aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/time/tick-sched.c
diff options
context:
space:
mode:
authorJonathan Herman <hermanjl@cs.unc.edu>2013-01-17 16:15:55 -0500
committerJonathan Herman <hermanjl@cs.unc.edu>2013-01-17 16:15:55 -0500
commit8dea78da5cee153b8af9c07a2745f6c55057fe12 (patch)
treea8f4d49d63b1ecc92f2fddceba0655b2472c5bd9 /kernel/time/tick-sched.c
parent406089d01562f1e2bf9f089fd7637009ebaad589 (diff)
Patched in Tegra support.
Diffstat (limited to 'kernel/time/tick-sched.c')
-rw-r--r--kernel/time/tick-sched.c519
1 files changed, 216 insertions, 303 deletions
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
index d58e552d9fd..d5097c44b40 100644
--- a/kernel/time/tick-sched.c
+++ b/kernel/time/tick-sched.c
@@ -31,7 +31,7 @@
31static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 31static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32 32
33/* 33/*
34 * The time, when the last jiffy update happened. Protected by jiffies_lock. 34 * The time, when the last jiffy update happened. Protected by xtime_lock.
35 */ 35 */
36static ktime_t last_jiffies_update; 36static ktime_t last_jiffies_update;
37 37
@@ -49,14 +49,14 @@ static void tick_do_update_jiffies64(ktime_t now)
49 ktime_t delta; 49 ktime_t delta;
50 50
51 /* 51 /*
52 * Do a quick check without holding jiffies_lock: 52 * Do a quick check without holding xtime_lock:
53 */ 53 */
54 delta = ktime_sub(now, last_jiffies_update); 54 delta = ktime_sub(now, last_jiffies_update);
55 if (delta.tv64 < tick_period.tv64) 55 if (delta.tv64 < tick_period.tv64)
56 return; 56 return;
57 57
58 /* Reevalute with jiffies_lock held */ 58 /* Reevalute with xtime_lock held */
59 write_seqlock(&jiffies_lock); 59 write_seqlock(&xtime_lock);
60 60
61 delta = ktime_sub(now, last_jiffies_update); 61 delta = ktime_sub(now, last_jiffies_update);
62 if (delta.tv64 >= tick_period.tv64) { 62 if (delta.tv64 >= tick_period.tv64) {
@@ -79,7 +79,7 @@ static void tick_do_update_jiffies64(ktime_t now)
79 /* Keep the tick_next_period variable up to date */ 79 /* Keep the tick_next_period variable up to date */
80 tick_next_period = ktime_add(last_jiffies_update, tick_period); 80 tick_next_period = ktime_add(last_jiffies_update, tick_period);
81 } 81 }
82 write_sequnlock(&jiffies_lock); 82 write_sequnlock(&xtime_lock);
83} 83}
84 84
85/* 85/*
@@ -89,58 +89,15 @@ static ktime_t tick_init_jiffy_update(void)
89{ 89{
90 ktime_t period; 90 ktime_t period;
91 91
92 write_seqlock(&jiffies_lock); 92 write_seqlock(&xtime_lock);
93 /* Did we start the jiffies update yet ? */ 93 /* Did we start the jiffies update yet ? */
94 if (last_jiffies_update.tv64 == 0) 94 if (last_jiffies_update.tv64 == 0)
95 last_jiffies_update = tick_next_period; 95 last_jiffies_update = tick_next_period;
96 period = last_jiffies_update; 96 period = last_jiffies_update;
97 write_sequnlock(&jiffies_lock); 97 write_sequnlock(&xtime_lock);
98 return period; 98 return period;
99} 99}
100 100
101
102static void tick_sched_do_timer(ktime_t now)
103{
104 int cpu = smp_processor_id();
105
106#ifdef CONFIG_NO_HZ
107 /*
108 * Check if the do_timer duty was dropped. We don't care about
109 * concurrency: This happens only when the cpu in charge went
110 * into a long sleep. If two cpus happen to assign themself to
111 * this duty, then the jiffies update is still serialized by
112 * jiffies_lock.
