has been replaced with tx-clock-name. | ||
34 | Drivers that currently use the deprecated properties should continue to | ||
35 | do so, in order to support older device trees, but they should be updated | ||
36 | to check for the new properties first. | ||
37 | - rx-clock : represents the UCC receive clock source. | ||
38 | 0x00 : clock source is disabled; | ||
39 | 0x1~0x10 : clock source is BRG1~BRG16 respectively; | ||
40 | 0x11~0x28: clock source is QE_CLK1~QE_CLK24 respectively. | ||
41 | - tx-clock: represents the UCC transmit clock source; | ||
42 | 0x00 : clock source is disabled; | ||
43 | 0x1~0x10 : clock source is BRG1~BRG16 respectively; | ||
44 | 0x11~0x28: clock source is QE_CLK1~QE_CLK24 respectively. | ||
45 | |||
46 | Required properties for network device_type: | ||
47 | - mac-address : list of bytes representing the ethernet address. | ||
48 | - phy-handle : The phandle for the PHY connected to this controller. | ||
49 | |||
50 | Recommended properties: | ||
51 | - phy-connection-type : a string naming the controller/PHY interface type, | ||
52 | i.e., "mii" (default), "rmii", "gmii", "rgmii", "rgmii-id" (Internal | ||
53 | Delay), "rgmii-txid" (delay on TX only), "rgmii-rxid" (delay on RX only), | ||
54 | "tbi", or "rtbi". | ||
55 | |||
56 | Example: | ||
57 | ucc@2000 { | ||
58 | device_type = "network"; | ||
59 | compatible = "ucc_geth"; | ||
60 | cell-index = <1>; | ||
61 | reg = <2000 200>; | ||
62 | interrupts = <a0 0>; | ||
63 | interrupt-parent = <700>; | ||
64 | mac-address = [ 00 04 9f 00 23 23 ]; | ||
65 | rx-clock = "none"; | ||
66 | tx-clock = "clk9"; | ||
67 | phy-handle = <212000>; | ||
68 | phy-connection-type = "gmii"; | ||
69 | pio-handle = <140001>; | ||
70 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/usb.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/usb.txt new file mode 100644 index 00000000000..9ccd5f30405 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/usb.txt | |||
@@ -0,0 +1,37 @@ | |||
1 | Freescale QUICC Engine USB Controller | ||
2 | |||
3 | Required properties: | ||
4 | - compatible : should be "fsl,<chip>-qe-usb", "fsl,mpc8323-qe-usb". | ||
5 | - reg : the first two cells should contain usb registers location and | ||
6 | length, the next two two cells should contain PRAM location and | ||
7 | length. | ||
8 | - interrupts : should contain USB interrupt. | ||
9 | - interrupt-parent : interrupt source phandle. | ||
10 | - fsl,fullspeed-clock : specifies the full speed USB clock source: | ||
11 | "none": clock source is disabled | ||
12 | "brg1" through "brg16": clock source is BRG1-BRG16, respectively | ||
13 | "clk1" through "clk24": clock source is CLK1-CLK24, respectively | ||
14 | - fsl,lowspeed-clock : specifies the low speed USB clock source: | ||
15 | "none": clock source is disabled | ||
16 | "brg1" through "brg16": clock source is BRG1-BRG16, respectively | ||
17 | "clk1" through "clk24": clock source is CLK1-CLK24, respectively | ||
18 | - hub-power-budget : USB power budget for the root hub, in mA. | ||
19 | - gpios : should specify GPIOs in this order: USBOE, USBTP, USBTN, USBRP, | ||
20 | USBRN, SPEED (optional), and POWER (optional). | ||
21 | |||
22 | Example: | ||
23 | |||
24 | usb@6c0 { | ||
25 | compatible = "fsl,mpc8360-qe-usb", "fsl,mpc8323-qe-usb"; | ||
26 | reg = <0x6c0 0x40 0x8b00 0x100>; | ||
27 | interrupts = <11>; | ||
28 | interrupt-parent = <&qeic>; | ||
29 | fsl,fullspeed-clock = "clk21"; | ||
30 | gpios = <&qe_pio_b 2 0 /* USBOE */ | ||
31 | &qe_pio_b 3 0 /* USBTP */ | ||
32 | &qe_pio_b 8 0 /* USBTN */ | ||
33 | &qe_pio_b 9 0 /* USBRP */ | ||
34 | &qe_pio_b 11 0 /* USBRN */ | ||
35 | &qe_pio_e 20 0 /* SPEED */ | ||
36 | &qe_pio_e 21 0 /* POWER */>; | ||
37 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/serial.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/serial.txt new file mode 100644 index 00000000000..2ea76d9d137 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/serial.txt | |||
@@ -0,0 +1,32 @@ | |||
1 | * Serial | ||
2 | |||
3 | Currently defined compatibles: | ||
4 | - fsl,cpm1-smc-uart | ||
5 | - fsl,cpm2-smc-uart | ||
6 | - fsl,cpm1-scc-uart | ||
7 | - fsl,cpm2-scc-uart | ||
8 | - fsl,qe-uart | ||
9 | |||
10 | Modem control lines connected to GPIO controllers are listed in the gpios | ||
11 | property as described in booting-without-of.txt, section IX.1 in the following | ||
12 | order: | ||
13 | |||
14 | CTS, RTS, DCD, DSR, DTR, and RI. | ||
15 | |||
16 | The gpios property is optional and can be left out when control lines are | ||
17 | not used. | ||
18 | |||
19 | Example: | ||
20 | |||
21 | serial@11a00 { | ||
22 | device_type = "serial"; | ||
23 | compatible = "fsl,mpc8272-scc-uart", | ||
24 | "fsl,cpm2-scc-uart"; | ||
25 | reg = <11a00 20 8000 100>; | ||
26 | interrupts = <28 8>; | ||
27 | interrupt-parent = <&PIC>; | ||
28 | fsl,cpm-brg = <1>; | ||
29 | fsl,cpm-command = <00800000>; | ||
30 | gpios = <&gpio_c 15 0 | ||
31 | &gpio_d 29 0>; | ||
32 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/diu.txt b/Documentation/devicetree/bindings/powerpc/fsl/diu.txt new file mode 100644 index 00000000000..b66cb6d31d6 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/diu.txt | |||
@@ -0,0 +1,34 @@ | |||
1 | * Freescale Display Interface Unit | ||
2 | |||
3 | The Freescale DIU is a LCD controller, with proper hardware, it can also | ||
4 | drive DVI monitors. | ||
5 | |||
6 | Required properties: | ||
7 | - compatible : should be "fsl,diu" or "fsl,mpc5121-diu". | ||
8 | - reg : should contain at least address and length of the DIU register | ||
9 | set. | ||
10 | - interrupts : one DIU interrupt should be described here. | ||
11 | - interrupt-parent : the phandle for the interrupt controller that | ||
12 | services interrupts for this device. | ||
13 | |||
14 | Optional properties: | ||
15 | - edid : verbatim EDID data block describing attached display. | ||
16 | Data from the detailed timing descriptor will be used to | ||
17 | program the display controller. | ||
18 | |||
19 | Example (MPC8610HPCD): | ||
20 | display@2c000 { | ||
21 | compatible = "fsl,diu"; | ||
22 | reg = <0x2c000 100>; | ||
23 | interrupts = <72 2>; | ||
24 | interrupt-parent = <&mpic>; | ||
25 | }; | ||
26 | |||
27 | Example for MPC5121: | ||
28 | display@2100 { | ||
29 | compatible = "fsl,mpc5121-diu"; | ||
30 | reg = <0x2100 0x100>; | ||
31 | interrupts = <64 0x8>; | ||
32 | interrupt-parent = <&ipic>; | ||
33 | edid = [edid-data]; | ||
34 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/dma.txt b/Documentation/devicetree/bindings/powerpc/fsl/dma.txt new file mode 100644 index 00000000000..2a4b4bce611 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/dma.txt | |||
@@ -0,0 +1,144 @@ | |||
1 | * Freescale 83xx DMA Controller | ||
2 | |||
3 | Freescale PowerPC 83xx have on chip general purpose DMA controllers. | ||
4 | |||
5 | Required properties: | ||
6 | |||
7 | - compatible : compatible list, contains 2 entries, first is | ||
8 | "fsl,CHIP-dma", where CHIP is the processor | ||
9 | (mpc8349, mpc8360, etc.) and the second is | ||
10 | "fsl,elo-dma" | ||
11 | - reg : <registers mapping for DMA general status reg> | ||
12 | - ranges : Should be defined as specified in 1) to describe the | ||
13 | DMA controller channels. | ||
14 | - cell-index : controller index. 0 for controller @ 0x8100 | ||
15 | - interrupts : <interrupt mapping for DMA IRQ> | ||
16 | - interrupt-parent : optional, if needed for interrupt mapping | ||
17 | |||
18 | |||
19 | - DMA channel nodes: | ||
20 | - compatible : compatible list, contains 2 entries, first is | ||
21 | "fsl,CHIP-dma-channel", where CHIP is the processor | ||
22 | (mpc8349, mpc8350, etc.) and the second is | ||
23 | "fsl,elo-dma-channel". However, see note below. | ||
24 | - reg : <registers mapping for channel> | ||
25 | - cell-index : dma channel index starts at 0. | ||
26 | |||
27 | Optional properties: | ||
28 | - interrupts : <interrupt mapping for DMA channel IRQ> | ||
29 | (on 83xx this is expected to be identical to | ||
