aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched/core.c
diff options
context:
space:
mode:
authorMartin Schwidefsky <schwidefsky@de.ibm.com>2011-12-19 13:23:15 -0500
committerMartin Schwidefsky <schwidefsky@de.ibm.com>2011-12-19 13:23:15 -0500
commit612ef28a045efadb3a98d4492ead7806a146485d (patch)
tree05621c87b37e91c27b06d450d76adffe97ce9666 /kernel/sched/core.c
parentc3e0ef9a298e028a82ada28101ccd5cf64d209ee (diff)
parent07cde2608a3b5c66515363f1b53623b1536b9785 (diff)
Merge branch 'sched/core' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip into cputime-tip
Conflicts: drivers/cpufreq/cpufreq_conservative.c drivers/cpufreq/cpufreq_ondemand.c drivers/macintosh/rack-meter.c fs/proc/stat.c fs/proc/uptime.c kernel/sched/core.c
Diffstat (limited to 'kernel/sched/core.c')
-rw-r--r--kernel/sched/core.c8119
1 files changed, 8119 insertions, 0 deletions
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
new file mode 100644
index 00000000000..cdf51a2adc2
--- /dev/null
+++ b/kernel/sched/core.c
@@ -0,0 +1,8119 @@
1/*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74
75#include <asm/tlb.h>
76#include <asm/irq_regs.h>
77#ifdef CONFIG_PARAVIRT
78#include <asm/paravirt.h>
79#endif
80
81#include "sched.h"
82#include "../workqueue_sched.h"
83
84#define CREATE_TRACE_POINTS
85#include <trace/events/sched.h>
86
87void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
88{
89 unsigned long delta;
90 ktime_t soft, hard, now;
91
92 for (;;) {
93 if (hrtimer_active(period_timer))
94 break;
95
96 now = hrtimer_cb_get_time(period_timer);
97 hrtimer_forward(period_timer, now, period);
98
99 soft = hrtimer_get_softexpires(period_timer);
100 hard = hrtimer_get_expires(period_timer);
101 delta = ktime_to_ns(ktime_sub(hard, soft));
102 __hrtimer_start_range_ns(period_timer, soft, delta,
103 HRTIMER_MODE_ABS_PINNED, 0);
104 }
105}
106
107DEFINE_MUTEX(sched_domains_mutex);
108DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
109
110static void update_rq_clock_task(struct rq *rq, s64 delta);
111
112void update_rq_clock(struct rq *rq)
113{
114 s64 delta;
115
116 if (rq->skip_clock_update > 0)
117 return;
118
119 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
120 rq->clock += delta;
121 update_rq_clock_task(rq, delta);
122}
123
124/*
125 * Debugging: various feature bits
126 */
127
128#define SCHED_FEAT(name, enabled) \
129 (1UL << __SCHED_FEAT_##name) * enabled |
130
131const_debug unsigned int sysctl_sched_features =
132#include "features.h"
133 0;
134
135#undef SCHED_FEAT
136
137#ifdef CONFIG_SCHED_DEBUG
138#define SCHED_FEAT(name, enabled) \
139 #name ,
140
141static __read_mostly char *sched_feat_names[] = {
142#include "features.h"
143 NULL
144};
145
146#undef SCHED_FEAT
147
148static int sched_feat_show(struct seq_file *m, void *v)
149{
150 int i;
151
152 for (i = 0; i < __SCHED_FEAT_NR; i++) {
153 if (!(sysctl_sched_features & (1UL << i)))
154 seq_puts(m, "NO_");
155 seq_printf(m, "%s ", sched_feat_names[i]);
156 }
157 seq_puts(m, "\n");
158
159 return 0;
160}
161
162#ifdef HAVE_JUMP_LABEL
163
164#define jump_label_key__true jump_label_key_enabled
165#define jump_label_key__false jump_label_key_disabled
166
167#define SCHED_FEAT(name, enabled) \
168 jump_label_key__##enabled ,
169
170struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
171#include "features.h"
172};
173
174#undef SCHED_FEAT
175
176static void sched_feat_disable(int i)
177{
178 if (jump_label_enabled(&sched_feat_keys[i]))
179 jump_label_dec(&sched_feat_keys[i]);
180}
181
182static void sched_feat_enable(int i)
183{
184 if (!jump_label_enabled(&sched_feat_keys[i]))
185 jump_label_inc(&sched_feat_keys[i]);
186}
187#else
188static void sched_feat_disable(int i) { };
189static void sched_feat_enable(int i) { };
190#endif /* HAVE_JUMP_LABEL */
191
192static ssize_t
193sched_feat_write(struct file *filp, const char __user *ubuf,
194 size_t cnt, loff_t *ppos)
195{
196 char buf[64];
197 char *cmp;
198 int neg = 0;
199 int i;
200
201 if (cnt > 63)
202 cnt = 63;
203
204 if (copy_from_user(&buf, ubuf, cnt))
205 return -EFAULT;
206
207 buf[cnt] = 0;
208 cmp = strstrip(buf);
209
210 if (strncmp(cmp, "NO_", 3) == 0) {
211 neg = 1;
212 cmp += 3;
213 }
214
215 for (i = 0; i < __SCHED_FEAT_NR; i++) {
216 if (strcmp(cmp, sched_feat_names[i]) == 0) {
217 if (neg) {
218 sysctl_sched_features &= ~(1UL << i);
219 sched_feat_disable(i);
220 } else {
221 sysctl_sched_features |= (1UL << i);
222 sched_feat_enable(i);
223 }
224 break;
225 }
226 }
227
228 if (i == __SCHED_FEAT_NR)
229 return -EINVAL;
230
231 *ppos += cnt;
232
233 return cnt;
234}
235
236static int sched_feat_open(struct inode *inode, struct file *filp)
237{
238 return single_open(filp, sched_feat_show, NULL);
239}
240
241static const struct file_operations sched_feat_fops = {
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
247};
248
249static __init int sched_init_debug(void)
250{
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
253
254 return 0;
255}
256late_initcall(sched_init_debug);
257#endif /* CONFIG_SCHED_DEBUG */
258
259/*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
265/*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
273/*
274 * period over which we measure -rt task cpu usage in us.
275 * default: 1s
276 */
277unsigned int sysctl_sched_rt_period = 1000000;
278
279__read_mostly int scheduler_running;
280
281/*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285int sysctl_sched_rt_runtime = 950000;
286
287
288
289/*
290 * __task_rq_lock - lock the rq @p resides on.
291 */
292static inline struct rq *__task_rq_lock(struct task_struct *p)
293 __acquires(rq->lock)
294{
295 struct rq *rq;
296
297 lockdep_assert_held(&p->pi_lock);
298
299 for (;;) {
300 rq = task_rq(p);
301 raw_spin_lock(&rq->lock);
302 if (likely(rq == task_rq(p)))
303 return rq;
304 raw_spin_unlock(&rq->lock);
305 }
306}
307
308/*
309 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
310 */
311static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
312 __acquires(p->pi_lock)
313 __acquires(rq->lock)
314{
315 struct rq *rq;
316
317 for (;;) {
318 raw_spin_lock_irqsave(&p->pi_lock, *flags);
319 rq = task_rq(p);
320 raw_spin_lock(&rq->lock);
321 if (likely(rq == task_rq(p)))
322 return rq;
323 raw_spin_unlock(&rq->lock);
324 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
325 }
326}
327
328static void __task_rq_unlock(struct rq *rq)
329 __releases(rq->lock)
330{
331 raw_spin_unlock(&rq->lock);
332}
333
334static inline void
335task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
336 __releases(rq->lock)
337 __releases(p->pi_lock)
338{
339 raw_spin_unlock(&rq->lock);
340 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
341}
342
343/*
344 * this_rq_lock - lock this runqueue and disable interrupts.
345 */
346static struct rq *this_rq_lock(void)
347 __acquires(rq->lock)
348{
349 struct rq *rq;
350
351 local_irq_disable();
352 rq = this_rq();
353 raw_spin_lock(&rq->lock);
354
355 return rq;
356}
357
358#ifdef CONFIG_SCHED_HRTICK
359/*
360 * Use HR-timers to deliver accurate preemption points.
361 *
362 * Its all a bit involved since we cannot program an hrt while holding the
363 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
364 * reschedule event.
365 *
366 * When we get rescheduled we reprogram the hrtick_timer outside of the
367 * rq->lock.
368 */
369
370static void hrtick_clear(struct rq *rq)
371{
372 if (hrtimer_active(&rq->hrtick_timer))
373 hrtimer_cancel(&rq->hrtick_timer);
374}
375
376/*
377 * High-resolution timer tick.
378 * Runs from hardirq context with interrupts disabled.
379 */
380static enum hrtimer_restart hrtick(struct hrtimer *timer)
381{
382 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
383
384 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
385
386 raw_spin_lock(&rq->lock);
387 update_rq_clock(rq);
388 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
389 raw_spin_unlock(&rq->lock);
390
391 return HRTIMER_NORESTART;
392}
393
394#ifdef CONFIG_SMP
395/*
396 * called from hardirq (IPI) context
397 */
398static void __hrtick_start(void *arg)
399{
400 struct rq *rq = arg;
401
402 raw_spin_lock(&rq->lock);
403 hrtimer_restart(&rq->hrtick_timer);
404 rq->hrtick_csd_pending = 0;
405 raw_spin_unlock(&rq->lock);
406}
407
408/*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
413void hrtick_start(struct rq *rq, u64 delay)
414{
415 struct hrtimer *timer = &rq->hrtick_timer;
416 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
417
418 hrtimer_set_expires(timer, time);
419
420 if (rq == this_rq()) {
421 hrtimer_restart(timer);
422 } else if (!rq->hrtick_csd_pending) {
423 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
424 rq->hrtick_csd_pending = 1;
425 }
426}
427
428static int
429hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
430{
431 int cpu = (int)(long)hcpu;
432
433 switch (action) {
434 case CPU_UP_CANCELED:
435 case CPU_UP_CANCELED_FROZEN:
436 case CPU_DOWN_PREPARE:
437 case CPU_DOWN_PREPARE_FROZEN:
438 case CPU_DEAD:
439 case CPU_DEAD_FROZEN:
440 hrtick_clear(cpu_rq(cpu));
441 return NOTIFY_OK;
442 }
443
444 return NOTIFY_DONE;
445}
446
447static __init void init_hrtick(void)
448{
449 hotcpu_notifier(hotplug_hrtick, 0);
450}
451#else
452/*
453 * Called to set the hrtick timer state.
454 *
455 * called with rq->lock held and irqs disabled
456 */
457void hrtick_start(struct rq *rq, u64 delay)
458{
459 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
460 HRTIMER_MODE_REL_PINNED, 0);
461}
462
463static inline void init_hrtick(void)
464{
465}
466#endif /* CONFIG_SMP */
467
468static void init_rq_hrtick(struct rq *rq)
469{
470#ifdef CONFIG_SMP
471 rq->hrtick_csd_pending = 0;
472
473 rq->hrtick_csd.flags = 0;
474 rq->hrtick_csd.func = __hrtick_start;
475 rq->hrtick_csd.info = rq;
476#endif
477
478 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
479 rq->hrtick_timer.function = hrtick;
480}
481#else /* CONFIG_SCHED_HRTICK */
482static inline void hrtick_clear(struct rq *rq)
483{
484}
485
486static inline void init_rq_hrtick(struct rq *rq)
487{
488}
489
490static inline void init_hrtick(void)
491{
492}
493#endif /* CONFIG_SCHED_HRTICK */
494
495/*
496 * resched_task - mark a task 'to be rescheduled now'.
497 *
498 * On UP this means the setting of the need_resched flag, on SMP it
499 * might also involve a cross-CPU call to trigger the scheduler on
500 * the target CPU.
501 */
502#ifdef CONFIG_SMP
503
504#ifndef tsk_is_polling
505#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
506#endif
507
508void resched_task(struct task_struct *p)
509{
510 int cpu;
511
512 assert_raw_spin_locked(&task_rq(p)->lock);
513
514 if (test_tsk_need_resched(p))
515 return;
516
517 set_tsk_need_resched(p);
518
519 cpu = task_cpu(p);
520 if (cpu == smp_processor_id())
521 return;
522
523 /* NEED_RESCHED must be visible before we test polling */
524 smp_mb();
525 if (!tsk_is_polling(p))
526 smp_send_reschedule(cpu);
527}
528
529void resched_cpu(int cpu)
530{
531 struct rq *rq = cpu_rq(cpu);
532 unsigned long flags;
533
534 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
535 return;
536 resched_task(cpu_curr(cpu));
537 raw_spin_unlock_irqrestore(&rq->lock, flags);
538}
539
540#ifdef CONFIG_NO_HZ
541/*
542 * In the semi idle case, use the nearest busy cpu for migrating timers
543 * from an idle cpu. This is good for power-savings.
544 *
545 * We don't do similar optimization for completely idle system, as
546 * selecting an idle cpu will add more delays to the timers than intended
547 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
548 */
549int get_nohz_timer_target(void)
550{
551 int cpu = smp_processor_id();
552 int i;
553 struct sched_domain *sd;
554
555 rcu_read_lock();
556 for_each_domain(cpu, sd) {
557 for_each_cpu(i, sched_domain_span(sd)) {
558 if (!idle_cpu(i)) {
559 cpu = i;
560 goto unlock;
561 }
562 }
563 }
564unlock:
565 rcu_read_unlock();
566 return cpu;
567}
568/*
569 * When add_timer_on() enqueues a timer into the timer wheel of an
570 * idle CPU then this timer might expire before the next timer event
571 * which is scheduled to wake up that CPU. In case of a completely
572 * idle system the next event might even be infinite time into the
573 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
574 * leaves the inner idle loop so the newly added timer is taken into
575 * account when the CPU goes back to idle and evaluates the timer
576 * wheel for the next timer event.
577 */
578void wake_up_idle_cpu(int cpu)
579{
580 struct rq *rq = cpu_rq(cpu);
581
582 if (cpu == smp_processor_id())
583 return;
584
585 /*
586 * This is safe, as this function is called with the timer
587 * wheel base lock of (cpu) held. When the CPU is on the way
588 * to idle and has not yet set rq->curr to idle then it will
589 * be serialized on the timer wheel base lock and take the new
590 * timer into account automatically.