113 */
114 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
115 tick_do_timer_cpu = cpu;
116#endif
117
118 /* Check, if the jiffies need an update */
119 if (tick_do_timer_cpu == cpu)
120 tick_do_update_jiffies64(now);
121}
122
123static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
124{
125#ifdef CONFIG_NO_HZ
126 /*
127 * When we are idle and the tick is stopped, we have to touch
128 * the watchdog as we might not schedule for a really long
129 * time. This happens on complete idle SMP systems while
130 * waiting on the login prompt. We also increment the "start of
131 * idle" jiffy stamp so the idle accounting adjustment we do
132 * when we go busy again does not account too much ticks.
133 */
134 if (ts->tick_stopped) {
135 touch_softlockup_watchdog();
136 if (is_idle_task(current))
137 ts->idle_jiffies++;
138 }
139#endif
140 update_process_times(user_mode(regs));
141 profile_tick(CPU_PROFILING);
142}
143
144/* 101/*
145 * NOHZ - aka dynamic tick functionality 102 * NOHZ - aka dynamic tick functionality
146 */ 103 */
@@ -148,7 +105,7 @@ static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
148/* 105/*
149 * NO HZ enabled ? 106 * NO HZ enabled ?
150 */ 107 */
151int tick_nohz_enabled __read_mostly = 1; 108static int tick_nohz_enabled __read_mostly = 1;
152 109
153/* 110/*
154 * Enable / Disable tickless mode 111 * Enable / Disable tickless mode
@@ -182,6 +139,7 @@ static void tick_nohz_update_jiffies(ktime_t now)
182 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 139 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
183 unsigned long flags; 140 unsigned long flags;
184 141
142 cpumask_clear_cpu(cpu, nohz_cpu_mask);
185 ts->idle_waketime = now; 143 ts->idle_waketime = now;
186 144
187 local_irq_save(flags); 145 local_irq_save(flags);
@@ -201,10 +159,9 @@ update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_upda
201 159
202 if (ts->idle_active) { 160 if (ts->idle_active) {
203 delta = ktime_sub(now, ts->idle_entrytime); 161 delta = ktime_sub(now, ts->idle_entrytime);
162 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
204 if (nr_iowait_cpu(cpu) > 0) 163 if (nr_iowait_cpu(cpu) > 0)
205 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 164 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
206 else
207 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
208 ts->idle_entrytime = now; 165 ts->idle_entrytime = now;
209 } 166 }
210 167
@@ -225,7 +182,11 @@ static void tick_nohz_stop_idle(int cpu, ktime_t now)
225 182
226static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts) 183static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
227{ 184{
228 ktime_t now = ktime_get(); 185 ktime_t now;
186
187 now = ktime_get();
188
189 update_ts_time_stats(cpu, ts, now, NULL);
229 190
230 ts->idle_entrytime = now; 191 ts->idle_entrytime = now;
231 ts->idle_active = 1; 192 ts->idle_active = 1;
@@ -236,11 +197,11 @@ static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
236/** 197/**
237 * get_cpu_idle_time_us - get the total idle time of a cpu 198 * get_cpu_idle_time_us - get the total idle time of a cpu
238 * @cpu: CPU number to query 199 * @cpu: CPU number to query
239 * @last_update_time: variable to store update time in. Do not update 200 * @last_update_time: variable to store update time in
240 * counters if NULL.
241 * 201 *
242 * Return the cummulative idle time (since boot) for a given 202 * Return the cummulative idle time (since boot) for a given
243 * CPU, in microseconds. 203 * CPU, in microseconds. The idle time returned includes
204 * the iowait time (unlike what "top" and co report).