30 | the interrupts property of the parent node) | ||
31 | - interrupt-parent : optional, if needed for interrupt mapping | ||
32 | |||
33 | Example: | ||
34 | dma@82a8 { | ||
35 | #address-cells = <1>; | ||
36 | #size-cells = <1>; | ||
37 | compatible = "fsl,mpc8349-dma", "fsl,elo-dma"; | ||
38 | reg = <0x82a8 4>; | ||
39 | ranges = <0 0x8100 0x1a4>; | ||
40 | interrupt-parent = <&ipic>; | ||
41 | interrupts = <71 8>; | ||
42 | cell-index = <0>; | ||
43 | dma-channel@0 { | ||
44 | compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel"; | ||
45 | cell-index = <0>; | ||
46 | reg = <0 0x80>; | ||
47 | interrupt-parent = <&ipic>; | ||
48 | interrupts = <71 8>; | ||
49 | }; | ||
50 | dma-channel@80 { | ||
51 | compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel"; | ||
52 | cell-index = <1>; | ||
53 | reg = <0x80 0x80>; | ||
54 | interrupt-parent = <&ipic>; | ||
55 | interrupts = <71 8>; | ||
56 | }; | ||
57 | dma-channel@100 { | ||
58 | compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel"; | ||
59 | cell-index = <2>; | ||
60 | reg = <0x100 0x80>; | ||
61 | interrupt-parent = <&ipic>; | ||
62 | interrupts = <71 8>; | ||
63 | }; | ||
64 | dma-channel@180 { | ||
65 | compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel"; | ||
66 | cell-index = <3>; | ||
67 | reg = <0x180 0x80>; | ||
68 | interrupt-parent = <&ipic>; | ||
69 | interrupts = <71 8>; | ||
70 | }; | ||
71 | }; | ||
72 | |||
73 | * Freescale 85xx/86xx DMA Controller | ||
74 | |||
75 | Freescale PowerPC 85xx/86xx have on chip general purpose DMA controllers. | ||
76 | |||
77 | Required properties: | ||
78 | |||
79 | - compatible : compatible list, contains 2 entries, first is | ||
80 | "fsl,CHIP-dma", where CHIP is the processor | ||
81 | (mpc8540, mpc8540, etc.) and the second is | ||
82 | "fsl,eloplus-dma" | ||
83 | - reg : <registers mapping for DMA general status reg> | ||
84 | - cell-index : controller index. 0 for controller @ 0x21000, | ||
85 | 1 for controller @ 0xc000 | ||
86 | - ranges : Should be defined as specified in 1) to describe the | ||
87 | DMA controller channels. | ||
88 | |||
89 | - DMA channel nodes: | ||
90 | - compatible : compatible list, contains 2 entries, first is | ||
91 | "fsl,CHIP-dma-channel", where CHIP is the processor | ||
92 | (mpc8540, mpc8560, etc.) and the second is | ||
93 | "fsl,eloplus-dma-channel". However, see note below. | ||
94 | - cell-index : dma channel index starts at 0. | ||
95 | - reg : <registers mapping for channel> | ||
96 | - interrupts : <interrupt mapping for DMA channel IRQ> | ||
97 | - interrupt-parent : optional, if needed for interrupt mapping | ||
98 | |||
99 | Example: | ||
100 | dma@21300 { | ||
101 | #address-cells = <1>; | ||
102 | #size-cells = <1>; | ||
103 | compatible = "fsl,mpc8540-dma", "fsl,eloplus-dma"; | ||
104 | reg = <0x21300 4>; | ||
105 | ranges = <0 0x21100 0x200>; | ||
106 | cell-index = <0>; | ||
107 | dma-channel@0 { | ||
108 | compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel"; | ||
109 | reg = <0 0x80>; | ||
110 | cell-index = <0>; | ||
111 | interrupt-parent = <&mpic>; | ||
112 | interrupts = <20 2>; | ||
113 | }; | ||
114 | dma-channel@80 { | ||
115 | compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel"; | ||
116 | reg = <0x80 0x80>; | ||
117 | cell-index = <1>; | ||
118 | interrupt-parent = <&mpic>; | ||
119 | interrupts = <21 2>; | ||
120 | }; | ||
121 | dma-channel@100 { | ||
122 | compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel"; | ||
123 | reg = <0x100 0x80>; | ||
124 | cell-index = <2>; | ||
125 | interrupt-parent = <&mpic>; | ||
126 | interrupts = <22 2>; | ||
127 | }; | ||
128 | dma-channel@180 { | ||
129 | compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel"; | ||
130 | reg = <0x180 0x80>; | ||
131 | cell-index = <3>; | ||
132 | interrupt-parent = <&mpic>; | ||
133 | interrupts = <23 2>; | ||
134 | }; | ||
135 | }; | ||
136 | |||
137 | Note on DMA channel compatible properties: The compatible property must say | ||
138 | "fsl,elo-dma-channel" or "fsl,eloplus-dma-channel" to be used by the Elo DMA | ||
139 | driver (fsldma). Any DMA channel used by fsldma cannot be used by another | ||
140 | DMA driver, such as the SSI sound drivers for the MPC8610. Therefore, any DMA | ||
141 | channel that should be used for another driver should not use | ||
142 | "fsl,elo-dma-channel" or "fsl,eloplus-dma-channel". For the SSI drivers, for | ||
143 | example, the compatible property should be "fsl,ssi-dma-channel". See ssi.txt | ||
144 | for more information. | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/ecm.txt b/Documentation/devicetree/bindings/powerpc/fsl/ecm.txt new file mode 100644 index 00000000000..f514f29c67d --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/ecm.txt | |||
@@ -0,0 +1,64 @@ | |||
1 | ===================================================================== | ||
2 | E500 LAW & Coherency Module Device Tree Binding | ||
3 | Copyright (C) 2009 Freescale Semiconductor Inc. | ||
4 | ===================================================================== | ||
5 | |||
6 | Local Access Window (LAW) Node | ||
7 | |||
8 | The LAW node represents the region of CCSR space where local access | ||
9 | windows are configured. For ECM based devices this is the first 4k | ||
10 | of CCSR space that includes CCSRBAR, ALTCBAR, ALTCAR, BPTR, and some | ||
11 | number of local access windows as specified by fsl,num-laws. | ||
12 | |||
13 | PROPERTIES | ||
14 | |||
15 | - compatible | ||
16 | Usage: required | ||
17 | Value type: <string> | ||
18 | Definition: Must include "fsl,ecm-law" | ||
19 | |||
20 | - reg | ||
21 | Usage: required | ||
22 | Value type: <prop-encoded-array> | ||
23 | Definition: A standard property. The value specifies the | ||
24 | physical address offset and length of the CCSR space | ||
25 | registers. | ||
26 | |||
27 | - fsl,num-laws | ||
28 | Usage: required | ||
29 | Value type: <u32> | ||
30 | Definition: The value specifies the number of local access | ||
31 | windows for this device. | ||
32 | |||
33 | ===================================================================== | ||
34 | |||
35 | E500 Coherency Module Node | ||
36 | |||
37 | The E500 LAW node represents the region of CCSR space where ECM config | ||
38 | and error reporting registers exist, this is the second 4k (0x1000) | ||
39 | of CCSR space. | ||
40 | |||
41 | PROPERTIES | ||
42 | |||
43 | - compatible | ||
44 | Usage: required | ||
45 | Value type: <string> | ||
46 | Definition: Must include "fsl,CHIP-ecm", "fsl,ecm" where | ||
47 | CHIP is the processor (mpc8572, mpc8544, etc.) | ||
48 | |||
49 | - reg | ||
50 | Usage: required | ||
51 | Value type: <prop-encoded-array> | ||
52 | Definition: A standard property. The value specifies the | ||
53 | physical address offset and length of the CCSR space | ||
54 | registers. | ||
55 | |||
56 | - interrupts | ||
57 | Usage: required | ||
58 | Value type: <prop-encoded-array> | ||
59 | |||
60 | - interrupt-parent | ||
61 | Usage: required | ||
62 | Value type: <phandle> | ||
63 | |||
64 | ===================================================================== | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/gtm.txt b/Documentation/devicetree/bindings/powerpc/fsl/gtm.txt new file mode 100644 index 00000000000..9a33efded4b --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/gtm.txt | |||
@@ -0,0 +1,31 @@ | |||
1 | * Freescale General-purpose Timers Module | ||
2 | |||
3 | Required properties: | ||
4 | - compatible : should be | ||
5 | "fsl,<chip>-gtm", "fsl,gtm" for SOC GTMs | ||
6 | "fsl,<chip>-qe-gtm", "fsl,qe-gtm", "fsl,gtm" for QE GTMs | ||
7 | "fsl,<chip>-cpm2-gtm", "fsl,cpm2-gtm", "fsl,gtm" for CPM2 GTMs | ||
8 | - reg : should contain gtm registers location and length (0x40). | ||
9 | - interrupts : should contain four interrupts. | ||
10 | - interrupt-parent : interrupt source phandle. | ||
11 | - clock-frequency : specifies the frequency driving the timer. | ||
12 | |||
13 | Example: | ||
