diff options
-rw-r--r-- | drivers/crypto/Kconfig | 9 | ||||
-rw-r--r-- | drivers/crypto/Makefile | 1 | ||||
-rw-r--r-- | drivers/crypto/ixp4xx_crypto.c | 1506 |
3 files changed, 1516 insertions, 0 deletions
diff --git a/drivers/crypto/Kconfig b/drivers/crypto/Kconfig index 249c1358058..eb2ec2e0a14 100644 --- a/drivers/crypto/Kconfig +++ b/drivers/crypto/Kconfig | |||
@@ -190,4 +190,13 @@ config CRYPTO_DEV_TALITOS | |||
190 | To compile this driver as a module, choose M here: the module | 190 | To compile this driver as a module, choose M here: the module |
191 | will be called talitos. | 191 | will be called talitos. |
192 | 192 | ||
193 | config CRYPTO_DEV_IXP4XX | ||
194 | tristate "Driver for IXP4xx crypto hardware acceleration" | ||
195 | depends on ARCH_IXP4XX | ||
196 | select CRYPTO_DES | ||
197 | select CRYPTO_ALGAPI | ||
198 | select CRYPTO_BLKCIPHER | ||
199 | help | ||
200 | Driver for the IXP4xx NPE crypto engine. | ||
201 | |||
193 | endif # CRYPTO_HW | 202 | endif # CRYPTO_HW |
diff --git a/drivers/crypto/Makefile b/drivers/crypto/Makefile index d29d2cd0e65..73557b2968d 100644 --- a/drivers/crypto/Makefile +++ b/drivers/crypto/Makefile | |||
@@ -3,3 +3,4 @@ obj-$(CONFIG_CRYPTO_DEV_PADLOCK_SHA) += padlock-sha.o | |||
3 | obj-$(CONFIG_CRYPTO_DEV_GEODE) += geode-aes.o | 3 | obj-$(CONFIG_CRYPTO_DEV_GEODE) += geode-aes.o |
4 | obj-$(CONFIG_CRYPTO_DEV_HIFN_795X) += hifn_795x.o | 4 | obj-$(CONFIG_CRYPTO_DEV_HIFN_795X) += hifn_795x.o |
5 | obj-$(CONFIG_CRYPTO_DEV_TALITOS) += talitos.o | 5 | obj-$(CONFIG_CRYPTO_DEV_TALITOS) += talitos.o |
6 | obj-$(CONFIG_CRYPTO_DEV_IXP4XX) += ixp4xx_crypto.o | ||
diff --git a/drivers/crypto/ixp4xx_crypto.c b/drivers/crypto/ixp4xx_crypto.c new file mode 100644 index 00000000000..42a107fe923 --- /dev/null +++ b/drivers/crypto/ixp4xx_crypto.c | |||
@@ -0,0 +1,1506 @@ | |||
1 | /* | ||
2 | * Intel IXP4xx NPE-C crypto driver | ||
3 | * | ||
4 | * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com> | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify it | ||
7 | * under the terms of version 2 of the GNU General Public License | ||
8 | * as published by the Free Software Foundation. | ||
9 | * | ||
10 | */ | ||
11 | |||
12 | #include <linux/platform_device.h> | ||
13 | #include <linux/dma-mapping.h> | ||
14 | #include <linux/dmapool.h> | ||
15 | #include <linux/crypto.h> | ||
16 | #include <linux/kernel.h> | ||
17 | #include <linux/rtnetlink.h> | ||
18 | #include <linux/interrupt.h> | ||
19 | #include <linux/spinlock.h> | ||
20 | |||
21 | #include <crypto/ctr.h> | ||
22 | #include <crypto/des.h> | ||
23 | #include <crypto/aes.h> | ||
24 | #include <crypto/sha.h> | ||
25 | #include <crypto/algapi.h> | ||
26 | #include <crypto/aead.h> | ||
27 | #include <crypto/authenc.h> | ||
28 | #include <crypto/scatterwalk.h> | ||
29 | |||
30 | #include <asm/arch/npe.h> | ||
31 | #include <asm/arch/qmgr.h> | ||
32 | |||
33 | #define MAX_KEYLEN 32 | ||
34 | |||
35 | /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */ | ||
36 | #define NPE_CTX_LEN 80 | ||
37 | #define AES_BLOCK128 16 | ||
38 | |||
39 | #define NPE_OP_HASH_VERIFY 0x01 | ||
40 | #define NPE_OP_CCM_ENABLE 0x04 | ||
41 | #define NPE_OP_CRYPT_ENABLE 0x08 | ||
42 | #define NPE_OP_HASH_ENABLE 0x10 | ||
43 | #define NPE_OP_NOT_IN_PLACE 0x20 | ||
44 | #define NPE_OP_HMAC_DISABLE 0x40 | ||
45 | #define NPE_OP_CRYPT_ENCRYPT 0x80 | ||
46 | |||
47 | #define NPE_OP_CCM_GEN_MIC 0xcc | ||
48 | #define NPE_OP_HASH_GEN_ICV 0x50 | ||
49 | #define NPE_OP_ENC_GEN_KEY 0xc9 | ||
50 | |||
51 | #define MOD_ECB 0x0000 | ||
52 | #define MOD_CTR 0x1000 | ||
53 | #define MOD_CBC_ENC 0x2000 | ||
54 | #define MOD_CBC_DEC 0x3000 | ||
55 | #define MOD_CCM_ENC 0x4000 | ||
56 | #define MOD_CCM_DEC 0x5000 | ||
57 | |||
58 | #define KEYLEN_128 4 | ||
59 | #define KEYLEN_192 6 | ||
60 | #define KEYLEN_256 8 | ||
61 | |||
62 | #define CIPH_DECR 0x0000 | ||
63 | #define CIPH_ENCR 0x0400 | ||
64 | |||
65 | #define MOD_DES 0x0000 | ||
66 | #define MOD_TDEA2 0x0100 | ||
67 | #define MOD_3DES 0x0200 | ||
68 | #define MOD_AES 0x0800 | ||
69 | #define MOD_AES128 (0x0800 | KEYLEN_128) | ||
70 | #define MOD_AES192 (0x0900 | KEYLEN_192) | ||
71 | #define MOD_AES256 (0x0a00 | KEYLEN_256) | ||
72 | |||
73 | #define MAX_IVLEN 16 | ||
74 | #define NPE_ID 2 /* NPE C */ | ||
75 | #define NPE_QLEN 16 | ||
76 | /* Space for registering when the first | ||
77 | * NPE_QLEN crypt_ctl are busy */ | ||
78 | #define NPE_QLEN_TOTAL 64 | ||
79 | |||
80 | #define SEND_QID 29 | ||
81 | #define RECV_QID 30 | ||
82 | |||
83 | #define CTL_FLAG_UNUSED 0x0000 | ||
84 | #define CTL_FLAG_USED 0x1000 | ||
85 | #define CTL_FLAG_PERFORM_ABLK 0x0001 | ||
86 | #define CTL_FLAG_GEN_ICV 0x0002 | ||
87 | #define CTL_FLAG_GEN_REVAES 0x0004 | ||
88 | #define CTL_FLAG_PERFORM_AEAD 0x0008 | ||
89 | #define CTL_FLAG_MASK 0x000f | ||
90 | |||
91 | #define HMAC_IPAD_VALUE 0x36 | ||
92 | #define HMAC_OPAD_VALUE 0x5C | ||
93 | #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE | ||
94 | |||
95 | #define MD5_DIGEST_SIZE 16 | ||
96 | |||
97 | struct buffer_desc { | ||
98 | u32 phys_next; | ||
99 | u16 buf_len; | ||
100 | u16 pkt_len; | ||
101 | u32 phys_addr; | ||
102 | u32 __reserved[4]; | ||
103 | struct buffer_desc *next; | ||
104 | }; | ||
105 | |||
106 | struct crypt_ctl { | ||
107 | u8 mode; /* NPE_OP_* operation mode */ | ||
108 | u8 init_len; | ||
109 | u16 reserved; | ||
110 | u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */ | ||
111 | u32 icv_rev_aes; /* icv or rev aes */ | ||
112 | u32 src_buf; | ||
113 | u32 dst_buf; | ||
114 | u16 auth_offs; /* Authentication start offset */ | ||
115 | u16 auth_len; /* Authentication data length */ | ||
116 | u16 crypt_offs; /* Cryption start offset */ | ||
117 | u16 crypt_len; /* Cryption data length */ | ||
118 | u32 aadAddr; /* Additional Auth Data Addr for CCM mode */ | ||
119 | u32 crypto_ctx; /* NPE Crypto Param structure address */ | ||
120 | |||
121 | /* Used by Host: 4*4 bytes*/ | ||
122 | unsigned ctl_flags; | ||
123 | union { | ||
124 | struct ablkcipher_request *ablk_req; | ||
125 | struct aead_request *aead_req; | ||
126 | struct crypto_tfm *tfm; | ||
127 | } data; | ||
128 | struct buffer_desc *regist_buf; | ||
129 | u8 *regist_ptr; | ||
130 | }; | ||
131 | |||
132 | struct ablk_ctx { | ||
133 | struct buffer_desc *src; | ||
134 | struct buffer_desc *dst; | ||
135 | unsigned src_nents; | ||
136 | unsigned dst_nents; | ||
137 | }; | ||
138 | |||
139 | struct aead_ctx { | ||
140 | struct buffer_desc *buffer; | ||
141 | unsigned short assoc_nents; | ||
142 | unsigned short src_nents; | ||
143 | struct scatterlist ivlist; | ||
144 | /* used when the hmac is not on one sg entry */ | ||
145 | u8 *hmac_virt; | ||
146 | int encrypt; | ||
147 | }; | ||
148 | |||
149 | struct ix_hash_algo { | ||
150 | u32 cfgword; | ||
151 | unsigned char *icv; | ||
152 | }; | ||
153 | |||
154 | struct ix_sa_dir { | ||