244 * 205 *
245 * This time is measured via accounting rather than sampling, 206 * This time is measured via accounting rather than sampling,
246 * and is as accurate as ktime_get() is. 207 * and is as accurate as ktime_get() is.
@@ -250,35 +211,20 @@ static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
250u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 211u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
251{ 212{
252 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 213 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
253 ktime_t now, idle;
254 214
255 if (!tick_nohz_enabled) 215 if (!tick_nohz_enabled)
256 return -1; 216 return -1;
257 217
258 now = ktime_get(); 218 update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
259 if (last_update_time) {
260 update_ts_time_stats(cpu, ts, now, last_update_time);
261 idle = ts->idle_sleeptime;
262 } else {
263 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
264 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
265
266 idle = ktime_add(ts->idle_sleeptime, delta);
267 } else {
268 idle = ts->idle_sleeptime;
269 }
270 }
271
272 return ktime_to_us(idle);
273 219
220 return ktime_to_us(ts->idle_sleeptime);
274} 221}
275EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 222EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
276 223
277/** 224/*
278 * get_cpu_iowait_time_us - get the total iowait time of a cpu 225 * get_cpu_iowait_time_us - get the total iowait time of a cpu
279 * @cpu: CPU number to query 226 * @cpu: CPU number to query
280 * @last_update_time: variable to store update time in. Do not update 227 * @last_update_time: variable to store update time in
281 * counters if NULL.
282 * 228 *
283 * Return the cummulative iowait time (since boot) for a given 229 * Return the cummulative iowait time (since boot) for a given
284 * CPU, in microseconds. 230 * CPU, in microseconds.
@@ -291,47 +237,93 @@ EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
291u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 237u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
292{ 238{
293 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 239 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
294 ktime_t now, iowait;
295 240
296 if (!tick_nohz_enabled) 241 if (!tick_nohz_enabled)
297 return -1; 242 return -1;
298 243
299 now = ktime_get(); 244 update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
300 if (last_update_time) {
301 update_ts_time_stats(cpu, ts, now, last_update_time);
302 iowait = ts->iowait_sleeptime;
303 } else {
304 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
305 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
306
307 iowait = ktime_add(ts->iowait_sleeptime, delta);
308 } else {
309 iowait = ts->iowait_sleeptime;
310 }
311 }
312 245
313 return ktime_to_us(iowait); 246 return ktime_to_us(ts->iowait_sleeptime);
314} 247}
315EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 248EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
316 249
317static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, 250/**
318 ktime_t now, int cpu) 251 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
252 *
253 * When the next event is more than a tick into the future, stop the idle tick
254 * Called either from the idle loop or from irq_exit() when an idle period was
255 * just interrupted by an interrupt which did not cause a reschedule.
256 */
257void tick_nohz_stop_sched_tick(int inidle)
319{ 258{
320 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies; 259 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
321 ktime_t last_update, expires, ret = { .tv64 = 0 }; 260 struct tick_sched *ts;
322 unsigned long rcu_delta_jiffies; 261 ktime_t last_update, expires, now;
323 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; 262 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
324 u64 time_delta; 263 u64 time_delta;
264 int cpu;
265
266 local_irq_save(flags);
267
268 cpu = smp_processor_id();
269 ts = &per_cpu(tick_cpu_sched, cpu);
270
271 /*
272 * Call to tick_nohz_start_idle stops the last_update_time from being
273 * updated. Thus, it must not be called in the event we are called from
274 * irq_exit() with the prior state different than idle.
275 */
276 if (!inidle && !ts->inidle)
277 goto end;
278
279 /*
280 * Set ts->inidle unconditionally. Even if the system did not
281 * switch to NOHZ mode the cpu frequency governers rely on the
282 * update of the idle time accounting in tick_nohz_start_idle().
283 */
284 ts->inidle = 1;
325 285
286 now = tick_nohz_start_idle(cpu, ts);
287
288 /*
289 * If this cpu is offline and it is the one which updates
290 * jiffies, then give up the assignment and let it be taken by
291 * the cpu which runs the tick timer next. If we don't drop
292 * this here the jiffies might be stale and do_timer() never
293 * invoked.