14 | |||
15 | timer@500 { | ||
16 | compatible = "fsl,mpc8360-gtm", "fsl,gtm"; | ||
17 | reg = <0x500 0x40>; | ||
18 | interrupts = <90 8 78 8 84 8 72 8>; | ||
19 | interrupt-parent = <&ipic>; | ||
20 | /* filled by u-boot */ | ||
21 | clock-frequency = <0>; | ||
22 | }; | ||
23 | |||
24 | timer@440 { | ||
25 | compatible = "fsl,mpc8360-qe-gtm", "fsl,qe-gtm", "fsl,gtm"; | ||
26 | reg = <0x440 0x40>; | ||
27 | interrupts = <12 13 14 15>; | ||
28 | interrupt-parent = <&qeic>; | ||
29 | /* filled by u-boot */ | ||
30 | clock-frequency = <0>; | ||
31 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/guts.txt b/Documentation/devicetree/bindings/powerpc/fsl/guts.txt new file mode 100644 index 00000000000..9e7a2417dac --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/guts.txt | |||
@@ -0,0 +1,25 @@ | |||
1 | * Global Utilities Block | ||
2 | |||
3 | The global utilities block controls power management, I/O device | ||
4 | enabling, power-on-reset configuration monitoring, general-purpose | ||
5 | I/O signal configuration, alternate function selection for multiplexed | ||
6 | signals, and clock control. | ||
7 | |||
8 | Required properties: | ||
9 | |||
10 | - compatible : Should define the compatible device type for | ||
11 | global-utilities. | ||
12 | - reg : Offset and length of the register set for the device. | ||
13 | |||
14 | Recommended properties: | ||
15 | |||
16 | - fsl,has-rstcr : Indicates that the global utilities register set | ||
17 | contains a functioning "reset control register" (i.e. the board | ||
18 | is wired to reset upon setting the HRESET_REQ bit in this register). | ||
19 | |||
20 | Example: | ||
21 | global-utilities@e0000 { /* global utilities block */ | ||
22 | compatible = "fsl,mpc8548-guts"; | ||
23 | reg = <e0000 1000>; | ||
24 | fsl,has-rstcr; | ||
25 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/lbc.txt b/Documentation/devicetree/bindings/powerpc/fsl/lbc.txt new file mode 100644 index 00000000000..3300fec501c --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/lbc.txt | |||
@@ -0,0 +1,35 @@ | |||
1 | * Chipselect/Local Bus | ||
2 | |||
3 | Properties: | ||
4 | - name : Should be localbus | ||
5 | - #address-cells : Should be either two or three. The first cell is the | ||
6 | chipselect number, and the remaining cells are the | ||
7 | offset into the chipselect. | ||
8 | - #size-cells : Either one or two, depending on how large each chipselect | ||
9 | can be. | ||
10 | - ranges : Each range corresponds to a single chipselect, and cover | ||
11 | the entire access window as configured. | ||
12 | |||
13 | Example: | ||
14 | localbus@f0010100 { | ||
15 | compatible = "fsl,mpc8272-localbus", | ||
16 | "fsl,pq2-localbus"; | ||
17 | #address-cells = <2>; | ||
18 | #size-cells = <1>; | ||
19 | reg = <f0010100 40>; | ||
20 | |||
21 | ranges = <0 0 fe000000 02000000 | ||
22 | 1 0 f4500000 00008000>; | ||
23 | |||
24 | flash@0,0 { | ||
25 | compatible = "jedec-flash"; | ||
26 | reg = <0 0 2000000>; | ||
27 | bank-width = <4>; | ||
28 | device-width = <1>; | ||
29 | }; | ||
30 | |||
31 | board-control@1,0 { | ||
32 | reg = <1 0 20>; | ||
33 | compatible = "fsl,mpc8272ads-bcsr"; | ||
34 | }; | ||
35 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/mcm.txt b/Documentation/devicetree/bindings/powerpc/fsl/mcm.txt new file mode 100644 index 00000000000..4ceda9b3b41 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/mcm.txt | |||
@@ -0,0 +1,64 @@ | |||
1 | ===================================================================== | ||
2 | MPX LAW & Coherency Module Device Tree Binding | ||
3 | Copyright (C) 2009 Freescale Semiconductor Inc. | ||
4 | ===================================================================== | ||
5 | |||
6 | Local Access Window (LAW) Node | ||
7 | |||
8 | The LAW node represents the region of CCSR space where local access | ||
9 | windows are configured. For MCM based devices this is the first 4k | ||
10 | of CCSR space that includes CCSRBAR, ALTCBAR, ALTCAR, BPTR, and some | ||
11 | number of local access windows as specified by fsl,num-laws. | ||
12 | |||
13 | PROPERTIES | ||
14 | |||
15 | - compatible | ||
16 | Usage: required | ||
17 | Value type: <string> | ||
18 | Definition: Must include "fsl,mcm-law" | ||
19 | |||
20 | - reg | ||
21 | Usage: required | ||
22 | Value type: <prop-encoded-array> | ||
23 | Definition: A standard property. The value specifies the | ||
24 | physical address offset and length of the CCSR space | ||
25 | registers. | ||
26 | |||
27 | - fsl,num-laws | ||
28 | Usage: required | ||
29 | Value type: <u32> | ||
30 | Definition: The value specifies the number of local access | ||
31 | windows for this device. | ||
32 | |||
33 | ===================================================================== | ||
34 | |||
35 | MPX Coherency Module Node | ||
36 | |||
37 | The MPX LAW node represents the region of CCSR space where MCM config | ||
38 | and error reporting registers exist, this is the second 4k (0x1000) | ||
39 | of CCSR space. | ||
40 | |||
41 | PROPERTIES | ||
42 | |||
43 | - compatible | ||
44 | Usage: required | ||
45 | Value type: <string> | ||
46 | Definition: Must include "fsl,CHIP-mcm", "fsl,mcm" where | ||
47 | CHIP is the processor (mpc8641, mpc8610, etc.) | ||
48 | |||
49 | - reg | ||
50 | Usage: required | ||
51 | Value type: <prop-encoded-array> | ||
52 | Definition: A standard property. The value specifies the | ||
53 | physical address offset and length of the CCSR space | ||
54 | registers. | ||
55 | |||
56 | - interrupts | ||
57 | Usage: required | ||
58 | Value type: <prop-encoded-array> | ||
59 | |||
60 | - interrupt-parent | ||
61 | Usage: required | ||
62 | Value type: <phandle> | ||
63 | |||
64 | ===================================================================== | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/mcu-mpc8349emitx.txt b/Documentation/devicetree/bindings/powerpc/fsl/mcu-mpc8349emitx.txt new file mode 100644 index 00000000000..0f766333b6e --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/mcu-mpc8349emitx.txt | |||
@@ -0,0 +1,17 @@ | |||
1 | Freescale MPC8349E-mITX-compatible Power Management Micro Controller Unit (MCU) | ||
2 | |||
3 | Required properties: | ||
4 | - compatible : "fsl,<mcu-chip>-<board>", "fsl,mcu-mpc8349emitx". | ||
5 | - reg : should specify I2C address (0x0a). | ||
6 | - #gpio-cells : should be 2. | ||
7 | - gpio-controller : should be present. | ||
8 | |||
9 | Example: | ||
10 | |||
11 | mcu@0a { | ||
12 | #gpio-cells = <2>; | ||
13 | compatible = "fsl,mc9s08qg8-mpc8349emitx", | ||
14 | "fsl,mcu-mpc8349emitx"; | ||
15 | reg = <0x0a>; | ||
16 | gpio-controller; | ||
17 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/mpc5121-psc.txt b/Documentation/devicetree/bindings/powerpc/fsl/mpc5121-psc.txt new file mode 100644 index 00000000000..8832e879891 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/mpc5121-psc.txt | |||
@@ -0,0 +1,70 @@ | |||
1 | MPC5121 PSC Device Tree Bindings | ||
2 | |||
3 | PSC in UART mode | ||
4 | ---------------- | ||
5 | |||
6 | For PSC in UART mode the needed PSC serial devices | ||
7 | are specified by fsl,mpc5121-psc-uart nodes in the | ||
8 | fsl,mpc5121-immr SoC node. Additionally the PSC FIFO | ||
9 | Controller node fsl,mpc5121-psc-fifo is requered there: | ||
10 | |||
11 | fsl,mpc5121-psc-uart nodes | ||
12 | -------------------------- | ||
13 | |||
14 | Required properties : | ||
15 | - compatible : Should contain "fsl,mpc5121-psc-uart" and "fsl,mpc5121-psc" | ||
16 | - cell-index : Index of the PSC in hardware | ||
17 | - reg : Offset and length of the register set for the PSC device | ||
18 | - interrupts : <a b> where a is the interrupt number of the | ||
19 | PSC FIFO Controller and b is a field that represents an | ||
20 | encoding of the sense and level information for the interrupt. | ||
21 | - interrupt-parent : the phandle for the interrupt controller that | ||
22 | services interrupts for this device. | ||
23 | |||
24 | Recommended properties : | ||