591 */
592 if (rq->curr != rq->idle)
593 return;
594
595 /*
596 * We can set TIF_RESCHED on the idle task of the other CPU
597 * lockless. The worst case is that the other CPU runs the
598 * idle task through an additional NOOP schedule()
599 */
600 set_tsk_need_resched(rq->idle);
601
602 /* NEED_RESCHED must be visible before we test polling */
603 smp_mb();
604 if (!tsk_is_polling(rq->idle))
605 smp_send_reschedule(cpu);
606}
607
608static inline bool got_nohz_idle_kick(void)
609{
610 int cpu = smp_processor_id();
611 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
612}
613
614#else /* CONFIG_NO_HZ */
615
616static inline bool got_nohz_idle_kick(void)
617{
618 return false;
619}
620
621#endif /* CONFIG_NO_HZ */
622
623void sched_avg_update(struct rq *rq)
624{
625 s64 period = sched_avg_period();
626
627 while ((s64)(rq->clock - rq->age_stamp) > period) {
628 /*
629 * Inline assembly required to prevent the compiler
630 * optimising this loop into a divmod call.
631 * See __iter_div_u64_rem() for another example of this.
632 */
633 asm("" : "+rm" (rq->age_stamp));
634 rq->age_stamp += period;
635 rq->rt_avg /= 2;
636 }
637}
638
639#else /* !CONFIG_SMP */
640void resched_task(struct task_struct *p)
641{
642 assert_raw_spin_locked(&task_rq(p)->lock);
643 set_tsk_need_resched(p);
644}
645#endif /* CONFIG_SMP */
646
647#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
648 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
649/*
650 * Iterate task_group tree rooted at *from, calling @down when first entering a
651 * node and @up when leaving it for the final time.
652 *
653 * Caller must hold rcu_lock or sufficient equivalent.
654 */
655int walk_tg_tree_from(struct task_group *from,
656 tg_visitor down, tg_visitor up, void *data)
657{
658 struct task_group *parent, *child;
659 int ret;
660
661 parent = from;
662
663down:
664 ret = (*down)(parent, data);
665 if (ret)
666 goto out;
667 list_for_each_entry_rcu(child, &parent->children, siblings) {
668 parent = child;
669 goto down;
670
671up:
672 continue;
673 }
674 ret = (*up)(parent, data);
675 if (ret || parent == from)
676 goto out;
677
678 child = parent;
679 parent = parent->parent;
680 if (parent)
681 goto up;
682out:
683 return ret;
684}
685
686int tg_nop(struct task_group *tg, void *data)
687{
688 return 0;
689}
690#endif
691
692void update_cpu_load(struct rq *this_rq);
693
694static void set_load_weight(struct task_struct *p)
695{
696 int prio = p->static_prio - MAX_RT_PRIO;
697 struct load_weight *load = &p->se.load;
698
699 /*
700 * SCHED_IDLE tasks get minimal weight:
701 */
702 if (p->policy == SCHED_IDLE) {
703 load->weight = scale_load(WEIGHT_IDLEPRIO);
704 load->inv_weight = WMULT_IDLEPRIO;
705 return;
706 }
707
708 load->weight = scale_load(prio_to_weight[prio]);
709 load->inv_weight = prio_to_wmult[prio];
710}
711
712static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
713{
714 update_rq_clock(rq);
715 sched_info_queued(p);
716 p->sched_class->enqueue_task(rq, p, flags);
717}
718
719static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
720{
721 update_rq_clock(rq);
722 sched_info_dequeued(p);
723 p->sched_class->dequeue_task(rq, p, flags);
724}
725
726/*
727 * activate_task - move a task to the runqueue.
728 */
729void activate_task(struct rq *rq, struct task_struct *p, int flags)
730{
731 if (task_contributes_to_load(p))
732 rq->nr_uninterruptible--;
733
734 enqueue_task(rq, p, flags);
735}
736
737/*
738 * deactivate_task - remove a task from the runqueue.
739 */
740void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
741{
742 if (task_contributes_to_load(p))
743 rq->nr_uninterruptible++;
744
745 dequeue_task(rq, p, flags);
746}
747
748#ifdef CONFIG_IRQ_TIME_ACCOUNTING
749
750/*
751 * There are no locks covering percpu hardirq/softirq time.
752 * They are only modified in account_system_vtime, on corresponding CPU
753 * with interrupts disabled. So, writes are safe.
754 * They are read and saved off onto struct rq in update_rq_clock().
755 * This may result in other CPU reading this CPU's irq time and can
756 * race with irq/account_system_vtime on this CPU. We would either get old
757 * or new value with a side effect of accounting a slice of irq time to wrong
758 * task when irq is in progress while we read rq->clock. That is a worthy
759 * compromise in place of having locks on each irq in account_system_time.
760 */
761static DEFINE_PER_CPU(u64, cpu_hardirq_time);
762static DEFINE_PER_CPU(u64, cpu_softirq_time);
763
764static DEFINE_PER_CPU(u64, irq_start_time);
765static int sched_clock_irqtime;
766
767void enable_sched_clock_irqtime(void)
768{
769 sched_clock_irqtime = 1;
770}
771
772void disable_sched_clock_irqtime(void)
773{
774 sched_clock_irqtime = 0;
775}
776
777#ifndef CONFIG_64BIT
778static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
779
780static inline void irq_time_write_begin(void)
781{
782 __this_cpu_inc(irq_time_seq.sequence);
783 smp_wmb();
784}
785
786static inline void irq_time_write_end(void)
787{
788 smp_wmb();
789 __this_cpu_inc(irq_time_seq.sequence);
790}
791
792static inline u64 irq_time_read(int cpu)
793{
794 u64 irq_time;
795 unsigned seq;
796
797 do {
798 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
799 irq_time = per_cpu(cpu_softirq_time, cpu) +
800 per_cpu(cpu_hardirq_time, cpu);
801 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
802
803 return irq_time;
804}
805#else /* CONFIG_64BIT */
806static inline void irq_time_write_begin(void)
807{
808}
809
810static inline void irq_time_write_end(void)
811{
812}
813
814static inline u64 irq_time_read(int cpu)
815{
816 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
817}
818#endif /* CONFIG_64BIT */
819
820/*
821 * Called before incrementing preempt_count on {soft,}irq_enter
822 * and before decrementing preempt_count on {soft,}irq_exit.
823 */
824void account_system_vtime(struct task_struct *curr)
825{
826 unsigned long flags;
827 s64 delta;
828 int cpu;
829
830 if (!sched_clock_irqtime)
831 return;
832
833 local_irq_save(flags);
834
835 cpu = smp_processor_id();
836 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
837 __this_cpu_add(irq_start_time, delta);
838
839 irq_time_write_begin();
840 /*
841 * We do not account for softirq time from ksoftirqd here.
842 * We want to continue accounting softirq time to ksoftirqd thread
843 * in that case, so as not to confuse scheduler with a special task
844 * that do not consume any time, but still wants to run.
845 */
846 if (hardirq_count())
847 __this_cpu_add(cpu_hardirq_time, delta);
848 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
849 __this_cpu_add(cpu_softirq_time, delta);
850
851 irq_time_write_end();
852 local_irq_restore(flags);
853}
854EXPORT_SYMBOL_GPL(account_system_vtime);
855
856#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
857
858#ifdef CONFIG_PARAVIRT
859static inline u64 steal_ticks(u64 steal)
860{
861 if (unlikely(steal > NSEC_PER_SEC))
862 return div_u64(steal, TICK_NSEC);
863
864 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
865}
866#endif
867
868static void update_rq_clock_task(struct rq *rq, s64 delta)
869{
870/*
871 * In theory, the compile should just see 0 here, and optimize out the call
872 * to sched_rt_avg_update. But I don't trust it...
873 */
874#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 s64 steal = 0, irq_delta = 0;
876#endif
877#ifdef CONFIG_IRQ_TIME_ACCOUNTING
878 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
879
880 /*
881 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 * this case when a previous update_rq_clock() happened inside a
883 * {soft,}irq region.
884 *
885 * When this happens, we stop ->clock_task and only update the
886 * prev_irq_time stamp to account for the part that fit, so that a next
887 * update will consume the rest. This ensures ->clock_task is
888 * monotonic.
889 *
890 * It does however cause some slight miss-attribution of {soft,}irq
891 * time, a more accurate solution would be to update the irq_time using
892 * the current rq->clock timestamp, except that would require using
893 * atomic ops.
894 */
895 if (irq_delta > delta)
896 irq_delta = delta;
897
898 rq->prev_irq_time += irq_delta;
899 delta -= irq_delta;
900#endif
901#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
902 if (static_branch((&paravirt_steal_rq_enabled))) {
903 u64 st;
904
905 steal = paravirt_steal_clock(cpu_of(rq));
906 steal -= rq->prev_steal_time_rq;
907
908 if (unlikely(steal > delta))
909 steal = delta;
910
911 st = steal_ticks(steal);
912 steal = st * TICK_NSEC;
913
914 rq->prev_steal_time_rq += steal;
915
916 delta -= steal;
917 }
918#endif
919
920 rq->clock_task += delta;
921
922#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
923 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
924 sched_rt_avg_update(rq, irq_delta + steal);
925#endif
926}
927
928#ifdef CONFIG_IRQ_TIME_ACCOUNTING
929static int irqtime_account_hi_update(void)
930{
931 u64 *cpustat = kcpustat_this_cpu->cpustat;
932 unsigned long flags;
933 u64 latest_ns;
934 int ret = 0;
935
936 local_irq_save(flags);
937 latest_ns = this_cpu_read(cpu_hardirq_time);
938 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
939 ret = 1;
940 local_irq_restore(flags);
941 return ret;
942}
943
944static int irqtime_account_si_update(void)
945{
946 u64 *cpustat = kcpustat_this_cpu->cpustat;
947 unsigned long flags;
948 u64 latest_ns;
949 int ret = 0;
950
951 local_irq_save(flags);
952 latest_ns = this_cpu_read(cpu_softirq_time);
953 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
954 ret = 1;
955 local_irq_restore(flags);
956 return ret;
957}
958
959#else /* CONFIG_IRQ_TIME_ACCOUNTING */
960
961#define sched_clock_irqtime (0)
962
963#endif
964
965void sched_set_stop_task(int cpu, struct task_struct *stop)
966{
967 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
968 struct task_struct *old_stop = cpu_rq(cpu)->stop;
969
970 if (stop) {
971 /*
972 * Make it appear like a SCHED_FIFO task, its something
973 * userspace knows about and won't get confused about.
974 *
975 * Also, it will make PI more or less work without too
976 * much confusion -- but then, stop work should not
977 * rely on PI working anyway.
978 */
979 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
980
981 stop->sched_class = &stop_sched_class;
982 }
983
984 cpu_rq(cpu)->stop = stop;
985
986 if (old_stop) {
987 /*
988 * Reset it back to a normal scheduling class so that
989 * it can die in pieces.
990 */
991 old_stop->sched_class = &rt_sched_class;
992 }
993}
994
995/*
996 * __normal_prio - return the priority that is based on the static prio
997 */
998static inline int __normal_prio(struct task_struct *p)
999{
1000 return p->static_prio;
1001}
1002
1003/*
1004 * Calculate the expected normal priority: i.e. priority
1005 * without taking RT-inheritance into account. Might be
1006 * boosted by interactivity modifiers. Changes upon fork,
1007 * setprio syscalls, and whenever the interactivity
1008 * estimator recalculates.
1009 */
1010static inline int normal_prio(struct task_struct *p)
1011{
1012 int prio;
1013
1014 if (task_has_rt_policy(p))
1015 prio = MAX_RT_PRIO-1 - p->rt_priority;
1016 else
1017 prio = __normal_prio(p);
1018 return prio;
1019}
1020
1021/*
1022 * Calculate the current priority, i.e. the priority
1023 * taken into account by the scheduler. This value might
1024 * be boosted by RT tasks, or might be boosted by
1025 * interactivity modifiers. Will be RT if the task got
1026 * RT-boosted. If not then it returns p->normal_prio.
1027 */
1028static int effective_prio(struct task_struct *p)
1029{
1030 p->normal_prio = normal_prio(p);
1031 /*
1032 * If we are RT tasks or we were boosted to RT priority,
1033 * keep the priority unchanged. Otherwise, update priority
1034 * to the normal priority:
1035 */
1036 if (!rt_prio(p->prio))
1037 return p->normal_prio;
1038 return p->prio;
1039}
1040
1041/**
1042 * task_curr - is this task currently executing on a CPU?
1043 * @p: the task in question.
1044 */
1045inline int task_curr(const struct task_struct *p)
1046{
1047 return cpu_curr(task_cpu(p)) == p;
1048}
1049
1050static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1051 const struct sched_class *prev_class,
1052 int oldprio)
1053{
1054 if (prev_class != p->sched_class) {
1055 if (prev_class->switched_from)
1056 prev_class->switched_from(rq, p);
1057 p->sched_class->switched_to(rq, p);
1058 } else if (oldprio != p->prio)
1059 p->sched_class->prio_changed(rq, p, oldprio);
1060}
1061
1062void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1063{
1064 const struct sched_class *class;
1065
1066 if (p->sched_class == rq->curr->sched_class) {
1067 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1068 } else {
1069 for_each_class(class) {
1070 if (class == rq->curr->sched_class)
1071 break;
1072 if (class == p->sched_class) {
1073 resched_task(rq->curr);
1074 break;
1075 }
1076 }
1077 }
1078
1079 /*
1080 * A queue event has occurred, and we're going to schedule. In
1081 * this case, we can save a useless back to back clock update.
1082 */
1083 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1084 rq->skip_clock_update = 1;
1085}
1086
1087#ifdef CONFIG_SMP
1088void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1089{
1090#ifdef CONFIG_SCHED_DEBUG
1091 /*
1092 * We should never call set_task_cpu() on a blocked task,
1093 * ttwu() will sort out the placement.
1094 */
1095 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1096 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1097
1098#ifdef CONFIG_LOCKDEP
1099 /*
1100 * The caller should hold either p->pi_lock or rq->lock, when changing
1101 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1102 *
1103 * sched_move_task() holds both and thus holding either pins the cgroup,
1104 * see set_task_rq().
1105 *
1106 * Furthermore, all task_rq users should acquire both locks, see
1107 * task_rq_lock().
1108 */
1109 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1110 lockdep_is_held(&task_rq(p)->lock)));
1111#endif
1112#endif
1113
1114 trace_sched_migrate_task(p, new_cpu);
1115
1116 if (task_cpu(p) != new_cpu) {
1117 p->se.nr_migrations++;
1118 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1119 }
1120
1121 __set_task_cpu(p, new_cpu);
1122}
1123
1124struct migration_arg {
1125 struct task_struct *task;
1126 int dest_cpu;
1127};
1128
1129static int migration_cpu_stop(void *data);
1130
1131/*
1132 * wait_task_inactive - wait for a thread to unschedule.
1133 *
1134 * If @match_state is nonzero, it's the @p->state value just checked and
1135 * not expected to change. If it changes, i.e. @p might have woken up,
1136 * then return zero. When we succeed in waiting for @p to be off its CPU,
1137 * we return a positive number (its total switch count). If a second call
1138 * a short while later returns the same number, the caller can be sure that
1139 * @p has remained unscheduled the whole time.