294 */
295 if (unlikely(!cpu_online(cpu))) {
296 if (cpu == tick_do_timer_cpu)
297 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
298 }
299
300 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
301 goto end;
302
303 if (need_resched())
304 goto end;
305
306 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
307 static int ratelimit;
308
309 if (ratelimit < 10) {
310 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
311 (unsigned int) local_softirq_pending());
312 ratelimit++;
313 }
314 goto end;
315 }
316
317 ts->idle_calls++;
326 /* Read jiffies and the time when jiffies were updated last */ 318 /* Read jiffies and the time when jiffies were updated last */
327 do { 319 do {
328 seq = read_seqbegin(&jiffies_lock); 320 seq = read_seqbegin(&xtime_lock);
329 last_update = last_jiffies_update; 321 last_update = last_jiffies_update;
330 last_jiffies = jiffies; 322 last_jiffies = jiffies;
331 time_delta = timekeeping_max_deferment(); 323 time_delta = timekeeping_max_deferment();
332 } while (read_seqretry(&jiffies_lock, seq)); 324 } while (read_seqretry(&xtime_lock, seq));
333 325
334 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || printk_needs_cpu(cpu) || 326 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
335 arch_needs_cpu(cpu)) { 327 arch_needs_cpu(cpu)) {
336 next_jiffies = last_jiffies + 1; 328 next_jiffies = last_jiffies + 1;
337 delta_jiffies = 1; 329 delta_jiffies = 1;
@@ -339,10 +331,6 @@ static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
339 /* Get the next timer wheel timer */ 331 /* Get the next timer wheel timer */
340 next_jiffies = get_next_timer_interrupt(last_jiffies); 332 next_jiffies = get_next_timer_interrupt(last_jiffies);
341 delta_jiffies = next_jiffies - last_jiffies; 333 delta_jiffies = next_jiffies - last_jiffies;
342 if (rcu_delta_jiffies < delta_jiffies) {
343 next_jiffies = last_jiffies + rcu_delta_jiffies;
344 delta_jiffies = rcu_delta_jiffies;
345 }
346 } 334 }
347 /* 335 /*
348 * Do not stop the tick, if we are only one off 336 * Do not stop the tick, if we are only one off
@@ -401,12 +389,13 @@ static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
401 else 389 else
402 expires.tv64 = KTIME_MAX; 390 expires.tv64 = KTIME_MAX;
403 391
392 if (delta_jiffies > 1)
393 cpumask_set_cpu(cpu, nohz_cpu_mask);
394
404 /* Skip reprogram of event if its not changed */ 395 /* Skip reprogram of event if its not changed */
405 if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) 396 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
406 goto out; 397 goto out;
407 398
408 ret = expires;
409
410 /* 399 /*
411 * nohz_stop_sched_tick can be called several times before 400 * nohz_stop_sched_tick can be called several times before
412 * the nohz_restart_sched_tick is called. This happens when 401 * the nohz_restart_sched_tick is called. This happens when
@@ -415,13 +404,19 @@ static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
415 * the scheduler tick in nohz_restart_sched_tick. 404 * the scheduler tick in nohz_restart_sched_tick.
416 */ 405 */
417 if (!ts->tick_stopped) { 406 if (!ts->tick_stopped) {
418 nohz_balance_enter_idle(cpu); 407 select_nohz_load_balancer(1);
419 calc_load_enter_idle();
420 408
421 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 409 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
422 ts->tick_stopped = 1; 410 ts->tick_stopped = 1;
411 ts->idle_jiffies = last_jiffies;
412 rcu_enter_nohz();
423 } 413 }
424 414
415 ts->idle_sleeps++;
416
417 /* Mark expires */
418 ts->idle_expires = expires;
419
425 /* 420 /*
426 * If the expiration time == KTIME_MAX, then 421 * If the expiration time == KTIME_MAX, then
427 * in this case we simply stop the tick timer. 422 * in this case we simply stop the tick timer.
