diff options
| author | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-04-19 17:31:52 -0400 |
|---|---|---|
| committer | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-04-19 17:31:52 -0400 |
| commit | f70a290e8a889caa905ab7650c696f2bb299be1a (patch) | |
| tree | 56f0886d839499e9f522f189999024b3e86f9be2 /litmus/sched_pfp.c | |
| parent | fcc9d2e5a6c89d22b8b773a64fb4ad21ac318446 (diff) | |
| parent | 7ef4a793a624c6e66c16ca1051847f75161f5bec (diff) | |
Merge branch 'wip-nested-locking' into tegra-nested-lockingwip-nested-locking
Conflicts:
Makefile
include/linux/fs.h
Diffstat (limited to 'litmus/sched_pfp.c')
| -rw-r--r-- | litmus/sched_pfp.c | 1751 |
1 files changed, 1751 insertions, 0 deletions
diff --git a/litmus/sched_pfp.c b/litmus/sched_pfp.c new file mode 100644 index 00000000000..aade0904491 --- /dev/null +++ b/litmus/sched_pfp.c | |||
| @@ -0,0 +1,1751 @@ | |||
| 1 | /* | ||
| 2 | * litmus/sched_pfp.c | ||
| 3 | * | ||
| 4 | * Implementation of partitioned fixed-priority scheduling. | ||
| 5 | * Based on PSN-EDF. | ||
| 6 | */ | ||
| 7 | |||
| 8 | #include <linux/percpu.h> | ||
| 9 | #include <linux/sched.h> | ||
| 10 | #include <linux/list.h> | ||
| 11 | #include <linux/spinlock.h> | ||
| 12 | #include <linux/module.h> | ||
| 13 | |||
| 14 | #include <litmus/litmus.h> | ||
| 15 | #include <litmus/wait.h> | ||
| 16 | #include <litmus/jobs.h> | ||
| 17 | #include <litmus/preempt.h> | ||
| 18 | #include <litmus/fp_common.h> | ||
| 19 | #include <litmus/sched_plugin.h> | ||
| 20 | #include <litmus/sched_trace.h> | ||
| 21 | #include <litmus/trace.h> | ||
| 22 | #include <litmus/budget.h> | ||
| 23 | |||
| 24 | #include <linux/uaccess.h> | ||
| 25 | |||
| 26 | |||
| 27 | typedef struct { | ||
| 28 | rt_domain_t domain; | ||
| 29 | struct fp_prio_queue ready_queue; | ||
| 30 | int cpu; | ||
| 31 | struct task_struct* scheduled; /* only RT tasks */ | ||
| 32 | /* | ||
| 33 | * scheduling lock slock | ||
| 34 | * protects the domain and serializes scheduling decisions | ||
| 35 | */ | ||
| 36 | #define slock domain.ready_lock | ||
| 37 | |||
| 38 | } pfp_domain_t; | ||
| 39 | |||
| 40 | DEFINE_PER_CPU(pfp_domain_t, pfp_domains); | ||
| 41 | |||
| 42 | pfp_domain_t* pfp_doms[NR_CPUS]; | ||
| 43 | |||
| 44 | #define local_pfp (&__get_cpu_var(pfp_domains)) | ||
| 45 | #define remote_dom(cpu) (&per_cpu(pfp_domains, cpu).domain) | ||
| 46 | #define remote_pfp(cpu) (&per_cpu(pfp_domains, cpu)) | ||
| 47 | #define task_dom(task) remote_dom(get_partition(task)) | ||
| 48 | #define task_pfp(task) remote_pfp(get_partition(task)) | ||
| 49 | |||
| 50 | /* we assume the lock is being held */ | ||
| 51 | static void preempt(pfp_domain_t *pfp) | ||
| 52 | { | ||
| 53 | preempt_if_preemptable(pfp->scheduled, pfp->cpu); | ||
| 54 | } | ||
| 55 | |||
| 56 | static unsigned int priority_index(struct task_struct* t) | ||
| 57 | { | ||
| 58 | #ifdef CONFIG_LITMUS_LOCKING | ||
| 59 | if (unlikely(t->rt_param.inh_task)) | ||
| 60 | /* use effective priority */ | ||
| 61 | t = t->rt_param.inh_task; | ||
| 62 | |||
| 63 | if (is_priority_boosted(t)) { | ||
| 64 | /* zero is reserved for priority-boosted tasks */ | ||
| 65 | return 0; | ||
| 66 | } else | ||
| 67 | #endif | ||
| 68 | return get_priority(t); | ||
| 69 | } | ||
| 70 | |||
| 71 | |||
| 72 | static void pfp_release_jobs(rt_domain_t* rt, struct bheap* tasks) | ||
| 73 | { | ||
| 74 | pfp_domain_t *pfp = container_of(rt, pfp_domain_t, domain); | ||
| 75 | unsigned long flags; | ||
| 76 | struct task_struct* t; | ||
| 77 | struct bheap_node* hn; | ||
| 78 | |||
| 79 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
| 80 | |||
| 81 | while (!bheap_empty(tasks)) { | ||
| 82 | hn = bheap_take(fp_ready_order, tasks); | ||
| 83 | t = bheap2task(hn); | ||
| 84 | TRACE_TASK(t, "released (part:%d prio:%d)\n", | ||
| 85 | get_partition(t), get_priority(t)); | ||
| 86 | fp_prio_add(&pfp->ready_queue, t, priority_index(t)); | ||
| 87 | } | ||
| 88 | |||
| 89 | /* do we need to preempt? */ | ||
| 90 | if (fp_higher_prio(fp_prio_peek(&pfp->ready_queue), pfp->scheduled)) { | ||
| 91 | TRACE_CUR("preempted by new release\n"); | ||
| 92 | preempt(pfp); | ||
| 93 | } | ||
| 94 | |||
| 95 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
| 96 | } | ||
| 97 | |||
| 98 | static void pfp_preempt_check(pfp_domain_t *pfp) | ||
| 99 | { | ||
| 100 | if (fp_higher_prio(fp_prio_peek(&pfp->ready_queue), pfp->scheduled)) | ||
| 101 | preempt(pfp); | ||
| 102 | } | ||
| 103 | |||
| 104 | static void pfp_domain_init(pfp_domain_t* pfp, | ||
| 105 | int cpu) | ||
| 106 | { | ||
| 107 | fp_domain_init(&pfp->domain, NULL, pfp_release_jobs); | ||
| 108 | pfp->cpu = cpu; | ||
| 109 | pfp->scheduled = NULL; | ||
| 110 | fp_prio_queue_init(&pfp->ready_queue); | ||
| 111 | } | ||
| 112 | |||
| 113 | static void requeue(struct task_struct* t, pfp_domain_t *pfp) | ||
| 114 | { | ||
| 115 | BUG_ON(!is_running(t)); | ||
| 116 | |||
| 117 | tsk_rt(t)->completed = 0; | ||
| 118 | if (is_released(t, litmus_clock())) | ||
| 119 | fp_prio_add(&pfp->ready_queue, t, priority_index(t)); | ||
| 120 | else | ||
| 121 | add_release(&pfp->domain, t); /* it has got to wait */ | ||
| 122 | } | ||
| 123 | |||
| 124 | static void job_completion(struct task_struct* t, int forced) | ||
| 125 | { | ||
| 126 | sched_trace_task_completion(t,forced); | ||
| 127 | TRACE_TASK(t, "job_completion().\n"); | ||
| 128 | |||
| 129 | tsk_rt(t)->completed = 1; | ||
| 130 | prepare_for_next_period(t); | ||
| 131 | if (is_released(t, litmus_clock())) | ||
| 132 | sched_trace_task_release(t); | ||
| 133 | } | ||
| 134 | |||
| 135 | static void pfp_tick(struct task_struct *t) | ||
| 136 | { | ||
| 137 | pfp_domain_t *pfp = local_pfp; | ||
| 138 | |||
| 139 | /* Check for inconsistency. We don't need the lock for this since | ||
| 140 | * ->scheduled is only changed in schedule, which obviously is not | ||
| 141 | * executing in parallel on this CPU | ||
| 142 | */ | ||
| 143 | BUG_ON(is_realtime(t) && t != pfp->scheduled); | ||
| 144 | |||
| 145 | if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) { | ||
| 146 | if (!is_np(t)) { | ||
| 147 | litmus_reschedule_local(); | ||
| 148 | TRACE("pfp_scheduler_tick: " | ||
| 149 | "%d is preemptable " | ||
| 150 | " => FORCE_RESCHED\n", t->pid); | ||
| 151 | } else if (is_user_np(t)) { | ||
| 152 | TRACE("pfp_scheduler_tick: " | ||
| 153 | "%d is non-preemptable, " | ||
| 154 | "preemption delayed.\n", t->pid); | ||
| 155 | request_exit_np(t); | ||
| 156 | } | ||
| 157 | } | ||
| 158 | } | ||
| 159 | |||
| 160 | static struct task_struct* pfp_schedule(struct task_struct * prev) | ||
| 161 | { | ||
| 162 | pfp_domain_t* pfp = local_pfp; | ||
| 163 | struct task_struct* next; | ||
| 164 | |||
| 165 | int out_of_time, sleep, preempt, np, exists, blocks, resched, migrate; | ||
| 166 | |||
| 167 | raw_spin_lock(&pfp->slock); | ||
| 168 | |||
| 169 | /* sanity checking | ||
| 170 | * differently from gedf, when a task exits (dead) | ||
| 171 | * pfp->schedule may be null and prev _is_ realtime | ||
| 172 | */ | ||
| 173 | BUG_ON(pfp->scheduled && pfp->scheduled != prev); | ||
| 174 | BUG_ON(pfp->scheduled && !is_realtime(prev)); | ||
| 175 | |||
| 176 | /* (0) Determine state */ | ||
| 177 | exists = pfp->scheduled != NULL; | ||
| 178 | blocks = exists && !is_running(pfp->scheduled); | ||
| 179 | out_of_time = exists && | ||
| 180 | budget_enforced(pfp->scheduled) && | ||
| 181 | budget_exhausted(pfp->scheduled); | ||
| 182 | np = exists && is_np(pfp->scheduled); | ||
| 183 | sleep = exists && is_completed(pfp->scheduled); | ||
| 184 | migrate = exists && get_partition(pfp->scheduled) != pfp->cpu; | ||
| 185 | preempt = !blocks && (migrate || fp_preemption_needed(&pfp->ready_queue, prev)); | ||
| 186 | |||
