aboutsummaryrefslogtreecommitdiffstats
path: root/mm
diff options
context:
space:
mode:
authorRaghavendra K T <raghavendra.kt@linux.vnet.ibm.com>2011-11-02 16:38:15 -0400
committerLinus Torvalds <torvalds@linux-foundation.org>2011-11-02 19:06:59 -0400
commitc0ff4b8540a5c158b8e5bafb7d767298b67b0b92 (patch)
treea47a2bcd0b7b80056cde7ba6b1263aae78f77212 /mm
parentff7ee93f47151e23601856e7eb5510babf956571 (diff)
memcg: rename mem variable to memcg
The memcg code sometimes uses "struct mem_cgroup *mem" and sometimes uses "struct mem_cgroup *memcg". Rename all mem variables to memcg in source file. Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm')
-rw-r--r--mm/memcontrol.c930
1 files changed, 467 insertions, 463 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 2d5755544af..9e38abdbfd9 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -201,8 +201,8 @@ struct mem_cgroup_eventfd_list {
201 struct eventfd_ctx *eventfd; 201 struct eventfd_ctx *eventfd;
202}; 202};
203 203
204static void mem_cgroup_threshold(struct mem_cgroup *mem); 204static void mem_cgroup_threshold(struct mem_cgroup *memcg);
205static void mem_cgroup_oom_notify(struct mem_cgroup *mem); 205static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
206 206
207/* 207/*
208 * The memory controller data structure. The memory controller controls both 208 * The memory controller data structure. The memory controller controls both
@@ -362,29 +362,29 @@ enum charge_type {
362#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2 362#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
363#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT) 363#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
364 364
365static void mem_cgroup_get(struct mem_cgroup *mem); 365static void mem_cgroup_get(struct mem_cgroup *memcg);
366static void mem_cgroup_put(struct mem_cgroup *mem); 366static void mem_cgroup_put(struct mem_cgroup *memcg);
367static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem); 367static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
368static void drain_all_stock_async(struct mem_cgroup *mem); 368static void drain_all_stock_async(struct mem_cgroup *memcg);
369 369
370static struct mem_cgroup_per_zone * 370static struct mem_cgroup_per_zone *
371mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid) 371mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
372{ 372{
373 return &mem->info.nodeinfo[nid]->zoneinfo[zid]; 373 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
374} 374}
375 375
376struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem) 376struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
377{ 377{
378 return &mem->css; 378 return &memcg->css;
379} 379}
380 380
381static struct mem_cgroup_per_zone * 381static struct mem_cgroup_per_zone *
382page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page) 382page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
383{ 383{
384 int nid = page_to_nid(page); 384 int nid = page_to_nid(page);
385 int zid = page_zonenum(page); 385 int zid = page_zonenum(page);
386 386
387 return mem_cgroup_zoneinfo(mem, nid, zid); 387 return mem_cgroup_zoneinfo(memcg, nid, zid);
388} 388}
389 389
390static struct mem_cgroup_tree_per_zone * 390static struct mem_cgroup_tree_per_zone *
@@ -403,7 +403,7 @@ soft_limit_tree_from_page(struct page *page)
403} 403}
404 404
405static void 405static void
406__mem_cgroup_insert_exceeded(struct mem_cgroup *mem, 406__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
407 struct mem_cgroup_per_zone *mz, 407 struct mem_cgroup_per_zone *mz,
408 struct mem_cgroup_tree_per_zone *mctz, 408 struct mem_cgroup_tree_per_zone *mctz,
409 unsigned long long new_usage_in_excess) 409 unsigned long long new_usage_in_excess)
@@ -437,7 +437,7 @@ __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
437} 437}
438 438
439static void 439static void
440__mem_cgroup_remove_exceeded(struct mem_cgroup *mem, 440__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
441 struct mem_cgroup_per_zone *mz, 441 struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz) 442 struct mem_cgroup_tree_per_zone *mctz)
443{ 443{
@@ -448,17 +448,17 @@ __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
448} 448}
449 449
450static void 450static void
451mem_cgroup_remove_exceeded(struct mem_cgroup *mem, 451mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
452 struct mem_cgroup_per_zone *mz, 452 struct mem_cgroup_per_zone *mz,
453 struct mem_cgroup_tree_per_zone *mctz) 453 struct mem_cgroup_tree_per_zone *mctz)
454{ 454{
455 spin_lock(&mctz->lock); 455 spin_lock(&mctz->lock);
456 __mem_cgroup_remove_exceeded(mem, mz, mctz); 456 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
457 spin_unlock(&mctz->lock); 457 spin_unlock(&mctz->lock);
458} 458}
459 459
460 460
461static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page) 461static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
462{ 462{
463 unsigned long long excess; 463 unsigned long long excess;
464 struct mem_cgroup_per_zone *mz; 464 struct mem_cgroup_per_zone *mz;
@@ -471,9 +471,9 @@ static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
471 * Necessary to update all ancestors when hierarchy is used. 471 * Necessary to update all ancestors when hierarchy is used.
472 * because their event counter is not touched. 472 * because their event counter is not touched.
473 */ 473 */
474 for (; mem; mem = parent_mem_cgroup(mem)) { 474 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
475 mz = mem_cgroup_zoneinfo(mem, nid, zid); 475 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
476 excess = res_counter_soft_limit_excess(&mem->res); 476 excess = res_counter_soft_limit_excess(&memcg->res);
477 /* 477 /*
478 * We have to update the tree if mz is on RB-tree or 478 * We have to update the tree if mz is on RB-tree or
479 * mem is over its softlimit. 479 * mem is over its softlimit.
@@ -482,18 +482,18 @@ static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
482 spin_lock(&mctz->lock); 482 spin_lock(&mctz->lock);
483 /* if on-tree, remove it */ 483 /* if on-tree, remove it */
484 if (mz->on_tree) 484 if (mz->on_tree)
485 __mem_cgroup_remove_exceeded(mem, mz, mctz); 485 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
486 /* 486 /*
487 * Insert again. mz->usage_in_excess will be updated. 487 * Insert again. mz->usage_in_excess will be updated.
488 * If excess is 0, no tree ops. 488 * If excess is 0, no tree ops.
489 */ 489 */
490 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess); 490 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
491 spin_unlock(&mctz->lock); 491 spin_unlock(&mctz->lock);
492 } 492 }
493 } 493 }
494} 494}
495 495
496static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem) 496static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
497{ 497{
498 int node, zone; 498 int node, zone;
499 struct mem_cgroup_per_zone *mz; 499 struct mem_cgroup_per_zone *mz;
@@ -501,9 +501,9 @@ static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
501 501
502 for_each_node_state(node, N_POSSIBLE) { 502 for_each_node_state(node, N_POSSIBLE) {
503 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 503 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
504 mz = mem_cgroup_zoneinfo(mem, node, zone); 504 mz = mem_cgroup_zoneinfo(memcg, node, zone);
505 mctz = soft_limit_tree_node_zone(node, zone); 505 mctz = soft_limit_tree_node_zone(node, zone);
506 mem_cgroup_remove_exceeded(mem, mz, mctz); 506 mem_cgroup_remove_exceeded(memcg, mz, mctz);
507 } 507 }
508 } 508 }
509} 509}
@@ -564,7 +564,7 @@ mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
564 * common workload, threashold and synchonization as vmstat[] should be 564 * common workload, threashold and synchonization as vmstat[] should be
565 * implemented. 565 * implemented.
566 */ 566 */
567static long mem_cgroup_read_stat(struct mem_cgroup *mem, 567static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
568 enum mem_cgroup_stat_index idx) 568 enum mem_cgroup_stat_index idx)
569{ 569{
570 long val = 0; 570 long val = 0;
@@ -572,81 +572,83 @@ static long mem_cgroup_read_stat(struct mem_cgroup *mem,
572 572
573 get_online_cpus(); 573 get_online_cpus();
574 for_each_online_cpu(cpu) 574 for_each_online_cpu(cpu)
575 val += per_cpu(mem->stat->count[idx], cpu); 575 val += per_cpu(memcg->stat->count[idx], cpu);
576#ifdef CONFIG_HOTPLUG_CPU 576#ifdef CONFIG_HOTPLUG_CPU
577 spin_lock(&mem->pcp_counter_lock); 577 spin_lock(&memcg->pcp_counter_lock);
578 val += mem->nocpu_base.count[idx]; 578 val += memcg->nocpu_base.count[idx];
579 spin_unlock(&mem->pcp_counter_lock); 579 spin_unlock(&memcg->pcp_counter_lock);
580#endif 580#endif
581 put_online_cpus(); 581 put_online_cpus();
582 return val; 582 return val;
583} 583}
584 584
585static void mem_cgroup_swap_statistics(struct mem_cgroup *mem, 585static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
586 bool charge) 586 bool charge)
587{ 587{
588 int val = (charge) ? 1 : -1; 588 int val = (charge) ? 1 : -1;
589 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val); 589 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
590} 590}
591 591
592void mem_cgroup_pgfault(struct mem_cgroup *mem, int val) 592void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
593{ 593{
594 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val); 594 this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
595} 595}
596 596
597void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val) 597void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
598{ 598{
599 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val); 599 this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
600} 600}
601 601
602static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem, 602static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
603 enum mem_cgroup_events_index idx) 603 enum mem_cgroup_events_index idx)
604{ 604{
605 unsigned long val = 0; 605 unsigned long val = 0;
606 int cpu; 606 int cpu;
607 607
608 for_each_online_cpu(cpu) 608 for_each_online_cpu(cpu)
609 val += per_cpu(mem->stat->events[idx], cpu); 609 val += per_cpu(memcg->stat->events[idx], cpu);
610#ifdef CONFIG_HOTPLUG_CPU 610#ifdef CONFIG_HOTPLUG_CPU
611 spin_lock(&mem->pcp_counter_lock); 611 spin_lock(&memcg->pcp_counter_lock);
612 val += mem->nocpu_base.events[idx]; 612 val += memcg->nocpu_base.events[idx];
613 spin_unlock(&mem->pcp_counter_lock); 613 spin_unlock(&memcg->pcp_counter_lock);
614#endif 614#endif
615 return val; 615 return val;
616} 616}
617 617
618static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, 618static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
619 bool file, int nr_pages) 619 bool file, int nr_pages)
620{ 620{
621 preempt_disable(); 621 preempt_disable();
622 622
623 if (file) 623 if (file)
624 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages); 624 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
625 nr_pages);
625 else 626 else
626 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages); 627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
628 nr_pages);
627 629
628 /* pagein of a big page is an event. So, ignore page size */ 630 /* pagein of a big page is an event. So, ignore page size */
629 if (nr_pages > 0) 631 if (nr_pages > 0)
630 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 632 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
631 else { 633 else {
632 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 634 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
633 nr_pages = -nr_pages; /* for event */ 635 nr_pages = -nr_pages; /* for event */
634 } 636 }
635 637
636 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages); 638 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
637 639
638 preempt_enable(); 640 preempt_enable();
639} 641}
640 642
641unsigned long 643unsigned long
642mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid, 644mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
643 unsigned int lru_mask) 645 unsigned int lru_mask)
644{ 646{
645 struct mem_cgroup_per_zone *mz; 647 struct mem_cgroup_per_zone *mz;
646 enum lru_list l; 648 enum lru_list l;
647 unsigned long ret = 0; 649 unsigned long ret = 0;
648 650
649 mz = mem_cgroup_zoneinfo(mem, nid, zid); 651 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
650 652
651 for_each_lru(l) { 653 for_each_lru(l) {
652 if (BIT(l) & lru_mask) 654 if (BIT(l) & lru_mask)
@@ -656,44 +658,45 @@ mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
656} 658}
657 659
658static unsigned long 660static unsigned long
659mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem, 661mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
660 int nid, unsigned int lru_mask) 662 int nid, unsigned int lru_mask)
661{ 663{
662 u64 total = 0; 664 u64 total = 0;
663 int zid; 665 int zid;
664 666
665 for (zid = 0; zid < MAX_NR_ZONES; zid++) 667 for (zid = 0; zid < MAX_NR_ZONES; zid++)
666 total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask); 668 total += mem_cgroup_zone_nr_lru_pages(memcg,
669 nid, zid, lru_mask);
667 670
668 return total; 671 return total;
669} 672}
670 673
671static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem, 674static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
672 unsigned int lru_mask) 675 unsigned int lru_mask)
673{ 676{
674 int nid; 677 int nid;
675 u64 total = 0; 678 u64 total = 0;
676 679
677 for_each_node_state(nid, N_HIGH_MEMORY) 680 for_each_node_state(nid, N_HIGH_MEMORY)
678 total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask); 681 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
679 return total; 682 return total;
680} 683}
681 684
682static bool __memcg_event_check(struct mem_cgroup *mem, int target) 685static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
683{ 686{
684 unsigned long val, next; 687 unsigned long val, next;
685 688
686 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]); 689 val = this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
687 next = this_cpu_read(mem->stat->targets[target]); 690 next = this_cpu_read(memcg->stat->targets[target]);
688 /* from time_after() in jiffies.h */ 691 /* from time_after() in jiffies.h */
689 return ((long)next - (long)val < 0); 692 return ((long)next - (long)val < 0);
690} 693}
691 694
692static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target) 695static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
693{ 696{
694 unsigned long val, next; 697 unsigned long val, next;
695 698
696 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]); 699 val = this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
697 700
698 switch (target) { 701 switch (target) {
699 case MEM_CGROUP_TARGET_THRESH: 702 case MEM_CGROUP_TARGET_THRESH:
@@ -709,30 +712,30 @@ static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
709 return; 712 return;
710 } 713 }
711 714
712 this_cpu_write(mem->stat->targets[target], next); 715 this_cpu_write(memcg->stat->targets[target], next);
713} 716}
714 717
715/* 718/*
716 * Check events in order. 719 * Check events in order.