@@ -446,132 +441,15 @@ static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
446 * softirq. 441 * softirq.
447 */ 442 */
448 tick_do_update_jiffies64(ktime_get()); 443 tick_do_update_jiffies64(ktime_get());
444 cpumask_clear_cpu(cpu, nohz_cpu_mask);
449 } 445 }
450 raise_softirq_irqoff(TIMER_SOFTIRQ); 446 raise_softirq_irqoff(TIMER_SOFTIRQ);
451out: 447out:
452 ts->next_jiffies = next_jiffies; 448 ts->next_jiffies = next_jiffies;
453 ts->last_jiffies = last_jiffies; 449 ts->last_jiffies = last_jiffies;
454 ts->sleep_length = ktime_sub(dev->next_event, now); 450 ts->sleep_length = ktime_sub(dev->next_event, now);
455 451end:
456 return ret; 452 local_irq_restore(flags);
457}
458
459static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
460{
461 /*
462 * If this cpu is offline and it is the one which updates
463 * jiffies, then give up the assignment and let it be taken by
464 * the cpu which runs the tick timer next. If we don't drop
465 * this here the jiffies might be stale and do_timer() never
466 * invoked.
467 */
468 if (unlikely(!cpu_online(cpu))) {
469 if (cpu == tick_do_timer_cpu)
470 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
471 }
472
473 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
474 return false;
475
476 if (need_resched())
477 return false;
478
479 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
480 static int ratelimit;
481
482 if (ratelimit < 10 &&
483 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
484 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
485 (unsigned int) local_softirq_pending());
486 ratelimit++;
487 }
488 return false;
489 }
490
491 return true;
492}
493
494static void __tick_nohz_idle_enter(struct tick_sched *ts)
495{
496 ktime_t now, expires;
497 int cpu = smp_processor_id();
498
499 now = tick_nohz_start_idle(cpu, ts);
500
501 if (can_stop_idle_tick(cpu, ts)) {
502 int was_stopped = ts->tick_stopped;
503
504 ts->idle_calls++;
505
506 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
507 if (expires.tv64 > 0LL) {
508 ts->idle_sleeps++;
509 ts->idle_expires = expires;
510 }
511
512 if (!was_stopped && ts->tick_stopped)
513 ts->idle_jiffies = ts->last_jiffies;
514 }
515}
516
517/**
518 * tick_nohz_idle_enter - stop the idle tick from the idle task
519 *
520 * When the next event is more than a tick into the future, stop the idle tick
521 * Called when we start the idle loop.
522 *
523 * The arch is responsible of calling:
524 *
525 * - rcu_idle_enter() after its last use of RCU before the CPU is put
526 * to sleep.
527 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
528 */
529void tick_nohz_idle_enter(void)
530{
531 struct tick_sched *ts;
532
533 WARN_ON_ONCE(irqs_disabled());
534
535 /*
536 * Update the idle state in the scheduler domain hierarchy
537 * when tick_nohz_stop_sched_tick() is called from the idle loop.
538 * State will be updated to busy during the first busy tick after
539 * exiting idle.
540 */
541 set_cpu_sd_state_idle();
542
543 local_irq_disable();
544
545 ts = &__get_cpu_var(tick_cpu_sched);
546 /*
547 * set ts->inidle unconditionally. even if the system did not
548 * switch to nohz mode the cpu frequency governers rely on the
549 * update of the idle time accounting in tick_nohz_start_idle().
550 */
551 ts->inidle = 1;
552 __tick_nohz_idle_enter(ts);
553
554 local_irq_enable();
555}
556
557/**
558 * tick_nohz_irq_exit - update next tick event from interrupt exit
559 *
560 * When an interrupt fires while we are idle and it doesn't cause
561 * a reschedule, it may still add, modify or delete a timer, enqueue
562 * an RCU callback, etc...