| 187 | /* If we need to preempt do so. | ||
| 188 | * The following checks set resched to 1 in case of special | ||
| 189 | * circumstances. | ||
| 190 | */ | ||
| 191 | resched = preempt; | ||
| 192 | |||
| 193 | /* If a task blocks we have no choice but to reschedule. | ||
| 194 | */ | ||
| 195 | if (blocks) | ||
| 196 | resched = 1; | ||
| 197 | |||
| 198 | /* Request a sys_exit_np() call if we would like to preempt but cannot. | ||
| 199 | * Multiple calls to request_exit_np() don't hurt. | ||
| 200 | */ | ||
| 201 | if (np && (out_of_time || preempt || sleep)) | ||
| 202 | request_exit_np(pfp->scheduled); | ||
| 203 | |||
| 204 | /* Any task that is preemptable and either exhausts its execution | ||
| 205 | * budget or wants to sleep completes. We may have to reschedule after | ||
| 206 | * this. | ||
| 207 | */ | ||
| 208 | if (!np && (out_of_time || sleep) && !blocks && !migrate) { | ||
| 209 | job_completion(pfp->scheduled, !sleep); | ||
| 210 | resched = 1; | ||
| 211 | } | ||
| 212 | |||
| 213 | /* The final scheduling decision. Do we need to switch for some reason? | ||
| 214 | * Switch if we are in RT mode and have no task or if we need to | ||
| 215 | * resched. | ||
| 216 | */ | ||
| 217 | next = NULL; | ||
| 218 | if ((!np || blocks) && (resched || !exists)) { | ||
| 219 | /* When preempting a task that does not block, then | ||
| 220 | * re-insert it into either the ready queue or the | ||
| 221 | * release queue (if it completed). requeue() picks | ||
| 222 | * the appropriate queue. | ||
| 223 | */ | ||
| 224 | if (pfp->scheduled && !blocks && !migrate) | ||
| 225 | requeue(pfp->scheduled, pfp); | ||
| 226 | next = fp_prio_take(&pfp->ready_queue); | ||
| 227 | if (next == prev) { | ||
| 228 | struct task_struct *t = fp_prio_peek(&pfp->ready_queue); | ||
| 229 | TRACE_TASK(next, "next==prev sleep=%d oot=%d np=%d preempt=%d migrate=%d " | ||
| 230 | "boost=%d empty=%d prio-idx=%u prio=%u\n", | ||
| 231 | sleep, out_of_time, np, preempt, migrate, | ||
| 232 | is_priority_boosted(next), | ||
| 233 | t == NULL, | ||
| 234 | priority_index(next), | ||
| 235 | get_priority(next)); | ||
| 236 | if (t) | ||
| 237 | TRACE_TASK(t, "waiter boost=%d prio-idx=%u prio=%u\n", | ||
| 238 | is_priority_boosted(t), | ||
| 239 | priority_index(t), | ||
| 240 | get_priority(t)); | ||
| 241 | } | ||
| 242 | /* If preempt is set, we should not see the same task again. */ | ||
| 243 | BUG_ON(preempt && next == prev); | ||
| 244 | /* Similarly, if preempt is set, then next may not be NULL, | ||
| 245 | * unless it's a migration. */ | ||
| 246 | BUG_ON(preempt && !migrate && next == NULL); | ||
| 247 | } else | ||
| 248 | /* Only override Linux scheduler if we have a real-time task | ||
| 249 | * scheduled that needs to continue. | ||
| 250 | */ | ||
| 251 | if (exists) | ||
| 252 | next = prev; | ||
| 253 | |||
| 254 | if (next) { | ||
| 255 | TRACE_TASK(next, "scheduled at %llu\n", litmus_clock()); | ||
| 256 | tsk_rt(next)->completed = 0; | ||
| 257 | } else { | ||
| 258 | TRACE("becoming idle at %llu\n", litmus_clock()); | ||
| 259 | } | ||
| 260 | |||
| 261 | pfp->scheduled = next; | ||
| 262 | sched_state_task_picked(); | ||
| 263 | raw_spin_unlock(&pfp->slock); | ||
| 264 | |||
| 265 | return next; | ||
| 266 | } | ||
| 267 | |||
| 268 | #ifdef CONFIG_LITMUS_LOCKING | ||
| 269 | |||
| 270 | /* prev is no longer scheduled --- see if it needs to migrate */ | ||
| 271 | static void pfp_finish_switch(struct task_struct *prev) | ||
| 272 | { | ||
| 273 | pfp_domain_t *to; | ||
| 274 | |||
| 275 | if (is_realtime(prev) && | ||
| 276 | is_running(prev) && | ||
| 277 | get_partition(prev) != smp_processor_id()) { | ||
| 278 | TRACE_TASK(prev, "needs to migrate from P%d to P%d\n", | ||
| 279 | smp_processor_id(), get_partition(prev)); | ||
| 280 | |||
| 281 | to = task_pfp(prev); | ||
| 282 | |||
| 283 | raw_spin_lock(&to->slock); | ||
| 284 | |||
| 285 | TRACE_TASK(prev, "adding to queue on P%d\n", to->cpu); | ||
| 286 | requeue(prev, to); | ||
| 287 | if (fp_preemption_needed(&to->ready_queue, to->scheduled)) | ||
| 288 | preempt(to); | ||
| 289 | |||
| 290 | raw_spin_unlock(&to->slock); | ||
| 291 | |||
| 292 | } | ||
| 293 | } | ||
| 294 | |||
| 295 | #endif | ||
| 296 | |||
| 297 | /* Prepare a task for running in RT mode | ||
| 298 | */ | ||
| 299 | static void pfp_task_new(struct task_struct * t, int on_rq, int running) | ||
| 300 | { | ||
| 301 | pfp_domain_t* pfp = task_pfp(t); | ||
| 302 | unsigned long flags; | ||
| 303 | |||
| 304 | TRACE_TASK(t, "P-FP: task new, cpu = %d\n", | ||
| 305 | t->rt_param.task_params.cpu); | ||
| 306 | |||
| 307 | /* setup job parameters */ | ||
| 308 | release_at(t, litmus_clock()); | ||
| 309 | |||
| 310 | /* The task should be running in the queue, otherwise signal | ||
| 311 | * code will try to wake it up with fatal consequences. | ||
| 312 | */ | ||
| 313 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
| 314 | if (running) { | ||
| 315 | /* there shouldn't be anything else running at the time */ | ||
| 316 | BUG_ON(pfp->scheduled); | ||
| 317 | pfp->scheduled = t; | ||
| 318 | } else { | ||
| 319 | requeue(t, pfp); | ||
| 320 | /* maybe we have to reschedule */ | ||
| 321 | pfp_preempt_check(pfp); | ||
| 322 | } | ||
| 323 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
| 324 | } | ||
| 325 | |||
| 326 | static void pfp_task_wake_up(struct task_struct *task) | ||
| 327 | { | ||
| 328 | unsigned long flags; | ||
| 329 | pfp_domain_t* pfp = task_pfp(task); | ||
| 330 | lt_t now; | ||
| 331 | |||
| 332 | TRACE_TASK(task, "wake_up at %llu\n", litmus_clock()); | ||
| 333 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
| 334 | |||
| 335 | #ifdef CONFIG_LITMUS_LOCKING | ||
| 336 | /* Should only be queued when processing a fake-wake up due to a | ||
| 337 | * migration-related state change. */ | ||
| 338 | if (unlikely(is_queued(task))) { | ||
| 339 | TRACE_TASK(task, "WARNING: waking task still queued. Is this right?\n"); | ||
| 340 | goto out_unlock; | ||
| 341 | } | ||
| 342 | #else | ||
| 343 | BUG_ON(is_queued(task)); | ||
| 344 | #endif | ||
| 345 | now = litmus_clock(); | ||
| 346 | if (is_sporadic(task) && is_tardy(task, now) | ||
| 347 | #ifdef CONFIG_LITMUS_LOCKING | ||
| 348 | /* We need to take suspensions because of semaphores into | ||
| 349 | * account! If a job resumes after being suspended due to acquiring | ||
| 350 | * a semaphore, it should never be treated as a new job release. | ||
| 351 | */ | ||
| 352 | && !is_priority_boosted(task) | ||
| 353 | #endif | ||
| 354 | ) { | ||
| 355 | /* new sporadic release */ | ||
| 356 | release_at(task, now); | ||
| 357 | sched_trace_task_release(task); | ||
| 358 | } | ||
| 359 | |||
| 360 | /* Only add to ready queue if it is not the currently-scheduled | ||
| 361 | * task. This could be the case if a task was woken up concurrently | ||
| 362 | * on a remote CPU before the executing CPU got around to actually | ||
| 363 | * de-scheduling the task, i.e., wake_up() raced with schedule() | ||
| 364 | * and won. Also, don't requeue if it is still queued, which can | ||
| 365 | * happen under the DPCP due wake-ups racing with migrations. | ||
| 366 | */ | ||
| 367 | if (pfp->scheduled != task) { | ||
| 368 | requeue(task, pfp); | ||
| 369 | pfp_preempt_check(pfp); | ||
| 370 | } | ||
| 371 | |||
| 372 | #ifdef CONFIG_LITMUS_LOCKING | ||
| 373 | out_unlock: | ||
| 374 | #endif | ||
| 375 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
| 376 | TRACE_TASK(task, "wake up done\n"); | ||
| 377 | } | ||
| 378 | |||
| 379 | static void pfp_task_block(struct task_struct *t) | ||
| 380 | { | ||
| 381 | /* only running tasks can block, thus t is in no queue */ | ||
| 382 | TRACE_TASK(t, "block at %llu, state=%d\n", litmus_clock(), t->state); | ||
| 383 | |||