1140 *
1141 * The caller must ensure that the task *will* unschedule sometime soon,
1142 * else this function might spin for a *long* time. This function can't
1143 * be called with interrupts off, or it may introduce deadlock with
1144 * smp_call_function() if an IPI is sent by the same process we are
1145 * waiting to become inactive.
1146 */
1147unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1148{
1149 unsigned long flags;
1150 int running, on_rq;
1151 unsigned long ncsw;
1152 struct rq *rq;
1153
1154 for (;;) {
1155 /*
1156 * We do the initial early heuristics without holding
1157 * any task-queue locks at all. We'll only try to get
1158 * the runqueue lock when things look like they will
1159 * work out!
1160 */
1161 rq = task_rq(p);
1162
1163 /*
1164 * If the task is actively running on another CPU
1165 * still, just relax and busy-wait without holding
1166 * any locks.
1167 *
1168 * NOTE! Since we don't hold any locks, it's not
1169 * even sure that "rq" stays as the right runqueue!
1170 * But we don't care, since "task_running()" will
1171 * return false if the runqueue has changed and p
1172 * is actually now running somewhere else!
1173 */
1174 while (task_running(rq, p)) {
1175 if (match_state && unlikely(p->state != match_state))
1176 return 0;
1177 cpu_relax();
1178 }
1179
1180 /*
1181 * Ok, time to look more closely! We need the rq
1182 * lock now, to be *sure*. If we're wrong, we'll
1183 * just go back and repeat.
1184 */
1185 rq = task_rq_lock(p, &flags);
1186 trace_sched_wait_task(p);
1187 running = task_running(rq, p);
1188 on_rq = p->on_rq;
1189 ncsw = 0;
1190 if (!match_state || p->state == match_state)
1191 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1192 task_rq_unlock(rq, p, &flags);
1193
1194 /*
1195 * If it changed from the expected state, bail out now.
1196 */
1197 if (unlikely(!ncsw))
1198 break;
1199
1200 /*
1201 * Was it really running after all now that we
1202 * checked with the proper locks actually held?
1203 *
1204 * Oops. Go back and try again..
1205 */
1206 if (unlikely(running)) {
1207 cpu_relax();
1208 continue;
1209 }
1210
1211 /*
1212 * It's not enough that it's not actively running,
1213 * it must be off the runqueue _entirely_, and not
1214 * preempted!
1215 *
1216 * So if it was still runnable (but just not actively
1217 * running right now), it's preempted, and we should
1218 * yield - it could be a while.
1219 */
1220 if (unlikely(on_rq)) {
1221 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1222
1223 set_current_state(TASK_UNINTERRUPTIBLE);
1224 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1225 continue;
1226 }
1227
1228 /*
1229 * Ahh, all good. It wasn't running, and it wasn't
1230 * runnable, which means that it will never become
1231 * running in the future either. We're all done!
1232 */
1233 break;
1234 }
1235
1236 return ncsw;
1237}
1238
1239/***
1240 * kick_process - kick a running thread to enter/exit the kernel
1241 * @p: the to-be-kicked thread
1242 *
1243 * Cause a process which is running on another CPU to enter
1244 * kernel-mode, without any delay. (to get signals handled.)
1245 *
1246 * NOTE: this function doesn't have to take the runqueue lock,
1247 * because all it wants to ensure is that the remote task enters
1248 * the kernel. If the IPI races and the task has been migrated
1249 * to another CPU then no harm is done and the purpose has been
1250 * achieved as well.
1251 */
1252void kick_process(struct task_struct *p)
1253{
1254 int cpu;
1255
1256 preempt_disable();
1257 cpu = task_cpu(p);
1258 if ((cpu != smp_processor_id()) && task_curr(p))
1259 smp_send_reschedule(cpu);
1260 preempt_enable();
1261}
1262EXPORT_SYMBOL_GPL(kick_process);
1263#endif /* CONFIG_SMP */
1264
1265#ifdef CONFIG_SMP
1266/*
1267 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1268 */
1269static int select_fallback_rq(int cpu, struct task_struct *p)
1270{
1271 int dest_cpu;
1272 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1273
1274 /* Look for allowed, online CPU in same node. */
1275 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
1276 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1277 return dest_cpu;
1278
1279 /* Any allowed, online CPU? */
1280 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
1281 if (dest_cpu < nr_cpu_ids)
1282 return dest_cpu;
1283
1284 /* No more Mr. Nice Guy. */
1285 dest_cpu = cpuset_cpus_allowed_fallback(p);
1286 /*
1287 * Don't tell them about moving exiting tasks or
1288 * kernel threads (both mm NULL), since they never
1289 * leave kernel.
1290 */
1291 if (p->mm && printk_ratelimit()) {
1292 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
1293 task_pid_nr(p), p->comm, cpu);
1294 }
1295
1296 return dest_cpu;
1297}
1298
1299/*
1300 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1301 */
1302static inline
1303int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1304{
1305 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1306
1307 /*
1308 * In order not to call set_task_cpu() on a blocking task we need
1309 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1310 * cpu.
1311 *
1312 * Since this is common to all placement strategies, this lives here.
1313 *
1314 * [ this allows ->select_task() to simply return task_cpu(p) and
1315 * not worry about this generic constraint ]
1316 */
1317 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1318 !cpu_online(cpu)))
1319 cpu = select_fallback_rq(task_cpu(p), p);
1320
1321 return cpu;
1322}
1323
1324static void update_avg(u64 *avg, u64 sample)
1325{
1326 s64 diff = sample - *avg;
1327 *avg += diff >> 3;
1328}
1329#endif
1330
1331static void
1332ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1333{
1334#ifdef CONFIG_SCHEDSTATS
1335 struct rq *rq = this_rq();
1336
1337#ifdef CONFIG_SMP
1338 int this_cpu = smp_processor_id();
1339
1340 if (cpu == this_cpu) {
1341 schedstat_inc(rq, ttwu_local);
1342 schedstat_inc(p, se.statistics.nr_wakeups_local);
1343 } else {
1344 struct sched_domain *sd;
1345
1346 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1347 rcu_read_lock();
1348 for_each_domain(this_cpu, sd) {
1349 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1350 schedstat_inc(sd, ttwu_wake_remote);
1351 break;
1352 }
1353 }
1354 rcu_read_unlock();
1355 }
1356
1357 if (wake_flags & WF_MIGRATED)
1358 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1359
1360#endif /* CONFIG_SMP */
1361
1362 schedstat_inc(rq, ttwu_count);
1363 schedstat_inc(p, se.statistics.nr_wakeups);
1364
1365 if (wake_flags & WF_SYNC)
1366 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1367
1368#endif /* CONFIG_SCHEDSTATS */
1369}
1370
1371static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1372{
1373 activate_task(rq, p, en_flags);
1374 p->on_rq = 1;
1375
1376 /* if a worker is waking up, notify workqueue */
1377 if (p->flags & PF_WQ_WORKER)
1378 wq_worker_waking_up(p, cpu_of(rq));
1379}
1380
1381/*
1382 * Mark the task runnable and perform wakeup-preemption.
1383 */
1384static void
1385ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1386{
1387 trace_sched_wakeup(p, true);
1388 check_preempt_curr(rq, p, wake_flags);
1389
1390 p->state = TASK_RUNNING;
1391#ifdef CONFIG_SMP
1392 if (p->sched_class->task_woken)
1393 p->sched_class->task_woken(rq, p);
1394
1395 if (rq->idle_stamp) {
1396 u64 delta = rq->clock - rq->idle_stamp;
1397 u64 max = 2*sysctl_sched_migration_cost;
1398
1399 if (delta > max)
1400 rq->avg_idle = max;
1401 else
1402 update_avg(&rq->avg_idle, delta);
1403 rq->idle_stamp = 0;
1404 }
1405#endif
1406}
1407
1408static void
1409ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1410{
1411#ifdef CONFIG_SMP
1412 if (p->sched_contributes_to_load)
1413 rq->nr_uninterruptible--;
1414#endif
1415
1416 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1417 ttwu_do_wakeup(rq, p, wake_flags);
1418}
1419
1420/*
1421 * Called in case the task @p isn't fully descheduled from its runqueue,
1422 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1423 * since all we need to do is flip p->state to TASK_RUNNING, since
1424 * the task is still ->on_rq.
1425 */
1426static int ttwu_remote(struct task_struct *p, int wake_flags)
1427{
1428 struct rq *rq;
1429 int ret = 0;
1430
1431 rq = __task_rq_lock(p);
1432 if (p->on_rq) {
1433 ttwu_do_wakeup(rq, p, wake_flags);
1434 ret = 1;
1435 }
1436 __task_rq_unlock(rq);
1437
1438 return ret;
1439}
1440
1441#ifdef CONFIG_SMP
1442static void sched_ttwu_pending(void)
1443{
1444 struct rq *rq = this_rq();
1445 struct llist_node *llist = llist_del_all(&rq->wake_list);
1446 struct task_struct *p;
1447
1448 raw_spin_lock(&rq->lock);
1449
1450 while (llist) {
1451 p = llist_entry(llist, struct task_struct, wake_entry);
1452 llist = llist_next(llist);
1453 ttwu_do_activate(rq, p, 0);
1454 }
1455
1456 raw_spin_unlock(&rq->lock);
1457}
1458
1459void scheduler_ipi(void)
1460{
1461 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1462 return;
1463
1464 /*
1465 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1466 * traditionally all their work was done from the interrupt return
1467 * path. Now that we actually do some work, we need to make sure
1468 * we do call them.
1469 *
1470 * Some archs already do call them, luckily irq_enter/exit nest
1471 * properly.
1472 *
1473 * Arguably we should visit all archs and update all handlers,
1474 * however a fair share of IPIs are still resched only so this would
1475 * somewhat pessimize the simple resched case.
1476 */
1477 irq_enter();
1478 sched_ttwu_pending();
1479
1480 /*
1481 * Check if someone kicked us for doing the nohz idle load balance.
1482 */
1483 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1484 this_rq()->idle_balance = 1;
1485 raise_softirq_irqoff(SCHED_SOFTIRQ);
1486 }
1487 irq_exit();
1488}
1489
1490static void ttwu_queue_remote(struct task_struct *p, int cpu)
1491{
1492 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1493 smp_send_reschedule(cpu);
1494}
1495
1496#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1497static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1498{
1499 struct rq *rq;
1500 int ret = 0;
1501
1502 rq = __task_rq_lock(p);
1503 if (p->on_cpu) {
1504 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1505 ttwu_do_wakeup(rq, p, wake_flags);
1506 ret = 1;
1507 }
1508 __task_rq_unlock(rq);
1509
1510 return ret;
1511
1512}
1513#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1514#endif /* CONFIG_SMP */
1515
1516static void ttwu_queue(struct task_struct *p, int cpu)
1517{
1518 struct rq *rq = cpu_rq(cpu);
1519
1520#if defined(CONFIG_SMP)
1521 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
1522 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1523 ttwu_queue_remote(p, cpu);
1524 return;
1525 }
1526#endif
1527
1528 raw_spin_lock(&rq->lock);
1529 ttwu_do_activate(rq, p, 0);
1530 raw_spin_unlock(&rq->lock);
1531}
1532
1533/**
1534 * try_to_wake_up - wake up a thread
1535 * @p: the thread to be awakened
1536 * @state: the mask of task states that can be woken
1537 * @wake_flags: wake modifier flags (WF_*)
1538 *
1539 * Put it on the run-queue if it's not already there. The "current"
1540 * thread is always on the run-queue (except when the actual
1541 * re-schedule is in progress), and as such you're allowed to do
1542 * the simpler "current->state = TASK_RUNNING" to mark yourself
1543 * runnable without the overhead of this.
1544 *
1545 * Returns %true if @p was woken up, %false if it was already running
1546 * or @state didn't match @p's state.
1547 */
1548static int
1549try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1550{
1551 unsigned long flags;
1552 int cpu, success = 0;
1553
1554 smp_wmb();
1555 raw_spin_lock_irqsave(&p->pi_lock, flags);
1556 if (!(p->state & state))
1557 goto out;
1558
1559 success = 1; /* we're going to change ->state */
1560 cpu = task_cpu(p);
1561
1562 if (p->on_rq && ttwu_remote(p, wake_flags))
1563 goto stat;
1564
1565#ifdef CONFIG_SMP
1566 /*
1567 * If the owning (remote) cpu is still in the middle of schedule() with
1568 * this task as prev, wait until its done referencing the task.
1569 */
1570 while (p->on_cpu) {
1571#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1572 /*
1573 * In case the architecture enables interrupts in
1574 * context_switch(), we cannot busy wait, since that
1575 * would lead to deadlocks when an interrupt hits and
1576 * tries to wake up @prev. So bail and do a complete
1577 * remote wakeup.
1578 */
1579 if (ttwu_activate_remote(p, wake_flags))
1580 goto stat;
1581#else
1582 cpu_relax();
1583#endif
1584 }
1585 /*
1586 * Pairs with the smp_wmb() in finish_lock_switch().
1587 */
1588 smp_rmb();
1589
1590 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1591 p->state = TASK_WAKING;
1592
1593 if (p->sched_class->task_waking)
1594 p->sched_class->task_waking(p);
1595
1596 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1597 if (task_cpu(p) != cpu) {
1598 wake_flags |= WF_MIGRATED;
1599 set_task_cpu(p, cpu);
1600 }
1601#endif /* CONFIG_SMP */
1602
1603 ttwu_queue(p, cpu);
1604stat:
1605 ttwu_stat(p, cpu, wake_flags);
1606out:
1607 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1608
1609 return success;
1610}
1611
1612/**
1613 * try_to_wake_up_local - try to wake up a local task with rq lock held
1614 * @p: the thread to be awakened
1615 *
1616 * Put @p on the run-queue if it's not already there. The caller must
1617 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1618 * the current task.
1619 */
1620static void try_to_wake_up_local(struct task_struct *p)
1621{
1622 struct rq *rq = task_rq(p);
1623
1624 BUG_ON(rq != this_rq());
1625 BUG_ON(p == current);
1626 lockdep_assert_held(&rq->lock);
1627
1628 if (!raw_spin_trylock(&p->pi_lock)) {
1629 raw_spin_unlock(&rq->lock);
1630 raw_spin_lock(&p->pi_lock);
1631 raw_spin_lock(&rq->lock);
1632 }
1633
1634 if (!(p->state & TASK_NORMAL))
1635 goto out;
1636
1637 if (!p->on_rq)
1638 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1639
1640 ttwu_do_wakeup(rq, p, 0);
1641 ttwu_stat(p, smp_processor_id(), 0);
1642out:
1643 raw_spin_unlock(&p->pi_lock);
1644}
1645
1646/**
1647 * wake_up_process - Wake up a specific process
1648 * @p: The process to be woken up.