563 * So we need to re-calculate and reprogram the next tick event.
564 */
565void tick_nohz_irq_exit(void)
566{
567 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
568
569 if (!ts->inidle)
570 return;
571
572 /* Cancel the timer because CPU already waken up from the C-states*/
573 menu_hrtimer_cancel();
574 __tick_nohz_idle_enter(ts);
575} 453}
576 454
577/** 455/**
@@ -589,7 +467,7 @@ ktime_t tick_nohz_get_sleep_length(void)
589static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 467static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
590{ 468{
591 hrtimer_cancel(&ts->sched_timer); 469 hrtimer_cancel(&ts->sched_timer);
592 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 470 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
593 471
594 while (1) { 472 while (1) {
595 /* Forward the time to expire in the future */ 473 /* Forward the time to expire in the future */
@@ -606,33 +484,49 @@ static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
606 hrtimer_get_expires(&ts->sched_timer), 0)) 484 hrtimer_get_expires(&ts->sched_timer), 0))
607 break; 485 break;
608 } 486 }
609 /* Reread time and update jiffies */ 487 /* Update jiffies and reread time */
610 now = ktime_get();
611 tick_do_update_jiffies64(now); 488 tick_do_update_jiffies64(now);
489 now = ktime_get();
612 } 490 }
613} 491}
614 492
615static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 493/**
494 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
495 *
496 * Restart the idle tick when the CPU is woken up from idle
497 */
498void tick_nohz_restart_sched_tick(void)
616{ 499{
617 /* Update jiffies first */ 500 int cpu = smp_processor_id();
618 tick_do_update_jiffies64(now); 501 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
619 update_cpu_load_nohz(); 502#ifndef CONFIG_VIRT_CPU_ACCOUNTING
503 unsigned long ticks;
504#endif
505 ktime_t now;
620 506
621 calc_load_exit_idle(); 507 local_irq_disable();
622 touch_softlockup_watchdog(); 508 if (ts->idle_active || (ts->inidle && ts->tick_stopped))
623 /* 509 now = ktime_get();
624 * Cancel the scheduled timer and restore the tick
625 */
626 ts->tick_stopped = 0;
627 ts->idle_exittime = now;
628 510
629 tick_nohz_restart(ts, now); 511 if (ts->idle_active)
630} 512 tick_nohz_stop_idle(cpu, now);
513
514 if (!ts->inidle || !ts->tick_stopped) {
515 ts->inidle = 0;
516 local_irq_enable();
517 return;
518 }
519
520 ts->inidle = 0;
521
522 rcu_exit_nohz();
523
524 /* Update jiffies first */
525 select_nohz_load_balancer(0);
526 tick_do_update_jiffies64(now);
527 cpumask_clear_cpu(cpu, nohz_cpu_mask);
631 528
632static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
633{
634#ifndef CONFIG_VIRT_CPU_ACCOUNTING 529#ifndef CONFIG_VIRT_CPU_ACCOUNTING
635 unsigned long ticks;
636 /* 530 /*
637 * We stopped the tick in idle. Update process times would miss the 531 * We stopped the tick in idle. Update process times would miss the
638 * time we slept as update_process_times does only a 1 tick 532 * time we slept as update_process_times does only a 1 tick
@@ -645,39 +539,15 @@ static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
645 if (ticks && ticks < LONG_MAX) 539 if (ticks && ticks < LONG_MAX)
646 account_idle_ticks(ticks); 540 account_idle_ticks(ticks);
647#endif 541#endif
648}
649 542
650/** 543 touch_softlockup_watchdog();
651 * tick_nohz_idle_exit - restart the idle tick from the idle task 544 /*