| 384 | BUG_ON(!is_realtime(t)); | ||
| 385 | |||
| 386 | /* If this task blocked normally, it shouldn't be queued. The exception is | ||
| 387 | * if this is a simulated block()/wakeup() pair from the pull-migration code path. | ||
| 388 | * This should only happen if the DPCP is being used. | ||
| 389 | */ | ||
| 390 | #ifdef CONFIG_LITMUS_LOCKING | ||
| 391 | if (unlikely(is_queued(t))) | ||
| 392 | TRACE_TASK(t, "WARNING: blocking task still queued. Is this right?\n"); | ||
| 393 | #else | ||
| 394 | BUG_ON(is_queued(t)); | ||
| 395 | #endif | ||
| 396 | } | ||
| 397 | |||
| 398 | static void pfp_task_exit(struct task_struct * t) | ||
| 399 | { | ||
| 400 | unsigned long flags; | ||
| 401 | pfp_domain_t* pfp = task_pfp(t); | ||
| 402 | rt_domain_t* dom; | ||
| 403 | |||
| 404 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
| 405 | if (is_queued(t)) { | ||
| 406 | BUG(); /* This currently doesn't work. */ | ||
| 407 | /* dequeue */ | ||
| 408 | dom = task_dom(t); | ||
| 409 | remove(dom, t); | ||
| 410 | } | ||
| 411 | if (pfp->scheduled == t) { | ||
| 412 | pfp->scheduled = NULL; | ||
| 413 | preempt(pfp); | ||
| 414 | } | ||
| 415 | TRACE_TASK(t, "RIP, now reschedule\n"); | ||
| 416 | |||
| 417 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
| 418 | } | ||
| 419 | |||
| 420 | #ifdef CONFIG_LITMUS_LOCKING | ||
| 421 | |||
| 422 | #include <litmus/fdso.h> | ||
| 423 | #include <litmus/srp.h> | ||
| 424 | |||
| 425 | static void fp_dequeue(pfp_domain_t* pfp, struct task_struct* t) | ||
| 426 | { | ||
| 427 | BUG_ON(pfp->scheduled == t && is_queued(t)); | ||
| 428 | if (is_queued(t)) | ||
| 429 | fp_prio_remove(&pfp->ready_queue, t, priority_index(t)); | ||
| 430 | } | ||
| 431 | |||
| 432 | static void fp_set_prio_inh(pfp_domain_t* pfp, struct task_struct* t, | ||
| 433 | struct task_struct* prio_inh) | ||
| 434 | { | ||
| 435 | int requeue; | ||
| 436 | |||
| 437 | if (!t || t->rt_param.inh_task == prio_inh) { | ||
| 438 | /* no update required */ | ||
| 439 | if (t) | ||
| 440 | TRACE_TASK(t, "no prio-inh update required\n"); | ||
| 441 | return; | ||
| 442 | } | ||
| 443 | |||
| 444 | requeue = is_queued(t); | ||
| 445 | TRACE_TASK(t, "prio-inh: is_queued:%d\n", requeue); | ||
| 446 | |||
| 447 | if (requeue) | ||
| 448 | /* first remove */ | ||
| 449 | fp_dequeue(pfp, t); | ||
| 450 | |||
| 451 | t->rt_param.inh_task = prio_inh; | ||
| 452 | |||
| 453 | if (requeue) | ||
| 454 | /* add again to the right queue */ | ||
| 455 | fp_prio_add(&pfp->ready_queue, t, priority_index(t)); | ||
| 456 | } | ||
| 457 | |||
| 458 | static int effective_agent_priority(int prio) | ||
| 459 | { | ||
| 460 | /* make sure agents have higher priority */ | ||
| 461 | return prio - LITMUS_MAX_PRIORITY; | ||
| 462 | } | ||
| 463 | |||
| 464 | static lt_t prio_point(int eprio) | ||
| 465 | { | ||
| 466 | /* make sure we have non-negative prio points */ | ||
| 467 | return eprio + LITMUS_MAX_PRIORITY; | ||
| 468 | } | ||
| 469 | |||
| 470 | static int prio_from_point(lt_t prio_point) | ||
| 471 | { | ||
| 472 | return ((int) prio_point) - LITMUS_MAX_PRIORITY; | ||
| 473 | } | ||
| 474 | |||
| 475 | static void boost_priority(struct task_struct* t, lt_t priority_point) | ||
| 476 | { | ||
| 477 | unsigned long flags; | ||
| 478 | pfp_domain_t* pfp = task_pfp(t); | ||
| 479 | |||
| 480 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
| 481 | |||
| 482 | |||
| 483 | TRACE_TASK(t, "priority boosted at %llu\n", litmus_clock()); | ||
| 484 | |||
| 485 | tsk_rt(t)->priority_boosted = 1; | ||
| 486 | /* tie-break by protocol-specific priority point */ | ||
| 487 | tsk_rt(t)->boost_start_time = priority_point; | ||
| 488 | |||
| 489 | /* Priority boosting currently only takes effect for already-scheduled | ||
| 490 | * tasks. This is sufficient since priority boosting only kicks in as | ||
| 491 | * part of lock acquisitions. */ | ||
| 492 | BUG_ON(pfp->scheduled != t); | ||
| 493 | |||
| 494 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
| 495 | } | ||
| 496 | |||
| 497 | static void unboost_priority(struct task_struct* t) | ||
| 498 | { | ||
| 499 | unsigned long flags; | ||
| 500 | pfp_domain_t* pfp = task_pfp(t); | ||
| 501 | lt_t now; | ||
| 502 | |||
| 503 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
| 504 | now = litmus_clock(); | ||
| 505 | |||
| 506 | /* assumption: this only happens when the job is scheduled */ | ||
| 507 | BUG_ON(pfp->scheduled != t); | ||
| 508 | |||
| 509 | TRACE_TASK(t, "priority restored at %llu\n", now); | ||
| 510 | |||
| 511 | /* priority boosted jobs must be scheduled */ | ||
| 512 | BUG_ON(pfp->scheduled != t); | ||
| 513 | |||
| 514 | tsk_rt(t)->priority_boosted = 0; | ||
| 515 | tsk_rt(t)->boost_start_time = 0; | ||
| 516 | |||
| 517 | /* check if this changes anything */ | ||
| 518 | if (fp_preemption_needed(&pfp->ready_queue, pfp->scheduled)) | ||
| 519 | preempt(pfp); | ||
| 520 | |||
| 521 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
| 522 | } | ||
| 523 | |||
| 524 | /* ******************** SRP support ************************ */ | ||
| 525 | |||
| 526 | static unsigned int pfp_get_srp_prio(struct task_struct* t) | ||
| 527 | { | ||
| 528 | return get_priority(t); | ||
| 529 | } | ||
| 530 | |||
| 531 | /* ******************** FMLP support ********************** */ | ||
| 532 | |||
| 533 | struct fmlp_semaphore { | ||
| 534 | struct litmus_lock litmus_lock; | ||
| 535 | |||
| 536 | /* current resource holder */ | ||
| 537 | struct task_struct *owner; | ||
| 538 | |||
| 539 | /* FIFO queue of waiting tasks */ | ||
| 540 | wait_queue_head_t wait; | ||
| 541 | }; | ||
| 542 | |||
| 543 | static inline struct fmlp_semaphore* fmlp_from_lock(struct litmus_lock* lock) | ||
| 544 | { | ||
| 545 | return container_of(lock, struct fmlp_semaphore, litmus_lock); | ||
| 546 | } | ||
| 547 | int pfp_fmlp_lock(struct litmus_lock* l) | ||
| 548 | { | ||
| 549 | struct task_struct* t = current; | ||
| 550 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
| 551 | wait_queue_t wait; | ||
| 552 | unsigned long flags; | ||
| 553 | lt_t time_of_request; | ||
| 554 | |||
| 555 | if (!is_realtime(t)) | ||
| 556 | return -EPERM; | ||
| 557 | |||
| 558 | /* prevent nested lock acquisition --- not supported by FMLP */ | ||
| 559 | if (tsk_rt(t)->num_locks_held || | ||
| 560 | tsk_rt(t)->num_local_locks_held) | ||
| 561 | return -EBUSY; | ||
| 562 | |||
| 563 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
| 564 | |||
| 565 | /* tie-break by this point in time */ | ||
| 566 | time_of_request = litmus_clock(); | ||
| 567 | |||
| 568 | /* Priority-boost ourself *before* we suspend so that | ||
| 569 | * our priority is boosted when we resume. */ | ||
| 570 | boost_priority(t, time_of_request); | ||
| 571 | |||
| 572 | if (sem->owner) { | ||
| 573 | /* resource is not free => must suspend and wait */ | ||
| 574 | |||
| 575 | init_waitqueue_entry(&wait, t); | ||
| 576 | |||
| 577 | /* FIXME: interruptible would be nice some day */ | ||
| 578 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
| 579 | |||
| 580 | __add_wait_queue_tail_exclusive(&sem->wait, &wait); | ||
| 581 | |||
| 582 | TS_LOCK_SUSPEND; | ||
| 583 | |||
| 584 | /* release lock before sleeping */ | ||
| 585 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
| 586 | |||
| 587 | /* We depend on the FIFO order. Thus, we don't need to recheck | ||
| 588 | * when we wake up; we are guaranteed to have the lock since | ||
| 589 | * there is only one wake up per release. | ||
| 590 | */ | ||
| 591 | |||
| 592 | schedule(); | ||
| 593 | |||
| 594 | TS_LOCK_RESUME; | ||
| 595 | |||
| 596 | /* Since we hold the lock, no other task will change | ||
| 597 | * ->owner. We can thus check it without acquiring the spin | ||
| 598 | * lock. */ | ||