717 * 720 *
718 */ 721 */
719static void memcg_check_events(struct mem_cgroup *mem, struct page *page) 722static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
720{ 723{
721 /* threshold event is triggered in finer grain than soft limit */ 724 /* threshold event is triggered in finer grain than soft limit */
722 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) { 725 if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
723 mem_cgroup_threshold(mem); 726 mem_cgroup_threshold(memcg);
724 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH); 727 __mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
725 if (unlikely(__memcg_event_check(mem, 728 if (unlikely(__memcg_event_check(memcg,
726 MEM_CGROUP_TARGET_SOFTLIMIT))) { 729 MEM_CGROUP_TARGET_SOFTLIMIT))) {
727 mem_cgroup_update_tree(mem, page); 730 mem_cgroup_update_tree(memcg, page);
728 __mem_cgroup_target_update(mem, 731 __mem_cgroup_target_update(memcg,
729 MEM_CGROUP_TARGET_SOFTLIMIT); 732 MEM_CGROUP_TARGET_SOFTLIMIT);
730 } 733 }
731#if MAX_NUMNODES > 1 734#if MAX_NUMNODES > 1
732 if (unlikely(__memcg_event_check(mem, 735 if (unlikely(__memcg_event_check(memcg,
733 MEM_CGROUP_TARGET_NUMAINFO))) { 736 MEM_CGROUP_TARGET_NUMAINFO))) {
734 atomic_inc(&mem->numainfo_events); 737 atomic_inc(&memcg->numainfo_events);
735 __mem_cgroup_target_update(mem, 738 __mem_cgroup_target_update(memcg,
736 MEM_CGROUP_TARGET_NUMAINFO); 739 MEM_CGROUP_TARGET_NUMAINFO);
737 } 740 }
738#endif 741#endif
@@ -762,7 +765,7 @@ struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
762 765
763struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 766struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
764{ 767{
765 struct mem_cgroup *mem = NULL; 768 struct mem_cgroup *memcg = NULL;
766 769
767 if (!mm) 770 if (!mm)
768 return NULL; 771 return NULL;
@@ -773,25 +776,25 @@ struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
773 */ 776 */
774 rcu_read_lock(); 777 rcu_read_lock();
775 do { 778 do {
776 mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); 779 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
777 if (unlikely(!mem)) 780 if (unlikely(!memcg))
778 break; 781 break;
779 } while (!css_tryget(&mem->css)); 782 } while (!css_tryget(&memcg->css));
780 rcu_read_unlock(); 783 rcu_read_unlock();
781 return mem; 784 return memcg;
782} 785}
783 786
784/* The caller has to guarantee "mem" exists before calling this */ 787/* The caller has to guarantee "mem" exists before calling this */
785static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem) 788static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *memcg)
786{ 789{
787 struct cgroup_subsys_state *css; 790 struct cgroup_subsys_state *css;
788 int found; 791 int found;
789 792
790 if (!mem) /* ROOT cgroup has the smallest ID */ 793 if (!memcg) /* ROOT cgroup has the smallest ID */
791 return root_mem_cgroup; /*css_put/get against root is ignored*/ 794 return root_mem_cgroup; /*css_put/get against root is ignored*/
792 if (!mem->use_hierarchy) { 795 if (!memcg->use_hierarchy) {
793 if (css_tryget(&mem->css)) 796 if (css_tryget(&memcg->css))
794 return mem; 797 return memcg;
795 return NULL; 798 return NULL;
796 } 799 }
797 rcu_read_lock(); 800 rcu_read_lock();
@@ -799,13 +802,13 @@ static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
799 * searching a memory cgroup which has the smallest ID under given 802 * searching a memory cgroup which has the smallest ID under given
800 * ROOT cgroup. (ID >= 1) 803 * ROOT cgroup. (ID >= 1)
801 */ 804 */
802 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found); 805 css = css_get_next(&mem_cgroup_subsys, 1, &memcg->css, &found);
803 if (css && css_tryget(css)) 806 if (css && css_tryget(css))
804 mem = container_of(css, struct mem_cgroup, css); 807 memcg = container_of(css, struct mem_cgroup, css);
805 else 808 else
806 mem = NULL; 809 memcg = NULL;
807 rcu_read_unlock(); 810 rcu_read_unlock();
808 return mem; 811 return memcg;
809} 812}
810 813
811static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter, 814static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
@@ -859,29 +862,29 @@ static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
859 for_each_mem_cgroup_tree_cond(iter, NULL, true) 862 for_each_mem_cgroup_tree_cond(iter, NULL, true)
860 863
861 864
862static inline bool mem_cgroup_is_root(struct mem_cgroup *mem) 865static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
863{ 866{
864 return (mem == root_mem_cgroup); 867 return (memcg == root_mem_cgroup);
865} 868}
866 869
867void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 870void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
868{ 871{
869 struct mem_cgroup *mem; 872 struct mem_cgroup *memcg;
870 873
871 if (!mm) 874 if (!mm)
872 return; 875 return;
873 876
874 rcu_read_lock(); 877 rcu_read_lock();
875 mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); 878 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
876 if (unlikely(!mem)) 879 if (unlikely(!memcg))
877 goto out; 880 goto out;
878 881
879 switch (idx) { 882 switch (idx) {
880 case PGMAJFAULT: 883 case PGMAJFAULT:
881 mem_cgroup_pgmajfault(mem, 1); 884 mem_cgroup_pgmajfault(memcg, 1);
882 break; 885 break;
883 case PGFAULT: 886 case PGFAULT:
884 mem_cgroup_pgfault(mem, 1); 887 mem_cgroup_pgfault(memcg, 1);
885 break; 888 break;
886 default: 889 default:
887 BUG(); 890 BUG();
@@ -1063,21 +1066,21 @@ void mem_cgroup_move_lists(struct page *page,
1063} 1066}
1064 1067
1065/* 1068/*
1066 * Checks whether given mem is same or in the root_mem's 1069 * Checks whether given mem is same or in the root_mem_cgroup's
1067 * hierarchy subtree 1070 * hierarchy subtree
1068 */ 1071 */
1069static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem, 1072static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1070 struct mem_cgroup *mem) 1073 struct mem_cgroup *memcg)
1071{ 1074{
1072 if (root_mem != mem) { 1075 if (root_memcg != memcg) {
1073 return (root_mem->use_hierarchy && 1076 return (root_memcg->use_hierarchy &&
1074 css_is_ancestor(&mem->css, &root_mem->css)); 1077 css_is_ancestor(&memcg->css, &root_memcg->css));
1075 } 1078 }
1076 1079
1077 return true; 1080 return true;
1078} 1081}
1079 1082
1080int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) 1083int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1081{ 1084{
1082 int ret; 1085 int ret;
1083 struct mem_cgroup *curr = NULL; 1086 struct mem_cgroup *curr = NULL;
@@ -1091,12 +1094,12 @@ int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1091 if (!curr) 1094 if (!curr)
1092 return 0; 1095 return 0;
1093 /* 1096 /*
1094 * We should check use_hierarchy of "mem" not "curr". Because checking 1097 * We should check use_hierarchy of "memcg" not "curr". Because checking
1095 * use_hierarchy of "curr" here make this function true if hierarchy is 1098 * use_hierarchy of "curr" here make this function true if hierarchy is
1096 * enabled in "curr" and "curr" is a child of "mem" in *cgroup* 1099 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1097 * hierarchy(even if use_hierarchy is disabled in "mem"). 1100 * hierarchy(even if use_hierarchy is disabled in "memcg").
1098 */ 1101 */
1099 ret = mem_cgroup_same_or_subtree(mem, curr); 1102 ret = mem_cgroup_same_or_subtree(memcg, curr);
1100 css_put(&curr->css); 1103 css_put(&curr->css);
1101 return ret; 1104 return ret;
1102} 1105}
@@ -1254,13 +1257,13 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1254 * Returns the maximum amount of memory @mem can be charged with, in 1257 * Returns the maximum amount of memory @mem can be charged with, in
1255 * pages. 1258 * pages.
1256 */ 1259 */
1257static unsigned long mem_cgroup_margin(struct mem_cgroup *mem) 1260static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1258{ 1261{
1259 unsigned long long margin; 1262 unsigned long long margin;
1260 1263
1261 margin = res_counter_margin(&mem->res); 1264 margin = res_counter_margin(&memcg->res);
1262 if (do_swap_account) 1265 if (do_swap_account)
1263 margin = min(margin, res_counter_margin(&mem->memsw)); 1266 margin = min(margin, res_counter_margin(&memcg->memsw));
1264 return margin >> PAGE_SHIFT; 1267 return margin >> PAGE_SHIFT;
1265} 1268}
1266 1269
@@ -1275,33 +1278,33 @@ int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1275 return memcg->swappiness; 1278 return memcg->swappiness;
1276} 1279}
1277 1280
1278static void mem_cgroup_start_move(struct mem_cgroup *mem) 1281static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1279{ 1282{
1280 int cpu; 1283 int cpu;
1281 1284
1282 get_online_cpus(); 1285 get_online_cpus();
1283 spin_lock(&mem->pcp_counter_lock); 1286 spin_lock(&memcg->pcp_counter_lock);
1284 for_each_online_cpu(cpu) 1287 for_each_online_cpu(cpu)
1285 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1; 1288 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1286 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1; 1289 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1287 spin_unlock(&mem->pcp_counter_lock); 1290 spin_unlock(&memcg->pcp_counter_lock);
1288 put_online_cpus(); 1291 put_online_cpus();
1289 1292
1290 synchronize_rcu(); 1293 synchronize_rcu();
1291} 1294}
1292 1295
1293static void mem_cgroup_end_move(struct mem_cgroup *mem) 1296static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1294{ 1297{
1295 int cpu; 1298 int cpu;
1296 1299
1297 if (!mem) 1300 if (!memcg)
1298 return; 1301 return;
1299 get_online_cpus(); 1302 get_online_cpus();
1300 spin_lock(&mem->pcp_counter_lock); 1303 spin_lock(&memcg->pcp_counter_lock);
1301 for_each_online_cpu(cpu) 1304 for_each_online_cpu(cpu)
1302 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1; 1305 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1303 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1; 1306 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1304 spin_unlock(&mem->pcp_counter_lock); 1307 spin_unlock(&memcg->pcp_counter_lock);
1305 put_online_cpus(); 1308 put_online_cpus();
1306} 1309}
1307/* 1310/*
@@ -1316,13 +1319,13 @@ static void mem_cgroup_end_move(struct mem_cgroup *mem)
1316 * waiting at hith-memory prressure caused by "move". 1319 * waiting at hith-memory prressure caused by "move".
1317 */ 1320 */
1318 1321
1319static bool mem_cgroup_stealed(struct mem_cgroup *mem) 1322static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1320{ 1323{
1321 VM_BUG_ON(!rcu_read_lock_held()); 1324 VM_BUG_ON(!rcu_read_lock_held());
1322 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0; 1325 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1323} 1326}
1324 1327
1325static bool mem_cgroup_under_move(struct mem_cgroup *mem) 1328static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1326{ 1329{
1327 struct mem_cgroup *from; 1330 struct mem_cgroup *from;
1328 struct mem_cgroup *to; 1331 struct mem_cgroup *to;
@@ -1337,17 +1340,17 @@ static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1337 if (!from) 1340 if (!from)
1338 goto unlock; 1341 goto unlock;
1339 1342
1340 ret = mem_cgroup_same_or_subtree(mem, from) 1343 ret = mem_cgroup_same_or_subtree(memcg, from)
1341 || mem_cgroup_same_or_subtree(mem, to); 1344 || mem_cgroup_same_or_subtree(memcg, to);
1342unlock: 1345unlock:
1343 spin_unlock(&mc.lock); 1346 spin_unlock(&mc.lock);
1344 return ret; 1347 return ret;
1345} 1348}
1346 1349
1347static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem) 1350static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1348{ 1351{
1349 if (mc.moving_task && current != mc.moving_task) { 1352 if (mc.moving_task && current != mc.moving_task) {
1350 if (mem_cgroup_under_move(mem)) { 1353 if (mem_cgroup_under_move(memcg)) {
1351 DEFINE_WAIT(wait); 1354 DEFINE_WAIT(wait);
1352 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1355 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1353 /* moving charge context might have finished. */ 1356 /* moving charge context might have finished. */
@@ -1431,12 +1434,12 @@ done:
1431 * This function returns the number of memcg under hierarchy tree. Returns 1434 * This function returns the number of memcg under hierarchy tree. Returns
1432 * 1(self count) if no children. 1435 * 1(self count) if no children.
1433 */ 1436 */
1434static int mem_cgroup_count_children(struct mem_cgroup *mem) 1437static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1435{ 1438{
1436 int num = 0; 1439 int num = 0;
1437 struct mem_cgroup *iter; 1440 struct mem_cgroup *iter;
1438 1441
1439 for_each_mem_cgroup_tree(iter, mem) 1442 for_each_mem_cgroup_tree(iter, memcg)
1440 num++; 1443 num++;
1441 return num; 1444 return num;
1442} 1445}
@@ -1466,21 +1469,21 @@ u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1466 * that to reclaim free pages from. 1469 * that to reclaim free pages from.
1467 */ 1470 */
1468static struct mem_cgroup * 1471static struct mem_cgroup *
1469mem_cgroup_select_victim(struct mem_cgroup *root_mem) 1472mem_cgroup_select_victim(struct mem_cgroup *root_memcg)
1470{ 1473{
1471 struct mem_cgroup *ret = NULL; 1474 struct mem_cgroup *ret = NULL;
1472 struct cgroup_subsys_state *css; 1475 struct cgroup_subsys_state *css;
1473 int nextid, found; 1476 int nextid, found;
1474 1477
1475 if (!root_mem->use_hierarchy) { 1478 if (!root_memcg->use_hierarchy) {
1476 css_get(&root_mem->css); 1479 css_get(&root_memcg->css);
1477 ret = root_mem; 1480 ret = root_memcg;
1478 } 1481 }
1479 1482
1480 while (!ret) { 1483 while (!ret) {
1481 rcu_read_lock(); 1484 rcu_read_lock();
1482 nextid = root_mem->last_scanned_child + 1; 1485 nextid = root_memcg->last_scanned_child + 1;
1483 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css, 1486 css = css_get_next(&mem_cgroup_subsys, nextid, &root_memcg->css,
1484 &found); 1487 &found);
1485 if (css && css_tryget(css)) 1488 if (css && css_tryget(css))
1486 ret = container_of(css, struct mem_cgroup, css); 1489 ret = container_of(css, struct mem_cgroup, css);
@@ -1489,9 +1492,9 @@ mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1489 /* Updates scanning parameter */ 1492 /* Updates scanning parameter */
1490 if (!css) { 1493 if (!css) {
1491 /* this means start scan from ID:1 */ 1494 /* this means start scan from ID:1 */
1492 root_mem->last_scanned_child = 0; 1495 root_memcg->last_scanned_child = 0;
1493 } else 1496 } else
1494 root_mem->last_scanned_child = found; 1497 root_memcg->last_scanned_child = found;
1495 } 1498 }
1496 1499
1497 return ret; 1500 return ret;
@@ -1507,14 +1510,14 @@ mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1507 * reclaimable pages on a node. Returns true if there are any reclaimable 1510 * reclaimable pages on a node. Returns true if there are any reclaimable
1508 * pages in the node. 1511 * pages in the node.
