diff options
| author | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
|---|---|---|
| committer | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
| commit | fcc9d2e5a6c89d22b8b773a64fb4ad21ac318446 (patch) | |
| tree | a57612d1888735a2ec7972891b68c1ac5ec8faea /security/tf_driver/tf_comm.c | |
| parent | 8dea78da5cee153b8af9c07a2745f6c55057fe12 (diff) | |
Diffstat (limited to 'security/tf_driver/tf_comm.c')
| -rw-r--r-- | security/tf_driver/tf_comm.c | 1745 |
1 files changed, 1745 insertions, 0 deletions
diff --git a/security/tf_driver/tf_comm.c b/security/tf_driver/tf_comm.c new file mode 100644 index 00000000000..16915beb406 --- /dev/null +++ b/security/tf_driver/tf_comm.c | |||
| @@ -0,0 +1,1745 @@ | |||
| 1 | /** | ||
| 2 | * Copyright (c) 2011 Trusted Logic S.A. | ||
| 3 | * All Rights Reserved. | ||
| 4 | * | ||
| 5 | * This program is free software; you can redistribute it and/or | ||
| 6 | * modify it under the terms of the GNU General Public License | ||
| 7 | * version 2 as published by the Free Software Foundation. | ||
| 8 | * | ||
| 9 | * This program is distributed in the hope that it will be useful, | ||
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 12 | * GNU General Public License for more details. | ||
| 13 | * | ||
| 14 | * You should have received a copy of the GNU General Public License | ||
| 15 | * along with this program; if not, write to the Free Software | ||
| 16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, | ||
| 17 | * MA 02111-1307 USA | ||
| 18 | */ | ||
| 19 | |||
| 20 | #include <asm/div64.h> | ||
| 21 | #include <asm/system.h> | ||
| 22 | #include <linux/version.h> | ||
| 23 | #include <asm/cputype.h> | ||
| 24 | #include <linux/interrupt.h> | ||
| 25 | #include <linux/page-flags.h> | ||
| 26 | #include <linux/pagemap.h> | ||
| 27 | #include <linux/vmalloc.h> | ||
| 28 | #include <linux/jiffies.h> | ||
| 29 | #include <linux/freezer.h> | ||
| 30 | |||
| 31 | #include "tf_defs.h" | ||
| 32 | #include "tf_comm.h" | ||
| 33 | #include "tf_protocol.h" | ||
| 34 | #include "tf_util.h" | ||
| 35 | #include "tf_conn.h" | ||
| 36 | |||
| 37 | #ifdef CONFIG_TF_ZEBRA | ||
| 38 | #include "tf_zebra.h" | ||
| 39 | #endif | ||
| 40 | |||
| 41 | /*--------------------------------------------------------------------------- | ||
| 42 | * Internal Constants | ||
| 43 | *---------------------------------------------------------------------------*/ | ||
| 44 | |||
| 45 | /* | ||
| 46 | * shared memories descriptor constants | ||
| 47 | */ | ||
| 48 | #define DESCRIPTOR_B_MASK (1 << 2) | ||
| 49 | #define DESCRIPTOR_C_MASK (1 << 3) | ||
| 50 | #define DESCRIPTOR_S_MASK (1 << 10) | ||
| 51 | |||
| 52 | #define L1_COARSE_DESCRIPTOR_BASE (0x00000001) | ||
| 53 | #define L1_COARSE_DESCRIPTOR_ADDR_MASK (0xFFFFFC00) | ||
| 54 | #define L1_COARSE_DESCRIPTOR_V13_12_SHIFT (5) | ||
| 55 | |||
| 56 | #define L2_PAGE_DESCRIPTOR_BASE (0x00000003) | ||
| 57 | #define L2_PAGE_DESCRIPTOR_AP_APX_READ (0x220) | ||
| 58 | #define L2_PAGE_DESCRIPTOR_AP_APX_READ_WRITE (0x30) | ||
| 59 | |||
| 60 | #define L2_INIT_DESCRIPTOR_BASE (0x00000003) | ||
| 61 | #define L2_INIT_DESCRIPTOR_V13_12_SHIFT (4) | ||
| 62 | |||
| 63 | /* | ||
| 64 | * Reject an attempt to share a strongly-Ordered or Device memory | ||
| 65 | * Strongly-Ordered: TEX=0b000, C=0, B=0 | ||
| 66 | * Shared Device: TEX=0b000, C=0, B=1 | ||
| 67 | * Non-Shared Device: TEX=0b010, C=0, B=0 | ||
| 68 | */ | ||
| 69 | #define L2_TEX_C_B_MASK \ | ||
| 70 | ((1<<8) | (1<<7) | (1<<6) | (1<<3) | (1<<2)) | ||
| 71 | #define L2_TEX_C_B_STRONGLY_ORDERED \ | ||
| 72 | ((0<<8) | (0<<7) | (0<<6) | (0<<3) | (0<<2)) | ||
| 73 | #define L2_TEX_C_B_SHARED_DEVICE \ | ||
| 74 | ((0<<8) | (0<<7) | (0<<6) | (0<<3) | (1<<2)) | ||
| 75 | #define L2_TEX_C_B_NON_SHARED_DEVICE \ | ||
| 76 | ((0<<8) | (1<<7) | (0<<6) | (0<<3) | (0<<2)) | ||
| 77 | |||
| 78 | #define CACHE_S(x) ((x) & (1 << 24)) | ||
| 79 | #define CACHE_DSIZE(x) (((x) >> 12) & 4095) | ||
| 80 | |||
| 81 | #define TIME_IMMEDIATE ((u64) 0x0000000000000000ULL) | ||
| 82 | #define TIME_INFINITE ((u64) 0xFFFFFFFFFFFFFFFFULL) | ||
| 83 | |||
| 84 | /*--------------------------------------------------------------------------- | ||
| 85 | * atomic operation definitions | ||
| 86 | *---------------------------------------------------------------------------*/ | ||
| 87 | |||
| 88 | /* | ||
| 89 | * Atomically updates the sync_serial_n and time_n register | ||
| 90 | * sync_serial_n and time_n modifications are thread safe | ||
| 91 | */ | ||
| 92 | void tf_set_current_time(struct tf_comm *comm) | ||
| 93 | { | ||
| 94 | u32 new_sync_serial; | ||
| 95 | struct timeval now; | ||
| 96 | u64 time64; | ||
| 97 | |||
| 98 | /* | ||
| 99 | * lock the structure while updating the L1 shared memory fields | ||
| 100 | */ | ||
| 101 | spin_lock(&comm->lock); | ||
| 102 | |||
| 103 | /* read sync_serial_n and change the TimeSlot bit field */ | ||
| 104 | new_sync_serial = | ||
| 105 | tf_read_reg32(&comm->l1_buffer->sync_serial_n) + 1; | ||
| 106 | |||
| 107 | do_gettimeofday(&now); | ||
| 108 | time64 = now.tv_sec; | ||
| 109 | time64 = (time64 * 1000) + (now.tv_usec / 1000); | ||
| 110 | |||
| 111 | /* Write the new time64 and nSyncSerial into shared memory */ | ||
| 112 | tf_write_reg64(&comm->l1_buffer->time_n[new_sync_serial & | ||
| 113 | TF_SYNC_SERIAL_TIMESLOT_N], time64); | ||
| 114 | tf_write_reg32(&comm->l1_buffer->sync_serial_n, | ||
| 115 | new_sync_serial); | ||
| 116 | |||
| 117 | spin_unlock(&comm->lock); | ||
| 118 | } | ||
| 119 | |||
| 120 | /* | ||
| 121 | * Performs the specific read timeout operation | ||
| 122 | * The difficulty here is to read atomically 2 u32 | ||
| 123 | * values from the L1 shared buffer. | ||
| 124 | * This is guaranteed by reading before and after the operation | ||
| 125 | * the timeslot given by the Secure World | ||
| 126 | */ | ||
| 127 | static inline void tf_read_timeout(struct tf_comm *comm, u64 *time) | ||
| 128 | { | ||
| 129 | u32 sync_serial_s_initial = 0; | ||
| 130 | u32 sync_serial_s_final = 1; | ||
| 131 | u64 time64; | ||
| 132 | |||
| 133 | spin_lock(&comm->lock); | ||
| 134 | |||
| 135 | while (sync_serial_s_initial != sync_serial_s_final) { | ||
| 136 | sync_serial_s_initial = tf_read_reg32( | ||
| 137 | &comm->l1_buffer->sync_serial_s); | ||
| 138 | time64 = tf_read_reg64( | ||
| 139 | &comm->l1_buffer->timeout_s[sync_serial_s_initial&1]); | ||
| 140 | |||
| 141 | sync_serial_s_final = tf_read_reg32( | ||
| 142 | &comm->l1_buffer->sync_serial_s); | ||
| 143 | } | ||
| 144 | |||
| 145 | spin_unlock(&comm->lock); | ||
| 146 | |||
| 147 | *time = time64; | ||
| 148 | } | ||
| 149 | |||
| 150 | /*---------------------------------------------------------------------------- | ||
| 151 | * SIGKILL signal handling | ||
| 152 | *----------------------------------------------------------------------------*/ | ||
| 153 | |||
| 154 | static bool sigkill_pending(void) | ||
| 155 | { | ||
| 156 | if (signal_pending(current)) { | ||
| 157 | dprintk(KERN_INFO "A signal is pending\n"); | ||
| 158 | if (sigismember(¤t->pending.signal, SIGKILL)) { | ||
| 159 | dprintk(KERN_INFO "A SIGKILL is pending\n"); | ||
| 160 | return true; | ||
| 161 | } else if (sigismember( | ||
| 162 | ¤t->signal->shared_pending.signal, SIGKILL)) { | ||
| 163 | dprintk(KERN_INFO "A SIGKILL is pending (shared)\n"); | ||
| 164 | return true; | ||
| 165 | } | ||
| 166 | } | ||
| 167 | return false; | ||
| 168 | } | ||
| 169 | |||
| 170 | /*---------------------------------------------------------------------------- | ||
| 171 | * Shared memory related operations | ||
| 172 | *----------------------------------------------------------------------------*/ | ||
| 173 | |||
| 174 | struct tf_coarse_page_table *tf_alloc_coarse_page_table( | ||
| 175 | struct tf_coarse_page_table_allocation_context *alloc_context, | ||
| 176 | u32 type) | ||
| 177 | { | ||
| 178 | struct tf_coarse_page_table *coarse_pg_table = NULL; | ||
| 179 | |||
| 180 | spin_lock(&(alloc_context->lock)); | ||
| 181 | |||
| 182 | if (!(list_empty(&(alloc_context->free_coarse_page_tables)))) { | ||