25 | - fsl,rx-fifo-size : the size of the RX fifo slice (a multiple of 4) | ||
26 | - fsl,tx-fifo-size : the size of the TX fifo slice (a multiple of 4) | ||
27 | |||
28 | |||
29 | fsl,mpc5121-psc-fifo node | ||
30 | ------------------------- | ||
31 | |||
32 | Required properties : | ||
33 | - compatible : Should be "fsl,mpc5121-psc-fifo" | ||
34 | - reg : Offset and length of the register set for the PSC | ||
35 | FIFO Controller | ||
36 | - interrupts : <a b> where a is the interrupt number of the | ||
37 | PSC FIFO Controller and b is a field that represents an | ||
38 | encoding of the sense and level information for the interrupt. | ||
39 | - interrupt-parent : the phandle for the interrupt controller that | ||
40 | services interrupts for this device. | ||
41 | |||
42 | |||
43 | Example for a board using PSC0 and PSC1 devices in serial mode: | ||
44 | |||
45 | serial@11000 { | ||
46 | compatible = "fsl,mpc5121-psc-uart", "fsl,mpc5121-psc"; | ||
47 | cell-index = <0>; | ||
48 | reg = <0x11000 0x100>; | ||
49 | interrupts = <40 0x8>; | ||
50 | interrupt-parent = < &ipic >; | ||
51 | fsl,rx-fifo-size = <16>; | ||
52 | fsl,tx-fifo-size = <16>; | ||
53 | }; | ||
54 | |||
55 | serial@11100 { | ||
56 | compatible = "fsl,mpc5121-psc-uart", "fsl,mpc5121-psc"; | ||
57 | cell-index = <1>; | ||
58 | reg = <0x11100 0x100>; | ||
59 | interrupts = <40 0x8>; | ||
60 | interrupt-parent = < &ipic >; | ||
61 | fsl,rx-fifo-size = <16>; | ||
62 | fsl,tx-fifo-size = <16>; | ||
63 | }; | ||
64 | |||
65 | pscfifo@11f00 { | ||
66 | compatible = "fsl,mpc5121-psc-fifo"; | ||
67 | reg = <0x11f00 0x100>; | ||
68 | interrupts = <40 0x8>; | ||
69 | interrupt-parent = < &ipic >; | ||
70 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/mpc5200.txt b/Documentation/devicetree/bindings/powerpc/fsl/mpc5200.txt new file mode 100644 index 00000000000..4ccb2cd5df9 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/mpc5200.txt | |||
@@ -0,0 +1,198 @@ | |||
1 | MPC5200 Device Tree Bindings | ||
2 | ---------------------------- | ||
3 | |||
4 | (c) 2006-2009 Secret Lab Technologies Ltd | ||
5 | Grant Likely <grant.likely@secretlab.ca> | ||
6 | |||
7 | Naming conventions | ||
8 | ------------------ | ||
9 | For mpc5200 on-chip devices, the format for each compatible value is | ||
10 | <chip>-<device>[-<mode>]. The OS should be able to match a device driver | ||
11 | to the device based solely on the compatible value. If two drivers | ||
12 | match on the compatible list; the 'most compatible' driver should be | ||
13 | selected. | ||
14 | |||
15 | The split between the MPC5200 and the MPC5200B leaves a bit of a | ||
16 | conundrum. How should the compatible property be set up to provide | ||
17 | maximum compatibility information; but still accurately describe the | ||
18 | chip? For the MPC5200; the answer is easy. Most of the SoC devices | ||
19 | originally appeared on the MPC5200. Since they didn't exist anywhere | ||
20 | else; the 5200 compatible properties will contain only one item; | ||
21 | "fsl,mpc5200-<device>". | ||
22 | |||
23 | The 5200B is almost the same as the 5200, but not quite. It fixes | ||
24 | silicon bugs and it adds a small number of enhancements. Most of the | ||
25 | devices either provide exactly the same interface as on the 5200. A few | ||
26 | devices have extra functions but still have a backwards compatible mode. | ||
27 | To express this information as completely as possible, 5200B device trees | ||
28 | should have two items in the compatible list: | ||
29 | compatible = "fsl,mpc5200b-<device>","fsl,mpc5200-<device>"; | ||
30 | |||
31 | It is *strongly* recommended that 5200B device trees follow this convention | ||
32 | (instead of only listing the base mpc5200 item). | ||
33 | |||
34 | ie. ethernet on mpc5200: compatible = "fsl,mpc5200-fec"; | ||
35 | ethernet on mpc5200b: compatible = "fsl,mpc5200b-fec", "fsl,mpc5200-fec"; | ||
36 | |||
37 | Modal devices, like PSCs, also append the configured function to the | ||
38 | end of the compatible field. ie. A PSC in i2s mode would specify | ||
39 | "fsl,mpc5200-psc-i2s", not "fsl,mpc5200-i2s". This convention is chosen to | ||
40 | avoid naming conflicts with non-psc devices providing the same | ||
41 | function. For example, "fsl,mpc5200-spi" and "fsl,mpc5200-psc-spi" describe | ||
42 | the mpc5200 simple spi device and a PSC spi mode respectively. | ||
43 | |||
44 | At the time of writing, exact chip may be either 'fsl,mpc5200' or | ||
45 | 'fsl,mpc5200b'. | ||
46 | |||
47 | The soc node | ||
48 | ------------ | ||
49 | This node describes the on chip SOC peripherals. Every mpc5200 based | ||
50 | board will have this node, and as such there is a common naming | ||
51 | convention for SOC devices. | ||
52 | |||
53 | Required properties: | ||
54 | name description | ||
55 | ---- ----------- | ||
56 | ranges Memory range of the internal memory mapped registers. | ||
57 | Should be <0 [baseaddr] 0xc000> | ||
58 | reg Should be <[baseaddr] 0x100> | ||
59 | compatible mpc5200: "fsl,mpc5200-immr" | ||
60 | mpc5200b: "fsl,mpc5200b-immr" | ||
61 | system-frequency 'fsystem' frequency in Hz; XLB, IPB, USB and PCI | ||
62 | clocks are derived from the fsystem clock. | ||
63 | bus-frequency IPB bus frequency in Hz. Clock rate | ||
64 | used by most of the soc devices. | ||
65 | |||
66 | soc child nodes | ||
67 | --------------- | ||
68 | Any on chip SOC devices available to Linux must appear as soc5200 child nodes. | ||
69 | |||
70 | Note: The tables below show the value for the mpc5200. A mpc5200b device | ||
71 | tree should use the "fsl,mpc5200b-<device>","fsl,mpc5200-<device>" form. | ||
72 | |||
73 | Required soc5200 child nodes: | ||
74 | name compatible Description | ||
75 | ---- ---------- ----------- | ||
76 | cdm@<addr> fsl,mpc5200-cdm Clock Distribution | ||
77 | interrupt-controller@<addr> fsl,mpc5200-pic need an interrupt | ||
78 | controller to boot | ||
79 | bestcomm@<addr> fsl,mpc5200-bestcomm Bestcomm DMA controller | ||
80 | |||
81 | Recommended soc5200 child nodes; populate as needed for your board | ||
82 | name compatible Description | ||
83 | ---- ---------- ----------- | ||
84 | timer@<addr> fsl,mpc5200-gpt General purpose timers | ||
85 | gpio@<addr> fsl,mpc5200-gpio MPC5200 simple gpio controller | ||
86 | gpio@<addr> fsl,mpc5200-gpio-wkup MPC5200 wakeup gpio controller | ||
87 | rtc@<addr> fsl,mpc5200-rtc Real time clock | ||
88 | mscan@<addr> fsl,mpc5200-mscan CAN bus controller | ||
89 | pci@<addr> fsl,mpc5200-pci PCI bridge | ||
90 | serial@<addr> fsl,mpc5200-psc-uart PSC in serial mode | ||
91 | i2s@<addr> fsl,mpc5200-psc-i2s PSC in i2s mode | ||
92 | ac97@<addr> fsl,mpc5200-psc-ac97 PSC in ac97 mode | ||
93 | spi@<addr> fsl,mpc5200-psc-spi PSC in spi mode | ||
94 | irda@<addr> fsl,mpc5200-psc-irda PSC in IrDA mode | ||
95 | spi@<addr> fsl,mpc5200-spi MPC5200 spi device | ||
96 | ethernet@<addr> fsl,mpc5200-fec MPC5200 ethernet device | ||
97 | ata@<addr> fsl,mpc5200-ata IDE ATA interface | ||
98 | i2c@<addr> fsl,mpc5200-i2c I2C controller | ||
99 | usb@<addr> fsl,mpc5200-ohci,ohci-be USB controller | ||
100 | xlb@<addr> fsl,mpc5200-xlb XLB arbitrator | ||
101 | |||
102 | fsl,mpc5200-gpt nodes | ||
103 | --------------------- | ||
104 | On the mpc5200 and 5200b, GPT0 has a watchdog timer function. If the board | ||
105 | design supports the internal wdt, then the device node for GPT0 should | ||
106 | include the empty property 'fsl,has-wdt'. Note that this does not activate | ||
107 | the watchdog. The timer will function as a GPT if the timer api is used, and | ||
108 | it will function as watchdog if the watchdog device is used. The watchdog | ||
109 | mode has priority over the gpt mode, i.e. if the watchdog is activated, any | ||
110 | gpt api call to this timer will fail with -EBUSY. | ||
111 | |||
112 | If you add the property | ||
113 | fsl,wdt-on-boot = <n>; | ||
114 | GPT0 will be marked as in-use watchdog, i.e. blocking every gpt access to it. | ||