652 * 545 * Cancel the scheduled timer and restore the tick
653 * Restart the idle tick when the CPU is woken up from idle 546 */
654 * This also exit the RCU extended quiescent state. The CPU 547 ts->tick_stopped = 0;
655 * can use RCU again after this function is called. 548 ts->idle_exittime = now;
656 */
657void tick_nohz_idle_exit(void)
658{
659 int cpu = smp_processor_id();
660 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
661 ktime_t now;
662
663 local_irq_disable();
664
665 WARN_ON_ONCE(!ts->inidle);
666
667 ts->inidle = 0;
668
669 /* Cancel the timer because CPU already waken up from the C-states*/
670 menu_hrtimer_cancel();
671 if (ts->idle_active || ts->tick_stopped)
672 now = ktime_get();
673
674 if (ts->idle_active)
675 tick_nohz_stop_idle(cpu, now);
676 549
677 if (ts->tick_stopped) { 550 tick_nohz_restart(ts, now);
678 tick_nohz_restart_sched_tick(ts, now);
679 tick_nohz_account_idle_ticks(ts);
680 }
681 551
682 local_irq_enable(); 552 local_irq_enable();
683} 553}
@@ -695,12 +565,40 @@ static void tick_nohz_handler(struct clock_event_device *dev)
695{ 565{
696 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); 566 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
697 struct pt_regs *regs = get_irq_regs(); 567 struct pt_regs *regs = get_irq_regs();
568 int cpu = smp_processor_id();
698 ktime_t now = ktime_get(); 569 ktime_t now = ktime_get();
699 570
700 dev->next_event.tv64 = KTIME_MAX; 571 dev->next_event.tv64 = KTIME_MAX;
701 572
702 tick_sched_do_timer(now); 573 /*
703 tick_sched_handle(ts, regs); 574 * Check if the do_timer duty was dropped. We don't care about
575 * concurrency: This happens only when the cpu in charge went
576 * into a long sleep. If two cpus happen to assign themself to
577 * this duty, then the jiffies update is still serialized by
578 * xtime_lock.
579 */
580 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
581 tick_do_timer_cpu = cpu;
582
583 /* Check, if the jiffies need an update */
584 if (tick_do_timer_cpu == cpu)
585 tick_do_update_jiffies64(now);
586
587 /*
588 * When we are idle and the tick is stopped, we have to touch
589 * the watchdog as we might not schedule for a really long
590 * time. This happens on complete idle SMP systems while
591 * waiting on the login prompt. We also increment the "start
592 * of idle" jiffy stamp so the idle accounting adjustment we
593 * do when we go busy again does not account too much ticks.
594 */
595 if (ts->tick_stopped) {
596 touch_softlockup_watchdog();
597 ts->idle_jiffies++;
598 }
599
600 update_process_times(user_mode(regs));
601 profile_tick(CPU_PROFILING);
704 602
705 while (tick_nohz_reprogram(ts, now)) { 603 while (tick_nohz_reprogram(ts, now)) {
706 now = ktime_get(); 604 now = ktime_get();
@@ -742,6 +640,8 @@ static void tick_nohz_switch_to_nohz(void)
742 next = ktime_add(next, tick_period); 640 next = ktime_add(next, tick_period);
743 } 641 }
744 local_irq_enable(); 642 local_irq_enable();
643
644 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", smp_processor_id());
745} 645}
746 646
747/* 647/*
@@ -813,7 +713,7 @@ void tick_check_idle(int cpu)
813#ifdef CONFIG_HIGH_RES_TIMERS 713#ifdef CONFIG_HIGH_RES_TIMERS
814/* 714/*
815 * We rearm the timer until we get disabled by the idle code. 715 * We rearm the timer until we get disabled by the idle code.
816 * Called with interrupts disabled. 716 * Called with interrupts disabled and timer->base->cpu_base->lock held.