| 599 | BUG_ON(sem->owner != t); | ||
| 600 | } else { | ||
| 601 | /* it's ours now */ | ||
| 602 | sem->owner = t; | ||
| 603 | |||
| 604 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
| 605 | } | ||
| 606 | |||
| 607 | tsk_rt(t)->num_locks_held++; | ||
| 608 | |||
| 609 | return 0; | ||
| 610 | } | ||
| 611 | |||
| 612 | int pfp_fmlp_unlock(struct litmus_lock* l) | ||
| 613 | { | ||
| 614 | struct task_struct *t = current, *next; | ||
| 615 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
| 616 | unsigned long flags; | ||
| 617 | int err = 0; | ||
| 618 | |||
| 619 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
| 620 | |||
| 621 | if (sem->owner != t) { | ||
| 622 | err = -EINVAL; | ||
| 623 | goto out; | ||
| 624 | } | ||
| 625 | |||
| 626 | tsk_rt(t)->num_locks_held--; | ||
| 627 | |||
| 628 | /* we lose the benefit of priority boosting */ | ||
| 629 | |||
| 630 | unboost_priority(t); | ||
| 631 | |||
| 632 | /* check if there are jobs waiting for this resource */ | ||
| 633 | next = __waitqueue_remove_first(&sem->wait); | ||
| 634 | if (next) { | ||
| 635 | /* next becomes the resouce holder */ | ||
| 636 | sem->owner = next; | ||
| 637 | |||
| 638 | /* Wake up next. The waiting job is already priority-boosted. */ | ||
| 639 | wake_up_process(next); | ||
| 640 | } else | ||
| 641 | /* resource becomes available */ | ||
| 642 | sem->owner = NULL; | ||
| 643 | |||
| 644 | out: | ||
| 645 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
| 646 | return err; | ||
| 647 | } | ||
| 648 | |||
| 649 | int pfp_fmlp_close(struct litmus_lock* l) | ||
| 650 | { | ||
| 651 | struct task_struct *t = current; | ||
| 652 | struct fmlp_semaphore *sem = fmlp_from_lock(l); | ||
| 653 | unsigned long flags; | ||
| 654 | |||
| 655 | int owner; | ||
| 656 | |||
| 657 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
| 658 | |||
| 659 | owner = sem->owner == t; | ||
| 660 | |||
| 661 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
| 662 | |||
| 663 | if (owner) | ||
| 664 | pfp_fmlp_unlock(l); | ||
| 665 | |||
| 666 | return 0; | ||
| 667 | } | ||
| 668 | |||
| 669 | void pfp_fmlp_free(struct litmus_lock* lock) | ||
| 670 | { | ||
| 671 | kfree(fmlp_from_lock(lock)); | ||
| 672 | } | ||
| 673 | |||
| 674 | static struct litmus_lock_ops pfp_fmlp_lock_ops = { | ||
| 675 | .close = pfp_fmlp_close, | ||
| 676 | .lock = pfp_fmlp_lock, | ||
| 677 | .unlock = pfp_fmlp_unlock, | ||
| 678 | .deallocate = pfp_fmlp_free, | ||
| 679 | }; | ||
| 680 | |||
| 681 | static struct litmus_lock* pfp_new_fmlp(void) | ||
| 682 | { | ||
| 683 | struct fmlp_semaphore* sem; | ||
| 684 | |||
| 685 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
| 686 | if (!sem) | ||
| 687 | return NULL; | ||
| 688 | |||
| 689 | sem->owner = NULL; | ||
| 690 | init_waitqueue_head(&sem->wait); | ||
| 691 | sem->litmus_lock.ops = &pfp_fmlp_lock_ops; | ||
| 692 | |||
| 693 | return &sem->litmus_lock; | ||
| 694 | } | ||
| 695 | |||
| 696 | /* ******************** MPCP support ********************** */ | ||
| 697 | |||
| 698 | struct mpcp_semaphore { | ||
| 699 | struct litmus_lock litmus_lock; | ||
| 700 | |||
| 701 | /* current resource holder */ | ||
| 702 | struct task_struct *owner; | ||
| 703 | |||
| 704 | /* priority queue of waiting tasks */ | ||
| 705 | wait_queue_head_t wait; | ||
| 706 | |||
| 707 | /* priority ceiling per cpu */ | ||
| 708 | unsigned int prio_ceiling[NR_CPUS]; | ||
| 709 | |||
| 710 | /* should jobs spin "virtually" for this resource? */ | ||
| 711 | int vspin; | ||
| 712 | }; | ||
| 713 | |||
| 714 | #define OMEGA_CEILING UINT_MAX | ||
| 715 | |||
| 716 | /* Since jobs spin "virtually" while waiting to acquire a lock, | ||
| 717 | * they first must aquire a local per-cpu resource. | ||
| 718 | */ | ||
| 719 | static DEFINE_PER_CPU(wait_queue_head_t, mpcpvs_vspin_wait); | ||
| 720 | static DEFINE_PER_CPU(struct task_struct*, mpcpvs_vspin); | ||
| 721 | |||
| 722 | /* called with preemptions off <=> no local modifications */ | ||
| 723 | static void mpcp_vspin_enter(void) | ||
| 724 | { | ||
| 725 | struct task_struct* t = current; | ||
| 726 | |||
| 727 | while (1) { | ||
| 728 | if (__get_cpu_var(mpcpvs_vspin) == NULL) { | ||
| 729 | /* good, we get to issue our request */ | ||
| 730 | __get_cpu_var(mpcpvs_vspin) = t; | ||
| 731 | break; | ||
| 732 | } else { | ||
| 733 | /* some job is spinning => enqueue in request queue */ | ||
| 734 | prio_wait_queue_t wait; | ||
| 735 | wait_queue_head_t* vspin = &__get_cpu_var(mpcpvs_vspin_wait); | ||
| 736 | unsigned long flags; | ||
| 737 | |||
| 738 | /* ordered by regular priority */ | ||
| 739 | init_prio_waitqueue_entry(&wait, t, prio_point(get_priority(t))); | ||
| 740 | |||
| 741 | spin_lock_irqsave(&vspin->lock, flags); | ||
| 742 | |||
| 743 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
| 744 | |||
| 745 | __add_wait_queue_prio_exclusive(vspin, &wait); | ||
| 746 | |||
| 747 | spin_unlock_irqrestore(&vspin->lock, flags); | ||
| 748 | |||
| 749 | TS_LOCK_SUSPEND; | ||
| 750 | |||
| 751 | preempt_enable_no_resched(); | ||
| 752 | |||
| 753 | schedule(); | ||
| 754 | |||
| 755 | preempt_disable(); | ||
| 756 | |||
| 757 | TS_LOCK_RESUME; | ||
| 758 | /* Recheck if we got it --- some higher-priority process might | ||
| 759 | * have swooped in. */ | ||
| 760 | } | ||
| 761 | } | ||
| 762 | /* ok, now it is ours */ | ||
| 763 | } | ||
| 764 | |||
| 765 | /* called with preemptions off */ | ||
| 766 | static void mpcp_vspin_exit(void) | ||
| 767 | { | ||
| 768 | struct task_struct* t = current, *next; | ||
| 769 | unsigned long flags; | ||
| 770 | wait_queue_head_t* vspin = &__get_cpu_var(mpcpvs_vspin_wait); | ||
| 771 | |||
| 772 | BUG_ON(__get_cpu_var(mpcpvs_vspin) != t); | ||
| 773 | |||
| 774 | /* no spinning job */ | ||
| 775 | __get_cpu_var(mpcpvs_vspin) = NULL; | ||
| 776 | |||
| 777 | /* see if anyone is waiting for us to stop "spinning" */ | ||
| 778 | spin_lock_irqsave(&vspin->lock, flags); | ||
| 779 | next = __waitqueue_remove_first(vspin); | ||
| 780 | |||
| 781 | if (next) | ||
| 782 | wake_up_process(next); | ||
| 783 | |||
| 784 | spin_unlock_irqrestore(&vspin->lock, flags); | ||
| 785 | } | ||
| 786 | |||
| 787 | static inline struct mpcp_semaphore* mpcp_from_lock(struct litmus_lock* lock) | ||
| 788 | { | ||
| 789 | return container_of(lock, struct mpcp_semaphore, litmus_lock); | ||
| 790 | } | ||
| 791 | |||
| 792 | int pfp_mpcp_lock(struct litmus_lock* l) | ||
| 793 | { | ||
| 794 | struct task_struct* t = current; | ||
| 795 | struct mpcp_semaphore *sem = mpcp_from_lock(l); | ||
| 796 | prio_wait_queue_t wait; | ||
| 797 | unsigned long flags; | ||
| 798 | |||
| 799 | if (!is_realtime(t)) | ||
| 800 | return -EPERM; | ||
| 801 | |||
| 802 | /* prevent nested lock acquisition */ | ||
| 803 | if (tsk_rt(t)->num_locks_held || | ||
| 804 | tsk_rt(t)->num_local_locks_held) | ||
| 805 | return -EBUSY; | ||
| 806 | |||
| 807 | preempt_disable(); | ||
| 808 | |||
| 809 | if (sem->vspin) | ||
| 810 | mpcp_vspin_enter(); | ||
| 811 | |||
| 812 | /* Priority-boost ourself *before* we suspend so that | ||
| 813 | * our priority is boosted when we resume. Use the priority | ||
| 814 | * ceiling for the local partition. */ | ||
| 815 | boost_priority(t, sem->prio_ceiling[get_partition(t)]); | ||
| 816 | |||
| 817 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
| 818 | |||
| 819 | preempt_enable_no_resched(); | ||
| 820 | |||
| 821 | if (sem->owner) { | ||
| 822 | /* resource is not free => must suspend and wait */ | ||
| 823 | |||
| 824 | /* ordered by regular priority */ | ||
| 825 | init_prio_waitqueue_entry(&wait, t, prio_point(get_priority(t))); | ||
| 826 | |||
| 827 | /* FIXME: interruptible would be nice some day */ | ||
| 828 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