| 183 | /* | ||
| 184 | * The free list can provide us a coarse page table | ||
| 185 | * descriptor | ||
| 186 | */ | ||
| 187 | coarse_pg_table = list_first_entry( | ||
| 188 | &alloc_context->free_coarse_page_tables, | ||
| 189 | struct tf_coarse_page_table, list); | ||
| 190 | list_del(&(coarse_pg_table->list)); | ||
| 191 | |||
| 192 | coarse_pg_table->parent->ref_count++; | ||
| 193 | } else { | ||
| 194 | /* no array of coarse page tables, create a new one */ | ||
| 195 | struct tf_coarse_page_table_array *array; | ||
| 196 | void *page; | ||
| 197 | int i; | ||
| 198 | |||
| 199 | spin_unlock(&(alloc_context->lock)); | ||
| 200 | |||
| 201 | /* first allocate a new page descriptor */ | ||
| 202 | array = internal_kmalloc(sizeof(*array), GFP_KERNEL); | ||
| 203 | if (array == NULL) { | ||
| 204 | dprintk(KERN_ERR "tf_alloc_coarse_page_table(%p):" | ||
| 205 | " failed to allocate a table array\n", | ||
| 206 | alloc_context); | ||
| 207 | return NULL; | ||
| 208 | } | ||
| 209 | |||
| 210 | array->type = type; | ||
| 211 | INIT_LIST_HEAD(&(array->list)); | ||
| 212 | |||
| 213 | /* now allocate the actual page the page descriptor describes */ | ||
| 214 | page = (void *) internal_get_zeroed_page(GFP_KERNEL); | ||
| 215 | if (page == NULL) { | ||
| 216 | dprintk(KERN_ERR "tf_alloc_coarse_page_table(%p):" | ||
| 217 | " failed allocate a page\n", | ||
| 218 | alloc_context); | ||
| 219 | internal_kfree(array); | ||
| 220 | return NULL; | ||
| 221 | } | ||
| 222 | |||
| 223 | spin_lock(&(alloc_context->lock)); | ||
| 224 | |||
| 225 | /* initialize the coarse page table descriptors */ | ||
| 226 | for (i = 0; i < 4; i++) { | ||
| 227 | INIT_LIST_HEAD(&(array->coarse_page_tables[i].list)); | ||
| 228 | array->coarse_page_tables[i].descriptors = | ||
| 229 | page + (i * SIZE_1KB); | ||
| 230 | array->coarse_page_tables[i].parent = array; | ||
| 231 | |||
| 232 | if (i == 0) { | ||
| 233 | /* | ||
| 234 | * the first element is kept for the current | ||
| 235 | * coarse page table allocation | ||
| 236 | */ | ||
| 237 | coarse_pg_table = | ||
| 238 | &(array->coarse_page_tables[i]); | ||
| 239 | array->ref_count = 1; | ||
| 240 | } else { | ||
| 241 | /* | ||
| 242 | * The other elements are added to the free list | ||
| 243 | */ | ||
| 244 | list_add(&(array->coarse_page_tables[i].list), | ||
| 245 | &(alloc_context-> | ||
| 246 | free_coarse_page_tables)); | ||
| 247 | } | ||
| 248 | } | ||
| 249 | |||
| 250 | list_add(&(array->list), | ||
| 251 | &(alloc_context->coarse_page_table_arrays)); | ||
| 252 | } | ||
| 253 | spin_unlock(&(alloc_context->lock)); | ||
| 254 | |||
| 255 | return coarse_pg_table; | ||
| 256 | } | ||
| 257 | |||
| 258 | |||
| 259 | void tf_free_coarse_page_table( | ||
| 260 | struct tf_coarse_page_table_allocation_context *alloc_context, | ||
| 261 | struct tf_coarse_page_table *coarse_pg_table, | ||
| 262 | int force) | ||
| 263 | { | ||
| 264 | struct tf_coarse_page_table_array *array; | ||
| 265 | |||
| 266 | spin_lock(&(alloc_context->lock)); | ||
| 267 | |||
| 268 | array = coarse_pg_table->parent; | ||
| 269 | |||
| 270 | (array->ref_count)--; | ||
| 271 | |||
| 272 | if (array->ref_count == 0) { | ||
| 273 | /* | ||
| 274 | * no coarse page table descriptor is used | ||
| 275 | * check if we should free the whole page | ||
| 276 | */ | ||
| 277 | |||
| 278 | if ((array->type == TF_PAGE_DESCRIPTOR_TYPE_PREALLOCATED) | ||
| 279 | && (force == 0)) | ||
| 280 | /* | ||
| 281 | * This is a preallocated page, | ||
| 282 | * add the page back to the free list | ||
| 283 | */ | ||
| 284 | list_add(&(coarse_pg_table->list), | ||
| 285 | &(alloc_context->free_coarse_page_tables)); | ||
| 286 | else { | ||
| 287 | /* | ||
| 288 | * None of the page's coarse page table descriptors | ||
| 289 | * are in use, free the whole page | ||
| 290 | */ | ||
| 291 | int i; | ||
| 292 | u32 *descriptors; | ||
| 293 | |||
| 294 | /* | ||
| 295 | * remove the page's associated coarse page table | ||
| 296 | * descriptors from the free list | ||
| 297 | */ | ||
| 298 | for (i = 0; i < 4; i++) | ||
| 299 | if (&(array->coarse_page_tables[i]) != | ||
| 300 | coarse_pg_table) | ||
| 301 | list_del(&(array-> | ||
| 302 | coarse_page_tables[i].list)); | ||
| 303 | |||
| 304 | descriptors = | ||
| 305 | array->coarse_page_tables[0].descriptors; | ||
| 306 | array->coarse_page_tables[0].descriptors = NULL; | ||
| 307 | |||
| 308 | /* remove the coarse page table from the array */ | ||
| 309 | list_del(&(array->list)); | ||
| 310 | |||
| 311 | spin_unlock(&(alloc_context->lock)); | ||
| 312 | /* | ||
| 313 | * Free the page. | ||
| 314 | * The address of the page is contained in the first | ||
| 315 | * element | ||
| 316 | */ | ||
| 317 | internal_free_page((unsigned long) descriptors); | ||
| 318 | /* finaly free the array */ | ||
| 319 | internal_kfree(array); | ||
| 320 | |||
| 321 | spin_lock(&(alloc_context->lock)); | ||
| 322 | } | ||
| 323 | } else { | ||
| 324 | /* | ||
| 325 | * Some coarse page table descriptors are in use. | ||
| 326 | * Add the descriptor to the free list | ||
| 327 | */ | ||
| 328 | list_add(&(coarse_pg_table->list), | ||
| 329 | &(alloc_context->free_coarse_page_tables)); | ||
| 330 | } | ||
| 331 | |||
| 332 | spin_unlock(&(alloc_context->lock)); | ||
| 333 | } | ||
| 334 | |||
| 335 | |||
| 336 | void tf_init_coarse_page_table_allocator( | ||
| 337 | struct tf_coarse_page_table_allocation_context *alloc_context) | ||
| 338 | { | ||
| 339 | spin_lock_init(&(alloc_context->lock)); | ||
| 340 | INIT_LIST_HEAD(&(alloc_context->coarse_page_table_arrays)); | ||
| 341 | INIT_LIST_HEAD(&(alloc_context->free_coarse_page_tables)); | ||
| 342 | } | ||
| 343 | |||
| 344 | void tf_release_coarse_page_table_allocator( | ||
| 345 | struct tf_coarse_page_table_allocation_context *alloc_context) | ||
| 346 | { | ||
| 347 | spin_lock(&(alloc_context->lock)); | ||
| 348 | |||
| 349 | /* now clean up the list of page descriptors */ | ||
| 350 | while (!list_empty(&(alloc_context->coarse_page_table_arrays))) { | ||
| 351 | struct tf_coarse_page_table_array *page_desc; | ||
| 352 | u32 *descriptors; | ||
| 353 | |||
| 354 | page_desc = list_first_entry( | ||
| 355 | &alloc_context->coarse_page_table_arrays, | ||
| 356 | struct tf_coarse_page_table_array, list); | ||
| 357 | |||
| 358 | descriptors = page_desc->coarse_page_tables[0].descriptors; | ||
| 359 | list_del(&(page_desc->list)); | ||
| 360 | |||
| 361 | spin_unlock(&(alloc_context->lock)); | ||
| 362 | |||
| 363 | if (descriptors != NULL) | ||
| 364 | internal_free_page((unsigned long)descriptors); | ||
| 365 | |||
| 366 | internal_kfree(page_desc); | ||
| 367 | |||
| 368 | spin_lock(&(alloc_context->lock)); | ||
| 369 | } | ||
| 370 | |||
| 371 | spin_unlock(&(alloc_context->lock)); | ||
| 372 | } | ||
| 373 | |||
| 374 | /* | ||
| 375 | * Returns the L1 coarse page descriptor for | ||
| 376 | * a coarse page table located at address coarse_pg_table_descriptors | ||
| 377 | */ | ||
| 378 | u32 tf_get_l1_coarse_descriptor( | ||
| 379 | u32 coarse_pg_table_descriptors[256]) | ||
| 380 | { | ||
| 381 | u32 descriptor = L1_COARSE_DESCRIPTOR_BASE; | ||
| 382 | unsigned int info = read_cpuid(CPUID_CACHETYPE); | ||
| 383 | |||
| 384 | descriptor |= (virt_to_phys((void *) coarse_pg_table_descriptors) | ||
| 385 | & L1_COARSE_DESCRIPTOR_ADDR_MASK); | ||
| 386 | |||
| 387 | if (CACHE_S(info) && (CACHE_DSIZE(info) & (1 << 11))) { | ||
| 388 | dprintk(KERN_DEBUG "tf_get_l1_coarse_descriptor " | ||
| 389 | "V31-12 added to descriptor\n"); | ||
| 390 | /* the 16k alignment restriction applies */ | ||
| 391 | descriptor |= (DESCRIPTOR_V13_12_GET( | ||
| 392 | (u32)coarse_pg_table_descriptors) << | ||
| 393 | L1_COARSE_DESCRIPTOR_V13_12_SHIFT); | ||
| 394 | } | ||
| 395 | |||
| 396 | return descriptor; | ||
| 397 | } | ||
| 398 | |||
| 399 | |||
| 400 | #define dprintk_desc(...) | ||
| 401 | /* | ||
| 402 | * Returns the L2 descriptor for the specified user page. | ||
| 403 | */ | ||
| 404 | u32 tf_get_l2_descriptor_common(u32 vaddr, struct mm_struct *mm) | ||
| 405 | { | ||
| 406 | pgd_t *pgd; | ||
| 407 | pud_t *pud; | ||