1509 */ 1512 */
1510static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem, 1513static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1511 int nid, bool noswap) 1514 int nid, bool noswap)
1512{ 1515{
1513 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE)) 1516 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1514 return true; 1517 return true;
1515 if (noswap || !total_swap_pages) 1518 if (noswap || !total_swap_pages)
1516 return false; 1519 return false;
1517 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON)) 1520 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1518 return true; 1521 return true;
1519 return false; 1522 return false;
1520 1523
@@ -1527,29 +1530,29 @@ static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1527 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1530 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1528 * 1531 *
1529 */ 1532 */
1530static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem) 1533static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1531{ 1534{
1532 int nid; 1535 int nid;
1533 /* 1536 /*
1534 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1537 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1535 * pagein/pageout changes since the last update. 1538 * pagein/pageout changes since the last update.
1536 */ 1539 */
1537 if (!atomic_read(&mem->numainfo_events)) 1540 if (!atomic_read(&memcg->numainfo_events))
1538 return; 1541 return;
1539 if (atomic_inc_return(&mem->numainfo_updating) > 1) 1542 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1540 return; 1543 return;
1541 1544
1542 /* make a nodemask where this memcg uses memory from */ 1545 /* make a nodemask where this memcg uses memory from */
1543 mem->scan_nodes = node_states[N_HIGH_MEMORY]; 1546 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1544 1547
1545 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) { 1548 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1546 1549
1547 if (!test_mem_cgroup_node_reclaimable(mem, nid, false)) 1550 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1548 node_clear(nid, mem->scan_nodes); 1551 node_clear(nid, memcg->scan_nodes);
1549 } 1552 }
1550 1553
1551 atomic_set(&mem->numainfo_events, 0); 1554 atomic_set(&memcg->numainfo_events, 0);
1552 atomic_set(&mem->numainfo_updating, 0); 1555 atomic_set(&memcg->numainfo_updating, 0);
1553} 1556}
1554 1557
1555/* 1558/*
@@ -1564,16 +1567,16 @@ static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1564 * 1567 *
1565 * Now, we use round-robin. Better algorithm is welcomed. 1568 * Now, we use round-robin. Better algorithm is welcomed.
1566 */ 1569 */
1567int mem_cgroup_select_victim_node(struct mem_cgroup *mem) 1570int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1568{ 1571{
1569 int node; 1572 int node;
1570 1573
1571 mem_cgroup_may_update_nodemask(mem); 1574 mem_cgroup_may_update_nodemask(memcg);
1572 node = mem->last_scanned_node; 1575 node = memcg->last_scanned_node;
1573 1576
1574 node = next_node(node, mem->scan_nodes); 1577 node = next_node(node, memcg->scan_nodes);
1575 if (node == MAX_NUMNODES) 1578 if (node == MAX_NUMNODES)
1576 node = first_node(mem->scan_nodes); 1579 node = first_node(memcg->scan_nodes);
1577 /* 1580 /*
1578 * We call this when we hit limit, not when pages are added to LRU. 1581 * We call this when we hit limit, not when pages are added to LRU.
1579 * No LRU may hold pages because all pages are UNEVICTABLE or 1582 * No LRU may hold pages because all pages are UNEVICTABLE or
@@ -1583,7 +1586,7 @@ int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1583 if (unlikely(node == MAX_NUMNODES)) 1586 if (unlikely(node == MAX_NUMNODES))
1584 node = numa_node_id(); 1587 node = numa_node_id();
1585 1588
1586 mem->last_scanned_node = node; 1589 memcg->last_scanned_node = node;
1587 return node; 1590 return node;
1588} 1591}
1589 1592
@@ -1593,7 +1596,7 @@ int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1593 * unused nodes. But scan_nodes is lazily updated and may not cotain 1596 * unused nodes. But scan_nodes is lazily updated and may not cotain
1594 * enough new information. We need to do double check. 1597 * enough new information. We need to do double check.
1595 */ 1598 */
1596bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap) 1599bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1597{ 1600{
1598 int nid; 1601 int nid;
1599 1602
@@ -1601,12 +1604,12 @@ bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1601 * quick check...making use of scan_node. 1604 * quick check...making use of scan_node.
1602 * We can skip unused nodes. 1605 * We can skip unused nodes.
1603 */ 1606 */
1604 if (!nodes_empty(mem->scan_nodes)) { 1607 if (!nodes_empty(memcg->scan_nodes)) {
1605 for (nid = first_node(mem->scan_nodes); 1608 for (nid = first_node(memcg->scan_nodes);
1606 nid < MAX_NUMNODES; 1609 nid < MAX_NUMNODES;
1607 nid = next_node(nid, mem->scan_nodes)) { 1610 nid = next_node(nid, memcg->scan_nodes)) {
1608 1611
1609 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap)) 1612 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1610 return true; 1613 return true;
1611 } 1614 }
1612 } 1615 }
@@ -1614,23 +1617,23 @@ bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1614 * Check rest of nodes. 1617 * Check rest of nodes.
1615 */ 1618 */
1616 for_each_node_state(nid, N_HIGH_MEMORY) { 1619 for_each_node_state(nid, N_HIGH_MEMORY) {
1617 if (node_isset(nid, mem->scan_nodes)) 1620 if (node_isset(nid, memcg->scan_nodes))
1618 continue; 1621 continue;
1619 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap)) 1622 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1620 return true; 1623 return true;
1621 } 1624 }
1622 return false; 1625 return false;
1623} 1626}
1624 1627
1625#else 1628#else
1626int mem_cgroup_select_victim_node(struct mem_cgroup *mem) 1629int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1627{ 1630{
1628 return 0; 1631 return 0;
1629} 1632}
1630 1633
1631bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap) 1634bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1632{ 1635{
1633 return test_mem_cgroup_node_reclaimable(mem, 0, noswap); 1636 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1634} 1637}
1635#endif 1638#endif
1636 1639
@@ -1639,14 +1642,14 @@ bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1639 * we reclaimed from, so that we don't end up penalizing one child extensively 1642 * we reclaimed from, so that we don't end up penalizing one child extensively
1640 * based on its position in the children list. 1643 * based on its position in the children list.
1641 * 1644 *
1642 * root_mem is the original ancestor that we've been reclaim from. 1645 * root_memcg is the original ancestor that we've been reclaim from.
1643 * 1646 *
1644 * We give up and return to the caller when we visit root_mem twice. 1647 * We give up and return to the caller when we visit root_memcg twice.
1645 * (other groups can be removed while we're walking....) 1648 * (other groups can be removed while we're walking....)
1646 * 1649 *
1647 * If shrink==true, for avoiding to free too much, this returns immedieately. 1650 * If shrink==true, for avoiding to free too much, this returns immedieately.
1648 */ 1651 */
1649static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, 1652static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_memcg,
1650 struct zone *zone, 1653 struct zone *zone,
1651 gfp_t gfp_mask, 1654 gfp_t gfp_mask,
1652 unsigned long reclaim_options, 1655 unsigned long reclaim_options,
@@ -1661,15 +1664,15 @@ static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1661 unsigned long excess; 1664 unsigned long excess;
1662 unsigned long nr_scanned; 1665 unsigned long nr_scanned;
1663 1666
1664 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT; 1667 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1665 1668
1666 /* If memsw_is_minimum==1, swap-out is of-no-use. */ 1669 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1667 if (!check_soft && !shrink && root_mem->memsw_is_minimum) 1670 if (!check_soft && !shrink && root_memcg->memsw_is_minimum)
1668 noswap = true; 1671 noswap = true;
1669 1672
1670 while (1) { 1673 while (1) {
1671 victim = mem_cgroup_select_victim(root_mem); 1674 victim = mem_cgroup_select_victim(root_memcg);
1672 if (victim == root_mem) { 1675 if (victim == root_memcg) {
1673 loop++; 1676 loop++;
1674 /* 1677 /*
1675 * We are not draining per cpu cached charges during 1678 * We are not draining per cpu cached charges during
@@ -1678,7 +1681,7 @@ static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1678 * charges will not give any. 1681 * charges will not give any.
1679 */ 1682 */
1680 if (!check_soft && loop >= 1) 1683 if (!check_soft && loop >= 1)
1681 drain_all_stock_async(root_mem); 1684 drain_all_stock_async(root_memcg);
1682 if (loop >= 2) { 1685 if (loop >= 2) {
1683 /* 1686 /*
1684 * If we have not been able to reclaim 1687 * If we have not been able to reclaim
@@ -1725,9 +1728,9 @@ static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1725 return ret; 1728 return ret;
1726 total += ret; 1729 total += ret;
1727 if (check_soft) { 1730 if (check_soft) {
1728 if (!res_counter_soft_limit_excess(&root_mem->res)) 1731 if (!res_counter_soft_limit_excess(&root_memcg->res))
1729 return total; 1732 return total;
1730 } else if (mem_cgroup_margin(root_mem)) 1733 } else if (mem_cgroup_margin(root_memcg))
1731 return total; 1734 return total;
1732 } 1735 }
1733 return total; 1736 return total;
@@ -1738,12 +1741,12 @@ static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1738 * If someone is running, return false. 1741 * If someone is running, return false.
1739 * Has to be called with memcg_oom_lock 1742 * Has to be called with memcg_oom_lock
1740 */ 1743 */
1741static bool mem_cgroup_oom_lock(struct mem_cgroup *mem) 1744static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1742{ 1745{
1743 struct mem_cgroup *iter, *failed = NULL; 1746 struct mem_cgroup *iter, *failed = NULL;
1744 bool cond = true; 1747 bool cond = true;
1745 1748
1746 for_each_mem_cgroup_tree_cond(iter, mem, cond) { 1749 for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1747 if (iter->oom_lock) { 1750 if (iter->oom_lock) {
1748 /* 1751 /*
1749 * this subtree of our hierarchy is already locked 1752 * this subtree of our hierarchy is already locked
@@ -1763,7 +1766,7 @@ static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1763 * what we set up to the failing subtree 1766 * what we set up to the failing subtree
1764 */ 1767 */
1765 cond = true; 1768 cond = true;
1766 for_each_mem_cgroup_tree_cond(iter, mem, cond) { 1769 for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1767 if (iter == failed) { 1770 if (iter == failed) {
1768 cond = false; 1771 cond = false;
1769 continue; 1772 continue;
@@ -1776,24 +1779,24 @@ static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1776/* 1779/*
1777 * Has to be called with memcg_oom_lock 1780 * Has to be called with memcg_oom_lock
1778 */ 1781 */
1779static int mem_cgroup_oom_unlock(struct mem_cgroup *mem) 1782static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1780{ 1783{
1781 struct mem_cgroup *iter; 1784 struct mem_cgroup *iter;
1782 1785
1783 for_each_mem_cgroup_tree(iter, mem) 1786 for_each_mem_cgroup_tree(iter, memcg)
1784 iter->oom_lock = false; 1787 iter->oom_lock = false;
1785 return 0; 1788 return 0;
1786} 1789}
1787 1790
1788static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem) 1791static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1789{ 1792{
1790 struct mem_cgroup *iter; 1793 struct mem_cgroup *iter;
1791 1794
1792 for_each_mem_cgroup_tree(iter, mem) 1795 for_each_mem_cgroup_tree(iter, memcg)
1793 atomic_inc(&iter->under_oom); 1796 atomic_inc(&iter->under_oom);
1794} 1797}
1795 1798
1796static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem) 1799static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1797{ 1800{
1798 struct mem_cgroup *iter; 1801 struct mem_cgroup *iter;
1799 1802
@@ -1802,7 +1805,7 @@ static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1802 * mem_cgroup_oom_lock() may not be called. We have to use 1805 * mem_cgroup_oom_lock() may not be called. We have to use
1803 * atomic_add_unless() here. 1806 * atomic_add_unless() here.
1804 */ 1807 */
1805 for_each_mem_cgroup_tree(iter, mem) 1808 for_each_mem_cgroup_tree(iter, memcg)
1806 atomic_add_unless(&iter->under_oom, -1, 0); 1809 atomic_add_unless(&iter->under_oom, -1, 0);
1807} 1810}
1808 1811
@@ -1817,80 +1820,80 @@ struct oom_wait_info {
1817static int memcg_oom_wake_function(wait_queue_t *wait, 1820static int memcg_oom_wake_function(wait_queue_t *wait,
1818 unsigned mode, int sync, void *arg) 1821 unsigned mode, int sync, void *arg)
1819{ 1822{
1820 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg, 1823 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1821 *oom_wait_mem; 1824 *oom_wait_memcg;
1822 struct oom_wait_info *oom_wait_info; 1825 struct oom_wait_info *oom_wait_info;
1823 1826
1824 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1827 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1825 oom_wait_mem = oom_wait_info->mem; 1828 oom_wait_memcg = oom_wait_info->mem;
1826 1829
1827 /* 1830 /*
1828 * Both of oom_wait_info->mem and wake_mem are stable under us. 1831 * Both of oom_wait_info->mem and wake_mem are stable under us.
1829 * Then we can use css_is_ancestor without taking care of RCU. 1832 * Then we can use css_is_ancestor without taking care of RCU.
1830 */ 1833 */
1831 if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem) 1834 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1832 && !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem)) 1835 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1833 return 0; 1836 return 0;
1834 return autoremove_wake_function(wait, mode, sync, arg); 1837 return autoremove_wake_function(wait, mode, sync, arg);
1835} 1838}
1836 1839
1837static void memcg_wakeup_oom(struct mem_cgroup *mem) 1840static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1838{ 1841{
1839 /* for filtering, pass "mem" as argument. */ 1842 /* for filtering, pass "memcg" as argument. */
1840 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem); 1843 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1841} 1844}
1842 1845
1843static void memcg_oom_recover(struct mem_cgroup *mem) 1846static void memcg_oom_recover(struct mem_cgroup *memcg)
1844{ 1847{
1845 if (mem && atomic_read(&mem->under_oom)) 1848 if (memcg && atomic_read(&memcg->under_oom))
1846 memcg_wakeup_oom(mem); 1849 memcg_wakeup_oom(memcg);
1847} 1850}
1848 1851
1849/* 1852/*
1850 * try to call OOM killer. returns false if we should exit memory-reclaim loop. 1853 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1851 */ 1854 */
1852bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask) 1855bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1853{ 1856{
1854 struct oom_wait_info owait; 1857 struct oom_wait_info owait;
1855 bool locked, need_to_kill; 1858 bool locked, need_to_kill;
1856 1859
1857 owait.mem = mem; 1860 owait.mem = memcg;
1858 owait.wait.flags = 0; 1861 owait.wait.flags = 0;
1859 owait.wait.func = memcg_oom_wake_function; 1862 owait.wait.func = memcg_oom_wake_function;
1860 owait.wait.private = current; 1863 owait.wait.private = current;
1861 INIT_LIST_HEAD(&owait.wait.task_list); 1864 INIT_LIST_HEAD(&owait.wait.task_list);
1862 need_to_kill = true; 1865 need_to_kill = true;
1863 mem_cgroup_mark_under_oom(mem); 1866 mem_cgroup_mark_under_oom(memcg);
1864 1867
1865 /* At first, try to OOM lock hierarchy under mem.*/ 1868 /* At first, try to OOM lock hierarchy under memcg.*/
1866 spin_lock(&memcg_oom_lock); 1869 spin_lock(&memcg_oom_lock);
1867 locked = mem_cgroup_oom_lock(mem); 1870 locked = mem_cgroup_oom_lock(memcg);
1868 /* 1871 /*
1869 * Even if signal_pending(), we can't quit charge() loop without 1872 * Even if signal_pending(), we can't quit charge() loop without
1870 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL 1873 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1871 * under OOM is always welcomed, use TASK_KILLABLE here. 1874 * under OOM is always welcomed, use TASK_KILLABLE here.