| 829 | |||
| 830 | __add_wait_queue_prio_exclusive(&sem->wait, &wait); | ||
| 831 | |||
| 832 | TS_LOCK_SUSPEND; | ||
| 833 | |||
| 834 | /* release lock before sleeping */ | ||
| 835 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
| 836 | |||
| 837 | /* We depend on the FIFO order. Thus, we don't need to recheck | ||
| 838 | * when we wake up; we are guaranteed to have the lock since | ||
| 839 | * there is only one wake up per release. | ||
| 840 | */ | ||
| 841 | |||
| 842 | schedule(); | ||
| 843 | |||
| 844 | TS_LOCK_RESUME; | ||
| 845 | |||
| 846 | /* Since we hold the lock, no other task will change | ||
| 847 | * ->owner. We can thus check it without acquiring the spin | ||
| 848 | * lock. */ | ||
| 849 | BUG_ON(sem->owner != t); | ||
| 850 | } else { | ||
| 851 | /* it's ours now */ | ||
| 852 | sem->owner = t; | ||
| 853 | |||
| 854 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
| 855 | } | ||
| 856 | |||
| 857 | tsk_rt(t)->num_locks_held++; | ||
| 858 | |||
| 859 | return 0; | ||
| 860 | } | ||
| 861 | |||
| 862 | int pfp_mpcp_unlock(struct litmus_lock* l) | ||
| 863 | { | ||
| 864 | struct task_struct *t = current, *next; | ||
| 865 | struct mpcp_semaphore *sem = mpcp_from_lock(l); | ||
| 866 | unsigned long flags; | ||
| 867 | int err = 0; | ||
| 868 | |||
| 869 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
| 870 | |||
| 871 | if (sem->owner != t) { | ||
| 872 | err = -EINVAL; | ||
| 873 | goto out; | ||
| 874 | } | ||
| 875 | |||
| 876 | |||
| 877 | tsk_rt(t)->num_locks_held--; | ||
| 878 | |||
| 879 | /* we lose the benefit of priority boosting */ | ||
| 880 | |||
| 881 | unboost_priority(t); | ||
| 882 | |||
| 883 | /* check if there are jobs waiting for this resource */ | ||
| 884 | next = __waitqueue_remove_first(&sem->wait); | ||
| 885 | if (next) { | ||
| 886 | /* next becomes the resouce holder */ | ||
| 887 | sem->owner = next; | ||
| 888 | |||
| 889 | /* Wake up next. The waiting job is already priority-boosted. */ | ||
| 890 | wake_up_process(next); | ||
| 891 | } else | ||
| 892 | /* resource becomes available */ | ||
| 893 | sem->owner = NULL; | ||
| 894 | |||
| 895 | out: | ||
| 896 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
| 897 | |||
| 898 | if (sem->vspin && err == 0) { | ||
| 899 | preempt_disable(); | ||
| 900 | mpcp_vspin_exit(); | ||
| 901 | preempt_enable(); | ||
| 902 | } | ||
| 903 | |||
| 904 | return err; | ||
| 905 | } | ||
| 906 | |||
| 907 | int pfp_mpcp_open(struct litmus_lock* l, void* config) | ||
| 908 | { | ||
| 909 | struct task_struct *t = current; | ||
| 910 | struct mpcp_semaphore *sem = mpcp_from_lock(l); | ||
| 911 | int cpu, local_cpu; | ||
| 912 | unsigned long flags; | ||
| 913 | |||
| 914 | if (!is_realtime(t)) | ||
| 915 | /* we need to know the real-time priority */ | ||
| 916 | return -EPERM; | ||
| 917 | |||
| 918 | local_cpu = get_partition(t); | ||
| 919 | |||
| 920 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
| 921 | |||
| 922 | for (cpu = 0; cpu < NR_CPUS; cpu++) | ||
| 923 | if (cpu != local_cpu) | ||
| 924 | { | ||
| 925 | sem->prio_ceiling[cpu] = min(sem->prio_ceiling[cpu], | ||
| 926 | get_priority(t)); | ||
| 927 | TRACE_CUR("priority ceiling for sem %p is now %d on cpu %d\n", | ||
| 928 | sem, sem->prio_ceiling[cpu], cpu); | ||
| 929 | } | ||
| 930 | |||
| 931 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
| 932 | |||
| 933 | return 0; | ||
| 934 | } | ||
| 935 | |||
| 936 | int pfp_mpcp_close(struct litmus_lock* l) | ||
| 937 | { | ||
| 938 | struct task_struct *t = current; | ||
| 939 | struct mpcp_semaphore *sem = mpcp_from_lock(l); | ||
| 940 | unsigned long flags; | ||
| 941 | |||
| 942 | int owner; | ||
| 943 | |||
| 944 | spin_lock_irqsave(&sem->wait.lock, flags); | ||
| 945 | |||
| 946 | owner = sem->owner == t; | ||
| 947 | |||
| 948 | spin_unlock_irqrestore(&sem->wait.lock, flags); | ||
| 949 | |||
| 950 | if (owner) | ||
| 951 | pfp_mpcp_unlock(l); | ||
| 952 | |||
| 953 | return 0; | ||
| 954 | } | ||
| 955 | |||
| 956 | void pfp_mpcp_free(struct litmus_lock* lock) | ||
| 957 | { | ||
| 958 | kfree(mpcp_from_lock(lock)); | ||
| 959 | } | ||
| 960 | |||
| 961 | static struct litmus_lock_ops pfp_mpcp_lock_ops = { | ||
| 962 | .close = pfp_mpcp_close, | ||
| 963 | .lock = pfp_mpcp_lock, | ||
| 964 | .open = pfp_mpcp_open, | ||
| 965 | .unlock = pfp_mpcp_unlock, | ||
| 966 | .deallocate = pfp_mpcp_free, | ||
| 967 | }; | ||
| 968 | |||
| 969 | static struct litmus_lock* pfp_new_mpcp(int vspin) | ||
| 970 | { | ||
| 971 | struct mpcp_semaphore* sem; | ||
| 972 | int cpu; | ||
| 973 | |||
| 974 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
| 975 | if (!sem) | ||
| 976 | return NULL; | ||
| 977 | |||
| 978 | sem->owner = NULL; | ||
| 979 | init_waitqueue_head(&sem->wait); | ||
| 980 | sem->litmus_lock.ops = &pfp_mpcp_lock_ops; | ||
| 981 | |||
| 982 | for (cpu = 0; cpu < NR_CPUS; cpu++) | ||
| 983 | sem->prio_ceiling[cpu] = OMEGA_CEILING; | ||
| 984 | |||
| 985 | /* mark as virtual spinning */ | ||
| 986 | sem->vspin = vspin; | ||
| 987 | |||
| 988 | return &sem->litmus_lock; | ||
| 989 | } | ||
| 990 | |||
| 991 | |||
| 992 | /* ******************** PCP support ********************** */ | ||
| 993 | |||
| 994 | |||
| 995 | struct pcp_semaphore { | ||
| 996 | struct litmus_lock litmus_lock; | ||
| 997 | |||
| 998 | struct list_head ceiling; | ||
| 999 | |||
| 1000 | /* current resource holder */ | ||
| 1001 | struct task_struct *owner; | ||
| 1002 | |||
| 1003 | /* priority ceiling --- can be negative due to DPCP support */ | ||
| 1004 | int prio_ceiling; | ||
| 1005 | |||
| 1006 | /* on which processor is this PCP semaphore allocated? */ | ||
| 1007 | int on_cpu; | ||
| 1008 | }; | ||
| 1009 | |||
| 1010 | static inline struct pcp_semaphore* pcp_from_lock(struct litmus_lock* lock) | ||
| 1011 | { | ||
| 1012 | return container_of(lock, struct pcp_semaphore, litmus_lock); | ||
| 1013 | } | ||
| 1014 | |||
| 1015 | |||
| 1016 | struct pcp_state { | ||
| 1017 | struct list_head system_ceiling; | ||
| 1018 | |||
| 1019 | /* highest-priority waiting task */ | ||
| 1020 | struct task_struct* hp_waiter; | ||
| 1021 | |||
| 1022 | /* list of jobs waiting to get past the system ceiling */ | ||
| 1023 | wait_queue_head_t ceiling_blocked; | ||
| 1024 | }; | ||
| 1025 | |||
| 1026 | static void pcp_init_state(struct pcp_state* s) | ||
| 1027 | { | ||
| 1028 | INIT_LIST_HEAD(&s->system_ceiling); | ||
| 1029 | s->hp_waiter = NULL; | ||
| 1030 | init_waitqueue_head(&s->ceiling_blocked); | ||
| 1031 | } | ||
| 1032 | |||
| 1033 | static DEFINE_PER_CPU(struct pcp_state, pcp_state); | ||
| 1034 | |||
| 1035 | /* assumes preemptions are off */ | ||
| 1036 | static struct pcp_semaphore* pcp_get_ceiling(void) | ||
| 1037 | { | ||
| 1038 | struct list_head* top = __get_cpu_var(pcp_state).system_ceiling.next; | ||
| 1039 | |||
| 1040 | if (top) | ||
| 1041 | return list_entry(top, struct pcp_semaphore, ceiling); | ||
| 1042 | else | ||
| 1043 | return NULL; | ||
| 1044 | } | ||
| 1045 | |||
| 1046 | /* assumes preempt off */ | ||
| 1047 | static void pcp_add_ceiling(struct pcp_semaphore* sem) | ||
| 1048 | { | ||
| 1049 | struct list_head *pos; | ||
| 1050 | struct list_head *in_use = &__get_cpu_var(pcp_state).system_ceiling; | ||
| 1051 | struct pcp_semaphore* held; | ||
| 1052 | |||
| 1053 | BUG_ON(sem->on_cpu != smp_processor_id()); | ||
| 1054 | BUG_ON(in_list(&sem->ceiling)); | ||
| 1055 | |||
| 1056 | list_for_each(pos, in_use) { | ||
| 1057 | held = list_entry(pos, struct pcp_semaphore, ceiling); | ||
| 1058 | if (held->prio_ceiling >= sem->prio_ceiling) { | ||
| 1059 | __list_add(&sem->ceiling, pos->prev, pos); | ||
| 1060 | return; | ||
| 1061 | } | ||
| 1062 | } | ||
| 1063 | |||
| 1064 | /* we hit the end of the list */ | ||