| 408 | pmd_t *pmd; | ||
| 409 | pte_t *ptep; | ||
| 410 | u32 *hwpte; | ||
| 411 | u32 tex = 0; | ||
| 412 | u32 descriptor = 0; | ||
| 413 | |||
| 414 | dprintk_desc(KERN_INFO "VirtAddr = %x\n", vaddr); | ||
| 415 | pgd = pgd_offset(mm, vaddr); | ||
| 416 | dprintk_desc(KERN_INFO "pgd = %x, value=%x\n", (unsigned int) pgd, | ||
| 417 | (unsigned int) *pgd); | ||
| 418 | if (pgd_none(*pgd)) | ||
| 419 | goto error; | ||
| 420 | pud = pud_offset(pgd, vaddr); | ||
| 421 | dprintk_desc(KERN_INFO "pud = %x, value=%x\n", (unsigned int) pud, | ||
| 422 | (unsigned int) *pud); | ||
| 423 | if (pud_none(*pud)) | ||
| 424 | goto error; | ||
| 425 | pmd = pmd_offset(pud, vaddr); | ||
| 426 | dprintk_desc(KERN_INFO "pmd = %x, value=%x\n", (unsigned int) pmd, | ||
| 427 | (unsigned int) *pmd); | ||
| 428 | if (pmd_none(*pmd)) | ||
| 429 | goto error; | ||
| 430 | |||
| 431 | if (PMD_TYPE_SECT&(*pmd)) { | ||
| 432 | /* We have a section */ | ||
| 433 | dprintk_desc(KERN_INFO "Section descr=%x\n", | ||
| 434 | (unsigned int)*pmd); | ||
| 435 | if ((*pmd) & PMD_SECT_BUFFERABLE) | ||
| 436 | descriptor |= DESCRIPTOR_B_MASK; | ||
| 437 | if ((*pmd) & PMD_SECT_CACHEABLE) | ||
| 438 | descriptor |= DESCRIPTOR_C_MASK; | ||
| 439 | if ((*pmd) & PMD_SECT_S) | ||
| 440 | descriptor |= DESCRIPTOR_S_MASK; | ||
| 441 | tex = ((*pmd) >> 12) & 7; | ||
| 442 | } else { | ||
| 443 | /* We have a table */ | ||
| 444 | ptep = pte_offset_map(pmd, vaddr); | ||
| 445 | if (pte_present(*ptep)) { | ||
| 446 | dprintk_desc(KERN_INFO "L2 descr=%x\n", | ||
| 447 | (unsigned int) *ptep); | ||
| 448 | if ((*ptep) & L_PTE_MT_BUFFERABLE) | ||
| 449 | descriptor |= DESCRIPTOR_B_MASK; | ||
| 450 | if ((*ptep) & L_PTE_MT_WRITETHROUGH) | ||
| 451 | descriptor |= DESCRIPTOR_C_MASK; | ||
| 452 | if ((*ptep) & L_PTE_MT_DEV_SHARED) | ||
| 453 | descriptor |= DESCRIPTOR_S_MASK; | ||
| 454 | |||
| 455 | /* | ||
| 456 | * Linux's pte doesn't keep track of TEX value. | ||
| 457 | * Have to jump to hwpte see include/asm/pgtable.h | ||
| 458 | * (-2k before 2.6.38, then +2k) | ||
| 459 | */ | ||
| 460 | #ifdef PTE_HWTABLE_SIZE | ||
| 461 | hwpte = (u32 *) (ptep+PTE_HWTABLE_PTRS); | ||
| 462 | #else | ||
| 463 | hwpte = (u32 *) (ptep-PTRS_PER_PTE); | ||
| 464 | #endif | ||
| 465 | if (((*hwpte) & L2_DESCRIPTOR_ADDR_MASK) != | ||
| 466 | ((*ptep) & L2_DESCRIPTOR_ADDR_MASK)) | ||
| 467 | goto error; | ||
| 468 | dprintk_desc(KERN_INFO "hw descr=%x\n", *hwpte); | ||
| 469 | tex = ((*hwpte) >> 6) & 7; | ||
| 470 | pte_unmap(ptep); | ||
| 471 | } else { | ||
| 472 | pte_unmap(ptep); | ||
| 473 | goto error; | ||
| 474 | } | ||
| 475 | } | ||
| 476 | |||
| 477 | descriptor |= (tex << 6); | ||
| 478 | |||
| 479 | return descriptor; | ||
| 480 | |||
| 481 | error: | ||
| 482 | dprintk(KERN_ERR "Error occured in %s\n", __func__); | ||
| 483 | return 0; | ||
| 484 | } | ||
| 485 | |||
| 486 | |||
| 487 | /* | ||
| 488 | * Changes an L2 page descriptor back to a pointer to a physical page | ||
| 489 | */ | ||
| 490 | inline struct page *tf_l2_page_descriptor_to_page(u32 l2_page_descriptor) | ||
| 491 | { | ||
| 492 | return pte_page(l2_page_descriptor & L2_DESCRIPTOR_ADDR_MASK); | ||
| 493 | } | ||
| 494 | |||
| 495 | |||
| 496 | /* | ||
| 497 | * Returns the L1 descriptor for the 1KB-aligned coarse page table. The address | ||
| 498 | * must be in the kernel address space. | ||
| 499 | */ | ||
| 500 | static void tf_get_l2_page_descriptor( | ||
| 501 | u32 *l2_page_descriptor, | ||
| 502 | u32 flags, struct mm_struct *mm) | ||
| 503 | { | ||
| 504 | unsigned long page_vaddr; | ||
| 505 | u32 descriptor; | ||
| 506 | struct page *page; | ||
| 507 | bool unmap_page = false; | ||
| 508 | |||
| 509 | #if 0 | ||
| 510 | dprintk(KERN_INFO | ||
| 511 | "tf_get_l2_page_descriptor():" | ||
| 512 | "*l2_page_descriptor=%x\n", | ||
| 513 | *l2_page_descriptor); | ||
| 514 | #endif | ||
| 515 | |||
| 516 | if (*l2_page_descriptor == L2_DESCRIPTOR_FAULT) | ||
| 517 | return; | ||
| 518 | |||
| 519 | page = (struct page *) (*l2_page_descriptor); | ||
| 520 | |||
| 521 | page_vaddr = (unsigned long) page_address(page); | ||
| 522 | if (page_vaddr == 0) { | ||
| 523 | dprintk(KERN_INFO "page_address returned 0\n"); | ||
| 524 | /* Should we use kmap_atomic(page, KM_USER0) instead ? */ | ||
| 525 | page_vaddr = (unsigned long) kmap(page); | ||
| 526 | if (page_vaddr == 0) { | ||
| 527 | *l2_page_descriptor = L2_DESCRIPTOR_FAULT; | ||
| 528 | dprintk(KERN_ERR "kmap returned 0\n"); | ||
| 529 | return; | ||
| 530 | } | ||
| 531 | unmap_page = true; | ||
| 532 | } | ||
| 533 | |||
| 534 | descriptor = tf_get_l2_descriptor_common(page_vaddr, mm); | ||
| 535 | if (descriptor == 0) { | ||
| 536 | *l2_page_descriptor = L2_DESCRIPTOR_FAULT; | ||
| 537 | return; | ||
| 538 | } | ||
| 539 | descriptor |= L2_PAGE_DESCRIPTOR_BASE; | ||
| 540 | |||
| 541 | descriptor |= (page_to_phys(page) & L2_DESCRIPTOR_ADDR_MASK); | ||
| 542 | |||
| 543 | if (!(flags & TF_SHMEM_TYPE_WRITE)) | ||
| 544 | /* only read access */ | ||
| 545 | descriptor |= L2_PAGE_DESCRIPTOR_AP_APX_READ; | ||
| 546 | else | ||
| 547 | /* read and write access */ | ||
| 548 | descriptor |= L2_PAGE_DESCRIPTOR_AP_APX_READ_WRITE; | ||
| 549 | |||
| 550 | if (unmap_page) | ||
| 551 | kunmap(page); | ||
| 552 | |||
| 553 | *l2_page_descriptor = descriptor; | ||
| 554 | } | ||
| 555 | |||
| 556 | |||
| 557 | /* | ||
| 558 | * Unlocks the physical memory pages | ||
| 559 | * and frees the coarse pages that need to | ||
| 560 | */ | ||
| 561 | void tf_cleanup_shared_memory( | ||
| 562 | struct tf_coarse_page_table_allocation_context *alloc_context, | ||
| 563 | struct tf_shmem_desc *shmem_desc, | ||
| 564 | u32 full_cleanup) | ||
| 565 | { | ||
| 566 | u32 coarse_page_index; | ||
| 567 | |||
| 568 | dprintk(KERN_INFO "tf_cleanup_shared_memory(%p)\n", | ||
| 569 | shmem_desc); | ||
| 570 | |||
| 571 | #ifdef DEBUG_COARSE_TABLES | ||
| 572 | printk(KERN_DEBUG "tf_cleanup_shared_memory " | ||
| 573 | "- number of coarse page tables=%d\n", | ||
| 574 | shmem_desc->coarse_pg_table_count); | ||
| 575 | |||
| 576 | for (coarse_page_index = 0; | ||
| 577 | coarse_page_index < shmem_desc->coarse_pg_table_count; | ||
| 578 | coarse_page_index++) { | ||
| 579 | u32 j; | ||
| 580 | |||
| 581 | printk(KERN_DEBUG " Descriptor=%p address=%p index=%d\n", | ||
| 582 | shmem_desc->coarse_pg_table[coarse_page_index], | ||
| 583 | shmem_desc->coarse_pg_table[coarse_page_index]-> | ||
| 584 | descriptors, | ||
| 585 | coarse_page_index); | ||
| 586 | if (shmem_desc->coarse_pg_table[coarse_page_index] != NULL) { | ||
| 587 | for (j = 0; | ||
| 588 | j < TF_DESCRIPTOR_TABLE_CAPACITY; | ||
| 589 | j += 8) { | ||
| 590 | int k; | ||
| 591 | printk(KERN_DEBUG " "); | ||
| 592 | for (k = j; k < j + 8; k++) | ||
| 593 | printk(KERN_DEBUG "%p ", | ||
| 594 | shmem_desc->coarse_pg_table[ | ||
| 595 | coarse_page_index]-> | ||
| 596 | descriptors); | ||
| 597 | printk(KERN_DEBUG "\n"); | ||
| 598 | } | ||
| 599 | } | ||
| 600 | } | ||
| 601 | printk(KERN_DEBUG "tf_cleanup_shared_memory() - done\n\n"); | ||
| 602 | #endif | ||
| 603 | |||
| 604 | /* Parse the coarse page descriptors */ | ||
| 605 | for (coarse_page_index = 0; | ||
| 606 | coarse_page_index < shmem_desc->coarse_pg_table_count; | ||
| 607 | coarse_page_index++) { | ||
| 608 | u32 j; | ||
| 609 | u32 found = 0; | ||
| 610 | |||
| 611 | /* parse the page descriptors of the coarse page */ | ||
| 612 | for (j = 0; j < TF_DESCRIPTOR_TABLE_CAPACITY; j++) { | ||
| 613 | u32 l2_page_descriptor = (u32) (shmem_desc-> | ||
| 614 | coarse_pg_table[coarse_page_index]-> | ||
| 615 | descriptors[j]); | ||
| 616 | |||
| 617 | if (l2_page_descriptor != L2_DESCRIPTOR_FAULT) { | ||
| 618 | struct page *page = | ||
| 619 | tf_l2_page_descriptor_to_page( | ||
| 620 | l2_page_descriptor); | ||
| 621 | |||
| 622 | if (!PageReserved(page)) | ||
| 623 | SetPageDirty(page); | ||
| 624 | internal_page_cache_release(page); | ||
| 625 | |||
| 626 | found = 1; | ||
| 627 | } else if (found == 1) { | ||
| 628 | break; | ||
| 629 | } | ||
| 630 | } | ||
| 631 | |||
| 632 | /* | ||