115 | If n>0, the watchdog is started with a timeout of n seconds. If n=0, the | ||
116 | configuration of the watchdog is not touched. This is useful in two cases: | ||
117 | - just mark GPT0 as watchdog, blocking gpt accesses, and configure it later; | ||
118 | - do not touch a configuration assigned by the boot loader which supervises | ||
119 | the boot process itself. | ||
120 | |||
121 | The watchdog will respect the CONFIG_WATCHDOG_NOWAYOUT option. | ||
122 | |||
123 | An mpc5200-gpt can be used as a single line GPIO controller. To do so, | ||
124 | add the following properties to the gpt node: | ||
125 | gpio-controller; | ||
126 | #gpio-cells = <2>; | ||
127 | When referencing the GPIO line from another node, the first cell must always | ||
128 | be zero and the second cell represents the gpio flags and described in the | ||
129 | gpio device tree binding. | ||
130 | |||
131 | An mpc5200-gpt can be used as a single line edge sensitive interrupt | ||
132 | controller. To do so, add the following properties to the gpt node: | ||
133 | interrupt-controller; | ||
134 | #interrupt-cells = <1>; | ||
135 | When referencing the IRQ line from another node, the cell represents the | ||
136 | sense mode; 1 for edge rising, 2 for edge falling. | ||
137 | |||
138 | fsl,mpc5200-psc nodes | ||
139 | --------------------- | ||
140 | The PSCs should include a cell-index which is the index of the PSC in | ||
141 | hardware. cell-index is used to determine which shared SoC registers to | ||
142 | use when setting up PSC clocking. cell-index number starts at '0'. ie: | ||
143 | PSC1 has 'cell-index = <0>' | ||
144 | PSC4 has 'cell-index = <3>' | ||
145 | |||
146 | PSC in i2s mode: The mpc5200 and mpc5200b PSCs are not compatible when in | ||
147 | i2s mode. An 'mpc5200b-psc-i2s' node cannot include 'mpc5200-psc-i2s' in the | ||
148 | compatible field. | ||
149 | |||
150 | |||
151 | fsl,mpc5200-gpio and fsl,mpc5200-gpio-wkup nodes | ||
152 | ------------------------------------------------ | ||
153 | Each GPIO controller node should have the empty property gpio-controller and | ||
154 | #gpio-cells set to 2. First cell is the GPIO number which is interpreted | ||
155 | according to the bit numbers in the GPIO control registers. The second cell | ||
156 | is for flags which is currently unused. | ||
157 | |||
158 | fsl,mpc5200-fec nodes | ||
159 | --------------------- | ||
160 | The FEC node can specify one of the following properties to configure | ||
161 | the MII link: | ||
162 | - fsl,7-wire-mode - An empty property that specifies the link uses 7-wire | ||
163 | mode instead of MII | ||
164 | - current-speed - Specifies that the MII should be configured for a fixed | ||
165 | speed. This property should contain two cells. The | ||
166 | first cell specifies the speed in Mbps and the second | ||
167 | should be '0' for half duplex and '1' for full duplex | ||
168 | - phy-handle - Contains a phandle to an Ethernet PHY. | ||
169 | |||
170 | Interrupt controller (fsl,mpc5200-pic) node | ||
171 | ------------------------------------------- | ||
172 | The mpc5200 pic binding splits hardware IRQ numbers into two levels. The | ||
173 | split reflects the layout of the PIC hardware itself, which groups | ||
174 | interrupts into one of three groups; CRIT, MAIN or PERP. Also, the | ||
175 | Bestcomm dma engine has it's own set of interrupt sources which are | ||
176 | cascaded off of peripheral interrupt 0, which the driver interprets as a | ||
177 | fourth group, SDMA. | ||
178 | |||
179 | The interrupts property for device nodes using the mpc5200 pic consists | ||
180 | of three cells; <L1 L2 level> | ||
181 | |||
182 | L1 := [CRIT=0, MAIN=1, PERP=2, SDMA=3] | ||
183 | L2 := interrupt number; directly mapped from the value in the | ||
184 | "ICTL PerStat, MainStat, CritStat Encoded Register" | ||
185 | level := [LEVEL_HIGH=0, EDGE_RISING=1, EDGE_FALLING=2, LEVEL_LOW=3] | ||
186 | |||
187 | For external IRQs, use the following interrupt property values (how to | ||
188 | specify external interrupts is a frequently asked question): | ||
189 | External interrupts: | ||
190 | external irq0: interrupts = <0 0 n>; | ||
191 | external irq1: interrupts = <1 1 n>; | ||
192 | external irq2: interrupts = <1 2 n>; | ||
193 | external irq3: interrupts = <1 3 n>; | ||
194 | 'n' is sense (0: level high, 1: edge rising, 2: edge falling 3: level low) | ||
195 | |||
196 | fsl,mpc5200-mscan nodes | ||
197 | ----------------------- | ||
198 | See file can.txt in this directory. | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/mpic.txt b/Documentation/devicetree/bindings/powerpc/fsl/mpic.txt new file mode 100644 index 00000000000..71e39cf3215 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/mpic.txt | |||
@@ -0,0 +1,42 @@ | |||
1 | * OpenPIC and its interrupt numbers on Freescale's e500/e600 cores | ||
2 | |||
3 | The OpenPIC specification does not specify which interrupt source has to | ||
4 | become which interrupt number. This is up to the software implementation | ||
5 | of the interrupt controller. The only requirement is that every | ||
6 | interrupt source has to have an unique interrupt number / vector number. | ||
7 | To accomplish this the current implementation assigns the number zero to | ||
8 | the first source, the number one to the second source and so on until | ||
9 | all interrupt sources have their unique number. | ||
10 | Usually the assigned vector number equals the interrupt number mentioned | ||
11 | in the documentation for a given core / CPU. This is however not true | ||
12 | for the e500 cores (MPC85XX CPUs) where the documentation distinguishes | ||
13 | between internal and external interrupt sources and starts counting at | ||
14 | zero for both of them. | ||
15 | |||
16 | So what to write for external interrupt source X or internal interrupt | ||
17 | source Y into the device tree? Here is an example: | ||
18 | |||
19 | The memory map for the interrupt controller in the MPC8544[0] shows, | ||
20 | that the first interrupt source starts at 0x5_0000 (PIC Register Address | ||
21 | Map-Interrupt Source Configuration Registers). This source becomes the | ||
22 | number zero therefore: | ||
23 | External interrupt 0 = interrupt number 0 | ||
24 | External interrupt 1 = interrupt number 1 | ||
25 | External interrupt 2 = interrupt number 2 | ||
26 | ... | ||
27 | Every interrupt number allocates 0x20 bytes register space. So to get | ||
28 | its number it is sufficient to shift the lower 16bits to right by five. | ||
29 | So for the external interrupt 10 we have: | ||
30 | 0x0140 >> 5 = 10 | ||
31 | |||
32 | After the external sources, the internal sources follow. The in core I2C | ||
33 | controller on the MPC8544 for instance has the internal source number | ||
34 | 27. Oo obtain its interrupt number we take the lower 16bits of its memory | ||
35 | address (0x5_0560) and shift it right: | ||
36 | 0x0560 >> 5 = 43 | ||
37 | |||
38 | Therefore the I2C device node for the MPC8544 CPU has to have the | ||
39 | interrupt number 43 specified in the device tree. | ||
40 | |||
41 | [0] MPC8544E PowerQUICCTM III, Integrated Host Processor Family Reference Manual | ||
42 | MPC8544ERM Rev. 1 10/2007 | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt b/Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt new file mode 100644 index 00000000000..bcc30bac683 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt | |||
@@ -0,0 +1,36 @@ | |||
1 | * Freescale MSI interrupt controller | ||
2 | |||
3 | Required properties: | ||
4 | - compatible : compatible list, contains 2 entries, | ||
5 | first is "fsl,CHIP-msi", where CHIP is the processor(mpc8610, mpc8572, | ||
6 | etc.) and the second is "fsl,mpic-msi" or "fsl,ipic-msi" depending on | ||
7 | the parent type. | ||
8 | - reg : should contain the address and the length of the shared message | ||
9 | interrupt register set. | ||
10 | - msi-available-ranges: use <start count> style section to define which | ||
11 | msi interrupt can be used in the 256 msi interrupts. This property is | ||