| 1065 | |||
| 1066 | list_add_tail(&sem->ceiling, in_use); | ||
| 1067 | } | ||
| 1068 | |||
| 1069 | /* assumes preempt off */ | ||
| 1070 | static int pcp_exceeds_ceiling(struct pcp_semaphore* ceiling, | ||
| 1071 | struct task_struct* task, | ||
| 1072 | int effective_prio) | ||
| 1073 | { | ||
| 1074 | return ceiling == NULL || | ||
| 1075 | ceiling->prio_ceiling > effective_prio || | ||
| 1076 | ceiling->owner == task; | ||
| 1077 | } | ||
| 1078 | |||
| 1079 | /* assumes preempt off */ | ||
| 1080 | static void pcp_priority_inheritance(void) | ||
| 1081 | { | ||
| 1082 | unsigned long flags; | ||
| 1083 | pfp_domain_t* pfp = local_pfp; | ||
| 1084 | |||
| 1085 | struct pcp_semaphore* ceiling = pcp_get_ceiling(); | ||
| 1086 | struct task_struct *blocker, *blocked; | ||
| 1087 | |||
| 1088 | blocker = ceiling ? ceiling->owner : NULL; | ||
| 1089 | blocked = __get_cpu_var(pcp_state).hp_waiter; | ||
| 1090 | |||
| 1091 | raw_spin_lock_irqsave(&pfp->slock, flags); | ||
| 1092 | |||
| 1093 | /* Current is no longer inheriting anything by default. This should be | ||
| 1094 | * the currently scheduled job, and hence not currently queued. */ | ||
| 1095 | BUG_ON(current != pfp->scheduled); | ||
| 1096 | |||
| 1097 | fp_set_prio_inh(pfp, current, NULL); | ||
| 1098 | fp_set_prio_inh(pfp, blocked, NULL); | ||
| 1099 | fp_set_prio_inh(pfp, blocker, NULL); | ||
| 1100 | |||
| 1101 | |||
| 1102 | /* Let blocking job inherit priority of blocked job, if required. */ | ||
| 1103 | if (blocker && blocked && | ||
| 1104 | fp_higher_prio(blocked, blocker)) { | ||
| 1105 | TRACE_TASK(blocker, "PCP inherits from %s/%d (prio %u -> %u) \n", | ||
| 1106 | blocked->comm, blocked->pid, | ||
| 1107 | get_priority(blocker), get_priority(blocked)); | ||
| 1108 | fp_set_prio_inh(pfp, blocker, blocked); | ||
| 1109 | } | ||
| 1110 | |||
| 1111 | /* Check if anything changed. If the blocked job is current, then it is | ||
| 1112 | * just blocking and hence is going to call the scheduler anyway. */ | ||
| 1113 | if (blocked != current && | ||
| 1114 | fp_higher_prio(fp_prio_peek(&pfp->ready_queue), pfp->scheduled)) | ||
| 1115 | preempt(pfp); | ||
| 1116 | |||
| 1117 | raw_spin_unlock_irqrestore(&pfp->slock, flags); | ||
| 1118 | } | ||
| 1119 | |||
| 1120 | /* called with preemptions off */ | ||
| 1121 | static void pcp_raise_ceiling(struct pcp_semaphore* sem, | ||
| 1122 | int effective_prio) | ||
| 1123 | { | ||
| 1124 | struct task_struct* t = current; | ||
| 1125 | struct pcp_semaphore* ceiling; | ||
| 1126 | prio_wait_queue_t wait; | ||
| 1127 | unsigned int waiting_higher_prio; | ||
| 1128 | |||
| 1129 | do { | ||
| 1130 | ceiling = pcp_get_ceiling(); | ||
| 1131 | if (pcp_exceeds_ceiling(ceiling, t, effective_prio)) | ||
| 1132 | break; | ||
| 1133 | |||
| 1134 | TRACE_CUR("PCP ceiling-blocked, wanted sem %p, but %s/%d has the ceiling \n", | ||
| 1135 | sem, ceiling->owner->comm, ceiling->owner->pid); | ||
| 1136 | |||
| 1137 | /* we need to wait until the ceiling is lowered */ | ||
| 1138 | |||
| 1139 | /* enqueue in priority order */ | ||
| 1140 | init_prio_waitqueue_entry(&wait, t, prio_point(effective_prio)); | ||
| 1141 | set_task_state(t, TASK_UNINTERRUPTIBLE); | ||
| 1142 | waiting_higher_prio = add_wait_queue_prio_exclusive( | ||
| 1143 | &__get_cpu_var(pcp_state).ceiling_blocked, &wait); | ||
| 1144 | |||
| 1145 | if (waiting_higher_prio == 0) { | ||
| 1146 | TRACE_CUR("PCP new highest-prio waiter => prio inheritance\n"); | ||
| 1147 | |||
| 1148 | /* we are the new highest-priority waiting job | ||
| 1149 | * => update inheritance */ | ||
| 1150 | __get_cpu_var(pcp_state).hp_waiter = t; | ||
| 1151 | pcp_priority_inheritance(); | ||
| 1152 | } | ||
| 1153 | |||
| 1154 | TS_LOCK_SUSPEND; | ||
| 1155 | |||
| 1156 | preempt_enable_no_resched(); | ||
| 1157 | schedule(); | ||
| 1158 | preempt_disable(); | ||
| 1159 | |||
| 1160 | /* pcp_resume_unblocked() removed us from wait queue */ | ||
| 1161 | |||
| 1162 | TS_LOCK_RESUME; | ||
| 1163 | } while(1); | ||
| 1164 | |||
| 1165 | TRACE_CUR("PCP got the ceiling and sem %p\n", sem); | ||
| 1166 | |||
| 1167 | /* We are good to go. The semaphore should be available. */ | ||
| 1168 | BUG_ON(sem->owner != NULL); | ||
| 1169 | |||
| 1170 | sem->owner = t; | ||
| 1171 | |||
| 1172 | pcp_add_ceiling(sem); | ||
| 1173 | } | ||
| 1174 | |||
| 1175 | static void pcp_resume_unblocked(void) | ||
| 1176 | { | ||
| 1177 | wait_queue_head_t *blocked = &__get_cpu_var(pcp_state).ceiling_blocked; | ||
| 1178 | unsigned long flags; | ||
| 1179 | prio_wait_queue_t* q; | ||
| 1180 | struct task_struct* t = NULL; | ||
| 1181 | |||
| 1182 | struct pcp_semaphore* ceiling = pcp_get_ceiling(); | ||
| 1183 | |||
| 1184 | spin_lock_irqsave(&blocked->lock, flags); | ||
| 1185 | |||
| 1186 | while (waitqueue_active(blocked)) { | ||
| 1187 | /* check first == highest-priority waiting job */ | ||
| 1188 | q = list_entry(blocked->task_list.next, | ||
| 1189 | prio_wait_queue_t, wq.task_list); | ||
| 1190 | t = (struct task_struct*) q->wq.private; | ||
| 1191 | |||
| 1192 | /* can it proceed now? => let it go */ | ||
| 1193 | if (pcp_exceeds_ceiling(ceiling, t, | ||
| 1194 | prio_from_point(q->priority))) { | ||
| 1195 | __remove_wait_queue(blocked, &q->wq); | ||
| 1196 | wake_up_process(t); | ||
| 1197 | } else { | ||
| 1198 | /* We are done. Update highest-priority waiter. */ | ||
| 1199 | __get_cpu_var(pcp_state).hp_waiter = t; | ||
| 1200 | goto out; | ||
| 1201 | } | ||
| 1202 | } | ||
| 1203 | /* If we get here, then there are no more waiting | ||
| 1204 | * jobs. */ | ||
| 1205 | __get_cpu_var(pcp_state).hp_waiter = NULL; | ||
| 1206 | out: | ||
| 1207 | spin_unlock_irqrestore(&blocked->lock, flags); | ||
| 1208 | } | ||
| 1209 | |||
| 1210 | /* assumes preempt off */ | ||
| 1211 | static void pcp_lower_ceiling(struct pcp_semaphore* sem) | ||
| 1212 | { | ||
| 1213 | BUG_ON(!in_list(&sem->ceiling)); | ||
| 1214 | BUG_ON(sem->owner != current); | ||
| 1215 | BUG_ON(sem->on_cpu != smp_processor_id()); | ||
| 1216 | |||
| 1217 | /* remove from ceiling list */ | ||
| 1218 | list_del(&sem->ceiling); | ||
| 1219 | |||
| 1220 | /* release */ | ||
| 1221 | sem->owner = NULL; | ||
| 1222 | |||
| 1223 | TRACE_CUR("PCP released sem %p\n", sem); | ||
| 1224 | |||
| 1225 | pcp_priority_inheritance(); | ||
| 1226 | |||
| 1227 | /* Wake up all ceiling-blocked jobs that now pass the ceiling. */ | ||
| 1228 | pcp_resume_unblocked(); | ||
| 1229 | } | ||
| 1230 | |||
| 1231 | static void pcp_update_prio_ceiling(struct pcp_semaphore* sem, | ||
| 1232 | int effective_prio) | ||
| 1233 | { | ||
| 1234 | /* This needs to be synchronized on something. | ||
| 1235 | * Might as well use waitqueue lock for the processor. | ||
| 1236 | * We assume this happens only before the task set starts execution, | ||
| 1237 | * (i.e., during initialization), but it may happen on multiple processors | ||
| 1238 | * at the same time. | ||
| 1239 | */ | ||
| 1240 | unsigned long flags; | ||
| 1241 | |||
| 1242 | struct pcp_state* s = &per_cpu(pcp_state, sem->on_cpu); | ||
| 1243 | |||
| 1244 | spin_lock_irqsave(&s->ceiling_blocked.lock, flags); | ||
| 1245 | |||
| 1246 | sem->prio_ceiling = min(sem->prio_ceiling, effective_prio); | ||
| 1247 | |||
| 1248 | spin_unlock_irqrestore(&s->ceiling_blocked.lock, flags); | ||
| 1249 | } | ||
| 1250 | |||
| 1251 | static void pcp_init_semaphore(struct pcp_semaphore* sem, int cpu) | ||
| 1252 | { | ||
| 1253 | sem->owner = NULL; | ||
| 1254 | INIT_LIST_HEAD(&sem->ceiling); | ||
| 1255 | sem->prio_ceiling = INT_MAX; | ||
| 1256 | sem->on_cpu = cpu; | ||
| 1257 | } | ||
| 1258 | |||
| 1259 | int pfp_pcp_lock(struct litmus_lock* l) | ||
| 1260 | { | ||
| 1261 | struct task_struct* t = current; | ||
| 1262 | struct pcp_semaphore *sem = pcp_from_lock(l); | ||