1872 */ 1875 */
1873 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1876 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1874 if (!locked || mem->oom_kill_disable) 1877 if (!locked || memcg->oom_kill_disable)
1875 need_to_kill = false; 1878 need_to_kill = false;
1876 if (locked) 1879 if (locked)
1877 mem_cgroup_oom_notify(mem); 1880 mem_cgroup_oom_notify(memcg);
1878 spin_unlock(&memcg_oom_lock); 1881 spin_unlock(&memcg_oom_lock);
1879 1882
1880 if (need_to_kill) { 1883 if (need_to_kill) {
1881 finish_wait(&memcg_oom_waitq, &owait.wait); 1884 finish_wait(&memcg_oom_waitq, &owait.wait);
1882 mem_cgroup_out_of_memory(mem, mask); 1885 mem_cgroup_out_of_memory(memcg, mask);
1883 } else { 1886 } else {
1884 schedule(); 1887 schedule();
1885 finish_wait(&memcg_oom_waitq, &owait.wait); 1888 finish_wait(&memcg_oom_waitq, &owait.wait);
1886 } 1889 }
1887 spin_lock(&memcg_oom_lock); 1890 spin_lock(&memcg_oom_lock);
1888 if (locked) 1891 if (locked)
1889 mem_cgroup_oom_unlock(mem); 1892 mem_cgroup_oom_unlock(memcg);
1890 memcg_wakeup_oom(mem); 1893 memcg_wakeup_oom(memcg);
1891 spin_unlock(&memcg_oom_lock); 1894 spin_unlock(&memcg_oom_lock);
1892 1895
1893 mem_cgroup_unmark_under_oom(mem); 1896 mem_cgroup_unmark_under_oom(memcg);
1894 1897
1895 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 1898 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1896 return false; 1899 return false;
@@ -1926,7 +1929,7 @@ bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1926void mem_cgroup_update_page_stat(struct page *page, 1929void mem_cgroup_update_page_stat(struct page *page,
1927 enum mem_cgroup_page_stat_item idx, int val) 1930 enum mem_cgroup_page_stat_item idx, int val)
1928{ 1931{
1929 struct mem_cgroup *mem; 1932 struct mem_cgroup *memcg;
1930 struct page_cgroup *pc = lookup_page_cgroup(page); 1933 struct page_cgroup *pc = lookup_page_cgroup(page);
1931 bool need_unlock = false; 1934 bool need_unlock = false;
1932 unsigned long uninitialized_var(flags); 1935 unsigned long uninitialized_var(flags);
@@ -1935,16 +1938,16 @@ void mem_cgroup_update_page_stat(struct page *page,
1935 return; 1938 return;
1936 1939
1937 rcu_read_lock(); 1940 rcu_read_lock();
1938 mem = pc->mem_cgroup; 1941 memcg = pc->mem_cgroup;
1939 if (unlikely(!mem || !PageCgroupUsed(pc))) 1942 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1940 goto out; 1943 goto out;
1941 /* pc->mem_cgroup is unstable ? */ 1944 /* pc->mem_cgroup is unstable ? */
1942 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) { 1945 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1943 /* take a lock against to access pc->mem_cgroup */ 1946 /* take a lock against to access pc->mem_cgroup */
1944 move_lock_page_cgroup(pc, &flags); 1947 move_lock_page_cgroup(pc, &flags);
1945 need_unlock = true; 1948 need_unlock = true;
1946 mem = pc->mem_cgroup; 1949 memcg = pc->mem_cgroup;
1947 if (!mem || !PageCgroupUsed(pc)) 1950 if (!memcg || !PageCgroupUsed(pc))
1948 goto out; 1951 goto out;
1949 } 1952 }
1950 1953
@@ -1960,7 +1963,7 @@ void mem_cgroup_update_page_stat(struct page *page,
1960 BUG(); 1963 BUG();
1961 } 1964 }
1962 1965
1963 this_cpu_add(mem->stat->count[idx], val); 1966 this_cpu_add(memcg->stat->count[idx], val);
1964 1967
1965out: 1968out:
1966 if (unlikely(need_unlock)) 1969 if (unlikely(need_unlock))
@@ -1991,13 +1994,13 @@ static DEFINE_MUTEX(percpu_charge_mutex);
1991 * cgroup which is not current target, returns false. This stock will be 1994 * cgroup which is not current target, returns false. This stock will be
1992 * refilled. 1995 * refilled.
1993 */ 1996 */
1994static bool consume_stock(struct mem_cgroup *mem) 1997static bool consume_stock(struct mem_cgroup *memcg)
1995{ 1998{
1996 struct memcg_stock_pcp *stock; 1999 struct memcg_stock_pcp *stock;
1997 bool ret = true; 2000 bool ret = true;
1998 2001
1999 stock = &get_cpu_var(memcg_stock); 2002 stock = &get_cpu_var(memcg_stock);
2000 if (mem == stock->cached && stock->nr_pages) 2003 if (memcg == stock->cached && stock->nr_pages)
2001 stock->nr_pages--; 2004 stock->nr_pages--;
2002 else /* need to call res_counter_charge */ 2005 else /* need to call res_counter_charge */
2003 ret = false; 2006 ret = false;
@@ -2038,24 +2041,24 @@ static void drain_local_stock(struct work_struct *dummy)
2038 * Cache charges(val) which is from res_counter, to local per_cpu area. 2041 * Cache charges(val) which is from res_counter, to local per_cpu area.
2039 * This will be consumed by consume_stock() function, later. 2042 * This will be consumed by consume_stock() function, later.
2040 */ 2043 */
2041static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages) 2044static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2042{ 2045{
2043 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2046 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2044 2047
2045 if (stock->cached != mem) { /* reset if necessary */ 2048 if (stock->cached != memcg) { /* reset if necessary */
2046 drain_stock(stock); 2049 drain_stock(stock);
2047 stock->cached = mem; 2050 stock->cached = memcg;
2048 } 2051 }
2049 stock->nr_pages += nr_pages; 2052 stock->nr_pages += nr_pages;
2050 put_cpu_var(memcg_stock); 2053 put_cpu_var(memcg_stock);
2051} 2054}
2052 2055
2053/* 2056/*
2054 * Drains all per-CPU charge caches for given root_mem resp. subtree 2057 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2055 * of the hierarchy under it. sync flag says whether we should block 2058 * of the hierarchy under it. sync flag says whether we should block
2056 * until the work is done. 2059 * until the work is done.
2057 */ 2060 */
2058static void drain_all_stock(struct mem_cgroup *root_mem, bool sync) 2061static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2059{ 2062{
2060 int cpu, curcpu; 2063 int cpu, curcpu;
2061 2064
@@ -2064,12 +2067,12 @@ static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
2064 curcpu = get_cpu(); 2067 curcpu = get_cpu();
2065 for_each_online_cpu(cpu) { 2068 for_each_online_cpu(cpu) {
2066 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2069 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2067 struct mem_cgroup *mem; 2070 struct mem_cgroup *memcg;
2068 2071
2069 mem = stock->cached; 2072 memcg = stock->cached;
2070 if (!mem || !stock->nr_pages) 2073 if (!memcg || !stock->nr_pages)
2071 continue; 2074 continue;
2072 if (!mem_cgroup_same_or_subtree(root_mem, mem)) 2075 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2073 continue; 2076 continue;
2074 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2077 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2075 if (cpu == curcpu) 2078 if (cpu == curcpu)
@@ -2098,23 +2101,23 @@ out:
2098 * expects some charges will be back to res_counter later but cannot wait for 2101 * expects some charges will be back to res_counter later but cannot wait for
2099 * it. 2102 * it.
2100 */ 2103 */
2101static void drain_all_stock_async(struct mem_cgroup *root_mem) 2104static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2102{ 2105{
2103 /* 2106 /*
2104 * If someone calls draining, avoid adding more kworker runs. 2107 * If someone calls draining, avoid adding more kworker runs.
2105 */ 2108 */
2106 if (!mutex_trylock(&percpu_charge_mutex)) 2109 if (!mutex_trylock(&percpu_charge_mutex))
2107 return; 2110 return;
2108 drain_all_stock(root_mem, false); 2111 drain_all_stock(root_memcg, false);
2109 mutex_unlock(&percpu_charge_mutex); 2112 mutex_unlock(&percpu_charge_mutex);
2110} 2113}
2111 2114
2112/* This is a synchronous drain interface. */ 2115/* This is a synchronous drain interface. */
2113static void drain_all_stock_sync(struct mem_cgroup *root_mem) 2116static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2114{ 2117{
2115 /* called when force_empty is called */ 2118 /* called when force_empty is called */
2116 mutex_lock(&percpu_charge_mutex); 2119 mutex_lock(&percpu_charge_mutex);
2117 drain_all_stock(root_mem, true); 2120 drain_all_stock(root_memcg, true);
2118 mutex_unlock(&percpu_charge_mutex); 2121 mutex_unlock(&percpu_charge_mutex);
2119} 2122}
2120 2123
@@ -2122,35 +2125,35 @@ static void drain_all_stock_sync(struct mem_cgroup *root_mem)
2122 * This function drains percpu counter value from DEAD cpu and 2125 * This function drains percpu counter value from DEAD cpu and
2123 * move it to local cpu. Note that this function can be preempted. 2126 * move it to local cpu. Note that this function can be preempted.
2124 */ 2127 */
2125static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu) 2128static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2126{ 2129{
2127 int i; 2130 int i;
2128 2131
2129 spin_lock(&mem->pcp_counter_lock); 2132 spin_lock(&memcg->pcp_counter_lock);
2130 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) { 2133 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2131 long x = per_cpu(mem->stat->count[i], cpu); 2134 long x = per_cpu(memcg->stat->count[i], cpu);
2132 2135
2133 per_cpu(mem->stat->count[i], cpu) = 0; 2136 per_cpu(memcg->stat->count[i], cpu) = 0;
2134 mem->nocpu_base.count[i] += x; 2137 memcg->nocpu_base.count[i] += x;
2135 } 2138 }
2136 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2139 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2137 unsigned long x = per_cpu(mem->stat->events[i], cpu); 2140 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2138 2141
2139 per_cpu(mem->stat->events[i], cpu) = 0; 2142 per_cpu(memcg->stat->events[i], cpu) = 0;
2140 mem->nocpu_base.events[i] += x; 2143 memcg->nocpu_base.events[i] += x;
2141 } 2144 }
2142 /* need to clear ON_MOVE value, works as a kind of lock. */ 2145 /* need to clear ON_MOVE value, works as a kind of lock. */
2143 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0; 2146 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2144 spin_unlock(&mem->pcp_counter_lock); 2147 spin_unlock(&memcg->pcp_counter_lock);
2145} 2148}
2146 2149
2147static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu) 2150static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2148{ 2151{
2149 int idx = MEM_CGROUP_ON_MOVE; 2152 int idx = MEM_CGROUP_ON_MOVE;
2150 2153
2151 spin_lock(&mem->pcp_counter_lock); 2154 spin_lock(&memcg->pcp_counter_lock);
2152 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx]; 2155 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2153 spin_unlock(&mem->pcp_counter_lock); 2156 spin_unlock(&memcg->pcp_counter_lock);
2154} 2157}
2155 2158
2156static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, 2159static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
@@ -2188,7 +2191,7 @@ enum {
2188 CHARGE_OOM_DIE, /* the current is killed because of OOM */ 2191 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2189}; 2192};
2190 2193
2191static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask, 2194static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2192 unsigned int nr_pages, bool oom_check) 2195 unsigned int nr_pages, bool oom_check)
2193{ 2196{
2194 unsigned long csize = nr_pages * PAGE_SIZE; 2197 unsigned long csize = nr_pages * PAGE_SIZE;
@@ -2197,16 +2200,16 @@ static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2197 unsigned long flags = 0; 2200 unsigned long flags = 0;
2198 int ret; 2201 int ret;
2199 2202
2200 ret = res_counter_charge(&mem->res, csize, &fail_res); 2203 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2201 2204
2202 if (likely(!ret)) { 2205 if (likely(!ret)) {
2203 if (!do_swap_account) 2206 if (!do_swap_account)
2204 return CHARGE_OK; 2207 return CHARGE_OK;
2205 ret = res_counter_charge(&mem->memsw, csize, &fail_res); 2208 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2206 if (likely(!ret)) 2209 if (likely(!ret))
2207 return CHARGE_OK; 2210 return CHARGE_OK;
2208 2211
2209 res_counter_uncharge(&mem->res, csize); 2212 res_counter_uncharge(&memcg->res, csize);
2210 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2213 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2211 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2214 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2212 } else 2215 } else
@@ -2264,12 +2267,12 @@ static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2264static int __mem_cgroup_try_charge(struct mm_struct *mm, 2267static int __mem_cgroup_try_charge(struct mm_struct *mm,
2265 gfp_t gfp_mask, 2268 gfp_t gfp_mask,
2266 unsigned int nr_pages, 2269 unsigned int nr_pages,
2267 struct mem_cgroup **memcg, 2270 struct mem_cgroup **ptr,
2268 bool oom) 2271 bool oom)
2269{ 2272{
2270 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2273 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2271 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2274 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2272 struct mem_cgroup *mem = NULL; 2275 struct mem_cgroup *memcg = NULL;
2273 int ret; 2276 int ret;
2274 2277
2275 /* 2278 /*
@@ -2287,17 +2290,17 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm,
2287 * thread group leader migrates. It's possible that mm is not 2290 * thread group leader migrates. It's possible that mm is not
2288 * set, if so charge the init_mm (happens for pagecache usage). 2291 * set, if so charge the init_mm (happens for pagecache usage).