155 | unsigned char *npe_ctx; | ||
156 | dma_addr_t npe_ctx_phys; | ||
157 | int npe_ctx_idx; | ||
158 | u8 npe_mode; | ||
159 | }; | ||
160 | |||
161 | struct ixp_ctx { | ||
162 | struct ix_sa_dir encrypt; | ||
163 | struct ix_sa_dir decrypt; | ||
164 | int authkey_len; | ||
165 | u8 authkey[MAX_KEYLEN]; | ||
166 | int enckey_len; | ||
167 | u8 enckey[MAX_KEYLEN]; | ||
168 | u8 salt[MAX_IVLEN]; | ||
169 | u8 nonce[CTR_RFC3686_NONCE_SIZE]; | ||
170 | unsigned salted; | ||
171 | atomic_t configuring; | ||
172 | struct completion completion; | ||
173 | }; | ||
174 | |||
175 | struct ixp_alg { | ||
176 | struct crypto_alg crypto; | ||
177 | const struct ix_hash_algo *hash; | ||
178 | u32 cfg_enc; | ||
179 | u32 cfg_dec; | ||
180 | |||
181 | int registered; | ||
182 | }; | ||
183 | |||
184 | static const struct ix_hash_algo hash_alg_md5 = { | ||
185 | .cfgword = 0xAA010004, | ||
186 | .icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF" | ||
187 | "\xFE\xDC\xBA\x98\x76\x54\x32\x10", | ||
188 | }; | ||
189 | static const struct ix_hash_algo hash_alg_sha1 = { | ||
190 | .cfgword = 0x00000005, | ||
191 | .icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA" | ||
192 | "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0", | ||
193 | }; | ||
194 | |||
195 | static struct npe *npe_c; | ||
196 | static struct dma_pool *buffer_pool = NULL; | ||
197 | static struct dma_pool *ctx_pool = NULL; | ||
198 | |||
199 | static struct crypt_ctl *crypt_virt = NULL; | ||
200 | static dma_addr_t crypt_phys; | ||
201 | |||
202 | static int support_aes = 1; | ||
203 | |||
204 | static void dev_release(struct device *dev) | ||
205 | { | ||
206 | return; | ||
207 | } | ||
208 | |||
209 | #define DRIVER_NAME "ixp4xx_crypto" | ||
210 | static struct platform_device pseudo_dev = { | ||
211 | .name = DRIVER_NAME, | ||
212 | .id = 0, | ||
213 | .num_resources = 0, | ||
214 | .dev = { | ||
215 | .coherent_dma_mask = DMA_32BIT_MASK, | ||
216 | .release = dev_release, | ||
217 | } | ||
218 | }; | ||
219 | |||
220 | static struct device *dev = &pseudo_dev.dev; | ||
221 | |||
222 | static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt) | ||
223 | { | ||
224 | return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl); | ||
225 | } | ||
226 | |||
227 | static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys) | ||
228 | { | ||
229 | return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl); | ||
230 | } | ||
231 | |||
232 | static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm) | ||
233 | { | ||
234 | return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc; | ||
235 | } | ||
236 | |||
237 | static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm) | ||
238 | { | ||
239 | return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec; | ||
240 | } | ||
241 | |||
242 | static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm) | ||
243 | { | ||
244 | return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash; | ||
245 | } | ||
246 | |||
247 | static int setup_crypt_desc(void) | ||
248 | { | ||
249 | BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64); | ||
250 | crypt_virt = dma_alloc_coherent(dev, | ||
251 | NPE_QLEN * sizeof(struct crypt_ctl), | ||
252 | &crypt_phys, GFP_KERNEL); | ||
253 | if (!crypt_virt) | ||
254 | return -ENOMEM; | ||
255 | memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl)); | ||
256 | return 0; | ||
257 | } | ||
258 | |||
259 | static spinlock_t desc_lock; | ||
260 | static struct crypt_ctl *get_crypt_desc(void) | ||
261 | { | ||
262 | int i; | ||
263 | static int idx = 0; | ||
264 | unsigned long flags; | ||
265 | |||
266 | spin_lock_irqsave(&desc_lock, flags); | ||
267 | |||
268 | if (unlikely(!crypt_virt)) | ||
269 | setup_crypt_desc(); | ||
270 | if (unlikely(!crypt_virt)) { | ||
271 | spin_unlock_irqrestore(&desc_lock, flags); | ||
272 | return NULL; | ||
273 | } | ||
274 | i = idx; | ||
275 | if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) { | ||
276 | if (++idx >= NPE_QLEN) | ||
277 | idx = 0; | ||
278 | crypt_virt[i].ctl_flags = CTL_FLAG_USED; | ||
279 | spin_unlock_irqrestore(&desc_lock, flags); | ||
280 | return crypt_virt +i; | ||
281 | } else { | ||
282 | spin_unlock_irqrestore(&desc_lock, flags); | ||
283 | return NULL; | ||
284 | } | ||
285 | } | ||
286 | |||
287 | static spinlock_t emerg_lock; | ||
288 | static struct crypt_ctl *get_crypt_desc_emerg(void) | ||
289 | { | ||
290 | int i; | ||
291 | static int idx = NPE_QLEN; | ||
292 | struct crypt_ctl *desc; | ||
293 | unsigned long flags; | ||
294 | |||
295 | desc = get_crypt_desc(); | ||
296 | if (desc) | ||
297 | return desc; | ||
298 | if (unlikely(!crypt_virt)) | ||
299 | return NULL; | ||
300 | |||
301 | spin_lock_irqsave(&emerg_lock, flags); | ||
302 | i = idx; | ||
303 | if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) { | ||
304 | if (++idx >= NPE_QLEN_TOTAL) | ||
305 | idx = NPE_QLEN; | ||
306 | crypt_virt[i].ctl_flags = CTL_FLAG_USED; | ||
307 | spin_unlock_irqrestore(&emerg_lock, flags); | ||
308 | return crypt_virt +i; | ||
309 | } else { | ||
310 | spin_unlock_irqrestore(&emerg_lock, flags); | ||
311 | return NULL; | ||
312 | } | ||
313 | } | ||
314 | |||
315 | static void free_buf_chain(struct buffer_desc *buf, u32 phys) | ||
316 | { | ||
317 | while (buf) { | ||
318 | struct buffer_desc *buf1; | ||
319 | u32 phys1; | ||
320 | |||
321 | buf1 = buf->next; | ||
322 | phys1 = buf->phys_next; | ||
323 | dma_pool_free(buffer_pool, buf, phys); | ||
324 | buf = buf1; | ||
325 | phys = phys1; | ||
326 | } | ||
327 | } | ||
328 | |||
329 | static struct tasklet_struct crypto_done_tasklet; | ||
330 | |||
331 | static void finish_scattered_hmac(struct crypt_ctl *crypt) | ||
332 | { | ||
333 | struct aead_request *req = crypt->data.aead_req; | ||
334 | struct aead_ctx *req_ctx = aead_request_ctx(req); | ||
335 | struct crypto_aead *tfm = crypto_aead_reqtfm(req); | ||
336 | int authsize = crypto_aead_authsize(tfm); | ||
337 | int decryptlen = req->cryptlen - authsize; | ||
338 | |||
339 | if (req_ctx->encrypt) { | ||
340 | scatterwalk_map_and_copy(req_ctx->hmac_virt, | ||
341 | req->src, decryptlen, authsize, 1); | ||
342 | } | ||
343 | dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes); | ||
344 | } | ||
345 | |||
346 | static void one_packet(dma_addr_t phys) | ||
347 | { | ||
348 | struct crypt_ctl *crypt; | ||
349 | struct ixp_ctx *ctx; | ||
350 | int failed; | ||
351 | enum dma_data_direction src_direction = DMA_BIDIRECTIONAL; | ||
352 | |||
353 | failed = phys & 0x1 ? -EBADMSG : 0; | ||
354 | phys &= ~0x3; | ||
355 | crypt = crypt_phys2virt(phys); | ||
356 | |||
357 | switch (crypt->ctl_flags & CTL_FLAG_MASK) { | ||
358 | case CTL_FLAG_PERFORM_AEAD: { | ||
359 | struct aead_request *req = crypt->data.aead_req; | ||
360 | struct aead_ctx *req_ctx = aead_request_ctx(req); | ||
361 | dma_unmap_sg(dev, req->assoc, req_ctx->assoc_nents, | ||
362 | DMA_TO_DEVICE); | ||