| 633 | * Only free the coarse pages of descriptors not preallocated | ||
| 634 | */ | ||
| 635 | if ((shmem_desc->type == TF_SHMEM_TYPE_REGISTERED_SHMEM) || | ||
| 636 | (full_cleanup != 0)) | ||
| 637 | tf_free_coarse_page_table(alloc_context, | ||
| 638 | shmem_desc->coarse_pg_table[coarse_page_index], | ||
| 639 | 0); | ||
| 640 | } | ||
| 641 | |||
| 642 | shmem_desc->coarse_pg_table_count = 0; | ||
| 643 | dprintk(KERN_INFO "tf_cleanup_shared_memory(%p) done\n", | ||
| 644 | shmem_desc); | ||
| 645 | } | ||
| 646 | |||
| 647 | /* | ||
| 648 | * Make sure the coarse pages are allocated. If not allocated, do it. | ||
| 649 | * Locks down the physical memory pages. | ||
| 650 | * Verifies the memory attributes depending on flags. | ||
| 651 | */ | ||
| 652 | int tf_fill_descriptor_table( | ||
| 653 | struct tf_coarse_page_table_allocation_context *alloc_context, | ||
| 654 | struct tf_shmem_desc *shmem_desc, | ||
| 655 | u32 buffer, | ||
| 656 | struct vm_area_struct **vmas, | ||
| 657 | u32 descriptors[TF_MAX_COARSE_PAGES], | ||
| 658 | u32 buffer_size, | ||
| 659 | u32 *buffer_start_offset, | ||
| 660 | bool in_user_space, | ||
| 661 | u32 flags, | ||
| 662 | u32 *descriptor_count) | ||
| 663 | { | ||
| 664 | u32 coarse_page_index; | ||
| 665 | u32 coarse_page_count; | ||
| 666 | u32 page_count; | ||
| 667 | u32 page_shift = 0; | ||
| 668 | int ret = 0; | ||
| 669 | unsigned int info = read_cpuid(CPUID_CACHETYPE); | ||
| 670 | |||
| 671 | dprintk(KERN_INFO "tf_fill_descriptor_table" | ||
| 672 | "(%p, buffer=0x%08X, size=0x%08X, user=%01x " | ||
| 673 | "flags = 0x%08x)\n", | ||
| 674 | shmem_desc, | ||
| 675 | buffer, | ||
| 676 | buffer_size, | ||
| 677 | in_user_space, | ||
| 678 | flags); | ||
| 679 | |||
| 680 | /* | ||
| 681 | * Compute the number of pages | ||
| 682 | * Compute the number of coarse pages | ||
| 683 | * Compute the page offset | ||
| 684 | */ | ||
| 685 | page_count = ((buffer & ~PAGE_MASK) + | ||
| 686 | buffer_size + ~PAGE_MASK) >> PAGE_SHIFT; | ||
| 687 | |||
| 688 | /* check whether the 16k alignment restriction applies */ | ||
| 689 | if (CACHE_S(info) && (CACHE_DSIZE(info) & (1 << 11))) | ||
| 690 | /* | ||
| 691 | * The 16k alignment restriction applies. | ||
| 692 | * Shift data to get them 16k aligned | ||
| 693 | */ | ||
| 694 | page_shift = DESCRIPTOR_V13_12_GET(buffer); | ||
| 695 | page_count += page_shift; | ||
| 696 | |||
| 697 | |||
| 698 | /* | ||
| 699 | * Check the number of pages fit in the coarse pages | ||
| 700 | */ | ||
| 701 | if (page_count > (TF_DESCRIPTOR_TABLE_CAPACITY * | ||
| 702 | TF_MAX_COARSE_PAGES)) { | ||
| 703 | dprintk(KERN_ERR "tf_fill_descriptor_table(%p): " | ||
| 704 | "%u pages required to map shared memory!\n", | ||
| 705 | shmem_desc, page_count); | ||
| 706 | ret = -ENOMEM; | ||
| 707 | goto error; | ||
| 708 | } | ||
| 709 | |||
| 710 | /* coarse page describe 256 pages */ | ||
| 711 | coarse_page_count = ((page_count + | ||
| 712 | TF_DESCRIPTOR_TABLE_CAPACITY_MASK) >> | ||
| 713 | TF_DESCRIPTOR_TABLE_CAPACITY_BIT_SHIFT); | ||
| 714 | |||
| 715 | /* | ||
| 716 | * Compute the buffer offset | ||
| 717 | */ | ||
| 718 | *buffer_start_offset = (buffer & ~PAGE_MASK) | | ||
| 719 | (page_shift << PAGE_SHIFT); | ||
| 720 | |||
| 721 | /* map each coarse page */ | ||
| 722 | for (coarse_page_index = 0; | ||
| 723 | coarse_page_index < coarse_page_count; | ||
| 724 | coarse_page_index++) { | ||
| 725 | u32 j; | ||
| 726 | struct tf_coarse_page_table *coarse_pg_table; | ||
| 727 | |||
| 728 | /* compute a virtual address with appropriate offset */ | ||
| 729 | u32 buffer_offset_vaddr = buffer + | ||
| 730 | (coarse_page_index * TF_MAX_COARSE_PAGE_MAPPED_SIZE); | ||
| 731 | u32 pages_to_get; | ||
| 732 | |||
| 733 | /* | ||
| 734 | * Compute the number of pages left for this coarse page. | ||
| 735 | * Decrement page_count each time | ||
| 736 | */ | ||
| 737 | pages_to_get = (page_count >> | ||
| 738 | TF_DESCRIPTOR_TABLE_CAPACITY_BIT_SHIFT) ? | ||
| 739 | TF_DESCRIPTOR_TABLE_CAPACITY : page_count; | ||
| 740 | page_count -= pages_to_get; | ||
| 741 | |||
| 742 | /* | ||
| 743 | * Check if the coarse page has already been allocated | ||
| 744 | * If not, do it now | ||
| 745 | */ | ||
| 746 | if ((shmem_desc->type == TF_SHMEM_TYPE_REGISTERED_SHMEM) | ||
| 747 | || (shmem_desc->type == | ||
| 748 | TF_SHMEM_TYPE_PM_HIBERNATE)) { | ||
| 749 | coarse_pg_table = tf_alloc_coarse_page_table( | ||
| 750 | alloc_context, | ||
| 751 | TF_PAGE_DESCRIPTOR_TYPE_NORMAL); | ||
| 752 | |||
| 753 | if (coarse_pg_table == NULL) { | ||
| 754 | dprintk(KERN_ERR | ||
| 755 | "tf_fill_descriptor_table(%p): " | ||
| 756 | "tf_alloc_coarse_page_table " | ||
| 757 | "failed for coarse page %d\n", | ||
| 758 | shmem_desc, coarse_page_index); | ||
| 759 | ret = -ENOMEM; | ||
| 760 | goto error; | ||
| 761 | } | ||
| 762 | |||
| 763 | shmem_desc->coarse_pg_table[coarse_page_index] = | ||
| 764 | coarse_pg_table; | ||
| 765 | } else { | ||
| 766 | coarse_pg_table = | ||
| 767 | shmem_desc->coarse_pg_table[coarse_page_index]; | ||
| 768 | } | ||
| 769 | |||
| 770 | /* | ||
| 771 | * The page is not necessarily filled with zeroes. | ||
| 772 | * Set the fault descriptors ( each descriptor is 4 bytes long) | ||
| 773 | */ | ||
| 774 | memset(coarse_pg_table->descriptors, 0x00, | ||
| 775 | TF_DESCRIPTOR_TABLE_CAPACITY * sizeof(u32)); | ||
| 776 | |||
| 777 | if (in_user_space) { | ||
| 778 | int pages; | ||
| 779 | |||
| 780 | /* | ||
| 781 | * TRICK: use pCoarsePageDescriptor->descriptors to | ||
| 782 | * hold the (struct page*) items before getting their | ||
| 783 | * physical address | ||
| 784 | */ | ||
| 785 | down_read(&(current->mm->mmap_sem)); | ||
| 786 | pages = internal_get_user_pages( | ||
| 787 | current, | ||
| 788 | current->mm, | ||
| 789 | buffer_offset_vaddr, | ||
| 790 | /* | ||
| 791 | * page_shift is cleared after retrieving first | ||
| 792 | * coarse page | ||
| 793 | */ | ||
| 794 | (pages_to_get - page_shift), | ||
| 795 | (flags & TF_SHMEM_TYPE_WRITE) ? 1 : 0, | ||
| 796 | 0, | ||
| 797 | (struct page **) (coarse_pg_table->descriptors | ||
| 798 | + page_shift), | ||
| 799 | vmas); | ||
| 800 | up_read(&(current->mm->mmap_sem)); | ||
| 801 | |||
| 802 | if ((pages <= 0) || | ||
| 803 | (pages != (pages_to_get - page_shift))) { | ||
| 804 | dprintk(KERN_ERR "tf_fill_descriptor_table:" | ||
| 805 | " get_user_pages got %d pages while " | ||
| 806 | "trying to get %d pages!\n", | ||
| 807 | pages, pages_to_get - page_shift); | ||
| 808 | ret = -EFAULT; | ||
| 809 | goto error; | ||
| 810 | } | ||
| 811 | |||
| 812 | for (j = page_shift; | ||
| 813 | j < page_shift + pages; | ||
| 814 | j++) { | ||
| 815 | /* Get the actual L2 descriptors */ | ||
| 816 | tf_get_l2_page_descriptor( | ||
| 817 | &coarse_pg_table->descriptors[j], | ||
| 818 | flags, | ||
| 819 | current->mm); | ||
| 820 | /* | ||
| 821 | * Reject Strongly-Ordered or Device Memory | ||
| 822 | */ | ||
| 823 | #define IS_STRONGLY_ORDERED_OR_DEVICE_MEM(x) \ | ||
| 824 | ((((x) & L2_TEX_C_B_MASK) == L2_TEX_C_B_STRONGLY_ORDERED) || \ | ||
| 825 | (((x) & L2_TEX_C_B_MASK) == L2_TEX_C_B_SHARED_DEVICE) || \ | ||
| 826 | (((x) & L2_TEX_C_B_MASK) == L2_TEX_C_B_NON_SHARED_DEVICE)) | ||
| 827 | |||
| 828 | if (IS_STRONGLY_ORDERED_OR_DEVICE_MEM( | ||
| 829 | coarse_pg_table-> | ||
| 830 | descriptors[j])) { | ||
| 831 | dprintk(KERN_ERR | ||
| 832 | "tf_fill_descriptor_table:" | ||
| 833 | " descriptor 0x%08X use " | ||
| 834 | "strongly-ordered or device " | ||
| 835 | "memory. Rejecting!\n", | ||
| 836 | coarse_pg_table-> | ||
| 837 | descriptors[j]); | ||
| 838 | ret = -EFAULT; | ||
| 839 | goto error; | ||
| 840 | } | ||
| 841 | } | ||
| 842 | } else if (is_vmalloc_addr((void *)buffer_offset_vaddr)) { | ||
| 843 | /* Kernel-space memory obtained through vmalloc */ | ||
| 844 | dprintk(KERN_INFO | ||
| 845 | "tf_fill_descriptor_table: " | ||
| 846 | "vmalloc'ed buffer starting at %p\n", | ||
| 847 | (void *)buffer_offset_vaddr); | ||
| 848 | for (j = page_shift; j < pages_to_get; j++) { | ||
| 849 | struct page *page; | ||
| 850 | void *addr = | ||
| 851 | (void *)(buffer_offset_vaddr + | ||