2289 */ 2292 */
2290 if (!*memcg && !mm) 2293 if (!*ptr && !mm)
2291 goto bypass; 2294 goto bypass;
2292again: 2295again:
2293 if (*memcg) { /* css should be a valid one */ 2296 if (*ptr) { /* css should be a valid one */
2294 mem = *memcg; 2297 memcg = *ptr;
2295 VM_BUG_ON(css_is_removed(&mem->css)); 2298 VM_BUG_ON(css_is_removed(&memcg->css));
2296 if (mem_cgroup_is_root(mem)) 2299 if (mem_cgroup_is_root(memcg))
2297 goto done; 2300 goto done;
2298 if (nr_pages == 1 && consume_stock(mem)) 2301 if (nr_pages == 1 && consume_stock(memcg))
2299 goto done; 2302 goto done;
2300 css_get(&mem->css); 2303 css_get(&memcg->css);
2301 } else { 2304 } else {
2302 struct task_struct *p; 2305 struct task_struct *p;
2303 2306
@@ -2305,7 +2308,7 @@ again:
2305 p = rcu_dereference(mm->owner); 2308 p = rcu_dereference(mm->owner);
2306 /* 2309 /*
2307 * Because we don't have task_lock(), "p" can exit. 2310 * Because we don't have task_lock(), "p" can exit.
2308 * In that case, "mem" can point to root or p can be NULL with 2311 * In that case, "memcg" can point to root or p can be NULL with
2309 * race with swapoff. Then, we have small risk of mis-accouning. 2312 * race with swapoff. Then, we have small risk of mis-accouning.
2310 * But such kind of mis-account by race always happens because 2313 * But such kind of mis-account by race always happens because
2311 * we don't have cgroup_mutex(). It's overkill and we allo that 2314 * we don't have cgroup_mutex(). It's overkill and we allo that
@@ -2313,12 +2316,12 @@ again:
2313 * (*) swapoff at el will charge against mm-struct not against 2316 * (*) swapoff at el will charge against mm-struct not against
2314 * task-struct. So, mm->owner can be NULL. 2317 * task-struct. So, mm->owner can be NULL.
2315 */ 2318 */
2316 mem = mem_cgroup_from_task(p); 2319 memcg = mem_cgroup_from_task(p);
2317 if (!mem || mem_cgroup_is_root(mem)) { 2320 if (!memcg || mem_cgroup_is_root(memcg)) {
2318 rcu_read_unlock(); 2321 rcu_read_unlock();
2319 goto done; 2322 goto done;
2320 } 2323 }
2321 if (nr_pages == 1 && consume_stock(mem)) { 2324 if (nr_pages == 1 && consume_stock(memcg)) {
2322 /* 2325 /*
2323 * It seems dagerous to access memcg without css_get(). 2326 * It seems dagerous to access memcg without css_get().
2324 * But considering how consume_stok works, it's not 2327 * But considering how consume_stok works, it's not
@@ -2331,7 +2334,7 @@ again:
2331 goto done; 2334 goto done;
2332 } 2335 }
2333 /* after here, we may be blocked. we need to get refcnt */ 2336 /* after here, we may be blocked. we need to get refcnt */
2334 if (!css_tryget(&mem->css)) { 2337 if (!css_tryget(&memcg->css)) {
2335 rcu_read_unlock(); 2338 rcu_read_unlock();
2336 goto again; 2339 goto again;
2337 } 2340 }
@@ -2343,7 +2346,7 @@ again:
2343 2346
2344 /* If killed, bypass charge */ 2347 /* If killed, bypass charge */
2345 if (fatal_signal_pending(current)) { 2348 if (fatal_signal_pending(current)) {
2346 css_put(&mem->css); 2349 css_put(&memcg->css);
2347 goto bypass; 2350 goto bypass;
2348 } 2351 }
2349 2352
@@ -2353,43 +2356,43 @@ again:
2353 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2356 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2354 } 2357 }
2355 2358
2356 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check); 2359 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2357 switch (ret) { 2360 switch (ret) {
2358 case CHARGE_OK: 2361 case CHARGE_OK:
2359 break; 2362 break;
2360 case CHARGE_RETRY: /* not in OOM situation but retry */ 2363 case CHARGE_RETRY: /* not in OOM situation but retry */
2361 batch = nr_pages; 2364 batch = nr_pages;
2362 css_put(&mem->css); 2365 css_put(&memcg->css);
2363 mem = NULL; 2366 memcg = NULL;
2364 goto again; 2367 goto again;
2365 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2368 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2366 css_put(&mem->css); 2369 css_put(&memcg->css);
2367 goto nomem; 2370 goto nomem;
2368 case CHARGE_NOMEM: /* OOM routine works */ 2371 case CHARGE_NOMEM: /* OOM routine works */
2369 if (!oom) { 2372 if (!oom) {
2370 css_put(&mem->css); 2373 css_put(&memcg->css);
2371 goto nomem; 2374 goto nomem;
2372 } 2375 }
2373 /* If oom, we never return -ENOMEM */ 2376 /* If oom, we never return -ENOMEM */
2374 nr_oom_retries--; 2377 nr_oom_retries--;
2375 break; 2378 break;
2376 case CHARGE_OOM_DIE: /* Killed by OOM Killer */ 2379 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2377 css_put(&mem->css); 2380 css_put(&memcg->css);
2378 goto bypass; 2381 goto bypass;
2379 } 2382 }
2380 } while (ret != CHARGE_OK); 2383 } while (ret != CHARGE_OK);
2381 2384
2382 if (batch > nr_pages) 2385 if (batch > nr_pages)
2383 refill_stock(mem, batch - nr_pages); 2386 refill_stock(memcg, batch - nr_pages);
2384 css_put(&mem->css); 2387 css_put(&memcg->css);
2385done: 2388done:
2386 *memcg = mem; 2389 *ptr = memcg;
2387 return 0; 2390 return 0;
2388nomem: 2391nomem:
2389 *memcg = NULL; 2392 *ptr = NULL;
2390 return -ENOMEM; 2393 return -ENOMEM;
2391bypass: 2394bypass:
2392 *memcg = NULL; 2395 *ptr = NULL;
2393 return 0; 2396 return 0;
2394} 2397}
2395 2398
@@ -2398,15 +2401,15 @@ bypass:
2398 * This function is for that and do uncharge, put css's refcnt. 2401 * This function is for that and do uncharge, put css's refcnt.
2399 * gotten by try_charge(). 2402 * gotten by try_charge().
2400 */ 2403 */
2401static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem, 2404static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2402 unsigned int nr_pages) 2405 unsigned int nr_pages)
2403{ 2406{
2404 if (!mem_cgroup_is_root(mem)) { 2407 if (!mem_cgroup_is_root(memcg)) {
2405 unsigned long bytes = nr_pages * PAGE_SIZE; 2408 unsigned long bytes = nr_pages * PAGE_SIZE;
2406 2409
2407 res_counter_uncharge(&mem->res, bytes); 2410 res_counter_uncharge(&memcg->res, bytes);
2408 if (do_swap_account) 2411 if (do_swap_account)
2409 res_counter_uncharge(&mem->memsw, bytes); 2412 res_counter_uncharge(&memcg->memsw, bytes);
2410 } 2413 }
2411} 2414}
2412 2415
@@ -2431,7 +2434,7 @@ static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2431 2434
2432struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2435struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2433{ 2436{
2434 struct mem_cgroup *mem = NULL; 2437 struct mem_cgroup *memcg = NULL;
2435 struct page_cgroup *pc; 2438 struct page_cgroup *pc;
2436 unsigned short id; 2439 unsigned short id;
2437 swp_entry_t ent; 2440 swp_entry_t ent;
@@ -2441,23 +2444,23 @@ struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2441 pc = lookup_page_cgroup(page); 2444 pc = lookup_page_cgroup(page);
2442 lock_page_cgroup(pc); 2445 lock_page_cgroup(pc);
2443 if (PageCgroupUsed(pc)) { 2446 if (PageCgroupUsed(pc)) {
2444 mem = pc->mem_cgroup; 2447 memcg = pc->mem_cgroup;
2445 if (mem && !css_tryget(&mem->css)) 2448 if (memcg && !css_tryget(&memcg->css))
2446 mem = NULL; 2449 memcg = NULL;
2447 } else if (PageSwapCache(page)) { 2450 } else if (PageSwapCache(page)) {
2448 ent.val = page_private(page); 2451 ent.val = page_private(page);
2449 id = lookup_swap_cgroup(ent); 2452 id = lookup_swap_cgroup(ent);
2450 rcu_read_lock(); 2453 rcu_read_lock();
2451 mem = mem_cgroup_lookup(id); 2454 memcg = mem_cgroup_lookup(id);
2452 if (mem && !css_tryget(&mem->css)) 2455 if (memcg && !css_tryget(&memcg->css))
2453 mem = NULL; 2456 memcg = NULL;
2454 rcu_read_unlock(); 2457 rcu_read_unlock();
2455 } 2458 }
2456 unlock_page_cgroup(pc); 2459 unlock_page_cgroup(pc);
2457 return mem; 2460 return memcg;
2458} 2461}
2459 2462
2460static void __mem_cgroup_commit_charge(struct mem_cgroup *mem, 2463static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2461 struct page *page, 2464 struct page *page,
2462 unsigned int nr_pages, 2465 unsigned int nr_pages,
2463 struct page_cgroup *pc, 2466 struct page_cgroup *pc,
@@ -2466,14 +2469,14 @@ static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2466 lock_page_cgroup(pc); 2469 lock_page_cgroup(pc);
2467 if (unlikely(PageCgroupUsed(pc))) { 2470 if (unlikely(PageCgroupUsed(pc))) {
2468 unlock_page_cgroup(pc); 2471 unlock_page_cgroup(pc);
2469 __mem_cgroup_cancel_charge(mem, nr_pages); 2472 __mem_cgroup_cancel_charge(memcg, nr_pages);
2470 return; 2473 return;
2471 } 2474 }
2472 /* 2475 /*
2473 * we don't need page_cgroup_lock about tail pages, becase they are not 2476 * we don't need page_cgroup_lock about tail pages, becase they are not
2474 * accessed by any other context at this point. 2477 * accessed by any other context at this point.
2475 */ 2478 */
2476 pc->mem_cgroup = mem; 2479 pc->mem_cgroup = memcg;
2477 /* 2480 /*
2478 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2481 * We access a page_cgroup asynchronously without lock_page_cgroup().
2479 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2482 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
@@ -2496,14 +2499,14 @@ static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2496 break; 2499 break;
2497 } 2500 }
2498 2501
2499 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages); 2502 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2500 unlock_page_cgroup(pc); 2503 unlock_page_cgroup(pc);
2501 /* 2504 /*
2502 * "charge_statistics" updated event counter. Then, check it. 2505 * "charge_statistics" updated event counter. Then, check it.
2503 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2506 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2504 * if they exceeds softlimit. 2507 * if they exceeds softlimit.
2505 */ 2508 */
2506 memcg_check_events(mem, page); 2509 memcg_check_events(memcg, page);
2507} 2510}
2508 2511
2509#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2512#ifdef CONFIG_TRANSPARENT_HUGEPAGE
@@ -2690,7 +2693,7 @@ out:
2690static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 2693static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2691 gfp_t gfp_mask, enum charge_type ctype) 2694 gfp_t gfp_mask, enum charge_type ctype)
2692{ 2695{
2693 struct mem_cgroup *mem = NULL; 2696 struct mem_cgroup *memcg = NULL;
2694 unsigned int nr_pages = 1; 2697 unsigned int nr_pages = 1;
2695 struct page_cgroup *pc; 2698 struct page_cgroup *pc;
2696 bool oom = true; 2699 bool oom = true;
@@ -2709,11 +2712,11 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2709 pc = lookup_page_cgroup(page); 2712 pc = lookup_page_cgroup(page);
2710 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */ 2713 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2711 2714
2712 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom); 2715 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2713 if (ret || !mem) 2716 if (ret || !memcg)
2714 return ret; 2717 return ret;
2715 2718
2716 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype); 2719 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2717 return 0; 2720 return 0;
2718} 2721}
2719 2722
@@ -2742,7 +2745,7 @@ __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2742 enum charge_type ctype); 2745 enum charge_type ctype);
2743 2746
2744static void 2747static void
2745__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem, 2748__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2746 enum charge_type ctype) 2749 enum charge_type ctype)
2747{ 2750{
2748 struct page_cgroup *pc = lookup_page_cgroup(page); 2751 struct page_cgroup *pc = lookup_page_cgroup(page);
@@ -2752,7 +2755,7 @@ __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2752 * LRU. Take care of it. 2755 * LRU. Take care of it.
2753 */ 2756 */
2754 mem_cgroup_lru_del_before_commit(page); 2757 mem_cgroup_lru_del_before_commit(page);
2755 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype); 2758 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2756 mem_cgroup_lru_add_after_commit(page); 2759 mem_cgroup_lru_add_after_commit(page);
2757 return; 2760 return;
2758} 2761}
@@ -2760,7 +2763,7 @@ __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2760int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 2763int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2761 gfp_t gfp_mask) 2764 gfp_t gfp_mask)
2762{ 2765{
2763 struct mem_cgroup *mem = NULL; 2766 struct mem_cgroup *memcg = NULL;
2764 int ret; 2767 int ret;
2765 2768
2766 if (mem_cgroup_disabled()) 2769 if (mem_cgroup_disabled())
@@ -2772,8 +2775,8 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2772 mm = &init_mm; 2775 mm = &init_mm;
2773 2776
2774 if (page_is_file_cache(page)) { 2777 if (page_is_file_cache(page)) {
2775 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true); 2778 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2776 if (ret || !mem) 2779 if (ret || !memcg)
2777 return ret; 2780 return ret;
2778 2781
2779 /* 2782 /*
@@ -2781,15 +2784,15 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2781 * put that would remove them from the LRU list, make 2784 * put that would remove them from the LRU list, make
2782 * sure that they get relinked properly. 2785 * sure that they get relinked properly.