363 | dma_unmap_sg(dev, &req_ctx->ivlist, 1, DMA_BIDIRECTIONAL); | ||
364 | dma_unmap_sg(dev, req->src, req_ctx->src_nents, | ||
365 | DMA_BIDIRECTIONAL); | ||
366 | |||
367 | free_buf_chain(req_ctx->buffer, crypt->src_buf); | ||
368 | if (req_ctx->hmac_virt) { | ||
369 | finish_scattered_hmac(crypt); | ||
370 | } | ||
371 | req->base.complete(&req->base, failed); | ||
372 | break; | ||
373 | } | ||
374 | case CTL_FLAG_PERFORM_ABLK: { | ||
375 | struct ablkcipher_request *req = crypt->data.ablk_req; | ||
376 | struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req); | ||
377 | int nents; | ||
378 | if (req_ctx->dst) { | ||
379 | nents = req_ctx->dst_nents; | ||
380 | dma_unmap_sg(dev, req->dst, nents, DMA_FROM_DEVICE); | ||
381 | free_buf_chain(req_ctx->dst, crypt->dst_buf); | ||
382 | src_direction = DMA_TO_DEVICE; | ||
383 | } | ||
384 | nents = req_ctx->src_nents; | ||
385 | dma_unmap_sg(dev, req->src, nents, src_direction); | ||
386 | free_buf_chain(req_ctx->src, crypt->src_buf); | ||
387 | req->base.complete(&req->base, failed); | ||
388 | break; | ||
389 | } | ||
390 | case CTL_FLAG_GEN_ICV: | ||
391 | ctx = crypto_tfm_ctx(crypt->data.tfm); | ||
392 | dma_pool_free(ctx_pool, crypt->regist_ptr, | ||
393 | crypt->regist_buf->phys_addr); | ||
394 | dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf); | ||
395 | if (atomic_dec_and_test(&ctx->configuring)) | ||
396 | complete(&ctx->completion); | ||
397 | break; | ||
398 | case CTL_FLAG_GEN_REVAES: | ||
399 | ctx = crypto_tfm_ctx(crypt->data.tfm); | ||
400 | *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR); | ||
401 | if (atomic_dec_and_test(&ctx->configuring)) | ||
402 | complete(&ctx->completion); | ||
403 | break; | ||
404 | default: | ||
405 | BUG(); | ||
406 | } | ||
407 | crypt->ctl_flags = CTL_FLAG_UNUSED; | ||
408 | } | ||
409 | |||
410 | static void irqhandler(void *_unused) | ||
411 | { | ||
412 | tasklet_schedule(&crypto_done_tasklet); | ||
413 | } | ||
414 | |||
415 | static void crypto_done_action(unsigned long arg) | ||
416 | { | ||
417 | int i; | ||
418 | |||
419 | for(i=0; i<4; i++) { | ||
420 | dma_addr_t phys = qmgr_get_entry(RECV_QID); | ||
421 | if (!phys) | ||
422 | return; | ||
423 | one_packet(phys); | ||
424 | } | ||
425 | tasklet_schedule(&crypto_done_tasklet); | ||
426 | } | ||
427 | |||
428 | static int init_ixp_crypto(void) | ||
429 | { | ||
430 | int ret = -ENODEV; | ||
431 | |||
432 | if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH | | ||
433 | IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) { | ||
434 | printk(KERN_ERR "ixp_crypto: No HW crypto available\n"); | ||
435 | return ret; | ||
436 | } | ||
437 | npe_c = npe_request(NPE_ID); | ||
438 | if (!npe_c) | ||
439 | return ret; | ||
440 | |||
441 | if (!npe_running(npe_c)) { | ||
442 | npe_load_firmware(npe_c, npe_name(npe_c), dev); | ||
443 | } | ||
444 | |||
445 | /* buffer_pool will also be used to sometimes store the hmac, | ||
446 | * so assure it is large enough | ||
447 | */ | ||
448 | BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc)); | ||
449 | buffer_pool = dma_pool_create("buffer", dev, | ||
450 | sizeof(struct buffer_desc), 32, 0); | ||
451 | ret = -ENOMEM; | ||
452 | if (!buffer_pool) { | ||
453 | goto err; | ||
454 | } | ||
455 | ctx_pool = dma_pool_create("context", dev, | ||
456 | NPE_CTX_LEN, 16, 0); | ||
457 | if (!ctx_pool) { | ||
458 | goto err; | ||
459 | } | ||
460 | ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0); | ||
461 | if (ret) | ||
462 | goto err; | ||
463 | ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0); | ||
464 | if (ret) { | ||
465 | qmgr_release_queue(SEND_QID); | ||
466 | goto err; | ||
467 | } | ||
468 | qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL); | ||
469 | tasklet_init(&crypto_done_tasklet, crypto_done_action, 0); | ||
470 | |||
471 | qmgr_enable_irq(RECV_QID); | ||
472 | return 0; | ||
473 | err: | ||
474 | if (ctx_pool) | ||
475 | dma_pool_destroy(ctx_pool); | ||
476 | if (buffer_pool) | ||
477 | dma_pool_destroy(buffer_pool); | ||
478 | npe_release(npe_c); | ||
479 | return ret; | ||
480 | } | ||
481 | |||
482 | static void release_ixp_crypto(void) | ||
483 | { | ||
484 | qmgr_disable_irq(RECV_QID); | ||
485 | tasklet_kill(&crypto_done_tasklet); | ||
486 | |||
487 | qmgr_release_queue(SEND_QID); | ||
488 | qmgr_release_queue(RECV_QID); | ||
489 | |||
490 | dma_pool_destroy(ctx_pool); | ||
491 | dma_pool_destroy(buffer_pool); | ||
492 | |||
493 | npe_release(npe_c); | ||
494 | |||
495 | if (crypt_virt) { | ||
496 | dma_free_coherent(dev, | ||
497 | NPE_QLEN_TOTAL * sizeof( struct crypt_ctl), | ||
498 | crypt_virt, crypt_phys); | ||
499 | } | ||
500 | return; | ||
501 | } | ||
502 | |||
503 | static void reset_sa_dir(struct ix_sa_dir *dir) | ||
504 | { | ||
505 | memset(dir->npe_ctx, 0, NPE_CTX_LEN); | ||
506 | dir->npe_ctx_idx = 0; | ||
507 | dir->npe_mode = 0; | ||
508 | } | ||
509 | |||
510 | static int init_sa_dir(struct ix_sa_dir *dir) | ||
511 | { | ||
512 | dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys); | ||
513 | if (!dir->npe_ctx) { | ||
514 | return -ENOMEM; | ||
515 | } | ||
516 | reset_sa_dir(dir); | ||
517 | return 0; | ||
518 | } | ||
519 | |||
520 | static void free_sa_dir(struct ix_sa_dir *dir) | ||
521 | { | ||
522 | memset(dir->npe_ctx, 0, NPE_CTX_LEN); | ||
523 | dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys); | ||
524 | } | ||
525 | |||
526 | static int init_tfm(struct crypto_tfm *tfm) | ||
527 | { | ||
528 | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); | ||
529 | int ret; | ||
530 | |||
531 | atomic_set(&ctx->configuring, 0); | ||
532 | ret = init_sa_dir(&ctx->encrypt); | ||
533 | if (ret) | ||
534 | return ret; | ||
535 | ret = init_sa_dir(&ctx->decrypt); | ||
536 | if (ret) { | ||
537 | free_sa_dir(&ctx->encrypt); | ||
538 | } | ||
539 | return ret; | ||
540 | } | ||
541 | |||
542 | static int init_tfm_ablk(struct crypto_tfm *tfm) | ||
543 | { | ||
544 | tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx); | ||
545 | return init_tfm(tfm); | ||
546 | } | ||
547 | |||
548 | static int init_tfm_aead(struct crypto_tfm *tfm) | ||
549 | { | ||
550 | tfm->crt_aead.reqsize = sizeof(struct aead_ctx); | ||
551 | return init_tfm(tfm); | ||
552 | } | ||
553 | |||
554 | static void exit_tfm(struct crypto_tfm *tfm) | ||
555 | { | ||
556 | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); | ||
557 | free_sa_dir(&ctx->encrypt); | ||
558 | free_sa_dir(&ctx->decrypt); | ||
559 | } | ||
560 | |||
561 | static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target, | ||
562 | int init_len, u32 ctx_addr, const u8 *key, int key_len) | ||
563 | { | ||
564 | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); | ||
565 | struct crypt_ctl *crypt; | ||
566 | struct buffer_desc *buf; | ||
567 | int i; | ||
568 | u8 *pad; | ||
569 | u32 pad_phys, buf_phys; | ||
570 | |||