| 852 | (j - page_shift) * PAGE_SIZE); | ||
| 853 | page = vmalloc_to_page(addr); | ||
| 854 | if (page == NULL) { | ||
| 855 | dprintk(KERN_ERR | ||
| 856 | "tf_fill_descriptor_table: " | ||
| 857 | "cannot map %p (vmalloc) " | ||
| 858 | "to page\n", | ||
| 859 | addr); | ||
| 860 | ret = -EFAULT; | ||
| 861 | goto error; | ||
| 862 | } | ||
| 863 | coarse_pg_table->descriptors[j] = (u32)page; | ||
| 864 | get_page(page); | ||
| 865 | |||
| 866 | /* change coarse page "page address" */ | ||
| 867 | tf_get_l2_page_descriptor( | ||
| 868 | &coarse_pg_table->descriptors[j], | ||
| 869 | flags, | ||
| 870 | &init_mm); | ||
| 871 | } | ||
| 872 | } else { | ||
| 873 | /* Kernel-space memory given by a virtual address */ | ||
| 874 | dprintk(KERN_INFO | ||
| 875 | "tf_fill_descriptor_table: " | ||
| 876 | "buffer starting at virtual address %p\n", | ||
| 877 | (void *)buffer_offset_vaddr); | ||
| 878 | for (j = page_shift; j < pages_to_get; j++) { | ||
| 879 | struct page *page; | ||
| 880 | void *addr = | ||
| 881 | (void *)(buffer_offset_vaddr + | ||
| 882 | (j - page_shift) * PAGE_SIZE); | ||
| 883 | page = virt_to_page(addr); | ||
| 884 | if (page == NULL) { | ||
| 885 | dprintk(KERN_ERR | ||
| 886 | "tf_fill_descriptor_table: " | ||
| 887 | "cannot map %p (virtual) " | ||
| 888 | "to page\n", | ||
| 889 | addr); | ||
| 890 | ret = -EFAULT; | ||
| 891 | goto error; | ||
| 892 | } | ||
| 893 | coarse_pg_table->descriptors[j] = (u32)page; | ||
| 894 | get_page(page); | ||
| 895 | |||
| 896 | /* change coarse page "page address" */ | ||
| 897 | tf_get_l2_page_descriptor( | ||
| 898 | &coarse_pg_table->descriptors[j], | ||
| 899 | flags, | ||
| 900 | &init_mm); | ||
| 901 | } | ||
| 902 | } | ||
| 903 | |||
| 904 | dmac_flush_range((void *)coarse_pg_table->descriptors, | ||
| 905 | (void *)(((u32)(coarse_pg_table->descriptors)) + | ||
| 906 | TF_DESCRIPTOR_TABLE_CAPACITY * sizeof(u32))); | ||
| 907 | |||
| 908 | outer_clean_range( | ||
| 909 | __pa(coarse_pg_table->descriptors), | ||
| 910 | __pa(coarse_pg_table->descriptors) + | ||
| 911 | TF_DESCRIPTOR_TABLE_CAPACITY * sizeof(u32)); | ||
| 912 | wmb(); | ||
| 913 | |||
| 914 | /* Update the coarse page table address */ | ||
| 915 | descriptors[coarse_page_index] = | ||
| 916 | tf_get_l1_coarse_descriptor( | ||
| 917 | coarse_pg_table->descriptors); | ||
| 918 | |||
| 919 | /* | ||
| 920 | * The next coarse page has no page shift, reset the | ||
| 921 | * page_shift | ||
| 922 | */ | ||
| 923 | page_shift = 0; | ||
| 924 | } | ||
| 925 | |||
| 926 | *descriptor_count = coarse_page_count; | ||
| 927 | shmem_desc->coarse_pg_table_count = coarse_page_count; | ||
| 928 | |||
| 929 | #ifdef DEBUG_COARSE_TABLES | ||
| 930 | printk(KERN_DEBUG "ntf_fill_descriptor_table - size=0x%08X " | ||
| 931 | "numberOfCoarsePages=%d\n", buffer_size, | ||
| 932 | shmem_desc->coarse_pg_table_count); | ||
| 933 | for (coarse_page_index = 0; | ||
| 934 | coarse_page_index < shmem_desc->coarse_pg_table_count; | ||
| 935 | coarse_page_index++) { | ||
| 936 | u32 j; | ||
| 937 | struct tf_coarse_page_table *coarse_page_table = | ||
| 938 | shmem_desc->coarse_pg_table[coarse_page_index]; | ||
| 939 | |||
| 940 | printk(KERN_DEBUG " Descriptor=%p address=%p index=%d\n", | ||
| 941 | coarse_page_table, | ||
| 942 | coarse_page_table->descriptors, | ||
| 943 | coarse_page_index); | ||
| 944 | for (j = 0; | ||
| 945 | j < TF_DESCRIPTOR_TABLE_CAPACITY; | ||
| 946 | j += 8) { | ||
| 947 | int k; | ||
| 948 | printk(KERN_DEBUG " "); | ||
| 949 | for (k = j; k < j + 8; k++) | ||
| 950 | printk(KERN_DEBUG "0x%08X ", | ||
| 951 | coarse_page_table->descriptors[k]); | ||
| 952 | printk(KERN_DEBUG "\n"); | ||
| 953 | } | ||
| 954 | } | ||
| 955 | printk(KERN_DEBUG "ntf_fill_descriptor_table() - done\n\n"); | ||
| 956 | #endif | ||
| 957 | |||
| 958 | return 0; | ||
| 959 | |||
| 960 | error: | ||
| 961 | tf_cleanup_shared_memory( | ||
| 962 | alloc_context, | ||
| 963 | shmem_desc, | ||
| 964 | 0); | ||
| 965 | |||
| 966 | return ret; | ||
| 967 | } | ||
| 968 | |||
| 969 | |||
| 970 | /*---------------------------------------------------------------------------- | ||
| 971 | * Standard communication operations | ||
| 972 | *----------------------------------------------------------------------------*/ | ||
| 973 | |||
| 974 | u8 *tf_get_description(struct tf_comm *comm) | ||
| 975 | { | ||
| 976 | if (test_bit(TF_COMM_FLAG_L1_SHARED_ALLOCATED, &(comm->flags))) | ||
| 977 | return comm->l1_buffer->version_description; | ||
| 978 | |||
| 979 | return NULL; | ||
| 980 | } | ||
| 981 | |||
| 982 | /* | ||
| 983 | * Returns a non-zero value if the specified S-timeout has expired, zero | ||
| 984 | * otherwise. | ||
| 985 | * | ||
| 986 | * The placeholder referenced to by relative_timeout_jiffies gives the relative | ||
| 987 | * timeout from now in jiffies. It is set to zero if the S-timeout has expired, | ||
| 988 | * or to MAX_SCHEDULE_TIMEOUT if the S-timeout is infinite. | ||
| 989 | */ | ||
| 990 | static int tf_test_s_timeout( | ||
| 991 | u64 timeout, | ||
| 992 | signed long *relative_timeout_jiffies) | ||
| 993 | { | ||
| 994 | struct timeval now; | ||
| 995 | u64 time64; | ||
| 996 | |||
| 997 | *relative_timeout_jiffies = 0; | ||
| 998 | |||
| 999 | /* immediate timeout */ | ||
| 1000 | if (timeout == TIME_IMMEDIATE) | ||
| 1001 | return 1; | ||
| 1002 | |||
| 1003 | /* infinite timeout */ | ||
| 1004 | if (timeout == TIME_INFINITE) { | ||
| 1005 | dprintk(KERN_DEBUG "tf_test_s_timeout: " | ||
| 1006 | "timeout is infinite\n"); | ||
| 1007 | *relative_timeout_jiffies = MAX_SCHEDULE_TIMEOUT; | ||
| 1008 | return 0; | ||
| 1009 | } | ||
| 1010 | |||
| 1011 | do_gettimeofday(&now); | ||
| 1012 | time64 = now.tv_sec; | ||
| 1013 | /* will not overflow as operations are done on 64bit values */ | ||
| 1014 | time64 = (time64 * 1000) + (now.tv_usec / 1000); | ||
| 1015 | |||
| 1016 | /* timeout expired */ | ||
| 1017 | if (time64 >= timeout) { | ||
| 1018 | dprintk(KERN_DEBUG "tf_test_s_timeout: timeout expired\n"); | ||
| 1019 | return 1; | ||
| 1020 | } | ||
| 1021 | |||
| 1022 | /* | ||
| 1023 | * finite timeout, compute relative_timeout_jiffies | ||
| 1024 | */ | ||
| 1025 | /* will not overflow as time64 < timeout */ | ||
| 1026 | timeout -= time64; | ||
| 1027 | |||
| 1028 | /* guarantee *relative_timeout_jiffies is a valid timeout */ | ||
| 1029 | if ((timeout >> 32) != 0) | ||
| 1030 | *relative_timeout_jiffies = MAX_JIFFY_OFFSET; | ||
| 1031 | else | ||
| 1032 | *relative_timeout_jiffies = | ||
| 1033 | msecs_to_jiffies((unsigned int) timeout); | ||
| 1034 | |||
| 1035 | dprintk(KERN_DEBUG "tf_test_s_timeout: timeout is 0x%lx\n", | ||
| 1036 | *relative_timeout_jiffies); | ||
| 1037 | return 0; | ||
| 1038 | } | ||
| 1039 | |||
| 1040 | static void tf_copy_answers(struct tf_comm *comm) | ||
| 1041 | { | ||
| 1042 | u32 first_answer; | ||
| 1043 | u32 first_free_answer; | ||
| 1044 | struct tf_answer_struct *answerStructureTemp; | ||
| 1045 | |||
| 1046 | if (test_bit(TF_COMM_FLAG_L1_SHARED_ALLOCATED, &(comm->flags))) { | ||
| 1047 | spin_lock(&comm->lock); | ||
| 1048 | first_free_answer = tf_read_reg32( | ||
| 1049 | &comm->l1_buffer->first_free_answer); | ||
| 1050 | first_answer = tf_read_reg32( | ||
| 1051 | &comm->l1_buffer->first_answer); | ||
| 1052 | |||
| 1053 | while (first_answer != first_free_answer) { | ||
| 1054 | /* answer queue not empty */ | ||
| 1055 | union tf_answer sComAnswer; | ||
| 1056 | struct tf_answer_header header; | ||
| 1057 | |||
| 1058 | /* | ||
| 1059 | * the size of the command in words of 32bit, not in | ||
| 1060 | * bytes | ||
| 1061 | */ | ||
| 1062 | u32 command_size; | ||
| 1063 | u32 i; | ||
| 1064 | u32 *temp = (uint32_t *) &header; | ||
| 1065 | |||
| 1066 | dprintk(KERN_INFO | ||
| 1067 | "[pid=%d] tf_copy_answers(%p): " | ||
| 1068 | "Read answers from L1\n", | ||
| 1069 | current->pid, comm); | ||
| 1070 | |||
| 1071 | /* Read the answer header */ | ||
| 1072 | for (i = 0; | ||
| 1073 | i < sizeof(struct tf_answer_header)/sizeof(u32); | ||
| 1074 | i++) | ||
| 1075 | temp[i] = comm->l1_buffer->answer_queue[ | ||