2783 */ 2786 */
2784 __mem_cgroup_commit_charge_lrucare(page, mem, 2787 __mem_cgroup_commit_charge_lrucare(page, memcg,
2785 MEM_CGROUP_CHARGE_TYPE_CACHE); 2788 MEM_CGROUP_CHARGE_TYPE_CACHE);
2786 return ret; 2789 return ret;
2787 } 2790 }
2788 /* shmem */ 2791 /* shmem */
2789 if (PageSwapCache(page)) { 2792 if (PageSwapCache(page)) {
2790 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); 2793 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2791 if (!ret) 2794 if (!ret)
2792 __mem_cgroup_commit_charge_swapin(page, mem, 2795 __mem_cgroup_commit_charge_swapin(page, memcg,
2793 MEM_CGROUP_CHARGE_TYPE_SHMEM); 2796 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2794 } else 2797 } else
2795 ret = mem_cgroup_charge_common(page, mm, gfp_mask, 2798 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
@@ -2808,7 +2811,7 @@ int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2808 struct page *page, 2811 struct page *page,
2809 gfp_t mask, struct mem_cgroup **ptr) 2812 gfp_t mask, struct mem_cgroup **ptr)
2810{ 2813{
2811 struct mem_cgroup *mem; 2814 struct mem_cgroup *memcg;
2812 int ret; 2815 int ret;
2813 2816
2814 *ptr = NULL; 2817 *ptr = NULL;
@@ -2826,12 +2829,12 @@ int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2826 */ 2829 */
2827 if (!PageSwapCache(page)) 2830 if (!PageSwapCache(page))
2828 goto charge_cur_mm; 2831 goto charge_cur_mm;
2829 mem = try_get_mem_cgroup_from_page(page); 2832 memcg = try_get_mem_cgroup_from_page(page);
2830 if (!mem) 2833 if (!memcg)
2831 goto charge_cur_mm; 2834 goto charge_cur_mm;
2832 *ptr = mem; 2835 *ptr = memcg;
2833 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true); 2836 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2834 css_put(&mem->css); 2837 css_put(&memcg->css);
2835 return ret; 2838 return ret;
2836charge_cur_mm: 2839charge_cur_mm:
2837 if (unlikely(!mm)) 2840 if (unlikely(!mm))
@@ -2891,16 +2894,16 @@ void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2891 MEM_CGROUP_CHARGE_TYPE_MAPPED); 2894 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2892} 2895}
2893 2896
2894void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) 2897void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2895{ 2898{
2896 if (mem_cgroup_disabled()) 2899 if (mem_cgroup_disabled())
2897 return; 2900 return;
2898 if (!mem) 2901 if (!memcg)
2899 return; 2902 return;
2900 __mem_cgroup_cancel_charge(mem, 1); 2903 __mem_cgroup_cancel_charge(memcg, 1);
2901} 2904}
2902 2905
2903static void mem_cgroup_do_uncharge(struct mem_cgroup *mem, 2906static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2904 unsigned int nr_pages, 2907 unsigned int nr_pages,
2905 const enum charge_type ctype) 2908 const enum charge_type ctype)
2906{ 2909{
@@ -2918,7 +2921,7 @@ static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2918 * uncharges. Then, it's ok to ignore memcg's refcnt. 2921 * uncharges. Then, it's ok to ignore memcg's refcnt.
2919 */ 2922 */
2920 if (!batch->memcg) 2923 if (!batch->memcg)
2921 batch->memcg = mem; 2924 batch->memcg = memcg;
2922 /* 2925 /*
2923 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 2926 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2924 * In those cases, all pages freed continuously can be expected to be in 2927 * In those cases, all pages freed continuously can be expected to be in
@@ -2938,7 +2941,7 @@ static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2938 * merge a series of uncharges to an uncharge of res_counter. 2941 * merge a series of uncharges to an uncharge of res_counter.
2939 * If not, we uncharge res_counter ony by one. 2942 * If not, we uncharge res_counter ony by one.
2940 */ 2943 */
2941 if (batch->memcg != mem) 2944 if (batch->memcg != memcg)
2942 goto direct_uncharge; 2945 goto direct_uncharge;
2943 /* remember freed charge and uncharge it later */ 2946 /* remember freed charge and uncharge it later */
2944 batch->nr_pages++; 2947 batch->nr_pages++;
@@ -2946,11 +2949,11 @@ static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2946 batch->memsw_nr_pages++; 2949 batch->memsw_nr_pages++;
2947 return; 2950 return;
2948direct_uncharge: 2951direct_uncharge:
2949 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE); 2952 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2950 if (uncharge_memsw) 2953 if (uncharge_memsw)
2951 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE); 2954 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2952 if (unlikely(batch->memcg != mem)) 2955 if (unlikely(batch->memcg != memcg))
2953 memcg_oom_recover(mem); 2956 memcg_oom_recover(memcg);
2954 return; 2957 return;
2955} 2958}
2956 2959
@@ -2960,7 +2963,7 @@ direct_uncharge:
2960static struct mem_cgroup * 2963static struct mem_cgroup *
2961__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) 2964__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2962{ 2965{
2963 struct mem_cgroup *mem = NULL; 2966 struct mem_cgroup *memcg = NULL;
2964 unsigned int nr_pages = 1; 2967 unsigned int nr_pages = 1;
2965 struct page_cgroup *pc; 2968 struct page_cgroup *pc;
2966 2969
@@ -2983,7 +2986,7 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2983 2986
2984 lock_page_cgroup(pc); 2987 lock_page_cgroup(pc);
2985 2988
2986 mem = pc->mem_cgroup; 2989 memcg = pc->mem_cgroup;
2987 2990
2988 if (!PageCgroupUsed(pc)) 2991 if (!PageCgroupUsed(pc))
2989 goto unlock_out; 2992 goto unlock_out;
@@ -3006,7 +3009,7 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3006 break; 3009 break;
3007 } 3010 }
3008 3011
3009 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages); 3012 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
3010 3013
3011 ClearPageCgroupUsed(pc); 3014 ClearPageCgroupUsed(pc);
3012 /* 3015 /*
@@ -3018,18 +3021,18 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3018 3021
3019 unlock_page_cgroup(pc); 3022 unlock_page_cgroup(pc);
3020 /* 3023 /*
3021 * even after unlock, we have mem->res.usage here and this memcg 3024 * even after unlock, we have memcg->res.usage here and this memcg
3022 * will never be freed. 3025 * will never be freed.
3023 */ 3026 */
3024 memcg_check_events(mem, page); 3027 memcg_check_events(memcg, page);
3025 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 3028 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3026 mem_cgroup_swap_statistics(mem, true); 3029 mem_cgroup_swap_statistics(memcg, true);
3027 mem_cgroup_get(mem); 3030 mem_cgroup_get(memcg);
3028 } 3031 }
3029 if (!mem_cgroup_is_root(mem)) 3032 if (!mem_cgroup_is_root(memcg))
3030 mem_cgroup_do_uncharge(mem, nr_pages, ctype); 3033 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3031 3034
3032 return mem; 3035 return memcg;
3033 3036
3034unlock_out: 3037unlock_out:
3035 unlock_page_cgroup(pc); 3038 unlock_page_cgroup(pc);
@@ -3219,7 +3222,7 @@ static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3219int mem_cgroup_prepare_migration(struct page *page, 3222int mem_cgroup_prepare_migration(struct page *page,
3220 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask) 3223 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3221{ 3224{
3222 struct mem_cgroup *mem = NULL; 3225 struct mem_cgroup *memcg = NULL;
3223 struct page_cgroup *pc; 3226 struct page_cgroup *pc;
3224 enum charge_type ctype; 3227 enum charge_type ctype;
3225 int ret = 0; 3228 int ret = 0;
@@ -3233,8 +3236,8 @@ int mem_cgroup_prepare_migration(struct page *page,
3233 pc = lookup_page_cgroup(page); 3236 pc = lookup_page_cgroup(page);
3234 lock_page_cgroup(pc); 3237 lock_page_cgroup(pc);
3235 if (PageCgroupUsed(pc)) { 3238 if (PageCgroupUsed(pc)) {
3236 mem = pc->mem_cgroup; 3239 memcg = pc->mem_cgroup;
3237 css_get(&mem->css); 3240 css_get(&memcg->css);
3238 /* 3241 /*
3239 * At migrating an anonymous page, its mapcount goes down 3242 * At migrating an anonymous page, its mapcount goes down
3240 * to 0 and uncharge() will be called. But, even if it's fully 3243 * to 0 and uncharge() will be called. But, even if it's fully
@@ -3272,12 +3275,12 @@ int mem_cgroup_prepare_migration(struct page *page,
3272 * If the page is not charged at this point, 3275 * If the page is not charged at this point,
3273 * we return here. 3276 * we return here.
3274 */ 3277 */
3275 if (!mem) 3278 if (!memcg)
3276 return 0; 3279 return 0;
3277 3280
3278 *ptr = mem; 3281 *ptr = memcg;
3279 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false); 3282 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3280 css_put(&mem->css);/* drop extra refcnt */ 3283 css_put(&memcg->css);/* drop extra refcnt */
3281 if (ret || *ptr == NULL) { 3284 if (ret || *ptr == NULL) {
3282 if (PageAnon(page)) { 3285 if (PageAnon(page)) {
3283 lock_page_cgroup(pc); 3286 lock_page_cgroup(pc);
@@ -3303,21 +3306,21 @@ int mem_cgroup_prepare_migration(struct page *page,
3303 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 3306 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3304 else 3307 else
3305 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; 3308 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3306 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype); 3309 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3307 return ret; 3310 return ret;
3308} 3311}
3309 3312
3310/* remove redundant charge if migration failed*/ 3313/* remove redundant charge if migration failed*/
3311void mem_cgroup_end_migration(struct mem_cgroup *mem, 3314void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3312 struct page *oldpage, struct page *newpage, bool migration_ok) 3315 struct page *oldpage, struct page *newpage, bool migration_ok)
3313{ 3316{
3314 struct page *used, *unused; 3317 struct page *used, *unused;
3315 struct page_cgroup *pc; 3318 struct page_cgroup *pc;
3316 3319
3317 if (!mem) 3320 if (!memcg)
3318 return; 3321 return;
3319 /* blocks rmdir() */ 3322 /* blocks rmdir() */
3320 cgroup_exclude_rmdir(&mem->css); 3323 cgroup_exclude_rmdir(&memcg->css);
3321 if (!migration_ok) { 3324 if (!migration_ok) {
3322 used = oldpage; 3325 used = oldpage;
3323 unused = newpage; 3326 unused = newpage;
@@ -3353,7 +3356,7 @@ void mem_cgroup_end_migration(struct mem_cgroup *mem,
3353 * So, rmdir()->pre_destroy() can be called while we do this charge. 3356 * So, rmdir()->pre_destroy() can be called while we do this charge.
3354 * In that case, we need to call pre_destroy() again. check it here. 3357 * In that case, we need to call pre_destroy() again. check it here.
3355 */ 3358 */
3356 cgroup_release_and_wakeup_rmdir(&mem->css); 3359 cgroup_release_and_wakeup_rmdir(&memcg->css);
3357} 3360}
3358 3361
3359#ifdef CONFIG_DEBUG_VM 3362#ifdef CONFIG_DEBUG_VM
@@ -3432,7 +3435,7 @@ static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3432 /* 3435 /*
3433 * Rather than hide all in some function, I do this in 3436 * Rather than hide all in some function, I do this in
3434 * open coded manner. You see what this really does. 3437 * open coded manner. You see what this really does.
3435 * We have to guarantee mem->res.limit < mem->memsw.limit. 3438 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3436 */ 3439 */
3437 mutex_lock(&set_limit_mutex); 3440 mutex_lock(&set_limit_mutex);
3438 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3441 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
@@ -3494,7 +3497,7 @@ static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3494 /* 3497 /*
3495 * Rather than hide all in some function, I do this in 3498 * Rather than hide all in some function, I do this in
3496 * open coded manner. You see what this really does. 3499 * open coded manner. You see what this really does.
3497 * We have to guarantee mem->res.limit < mem->memsw.limit. 3500 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3498 */ 3501 */
3499 mutex_lock(&set_limit_mutex); 3502 mutex_lock(&set_limit_mutex);
3500 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3503 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
@@ -3632,7 +3635,7 @@ unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3632 * This routine traverse page_cgroup in given list and drop them all. 3635 * This routine traverse page_cgroup in given list and drop them all.
3633 * *And* this routine doesn't reclaim page itself, just removes page_cgroup. 3636 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3634 */ 3637 */
3635static int mem_cgroup_force_empty_list(struct mem_cgroup *mem, 3638static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3636 int node, int zid, enum lru_list lru) 3639 int node, int zid, enum lru_list lru)
3637{ 3640{
3638 struct zone *zone; 3641 struct zone *zone;
@@ -3643,7 +3646,7 @@ static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3643 int ret = 0; 3646 int ret = 0;
3644 3647
3645 zone = &NODE_DATA(node)->node_zones[zid]; 3648 zone = &NODE_DATA(node)->node_zones[zid];
3646 mz = mem_cgroup_zoneinfo(mem, node, zid); 3649 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3647 list = &mz->lists[lru]; 3650 list = &mz->lists[lru];
3648 3651
3649 loop = MEM_CGROUP_ZSTAT(mz, lru); 3652 loop = MEM_CGROUP_ZSTAT(mz, lru);
@@ -3670,7 +3673,7 @@ static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3670 3673
3671 page = lookup_cgroup_page(pc); 3674 page = lookup_cgroup_page(pc);
3672 3675
3673 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL); 3676 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3674 if (ret == -ENOMEM) 3677 if (ret == -ENOMEM)
3675 break; 3678 break;
3676 3679
@@ -3691,14 +3694,14 @@ static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3691 * make mem_cgroup's charge to be 0 if there is no task. 3694 * make mem_cgroup's charge to be 0 if there is no task.
3692 * This enables deleting this mem_cgroup. 3695 * This enables deleting this mem_cgroup.