571 | BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN); | ||
572 | pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys); | ||
573 | if (!pad) | ||
574 | return -ENOMEM; | ||
575 | buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys); | ||
576 | if (!buf) { | ||
577 | dma_pool_free(ctx_pool, pad, pad_phys); | ||
578 | return -ENOMEM; | ||
579 | } | ||
580 | crypt = get_crypt_desc_emerg(); | ||
581 | if (!crypt) { | ||
582 | dma_pool_free(ctx_pool, pad, pad_phys); | ||
583 | dma_pool_free(buffer_pool, buf, buf_phys); | ||
584 | return -EAGAIN; | ||
585 | } | ||
586 | |||
587 | memcpy(pad, key, key_len); | ||
588 | memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len); | ||
589 | for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) { | ||
590 | pad[i] ^= xpad; | ||
591 | } | ||
592 | |||
593 | crypt->data.tfm = tfm; | ||
594 | crypt->regist_ptr = pad; | ||
595 | crypt->regist_buf = buf; | ||
596 | |||
597 | crypt->auth_offs = 0; | ||
598 | crypt->auth_len = HMAC_PAD_BLOCKLEN; | ||
599 | crypt->crypto_ctx = ctx_addr; | ||
600 | crypt->src_buf = buf_phys; | ||
601 | crypt->icv_rev_aes = target; | ||
602 | crypt->mode = NPE_OP_HASH_GEN_ICV; | ||
603 | crypt->init_len = init_len; | ||
604 | crypt->ctl_flags |= CTL_FLAG_GEN_ICV; | ||
605 | |||
606 | buf->next = 0; | ||
607 | buf->buf_len = HMAC_PAD_BLOCKLEN; | ||
608 | buf->pkt_len = 0; | ||
609 | buf->phys_addr = pad_phys; | ||
610 | |||
611 | atomic_inc(&ctx->configuring); | ||
612 | qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); | ||
613 | BUG_ON(qmgr_stat_overflow(SEND_QID)); | ||
614 | return 0; | ||
615 | } | ||
616 | |||
617 | static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize, | ||
618 | const u8 *key, int key_len, unsigned digest_len) | ||
619 | { | ||
620 | u32 itarget, otarget, npe_ctx_addr; | ||
621 | unsigned char *cinfo; | ||
622 | int init_len, ret = 0; | ||
623 | u32 cfgword; | ||
624 | struct ix_sa_dir *dir; | ||
625 | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); | ||
626 | const struct ix_hash_algo *algo; | ||
627 | |||
628 | dir = encrypt ? &ctx->encrypt : &ctx->decrypt; | ||
629 | cinfo = dir->npe_ctx + dir->npe_ctx_idx; | ||
630 | algo = ix_hash(tfm); | ||
631 | |||
632 | /* write cfg word to cryptinfo */ | ||
633 | cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */ | ||
634 | *(u32*)cinfo = cpu_to_be32(cfgword); | ||
635 | cinfo += sizeof(cfgword); | ||
636 | |||
637 | /* write ICV to cryptinfo */ | ||
638 | memcpy(cinfo, algo->icv, digest_len); | ||
639 | cinfo += digest_len; | ||
640 | |||
641 | itarget = dir->npe_ctx_phys + dir->npe_ctx_idx | ||
642 | + sizeof(algo->cfgword); | ||
643 | otarget = itarget + digest_len; | ||
644 | init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx); | ||
645 | npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx; | ||
646 | |||
647 | dir->npe_ctx_idx += init_len; | ||
648 | dir->npe_mode |= NPE_OP_HASH_ENABLE; | ||
649 | |||
650 | if (!encrypt) | ||
651 | dir->npe_mode |= NPE_OP_HASH_VERIFY; | ||
652 | |||
653 | ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget, | ||
654 | init_len, npe_ctx_addr, key, key_len); | ||
655 | if (ret) | ||
656 | return ret; | ||
657 | return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget, | ||
658 | init_len, npe_ctx_addr, key, key_len); | ||
659 | } | ||
660 | |||
661 | static int gen_rev_aes_key(struct crypto_tfm *tfm) | ||
662 | { | ||
663 | struct crypt_ctl *crypt; | ||
664 | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); | ||
665 | struct ix_sa_dir *dir = &ctx->decrypt; | ||
666 | |||
667 | crypt = get_crypt_desc_emerg(); | ||
668 | if (!crypt) { | ||
669 | return -EAGAIN; | ||
670 | } | ||
671 | *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR); | ||
672 | |||
673 | crypt->data.tfm = tfm; | ||
674 | crypt->crypt_offs = 0; | ||
675 | crypt->crypt_len = AES_BLOCK128; | ||
676 | crypt->src_buf = 0; | ||
677 | crypt->crypto_ctx = dir->npe_ctx_phys; | ||
678 | crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32); | ||
679 | crypt->mode = NPE_OP_ENC_GEN_KEY; | ||
680 | crypt->init_len = dir->npe_ctx_idx; | ||
681 | crypt->ctl_flags |= CTL_FLAG_GEN_REVAES; | ||
682 | |||
683 | atomic_inc(&ctx->configuring); | ||
684 | qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); | ||
685 | BUG_ON(qmgr_stat_overflow(SEND_QID)); | ||
686 | return 0; | ||
687 | } | ||
688 | |||
689 | static int setup_cipher(struct crypto_tfm *tfm, int encrypt, | ||
690 | const u8 *key, int key_len) | ||
691 | { | ||
692 | u8 *cinfo; | ||
693 | u32 cipher_cfg; | ||
694 | u32 keylen_cfg = 0; | ||
695 | struct ix_sa_dir *dir; | ||
696 | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); | ||
697 | u32 *flags = &tfm->crt_flags; | ||
698 | |||
699 | dir = encrypt ? &ctx->encrypt : &ctx->decrypt; | ||
700 | cinfo = dir->npe_ctx; | ||
701 | |||
702 | if (encrypt) { | ||
703 | cipher_cfg = cipher_cfg_enc(tfm); | ||
704 | dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT; | ||
705 | } else { | ||
706 | cipher_cfg = cipher_cfg_dec(tfm); | ||
707 | } | ||
708 | if (cipher_cfg & MOD_AES) { | ||
709 | switch (key_len) { | ||
710 | case 16: keylen_cfg = MOD_AES128 | KEYLEN_128; break; | ||
711 | case 24: keylen_cfg = MOD_AES192 | KEYLEN_192; break; | ||
712 | case 32: keylen_cfg = MOD_AES256 | KEYLEN_256; break; | ||
713 | default: | ||
714 | *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; | ||
715 | return -EINVAL; | ||
716 | } | ||
717 | cipher_cfg |= keylen_cfg; | ||
718 | } else if (cipher_cfg & MOD_3DES) { | ||
719 | const u32 *K = (const u32 *)key; | ||
720 | if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) || | ||
721 | !((K[2] ^ K[4]) | (K[3] ^ K[5])))) | ||
722 | { | ||
723 | *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED; | ||
724 | return -EINVAL; | ||
725 | } | ||
726 | } else { | ||
727 | u32 tmp[DES_EXPKEY_WORDS]; | ||
728 | if (des_ekey(tmp, key) == 0) { | ||
729 | *flags |= CRYPTO_TFM_RES_WEAK_KEY; | ||
730 | } | ||
731 | } | ||
732 | /* write cfg word to cryptinfo */ | ||
733 | *(u32*)cinfo = cpu_to_be32(cipher_cfg); | ||
734 | cinfo += sizeof(cipher_cfg); | ||
735 | |||
736 | /* write cipher key to cryptinfo */ | ||
737 | memcpy(cinfo, key, key_len); | ||
738 | /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */ | ||
739 | if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) { | ||
740 | memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len); | ||
741 | key_len = DES3_EDE_KEY_SIZE; | ||
742 | } | ||
743 | dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len; | ||
744 | dir->npe_mode |= NPE_OP_CRYPT_ENABLE; | ||
745 | if ((cipher_cfg & MOD_AES) && !encrypt) { | ||
746 | return gen_rev_aes_key(tfm); | ||
747 | } | ||
748 | return 0; | ||
749 | } | ||
750 | |||
751 | static int count_sg(struct scatterlist *sg, int nbytes) | ||
752 | { | ||
753 | int i; | ||
754 | for (i = 0; nbytes > 0; i++, sg = sg_next(sg)) | ||
755 | nbytes -= sg->length; | ||