1649 *
1650 * Attempt to wake up the nominated process and move it to the set of runnable
1651 * processes. Returns 1 if the process was woken up, 0 if it was already
1652 * running.
1653 *
1654 * It may be assumed that this function implies a write memory barrier before
1655 * changing the task state if and only if any tasks are woken up.
1656 */
1657int wake_up_process(struct task_struct *p)
1658{
1659 return try_to_wake_up(p, TASK_ALL, 0);
1660}
1661EXPORT_SYMBOL(wake_up_process);
1662
1663int wake_up_state(struct task_struct *p, unsigned int state)
1664{
1665 return try_to_wake_up(p, state, 0);
1666}
1667
1668/*
1669 * Perform scheduler related setup for a newly forked process p.
1670 * p is forked by current.
1671 *
1672 * __sched_fork() is basic setup used by init_idle() too:
1673 */
1674static void __sched_fork(struct task_struct *p)
1675{
1676 p->on_rq = 0;
1677
1678 p->se.on_rq = 0;
1679 p->se.exec_start = 0;
1680 p->se.sum_exec_runtime = 0;
1681 p->se.prev_sum_exec_runtime = 0;
1682 p->se.nr_migrations = 0;
1683 p->se.vruntime = 0;
1684 INIT_LIST_HEAD(&p->se.group_node);
1685
1686#ifdef CONFIG_SCHEDSTATS
1687 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1688#endif
1689
1690 INIT_LIST_HEAD(&p->rt.run_list);
1691
1692#ifdef CONFIG_PREEMPT_NOTIFIERS
1693 INIT_HLIST_HEAD(&p->preempt_notifiers);
1694#endif
1695}
1696
1697/*
1698 * fork()/clone()-time setup:
1699 */
1700void sched_fork(struct task_struct *p)
1701{
1702 unsigned long flags;
1703 int cpu = get_cpu();
1704
1705 __sched_fork(p);
1706 /*
1707 * We mark the process as running here. This guarantees that
1708 * nobody will actually run it, and a signal or other external
1709 * event cannot wake it up and insert it on the runqueue either.
1710 */
1711 p->state = TASK_RUNNING;
1712
1713 /*
1714 * Make sure we do not leak PI boosting priority to the child.
1715 */
1716 p->prio = current->normal_prio;
1717
1718 /*
1719 * Revert to default priority/policy on fork if requested.
1720 */
1721 if (unlikely(p->sched_reset_on_fork)) {
1722 if (task_has_rt_policy(p)) {
1723 p->policy = SCHED_NORMAL;
1724 p->static_prio = NICE_TO_PRIO(0);
1725 p->rt_priority = 0;
1726 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1727 p->static_prio = NICE_TO_PRIO(0);
1728
1729 p->prio = p->normal_prio = __normal_prio(p);
1730 set_load_weight(p);
1731
1732 /*
1733 * We don't need the reset flag anymore after the fork. It has
1734 * fulfilled its duty:
1735 */
1736 p->sched_reset_on_fork = 0;
1737 }
1738
1739 if (!rt_prio(p->prio))
1740 p->sched_class = &fair_sched_class;
1741
1742 if (p->sched_class->task_fork)
1743 p->sched_class->task_fork(p);
1744
1745 /*
1746 * The child is not yet in the pid-hash so no cgroup attach races,
1747 * and the cgroup is pinned to this child due to cgroup_fork()
1748 * is ran before sched_fork().
1749 *
1750 * Silence PROVE_RCU.
1751 */
1752 raw_spin_lock_irqsave(&p->pi_lock, flags);
1753 set_task_cpu(p, cpu);
1754 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1755
1756#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1757 if (likely(sched_info_on()))
1758 memset(&p->sched_info, 0, sizeof(p->sched_info));
1759#endif
1760#if defined(CONFIG_SMP)
1761 p->on_cpu = 0;
1762#endif
1763#ifdef CONFIG_PREEMPT_COUNT
1764 /* Want to start with kernel preemption disabled. */
1765 task_thread_info(p)->preempt_count = 1;
1766#endif
1767#ifdef CONFIG_SMP
1768 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1769#endif
1770
1771 put_cpu();
1772}
1773
1774/*
1775 * wake_up_new_task - wake up a newly created task for the first time.
1776 *
1777 * This function will do some initial scheduler statistics housekeeping
1778 * that must be done for every newly created context, then puts the task
1779 * on the runqueue and wakes it.
1780 */
1781void wake_up_new_task(struct task_struct *p)
1782{
1783 unsigned long flags;
1784 struct rq *rq;
1785
1786 raw_spin_lock_irqsave(&p->pi_lock, flags);
1787#ifdef CONFIG_SMP
1788 /*
1789 * Fork balancing, do it here and not earlier because:
1790 * - cpus_allowed can change in the fork path
1791 * - any previously selected cpu might disappear through hotplug
1792 */
1793 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1794#endif
1795
1796 rq = __task_rq_lock(p);
1797 activate_task(rq, p, 0);
1798 p->on_rq = 1;
1799 trace_sched_wakeup_new(p, true);
1800 check_preempt_curr(rq, p, WF_FORK);
1801#ifdef CONFIG_SMP
1802 if (p->sched_class->task_woken)
1803 p->sched_class->task_woken(rq, p);
1804#endif
1805 task_rq_unlock(rq, p, &flags);
1806}
1807
1808#ifdef CONFIG_PREEMPT_NOTIFIERS
1809
1810/**
1811 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1812 * @notifier: notifier struct to register
1813 */
1814void preempt_notifier_register(struct preempt_notifier *notifier)
1815{
1816 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1817}
1818EXPORT_SYMBOL_GPL(preempt_notifier_register);
1819
1820/**
1821 * preempt_notifier_unregister - no longer interested in preemption notifications
1822 * @notifier: notifier struct to unregister
1823 *
1824 * This is safe to call from within a preemption notifier.
1825 */
1826void preempt_notifier_unregister(struct preempt_notifier *notifier)
1827{
1828 hlist_del(&notifier->link);
1829}
1830EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1831
1832static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1833{
1834 struct preempt_notifier *notifier;
1835 struct hlist_node *node;
1836
1837 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1838 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1839}
1840
1841static void
1842fire_sched_out_preempt_notifiers(struct task_struct *curr,
1843 struct task_struct *next)
1844{
1845 struct preempt_notifier *notifier;
1846 struct hlist_node *node;
1847
1848 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1849 notifier->ops->sched_out(notifier, next);
1850}
1851
1852#else /* !CONFIG_PREEMPT_NOTIFIERS */
1853
1854static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1855{
1856}
1857
1858static void
1859fire_sched_out_preempt_notifiers(struct task_struct *curr,
1860 struct task_struct *next)
1861{
1862}
1863
1864#endif /* CONFIG_PREEMPT_NOTIFIERS */
1865
1866/**
1867 * prepare_task_switch - prepare to switch tasks
1868 * @rq: the runqueue preparing to switch
1869 * @prev: the current task that is being switched out
1870 * @next: the task we are going to switch to.
1871 *
1872 * This is called with the rq lock held and interrupts off. It must
1873 * be paired with a subsequent finish_task_switch after the context
1874 * switch.
1875 *
1876 * prepare_task_switch sets up locking and calls architecture specific
1877 * hooks.
1878 */
1879static inline void
1880prepare_task_switch(struct rq *rq, struct task_struct *prev,
1881 struct task_struct *next)
1882{
1883 sched_info_switch(prev, next);
1884 perf_event_task_sched_out(prev, next);
1885 fire_sched_out_preempt_notifiers(prev, next);
1886 prepare_lock_switch(rq, next);
1887 prepare_arch_switch(next);
1888 trace_sched_switch(prev, next);
1889}
1890
1891/**
1892 * finish_task_switch - clean up after a task-switch
1893 * @rq: runqueue associated with task-switch
1894 * @prev: the thread we just switched away from.
1895 *
1896 * finish_task_switch must be called after the context switch, paired
1897 * with a prepare_task_switch call before the context switch.
1898 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1899 * and do any other architecture-specific cleanup actions.
1900 *
1901 * Note that we may have delayed dropping an mm in context_switch(). If
1902 * so, we finish that here outside of the runqueue lock. (Doing it
1903 * with the lock held can cause deadlocks; see schedule() for
1904 * details.)
1905 */
1906static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1907 __releases(rq->lock)
1908{
1909 struct mm_struct *mm = rq->prev_mm;
1910 long prev_state;
1911
1912 rq->prev_mm = NULL;
1913
1914 /*
1915 * A task struct has one reference for the use as "current".
1916 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1917 * schedule one last time. The schedule call will never return, and
1918 * the scheduled task must drop that reference.
1919 * The test for TASK_DEAD must occur while the runqueue locks are
1920 * still held, otherwise prev could be scheduled on another cpu, die
1921 * there before we look at prev->state, and then the reference would
1922 * be dropped twice.
1923 * Manfred Spraul <manfred@colorfullife.com>
1924 */
1925 prev_state = prev->state;
1926 finish_arch_switch(prev);
1927#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1928 local_irq_disable();
1929#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1930 perf_event_task_sched_in(prev, current);
1931#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1932 local_irq_enable();
1933#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1934 finish_lock_switch(rq, prev);
1935
1936 fire_sched_in_preempt_notifiers(current);
1937 if (mm)
1938 mmdrop(mm);
1939 if (unlikely(prev_state == TASK_DEAD)) {
1940 /*
1941 * Remove function-return probe instances associated with this
1942 * task and put them back on the free list.
1943 */
1944 kprobe_flush_task(prev);
1945 put_task_struct(prev);
1946 }
1947}
1948
1949#ifdef CONFIG_SMP
1950
1951/* assumes rq->lock is held */
1952static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1953{
1954 if (prev->sched_class->pre_schedule)
1955 prev->sched_class->pre_schedule(rq, prev);
1956}
1957
1958/* rq->lock is NOT held, but preemption is disabled */
1959static inline void post_schedule(struct rq *rq)
1960{
1961 if (rq->post_schedule) {
1962 unsigned long flags;
1963
1964 raw_spin_lock_irqsave(&rq->lock, flags);
1965 if (rq->curr->sched_class->post_schedule)
1966 rq->curr->sched_class->post_schedule(rq);
1967 raw_spin_unlock_irqrestore(&rq->lock, flags);
1968
1969 rq->post_schedule = 0;
1970 }
1971}
1972
1973#else
1974
1975static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1976{
1977}
1978
1979static inline void post_schedule(struct rq *rq)
1980{
1981}
1982
1983#endif
1984
1985/**
1986 * schedule_tail - first thing a freshly forked thread must call.
1987 * @prev: the thread we just switched away from.
1988 */
1989asmlinkage void schedule_tail(struct task_struct *prev)
1990 __releases(rq->lock)
1991{
1992 struct rq *rq = this_rq();
1993
1994 finish_task_switch(rq, prev);
1995
1996 /*
1997 * FIXME: do we need to worry about rq being invalidated by the
1998 * task_switch?
1999 */
2000 post_schedule(rq);
2001
2002#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2003 /* In this case, finish_task_switch does not reenable preemption */
2004 preempt_enable();
2005#endif
2006 if (current->set_child_tid)
2007 put_user(task_pid_vnr(current), current->set_child_tid);
2008}
2009
2010/*
2011 * context_switch - switch to the new MM and the new
2012 * thread's register state.
2013 */
2014static inline void
2015context_switch(struct rq *rq, struct task_struct *prev,
2016 struct task_struct *next)
2017{
2018 struct mm_struct *mm, *oldmm;
2019
2020 prepare_task_switch(rq, prev, next);
2021
2022 mm = next->mm;
2023 oldmm = prev->active_mm;
2024 /*
2025 * For paravirt, this is coupled with an exit in switch_to to
2026 * combine the page table reload and the switch backend into
2027 * one hypercall.
2028 */
2029 arch_start_context_switch(prev);
2030
2031 if (!mm) {
2032 next->active_mm = oldmm;
2033 atomic_inc(&oldmm->mm_count);
2034 enter_lazy_tlb(oldmm, next);
2035 } else
2036 switch_mm(oldmm, mm, next);
2037
2038 if (!prev->mm) {
2039 prev->active_mm = NULL;
2040 rq->prev_mm = oldmm;
2041 }
2042 /*
2043 * Since the runqueue lock will be released by the next
2044 * task (which is an invalid locking op but in the case
2045 * of the scheduler it's an obvious special-case), so we
2046 * do an early lockdep release here:
2047 */
2048#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2049 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2050#endif
2051
2052 /* Here we just switch the register state and the stack. */
2053 switch_to(prev, next, prev);
2054
2055 barrier();
2056 /*
2057 * this_rq must be evaluated again because prev may have moved
2058 * CPUs since it called schedule(), thus the 'rq' on its stack
2059 * frame will be invalid.
2060 */
2061 finish_task_switch(this_rq(), prev);
2062}
2063
2064/*
2065 * nr_running, nr_uninterruptible and nr_context_switches:
2066 *
2067 * externally visible scheduler statistics: current number of runnable
2068 * threads, current number of uninterruptible-sleeping threads, total
2069 * number of context switches performed since bootup.
2070 */
2071unsigned long nr_running(void)
2072{
2073 unsigned long i, sum = 0;
2074
2075 for_each_online_cpu(i)
2076 sum += cpu_rq(i)->nr_running;
2077
2078 return sum;
2079}
2080
2081unsigned long nr_uninterruptible(void)
2082{
2083 unsigned long i, sum = 0;
2084
2085 for_each_possible_cpu(i)
2086 sum += cpu_rq(i)->nr_uninterruptible;
2087
2088 /*
2089 * Since we read the counters lockless, it might be slightly
2090 * inaccurate. Do not allow it to go below zero though:
2091 */
2092 if (unlikely((long)sum < 0))
2093 sum = 0;
2094
2095 return sum;
2096}
2097
2098unsigned long long nr_context_switches(void)
2099{
2100 int i;
2101 unsigned long long sum = 0;
2102
2103 for_each_possible_cpu(i)
2104 sum += cpu_rq(i)->nr_switches;
2105
2106 return sum;
2107}
2108
2109unsigned long nr_iowait(void)
2110{
2111 unsigned long i, sum = 0;
2112
2113 for_each_possible_cpu(i)
2114 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2115
2116 return sum;
2117}
2118
2119unsigned long nr_iowait_cpu(int cpu)
2120{
2121 struct rq *this = cpu_rq(cpu);
2122 return atomic_read(&this->nr_iowait);
2123}
2124
2125unsigned long this_cpu_load(void)
2126{
2127 struct rq *this = this_rq();
2128 return this->cpu_load[0];
2129}
2130
2131
2132/* Variables and functions for calc_load */
2133static atomic_long_t calc_load_tasks;
2134static unsigned long calc_load_update;
2135unsigned long avenrun[3];
2136EXPORT_SYMBOL(avenrun);
2137
2138static long calc_load_fold_active(struct rq *this_rq)
2139{
2140 long nr_active, delta = 0;
2141
2142 nr_active = this_rq->nr_running;
2143 nr_active += (long) this_rq->nr_uninterruptible;
2144
2145 if (nr_active != this_rq->calc_load_active) {
2146 delta = nr_active - this_rq->calc_load_active;
2147 this_rq->calc_load_active = nr_active;
2148 }
2149
2150 return delta;
2151}
2152
2153static unsigned long
2154calc_load(unsigned long load, unsigned long exp, unsigned long active)
2155{
2156 load *= exp;
2157 load += active * (FIXED_1 - exp);
2158 load += 1UL << (FSHIFT - 1);
2159 return load >> FSHIFT;
2160}
2161
2162#ifdef CONFIG_NO_HZ
2163/*
2164 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2165 *
2166 * When making the ILB scale, we should try to pull this in as well.