3693 */ 3696 */
3694static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all) 3697static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3695{ 3698{
3696 int ret; 3699 int ret;
3697 int node, zid, shrink; 3700 int node, zid, shrink;
3698 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3701 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3699 struct cgroup *cgrp = mem->css.cgroup; 3702 struct cgroup *cgrp = memcg->css.cgroup;
3700 3703
3701 css_get(&mem->css); 3704 css_get(&memcg->css);
3702 3705
3703 shrink = 0; 3706 shrink = 0;
3704 /* should free all ? */ 3707 /* should free all ? */
@@ -3714,14 +3717,14 @@ move_account:
3714 goto out; 3717 goto out;
3715 /* This is for making all *used* pages to be on LRU. */ 3718 /* This is for making all *used* pages to be on LRU. */
3716 lru_add_drain_all(); 3719 lru_add_drain_all();
3717 drain_all_stock_sync(mem); 3720 drain_all_stock_sync(memcg);
3718 ret = 0; 3721 ret = 0;
3719 mem_cgroup_start_move(mem); 3722 mem_cgroup_start_move(memcg);
3720 for_each_node_state(node, N_HIGH_MEMORY) { 3723 for_each_node_state(node, N_HIGH_MEMORY) {
3721 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { 3724 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3722 enum lru_list l; 3725 enum lru_list l;
3723 for_each_lru(l) { 3726 for_each_lru(l) {
3724 ret = mem_cgroup_force_empty_list(mem, 3727 ret = mem_cgroup_force_empty_list(memcg,
3725 node, zid, l); 3728 node, zid, l);
3726 if (ret) 3729 if (ret)
3727 break; 3730 break;
@@ -3730,16 +3733,16 @@ move_account:
3730 if (ret) 3733 if (ret)
3731 break; 3734 break;
3732 } 3735 }
3733 mem_cgroup_end_move(mem); 3736 mem_cgroup_end_move(memcg);
3734 memcg_oom_recover(mem); 3737 memcg_oom_recover(memcg);
3735 /* it seems parent cgroup doesn't have enough mem */ 3738 /* it seems parent cgroup doesn't have enough mem */
3736 if (ret == -ENOMEM) 3739 if (ret == -ENOMEM)
3737 goto try_to_free; 3740 goto try_to_free;
3738 cond_resched(); 3741 cond_resched();
3739 /* "ret" should also be checked to ensure all lists are empty. */ 3742 /* "ret" should also be checked to ensure all lists are empty. */
3740 } while (mem->res.usage > 0 || ret); 3743 } while (memcg->res.usage > 0 || ret);
3741out: 3744out:
3742 css_put(&mem->css); 3745 css_put(&memcg->css);
3743 return ret; 3746 return ret;
3744 3747
3745try_to_free: 3748try_to_free:
@@ -3752,14 +3755,14 @@ try_to_free:
3752 lru_add_drain_all(); 3755 lru_add_drain_all();
3753 /* try to free all pages in this cgroup */ 3756 /* try to free all pages in this cgroup */
3754 shrink = 1; 3757 shrink = 1;
3755 while (nr_retries && mem->res.usage > 0) { 3758 while (nr_retries && memcg->res.usage > 0) {
3756 int progress; 3759 int progress;
3757 3760
3758 if (signal_pending(current)) { 3761 if (signal_pending(current)) {
3759 ret = -EINTR; 3762 ret = -EINTR;
3760 goto out; 3763 goto out;
3761 } 3764 }
3762 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL, 3765 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3763 false); 3766 false);
3764 if (!progress) { 3767 if (!progress) {
3765 nr_retries--; 3768 nr_retries--;
@@ -3788,12 +3791,12 @@ static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3788 u64 val) 3791 u64 val)
3789{ 3792{
3790 int retval = 0; 3793 int retval = 0;
3791 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 3794 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3792 struct cgroup *parent = cont->parent; 3795 struct cgroup *parent = cont->parent;
3793 struct mem_cgroup *parent_mem = NULL; 3796 struct mem_cgroup *parent_memcg = NULL;
3794 3797
3795 if (parent) 3798 if (parent)
3796 parent_mem = mem_cgroup_from_cont(parent); 3799 parent_memcg = mem_cgroup_from_cont(parent);
3797 3800
3798 cgroup_lock(); 3801 cgroup_lock();
3799 /* 3802 /*
@@ -3804,10 +3807,10 @@ static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3804 * For the root cgroup, parent_mem is NULL, we allow value to be 3807 * For the root cgroup, parent_mem is NULL, we allow value to be
3805 * set if there are no children. 3808 * set if there are no children.
3806 */ 3809 */
3807 if ((!parent_mem || !parent_mem->use_hierarchy) && 3810 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3808 (val == 1 || val == 0)) { 3811 (val == 1 || val == 0)) {
3809 if (list_empty(&cont->children)) 3812 if (list_empty(&cont->children))
3810 mem->use_hierarchy = val; 3813 memcg->use_hierarchy = val;
3811 else 3814 else
3812 retval = -EBUSY; 3815 retval = -EBUSY;
3813 } else 3816 } else
@@ -3818,14 +3821,14 @@ static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3818} 3821}
3819 3822
3820 3823
3821static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem, 3824static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3822 enum mem_cgroup_stat_index idx) 3825 enum mem_cgroup_stat_index idx)
3823{ 3826{
3824 struct mem_cgroup *iter; 3827 struct mem_cgroup *iter;
3825 long val = 0; 3828 long val = 0;
3826 3829
3827 /* Per-cpu values can be negative, use a signed accumulator */ 3830 /* Per-cpu values can be negative, use a signed accumulator */
3828 for_each_mem_cgroup_tree(iter, mem) 3831 for_each_mem_cgroup_tree(iter, memcg)
3829 val += mem_cgroup_read_stat(iter, idx); 3832 val += mem_cgroup_read_stat(iter, idx);
3830 3833
3831 if (val < 0) /* race ? */ 3834 if (val < 0) /* race ? */
@@ -3833,29 +3836,29 @@ static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3833 return val; 3836 return val;
3834} 3837}
3835 3838
3836static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap) 3839static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3837{ 3840{
3838 u64 val; 3841 u64 val;
3839 3842
3840 if (!mem_cgroup_is_root(mem)) { 3843 if (!mem_cgroup_is_root(memcg)) {
3841 if (!swap) 3844 if (!swap)
3842 return res_counter_read_u64(&mem->res, RES_USAGE); 3845 return res_counter_read_u64(&memcg->res, RES_USAGE);
3843 else 3846 else
3844 return res_counter_read_u64(&mem->memsw, RES_USAGE); 3847 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3845 } 3848 }
3846 3849
3847 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE); 3850 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3848 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS); 3851 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3849 3852
3850 if (swap) 3853 if (swap)
3851 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT); 3854 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3852 3855
3853 return val << PAGE_SHIFT; 3856 return val << PAGE_SHIFT;
3854} 3857}
3855 3858
3856static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) 3859static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3857{ 3860{
3858 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 3861 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3859 u64 val; 3862 u64 val;
3860 int type, name; 3863 int type, name;
3861 3864
@@ -3864,15 +3867,15 @@ static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3864 switch (type) { 3867 switch (type) {
3865 case _MEM: 3868 case _MEM:
3866 if (name == RES_USAGE) 3869 if (name == RES_USAGE)
3867 val = mem_cgroup_usage(mem, false); 3870 val = mem_cgroup_usage(memcg, false);
3868 else 3871 else
3869 val = res_counter_read_u64(&mem->res, name); 3872 val = res_counter_read_u64(&memcg->res, name);
3870 break; 3873 break;
3871 case _MEMSWAP: 3874 case _MEMSWAP:
3872 if (name == RES_USAGE) 3875 if (name == RES_USAGE)
3873 val = mem_cgroup_usage(mem, true); 3876 val = mem_cgroup_usage(memcg, true);
3874 else 3877 else
3875 val = res_counter_read_u64(&mem->memsw, name); 3878 val = res_counter_read_u64(&memcg->memsw, name);
3876 break; 3879 break;
3877 default: 3880 default:
3878 BUG(); 3881 BUG();
@@ -3960,24 +3963,24 @@ out:
3960 3963
3961static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 3964static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3962{ 3965{
3963 struct mem_cgroup *mem; 3966 struct mem_cgroup *memcg;
3964 int type, name; 3967 int type, name;
3965 3968
3966 mem = mem_cgroup_from_cont(cont); 3969 memcg = mem_cgroup_from_cont(cont);
3967 type = MEMFILE_TYPE(event); 3970 type = MEMFILE_TYPE(event);
3968 name = MEMFILE_ATTR(event); 3971 name = MEMFILE_ATTR(event);
3969 switch (name) { 3972 switch (name) {
3970 case RES_MAX_USAGE: 3973 case RES_MAX_USAGE:
3971 if (type == _MEM) 3974 if (type == _MEM)
3972 res_counter_reset_max(&mem->res); 3975 res_counter_reset_max(&memcg->res);
3973 else 3976 else
3974 res_counter_reset_max(&mem->memsw); 3977 res_counter_reset_max(&memcg->memsw);
3975 break; 3978 break;
3976 case RES_FAILCNT: 3979 case RES_FAILCNT:
3977 if (type == _MEM) 3980 if (type == _MEM)
3978 res_counter_reset_failcnt(&mem->res); 3981 res_counter_reset_failcnt(&memcg->res);
3979 else 3982 else
3980 res_counter_reset_failcnt(&mem->memsw); 3983 res_counter_reset_failcnt(&memcg->memsw);
3981 break; 3984 break;
3982 } 3985 }
3983 3986
@@ -3994,7 +3997,7 @@ static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3994static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 3997static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3995 struct cftype *cft, u64 val) 3998 struct cftype *cft, u64 val)
3996{ 3999{
3997 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); 4000 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3998 4001
3999 if (val >= (1 << NR_MOVE_TYPE)) 4002 if (val >= (1 << NR_MOVE_TYPE))
4000 return -EINVAL; 4003 return -EINVAL;
@@ -4004,7 +4007,7 @@ static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4004 * inconsistent. 4007 * inconsistent.
4005 */ 4008 */
4006 cgroup_lock(); 4009 cgroup_lock();
4007 mem->move_charge_at_immigrate = val; 4010 memcg->move_charge_at_immigrate = val;
4008 cgroup_unlock(); 4011 cgroup_unlock();
4009 4012
4010 return 0; 4013 return 0;
@@ -4061,49 +4064,49 @@ struct {
4061 4064
4062 4065
4063static void 4066static void
4064mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) 4067mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4065{ 4068{
4066 s64 val; 4069 s64 val;
4067 4070
4068 /* per cpu stat */ 4071 /* per cpu stat */
4069 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE); 4072 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4070 s->stat[MCS_CACHE] += val * PAGE_SIZE; 4073 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4071 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS); 4074 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4072 s->stat[MCS_RSS] += val * PAGE_SIZE; 4075 s->stat[MCS_RSS] += val * PAGE_SIZE;
4073 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED); 4076 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4074 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE; 4077 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4075 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN); 4078 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4076 s->stat[MCS_PGPGIN] += val; 4079 s->stat[MCS_PGPGIN] += val;
4077 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT); 4080 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4078 s->stat[MCS_PGPGOUT] += val; 4081 s->stat[MCS_PGPGOUT] += val;
4079 if (do_swap_account) { 4082 if (do_swap_account) {
4080 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT); 4083 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4081 s->stat[MCS_SWAP] += val * PAGE_SIZE; 4084 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4082 } 4085 }
4083 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT); 4086 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4084 s->stat[MCS_PGFAULT] += val; 4087 s->stat[MCS_PGFAULT] += val;
4085 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT); 4088 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4086 s->stat[MCS_PGMAJFAULT] += val; 4089 s->stat[MCS_PGMAJFAULT] += val;
4087 4090
4088 /* per zone stat */ 4091 /* per zone stat */
4089 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON)); 4092 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4090 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE; 4093 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4091 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON)); 4094 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4092 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE; 4095 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4093 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE)); 4096 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4094 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE; 4097 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4095 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE)); 4098 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4096 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE; 4099 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4097 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE)); 4100 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4098 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE; 4101 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4099} 4102}
4100 4103
4101static void 4104static void
4102mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) 4105mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4103{ 4106{
4104 struct mem_cgroup *iter; 4107 struct mem_cgroup *iter;
4105 4108
4106 for_each_mem_cgroup_tree(iter, mem) 4109 for_each_mem_cgroup_tree(iter, memcg)
4107 mem_cgroup_get_local_stat(iter, s); 4110 mem_cgroup_get_local_stat(iter, s);
4108} 4111}
4109 4112
@@ -4327,20 +4330,20 @@ static int compare_thresholds(const void *a, const void *b)
4327 return _a->threshold - _b->threshold; 4330 return _a->threshold - _b->threshold;
4328} 4331}
4329 4332
4330static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem) 4333static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4331{ 4334{
4332 struct mem_cgroup_eventfd_list *ev; 4335 struct mem_cgroup_eventfd_list *ev;
4333 4336
4334 list_for_each_entry(ev, &mem->oom_notify, list) 4337 list_for_each_entry(ev, &memcg->oom_notify, list)
4335 eventfd_signal(ev->eventfd, 1); 4338 eventfd_signal(ev->eventfd, 1);
4336 return 0; 4339 return 0;
4337} 4340}
4338 4341
4339static void mem_cgroup_oom_notify(struct mem_cgroup *mem) 4342static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4340{ 4343{
4341 struct mem_cgroup *iter; 4344 struct mem_cgroup *iter;
4342 4345
4343 for_each_mem_cgroup_tree(iter, mem) 4346 for_each_mem_cgroup_tree(iter, memcg)
4344 mem_cgroup_oom_notify_cb(iter); 4347 mem_cgroup_oom_notify_cb(iter);
4345} 4348}
4346 4349
@@ -4530,7 +4533,7 @@ static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4530static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, 4533static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4531 struct cftype *cft, struct eventfd_ctx *eventfd) 4534 struct cftype *cft, struct eventfd_ctx *eventfd)
4532{ 4535{
4533 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); 4536 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4534 struct mem_cgroup_eventfd_list *ev, *tmp; 4537 struct mem_cgroup_eventfd_list *ev, *tmp;
4535 int type = MEMFILE_TYPE(cft->private); 4538 int type = MEMFILE_TYPE(cft->private);
4536 4539
@@ -4538,7 +4541,7 @@ static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4538 4541
4539 spin_lock(&memcg_oom_lock); 4542 spin_lock(&memcg_oom_lock);
4540 4543
4541 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) { 4544 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4542 if (ev->eventfd == eventfd) { 4545 if (ev->eventfd == eventfd) {
4543 list_del(&ev->list); 4546 list_del(&ev->list);
4544 kfree(ev); 4547 kfree(ev);
@@ -4551,11 +4554,11 @@ static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4551static int mem_cgroup_oom_control_read(struct cgroup *cgrp, 4554static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4552 struct cftype *cft, struct cgroup_map_cb *cb) 4555 struct cftype *cft, struct cgroup_map_cb *cb)
4553{ 4556{
4554 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); 4557 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4555 4558
4556 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable); 4559 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4557 4560
4558 if (atomic_read(&mem->under_oom)) 4561 if (atomic_read(&memcg->under_oom))
4559 cb->fill(cb, "under_oom", 1); 4562 cb->fill(cb, "under_oom", 1);
4560 else 4563 else
4561 cb->fill(cb, "under_oom", 0); 4564 cb->fill(cb, "under_oom", 0);
@@ -4565,7 +4568,7 @@ static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4565static int mem_cgroup_oom_control_write(struct cgroup *cgrp, 4568static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4566 struct cftype *cft, u64 val) 4569 struct cftype *cft, u64 val)
4567{ 4570{
4568 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); 4571 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4569 struct mem_cgroup *parent; 4572 struct mem_cgroup *parent;
4570 4573
4571 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4574 /* cannot set to root cgroup and only 0 and 1 are allowed */
@@ -4577,13 +4580,13 @@ static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4577 cgroup_lock(); 4580 cgroup_lock();
4578 /* oom-kill-disable is a flag for subhierarchy. */ 4581 /* oom-kill-disable is a flag for subhierarchy. */
4579 if ((parent->use_hierarchy) || 4582 if ((parent->use_hierarchy) ||
4580 (mem->use_hierarchy && !list_empty(&cgrp->children))) { 4583 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4581 cgroup_unlock(); 4584 cgroup_unlock();
4582 return -EINVAL; 4585 return -EINVAL;
4583 } 4586 }
4584 mem->oom_kill_disable = val; 4587 memcg->oom_kill_disable = val;
4585 if (!val) 4588 if (!val)
4586 memcg_oom_recover(mem); 4589 memcg_oom_recover(memcg);
4587 cgroup_unlock(); 4590 cgroup_unlock();
4588 return 0; 4591 return 0;
4589} 4592}
@@ -4719,7 +4722,7 @@ static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4719} 4722}
4720#endif 4723#endif
4721 4724
4722static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) 4725static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4723{ 4726{
4724 struct mem_cgroup_per_node *pn; 4727 struct mem_cgroup_per_node *pn;
4725 struct mem_cgroup_per_zone *mz; 4728 struct mem_cgroup_per_zone *mz;
@@ -4739,21 +4742,21 @@ static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4739 if (!pn) 4742 if (!pn)
4740 return 1; 4743 return 1;
4741 4744
4742 mem->info.nodeinfo[node] = pn; 4745 memcg->info.nodeinfo[node] = pn;
4743 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4746 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4744 mz = &pn->zoneinfo[zone]; 4747 mz = &pn->zoneinfo[zone];
4745 for_each_lru(l) 4748 for_each_lru(l)
4746 INIT_LIST_HEAD(&mz->lists[l]); 4749 INIT_LIST_HEAD(&mz->lists[l]);
4747 mz->usage_in_excess = 0; 4750 mz->usage_in_excess = 0;
4748 mz->on_tree = false; 4751 mz->on_tree = false;
4749 mz->mem = mem; 4752 mz->mem = memcg;
4750 } 4753 }
4751 return 0; 4754 return 0;
4752} 4755}
4753 4756
4754static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) 4757static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4755{ 4758{
4756 kfree(mem->info.nodeinfo[node]); 4759 kfree(memcg->info.nodeinfo[node]);
4757} 4760}
4758 4761
4759static struct mem_cgroup *mem_cgroup_alloc(void) 4762static struct mem_cgroup *mem_cgroup_alloc(void)
@@ -4795,51 +4798,51 @@ out_free:
4795 * Removal of cgroup itself succeeds regardless of refs from swap. 4798 * Removal of cgroup itself succeeds regardless of refs from swap.