| 1263 | |||
| 1264 | int eprio = effective_agent_priority(get_priority(t)); | ||
| 1265 | int from = get_partition(t); | ||
| 1266 | int to = sem->on_cpu; | ||
| 1267 | |||
| 1268 | if (!is_realtime(t) || from != to) | ||
| 1269 | return -EPERM; | ||
| 1270 | |||
| 1271 | /* prevent nested lock acquisition in global critical section */ | ||
| 1272 | if (tsk_rt(t)->num_locks_held) | ||
| 1273 | return -EBUSY; | ||
| 1274 | |||
| 1275 | preempt_disable(); | ||
| 1276 | |||
| 1277 | pcp_raise_ceiling(sem, eprio); | ||
| 1278 | |||
| 1279 | preempt_enable(); | ||
| 1280 | |||
| 1281 | tsk_rt(t)->num_local_locks_held++; | ||
| 1282 | |||
| 1283 | return 0; | ||
| 1284 | } | ||
| 1285 | |||
| 1286 | int pfp_pcp_unlock(struct litmus_lock* l) | ||
| 1287 | { | ||
| 1288 | struct task_struct *t = current; | ||
| 1289 | struct pcp_semaphore *sem = pcp_from_lock(l); | ||
| 1290 | |||
| 1291 | int err = 0; | ||
| 1292 | |||
| 1293 | preempt_disable(); | ||
| 1294 | |||
| 1295 | if (sem->on_cpu != smp_processor_id() || sem->owner != t) { | ||
| 1296 | err = -EINVAL; | ||
| 1297 | goto out; | ||
| 1298 | } | ||
| 1299 | |||
| 1300 | tsk_rt(t)->num_local_locks_held--; | ||
| 1301 | |||
| 1302 | /* give it back */ | ||
| 1303 | pcp_lower_ceiling(sem); | ||
| 1304 | |||
| 1305 | out: | ||
| 1306 | preempt_enable(); | ||
| 1307 | |||
| 1308 | return err; | ||
| 1309 | } | ||
| 1310 | |||
| 1311 | int pfp_pcp_open(struct litmus_lock* l, void* __user config) | ||
| 1312 | { | ||
| 1313 | struct task_struct *t = current; | ||
| 1314 | struct pcp_semaphore *sem = pcp_from_lock(l); | ||
| 1315 | |||
| 1316 | int cpu, eprio; | ||
| 1317 | |||
| 1318 | if (!is_realtime(t)) | ||
| 1319 | /* we need to know the real-time priority */ | ||
| 1320 | return -EPERM; | ||
| 1321 | |||
| 1322 | if (!config) | ||
| 1323 | cpu = get_partition(t); | ||
| 1324 | else if (get_user(cpu, (int*) config)) | ||
| 1325 | return -EFAULT; | ||
| 1326 | |||
| 1327 | /* make sure the resource location matches */ | ||
| 1328 | if (cpu != sem->on_cpu) | ||
| 1329 | return -EINVAL; | ||
| 1330 | |||
| 1331 | eprio = effective_agent_priority(get_priority(t)); | ||
| 1332 | |||
| 1333 | pcp_update_prio_ceiling(sem, eprio); | ||
| 1334 | |||
| 1335 | return 0; | ||
| 1336 | } | ||
| 1337 | |||
| 1338 | int pfp_pcp_close(struct litmus_lock* l) | ||
| 1339 | { | ||
| 1340 | struct task_struct *t = current; | ||
| 1341 | struct pcp_semaphore *sem = pcp_from_lock(l); | ||
| 1342 | |||
| 1343 | int owner = 0; | ||
| 1344 | |||
| 1345 | preempt_disable(); | ||
| 1346 | |||
| 1347 | if (sem->on_cpu == smp_processor_id()) | ||
| 1348 | owner = sem->owner == t; | ||
| 1349 | |||
| 1350 | preempt_enable(); | ||
| 1351 | |||
| 1352 | if (owner) | ||
| 1353 | pfp_pcp_unlock(l); | ||
| 1354 | |||
| 1355 | return 0; | ||
| 1356 | } | ||
| 1357 | |||
| 1358 | void pfp_pcp_free(struct litmus_lock* lock) | ||
| 1359 | { | ||
| 1360 | kfree(pcp_from_lock(lock)); | ||
| 1361 | } | ||
| 1362 | |||
| 1363 | |||
| 1364 | static struct litmus_lock_ops pfp_pcp_lock_ops = { | ||
| 1365 | .close = pfp_pcp_close, | ||
| 1366 | .lock = pfp_pcp_lock, | ||
| 1367 | .open = pfp_pcp_open, | ||
| 1368 | .unlock = pfp_pcp_unlock, | ||
| 1369 | .deallocate = pfp_pcp_free, | ||
| 1370 | }; | ||
| 1371 | |||
| 1372 | |||
| 1373 | static struct litmus_lock* pfp_new_pcp(int on_cpu) | ||
| 1374 | { | ||
| 1375 | struct pcp_semaphore* sem; | ||
| 1376 | |||
| 1377 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
| 1378 | if (!sem) | ||
| 1379 | return NULL; | ||
| 1380 | |||
| 1381 | sem->litmus_lock.ops = &pfp_pcp_lock_ops; | ||
| 1382 | pcp_init_semaphore(sem, on_cpu); | ||
| 1383 | |||
| 1384 | return &sem->litmus_lock; | ||
| 1385 | } | ||
| 1386 | |||
| 1387 | /* ******************** DPCP support ********************** */ | ||
| 1388 | |||
| 1389 | struct dpcp_semaphore { | ||
| 1390 | struct litmus_lock litmus_lock; | ||
| 1391 | struct pcp_semaphore pcp; | ||
| 1392 | int owner_cpu; | ||
| 1393 | }; | ||
| 1394 | |||
| 1395 | static inline struct dpcp_semaphore* dpcp_from_lock(struct litmus_lock* lock) | ||
| 1396 | { | ||
| 1397 | return container_of(lock, struct dpcp_semaphore, litmus_lock); | ||
| 1398 | } | ||
| 1399 | |||
| 1400 | /* called with preemptions disabled */ | ||
| 1401 | static void pfp_migrate_to(int target_cpu) | ||
| 1402 | { | ||
| 1403 | struct task_struct* t = current; | ||
| 1404 | pfp_domain_t *from; | ||
| 1405 | |||
| 1406 | if (get_partition(t) == target_cpu) | ||
| 1407 | return; | ||
| 1408 | |||
| 1409 | /* make sure target_cpu makes sense */ | ||
| 1410 | BUG_ON(!cpu_online(target_cpu)); | ||
| 1411 | |||
| 1412 | local_irq_disable(); | ||
| 1413 | |||
| 1414 | /* scheduled task should not be in any ready or release queue */ | ||
| 1415 | BUG_ON(is_queued(t)); | ||
| 1416 | |||
| 1417 | /* lock both pfp domains in order of address */ | ||
| 1418 | from = task_pfp(t); | ||
| 1419 | |||
| 1420 | raw_spin_lock(&from->slock); | ||
| 1421 | |||
| 1422 | /* switch partitions */ | ||
| 1423 | tsk_rt(t)->task_params.cpu = target_cpu; | ||
| 1424 | |||
| 1425 | raw_spin_unlock(&from->slock); | ||
| 1426 | |||
| 1427 | /* Don't trace scheduler costs as part of | ||
| 1428 | * locking overhead. Scheduling costs are accounted for | ||
| 1429 | * explicitly. */ | ||
| 1430 | TS_LOCK_SUSPEND; | ||
| 1431 | |||
| 1432 | local_irq_enable(); | ||
| 1433 | preempt_enable_no_resched(); | ||
| 1434 | |||
| 1435 | /* deschedule to be migrated */ | ||
| 1436 | schedule(); | ||
| 1437 | |||
| 1438 | /* we are now on the target processor */ | ||
| 1439 | preempt_disable(); | ||
| 1440 | |||
| 1441 | /* start recording costs again */ | ||
| 1442 | TS_LOCK_RESUME; | ||
| 1443 | |||
| 1444 | BUG_ON(smp_processor_id() != target_cpu); | ||
| 1445 | } | ||
| 1446 | |||
| 1447 | int pfp_dpcp_lock(struct litmus_lock* l) | ||
| 1448 | { | ||
| 1449 | struct task_struct* t = current; | ||
| 1450 | struct dpcp_semaphore *sem = dpcp_from_lock(l); | ||
| 1451 | int eprio = effective_agent_priority(get_priority(t)); | ||
| 1452 | int from = get_partition(t); | ||
| 1453 | int to = sem->pcp.on_cpu; | ||
| 1454 | |||
| 1455 | if (!is_realtime(t)) | ||
| 1456 | return -EPERM; | ||
| 1457 | |||
| 1458 | /* prevent nested lock accquisition */ | ||
| 1459 | if (tsk_rt(t)->num_locks_held || | ||
| 1460 | tsk_rt(t)->num_local_locks_held) | ||
| 1461 | return -EBUSY; | ||
| 1462 | |||
| 1463 | preempt_disable(); | ||
| 1464 | |||
| 1465 | /* Priority-boost ourself *before* we suspend so that | ||
| 1466 | * our priority is boosted when we resume. */ | ||
| 1467 | |||
| 1468 | boost_priority(t, get_priority(t)); | ||
| 1469 | |||
| 1470 | pfp_migrate_to(to); | ||
| 1471 | |||
| 1472 | pcp_raise_ceiling(&sem->pcp, eprio); | ||
| 1473 | |||
| 1474 | /* yep, we got it => execute request */ | ||
| 1475 | sem->owner_cpu = from; | ||
| 1476 | |||
| 1477 | preempt_enable(); | ||
| 1478 | |||
| 1479 | tsk_rt(t)->num_locks_held++; | ||
| 1480 | |||
| 1481 | return 0; | ||
| 1482 | } | ||
| 1483 | |||
| 1484 | int pfp_dpcp_unlock(struct litmus_lock* l) | ||
| 1485 | { | ||
| 1486 | struct task_struct *t = current; | ||
| 1487 | struct dpcp_semaphore *sem = dpcp_from_lock(l); | ||
| 1488 | int err = 0; | ||
| 1489 | int home; | ||
| 1490 | |||
| 1491 | preempt_disable(); | ||
| 1492 | |||
| 1493 | if (sem->pcp.on_cpu != smp_processor_id() || sem->pcp.owner != t) { | ||
| 1494 | err = -EINVAL; | ||
| 1495 | goto out; | ||
| 1496 | } | ||
| 1497 | |||
| 1498 | tsk_rt(t)->num_locks_held--; | ||
| 1499 | |||
| 1500 | home = sem->owner_cpu; | ||
| 1501 | |||
| 1502 | /* give it back */ | ||
| 1503 | pcp_lower_ceiling(&sem->pcp); | ||
| 1504 | |||
| 1505 | /* we lose the benefit of priority boosting */ | ||
| 1506 | unboost_priority(t); | ||