2167 */
2168static atomic_long_t calc_load_tasks_idle;
2169
2170void calc_load_account_idle(struct rq *this_rq)
2171{
2172 long delta;
2173
2174 delta = calc_load_fold_active(this_rq);
2175 if (delta)
2176 atomic_long_add(delta, &calc_load_tasks_idle);
2177}
2178
2179static long calc_load_fold_idle(void)
2180{
2181 long delta = 0;
2182
2183 /*
2184 * Its got a race, we don't care...
2185 */
2186 if (atomic_long_read(&calc_load_tasks_idle))
2187 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2188
2189 return delta;
2190}
2191
2192/**
2193 * fixed_power_int - compute: x^n, in O(log n) time
2194 *
2195 * @x: base of the power
2196 * @frac_bits: fractional bits of @x
2197 * @n: power to raise @x to.
2198 *
2199 * By exploiting the relation between the definition of the natural power
2200 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2201 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2202 * (where: n_i \elem {0, 1}, the binary vector representing n),
2203 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2204 * of course trivially computable in O(log_2 n), the length of our binary
2205 * vector.
2206 */
2207static unsigned long
2208fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2209{
2210 unsigned long result = 1UL << frac_bits;
2211
2212 if (n) for (;;) {
2213 if (n & 1) {
2214 result *= x;
2215 result += 1UL << (frac_bits - 1);
2216 result >>= frac_bits;
2217 }
2218 n >>= 1;
2219 if (!n)
2220 break;
2221 x *= x;
2222 x += 1UL << (frac_bits - 1);
2223 x >>= frac_bits;
2224 }
2225
2226 return result;
2227}
2228
2229/*
2230 * a1 = a0 * e + a * (1 - e)
2231 *
2232 * a2 = a1 * e + a * (1 - e)
2233 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2234 * = a0 * e^2 + a * (1 - e) * (1 + e)
2235 *
2236 * a3 = a2 * e + a * (1 - e)
2237 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2238 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2239 *
2240 * ...
2241 *
2242 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2243 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2244 * = a0 * e^n + a * (1 - e^n)
2245 *
2246 * [1] application of the geometric series:
2247 *
2248 * n 1 - x^(n+1)
2249 * S_n := \Sum x^i = -------------
2250 * i=0 1 - x
2251 */
2252static unsigned long
2253calc_load_n(unsigned long load, unsigned long exp,
2254 unsigned long active, unsigned int n)
2255{
2256
2257 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2258}
2259
2260/*
2261 * NO_HZ can leave us missing all per-cpu ticks calling
2262 * calc_load_account_active(), but since an idle CPU folds its delta into
2263 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2264 * in the pending idle delta if our idle period crossed a load cycle boundary.
2265 *
2266 * Once we've updated the global active value, we need to apply the exponential
2267 * weights adjusted to the number of cycles missed.
2268 */
2269static void calc_global_nohz(unsigned long ticks)
2270{
2271 long delta, active, n;
2272
2273 if (time_before(jiffies, calc_load_update))
2274 return;
2275
2276 /*
2277 * If we crossed a calc_load_update boundary, make sure to fold
2278 * any pending idle changes, the respective CPUs might have
2279 * missed the tick driven calc_load_account_active() update
2280 * due to NO_HZ.
2281 */
2282 delta = calc_load_fold_idle();
2283 if (delta)
2284 atomic_long_add(delta, &calc_load_tasks);
2285
2286 /*
2287 * If we were idle for multiple load cycles, apply them.
2288 */
2289 if (ticks >= LOAD_FREQ) {
2290 n = ticks / LOAD_FREQ;
2291
2292 active = atomic_long_read(&calc_load_tasks);
2293 active = active > 0 ? active * FIXED_1 : 0;
2294
2295 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2296 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2297 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2298
2299 calc_load_update += n * LOAD_FREQ;
2300 }
2301
2302 /*
2303 * Its possible the remainder of the above division also crosses
2304 * a LOAD_FREQ period, the regular check in calc_global_load()
2305 * which comes after this will take care of that.
2306 *
2307 * Consider us being 11 ticks before a cycle completion, and us
2308 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
2309 * age us 4 cycles, and the test in calc_global_load() will
2310 * pick up the final one.
2311 */
2312}
2313#else
2314void calc_load_account_idle(struct rq *this_rq)
2315{
2316}
2317
2318static inline long calc_load_fold_idle(void)
2319{
2320 return 0;
2321}
2322
2323static void calc_global_nohz(unsigned long ticks)
2324{
2325}
2326#endif
2327
2328/**
2329 * get_avenrun - get the load average array
2330 * @loads: pointer to dest load array
2331 * @offset: offset to add
2332 * @shift: shift count to shift the result left
2333 *
2334 * These values are estimates at best, so no need for locking.
2335 */
2336void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2337{
2338 loads[0] = (avenrun[0] + offset) << shift;
2339 loads[1] = (avenrun[1] + offset) << shift;
2340 loads[2] = (avenrun[2] + offset) << shift;
2341}
2342
2343/*
2344 * calc_load - update the avenrun load estimates 10 ticks after the
2345 * CPUs have updated calc_load_tasks.
2346 */
2347void calc_global_load(unsigned long ticks)
2348{
2349 long active;
2350
2351 calc_global_nohz(ticks);
2352
2353 if (time_before(jiffies, calc_load_update + 10))
2354 return;
2355
2356 active = atomic_long_read(&calc_load_tasks);
2357 active = active > 0 ? active * FIXED_1 : 0;
2358
2359 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2360 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2361 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2362
2363 calc_load_update += LOAD_FREQ;
2364}
2365
2366/*
2367 * Called from update_cpu_load() to periodically update this CPU's
2368 * active count.
2369 */
2370static void calc_load_account_active(struct rq *this_rq)
2371{
2372 long delta;
2373
2374 if (time_before(jiffies, this_rq->calc_load_update))
2375 return;
2376
2377 delta = calc_load_fold_active(this_rq);
2378 delta += calc_load_fold_idle();
2379 if (delta)
2380 atomic_long_add(delta, &calc_load_tasks);
2381
2382 this_rq->calc_load_update += LOAD_FREQ;
2383}
2384
2385/*
2386 * The exact cpuload at various idx values, calculated at every tick would be
2387 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2388 *
2389 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2390 * on nth tick when cpu may be busy, then we have:
2391 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2392 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2393 *
2394 * decay_load_missed() below does efficient calculation of
2395 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2396 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2397 *
2398 * The calculation is approximated on a 128 point scale.
2399 * degrade_zero_ticks is the number of ticks after which load at any
2400 * particular idx is approximated to be zero.
2401 * degrade_factor is a precomputed table, a row for each load idx.
2402 * Each column corresponds to degradation factor for a power of two ticks,
2403 * based on 128 point scale.
2404 * Example:
2405 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2406 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2407 *
2408 * With this power of 2 load factors, we can degrade the load n times
2409 * by looking at 1 bits in n and doing as many mult/shift instead of
2410 * n mult/shifts needed by the exact degradation.
2411 */
2412#define DEGRADE_SHIFT 7
2413static const unsigned char
2414 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2415static const unsigned char
2416 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2417 {0, 0, 0, 0, 0, 0, 0, 0},
2418 {64, 32, 8, 0, 0, 0, 0, 0},
2419 {96, 72, 40, 12, 1, 0, 0},
2420 {112, 98, 75, 43, 15, 1, 0},
2421 {120, 112, 98, 76, 45, 16, 2} };
2422
2423/*
2424 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2425 * would be when CPU is idle and so we just decay the old load without
2426 * adding any new load.
2427 */
2428static unsigned long
2429decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2430{
2431 int j = 0;
2432
2433 if (!missed_updates)
2434 return load;
2435
2436 if (missed_updates >= degrade_zero_ticks[idx])
2437 return 0;
2438
2439 if (idx == 1)
2440 return load >> missed_updates;
2441
2442 while (missed_updates) {
2443 if (missed_updates % 2)
2444 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2445
2446 missed_updates >>= 1;
2447 j++;
2448 }
2449 return load;
2450}
2451
2452/*
2453 * Update rq->cpu_load[] statistics. This function is usually called every
2454 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2455 * every tick. We fix it up based on jiffies.
2456 */
2457void update_cpu_load(struct rq *this_rq)
2458{
2459 unsigned long this_load = this_rq->load.weight;
2460 unsigned long curr_jiffies = jiffies;
2461 unsigned long pending_updates;
2462 int i, scale;
2463
2464 this_rq->nr_load_updates++;
2465
2466 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
2467 if (curr_jiffies == this_rq->last_load_update_tick)
2468 return;
2469
2470 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2471 this_rq->last_load_update_tick = curr_jiffies;
2472
2473 /* Update our load: */
2474 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2475 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2476 unsigned long old_load, new_load;
2477
2478 /* scale is effectively 1 << i now, and >> i divides by scale */
2479
2480 old_load = this_rq->cpu_load[i];
2481 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2482 new_load = this_load;
2483 /*
2484 * Round up the averaging division if load is increasing. This
2485 * prevents us from getting stuck on 9 if the load is 10, for
2486 * example.
2487 */
2488 if (new_load > old_load)
2489 new_load += scale - 1;
2490
2491 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2492 }
2493
2494 sched_avg_update(this_rq);
2495}
2496
2497static void update_cpu_load_active(struct rq *this_rq)
2498{
2499 update_cpu_load(this_rq);
2500
2501 calc_load_account_active(this_rq);
2502}
2503
2504#ifdef CONFIG_SMP
2505
2506/*
2507 * sched_exec - execve() is a valuable balancing opportunity, because at
2508 * this point the task has the smallest effective memory and cache footprint.
2509 */
2510void sched_exec(void)
2511{
2512 struct task_struct *p = current;
2513 unsigned long flags;
2514 int dest_cpu;
2515
2516 raw_spin_lock_irqsave(&p->pi_lock, flags);
2517 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2518 if (dest_cpu == smp_processor_id())
2519 goto unlock;
2520
2521 if (likely(cpu_active(dest_cpu))) {
2522 struct migration_arg arg = { p, dest_cpu };
2523
2524 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2525 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2526 return;
2527 }
2528unlock:
2529 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2530}
2531
2532#endif
2533
2534DEFINE_PER_CPU(struct kernel_stat, kstat);
2535DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2536
2537EXPORT_PER_CPU_SYMBOL(kstat);
2538EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2539
2540/*
2541 * Return any ns on the sched_clock that have not yet been accounted in
2542 * @p in case that task is currently running.
2543 *
2544 * Called with task_rq_lock() held on @rq.
2545 */
2546static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2547{
2548 u64 ns = 0;
2549
2550 if (task_current(rq, p)) {
2551 update_rq_clock(rq);
2552 ns = rq->clock_task - p->se.exec_start;
2553 if ((s64)ns < 0)
2554 ns = 0;
2555 }
2556
2557 return ns;
2558}
2559
2560unsigned long long task_delta_exec(struct task_struct *p)
2561{
2562 unsigned long flags;
2563 struct rq *rq;
2564 u64 ns = 0;
2565
2566 rq = task_rq_lock(p, &flags);
2567 ns = do_task_delta_exec(p, rq);
2568 task_rq_unlock(rq, p, &flags);
2569
2570 return ns;
2571}
2572
2573/*
2574 * Return accounted runtime for the task.
2575 * In case the task is currently running, return the runtime plus current's
2576 * pending runtime that have not been accounted yet.
2577 */
2578unsigned long long task_sched_runtime(struct task_struct *p)
2579{
2580 unsigned long flags;
2581 struct rq *rq;
2582 u64 ns = 0;
2583
2584 rq = task_rq_lock(p, &flags);
2585 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2586 task_rq_unlock(rq, p, &flags);
2587
2588 return ns;
2589}
2590
2591#ifdef CONFIG_CGROUP_CPUACCT
2592struct cgroup_subsys cpuacct_subsys;
2593struct cpuacct root_cpuacct;
2594#endif
2595
2596static inline void task_group_account_field(struct task_struct *p, int index,
2597 u64 tmp)
2598{
2599#ifdef CONFIG_CGROUP_CPUACCT
2600 struct kernel_cpustat *kcpustat;
2601 struct cpuacct *ca;
2602#endif
2603 /*
2604 * Since all updates are sure to touch the root cgroup, we
2605 * get ourselves ahead and touch it first. If the root cgroup
2606 * is the only cgroup, then nothing else should be necessary.
2607 *
2608 */
2609 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2610
2611#ifdef CONFIG_CGROUP_CPUACCT
2612 if (unlikely(!cpuacct_subsys.active))
2613 return;
2614
2615 rcu_read_lock();
2616 ca = task_ca(p);
2617 while (ca && (ca != &root_cpuacct)) {
2618 kcpustat = this_cpu_ptr(ca->cpustat);
2619 kcpustat->cpustat[index] += tmp;
2620 ca = parent_ca(ca);
2621 }
2622 rcu_read_unlock();
2623#endif
2624}
2625
2626
2627/*
2628 * Account user cpu time to a process.
2629 * @p: the process that the cpu time gets accounted to
2630 * @cputime: the cpu time spent in user space since the last update
2631 * @cputime_scaled: cputime scaled by cpu frequency
2632 */
2633void account_user_time(struct task_struct *p, cputime_t cputime,
2634 cputime_t cputime_scaled)
2635{
2636 int index;
2637
2638 /* Add user time to process. */
2639 p->utime += cputime;
2640 p->utimescaled += cputime_scaled;
2641 account_group_user_time(p, cputime);
2642
2643 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2644
2645 /* Add user time to cpustat. */
2646 task_group_account_field(p, index, (__force u64) cputime);
2647
2648 /* Account for user time used */
2649 acct_update_integrals(p);
2650}
2651
2652/*
2653 * Account guest cpu time to a process.