756 | return i; | ||
757 | } | ||
758 | |||
759 | static struct buffer_desc *chainup_buffers(struct scatterlist *sg, | ||
760 | unsigned nbytes, struct buffer_desc *buf, gfp_t flags) | ||
761 | { | ||
762 | int nents = 0; | ||
763 | |||
764 | while (nbytes > 0) { | ||
765 | struct buffer_desc *next_buf; | ||
766 | u32 next_buf_phys; | ||
767 | unsigned len = min(nbytes, sg_dma_len(sg)); | ||
768 | |||
769 | nents++; | ||
770 | nbytes -= len; | ||
771 | if (!buf->phys_addr) { | ||
772 | buf->phys_addr = sg_dma_address(sg); | ||
773 | buf->buf_len = len; | ||
774 | buf->next = NULL; | ||
775 | buf->phys_next = 0; | ||
776 | goto next; | ||
777 | } | ||
778 | /* Two consecutive chunks on one page may be handled by the old | ||
779 | * buffer descriptor, increased by the length of the new one | ||
780 | */ | ||
781 | if (sg_dma_address(sg) == buf->phys_addr + buf->buf_len) { | ||
782 | buf->buf_len += len; | ||
783 | goto next; | ||
784 | } | ||
785 | next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys); | ||
786 | if (!next_buf) | ||
787 | return NULL; | ||
788 | buf->next = next_buf; | ||
789 | buf->phys_next = next_buf_phys; | ||
790 | |||
791 | buf = next_buf; | ||
792 | buf->next = NULL; | ||
793 | buf->phys_next = 0; | ||
794 | buf->phys_addr = sg_dma_address(sg); | ||
795 | buf->buf_len = len; | ||
796 | next: | ||
797 | if (nbytes > 0) { | ||
798 | sg = sg_next(sg); | ||
799 | } | ||
800 | } | ||
801 | return buf; | ||
802 | } | ||
803 | |||
804 | static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key, | ||
805 | unsigned int key_len) | ||
806 | { | ||
807 | struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); | ||
808 | u32 *flags = &tfm->base.crt_flags; | ||
809 | int ret; | ||
810 | |||
811 | init_completion(&ctx->completion); | ||
812 | atomic_inc(&ctx->configuring); | ||
813 | |||
814 | reset_sa_dir(&ctx->encrypt); | ||
815 | reset_sa_dir(&ctx->decrypt); | ||
816 | |||
817 | ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE; | ||
818 | ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE; | ||
819 | |||
820 | ret = setup_cipher(&tfm->base, 0, key, key_len); | ||
821 | if (ret) | ||
822 | goto out; | ||
823 | ret = setup_cipher(&tfm->base, 1, key, key_len); | ||
824 | if (ret) | ||
825 | goto out; | ||
826 | |||
827 | if (*flags & CRYPTO_TFM_RES_WEAK_KEY) { | ||
828 | if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) { | ||
829 | ret = -EINVAL; | ||
830 | } else { | ||
831 | *flags &= ~CRYPTO_TFM_RES_WEAK_KEY; | ||
832 | } | ||
833 | } | ||
834 | out: | ||
835 | if (!atomic_dec_and_test(&ctx->configuring)) | ||
836 | wait_for_completion(&ctx->completion); | ||
837 | return ret; | ||
838 | } | ||
839 | |||
840 | static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key, | ||
841 | unsigned int key_len) | ||
842 | { | ||
843 | struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); | ||
844 | |||
845 | /* the nonce is stored in bytes at end of key */ | ||
846 | if (key_len < CTR_RFC3686_NONCE_SIZE) | ||
847 | return -EINVAL; | ||
848 | |||
849 | memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE), | ||
850 | CTR_RFC3686_NONCE_SIZE); | ||
851 | |||
852 | key_len -= CTR_RFC3686_NONCE_SIZE; | ||
853 | return ablk_setkey(tfm, key, key_len); | ||
854 | } | ||
855 | |||
856 | static int ablk_perform(struct ablkcipher_request *req, int encrypt) | ||
857 | { | ||
858 | struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); | ||
859 | struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); | ||
860 | unsigned ivsize = crypto_ablkcipher_ivsize(tfm); | ||
861 | int ret = -ENOMEM; | ||
862 | struct ix_sa_dir *dir; | ||
863 | struct crypt_ctl *crypt; | ||
864 | unsigned int nbytes = req->nbytes, nents; | ||
865 | enum dma_data_direction src_direction = DMA_BIDIRECTIONAL; | ||
866 | struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req); | ||
867 | gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? | ||
868 | GFP_KERNEL : GFP_ATOMIC; | ||
869 | |||
870 | if (qmgr_stat_full(SEND_QID)) | ||
871 | return -EAGAIN; | ||
872 | if (atomic_read(&ctx->configuring)) | ||
873 | return -EAGAIN; | ||
874 | |||
875 | dir = encrypt ? &ctx->encrypt : &ctx->decrypt; | ||
876 | |||
877 | crypt = get_crypt_desc(); | ||
878 | if (!crypt) | ||
879 | return ret; | ||
880 | |||
881 | crypt->data.ablk_req = req; | ||
882 | crypt->crypto_ctx = dir->npe_ctx_phys; | ||
883 | crypt->mode = dir->npe_mode; | ||
884 | crypt->init_len = dir->npe_ctx_idx; | ||
885 | |||
886 | crypt->crypt_offs = 0; | ||
887 | crypt->crypt_len = nbytes; | ||
888 | |||
889 | BUG_ON(ivsize && !req->info); | ||
890 | memcpy(crypt->iv, req->info, ivsize); | ||
891 | if (req->src != req->dst) { | ||
892 | crypt->mode |= NPE_OP_NOT_IN_PLACE; | ||
893 | nents = count_sg(req->dst, nbytes); | ||
894 | /* This was never tested by Intel | ||
895 | * for more than one dst buffer, I think. */ | ||
896 | BUG_ON(nents != 1); | ||
897 | req_ctx->dst_nents = nents; | ||
898 | dma_map_sg(dev, req->dst, nents, DMA_FROM_DEVICE); | ||
899 | req_ctx->dst = dma_pool_alloc(buffer_pool, flags,&crypt->dst_buf); | ||
900 | if (!req_ctx->dst) | ||
901 | goto unmap_sg_dest; | ||
902 | req_ctx->dst->phys_addr = 0; | ||
903 | if (!chainup_buffers(req->dst, nbytes, req_ctx->dst, flags)) | ||
904 | goto free_buf_dest; | ||
905 | src_direction = DMA_TO_DEVICE; | ||
906 | } else { | ||
907 | req_ctx->dst = NULL; | ||
908 | req_ctx->dst_nents = 0; | ||
909 | } | ||
910 | nents = count_sg(req->src, nbytes); | ||
911 | req_ctx->src_nents = nents; | ||
912 | dma_map_sg(dev, req->src, nents, src_direction); | ||
913 | |||
914 | req_ctx->src = dma_pool_alloc(buffer_pool, flags, &crypt->src_buf); | ||
915 | if (!req_ctx->src) | ||
916 | goto unmap_sg_src; | ||
917 | req_ctx->src->phys_addr = 0; | ||
918 | if (!chainup_buffers(req->src, nbytes, req_ctx->src, flags)) | ||
919 | goto free_buf_src; | ||
920 | |||
921 | crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK; | ||
922 | qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); | ||
923 | BUG_ON(qmgr_stat_overflow(SEND_QID)); | ||
924 | return -EINPROGRESS; | ||
925 | |||
926 | free_buf_src: | ||
927 | free_buf_chain(req_ctx->src, crypt->src_buf); | ||
928 | unmap_sg_src: | ||
929 | dma_unmap_sg(dev, req->src, req_ctx->src_nents, src_direction); | ||
930 | free_buf_dest: | ||
931 | if (req->src != req->dst) { | ||
932 | free_buf_chain(req_ctx->dst, crypt->dst_buf); | ||
933 | unmap_sg_dest: | ||
934 | dma_unmap_sg(dev, req->src, req_ctx->dst_nents, | ||
935 | DMA_FROM_DEVICE); | ||
936 | } | ||
937 | crypt->ctl_flags = CTL_FLAG_UNUSED; | ||
938 | return ret; | ||
939 | } | ||
940 | |||
941 | static int ablk_encrypt(struct ablkcipher_request *req) | ||
942 | { | ||
943 | return ablk_perform(req, 1); | ||
944 | } | ||
945 | |||
946 | static int ablk_decrypt(struct ablkcipher_request *req) | ||
947 | { | ||
948 | return ablk_perform(req, 0); | ||