| 1507 | |||
| 1508 | pfp_migrate_to(home); | ||
| 1509 | |||
| 1510 | out: | ||
| 1511 | preempt_enable(); | ||
| 1512 | |||
| 1513 | return err; | ||
| 1514 | } | ||
| 1515 | |||
| 1516 | int pfp_dpcp_open(struct litmus_lock* l, void* __user config) | ||
| 1517 | { | ||
| 1518 | struct task_struct *t = current; | ||
| 1519 | struct dpcp_semaphore *sem = dpcp_from_lock(l); | ||
| 1520 | int cpu, eprio; | ||
| 1521 | |||
| 1522 | if (!is_realtime(t)) | ||
| 1523 | /* we need to know the real-time priority */ | ||
| 1524 | return -EPERM; | ||
| 1525 | |||
| 1526 | if (get_user(cpu, (int*) config)) | ||
| 1527 | return -EFAULT; | ||
| 1528 | |||
| 1529 | /* make sure the resource location matches */ | ||
| 1530 | if (cpu != sem->pcp.on_cpu) | ||
| 1531 | return -EINVAL; | ||
| 1532 | |||
| 1533 | eprio = effective_agent_priority(get_priority(t)); | ||
| 1534 | |||
| 1535 | pcp_update_prio_ceiling(&sem->pcp, eprio); | ||
| 1536 | |||
| 1537 | return 0; | ||
| 1538 | } | ||
| 1539 | |||
| 1540 | int pfp_dpcp_close(struct litmus_lock* l) | ||
| 1541 | { | ||
| 1542 | struct task_struct *t = current; | ||
| 1543 | struct dpcp_semaphore *sem = dpcp_from_lock(l); | ||
| 1544 | int owner = 0; | ||
| 1545 | |||
| 1546 | preempt_disable(); | ||
| 1547 | |||
| 1548 | if (sem->pcp.on_cpu == smp_processor_id()) | ||
| 1549 | owner = sem->pcp.owner == t; | ||
| 1550 | |||
| 1551 | preempt_enable(); | ||
| 1552 | |||
| 1553 | if (owner) | ||
| 1554 | pfp_dpcp_unlock(l); | ||
| 1555 | |||
| 1556 | return 0; | ||
| 1557 | } | ||
| 1558 | |||
| 1559 | void pfp_dpcp_free(struct litmus_lock* lock) | ||
| 1560 | { | ||
| 1561 | kfree(dpcp_from_lock(lock)); | ||
| 1562 | } | ||
| 1563 | |||
| 1564 | static struct litmus_lock_ops pfp_dpcp_lock_ops = { | ||
| 1565 | .close = pfp_dpcp_close, | ||
| 1566 | .lock = pfp_dpcp_lock, | ||
| 1567 | .open = pfp_dpcp_open, | ||
| 1568 | .unlock = pfp_dpcp_unlock, | ||
| 1569 | .deallocate = pfp_dpcp_free, | ||
| 1570 | }; | ||
| 1571 | |||
| 1572 | static struct litmus_lock* pfp_new_dpcp(int on_cpu) | ||
| 1573 | { | ||
| 1574 | struct dpcp_semaphore* sem; | ||
| 1575 | |||
| 1576 | sem = kmalloc(sizeof(*sem), GFP_KERNEL); | ||
| 1577 | if (!sem) | ||
| 1578 | return NULL; | ||
| 1579 | |||
| 1580 | sem->litmus_lock.ops = &pfp_dpcp_lock_ops; | ||
| 1581 | sem->owner_cpu = NO_CPU; | ||
| 1582 | pcp_init_semaphore(&sem->pcp, on_cpu); | ||
| 1583 | |||
| 1584 | return &sem->litmus_lock; | ||
| 1585 | } | ||
| 1586 | |||
| 1587 | |||
| 1588 | /* **** lock constructor **** */ | ||
| 1589 | |||
| 1590 | |||
| 1591 | static long pfp_allocate_lock(struct litmus_lock **lock, int type, | ||
| 1592 | void* __user config) | ||
| 1593 | { | ||
| 1594 | int err = -ENXIO, cpu; | ||
| 1595 | struct srp_semaphore* srp; | ||
| 1596 | |||
| 1597 | /* P-FP currently supports the SRP for local resources and the FMLP | ||
| 1598 | * for global resources. */ | ||
| 1599 | switch (type) { | ||
| 1600 | case FMLP_SEM: | ||
| 1601 | /* FIFO Mutex Locking Protocol */ | ||
| 1602 | *lock = pfp_new_fmlp(); | ||
| 1603 | if (*lock) | ||
| 1604 | err = 0; | ||
| 1605 | else | ||
| 1606 | err = -ENOMEM; | ||
| 1607 | break; | ||
| 1608 | |||
| 1609 | case MPCP_SEM: | ||
| 1610 | /* Multiprocesor Priority Ceiling Protocol */ | ||
| 1611 | *lock = pfp_new_mpcp(0); | ||
| 1612 | if (*lock) | ||
| 1613 | err = 0; | ||
| 1614 | else | ||
| 1615 | err = -ENOMEM; | ||
| 1616 | break; | ||
| 1617 | |||
| 1618 | case MPCP_VS_SEM: | ||
| 1619 | /* Multiprocesor Priority Ceiling Protocol with virtual spinning */ | ||
| 1620 | *lock = pfp_new_mpcp(1); | ||
| 1621 | if (*lock) | ||
| 1622 | err = 0; | ||
| 1623 | else | ||
| 1624 | err = -ENOMEM; | ||
| 1625 | break; | ||
| 1626 | |||
| 1627 | case DPCP_SEM: | ||
| 1628 | /* Distributed Priority Ceiling Protocol */ | ||
| 1629 | if (get_user(cpu, (int*) config)) | ||
| 1630 | return -EFAULT; | ||
| 1631 | |||
| 1632 | if (!cpu_online(cpu)) | ||
| 1633 | return -EINVAL; | ||
| 1634 | |||
| 1635 | *lock = pfp_new_dpcp(cpu); | ||
| 1636 | if (*lock) | ||
| 1637 | err = 0; | ||
| 1638 | else | ||
| 1639 | err = -ENOMEM; | ||
| 1640 | break; | ||
| 1641 | |||
| 1642 | case SRP_SEM: | ||
| 1643 | /* Baker's Stack Resource Policy */ | ||
| 1644 | srp = allocate_srp_semaphore(); | ||
| 1645 | if (srp) { | ||
| 1646 | *lock = &srp->litmus_lock; | ||
| 1647 | err = 0; | ||
| 1648 | } else | ||
| 1649 | err = -ENOMEM; | ||
| 1650 | break; | ||
| 1651 | |||
| 1652 | case PCP_SEM: | ||
| 1653 | /* Priority Ceiling Protocol */ | ||
| 1654 | if (!config) | ||
| 1655 | cpu = get_partition(current); | ||
| 1656 | else if (get_user(cpu, (int*) config)) | ||
| 1657 | return -EFAULT; | ||
| 1658 | |||
| 1659 | if (!cpu_online(cpu)) | ||
| 1660 | return -EINVAL; | ||
| 1661 | |||
| 1662 | *lock = pfp_new_pcp(cpu); | ||
| 1663 | if (*lock) | ||
| 1664 | err = 0; | ||
| 1665 | else | ||
| 1666 | err = -ENOMEM; | ||
| 1667 | break; | ||
| 1668 | }; | ||
| 1669 | |||
| 1670 | return err; | ||
| 1671 | } | ||
| 1672 | |||
| 1673 | #endif | ||
| 1674 | |||
| 1675 | static long pfp_admit_task(struct task_struct* tsk) | ||
| 1676 | { | ||
| 1677 | if (task_cpu(tsk) == tsk->rt_param.task_params.cpu && | ||
| 1678 | #ifdef CONFIG_RELEASE_MASTER | ||
| 1679 | /* don't allow tasks on release master CPU */ | ||
| 1680 | task_cpu(tsk) != remote_dom(task_cpu(tsk))->release_master && | ||
| 1681 | #endif | ||
| 1682 | litmus_is_valid_fixed_prio(get_priority(tsk))) | ||
| 1683 | return 0; | ||
| 1684 | else | ||
| 1685 | return -EINVAL; | ||
| 1686 | } | ||
| 1687 | |||
| 1688 | static long pfp_activate_plugin(void) | ||
| 1689 | { | ||
| 1690 | #if defined(CONFIG_RELEASE_MASTER) || defined(CONFIG_LITMUS_LOCKING) | ||
| 1691 | int cpu; | ||
| 1692 | #endif | ||
| 1693 | |||
| 1694 | #ifdef CONFIG_RELEASE_MASTER | ||
| 1695 | for_each_online_cpu(cpu) { | ||
| 1696 | remote_dom(cpu)->release_master = atomic_read(&release_master_cpu); | ||
| 1697 | } | ||
| 1698 | #endif | ||
| 1699 | |||
| 1700 | #ifdef CONFIG_LITMUS_LOCKING | ||
| 1701 | get_srp_prio = pfp_get_srp_prio; | ||
| 1702 | |||
| 1703 | for_each_online_cpu(cpu) { | ||
| 1704 | init_waitqueue_head(&per_cpu(mpcpvs_vspin_wait, cpu)); | ||
| 1705 | per_cpu(mpcpvs_vspin, cpu) = NULL; | ||
| 1706 | |||
| 1707 | pcp_init_state(&per_cpu(pcp_state, cpu)); | ||
| 1708 | pfp_doms[cpu] = remote_pfp(cpu); | ||
| 1709 | } | ||
| 1710 | |||
| 1711 | #endif | ||
| 1712 | |||
| 1713 | return 0; | ||
| 1714 | } | ||
| 1715 | |||
| 1716 | |||
| 1717 | /* Plugin object */ | ||
| 1718 | static struct sched_plugin pfp_plugin __cacheline_aligned_in_smp = { | ||
| 1719 | .plugin_name = "P-FP", | ||
| 1720 | .tick = pfp_tick, | ||
| 1721 | .task_new = pfp_task_new, | ||
| 1722 | .complete_job = complete_job, | ||
| 1723 | .task_exit = pfp_task_exit, | ||
| 1724 | .schedule = pfp_schedule, | ||
| 1725 | .task_wake_up = pfp_task_wake_up, | ||
| 1726 | .task_block = pfp_task_block, | ||
| 1727 | .admit_task = pfp_admit_task, | ||
| 1728 | .activate_plugin = pfp_activate_plugin, | ||
| 1729 | #ifdef CONFIG_LITMUS_LOCKING | ||
| 1730 | .allocate_lock = pfp_allocate_lock, | ||
| 1731 | .finish_switch = pfp_finish_switch, | ||
| 1732 | #endif | ||
| 1733 | }; | ||
| 1734 | |||
| 1735 | |||
| 1736 | static int __init init_pfp(void) | ||
| 1737 | { | ||
| 1738 | int i; | ||
| 1739 | |||
| 1740 | /* We do not really want to support cpu hotplug, do we? ;) | ||
| 1741 | * However, if we are so crazy to do so, | ||
| 1742 | * we cannot use num_online_cpu() | ||
| 1743 | */ | ||
| 1744 | for (i = 0; i < num_online_cpus(); i++) { | ||
| 1745 | pfp_domain_init(remote_pfp(i), i); | ||
| 1746 | } | ||
| 1747 | return register_sched_plugin(&pfp_plugin); | ||
| 1748 | } | ||
| 1749 | |||
| 1750 | module_init(init_pfp); | ||
| 1751 | |||