2654 * @p: the process that the cpu time gets accounted to
2655 * @cputime: the cpu time spent in virtual machine since the last update
2656 * @cputime_scaled: cputime scaled by cpu frequency
2657 */
2658static void account_guest_time(struct task_struct *p, cputime_t cputime,
2659 cputime_t cputime_scaled)
2660{
2661 u64 *cpustat = kcpustat_this_cpu->cpustat;
2662
2663 /* Add guest time to process. */
2664 p->utime += cputime;
2665 p->utimescaled += cputime_scaled;
2666 account_group_user_time(p, cputime);
2667 p->gtime += cputime;
2668
2669 /* Add guest time to cpustat. */
2670 if (TASK_NICE(p) > 0) {
2671 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2672 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2673 } else {
2674 cpustat[CPUTIME_USER] += (__force u64) cputime;
2675 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2676 }
2677}
2678
2679/*
2680 * Account system cpu time to a process and desired cpustat field
2681 * @p: the process that the cpu time gets accounted to
2682 * @cputime: the cpu time spent in kernel space since the last update
2683 * @cputime_scaled: cputime scaled by cpu frequency
2684 * @target_cputime64: pointer to cpustat field that has to be updated
2685 */
2686static inline
2687void __account_system_time(struct task_struct *p, cputime_t cputime,
2688 cputime_t cputime_scaled, int index)
2689{
2690 /* Add system time to process. */
2691 p->stime += cputime;
2692 p->stimescaled += cputime_scaled;
2693 account_group_system_time(p, cputime);
2694
2695 /* Add system time to cpustat. */
2696 task_group_account_field(p, index, (__force u64) cputime);
2697
2698 /* Account for system time used */
2699 acct_update_integrals(p);
2700}
2701
2702/*
2703 * Account system cpu time to a process.
2704 * @p: the process that the cpu time gets accounted to
2705 * @hardirq_offset: the offset to subtract from hardirq_count()
2706 * @cputime: the cpu time spent in kernel space since the last update
2707 * @cputime_scaled: cputime scaled by cpu frequency
2708 */
2709void account_system_time(struct task_struct *p, int hardirq_offset,
2710 cputime_t cputime, cputime_t cputime_scaled)
2711{
2712 int index;
2713
2714 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2715 account_guest_time(p, cputime, cputime_scaled);
2716 return;
2717 }
2718
2719 if (hardirq_count() - hardirq_offset)
2720 index = CPUTIME_IRQ;
2721 else if (in_serving_softirq())
2722 index = CPUTIME_SOFTIRQ;
2723 else
2724 index = CPUTIME_SYSTEM;
2725
2726 __account_system_time(p, cputime, cputime_scaled, index);
2727}
2728
2729/*
2730 * Account for involuntary wait time.
2731 * @cputime: the cpu time spent in involuntary wait
2732 */
2733void account_steal_time(cputime_t cputime)
2734{
2735 u64 *cpustat = kcpustat_this_cpu->cpustat;
2736
2737 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2738}
2739
2740/*
2741 * Account for idle time.
2742 * @cputime: the cpu time spent in idle wait
2743 */
2744void account_idle_time(cputime_t cputime)
2745{
2746 u64 *cpustat = kcpustat_this_cpu->cpustat;
2747 struct rq *rq = this_rq();
2748
2749 if (atomic_read(&rq->nr_iowait) > 0)
2750 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2751 else
2752 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2753}
2754
2755static __always_inline bool steal_account_process_tick(void)
2756{
2757#ifdef CONFIG_PARAVIRT
2758 if (static_branch(&paravirt_steal_enabled)) {
2759 u64 steal, st = 0;
2760
2761 steal = paravirt_steal_clock(smp_processor_id());
2762 steal -= this_rq()->prev_steal_time;
2763
2764 st = steal_ticks(steal);
2765 this_rq()->prev_steal_time += st * TICK_NSEC;
2766
2767 account_steal_time(st);
2768 return st;
2769 }
2770#endif
2771 return false;
2772}
2773
2774#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2775
2776#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2777/*
2778 * Account a tick to a process and cpustat
2779 * @p: the process that the cpu time gets accounted to
2780 * @user_tick: is the tick from userspace
2781 * @rq: the pointer to rq
2782 *
2783 * Tick demultiplexing follows the order
2784 * - pending hardirq update
2785 * - pending softirq update
2786 * - user_time
2787 * - idle_time
2788 * - system time
2789 * - check for guest_time
2790 * - else account as system_time
2791 *
2792 * Check for hardirq is done both for system and user time as there is
2793 * no timer going off while we are on hardirq and hence we may never get an
2794 * opportunity to update it solely in system time.
2795 * p->stime and friends are only updated on system time and not on irq
2796 * softirq as those do not count in task exec_runtime any more.
2797 */
2798static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2799 struct rq *rq)
2800{
2801 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2802 u64 *cpustat = kcpustat_this_cpu->cpustat;
2803
2804 if (steal_account_process_tick())
2805 return;
2806
2807 if (irqtime_account_hi_update()) {
2808 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2809 } else if (irqtime_account_si_update()) {
2810 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2811 } else if (this_cpu_ksoftirqd() == p) {
2812 /*
2813 * ksoftirqd time do not get accounted in cpu_softirq_time.
2814 * So, we have to handle it separately here.
2815 * Also, p->stime needs to be updated for ksoftirqd.
2816 */
2817 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2818 CPUTIME_SOFTIRQ);
2819 } else if (user_tick) {
2820 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2821 } else if (p == rq->idle) {
2822 account_idle_time(cputime_one_jiffy);
2823 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2824 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2825 } else {
2826 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2827 CPUTIME_SYSTEM);
2828 }
2829}
2830
2831static void irqtime_account_idle_ticks(int ticks)
2832{
2833 int i;
2834 struct rq *rq = this_rq();
2835
2836 for (i = 0; i < ticks; i++)
2837 irqtime_account_process_tick(current, 0, rq);
2838}
2839#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2840static void irqtime_account_idle_ticks(int ticks) {}
2841static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2842 struct rq *rq) {}
2843#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2844
2845/*
2846 * Account a single tick of cpu time.
2847 * @p: the process that the cpu time gets accounted to
2848 * @user_tick: indicates if the tick is a user or a system tick
2849 */
2850void account_process_tick(struct task_struct *p, int user_tick)
2851{
2852 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2853 struct rq *rq = this_rq();
2854
2855 if (sched_clock_irqtime) {
2856 irqtime_account_process_tick(p, user_tick, rq);
2857 return;
2858 }
2859
2860 if (steal_account_process_tick())
2861 return;
2862
2863 if (user_tick)
2864 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2865 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2866 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2867 one_jiffy_scaled);
2868 else
2869 account_idle_time(cputime_one_jiffy);
2870}
2871
2872/*
2873 * Account multiple ticks of steal time.
2874 * @p: the process from which the cpu time has been stolen
2875 * @ticks: number of stolen ticks
2876 */
2877void account_steal_ticks(unsigned long ticks)
2878{
2879 account_steal_time(jiffies_to_cputime(ticks));
2880}
2881
2882/*
2883 * Account multiple ticks of idle time.
2884 * @ticks: number of stolen ticks
2885 */
2886void account_idle_ticks(unsigned long ticks)
2887{
2888
2889 if (sched_clock_irqtime) {
2890 irqtime_account_idle_ticks(ticks);
2891 return;
2892 }
2893
2894 account_idle_time(jiffies_to_cputime(ticks));
2895}
2896
2897#endif
2898
2899/*
2900 * Use precise platform statistics if available:
2901 */
2902#ifdef CONFIG_VIRT_CPU_ACCOUNTING
2903void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2904{
2905 *ut = p->utime;
2906 *st = p->stime;
2907}
2908
2909void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2910{
2911 struct task_cputime cputime;
2912
2913 thread_group_cputime(p, &cputime);
2914
2915 *ut = cputime.utime;
2916 *st = cputime.stime;
2917}
2918#else
2919
2920#ifndef nsecs_to_cputime
2921# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
2922#endif
2923
2924void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2925{
2926 cputime_t rtime, utime = p->utime, total = utime + p->stime;
2927
2928 /*
2929 * Use CFS's precise accounting:
2930 */
2931 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2932
2933 if (total) {
2934 u64 temp = (__force u64) rtime;
2935
2936 temp *= (__force u64) utime;
2937 do_div(temp, (__force u32) total);
2938 utime = (__force cputime_t) temp;
2939 } else
2940 utime = rtime;
2941
2942 /*
2943 * Compare with previous values, to keep monotonicity:
2944 */
2945 p->prev_utime = max(p->prev_utime, utime);
2946 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2947
2948 *ut = p->prev_utime;
2949 *st = p->prev_stime;
2950}
2951
2952/*
2953 * Must be called with siglock held.
2954 */
2955void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2956{
2957 struct signal_struct *sig = p->signal;
2958 struct task_cputime cputime;
2959 cputime_t rtime, utime, total;
2960
2961 thread_group_cputime(p, &cputime);
2962
2963 total = cputime.utime + cputime.stime;
2964 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2965
2966 if (total) {
2967 u64 temp = (__force u64) rtime;
2968
2969 temp *= (__force u64) cputime.utime;
2970 do_div(temp, (__force u32) total);
2971 utime = (__force cputime_t) temp;
2972 } else
2973 utime = rtime;
2974
2975 sig->prev_utime = max(sig->prev_utime, utime);
2976 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
2977
2978 *ut = sig->prev_utime;
2979 *st = sig->prev_stime;
2980}
2981#endif
2982
2983/*
2984 * This function gets called by the timer code, with HZ frequency.
2985 * We call it with interrupts disabled.
2986 */
2987void scheduler_tick(void)
2988{
2989 int cpu = smp_processor_id();
2990 struct rq *rq = cpu_rq(cpu);
2991 struct task_struct *curr = rq->curr;
2992
2993 sched_clock_tick();
2994
2995 raw_spin_lock(&rq->lock);
2996 update_rq_clock(rq);
2997 update_cpu_load_active(rq);
2998 curr->sched_class->task_tick(rq, curr, 0);
2999 raw_spin_unlock(&rq->lock);
3000
3001 perf_event_task_tick();
3002
3003#ifdef CONFIG_SMP
3004 rq->idle_balance = idle_cpu(cpu);
3005 trigger_load_balance(rq, cpu);
3006#endif
3007}
3008
3009notrace unsigned long get_parent_ip(unsigned long addr)
3010{
3011 if (in_lock_functions(addr)) {
3012 addr = CALLER_ADDR2;
3013 if (in_lock_functions(addr))
3014 addr = CALLER_ADDR3;
3015 }
3016 return addr;
3017}
3018
3019#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3020 defined(CONFIG_PREEMPT_TRACER))
3021
3022void __kprobes add_preempt_count(int val)
3023{
3024#ifdef CONFIG_DEBUG_PREEMPT
3025 /*
3026 * Underflow?
3027 */
3028 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3029 return;
3030#endif
3031 preempt_count() += val;
3032#ifdef CONFIG_DEBUG_PREEMPT
3033 /*
3034 * Spinlock count overflowing soon?
3035 */
3036 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3037 PREEMPT_MASK - 10);
3038#endif
3039 if (preempt_count() == val)
3040 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3041}
3042EXPORT_SYMBOL(add_preempt_count);
3043
3044void __kprobes sub_preempt_count(int val)
3045{
3046#ifdef CONFIG_DEBUG_PREEMPT
3047 /*
3048 * Underflow?
3049 */
3050 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3051 return;
3052 /*
3053 * Is the spinlock portion underflowing?
3054 */
3055 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3056 !(preempt_count() & PREEMPT_MASK)))
3057 return;
3058#endif
3059
3060 if (preempt_count() == val)
3061 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3062 preempt_count() -= val;
3063}
3064EXPORT_SYMBOL(sub_preempt_count);
3065
3066#endif
3067
3068/*
3069 * Print scheduling while atomic bug:
3070 */
3071static noinline void __schedule_bug(struct task_struct *prev)
3072{
3073 struct pt_regs *regs = get_irq_regs();
3074
3075 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3076 prev->comm, prev->pid, preempt_count());
3077
3078 debug_show_held_locks(prev);
3079 print_modules();
3080 if (irqs_disabled())
3081 print_irqtrace_events(prev);
3082
3083 if (regs)
3084 show_regs(regs);
3085 else
3086 dump_stack();
3087}
3088
3089/*
3090 * Various schedule()-time debugging checks and statistics:
3091 */
3092static inline void schedule_debug(struct task_struct *prev)
3093{
3094 /*
3095 * Test if we are atomic. Since do_exit() needs to call into
3096 * schedule() atomically, we ignore that path for now.
3097 * Otherwise, whine if we are scheduling when we should not be.
3098 */
3099 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3100 __schedule_bug(prev);
3101 rcu_sleep_check();
3102
3103 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3104
3105 schedstat_inc(this_rq(), sched_count);
3106}
3107
3108static void put_prev_task(struct rq *rq, struct task_struct *prev)
3109{
3110 if (prev->on_rq || rq->skip_clock_update < 0)
3111 update_rq_clock(rq);
3112 prev->sched_class->put_prev_task(rq, prev);
3113}
3114
3115/*
3116 * Pick up the highest-prio task:
3117 */
3118static inline struct task_struct *
3119pick_next_task(struct rq *rq)
3120{
3121 const struct sched_class *class;
3122 struct task_struct *p;
3123
3124 /*
3125 * Optimization: we know that if all tasks are in
3126 * the fair class we can call that function directly:
3127 */
3128 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3129 p = fair_sched_class.pick_next_task(rq);
3130 if (likely(p))
3131 return p;
3132 }
3133
3134 for_each_class(class) {
3135 p = class->pick_next_task(rq);
3136 if (p)
3137 return p;
3138 }
3139
3140 BUG(); /* the idle class will always have a runnable task */
3141}
3142
3143/*
3144 * __schedule() is the main scheduler function.
3145 */
3146static void __sched __schedule(void)
3147{
3148 struct task_struct *prev, *next;
3149 unsigned long *switch_count;
3150 struct rq *rq;
3151 int cpu;
3152
3153need_resched:
3154 preempt_disable();
3155 cpu = smp_processor_id();
3156 rq = cpu_rq(cpu);
3157 rcu_note_context_switch(cpu);
3158 prev = rq->curr;
3159
3160 schedule_debug(prev);
3161
3162 if (sched_feat(HRTICK))
3163 hrtick_clear(rq);
3164
3165 raw_spin_lock_irq(&rq->lock);
3166
3167 switch_count = &prev->nivcsw;
3168 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3169 if (unlikely(signal_pending_state(prev->state, prev))) {
3170 prev->state = TASK_RUNNING;
3171 } else {
3172 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3173 prev->on_rq = 0;
3174
3175 /*
3176 * If a worker went to sleep, notify and ask workqueue
3177 * whether it wants to wake up a task to maintain
3178 * concurrency.