12 | optional, without this, all the 256 MSI interrupts can be used. | ||
13 | - interrupts : each one of the interrupts here is one entry per 32 MSIs, | ||
14 | and routed to the host interrupt controller. the interrupts should | ||
15 | be set as edge sensitive. | ||
16 | - interrupt-parent: the phandle for the interrupt controller | ||
17 | that services interrupts for this device. for 83xx cpu, the interrupts | ||
18 | are routed to IPIC, and for 85xx/86xx cpu the interrupts are routed | ||
19 | to MPIC. | ||
20 | |||
21 | Example: | ||
22 | msi@41600 { | ||
23 | compatible = "fsl,mpc8610-msi", "fsl,mpic-msi"; | ||
24 | reg = <0x41600 0x80>; | ||
25 | msi-available-ranges = <0 0x100>; | ||
26 | interrupts = < | ||
27 | 0xe0 0 | ||
28 | 0xe1 0 | ||
29 | 0xe2 0 | ||
30 | 0xe3 0 | ||
31 | 0xe4 0 | ||
32 | 0xe5 0 | ||
33 | 0xe6 0 | ||
34 | 0xe7 0>; | ||
35 | interrupt-parent = <&mpic>; | ||
36 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/pmc.txt b/Documentation/devicetree/bindings/powerpc/fsl/pmc.txt new file mode 100644 index 00000000000..07256b7ffca --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/pmc.txt | |||
@@ -0,0 +1,63 @@ | |||
1 | * Power Management Controller | ||
2 | |||
3 | Properties: | ||
4 | - compatible: "fsl,<chip>-pmc". | ||
5 | |||
6 | "fsl,mpc8349-pmc" should be listed for any chip whose PMC is | ||
7 | compatible. "fsl,mpc8313-pmc" should also be listed for any chip | ||
8 | whose PMC is compatible, and implies deep-sleep capability. | ||
9 | |||
10 | "fsl,mpc8548-pmc" should be listed for any chip whose PMC is | ||
11 | compatible. "fsl,mpc8536-pmc" should also be listed for any chip | ||
12 | whose PMC is compatible, and implies deep-sleep capability. | ||
13 | |||
14 | "fsl,mpc8641d-pmc" should be listed for any chip whose PMC is | ||
15 | compatible; all statements below that apply to "fsl,mpc8548-pmc" also | ||
16 | apply to "fsl,mpc8641d-pmc". | ||
17 | |||
18 | Compatibility does not include bit assignments in SCCR/PMCDR/DEVDISR; these | ||
19 | bit assignments are indicated via the sleep specifier in each device's | ||
20 | sleep property. | ||
21 | |||
22 | - reg: For devices compatible with "fsl,mpc8349-pmc", the first resource | ||
23 | is the PMC block, and the second resource is the Clock Configuration | ||
24 | block. | ||
25 | |||
26 | For devices compatible with "fsl,mpc8548-pmc", the first resource | ||
27 | is a 32-byte block beginning with DEVDISR. | ||
28 | |||
29 | - interrupts: For "fsl,mpc8349-pmc"-compatible devices, the first | ||
30 | resource is the PMC block interrupt. | ||
31 | |||
32 | - fsl,mpc8313-wakeup-timer: For "fsl,mpc8313-pmc"-compatible devices, | ||
33 | this is a phandle to an "fsl,gtm" node on which timer 4 can be used as | ||
34 | a wakeup source from deep sleep. | ||
35 | |||
36 | Sleep specifiers: | ||
37 | |||
38 | fsl,mpc8349-pmc: Sleep specifiers consist of one cell. For each bit | ||
39 | that is set in the cell, the corresponding bit in SCCR will be saved | ||
40 | and cleared on suspend, and restored on resume. This sleep controller | ||
41 | supports disabling and resuming devices at any time. | ||
42 | |||
43 | fsl,mpc8536-pmc: Sleep specifiers consist of three cells, the third of | ||
44 | which will be ORed into PMCDR upon suspend, and cleared from PMCDR | ||
45 | upon resume. The first two cells are as described for fsl,mpc8578-pmc. | ||
46 | This sleep controller only supports disabling devices during system | ||
47 | sleep, or permanently. | ||
48 | |||
49 | fsl,mpc8548-pmc: Sleep specifiers consist of one or two cells, the | ||
50 | first of which will be ORed into DEVDISR (and the second into | ||
51 | DEVDISR2, if present -- this cell should be zero or absent if the | ||
52 | hardware does not have DEVDISR2) upon a request for permanent device | ||
53 | disabling. This sleep controller does not support configuring devices | ||
54 | to disable during system sleep (unless supported by another compatible | ||
55 | match), or dynamically. | ||
56 | |||
57 | Example: | ||
58 | |||
59 | power@b00 { | ||
60 | compatible = "fsl,mpc8313-pmc", "fsl,mpc8349-pmc"; | ||
61 | reg = <0xb00 0x100 0xa00 0x100>; | ||
62 | interrupts = <80 8>; | ||
63 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/sec.txt b/Documentation/devicetree/bindings/powerpc/fsl/sec.txt new file mode 100644 index 00000000000..2b6f2d45c45 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/sec.txt | |||
@@ -0,0 +1,68 @@ | |||
1 | Freescale SoC SEC Security Engines | ||
2 | |||
3 | Required properties: | ||
4 | |||
5 | - compatible : Should contain entries for this and backward compatible | ||
6 | SEC versions, high to low, e.g., "fsl,sec2.1", "fsl,sec2.0" | ||
7 | - reg : Offset and length of the register set for the device | ||
8 | - interrupts : the SEC's interrupt number | ||
9 | - fsl,num-channels : An integer representing the number of channels | ||
10 | available. | ||
11 | - fsl,channel-fifo-len : An integer representing the number of | ||
12 | descriptor pointers each channel fetch fifo can hold. | ||
13 | - fsl,exec-units-mask : The bitmask representing what execution units | ||
14 | (EUs) are available. It's a single 32-bit cell. EU information | ||
15 | should be encoded following the SEC's Descriptor Header Dword | ||
16 | EU_SEL0 field documentation, i.e. as follows: | ||
17 | |||
18 | bit 0 = reserved - should be 0 | ||
19 | bit 1 = set if SEC has the ARC4 EU (AFEU) | ||
20 | bit 2 = set if SEC has the DES/3DES EU (DEU) | ||
21 | bit 3 = set if SEC has the message digest EU (MDEU/MDEU-A) | ||
22 | bit 4 = set if SEC has the random number generator EU (RNG) | ||
23 | bit 5 = set if SEC has the public key EU (PKEU) | ||
24 | bit 6 = set if SEC has the AES EU (AESU) | ||
25 | bit 7 = set if SEC has the Kasumi EU (KEU) | ||
26 | bit 8 = set if SEC has the CRC EU (CRCU) | ||
27 | bit 11 = set if SEC has the message digest EU extended alg set (MDEU-B) | ||
28 | |||
29 | remaining bits are reserved for future SEC EUs. | ||
30 | |||
31 | - fsl,descriptor-types-mask : The bitmask representing what descriptors | ||
32 | are available. It's a single 32-bit cell. Descriptor type information | ||
33 | should be encoded following the SEC's Descriptor Header Dword DESC_TYPE | ||
34 | field documentation, i.e. as follows: | ||
35 | |||
36 | bit 0 = set if SEC supports the aesu_ctr_nonsnoop desc. type | ||
37 | bit 1 = set if SEC supports the ipsec_esp descriptor type | ||
38 | bit 2 = set if SEC supports the common_nonsnoop desc. type | ||
39 | bit 3 = set if SEC supports the 802.11i AES ccmp desc. type | ||
40 | bit 4 = set if SEC supports the hmac_snoop_no_afeu desc. type | ||
41 | bit 5 = set if SEC supports the srtp descriptor type | ||
42 | bit 6 = set if SEC supports the non_hmac_snoop_no_afeu desc.type | ||
43 | bit 7 = set if SEC supports the pkeu_assemble descriptor type | ||
44 | bit 8 = set if SEC supports the aesu_key_expand_output desc.type | ||
45 | bit 9 = set if SEC supports the pkeu_ptmul descriptor type | ||
46 | bit 10 = set if SEC supports the common_nonsnoop_afeu desc. type | ||
47 | bit 11 = set if SEC supports the pkeu_ptadd_dbl descriptor type | ||
48 | |||
49 | ..and so on and so forth. | ||
50 | |||
51 | Optional properties: | ||
52 | |||
53 | - interrupt-parent : the phandle for the interrupt controller that | ||
54 | services interrupts for this device. | ||
55 | |||
56 | Example: | ||
57 | |||
58 | /* MPC8548E */ | ||
59 | crypto@30000 { | ||
60 | compatible = "fsl,sec2.1", "fsl,sec2.0"; | ||
61 | reg = <0x30000 0x10000>; | ||
62 | interrupts = <29 2>; | ||
63 | interrupt-parent = <&mpic>; | ||
64 | fsl,num-channels = <4>; | ||
65 | fsl,channel-fifo-len = <24>; | ||
66 | fsl,exec-units-mask = <0xfe>; | ||
67 | fsl,descriptor-types-mask = <0x12b0ebf>; | ||
68 | }; | ||
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/ssi.txt b/Documentation/devicetree/bindings/powerpc/fsl/ssi.txt new file mode 100644 index 00000000000..5ff76c9c57d --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/ssi.txt | |||