| 1076 | (first_answer + i) % | ||
| 1077 | TF_S_ANSWER_QUEUE_CAPACITY]; | ||
| 1078 | |||
| 1079 | /* Read the answer from the L1_Buffer*/ | ||
| 1080 | command_size = header.message_size + | ||
| 1081 | sizeof(struct tf_answer_header)/sizeof(u32); | ||
| 1082 | temp = (uint32_t *) &sComAnswer; | ||
| 1083 | for (i = 0; i < command_size; i++) | ||
| 1084 | temp[i] = comm->l1_buffer->answer_queue[ | ||
| 1085 | (first_answer + i) % | ||
| 1086 | TF_S_ANSWER_QUEUE_CAPACITY]; | ||
| 1087 | |||
| 1088 | answerStructureTemp = (struct tf_answer_struct *) | ||
| 1089 | sComAnswer.header.operation_id; | ||
| 1090 | |||
| 1091 | tf_dump_answer(&sComAnswer); | ||
| 1092 | |||
| 1093 | memcpy(answerStructureTemp->answer, &sComAnswer, | ||
| 1094 | command_size * sizeof(u32)); | ||
| 1095 | answerStructureTemp->answer_copied = true; | ||
| 1096 | |||
| 1097 | first_answer += command_size; | ||
| 1098 | tf_write_reg32(&comm->l1_buffer->first_answer, | ||
| 1099 | first_answer); | ||
| 1100 | } | ||
| 1101 | spin_unlock(&(comm->lock)); | ||
| 1102 | } | ||
| 1103 | } | ||
| 1104 | |||
| 1105 | static void tf_copy_command( | ||
| 1106 | struct tf_comm *comm, | ||
| 1107 | union tf_command *command, | ||
| 1108 | struct tf_connection *connection, | ||
| 1109 | enum TF_COMMAND_STATE *command_status) | ||
| 1110 | { | ||
| 1111 | if ((test_bit(TF_COMM_FLAG_L1_SHARED_ALLOCATED, &(comm->flags))) | ||
| 1112 | && (command != NULL)) { | ||
| 1113 | /* | ||
| 1114 | * Write the message in the message queue. | ||
| 1115 | */ | ||
| 1116 | |||
| 1117 | if (*command_status == TF_COMMAND_STATE_PENDING) { | ||
| 1118 | u32 command_size; | ||
| 1119 | u32 queue_words_count; | ||
| 1120 | u32 i; | ||
| 1121 | u32 first_free_command; | ||
| 1122 | u32 first_command; | ||
| 1123 | |||
| 1124 | spin_lock(&comm->lock); | ||
| 1125 | |||
| 1126 | first_command = tf_read_reg32( | ||
| 1127 | &comm->l1_buffer->first_command); | ||
| 1128 | first_free_command = tf_read_reg32( | ||
| 1129 | &comm->l1_buffer->first_free_command); | ||
| 1130 | |||
| 1131 | queue_words_count = first_free_command - first_command; | ||
| 1132 | command_size = command->header.message_size + | ||
| 1133 | sizeof(struct tf_command_header)/sizeof(u32); | ||
| 1134 | if ((queue_words_count + command_size) < | ||
| 1135 | TF_N_MESSAGE_QUEUE_CAPACITY) { | ||
| 1136 | /* | ||
| 1137 | * Command queue is not full. | ||
| 1138 | * If the Command queue is full, | ||
| 1139 | * the command will be copied at | ||
| 1140 | * another iteration | ||
| 1141 | * of the current function. | ||
| 1142 | */ | ||
| 1143 | |||
| 1144 | /* | ||
| 1145 | * Change the conn state | ||
| 1146 | */ | ||
| 1147 | if (connection == NULL) | ||
| 1148 | goto copy; | ||
| 1149 | |||
| 1150 | spin_lock(&(connection->state_lock)); | ||
| 1151 | |||
| 1152 | if ((connection->state == | ||
| 1153 | TF_CONN_STATE_NO_DEVICE_CONTEXT) | ||
| 1154 | && | ||
| 1155 | (command->header.message_type == | ||
| 1156 | TF_MESSAGE_TYPE_CREATE_DEVICE_CONTEXT)) { | ||
| 1157 | |||
| 1158 | dprintk(KERN_INFO | ||
| 1159 | "tf_copy_command(%p):" | ||
| 1160 | "Conn state is DEVICE_CONTEXT_SENT\n", | ||
| 1161 | connection); | ||
| 1162 | connection->state = | ||
| 1163 | TF_CONN_STATE_CREATE_DEVICE_CONTEXT_SENT; | ||
| 1164 | } else if ((connection->state != | ||
| 1165 | TF_CONN_STATE_VALID_DEVICE_CONTEXT) | ||
| 1166 | && | ||
| 1167 | (command->header.message_type != | ||
| 1168 | TF_MESSAGE_TYPE_CREATE_DEVICE_CONTEXT)) { | ||
| 1169 | /* The connection | ||
| 1170 | * is no longer valid. | ||
| 1171 | * We may not send any command on it, | ||
| 1172 | * not even another | ||
| 1173 | * DESTROY_DEVICE_CONTEXT. | ||
| 1174 | */ | ||
| 1175 | dprintk(KERN_INFO | ||
| 1176 | "[pid=%d] tf_copy_command(%p): " | ||
| 1177 | "Connection no longer valid." | ||
| 1178 | "ABORT\n", | ||
| 1179 | current->pid, connection); | ||
| 1180 | *command_status = | ||
| 1181 | TF_COMMAND_STATE_ABORTED; | ||
| 1182 | spin_unlock( | ||
| 1183 | &(connection->state_lock)); | ||
| 1184 | spin_unlock( | ||
| 1185 | &comm->lock); | ||
| 1186 | return; | ||
| 1187 | } else if ( | ||
| 1188 | (command->header.message_type == | ||
| 1189 | TF_MESSAGE_TYPE_DESTROY_DEVICE_CONTEXT) && | ||
| 1190 | (connection->state == | ||
| 1191 | TF_CONN_STATE_VALID_DEVICE_CONTEXT) | ||
| 1192 | ) { | ||
| 1193 | dprintk(KERN_INFO | ||
| 1194 | "[pid=%d] tf_copy_command(%p): " | ||
| 1195 | "Conn state is " | ||
| 1196 | "DESTROY_DEVICE_CONTEXT_SENT\n", | ||
| 1197 | current->pid, connection); | ||
| 1198 | connection->state = | ||
| 1199 | TF_CONN_STATE_DESTROY_DEVICE_CONTEXT_SENT; | ||
| 1200 | } | ||
| 1201 | spin_unlock(&(connection->state_lock)); | ||
| 1202 | copy: | ||
| 1203 | /* | ||
| 1204 | * Copy the command to L1 Buffer | ||
| 1205 | */ | ||
| 1206 | dprintk(KERN_INFO | ||
| 1207 | "[pid=%d] tf_copy_command(%p): " | ||
| 1208 | "Write Message in the queue\n", | ||
| 1209 | current->pid, command); | ||
| 1210 | tf_dump_command(command); | ||
| 1211 | |||
| 1212 | for (i = 0; i < command_size; i++) | ||
| 1213 | comm->l1_buffer->command_queue[ | ||
| 1214 | (first_free_command + i) % | ||
| 1215 | TF_N_MESSAGE_QUEUE_CAPACITY] = | ||
| 1216 | ((uint32_t *) command)[i]; | ||
| 1217 | |||
| 1218 | *command_status = | ||
| 1219 | TF_COMMAND_STATE_SENT; | ||
| 1220 | first_free_command += command_size; | ||
| 1221 | |||
| 1222 | tf_write_reg32( | ||
| 1223 | &comm-> | ||
| 1224 | l1_buffer->first_free_command, | ||
| 1225 | first_free_command); | ||
| 1226 | } | ||
| 1227 | spin_unlock(&comm->lock); | ||
| 1228 | } | ||
| 1229 | } | ||
| 1230 | } | ||
| 1231 | |||
| 1232 | /* | ||
| 1233 | * Sends the specified message through the specified communication channel. | ||
| 1234 | * | ||
| 1235 | * This function sends the command and waits for the answer | ||
| 1236 | * | ||
| 1237 | * Returns zero upon successful completion, or an appropriate error code upon | ||
| 1238 | * failure. | ||
| 1239 | */ | ||
| 1240 | static int tf_send_recv(struct tf_comm *comm, | ||
| 1241 | union tf_command *command, | ||
| 1242 | struct tf_answer_struct *answerStruct, | ||
| 1243 | struct tf_connection *connection, | ||
| 1244 | int bKillable | ||
| 1245 | ) | ||
| 1246 | { | ||
| 1247 | int result; | ||
| 1248 | u64 timeout; | ||
| 1249 | signed long nRelativeTimeoutJiffies; | ||
| 1250 | bool wait_prepared = false; | ||
| 1251 | enum TF_COMMAND_STATE command_status = TF_COMMAND_STATE_PENDING; | ||
| 1252 | DEFINE_WAIT(wait); | ||
| 1253 | #ifdef CONFIG_FREEZER | ||
| 1254 | unsigned long saved_flags; | ||
| 1255 | #endif | ||
| 1256 | dprintk(KERN_INFO "[pid=%d] tf_send_recv(%p)\n", | ||
| 1257 | current->pid, command); | ||
| 1258 | |||
| 1259 | #ifdef CONFIG_TF_ZEBRA | ||
| 1260 | tf_clock_timer_start(); | ||
| 1261 | #endif | ||
| 1262 | |||
| 1263 | #ifdef CONFIG_FREEZER | ||
| 1264 | saved_flags = current->flags; | ||
| 1265 | current->flags |= PF_FREEZER_NOSIG; | ||
| 1266 | #endif | ||
| 1267 | |||
| 1268 | /* | ||
| 1269 | * Read all answers from the answer queue | ||
| 1270 | */ | ||
| 1271 | copy_answers: | ||
| 1272 | tf_copy_answers(comm); | ||
| 1273 | |||
| 1274 | tf_copy_command(comm, command, connection, &command_status); | ||
| 1275 | |||
| 1276 | /* | ||
| 1277 | * Notify all waiting threads | ||
| 1278 | */ | ||
| 1279 | wake_up(&(comm->wait_queue)); | ||
| 1280 | |||
| 1281 | #ifdef CONFIG_FREEZER | ||
| 1282 | if (unlikely(freezing(current))) { | ||
| 1283 | |||
| 1284 | dprintk(KERN_INFO | ||
| 1285 | "Entering refrigerator.\n"); | ||
| 1286 | refrigerator(); | ||
| 1287 | dprintk(KERN_INFO | ||
| 1288 | "Left refrigerator.\n"); | ||
| 1289 | goto copy_answers; | ||
| 1290 | } | ||
| 1291 | #endif | ||
| 1292 | |||
| 1293 | #ifndef CONFIG_PREEMPT | ||
| 1294 | if (need_resched()) | ||
| 1295 | schedule(); | ||
| 1296 | #endif | ||
| 1297 | |||
| 1298 | #ifdef CONFIG_TF_ZEBRA | ||
| 1299 | /* | ||
| 1300 | * Handle RPC (if any) | ||
| 1301 | */ | ||
| 1302 | if (tf_rpc_execute(comm) == RPC_NON_YIELD) | ||
| 1303 | goto schedule_secure_world; | ||
| 1304 | #endif | ||
| 1305 | |||
| 1306 | /* | ||
| 1307 | * Join wait queue | ||