949 | } | ||
950 | |||
951 | static int ablk_rfc3686_crypt(struct ablkcipher_request *req) | ||
952 | { | ||
953 | struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); | ||
954 | struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); | ||
955 | u8 iv[CTR_RFC3686_BLOCK_SIZE]; | ||
956 | u8 *info = req->info; | ||
957 | int ret; | ||
958 | |||
959 | /* set up counter block */ | ||
960 | memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE); | ||
961 | memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE); | ||
962 | |||
963 | /* initialize counter portion of counter block */ | ||
964 | *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) = | ||
965 | cpu_to_be32(1); | ||
966 | |||
967 | req->info = iv; | ||
968 | ret = ablk_perform(req, 1); | ||
969 | req->info = info; | ||
970 | return ret; | ||
971 | } | ||
972 | |||
973 | static int hmac_inconsistent(struct scatterlist *sg, unsigned start, | ||
974 | unsigned int nbytes) | ||
975 | { | ||
976 | int offset = 0; | ||
977 | |||
978 | if (!nbytes) | ||
979 | return 0; | ||
980 | |||
981 | for (;;) { | ||
982 | if (start < offset + sg->length) | ||
983 | break; | ||
984 | |||
985 | offset += sg->length; | ||
986 | sg = sg_next(sg); | ||
987 | } | ||
988 | return (start + nbytes > offset + sg->length); | ||
989 | } | ||
990 | |||
991 | static int aead_perform(struct aead_request *req, int encrypt, | ||
992 | int cryptoffset, int eff_cryptlen, u8 *iv) | ||
993 | { | ||
994 | struct crypto_aead *tfm = crypto_aead_reqtfm(req); | ||
995 | struct ixp_ctx *ctx = crypto_aead_ctx(tfm); | ||
996 | unsigned ivsize = crypto_aead_ivsize(tfm); | ||
997 | unsigned authsize = crypto_aead_authsize(tfm); | ||
998 | int ret = -ENOMEM; | ||
999 | struct ix_sa_dir *dir; | ||
1000 | struct crypt_ctl *crypt; | ||
1001 | unsigned int cryptlen, nents; | ||
1002 | struct buffer_desc *buf; | ||
1003 | struct aead_ctx *req_ctx = aead_request_ctx(req); | ||
1004 | gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? | ||
1005 | GFP_KERNEL : GFP_ATOMIC; | ||
1006 | |||
1007 | if (qmgr_stat_full(SEND_QID)) | ||
1008 | return -EAGAIN; | ||
1009 | if (atomic_read(&ctx->configuring)) | ||
1010 | return -EAGAIN; | ||
1011 | |||
1012 | if (encrypt) { | ||
1013 | dir = &ctx->encrypt; | ||
1014 | cryptlen = req->cryptlen; | ||
1015 | } else { | ||
1016 | dir = &ctx->decrypt; | ||
1017 | /* req->cryptlen includes the authsize when decrypting */ | ||
1018 | cryptlen = req->cryptlen -authsize; | ||
1019 | eff_cryptlen -= authsize; | ||
1020 | } | ||
1021 | crypt = get_crypt_desc(); | ||
1022 | if (!crypt) | ||
1023 | return ret; | ||
1024 | |||
1025 | crypt->data.aead_req = req; | ||
1026 | crypt->crypto_ctx = dir->npe_ctx_phys; | ||
1027 | crypt->mode = dir->npe_mode; | ||
1028 | crypt->init_len = dir->npe_ctx_idx; | ||
1029 | |||
1030 | crypt->crypt_offs = cryptoffset; | ||
1031 | crypt->crypt_len = eff_cryptlen; | ||
1032 | |||
1033 | crypt->auth_offs = 0; | ||
1034 | crypt->auth_len = req->assoclen + ivsize + cryptlen; | ||
1035 | BUG_ON(ivsize && !req->iv); | ||
1036 | memcpy(crypt->iv, req->iv, ivsize); | ||
1037 | |||
1038 | if (req->src != req->dst) { | ||
1039 | BUG(); /* -ENOTSUP because of my lazyness */ | ||
1040 | } | ||
1041 | |||
1042 | req_ctx->buffer = dma_pool_alloc(buffer_pool, flags, &crypt->src_buf); | ||
1043 | if (!req_ctx->buffer) | ||
1044 | goto out; | ||
1045 | req_ctx->buffer->phys_addr = 0; | ||
1046 | /* ASSOC data */ | ||
1047 | nents = count_sg(req->assoc, req->assoclen); | ||
1048 | req_ctx->assoc_nents = nents; | ||
1049 | dma_map_sg(dev, req->assoc, nents, DMA_TO_DEVICE); | ||
1050 | buf = chainup_buffers(req->assoc, req->assoclen, req_ctx->buffer,flags); | ||
1051 | if (!buf) | ||
1052 | goto unmap_sg_assoc; | ||
1053 | /* IV */ | ||
1054 | sg_init_table(&req_ctx->ivlist, 1); | ||
1055 | sg_set_buf(&req_ctx->ivlist, iv, ivsize); | ||
1056 | dma_map_sg(dev, &req_ctx->ivlist, 1, DMA_BIDIRECTIONAL); | ||
1057 | buf = chainup_buffers(&req_ctx->ivlist, ivsize, buf, flags); | ||
1058 | if (!buf) | ||
1059 | goto unmap_sg_iv; | ||
1060 | if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) { | ||
1061 | /* The 12 hmac bytes are scattered, | ||
1062 | * we need to copy them into a safe buffer */ | ||
1063 | req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags, | ||
1064 | &crypt->icv_rev_aes); | ||
1065 | if (unlikely(!req_ctx->hmac_virt)) | ||
1066 | goto unmap_sg_iv; | ||
1067 | if (!encrypt) { | ||
1068 | scatterwalk_map_and_copy(req_ctx->hmac_virt, | ||
1069 | req->src, cryptlen, authsize, 0); | ||
1070 | } | ||
1071 | req_ctx->encrypt = encrypt; | ||
1072 | } else { | ||
1073 | req_ctx->hmac_virt = NULL; | ||
1074 | } | ||
1075 | /* Crypt */ | ||
1076 | nents = count_sg(req->src, cryptlen + authsize); | ||
1077 | req_ctx->src_nents = nents; | ||
1078 | dma_map_sg(dev, req->src, nents, DMA_BIDIRECTIONAL); | ||
1079 | buf = chainup_buffers(req->src, cryptlen + authsize, buf, flags); | ||
1080 | if (!buf) | ||
1081 | goto unmap_sg_src; | ||
1082 | if (!req_ctx->hmac_virt) { | ||
1083 | crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize; | ||
1084 | } | ||
1085 | crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD; | ||
1086 | qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); | ||
1087 | BUG_ON(qmgr_stat_overflow(SEND_QID)); | ||
1088 | return -EINPROGRESS; | ||
1089 | unmap_sg_src: | ||
1090 | dma_unmap_sg(dev, req->src, req_ctx->src_nents, DMA_BIDIRECTIONAL); | ||
1091 | if (req_ctx->hmac_virt) { | ||
1092 | dma_pool_free(buffer_pool, req_ctx->hmac_virt, | ||
1093 | crypt->icv_rev_aes); | ||
1094 | } | ||
1095 | unmap_sg_iv: | ||
1096 | dma_unmap_sg(dev, &req_ctx->ivlist, 1, DMA_BIDIRECTIONAL); | ||
1097 | unmap_sg_assoc: | ||
1098 | dma_unmap_sg(dev, req->assoc, req_ctx->assoc_nents, DMA_TO_DEVICE); | ||
1099 | free_buf_chain(req_ctx->buffer, crypt->src_buf); | ||
1100 | out: | ||
1101 | crypt->ctl_flags = CTL_FLAG_UNUSED; | ||
1102 | return ret; | ||
1103 | } | ||
1104 | |||
1105 | static int aead_setup(struct crypto_aead *tfm, unsigned int authsize) | ||
1106 | { | ||
1107 | struct ixp_ctx *ctx = crypto_aead_ctx(tfm); | ||
1108 | u32 *flags = &tfm->base.crt_flags; | ||
1109 | unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize; | ||
1110 | int ret; | ||
1111 | |||
1112 | if (!ctx->enckey_len && !ctx->authkey_len) | ||
1113 | return 0; | ||
1114 | init_completion(&ctx->completion); | ||
1115 | atomic_inc(&ctx->configuring); | ||
1116 | |||
1117 | reset_sa_dir(&ctx->encrypt); | ||
1118 | reset_sa_dir(&ctx->decrypt); | ||
1119 | |||
1120 | ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len); | ||
1121 | if (ret) | ||
1122 | goto out; | ||
1123 | ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len); | ||
1124 | if (ret) | ||
1125 | goto out; | ||
1126 | ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey, | ||
1127 | ctx->authkey_len, digest_len); | ||
1128 | if (ret) | ||