3179 */
3180 if (prev->flags & PF_WQ_WORKER) {
3181 struct task_struct *to_wakeup;
3182
3183 to_wakeup = wq_worker_sleeping(prev, cpu);
3184 if (to_wakeup)
3185 try_to_wake_up_local(to_wakeup);
3186 }
3187 }
3188 switch_count = &prev->nvcsw;
3189 }
3190
3191 pre_schedule(rq, prev);
3192
3193 if (unlikely(!rq->nr_running))
3194 idle_balance(cpu, rq);
3195
3196 put_prev_task(rq, prev);
3197 next = pick_next_task(rq);
3198 clear_tsk_need_resched(prev);
3199 rq->skip_clock_update = 0;
3200
3201 if (likely(prev != next)) {
3202 rq->nr_switches++;
3203 rq->curr = next;
3204 ++*switch_count;
3205
3206 context_switch(rq, prev, next); /* unlocks the rq */
3207 /*
3208 * The context switch have flipped the stack from under us
3209 * and restored the local variables which were saved when
3210 * this task called schedule() in the past. prev == current
3211 * is still correct, but it can be moved to another cpu/rq.
3212 */
3213 cpu = smp_processor_id();
3214 rq = cpu_rq(cpu);
3215 } else
3216 raw_spin_unlock_irq(&rq->lock);
3217
3218 post_schedule(rq);
3219
3220 preempt_enable_no_resched();
3221 if (need_resched())
3222 goto need_resched;
3223}
3224
3225static inline void sched_submit_work(struct task_struct *tsk)
3226{
3227 if (!tsk->state)
3228 return;
3229 /*
3230 * If we are going to sleep and we have plugged IO queued,
3231 * make sure to submit it to avoid deadlocks.
3232 */
3233 if (blk_needs_flush_plug(tsk))
3234 blk_schedule_flush_plug(tsk);
3235}
3236
3237asmlinkage void __sched schedule(void)
3238{
3239 struct task_struct *tsk = current;
3240
3241 sched_submit_work(tsk);
3242 __schedule();
3243}
3244EXPORT_SYMBOL(schedule);
3245
3246#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3247
3248static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3249{
3250 if (lock->owner != owner)
3251 return false;
3252
3253 /*
3254 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3255 * lock->owner still matches owner, if that fails, owner might
3256 * point to free()d memory, if it still matches, the rcu_read_lock()
3257 * ensures the memory stays valid.
3258 */
3259 barrier();
3260
3261 return owner->on_cpu;
3262}
3263
3264/*
3265 * Look out! "owner" is an entirely speculative pointer
3266 * access and not reliable.
3267 */
3268int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3269{
3270 if (!sched_feat(OWNER_SPIN))
3271 return 0;
3272
3273 rcu_read_lock();
3274 while (owner_running(lock, owner)) {
3275 if (need_resched())
3276 break;
3277
3278 arch_mutex_cpu_relax();
3279 }
3280 rcu_read_unlock();
3281
3282 /*
3283 * We break out the loop above on need_resched() and when the
3284 * owner changed, which is a sign for heavy contention. Return
3285 * success only when lock->owner is NULL.
3286 */
3287 return lock->owner == NULL;
3288}
3289#endif
3290
3291#ifdef CONFIG_PREEMPT
3292/*
3293 * this is the entry point to schedule() from in-kernel preemption
3294 * off of preempt_enable. Kernel preemptions off return from interrupt
3295 * occur there and call schedule directly.
3296 */
3297asmlinkage void __sched notrace preempt_schedule(void)
3298{
3299 struct thread_info *ti = current_thread_info();
3300
3301 /*
3302 * If there is a non-zero preempt_count or interrupts are disabled,
3303 * we do not want to preempt the current task. Just return..
3304 */
3305 if (likely(ti->preempt_count || irqs_disabled()))
3306 return;
3307
3308 do {
3309 add_preempt_count_notrace(PREEMPT_ACTIVE);
3310 __schedule();
3311 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3312
3313 /*
3314 * Check again in case we missed a preemption opportunity
3315 * between schedule and now.
3316 */
3317 barrier();
3318 } while (need_resched());
3319}
3320EXPORT_SYMBOL(preempt_schedule);
3321
3322/*
3323 * this is the entry point to schedule() from kernel preemption
3324 * off of irq context.
3325 * Note, that this is called and return with irqs disabled. This will
3326 * protect us against recursive calling from irq.
3327 */
3328asmlinkage void __sched preempt_schedule_irq(void)
3329{
3330 struct thread_info *ti = current_thread_info();
3331
3332 /* Catch callers which need to be fixed */
3333 BUG_ON(ti->preempt_count || !irqs_disabled());
3334
3335 do {
3336 add_preempt_count(PREEMPT_ACTIVE);
3337 local_irq_enable();
3338 __schedule();
3339 local_irq_disable();
3340 sub_preempt_count(PREEMPT_ACTIVE);
3341
3342 /*
3343 * Check again in case we missed a preemption opportunity
3344 * between schedule and now.
3345 */
3346 barrier();
3347 } while (need_resched());
3348}
3349
3350#endif /* CONFIG_PREEMPT */
3351
3352int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3353 void *key)
3354{
3355 return try_to_wake_up(curr->private, mode, wake_flags);
3356}
3357EXPORT_SYMBOL(default_wake_function);
3358
3359/*
3360 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3361 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3362 * number) then we wake all the non-exclusive tasks and one exclusive task.
3363 *
3364 * There are circumstances in which we can try to wake a task which has already
3365 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3366 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3367 */
3368static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3369 int nr_exclusive, int wake_flags, void *key)
3370{
3371 wait_queue_t *curr, *next;
3372
3373 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3374 unsigned flags = curr->flags;
3375
3376 if (curr->func(curr, mode, wake_flags, key) &&
3377 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3378 break;
3379 }
3380}
3381
3382/**
3383 * __wake_up - wake up threads blocked on a waitqueue.
3384 * @q: the waitqueue
3385 * @mode: which threads
3386 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3387 * @key: is directly passed to the wakeup function
3388 *
3389 * It may be assumed that this function implies a write memory barrier before
3390 * changing the task state if and only if any tasks are woken up.
3391 */
3392void __wake_up(wait_queue_head_t *q, unsigned int mode,
3393 int nr_exclusive, void *key)
3394{
3395 unsigned long flags;
3396
3397 spin_lock_irqsave(&q->lock, flags);
3398 __wake_up_common(q, mode, nr_exclusive, 0, key);
3399 spin_unlock_irqrestore(&q->lock, flags);
3400}
3401EXPORT_SYMBOL(__wake_up);
3402
3403/*
3404 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3405 */
3406void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3407{
3408 __wake_up_common(q, mode, 1, 0, NULL);
3409}
3410EXPORT_SYMBOL_GPL(__wake_up_locked);
3411
3412void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3413{
3414 __wake_up_common(q, mode, 1, 0, key);
3415}
3416EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3417
3418/**
3419 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3420 * @q: the waitqueue
3421 * @mode: which threads
3422 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3423 * @key: opaque value to be passed to wakeup targets
3424 *
3425 * The sync wakeup differs that the waker knows that it will schedule
3426 * away soon, so while the target thread will be woken up, it will not
3427 * be migrated to another CPU - ie. the two threads are 'synchronized'
3428 * with each other. This can prevent needless bouncing between CPUs.
3429 *
3430 * On UP it can prevent extra preemption.
3431 *
3432 * It may be assumed that this function implies a write memory barrier before
3433 * changing the task state if and only if any tasks are woken up.
3434 */
3435void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3436 int nr_exclusive, void *key)
3437{
3438 unsigned long flags;
3439 int wake_flags = WF_SYNC;
3440
3441 if (unlikely(!q))
3442 return;
3443
3444 if (unlikely(!nr_exclusive))
3445 wake_flags = 0;
3446
3447 spin_lock_irqsave(&q->lock, flags);
3448 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3449 spin_unlock_irqrestore(&q->lock, flags);
3450}
3451EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3452
3453/*
3454 * __wake_up_sync - see __wake_up_sync_key()
3455 */
3456void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3457{
3458 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3459}
3460EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3461
3462/**
3463 * complete: - signals a single thread waiting on this completion
3464 * @x: holds the state of this particular completion
3465 *
3466 * This will wake up a single thread waiting on this completion. Threads will be
3467 * awakened in the same order in which they were queued.
3468 *
3469 * See also complete_all(), wait_for_completion() and related routines.
3470 *
3471 * It may be assumed that this function implies a write memory barrier before
3472 * changing the task state if and only if any tasks are woken up.
3473 */
3474void complete(struct completion *x)
3475{
3476 unsigned long flags;
3477
3478 spin_lock_irqsave(&x->wait.lock, flags);
3479 x->done++;
3480 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3481 spin_unlock_irqrestore(&x->wait.lock, flags);
3482}
3483EXPORT_SYMBOL(complete);
3484
3485/**
3486 * complete_all: - signals all threads waiting on this completion
3487 * @x: holds the state of this particular completion
3488 *
3489 * This will wake up all threads waiting on this particular completion event.
3490 *
3491 * It may be assumed that this function implies a write memory barrier before
3492 * changing the task state if and only if any tasks are woken up.
3493 */
3494void complete_all(struct completion *x)
3495{
3496 unsigned long flags;
3497
3498 spin_lock_irqsave(&x->wait.lock, flags);
3499 x->done += UINT_MAX/2;
3500 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3501 spin_unlock_irqrestore(&x->wait.lock, flags);
3502}
3503EXPORT_SYMBOL(complete_all);
3504
3505static inline long __sched
3506do_wait_for_common(struct completion *x, long timeout, int state)
3507{
3508 if (!x->done) {
3509 DECLARE_WAITQUEUE(wait, current);
3510
3511 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3512 do {
3513 if (signal_pending_state(state, current)) {
3514 timeout = -ERESTARTSYS;
3515 break;
3516 }
3517 __set_current_state(state);
3518 spin_unlock_irq(&x->wait.lock);
3519 timeout = schedule_timeout(timeout);
3520 spin_lock_irq(&x->wait.lock);
3521 } while (!x->done && timeout);
3522 __remove_wait_queue(&x->wait, &wait);
3523 if (!x->done)
3524 return timeout;
3525 }
3526 x->done--;
3527 return timeout ?: 1;
3528}
3529
3530static long __sched
3531wait_for_common(struct completion *x, long timeout, int state)
3532{
3533 might_sleep();
3534
3535 spin_lock_irq(&x->wait.lock);
3536 timeout = do_wait_for_common(x, timeout, state);
3537 spin_unlock_irq(&x->wait.lock);
3538 return timeout;
3539}
3540
3541/**
3542 * wait_for_completion: - waits for completion of a task
3543 * @x: holds the state of this particular completion
3544 *
3545 * This waits to be signaled for completion of a specific task. It is NOT
3546 * interruptible and there is no timeout.
3547 *
3548 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3549 * and interrupt capability. Also see complete().
3550 */
3551void __sched wait_for_completion(struct completion *x)
3552{
3553 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3554}
3555EXPORT_SYMBOL(wait_for_completion);
3556
3557/**
3558 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3559 * @x: holds the state of this particular completion
3560 * @timeout: timeout value in jiffies
3561 *
3562 * This waits for either a completion of a specific task to be signaled or for a
3563 * specified timeout to expire. The timeout is in jiffies. It is not
3564 * interruptible.
3565 *
3566 * The return value is 0 if timed out, and positive (at least 1, or number of
3567 * jiffies left till timeout) if completed.
3568 */
3569unsigned long __sched
3570wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3571{
3572 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3573}
3574EXPORT_SYMBOL(wait_for_completion_timeout);
3575
3576/**
3577 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3578 * @x: holds the state of this particular completion
3579 *
3580 * This waits for completion of a specific task to be signaled. It is
3581 * interruptible.
3582 *
3583 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3584 */
3585int __sched wait_for_completion_interruptible(struct completion *x)
3586{
3587 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3588 if (t == -ERESTARTSYS)
3589 return t;
3590 return 0;
3591}
3592EXPORT_SYMBOL(wait_for_completion_interruptible);
3593
3594/**
3595 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3596 * @x: holds the state of this particular completion
3597 * @timeout: timeout value in jiffies
3598 *
3599 * This waits for either a completion of a specific task to be signaled or for a
3600 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3601 *
3602 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3603 * positive (at least 1, or number of jiffies left till timeout) if completed.
3604 */
3605long __sched
3606wait_for_completion_interruptible_timeout(struct completion *x,
3607 unsigned long timeout)
3608{
3609 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3610}
3611EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3612
3613/**
3614 * wait_for_completion_killable: - waits for completion of a task (killable)
3615 * @x: holds the state of this particular completion
3616 *
3617 * This waits to be signaled for completion of a specific task. It can be
3618 * interrupted by a kill signal.
3619 *
3620 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3621 */
3622int __sched wait_for_completion_killable(struct completion *x)
3623{
3624 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3625 if (t == -ERESTARTSYS)
3626 return t;
3627 return 0;
3628}
3629EXPORT_SYMBOL(wait_for_completion_killable);
3630
3631/**
3632 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3633 * @x: holds the state of this particular completion
3634 * @timeout: timeout value in jiffies
3635 *
3636 * This waits for either a completion of a specific task to be
3637 * signaled or for a specified timeout to expire. It can be
3638 * interrupted by a kill signal. The timeout is in jiffies.
3639 *
3640 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3641 * positive (at least 1, or number of jiffies left till timeout) if completed.
3642 */
3643long __sched
3644wait_for_completion_killable_timeout(struct completion *x,
3645 unsigned long timeout)
3646{
3647 return wait_for_common(x, timeout, TASK_KILLABLE);
3648}
3649EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3650
3651/**
3652 * try_wait_for_completion - try to decrement a completion without blocking
3653 * @x: completion structure
3654 *
3655 * Returns: 0 if a decrement cannot be done without blocking
3656 * 1 if a decrement succeeded.
3657 *
3658 * If a completion is being used as a counting completion,
3659 * attempt to decrement the counter without blocking. This
3660 * enables us to avoid waiting if the resource the completion
3661 * is protecting is not available.
3662 */
3663bool try_wait_for_completion(struct completion *x)
3664{
3665 unsigned long flags;
3666 int ret = 1;
3667
3668 spin_lock_irqsave(&x->wait.lock, flags);
3669 if (!x->done)
3670 ret = 0;
3671 else
3672 x->done--;
3673 spin_unlock_irqrestore(&x->wait.lock, flags);
3674 return ret;
3675}
3676EXPORT_SYMBOL(try_wait_for_completion);
3677
3678/**
3679 * completion_done - Test to see if a completion has any waiters
3680 * @x: completion structure
3681 *
3682 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3683 * 1 if there are no waiters.