817 */ 717 */
818static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 718static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
819{ 719{
@@ -821,31 +721,50 @@ static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
821 container_of(timer, struct tick_sched, sched_timer); 721 container_of(timer, struct tick_sched, sched_timer);
822 struct pt_regs *regs = get_irq_regs(); 722 struct pt_regs *regs = get_irq_regs();
823 ktime_t now = ktime_get(); 723 ktime_t now = ktime_get();
724 int cpu = smp_processor_id();
824 725
825 tick_sched_do_timer(now); 726#ifdef CONFIG_NO_HZ
727 /*
728 * Check if the do_timer duty was dropped. We don't care about
729 * concurrency: This happens only when the cpu in charge went
730 * into a long sleep. If two cpus happen to assign themself to
731 * this duty, then the jiffies update is still serialized by
732 * xtime_lock.
733 */
734 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
735 tick_do_timer_cpu = cpu;
736#endif
737
738 /* Check, if the jiffies need an update */
739 if (tick_do_timer_cpu == cpu)
740 tick_do_update_jiffies64(now);
826 741
827 /* 742 /*
828 * Do not call, when we are not in irq context and have 743 * Do not call, when we are not in irq context and have
829 * no valid regs pointer 744 * no valid regs pointer
830 */ 745 */
831 if (regs) 746 if (regs) {
832 tick_sched_handle(ts, regs); 747 /*
748 * When we are idle and the tick is stopped, we have to touch
749 * the watchdog as we might not schedule for a really long
750 * time. This happens on complete idle SMP systems while
751 * waiting on the login prompt. We also increment the "start of
752 * idle" jiffy stamp so the idle accounting adjustment we do
753 * when we go busy again does not account too much ticks.
754 */
755 if (ts->tick_stopped) {
756 touch_softlockup_watchdog();
757 ts->idle_jiffies++;
758 }
759 update_process_times(user_mode(regs));
760 profile_tick(CPU_PROFILING);
761 }
833 762
834 hrtimer_forward(timer, now, tick_period); 763 hrtimer_forward(timer, now, tick_period);
835 764
836 return HRTIMER_RESTART; 765 return HRTIMER_RESTART;
837} 766}
838 767
839static int sched_skew_tick;
840
841static int __init skew_tick(char *str)
842{
843 get_option(&str, &sched_skew_tick);
844
845 return 0;
846}
847early_param("skew_tick", skew_tick);
848
849/** 768/**
850 * tick_setup_sched_timer - setup the tick emulation timer 769 * tick_setup_sched_timer - setup the tick emulation timer
851 */ 770 */
@@ -863,14 +782,6 @@ void tick_setup_sched_timer(void)
863 /* Get the next period (per cpu) */ 782 /* Get the next period (per cpu) */
864 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 783 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
865 784
866 /* Offset the tick to avert jiffies_lock contention. */
867 if (sched_skew_tick) {
868 u64 offset = ktime_to_ns(tick_period) >> 1;
869 do_div(offset, num_possible_cpus());
870 offset *= smp_processor_id();
871 hrtimer_add_expires_ns(&ts->sched_timer, offset);
872 }
873
874 for (;;) { 785 for (;;) {
875 hrtimer_forward(&ts->sched_timer, now, tick_period); 786 hrtimer_forward(&ts->sched_timer, now, tick_period);
876 hrtimer_start_expires(&ts->sched_timer, 787 hrtimer_start_expires(&ts->sched_timer,
@@ -882,8 +793,10 @@ void tick_setup_sched_timer(void)
882 } 793 }
883 794
884#ifdef CONFIG_NO_HZ 795#ifdef CONFIG_NO_HZ
885 if (tick_nohz_enabled) 796 if (tick_nohz_enabled) {
886 ts->nohz_mode = NOHZ_MODE_HIGHRES; 797 ts->nohz_mode = NOHZ_MODE_HIGHRES;
798 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", smp_processor_id());
799 }
887#endif 800#endif
888} 801}
889#endif /* HIGH_RES_TIMERS */ 802#endif /* HIGH_RES_TIMERS */