1129 | goto out; | ||
1130 | ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey, | ||
1131 | ctx->authkey_len, digest_len); | ||
1132 | if (ret) | ||
1133 | goto out; | ||
1134 | |||
1135 | if (*flags & CRYPTO_TFM_RES_WEAK_KEY) { | ||
1136 | if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) { | ||
1137 | ret = -EINVAL; | ||
1138 | goto out; | ||
1139 | } else { | ||
1140 | *flags &= ~CRYPTO_TFM_RES_WEAK_KEY; | ||
1141 | } | ||
1142 | } | ||
1143 | out: | ||
1144 | if (!atomic_dec_and_test(&ctx->configuring)) | ||
1145 | wait_for_completion(&ctx->completion); | ||
1146 | return ret; | ||
1147 | } | ||
1148 | |||
1149 | static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize) | ||
1150 | { | ||
1151 | int max = crypto_aead_alg(tfm)->maxauthsize >> 2; | ||
1152 | |||
1153 | if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3)) | ||
1154 | return -EINVAL; | ||
1155 | return aead_setup(tfm, authsize); | ||
1156 | } | ||
1157 | |||
1158 | static int aead_setkey(struct crypto_aead *tfm, const u8 *key, | ||
1159 | unsigned int keylen) | ||
1160 | { | ||
1161 | struct ixp_ctx *ctx = crypto_aead_ctx(tfm); | ||
1162 | struct rtattr *rta = (struct rtattr *)key; | ||
1163 | struct crypto_authenc_key_param *param; | ||
1164 | |||
1165 | if (!RTA_OK(rta, keylen)) | ||
1166 | goto badkey; | ||
1167 | if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) | ||
1168 | goto badkey; | ||
1169 | if (RTA_PAYLOAD(rta) < sizeof(*param)) | ||
1170 | goto badkey; | ||
1171 | |||
1172 | param = RTA_DATA(rta); | ||
1173 | ctx->enckey_len = be32_to_cpu(param->enckeylen); | ||
1174 | |||
1175 | key += RTA_ALIGN(rta->rta_len); | ||
1176 | keylen -= RTA_ALIGN(rta->rta_len); | ||
1177 | |||
1178 | if (keylen < ctx->enckey_len) | ||
1179 | goto badkey; | ||
1180 | |||
1181 | ctx->authkey_len = keylen - ctx->enckey_len; | ||
1182 | memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len); | ||
1183 | memcpy(ctx->authkey, key, ctx->authkey_len); | ||
1184 | |||
1185 | return aead_setup(tfm, crypto_aead_authsize(tfm)); | ||
1186 | badkey: | ||
1187 | ctx->enckey_len = 0; | ||
1188 | crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); | ||
1189 | return -EINVAL; | ||
1190 | } | ||
1191 | |||
1192 | static int aead_encrypt(struct aead_request *req) | ||
1193 | { | ||
1194 | unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req)); | ||
1195 | return aead_perform(req, 1, req->assoclen + ivsize, | ||
1196 | req->cryptlen, req->iv); | ||
1197 | } | ||
1198 | |||
1199 | static int aead_decrypt(struct aead_request *req) | ||
1200 | { | ||
1201 | unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req)); | ||
1202 | return aead_perform(req, 0, req->assoclen + ivsize, | ||
1203 | req->cryptlen, req->iv); | ||
1204 | } | ||
1205 | |||
1206 | static int aead_givencrypt(struct aead_givcrypt_request *req) | ||
1207 | { | ||
1208 | struct crypto_aead *tfm = aead_givcrypt_reqtfm(req); | ||
1209 | struct ixp_ctx *ctx = crypto_aead_ctx(tfm); | ||
1210 | unsigned len, ivsize = crypto_aead_ivsize(tfm); | ||
1211 | __be64 seq; | ||
1212 | |||
1213 | /* copied from eseqiv.c */ | ||
1214 | if (!ctx->salted) { | ||
1215 | get_random_bytes(ctx->salt, ivsize); | ||
1216 | ctx->salted = 1; | ||
1217 | } | ||
1218 | memcpy(req->areq.iv, ctx->salt, ivsize); | ||
1219 | len = ivsize; | ||
1220 | if (ivsize > sizeof(u64)) { | ||
1221 | memset(req->giv, 0, ivsize - sizeof(u64)); | ||
1222 | len = sizeof(u64); | ||
1223 | } | ||
1224 | seq = cpu_to_be64(req->seq); | ||
1225 | memcpy(req->giv + ivsize - len, &seq, len); | ||
1226 | return aead_perform(&req->areq, 1, req->areq.assoclen, | ||
1227 | req->areq.cryptlen +ivsize, req->giv); | ||
1228 | } | ||
1229 | |||
1230 | static struct ixp_alg ixp4xx_algos[] = { | ||
1231 | { | ||
1232 | .crypto = { | ||
1233 | .cra_name = "cbc(des)", | ||
1234 | .cra_blocksize = DES_BLOCK_SIZE, | ||
1235 | .cra_u = { .ablkcipher = { | ||
1236 | .min_keysize = DES_KEY_SIZE, | ||
1237 | .max_keysize = DES_KEY_SIZE, | ||
1238 | .ivsize = DES_BLOCK_SIZE, | ||
1239 | .geniv = "eseqiv", | ||
1240 | } | ||
1241 | } | ||
1242 | }, | ||
1243 | .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192, | ||
1244 | .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192, | ||
1245 | |||
1246 | }, { | ||
1247 | .crypto = { | ||
1248 | .cra_name = "ecb(des)", | ||
1249 | .cra_blocksize = DES_BLOCK_SIZE, | ||
1250 | .cra_u = { .ablkcipher = { | ||
1251 | .min_keysize = DES_KEY_SIZE, | ||
1252 | .max_keysize = DES_KEY_SIZE, | ||
1253 | } | ||
1254 | } | ||
1255 | }, | ||
1256 | .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192, | ||
1257 | .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192, | ||
1258 | }, { | ||
1259 | .crypto = { | ||
1260 | .cra_name = "cbc(des3_ede)", | ||
1261 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, | ||
1262 | .cra_u = { .ablkcipher = { | ||
1263 | .min_keysize = DES3_EDE_KEY_SIZE, | ||
1264 | .max_keysize = DES3_EDE_KEY_SIZE, | ||
1265 | .ivsize = DES3_EDE_BLOCK_SIZE, | ||
1266 | .geniv = "eseqiv", | ||
1267 | } | ||
1268 | } | ||
1269 | }, | ||
1270 | .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192, | ||
1271 | .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192, | ||
1272 | }, { | ||
1273 | .crypto = { | ||
1274 | .cra_name = "ecb(des3_ede)", | ||
1275 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, | ||
1276 | .cra_u = { .ablkcipher = { | ||
1277 | .min_keysize = DES3_EDE_KEY_SIZE, | ||
1278 | .max_keysize = DES3_EDE_KEY_SIZE, | ||
1279 | } | ||
1280 | } | ||
1281 | }, | ||
1282 | .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192, | ||
1283 | .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192, | ||
1284 | }, { | ||
1285 | .crypto = { | ||
1286 | .cra_name = "cbc(aes)", | ||
1287 | .cra_blocksize = AES_BLOCK_SIZE, | ||
1288 | .cra_u = { .ablkcipher = { | ||
1289 | .min_keysize = AES_MIN_KEY_SIZE, | ||
1290 | .max_keysize = AES_MAX_KEY_SIZE, | ||
1291 | .ivsize = AES_BLOCK_SIZE, | ||
1292 | .geniv = "eseqiv", | ||
1293 | } | ||
1294 | } | ||
1295 | }, | ||
1296 | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC, | ||
1297 | .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC, | ||
1298 | }, { | ||
1299 | .crypto = { | ||
1300 | .cra_name = "ecb(aes)", | ||
1301 | .cra_blocksize = AES_BLOCK_SIZE, | ||
1302 | .cra_u = { .ablkcipher = { | ||
1303 | .min_keysize = AES_MIN_KEY_SIZE, | ||
1304 | .max_keysize = AES_MAX_KEY_SIZE, | ||
1305 | } | ||
1306 | } | ||
1307 | }, | ||
1308 | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB, | ||
1309 | .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB, | ||
1310 | }, { | ||
1311 | .crypto = { | ||
1312 | .cra_name = "ctr(aes)", | ||
1313 | .cra_blocksize = AES_BLOCK_SIZE, | ||
1314 | .cra_u = { .ablkcipher = { | ||
1315 | .min_keysize = AES_MIN_KEY_SIZE, | ||
1316 | .max_keysize = AES_MAX_KEY_SIZE, | ||
1317 | .ivsize = AES_BLOCK_SIZE, | ||