@@ -0,0 +1,73 @@ | |||
1 | Freescale Synchronous Serial Interface | ||
2 | |||
3 | The SSI is a serial device that communicates with audio codecs. It can | ||
4 | be programmed in AC97, I2S, left-justified, or right-justified modes. | ||
5 | |||
6 | Required properties: | ||
7 | - compatible: Compatible list, contains "fsl,ssi". | ||
8 | - cell-index: The SSI, <0> = SSI1, <1> = SSI2, and so on. | ||
9 | - reg: Offset and length of the register set for the device. | ||
10 | - interrupts: <a b> where a is the interrupt number and b is a | ||
11 | field that represents an encoding of the sense and | ||
12 | level information for the interrupt. This should be | ||
13 | encoded based on the information in section 2) | ||
14 | depending on the type of interrupt controller you | ||
15 | have. | ||
16 | - interrupt-parent: The phandle for the interrupt controller that | ||
17 | services interrupts for this device. | ||
18 | - fsl,mode: The operating mode for the SSI interface. | ||
19 | "i2s-slave" - I2S mode, SSI is clock slave | ||
20 | "i2s-master" - I2S mode, SSI is clock master | ||
21 | "lj-slave" - left-justified mode, SSI is clock slave | ||
22 | "lj-master" - l.j. mode, SSI is clock master | ||
23 | "rj-slave" - right-justified mode, SSI is clock slave | ||
24 | "rj-master" - r.j., SSI is clock master | ||
25 | "ac97-slave" - AC97 mode, SSI is clock slave | ||
26 | "ac97-master" - AC97 mode, SSI is clock master | ||
27 | - fsl,playback-dma: Phandle to a node for the DMA channel to use for | ||
28 | playback of audio. This is typically dictated by SOC | ||
29 | design. See the notes below. | ||
30 | - fsl,capture-dma: Phandle to a node for the DMA channel to use for | ||
31 | capture (recording) of audio. This is typically dictated | ||
32 | by SOC design. See the notes below. | ||
33 | - fsl,fifo-depth: The number of elements in the transmit and receive FIFOs. | ||
34 | This number is the maximum allowed value for SFCSR[TFWM0]. | ||
35 | - fsl,ssi-asynchronous: | ||
36 | If specified, the SSI is to be programmed in asynchronous | ||
37 | mode. In this mode, pins SRCK, STCK, SRFS, and STFS must | ||
38 | all be connected to valid signals. In synchronous mode, | ||
39 | SRCK and SRFS are ignored. Asynchronous mode allows | ||
40 | playback and capture to use different sample sizes and | ||
41 | sample rates. Some drivers may require that SRCK and STCK | ||
42 | be connected together, and SRFS and STFS be connected | ||
43 | together. This would still allow different sample sizes, | ||
44 | but not different sample rates. | ||
45 | |||
46 | Optional properties: | ||
47 | - codec-handle: Phandle to a 'codec' node that defines an audio | ||
48 | codec connected to this SSI. This node is typically | ||
49 | a child of an I2C or other control node. | ||
50 | |||
51 | Child 'codec' node required properties: | ||
52 | - compatible: Compatible list, contains the name of the codec | ||
53 | |||
54 | Child 'codec' node optional properties: | ||
55 | - clock-frequency: The frequency of the input clock, which typically comes | ||
56 | from an on-board dedicated oscillator. | ||
57 | |||
58 | Notes on fsl,playback-dma and fsl,capture-dma: | ||
59 | |||
60 | On SOCs that have an SSI, specific DMA channels are hard-wired for playback | ||
61 | and capture. On the MPC8610, for example, SSI1 must use DMA channel 0 for | ||
62 | playback and DMA channel 1 for capture. SSI2 must use DMA channel 2 for | ||
63 | playback and DMA channel 3 for capture. The developer can choose which | ||
64 | DMA controller to use, but the channels themselves are hard-wired. The | ||
65 | purpose of these two properties is to represent this hardware design. | ||
66 | |||
67 | The device tree nodes for the DMA channels that are referenced by | ||
68 | "fsl,playback-dma" and "fsl,capture-dma" must be marked as compatible with | ||
69 | "fsl,ssi-dma-channel". The SOC-specific compatible string (e.g. | ||
70 | "fsl,mpc8610-dma-channel") can remain. If these nodes are left as | ||
71 | "fsl,elo-dma-channel" or "fsl,eloplus-dma-channel", then the generic Elo DMA | ||
72 | drivers (fsldma) will attempt to use them, and it will conflict with the | ||
73 | sound drivers. | ||
diff --git a/Documentation/devicetree/bindings/powerpc/nintendo/gamecube.txt b/Documentation/devicetree/bindings/powerpc/nintendo/gamecube.txt new file mode 100644 index 00000000000..b558585b1aa --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/nintendo/gamecube.txt | |||
@@ -0,0 +1,109 @@ | |||
1 | |||
2 | Nintendo GameCube device tree | ||
3 | ============================= | ||
4 | |||
5 | 1) The "flipper" node | ||
6 | |||
7 | This node represents the multi-function "Flipper" chip, which packages | ||
8 | many of the devices found in the Nintendo GameCube. | ||
9 | |||
10 | Required properties: | ||
11 | |||
12 | - compatible : Should be "nintendo,flipper" | ||
13 | |||
14 | 1.a) The Video Interface (VI) node | ||
15 | |||
16 | Represents the interface between the graphics processor and a external | ||
17 | video encoder. | ||
18 | |||
19 | Required properties: | ||
20 | |||
21 | - compatible : should be "nintendo,flipper-vi" | ||
22 | - reg : should contain the VI registers location and length | ||
23 | - interrupts : should contain the VI interrupt | ||
24 | |||
25 | 1.b) The Processor Interface (PI) node | ||
26 | |||
27 | Represents the data and control interface between the main processor | ||
28 | and graphics and audio processor. | ||
29 | |||
30 | Required properties: | ||
31 | |||
32 | - compatible : should be "nintendo,flipper-pi" | ||
33 | - reg : should contain the PI registers location and length | ||
34 | |||
35 | 1.b.i) The "Flipper" interrupt controller node | ||
36 | |||
37 | Represents the interrupt controller within the "Flipper" chip. | ||
38 | The node for the "Flipper" interrupt controller must be placed under | ||
39 | the PI node. | ||
40 | |||
41 | Required properties: | ||
42 | |||
43 | - compatible : should be "nintendo,flipper-pic" | ||
44 | |||
45 | 1.c) The Digital Signal Procesor (DSP) node | ||
46 | |||
47 | Represents the digital signal processor interface, designed to offload | ||
48 | audio related tasks. | ||
49 | |||
50 | Required properties: | ||
51 | |||
52 | - compatible : should be "nintendo,flipper-dsp" | ||
53 | - reg : should contain the DSP registers location and length | ||
54 | - interrupts : should contain the DSP interrupt | ||
55 | |||
56 | 1.c.i) The Auxiliary RAM (ARAM) node | ||
57 | |||
58 | Represents the non cpu-addressable ram designed mainly to store audio | ||
59 | related information. | ||
60 | The ARAM node must be placed under the DSP node. | ||
61 | |||
62 | Required properties: | ||
63 | |||
64 | - compatible : should be "nintendo,flipper-aram" | ||
65 | - reg : should contain the ARAM start (zero-based) and length | ||
66 | |||
67 | 1.d) The Disk Interface (DI) node | ||
68 | |||
69 | Represents the interface used to communicate with mass storage devices. | ||
70 | |||
71 | Required properties: | ||
72 | |||
73 | - compatible : should be "nintendo,flipper-di" | ||
74 | - reg : should contain the DI registers location and length | ||
75 | - interrupts : should contain the DI interrupt | ||
76 | |||
77 | 1.e) The Audio Interface (AI) node | ||
78 | |||
79 | Represents the interface to the external 16-bit stereo digital-to-analog | ||
80 | converter. | ||
81 | |||
82 | Required properties: | ||
83 | |||
84 | - compatible : should be "nintendo,flipper-ai" | ||
85 | - reg : should contain the AI registers location and length | ||
86 | - interrupts : should contain the AI interrupt | ||
87 | |||
88 | 1.f) The Serial Interface (SI) node | ||
89 | |||
90 | Represents the interface to the four single bit serial interfaces. | ||
91 | The SI is a proprietary serial interface used normally to control gamepads. | ||
92 | It's NOT a RS232-type interface. | ||
93 | |||
94 | Required properties: | ||
95 | |||
96 | - compatible : should be "nintendo,flipper-si" | ||