| 1308 | */ | ||
| 1309 | /*dprintk(KERN_INFO "[pid=%d] tf_send_recv(%p): Prepare to wait\n", | ||
| 1310 | current->pid, command);*/ | ||
| 1311 | prepare_to_wait(&comm->wait_queue, &wait, | ||
| 1312 | bKillable ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); | ||
| 1313 | wait_prepared = true; | ||
| 1314 | |||
| 1315 | /* | ||
| 1316 | * Check if our answer is available | ||
| 1317 | */ | ||
| 1318 | if (command_status == TF_COMMAND_STATE_ABORTED) { | ||
| 1319 | /* Not waiting for an answer, return error code */ | ||
| 1320 | result = -EINTR; | ||
| 1321 | dprintk(KERN_ERR "[pid=%d] tf_send_recv: " | ||
| 1322 | "Command status is ABORTED." | ||
| 1323 | "Exit with 0x%x\n", | ||
| 1324 | current->pid, result); | ||
| 1325 | goto exit; | ||
| 1326 | } | ||
| 1327 | if (answerStruct->answer_copied) { | ||
| 1328 | dprintk(KERN_INFO "[pid=%d] tf_send_recv: " | ||
| 1329 | "Received answer (type 0x%02X)\n", | ||
| 1330 | current->pid, | ||
| 1331 | answerStruct->answer->header.message_type); | ||
| 1332 | result = 0; | ||
| 1333 | goto exit; | ||
| 1334 | } | ||
| 1335 | |||
| 1336 | /* | ||
| 1337 | * Check if a signal is pending | ||
| 1338 | */ | ||
| 1339 | if (bKillable && (sigkill_pending())) { | ||
| 1340 | if (command_status == TF_COMMAND_STATE_PENDING) | ||
| 1341 | /*Command was not sent. */ | ||
| 1342 | result = -EINTR; | ||
| 1343 | else | ||
| 1344 | /* Command was sent but no answer was received yet. */ | ||
| 1345 | result = -EIO; | ||
| 1346 | |||
| 1347 | dprintk(KERN_ERR "[pid=%d] tf_send_recv: " | ||
| 1348 | "Signal Pending. Return error %d\n", | ||
| 1349 | current->pid, result); | ||
| 1350 | goto exit; | ||
| 1351 | } | ||
| 1352 | |||
| 1353 | /* | ||
| 1354 | * Check if secure world is schedulable. It is schedulable if at | ||
| 1355 | * least one of the following conditions holds: | ||
| 1356 | * + it is still initializing (TF_COMM_FLAG_L1_SHARED_ALLOCATED | ||
| 1357 | * is not set); | ||
| 1358 | * + there is a command in the queue; | ||
| 1359 | * + the secure world timeout is zero. | ||
| 1360 | */ | ||
| 1361 | if (test_bit(TF_COMM_FLAG_L1_SHARED_ALLOCATED, &(comm->flags))) { | ||
| 1362 | u32 first_free_command; | ||
| 1363 | u32 first_command; | ||
| 1364 | spin_lock(&comm->lock); | ||
| 1365 | first_command = tf_read_reg32( | ||
| 1366 | &comm->l1_buffer->first_command); | ||
| 1367 | first_free_command = tf_read_reg32( | ||
| 1368 | &comm->l1_buffer->first_free_command); | ||
| 1369 | spin_unlock(&comm->lock); | ||
| 1370 | tf_read_timeout(comm, &timeout); | ||
| 1371 | if ((first_free_command == first_command) && | ||
| 1372 | (tf_test_s_timeout(timeout, | ||
| 1373 | &nRelativeTimeoutJiffies) == 0)) | ||
| 1374 | /* | ||
| 1375 | * If command queue is empty and if timeout has not | ||
| 1376 | * expired secure world is not schedulable | ||
| 1377 | */ | ||
| 1378 | goto wait; | ||
| 1379 | } | ||
| 1380 | |||
| 1381 | finish_wait(&comm->wait_queue, &wait); | ||
| 1382 | wait_prepared = false; | ||
| 1383 | |||
| 1384 | /* | ||
| 1385 | * Yield to the Secure World | ||
| 1386 | */ | ||
| 1387 | #ifdef CONFIG_TF_ZEBRA | ||
| 1388 | schedule_secure_world: | ||
| 1389 | #endif | ||
| 1390 | |||
| 1391 | result = tf_schedule_secure_world(comm); | ||
| 1392 | if (result < 0) | ||
| 1393 | goto exit; | ||
| 1394 | goto copy_answers; | ||
| 1395 | |||
| 1396 | wait: | ||
| 1397 | if (bKillable && (sigkill_pending())) { | ||
| 1398 | if (command_status == TF_COMMAND_STATE_PENDING) | ||
| 1399 | result = -EINTR; /* Command was not sent. */ | ||
| 1400 | else | ||
| 1401 | /* Command was sent but no answer was received yet. */ | ||
| 1402 | result = -EIO; | ||
| 1403 | |||
| 1404 | dprintk(KERN_ERR "[pid=%d] tf_send_recv: " | ||
| 1405 | "Signal Pending while waiting. Return error %d\n", | ||
| 1406 | current->pid, result); | ||
| 1407 | goto exit; | ||
| 1408 | } | ||
| 1409 | |||
| 1410 | if (nRelativeTimeoutJiffies == MAX_SCHEDULE_TIMEOUT) | ||
| 1411 | dprintk(KERN_INFO "[pid=%d] tf_send_recv: " | ||
| 1412 | "prepare to sleep infinitely\n", current->pid); | ||
| 1413 | else | ||
| 1414 | dprintk(KERN_INFO "tf_send_recv: " | ||
| 1415 | "prepare to sleep 0x%lx jiffies\n", | ||
| 1416 | nRelativeTimeoutJiffies); | ||
| 1417 | |||
| 1418 | /* go to sleep */ | ||
| 1419 | if (schedule_timeout(nRelativeTimeoutJiffies) == 0) | ||
| 1420 | dprintk(KERN_INFO | ||
| 1421 | "tf_send_recv: timeout expired\n"); | ||
| 1422 | else | ||
| 1423 | dprintk(KERN_INFO | ||
| 1424 | "tf_send_recv: signal delivered\n"); | ||
| 1425 | |||
| 1426 | finish_wait(&comm->wait_queue, &wait); | ||
| 1427 | wait_prepared = false; | ||
| 1428 | goto copy_answers; | ||
| 1429 | |||
| 1430 | exit: | ||
| 1431 | if (wait_prepared) { | ||
| 1432 | finish_wait(&comm->wait_queue, &wait); | ||
| 1433 | wait_prepared = false; | ||
| 1434 | } | ||
| 1435 | |||
| 1436 | #ifdef CONFIG_FREEZER | ||
| 1437 | current->flags &= ~(PF_FREEZER_NOSIG); | ||
| 1438 | current->flags |= (saved_flags & PF_FREEZER_NOSIG); | ||
| 1439 | #endif | ||
| 1440 | |||
| 1441 | return result; | ||
| 1442 | } | ||
| 1443 | |||
| 1444 | /* | ||
| 1445 | * Sends the specified message through the specified communication channel. | ||
| 1446 | * | ||
| 1447 | * This function sends the message and waits for the corresponding answer | ||
| 1448 | * It may return if a signal needs to be delivered. | ||
| 1449 | * | ||
| 1450 | * Returns zero upon successful completion, or an appropriate error code upon | ||
| 1451 | * failure. | ||
| 1452 | */ | ||
| 1453 | int tf_send_receive(struct tf_comm *comm, | ||
| 1454 | union tf_command *command, | ||
| 1455 | union tf_answer *answer, | ||
| 1456 | struct tf_connection *connection, | ||
| 1457 | bool bKillable) | ||
| 1458 | { | ||
| 1459 | int error; | ||
| 1460 | struct tf_answer_struct answerStructure; | ||
| 1461 | #ifdef CONFIG_SMP | ||
| 1462 | long ret_affinity; | ||
| 1463 | cpumask_t saved_cpu_mask; | ||
| 1464 | cpumask_t local_cpu_mask = CPU_MASK_NONE; | ||
| 1465 | #endif | ||
| 1466 | |||
| 1467 | answerStructure.answer = answer; | ||
| 1468 | answerStructure.answer_copied = false; | ||
| 1469 | |||
| 1470 | if (command != NULL) | ||
| 1471 | command->header.operation_id = (u32) &answerStructure; | ||
| 1472 | |||
| 1473 | dprintk(KERN_INFO "tf_send_receive\n"); | ||
| 1474 | |||
| 1475 | #ifdef CONFIG_TF_ZEBRA | ||
| 1476 | if (!test_bit(TF_COMM_FLAG_PA_AVAILABLE, &comm->flags)) { | ||
| 1477 | dprintk(KERN_ERR "tf_send_receive(%p): " | ||
| 1478 | "Secure world not started\n", comm); | ||
| 1479 | |||
| 1480 | return -EFAULT; | ||
| 1481 | } | ||
| 1482 | #endif | ||
| 1483 | |||
| 1484 | if (test_bit(TF_COMM_FLAG_TERMINATING, &(comm->flags)) != 0) { | ||
| 1485 | dprintk(KERN_DEBUG | ||
| 1486 | "tf_send_receive: Flag Terminating is set\n"); | ||
| 1487 | return 0; | ||
| 1488 | } | ||
| 1489 | |||
| 1490 | #ifdef CONFIG_SMP | ||
| 1491 | cpu_set(0, local_cpu_mask); | ||
| 1492 | sched_getaffinity(0, &saved_cpu_mask); | ||
| 1493 | ret_affinity = sched_setaffinity(0, &local_cpu_mask); | ||
| 1494 | if (ret_affinity != 0) | ||
| 1495 | dprintk(KERN_ERR "sched_setaffinity #1 -> 0x%lX", ret_affinity); | ||
| 1496 | #endif | ||
| 1497 | |||
| 1498 | |||
| 1499 | /* | ||
| 1500 | * Send the command | ||
| 1501 | */ | ||
| 1502 | error = tf_send_recv(comm, | ||
| 1503 | command, &answerStructure, connection, bKillable); | ||
| 1504 | |||
| 1505 | if (!bKillable && sigkill_pending()) { | ||
| 1506 | if ((command->header.message_type == | ||
| 1507 | TF_MESSAGE_TYPE_CREATE_DEVICE_CONTEXT) && | ||
| 1508 | (answer->create_device_context.error_code == | ||
| 1509 | S_SUCCESS)) { | ||
| 1510 | |||
| 1511 | /* | ||
| 1512 | * CREATE_DEVICE_CONTEXT was interrupted. | ||
| 1513 | */ | ||
| 1514 | dprintk(KERN_INFO "tf_send_receive: " | ||
| 1515 | "sending DESTROY_DEVICE_CONTEXT\n"); | ||
| 1516 | answerStructure.answer = answer; | ||
| 1517 | answerStructure.answer_copied = false; | ||
| 1518 | |||
| 1519 | command->header.message_type = | ||
| 1520 | TF_MESSAGE_TYPE_DESTROY_DEVICE_CONTEXT; | ||
| 1521 | command->header.message_size = | ||
| 1522 | (sizeof(struct | ||