1318 | .geniv = "eseqiv", | ||
1319 | } | ||
1320 | } | ||
1321 | }, | ||
1322 | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR, | ||
1323 | .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR, | ||
1324 | }, { | ||
1325 | .crypto = { | ||
1326 | .cra_name = "rfc3686(ctr(aes))", | ||
1327 | .cra_blocksize = AES_BLOCK_SIZE, | ||
1328 | .cra_u = { .ablkcipher = { | ||
1329 | .min_keysize = AES_MIN_KEY_SIZE, | ||
1330 | .max_keysize = AES_MAX_KEY_SIZE, | ||
1331 | .ivsize = AES_BLOCK_SIZE, | ||
1332 | .geniv = "eseqiv", | ||
1333 | .setkey = ablk_rfc3686_setkey, | ||
1334 | .encrypt = ablk_rfc3686_crypt, | ||
1335 | .decrypt = ablk_rfc3686_crypt } | ||
1336 | } | ||
1337 | }, | ||
1338 | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR, | ||
1339 | .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR, | ||
1340 | }, { | ||
1341 | .crypto = { | ||
1342 | .cra_name = "authenc(hmac(md5),cbc(des))", | ||
1343 | .cra_blocksize = DES_BLOCK_SIZE, | ||
1344 | .cra_u = { .aead = { | ||
1345 | .ivsize = DES_BLOCK_SIZE, | ||
1346 | .maxauthsize = MD5_DIGEST_SIZE, | ||
1347 | } | ||
1348 | } | ||
1349 | }, | ||
1350 | .hash = &hash_alg_md5, | ||
1351 | .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192, | ||
1352 | .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192, | ||
1353 | }, { | ||
1354 | .crypto = { | ||
1355 | .cra_name = "authenc(hmac(md5),cbc(des3_ede))", | ||
1356 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, | ||
1357 | .cra_u = { .aead = { | ||
1358 | .ivsize = DES3_EDE_BLOCK_SIZE, | ||
1359 | .maxauthsize = MD5_DIGEST_SIZE, | ||
1360 | } | ||
1361 | } | ||
1362 | }, | ||
1363 | .hash = &hash_alg_md5, | ||
1364 | .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192, | ||
1365 | .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192, | ||
1366 | }, { | ||
1367 | .crypto = { | ||
1368 | .cra_name = "authenc(hmac(sha1),cbc(des))", | ||
1369 | .cra_blocksize = DES_BLOCK_SIZE, | ||
1370 | .cra_u = { .aead = { | ||
1371 | .ivsize = DES_BLOCK_SIZE, | ||
1372 | .maxauthsize = SHA1_DIGEST_SIZE, | ||
1373 | } | ||
1374 | } | ||
1375 | }, | ||
1376 | .hash = &hash_alg_sha1, | ||
1377 | .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192, | ||
1378 | .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192, | ||
1379 | }, { | ||
1380 | .crypto = { | ||
1381 | .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", | ||
1382 | .cra_blocksize = DES3_EDE_BLOCK_SIZE, | ||
1383 | .cra_u = { .aead = { | ||
1384 | .ivsize = DES3_EDE_BLOCK_SIZE, | ||
1385 | .maxauthsize = SHA1_DIGEST_SIZE, | ||
1386 | } | ||
1387 | } | ||
1388 | }, | ||
1389 | .hash = &hash_alg_sha1, | ||
1390 | .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192, | ||
1391 | .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192, | ||
1392 | }, { | ||
1393 | .crypto = { | ||
1394 | .cra_name = "authenc(hmac(md5),cbc(aes))", | ||
1395 | .cra_blocksize = AES_BLOCK_SIZE, | ||
1396 | .cra_u = { .aead = { | ||
1397 | .ivsize = AES_BLOCK_SIZE, | ||
1398 | .maxauthsize = MD5_DIGEST_SIZE, | ||
1399 | } | ||
1400 | } | ||
1401 | }, | ||
1402 | .hash = &hash_alg_md5, | ||
1403 | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC, | ||
1404 | .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC, | ||
1405 | }, { | ||
1406 | .crypto = { | ||
1407 | .cra_name = "authenc(hmac(sha1),cbc(aes))", | ||
1408 | .cra_blocksize = AES_BLOCK_SIZE, | ||
1409 | .cra_u = { .aead = { | ||
1410 | .ivsize = AES_BLOCK_SIZE, | ||
1411 | .maxauthsize = SHA1_DIGEST_SIZE, | ||
1412 | } | ||
1413 | } | ||
1414 | }, | ||
1415 | .hash = &hash_alg_sha1, | ||
1416 | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC, | ||
1417 | .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC, | ||
1418 | } }; | ||
1419 | |||
1420 | #define IXP_POSTFIX "-ixp4xx" | ||
1421 | static int __init ixp_module_init(void) | ||
1422 | { | ||
1423 | int num = ARRAY_SIZE(ixp4xx_algos); | ||
1424 | int i,err ; | ||
1425 | |||
1426 | if (platform_device_register(&pseudo_dev)) | ||
1427 | return -ENODEV; | ||
1428 | |||
1429 | spin_lock_init(&desc_lock); | ||
1430 | spin_lock_init(&emerg_lock); | ||
1431 | |||
1432 | err = init_ixp_crypto(); | ||
1433 | if (err) { | ||
1434 | platform_device_unregister(&pseudo_dev); | ||
1435 | return err; | ||
1436 | } | ||
1437 | for (i=0; i< num; i++) { | ||
1438 | struct crypto_alg *cra = &ixp4xx_algos[i].crypto; | ||
1439 | |||
1440 | if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME, | ||
1441 | "%s"IXP_POSTFIX, cra->cra_name) >= | ||
1442 | CRYPTO_MAX_ALG_NAME) | ||
1443 | { | ||
1444 | continue; | ||
1445 | } | ||
1446 | if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) { | ||
1447 | continue; | ||
1448 | } | ||
1449 | if (!ixp4xx_algos[i].hash) { | ||
1450 | /* block ciphers */ | ||
1451 | cra->cra_type = &crypto_ablkcipher_type; | ||
1452 | cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | | ||
1453 | CRYPTO_ALG_ASYNC; | ||
1454 | if (!cra->cra_ablkcipher.setkey) | ||
1455 | cra->cra_ablkcipher.setkey = ablk_setkey; | ||
1456 | if (!cra->cra_ablkcipher.encrypt) | ||
1457 | cra->cra_ablkcipher.encrypt = ablk_encrypt; | ||
1458 | if (!cra->cra_ablkcipher.decrypt) | ||
1459 | cra->cra_ablkcipher.decrypt = ablk_decrypt; | ||
1460 | cra->cra_init = init_tfm_ablk; | ||
1461 | } else { | ||
1462 | /* authenc */ | ||
1463 | cra->cra_type = &crypto_aead_type; | ||
1464 | cra->cra_flags = CRYPTO_ALG_TYPE_AEAD | | ||
1465 | CRYPTO_ALG_ASYNC; | ||
1466 | cra->cra_aead.setkey = aead_setkey; | ||
1467 | cra->cra_aead.setauthsize = aead_setauthsize; | ||
1468 | cra->cra_aead.encrypt = aead_encrypt; | ||
1469 | cra->cra_aead.decrypt = aead_decrypt; | ||
1470 | cra->cra_aead.givencrypt = aead_givencrypt; | ||
1471 | cra->cra_init = init_tfm_aead; | ||
1472 | } | ||
1473 | cra->cra_ctxsize = sizeof(struct ixp_ctx); | ||
1474 | cra->cra_module = THIS_MODULE; | ||
1475 | cra->cra_alignmask = 3; | ||
1476 | cra->cra_priority = 300; | ||
1477 | cra->cra_exit = exit_tfm; | ||
1478 | if (crypto_register_alg(cra)) | ||
1479 | printk(KERN_ERR "Failed to register '%s'\n", | ||
1480 | cra->cra_name); | ||
1481 | else | ||
1482 | ixp4xx_algos[i].registered = 1; | ||
1483 | } | ||
1484 | return 0; | ||
1485 | } | ||
1486 | |||
1487 | static void __exit ixp_module_exit(void) | ||
1488 | { | ||
1489 | int num = ARRAY_SIZE(ixp4xx_algos); | ||
1490 | int i; | ||
1491 | |||
1492 | for (i=0; i< num; i++) { | ||
1493 | if (ixp4xx_algos[i].registered) | ||
1494 | crypto_unregister_alg(&ixp4xx_algos[i].crypto); | ||
1495 | } | ||
1496 | release_ixp_crypto(); | ||
1497 | platform_device_unregister(&pseudo_dev); | ||
1498 | } | ||
1499 | |||
1500 | module_init(ixp_module_init); | ||
1501 | module_exit(ixp_module_exit); | ||
1502 | |||
1503 | MODULE_LICENSE("GPL"); | ||
1504 | MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>"); | ||
1505 | MODULE_DESCRIPTION("IXP4xx hardware crypto"); | ||
1506 | |||