97 | - reg : should contain the SI registers location and length | ||
98 | - interrupts : should contain the SI interrupt | ||
99 | |||
100 | 1.g) The External Interface (EXI) node | ||
101 | |||
102 | Represents the multi-channel SPI-like interface. | ||
103 | |||
104 | Required properties: | ||
105 | |||
106 | - compatible : should be "nintendo,flipper-exi" | ||
107 | - reg : should contain the EXI registers location and length | ||
108 | - interrupts : should contain the EXI interrupt | ||
109 | |||
diff --git a/Documentation/devicetree/bindings/powerpc/nintendo/wii.txt b/Documentation/devicetree/bindings/powerpc/nintendo/wii.txt new file mode 100644 index 00000000000..a7e155a023b --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/nintendo/wii.txt | |||
@@ -0,0 +1,184 @@ | |||
1 | |||
2 | Nintendo Wii device tree | ||
3 | ======================== | ||
4 | |||
5 | 0) The root node | ||
6 | |||
7 | This node represents the Nintendo Wii video game console. | ||
8 | |||
9 | Required properties: | ||
10 | |||
11 | - model : Should be "nintendo,wii" | ||
12 | - compatible : Should be "nintendo,wii" | ||
13 | |||
14 | 1) The "hollywood" node | ||
15 | |||
16 | This node represents the multi-function "Hollywood" chip, which packages | ||
17 | many of the devices found in the Nintendo Wii. | ||
18 | |||
19 | Required properties: | ||
20 | |||
21 | - compatible : Should be "nintendo,hollywood" | ||
22 | |||
23 | 1.a) The Video Interface (VI) node | ||
24 | |||
25 | Represents the interface between the graphics processor and a external | ||
26 | video encoder. | ||
27 | |||
28 | Required properties: | ||
29 | |||
30 | - compatible : should be "nintendo,hollywood-vi","nintendo,flipper-vi" | ||
31 | - reg : should contain the VI registers location and length | ||
32 | - interrupts : should contain the VI interrupt | ||
33 | |||
34 | 1.b) The Processor Interface (PI) node | ||
35 | |||
36 | Represents the data and control interface between the main processor | ||
37 | and graphics and audio processor. | ||
38 | |||
39 | Required properties: | ||
40 | |||
41 | - compatible : should be "nintendo,hollywood-pi","nintendo,flipper-pi" | ||
42 | - reg : should contain the PI registers location and length | ||
43 | |||
44 | 1.b.i) The "Flipper" interrupt controller node | ||
45 | |||
46 | Represents the "Flipper" interrupt controller within the "Hollywood" chip. | ||
47 | The node for the "Flipper" interrupt controller must be placed under | ||
48 | the PI node. | ||
49 | |||
50 | Required properties: | ||
51 | |||
52 | - #interrupt-cells : <1> | ||
53 | - compatible : should be "nintendo,flipper-pic" | ||
54 | - interrupt-controller | ||
55 | |||
56 | 1.c) The Digital Signal Procesor (DSP) node | ||
57 | |||
58 | Represents the digital signal processor interface, designed to offload | ||
59 | audio related tasks. | ||
60 | |||
61 | Required properties: | ||
62 | |||
63 | - compatible : should be "nintendo,hollywood-dsp","nintendo,flipper-dsp" | ||
64 | - reg : should contain the DSP registers location and length | ||
65 | - interrupts : should contain the DSP interrupt | ||
66 | |||
67 | 1.d) The Serial Interface (SI) node | ||
68 | |||
69 | Represents the interface to the four single bit serial interfaces. | ||
70 | The SI is a proprietary serial interface used normally to control gamepads. | ||
71 | It's NOT a RS232-type interface. | ||
72 | |||
73 | Required properties: | ||
74 | |||
75 | - compatible : should be "nintendo,hollywood-si","nintendo,flipper-si" | ||
76 | - reg : should contain the SI registers location and length | ||
77 | - interrupts : should contain the SI interrupt | ||
78 | |||
79 | 1.e) The Audio Interface (AI) node | ||
80 | |||
81 | Represents the interface to the external 16-bit stereo digital-to-analog | ||
82 | converter. | ||
83 | |||
84 | Required properties: | ||
85 | |||
86 | - compatible : should be "nintendo,hollywood-ai","nintendo,flipper-ai" | ||
87 | - reg : should contain the AI registers location and length | ||
88 | - interrupts : should contain the AI interrupt | ||
89 | |||
90 | 1.f) The External Interface (EXI) node | ||
91 | |||
92 | Represents the multi-channel SPI-like interface. | ||
93 | |||
94 | Required properties: | ||
95 | |||
96 | - compatible : should be "nintendo,hollywood-exi","nintendo,flipper-exi" | ||
97 | - reg : should contain the EXI registers location and length | ||
98 | - interrupts : should contain the EXI interrupt | ||
99 | |||
100 | 1.g) The Open Host Controller Interface (OHCI) nodes | ||
101 | |||
102 | Represent the USB 1.x Open Host Controller Interfaces. | ||
103 | |||
104 | Required properties: | ||
105 | |||
106 | - compatible : should be "nintendo,hollywood-usb-ohci","usb-ohci" | ||
107 | - reg : should contain the OHCI registers location and length | ||
108 | - interrupts : should contain the OHCI interrupt | ||
109 | |||
110 | 1.h) The Enhanced Host Controller Interface (EHCI) node | ||
111 | |||
112 | Represents the USB 2.0 Enhanced Host Controller Interface. | ||
113 | |||
114 | Required properties: | ||
115 | |||
116 | - compatible : should be "nintendo,hollywood-usb-ehci","usb-ehci" | ||
117 | - reg : should contain the EHCI registers location and length | ||
118 | - interrupts : should contain the EHCI interrupt | ||
119 | |||
120 | 1.i) The Secure Digital Host Controller Interface (SDHCI) nodes | ||
121 | |||
122 | Represent the Secure Digital Host Controller Interfaces. | ||
123 | |||
124 | Required properties: | ||
125 | |||
126 | - compatible : should be "nintendo,hollywood-sdhci","sdhci" | ||
127 | - reg : should contain the SDHCI registers location and length | ||
128 | - interrupts : should contain the SDHCI interrupt | ||
129 | |||
130 | 1.j) The Inter-Processsor Communication (IPC) node | ||
131 | |||
132 | Represent the Inter-Processor Communication interface. This interface | ||
133 | enables communications between the Broadway and the Starlet processors. | ||
134 | |||
135 | - compatible : should be "nintendo,hollywood-ipc" | ||
136 | - reg : should contain the IPC registers location and length | ||
137 | - interrupts : should contain the IPC interrupt | ||
138 | |||
139 | 1.k) The "Hollywood" interrupt controller node | ||
140 | |||
141 | Represents the "Hollywood" interrupt controller within the | ||
142 | "Hollywood" chip. | ||
143 | |||
144 | Required properties: | ||
145 | |||
146 | - #interrupt-cells : <1> | ||
147 | - compatible : should be "nintendo,hollywood-pic" | ||
148 | - reg : should contain the controller registers location and length | ||
149 | - interrupt-controller | ||
150 | - interrupts : should contain the cascade interrupt of the "flipper" pic | ||
151 | - interrupt-parent: should contain the phandle of the "flipper" pic | ||
152 | |||
153 | 1.l) The General Purpose I/O (GPIO) controller node | ||
154 | |||
155 | Represents the dual access 32 GPIO controller interface. | ||
156 | |||
157 | Required properties: | ||
158 | |||
159 | - #gpio-cells : <2> | ||
160 | - compatible : should be "nintendo,hollywood-gpio" | ||
161 | - reg : should contain the IPC registers location and length | ||
162 | - gpio-controller | ||
163 | |||
164 | 1.m) The control node | ||
165 | |||
166 | Represents the control interface used to setup several miscellaneous | ||
167 | settings of the "Hollywood" chip like boot memory mappings, resets, | ||
168 | disk interface mode, etc. | ||
169 | |||
170 | Required properties: | ||
171 | |||
172 | - compatible : should be "nintendo,hollywood-control" | ||
173 | - reg : should contain the control registers location and length | ||
174 | |||
175 | 1.n) The Disk Interface (DI) node | ||
176 | |||
177 | Represents the interface used to communicate with mass storage devices. | ||
178 | |||
179 | Required properties: | ||
180 | |||
181 | - compatible : should be "nintendo,hollywood-di" | ||
182 | - reg : should contain the DI registers location and length | ||
183 | - interrupts : should contain the DI interrupt | ||
184 | |||