4796 */ 4799 */
4797 4800
4798static void __mem_cgroup_free(struct mem_cgroup *mem) 4801static void __mem_cgroup_free(struct mem_cgroup *memcg)
4799{ 4802{
4800 int node; 4803 int node;
4801 4804
4802 mem_cgroup_remove_from_trees(mem); 4805 mem_cgroup_remove_from_trees(memcg);
4803 free_css_id(&mem_cgroup_subsys, &mem->css); 4806 free_css_id(&mem_cgroup_subsys, &memcg->css);
4804 4807
4805 for_each_node_state(node, N_POSSIBLE) 4808 for_each_node_state(node, N_POSSIBLE)
4806 free_mem_cgroup_per_zone_info(mem, node); 4809 free_mem_cgroup_per_zone_info(memcg, node);
4807 4810
4808 free_percpu(mem->stat); 4811 free_percpu(memcg->stat);
4809 if (sizeof(struct mem_cgroup) < PAGE_SIZE) 4812 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4810 kfree(mem); 4813 kfree(memcg);
4811 else 4814 else
4812 vfree(mem); 4815 vfree(memcg);
4813} 4816}
4814 4817
4815static void mem_cgroup_get(struct mem_cgroup *mem) 4818static void mem_cgroup_get(struct mem_cgroup *memcg)
4816{ 4819{
4817 atomic_inc(&mem->refcnt); 4820 atomic_inc(&memcg->refcnt);
4818} 4821}
4819 4822
4820static void __mem_cgroup_put(struct mem_cgroup *mem, int count) 4823static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4821{ 4824{
4822 if (atomic_sub_and_test(count, &mem->refcnt)) { 4825 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4823 struct mem_cgroup *parent = parent_mem_cgroup(mem); 4826 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4824 __mem_cgroup_free(mem); 4827 __mem_cgroup_free(memcg);
4825 if (parent) 4828 if (parent)
4826 mem_cgroup_put(parent); 4829 mem_cgroup_put(parent);
4827 } 4830 }
4828} 4831}
4829 4832
4830static void mem_cgroup_put(struct mem_cgroup *mem) 4833static void mem_cgroup_put(struct mem_cgroup *memcg)
4831{ 4834{
4832 __mem_cgroup_put(mem, 1); 4835 __mem_cgroup_put(memcg, 1);
4833} 4836}
4834 4837
4835/* 4838/*
4836 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 4839 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4837 */ 4840 */
4838static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem) 4841static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4839{ 4842{
4840 if (!mem->res.parent) 4843 if (!memcg->res.parent)
4841 return NULL; 4844 return NULL;
4842 return mem_cgroup_from_res_counter(mem->res.parent, res); 4845 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4843} 4846}
4844 4847
4845#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 4848#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
@@ -4882,16 +4885,16 @@ static int mem_cgroup_soft_limit_tree_init(void)
4882static struct cgroup_subsys_state * __ref 4885static struct cgroup_subsys_state * __ref
4883mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) 4886mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4884{ 4887{
4885 struct mem_cgroup *mem, *parent; 4888 struct mem_cgroup *memcg, *parent;
4886 long error = -ENOMEM; 4889 long error = -ENOMEM;
4887 int node; 4890 int node;
4888 4891
4889 mem = mem_cgroup_alloc(); 4892 memcg = mem_cgroup_alloc();
4890 if (!mem) 4893 if (!memcg)
4891 return ERR_PTR(error); 4894 return ERR_PTR(error);
4892 4895
4893 for_each_node_state(node, N_POSSIBLE) 4896 for_each_node_state(node, N_POSSIBLE)
4894 if (alloc_mem_cgroup_per_zone_info(mem, node)) 4897 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4895 goto free_out; 4898 goto free_out;
4896 4899
4897 /* root ? */ 4900 /* root ? */
@@ -4899,7 +4902,7 @@ mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4899 int cpu; 4902 int cpu;
4900 enable_swap_cgroup(); 4903 enable_swap_cgroup();
4901 parent = NULL; 4904 parent = NULL;
4902 root_mem_cgroup = mem; 4905 root_mem_cgroup = memcg;
4903 if (mem_cgroup_soft_limit_tree_init()) 4906 if (mem_cgroup_soft_limit_tree_init())
4904 goto free_out; 4907 goto free_out;
4905 for_each_possible_cpu(cpu) { 4908 for_each_possible_cpu(cpu) {
@@ -4910,13 +4913,13 @@ mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4910 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 4913 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4911 } else { 4914 } else {
4912 parent = mem_cgroup_from_cont(cont->parent); 4915 parent = mem_cgroup_from_cont(cont->parent);
4913 mem->use_hierarchy = parent->use_hierarchy; 4916 memcg->use_hierarchy = parent->use_hierarchy;
4914 mem->oom_kill_disable = parent->oom_kill_disable; 4917 memcg->oom_kill_disable = parent->oom_kill_disable;
4915 } 4918 }
4916 4919
4917 if (parent && parent->use_hierarchy) { 4920 if (parent && parent->use_hierarchy) {
4918 res_counter_init(&mem->res, &parent->res); 4921 res_counter_init(&memcg->res, &parent->res);
4919 res_counter_init(&mem->memsw, &parent->memsw); 4922 res_counter_init(&memcg->memsw, &parent->memsw);
4920 /* 4923 /*
4921 * We increment refcnt of the parent to ensure that we can 4924 * We increment refcnt of the parent to ensure that we can
4922 * safely access it on res_counter_charge/uncharge. 4925 * safely access it on res_counter_charge/uncharge.
@@ -4925,21 +4928,21 @@ mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4925 */ 4928 */
4926 mem_cgroup_get(parent); 4929 mem_cgroup_get(parent);
4927 } else { 4930 } else {
4928 res_counter_init(&mem->res, NULL); 4931 res_counter_init(&memcg->res, NULL);
4929 res_counter_init(&mem->memsw, NULL); 4932 res_counter_init(&memcg->memsw, NULL);
4930 } 4933 }
4931 mem->last_scanned_child = 0; 4934 memcg->last_scanned_child = 0;
4932 mem->last_scanned_node = MAX_NUMNODES; 4935 memcg->last_scanned_node = MAX_NUMNODES;
4933 INIT_LIST_HEAD(&mem->oom_notify); 4936 INIT_LIST_HEAD(&memcg->oom_notify);
4934 4937
4935 if (parent) 4938 if (parent)
4936 mem->swappiness = mem_cgroup_swappiness(parent); 4939 memcg->swappiness = mem_cgroup_swappiness(parent);
4937 atomic_set(&mem->refcnt, 1); 4940 atomic_set(&memcg->refcnt, 1);
4938 mem->move_charge_at_immigrate = 0; 4941 memcg->move_charge_at_immigrate = 0;
4939 mutex_init(&mem->thresholds_lock); 4942 mutex_init(&memcg->thresholds_lock);
4940 return &mem->css; 4943 return &memcg->css;
4941free_out: 4944free_out:
4942 __mem_cgroup_free(mem); 4945 __mem_cgroup_free(memcg);
4943 root_mem_cgroup = NULL; 4946 root_mem_cgroup = NULL;
4944 return ERR_PTR(error); 4947 return ERR_PTR(error);
4945} 4948}
@@ -4947,17 +4950,17 @@ free_out:
4947static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss, 4950static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4948 struct cgroup *cont) 4951 struct cgroup *cont)
4949{ 4952{
4950 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 4953 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4951 4954
4952 return mem_cgroup_force_empty(mem, false); 4955 return mem_cgroup_force_empty(memcg, false);
4953} 4956}
4954 4957
4955static void mem_cgroup_destroy(struct cgroup_subsys *ss, 4958static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4956 struct cgroup *cont) 4959 struct cgroup *cont)
4957{ 4960{
4958 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 4961 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4959 4962
4960 mem_cgroup_put(mem); 4963 mem_cgroup_put(memcg);
4961} 4964}
4962 4965
4963static int mem_cgroup_populate(struct cgroup_subsys *ss, 4966static int mem_cgroup_populate(struct cgroup_subsys *ss,
@@ -4980,9 +4983,9 @@ static int mem_cgroup_do_precharge(unsigned long count)
4980{ 4983{
4981 int ret = 0; 4984 int ret = 0;
4982 int batch_count = PRECHARGE_COUNT_AT_ONCE; 4985 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4983 struct mem_cgroup *mem = mc.to; 4986 struct mem_cgroup *memcg = mc.to;
4984 4987
4985 if (mem_cgroup_is_root(mem)) { 4988 if (mem_cgroup_is_root(memcg)) {
4986 mc.precharge += count; 4989 mc.precharge += count;
4987 /* we don't need css_get for root */ 4990 /* we don't need css_get for root */
4988 return ret; 4991 return ret;
@@ -4991,16 +4994,16 @@ static int mem_cgroup_do_precharge(unsigned long count)
4991 if (count > 1) { 4994 if (count > 1) {
4992 struct res_counter *dummy; 4995 struct res_counter *dummy;
4993 /* 4996 /*
4994 * "mem" cannot be under rmdir() because we've already checked 4997 * "memcg" cannot be under rmdir() because we've already checked
4995 * by cgroup_lock_live_cgroup() that it is not removed and we 4998 * by cgroup_lock_live_cgroup() that it is not removed and we
4996 * are still under the same cgroup_mutex. So we can postpone 4999 * are still under the same cgroup_mutex. So we can postpone
4997 * css_get(). 5000 * css_get().
4998 */ 5001 */
4999 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy)) 5002 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5000 goto one_by_one; 5003 goto one_by_one;
5001 if (do_swap_account && res_counter_charge(&mem->memsw, 5004 if (do_swap_account && res_counter_charge(&memcg->memsw,
5002 PAGE_SIZE * count, &dummy)) { 5005 PAGE_SIZE * count, &dummy)) {
5003 res_counter_uncharge(&mem->res, PAGE_SIZE * count); 5006 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5004 goto one_by_one; 5007 goto one_by_one;
5005 } 5008 }
5006 mc.precharge += count; 5009 mc.precharge += count;
@@ -5017,8 +5020,9 @@ one_by_one:
5017 batch_count = PRECHARGE_COUNT_AT_ONCE; 5020 batch_count = PRECHARGE_COUNT_AT_ONCE;
5018 cond_resched(); 5021 cond_resched();
5019 } 5022 }
5020 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false); 5023 ret = __mem_cgroup_try_charge(NULL,
5021 if (ret || !mem) 5024 GFP_KERNEL, 1, &memcg, false);
5025 if (ret || !memcg)
5022 /* mem_cgroup_clear_mc() will do uncharge later */ 5026 /* mem_cgroup_clear_mc() will do uncharge later */
5023 return -ENOMEM; 5027 return -ENOMEM;
5024 mc.precharge++; 5028 mc.precharge++;
@@ -5292,13 +5296,13 @@ static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5292 struct task_struct *p) 5296 struct task_struct *p)
5293{ 5297{
5294 int ret = 0; 5298 int ret = 0;
5295 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup); 5299 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5296 5300
5297 if (mem->move_charge_at_immigrate) { 5301 if (memcg->move_charge_at_immigrate) {
5298 struct mm_struct *mm; 5302 struct mm_struct *mm;
5299 struct mem_cgroup *from = mem_cgroup_from_task(p); 5303 struct mem_cgroup *from = mem_cgroup_from_task(p);
5300 5304
5301 VM_BUG_ON(from == mem); 5305 VM_BUG_ON(from == memcg);
5302 5306
5303 mm = get_task_mm(p); 5307 mm = get_task_mm(p);
5304 if (!mm) 5308 if (!mm)
@@ -5313,7 +5317,7 @@ static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5313 mem_cgroup_start_move(from); 5317 mem_cgroup_start_move(from);
5314 spin_lock(&mc.lock); 5318 spin_lock(&mc.lock);
5315 mc.from = from; 5319 mc.from = from;
5316 mc.to = mem; 5320 mc.to = memcg;
5317 spin_unlock(&mc.lock); 5321 spin_unlock(&mc.lock);
5318 /* We set mc.moving_task later */ 5322 /* We set mc.moving_task later */
5319 5323