| 1523 | tf_command_destroy_device_context) - | ||
| 1524 | sizeof(struct tf_command_header))/sizeof(u32); | ||
| 1525 | command->header.operation_id = | ||
| 1526 | (u32) &answerStructure; | ||
| 1527 | command->destroy_device_context.device_context = | ||
| 1528 | answer->create_device_context. | ||
| 1529 | device_context; | ||
| 1530 | |||
| 1531 | goto destroy_context; | ||
| 1532 | } | ||
| 1533 | } | ||
| 1534 | |||
| 1535 | if (error == 0) { | ||
| 1536 | /* | ||
| 1537 | * tf_send_recv returned Success. | ||
| 1538 | */ | ||
| 1539 | if (command->header.message_type == | ||
| 1540 | TF_MESSAGE_TYPE_CREATE_DEVICE_CONTEXT) { | ||
| 1541 | spin_lock(&(connection->state_lock)); | ||
| 1542 | connection->state = TF_CONN_STATE_VALID_DEVICE_CONTEXT; | ||
| 1543 | spin_unlock(&(connection->state_lock)); | ||
| 1544 | } else if (command->header.message_type == | ||
| 1545 | TF_MESSAGE_TYPE_DESTROY_DEVICE_CONTEXT) { | ||
| 1546 | spin_lock(&(connection->state_lock)); | ||
| 1547 | connection->state = TF_CONN_STATE_NO_DEVICE_CONTEXT; | ||
| 1548 | spin_unlock(&(connection->state_lock)); | ||
| 1549 | } | ||
| 1550 | } else if (error == -EINTR) { | ||
| 1551 | /* | ||
| 1552 | * No command was sent, return failure. | ||
| 1553 | */ | ||
| 1554 | dprintk(KERN_ERR | ||
| 1555 | "tf_send_receive: " | ||
| 1556 | "tf_send_recv failed (error %d) !\n", | ||
| 1557 | error); | ||
| 1558 | } else if (error == -EIO) { | ||
| 1559 | /* | ||
| 1560 | * A command was sent but its answer is still pending. | ||
| 1561 | */ | ||
| 1562 | |||
| 1563 | /* means bKillable is true */ | ||
| 1564 | dprintk(KERN_ERR | ||
| 1565 | "tf_send_receive: " | ||
| 1566 | "tf_send_recv interrupted (error %d)." | ||
| 1567 | "Send DESTROY_DEVICE_CONTEXT.\n", error); | ||
| 1568 | |||
| 1569 | /* Send the DESTROY_DEVICE_CONTEXT. */ | ||
| 1570 | answerStructure.answer = answer; | ||
| 1571 | answerStructure.answer_copied = false; | ||
| 1572 | |||
| 1573 | command->header.message_type = | ||
| 1574 | TF_MESSAGE_TYPE_DESTROY_DEVICE_CONTEXT; | ||
| 1575 | command->header.message_size = | ||
| 1576 | (sizeof(struct tf_command_destroy_device_context) - | ||
| 1577 | sizeof(struct tf_command_header))/sizeof(u32); | ||
| 1578 | command->header.operation_id = | ||
| 1579 | (u32) &answerStructure; | ||
| 1580 | command->destroy_device_context.device_context = | ||
| 1581 | connection->device_context; | ||
| 1582 | |||
| 1583 | error = tf_send_recv(comm, | ||
| 1584 | command, &answerStructure, connection, false); | ||
| 1585 | if (error == -EINTR) { | ||
| 1586 | /* | ||
| 1587 | * Another thread already sent | ||
| 1588 | * DESTROY_DEVICE_CONTEXT. | ||
| 1589 | * We must still wait for the answer | ||
| 1590 | * to the original command. | ||
| 1591 | */ | ||
| 1592 | command = NULL; | ||
| 1593 | goto destroy_context; | ||
| 1594 | } else { | ||
| 1595 | /* An answer was received. | ||
| 1596 | * Check if it is the answer | ||
| 1597 | * to the DESTROY_DEVICE_CONTEXT. | ||
| 1598 | */ | ||
| 1599 | spin_lock(&comm->lock); | ||
| 1600 | if (answer->header.message_type != | ||
| 1601 | TF_MESSAGE_TYPE_DESTROY_DEVICE_CONTEXT) { | ||
| 1602 | answerStructure.answer_copied = false; | ||
| 1603 | } | ||
| 1604 | spin_unlock(&comm->lock); | ||
| 1605 | if (!answerStructure.answer_copied) { | ||
| 1606 | /* Answer to DESTROY_DEVICE_CONTEXT | ||
| 1607 | * was not yet received. | ||
| 1608 | * Wait for the answer. | ||
| 1609 | */ | ||
| 1610 | dprintk(KERN_INFO | ||
| 1611 | "[pid=%d] tf_send_receive:" | ||
| 1612 | "Answer to DESTROY_DEVICE_CONTEXT" | ||
| 1613 | "not yet received.Retry\n", | ||
| 1614 | current->pid); | ||
| 1615 | command = NULL; | ||
| 1616 | goto destroy_context; | ||
| 1617 | } | ||
| 1618 | } | ||
| 1619 | } | ||
| 1620 | |||
| 1621 | dprintk(KERN_INFO "tf_send_receive(): Message answer ready\n"); | ||
| 1622 | goto exit; | ||
| 1623 | |||
| 1624 | destroy_context: | ||
| 1625 | error = tf_send_recv(comm, | ||
| 1626 | command, &answerStructure, connection, false); | ||
| 1627 | |||
| 1628 | /* | ||
| 1629 | * tf_send_recv cannot return an error because | ||
| 1630 | * it's not killable and not within a connection | ||
| 1631 | */ | ||
| 1632 | BUG_ON(error != 0); | ||
| 1633 | |||
| 1634 | /* Reset the state, so a new CREATE DEVICE CONTEXT can be sent */ | ||
| 1635 | spin_lock(&(connection->state_lock)); | ||
| 1636 | connection->state = TF_CONN_STATE_NO_DEVICE_CONTEXT; | ||
| 1637 | spin_unlock(&(connection->state_lock)); | ||
| 1638 | |||
| 1639 | exit: | ||
| 1640 | |||
| 1641 | #ifdef CONFIG_SMP | ||
| 1642 | ret_affinity = sched_setaffinity(0, &saved_cpu_mask); | ||
| 1643 | if (ret_affinity != 0) | ||
| 1644 | dprintk(KERN_ERR "sched_setaffinity #2 -> 0x%lX", ret_affinity); | ||
| 1645 | #endif | ||
| 1646 | return error; | ||
| 1647 | } | ||
| 1648 | |||
| 1649 | /*---------------------------------------------------------------------------- | ||
| 1650 | * Power management | ||
| 1651 | *----------------------------------------------------------------------------*/ | ||
| 1652 | |||
| 1653 | |||
| 1654 | /* | ||
| 1655 | * Handles all the power management calls. | ||
| 1656 | * The operation is the type of power management | ||
| 1657 | * operation to be performed. | ||
| 1658 | * | ||
| 1659 | * This routine will only return if a failure occured or if | ||
| 1660 | * the required opwer management is of type "resume". | ||
| 1661 | * "Hibernate" and "Shutdown" should lock when doing the | ||
| 1662 | * corresponding SMC to the Secure World | ||
| 1663 | */ | ||
| 1664 | int tf_power_management(struct tf_comm *comm, | ||
| 1665 | enum TF_POWER_OPERATION operation) | ||
| 1666 | { | ||
| 1667 | u32 status; | ||
| 1668 | int error = 0; | ||
| 1669 | |||
| 1670 | dprintk(KERN_INFO "tf_power_management(%d)\n", operation); | ||
| 1671 | |||
| 1672 | #ifdef CONFIG_TF_ZEBRA | ||
| 1673 | if (!test_bit(TF_COMM_FLAG_PA_AVAILABLE, &comm->flags)) { | ||
| 1674 | dprintk(KERN_INFO "tf_power_management(%p): " | ||
| 1675 | "succeeded (not started)\n", comm); | ||
| 1676 | |||
| 1677 | return 0; | ||
| 1678 | } | ||
| 1679 | #endif | ||
| 1680 | |||
| 1681 | status = ((tf_read_reg32(&(comm->l1_buffer->status_s)) | ||
| 1682 | & TF_STATUS_POWER_STATE_MASK) | ||
| 1683 | >> TF_STATUS_POWER_STATE_SHIFT); | ||
| 1684 | |||
| 1685 | switch (operation) { | ||
| 1686 | case TF_POWER_OPERATION_SHUTDOWN: | ||
| 1687 | switch (status) { | ||
| 1688 | case TF_POWER_MODE_ACTIVE: | ||
| 1689 | error = tf_pm_shutdown(comm); | ||
| 1690 | |||
| 1691 | if (error) { | ||
| 1692 | dprintk(KERN_ERR "tf_power_management(): " | ||
| 1693 | "Failed with error code 0x%08x\n", | ||
| 1694 | error); | ||
| 1695 | goto error; | ||
| 1696 | } | ||
| 1697 | break; | ||
| 1698 | |||
| 1699 | default: | ||
| 1700 | goto not_allowed; | ||
| 1701 | } | ||
| 1702 | break; | ||
| 1703 | |||
| 1704 | case TF_POWER_OPERATION_HIBERNATE: | ||
| 1705 | switch (status) { | ||
| 1706 | case TF_POWER_MODE_ACTIVE: | ||
| 1707 | error = tf_pm_hibernate(comm); | ||
| 1708 | |||
| 1709 | if (error) { | ||
| 1710 | dprintk(KERN_ERR "tf_power_management(): " | ||
| 1711 | "Failed with error code 0x%08x\n", | ||
| 1712 | error); | ||
| 1713 | goto error; | ||
| 1714 | } | ||
| 1715 | break; | ||
| 1716 | |||
| 1717 | default: | ||
| 1718 | goto not_allowed; | ||
| 1719 | } | ||
| 1720 | break; | ||
| 1721 | |||
| 1722 | case TF_POWER_OPERATION_RESUME: | ||
| 1723 | error = tf_pm_resume(comm); | ||
| 1724 | |||
| 1725 | if (error != 0) { | ||
| 1726 | dprintk(KERN_ERR "tf_power_management(): " | ||
| 1727 | "Failed with error code 0x%08x\n", | ||
| 1728 | error); | ||
| 1729 | goto error; | ||
| 1730 | } | ||
| 1731 | break; | ||
| 1732 | } | ||
| 1733 | |||
| 1734 | dprintk(KERN_INFO "tf_power_management(): succeeded\n"); | ||
| 1735 | return 0; | ||
| 1736 | |||
| 1737 | not_allowed: | ||
| 1738 | dprintk(KERN_ERR "tf_power_management(): " | ||
| 1739 | "Power command not allowed in current " | ||
| 1740 | "Secure World state %d\n", status); | ||
| 1741 | error = -ENOTTY; | ||
| 1742 | error: | ||
| 1743 | return error; | ||
| 1744 | } | ||
| 1745 | |||