3684 *
3685 */
3686bool completion_done(struct completion *x)
3687{
3688 unsigned long flags;
3689 int ret = 1;
3690
3691 spin_lock_irqsave(&x->wait.lock, flags);
3692 if (!x->done)
3693 ret = 0;
3694 spin_unlock_irqrestore(&x->wait.lock, flags);
3695 return ret;
3696}
3697EXPORT_SYMBOL(completion_done);
3698
3699static long __sched
3700sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3701{
3702 unsigned long flags;
3703 wait_queue_t wait;
3704
3705 init_waitqueue_entry(&wait, current);
3706
3707 __set_current_state(state);
3708
3709 spin_lock_irqsave(&q->lock, flags);
3710 __add_wait_queue(q, &wait);
3711 spin_unlock(&q->lock);
3712 timeout = schedule_timeout(timeout);
3713 spin_lock_irq(&q->lock);
3714 __remove_wait_queue(q, &wait);
3715 spin_unlock_irqrestore(&q->lock, flags);
3716
3717 return timeout;
3718}
3719
3720void __sched interruptible_sleep_on(wait_queue_head_t *q)
3721{
3722 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3723}
3724EXPORT_SYMBOL(interruptible_sleep_on);
3725
3726long __sched
3727interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3728{
3729 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3730}
3731EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3732
3733void __sched sleep_on(wait_queue_head_t *q)
3734{
3735 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3736}
3737EXPORT_SYMBOL(sleep_on);
3738
3739long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3740{
3741 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3742}
3743EXPORT_SYMBOL(sleep_on_timeout);
3744
3745#ifdef CONFIG_RT_MUTEXES
3746
3747/*
3748 * rt_mutex_setprio - set the current priority of a task
3749 * @p: task
3750 * @prio: prio value (kernel-internal form)
3751 *
3752 * This function changes the 'effective' priority of a task. It does
3753 * not touch ->normal_prio like __setscheduler().
3754 *
3755 * Used by the rt_mutex code to implement priority inheritance logic.
3756 */
3757void rt_mutex_setprio(struct task_struct *p, int prio)
3758{
3759 int oldprio, on_rq, running;
3760 struct rq *rq;
3761 const struct sched_class *prev_class;
3762
3763 BUG_ON(prio < 0 || prio > MAX_PRIO);
3764
3765 rq = __task_rq_lock(p);
3766
3767 trace_sched_pi_setprio(p, prio);
3768 oldprio = p->prio;
3769 prev_class = p->sched_class;
3770 on_rq = p->on_rq;
3771 running = task_current(rq, p);
3772 if (on_rq)
3773 dequeue_task(rq, p, 0);
3774 if (running)
3775 p->sched_class->put_prev_task(rq, p);
3776
3777 if (rt_prio(prio))
3778 p->sched_class = &rt_sched_class;
3779 else
3780 p->sched_class = &fair_sched_class;
3781
3782 p->prio = prio;
3783
3784 if (running)
3785 p->sched_class->set_curr_task(rq);
3786 if (on_rq)
3787 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3788
3789 check_class_changed(rq, p, prev_class, oldprio);
3790 __task_rq_unlock(rq);
3791}
3792
3793#endif
3794
3795void set_user_nice(struct task_struct *p, long nice)
3796{
3797 int old_prio, delta, on_rq;
3798 unsigned long flags;
3799 struct rq *rq;
3800
3801 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3802 return;
3803 /*
3804 * We have to be careful, if called from sys_setpriority(),
3805 * the task might be in the middle of scheduling on another CPU.
3806 */
3807 rq = task_rq_lock(p, &flags);
3808 /*
3809 * The RT priorities are set via sched_setscheduler(), but we still
3810 * allow the 'normal' nice value to be set - but as expected
3811 * it wont have any effect on scheduling until the task is
3812 * SCHED_FIFO/SCHED_RR:
3813 */
3814 if (task_has_rt_policy(p)) {
3815 p->static_prio = NICE_TO_PRIO(nice);
3816 goto out_unlock;
3817 }
3818 on_rq = p->on_rq;
3819 if (on_rq)
3820 dequeue_task(rq, p, 0);
3821
3822 p->static_prio = NICE_TO_PRIO(nice);
3823 set_load_weight(p);
3824 old_prio = p->prio;
3825 p->prio = effective_prio(p);
3826 delta = p->prio - old_prio;
3827
3828 if (on_rq) {
3829 enqueue_task(rq, p, 0);
3830 /*
3831 * If the task increased its priority or is running and
3832 * lowered its priority, then reschedule its CPU:
3833 */
3834 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3835 resched_task(rq->curr);
3836 }
3837out_unlock:
3838 task_rq_unlock(rq, p, &flags);
3839}
3840EXPORT_SYMBOL(set_user_nice);
3841
3842/*
3843 * can_nice - check if a task can reduce its nice value
3844 * @p: task
3845 * @nice: nice value
3846 */
3847int can_nice(const struct task_struct *p, const int nice)
3848{
3849 /* convert nice value [19,-20] to rlimit style value [1,40] */
3850 int nice_rlim = 20 - nice;
3851
3852 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3853 capable(CAP_SYS_NICE));
3854}
3855
3856#ifdef __ARCH_WANT_SYS_NICE
3857
3858/*
3859 * sys_nice - change the priority of the current process.
3860 * @increment: priority increment
3861 *
3862 * sys_setpriority is a more generic, but much slower function that
3863 * does similar things.
3864 */
3865SYSCALL_DEFINE1(nice, int, increment)
3866{
3867 long nice, retval;
3868
3869 /*
3870 * Setpriority might change our priority at the same moment.
3871 * We don't have to worry. Conceptually one call occurs first
3872 * and we have a single winner.
3873 */
3874 if (increment < -40)
3875 increment = -40;
3876 if (increment > 40)
3877 increment = 40;
3878
3879 nice = TASK_NICE(current) + increment;
3880 if (nice < -20)
3881 nice = -20;
3882 if (nice > 19)
3883 nice = 19;
3884
3885 if (increment < 0 && !can_nice(current, nice))
3886 return -EPERM;
3887
3888 retval = security_task_setnice(current, nice);
3889 if (retval)
3890 return retval;
3891
3892 set_user_nice(current, nice);
3893 return 0;
3894}
3895
3896#endif
3897
3898/**
3899 * task_prio - return the priority value of a given task.
3900 * @p: the task in question.
3901 *
3902 * This is the priority value as seen by users in /proc.
3903 * RT tasks are offset by -200. Normal tasks are centered
3904 * around 0, value goes from -16 to +15.
3905 */
3906int task_prio(const struct task_struct *p)
3907{
3908 return p->prio - MAX_RT_PRIO;
3909}
3910
3911/**
3912 * task_nice - return the nice value of a given task.
3913 * @p: the task in question.
3914 */
3915int task_nice(const struct task_struct *p)
3916{
3917 return TASK_NICE(p);
3918}
3919EXPORT_SYMBOL(task_nice);
3920
3921/**
3922 * idle_cpu - is a given cpu idle currently?
3923 * @cpu: the processor in question.
3924 */
3925int idle_cpu(int cpu)
3926{
3927 struct rq *rq = cpu_rq(cpu);
3928
3929 if (rq->curr != rq->idle)
3930 return 0;
3931
3932 if (rq->nr_running)
3933 return 0;
3934
3935#ifdef CONFIG_SMP
3936 if (!llist_empty(&rq->wake_list))
3937 return 0;
3938#endif
3939
3940 return 1;
3941}
3942
3943/**
3944 * idle_task - return the idle task for a given cpu.
3945 * @cpu: the processor in question.
3946 */
3947struct task_struct *idle_task(int cpu)
3948{
3949 return cpu_rq(cpu)->idle;
3950}
3951
3952/**
3953 * find_process_by_pid - find a process with a matching PID value.
3954 * @pid: the pid in question.
3955 */
3956static struct task_struct *find_process_by_pid(pid_t pid)
3957{
3958 return pid ? find_task_by_vpid(pid) : current;
3959}
3960
3961/* Actually do priority change: must hold rq lock. */
3962static void
3963__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3964{
3965 p->policy = policy;
3966 p->rt_priority = prio;
3967 p->normal_prio = normal_prio(p);
3968 /* we are holding p->pi_lock already */
3969 p->prio = rt_mutex_getprio(p);
3970 if (rt_prio(p->prio))
3971 p->sched_class = &rt_sched_class;
3972 else
3973 p->sched_class = &fair_sched_class;
3974 set_load_weight(p);
3975}
3976
3977/*
3978 * check the target process has a UID that matches the current process's
3979 */
3980static bool check_same_owner(struct task_struct *p)
3981{
3982 const struct cred *cred = current_cred(), *pcred;
3983 bool match;
3984
3985 rcu_read_lock();
3986 pcred = __task_cred(p);
3987 if (cred->user->user_ns == pcred->user->user_ns)
3988 match = (cred->euid == pcred->euid ||
3989 cred->euid == pcred->uid);
3990 else
3991 match = false;
3992 rcu_read_unlock();
3993 return match;
3994}
3995
3996static int __sched_setscheduler(struct task_struct *p, int policy,
3997 const struct sched_param *param, bool user)
3998{
3999 int retval, oldprio, oldpolicy = -1, on_rq, running;
4000 unsigned long flags;
4001 const struct sched_class *prev_class;
4002 struct rq *rq;
4003 int reset_on_fork;
4004
4005 /* may grab non-irq protected spin_locks */
4006 BUG_ON(in_interrupt());
4007recheck:
4008 /* double check policy once rq lock held */
4009 if (policy < 0) {
4010 reset_on_fork = p->sched_reset_on_fork;
4011 policy = oldpolicy = p->policy;
4012 } else {
4013 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4014 policy &= ~SCHED_RESET_ON_FORK;
4015
4016 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4017 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4018 policy != SCHED_IDLE)
4019 return -EINVAL;
4020 }
4021
4022 /*
4023 * Valid priorities for SCHED_FIFO and SCHED_RR are
4024 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4025 * SCHED_BATCH and SCHED_IDLE is 0.
4026 */
4027 if (param->sched_priority < 0 ||
4028 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4029 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4030 return -EINVAL;
4031 if (rt_policy(policy) != (param->sched_priority != 0))
4032 return -EINVAL;
4033
4034 /*
4035 * Allow unprivileged RT tasks to decrease priority:
4036 */
4037 if (user && !capable(CAP_SYS_NICE)) {
4038 if (rt_policy(policy)) {
4039 unsigned long rlim_rtprio =
4040 task_rlimit(p, RLIMIT_RTPRIO);
4041
4042 /* can't set/change the rt policy */
4043 if (policy != p->policy && !rlim_rtprio)
4044 return -EPERM;
4045
4046 /* can't increase priority */
4047 if (param->sched_priority > p->rt_priority &&
4048 param->sched_priority > rlim_rtprio)
4049 return -EPERM;
4050 }
4051
4052 /*
4053 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4054 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4055 */
4056 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4057 if (!can_nice(p, TASK_NICE(p)))
4058 return -EPERM;
4059 }
4060
4061 /* can't change other user's priorities */
4062 if (!check_same_owner(p))
4063 return -EPERM;
4064
4065 /* Normal users shall not reset the sched_reset_on_fork flag */
4066 if (p->sched_reset_on_fork && !reset_on_fork)
4067 return -EPERM;
4068 }
4069
4070 if (user) {
4071 retval = security_task_setscheduler(p);
4072 if (retval)
4073 return retval;
4074 }
4075
4076 /*
4077 * make sure no PI-waiters arrive (or leave) while we are
4078 * changing the priority of the task:
4079 *
4080 * To be able to change p->policy safely, the appropriate
4081 * runqueue lock must be held.
4082 */
4083 rq = task_rq_lock(p, &flags);
4084
4085 /*
4086 * Changing the policy of the stop threads its a very bad idea
4087 */
4088 if (p == rq->stop) {
4089 task_rq_unlock(rq, p, &flags);
4090 return -EINVAL;
4091 }
4092
4093 /*
4094 * If not changing anything there's no need to proceed further:
4095 */
4096 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4097 param->sched_priority == p->rt_priority))) {
4098
4099 __task_rq_unlock(rq);
4100 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4101 return 0;
4102 }
4103
4104#ifdef CONFIG_RT_GROUP_SCHED
4105 if (user) {
4106 /*
4107 * Do not allow realtime tasks into groups that have no runtime
4108 * assigned.
4109 */
4110 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4111 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4112 !task_group_is_autogroup(task_group(p))) {
4113 task_rq_unlock(rq, p, &flags);
4114 return -EPERM;
4115 }
4116 }
4117#endif
4118
4119 /* recheck policy now with rq lock held */
4120 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4121 policy = oldpolicy = -1;
4122 task_rq_unlock(rq, p, &flags);
4123 goto recheck;
4124 }
4125 on_rq = p->on_rq;
4126 running = task_current(rq, p);
4127 if (on_rq)
4128 deactivate_task(rq, p, 0);
4129 if (running)
4130 p->sched_class->put_prev_task(rq, p);
4131
4132 p->sched_reset_on_fork = reset_on_fork;
4133
4134 oldprio = p->prio;
4135 prev_class = p->sched_class;
4136 __setscheduler(rq, p, policy, param->sched_priority);
4137
4138 if (running)
4139 p->sched_class->set_curr_task(rq);
4140 if (on_rq)
4141 activate_task(rq, p, 0);
4142
4143 check_class_changed(rq, p, prev_class, oldprio);
4144 task_rq_unlock(rq, p, &flags);
4145
4146 rt_mutex_adjust_pi(p);
4147
4148 return 0;
4149}
4150
4151/**
4152 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4153 * @p: the task in question.
4154 * @policy: new policy.
4155 * @param: structure containing the new RT priority.
4156 *
4157 * NOTE that the task may be already dead.
4158 */
4159int sched_setscheduler(struct task_struct *p, int policy,
4160 const struct sched_param *param)
4161{
4162 return __sched_setscheduler(p, policy, param, true);
4163}
4164EXPORT_SYMBOL_GPL(sched_setscheduler);
4165
4166/**
4167 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4168 * @p: the task in question.
4169 * @policy: new policy.
4170 * @param: structure containing the new RT priority.
4171 *
4172 * Just like sched_setscheduler, only don't bother checking if the
4173 * current context has permission. For example, this is needed in
4174 * stop_machine(): we create temporary high priority worker threads,
4175 * but our caller might not have that capability.
4176 */
4177int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4178 const struct sched_param *param)
4179{
4180 return __sched_setscheduler(p, policy, param, false);
4181}
4182
4183static int
4184do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4185{
4186 struct sched_param lparam;
4187 struct task_struct *p;
4188 int retval;
4189
4190 if (!param || pid < 0)
4191 return -EINVAL;
4192 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4193 return -EFAULT;
4194
4195 rcu_read_lock();
4196 retval = -ESRCH;
4197 p = find_process_by_pid(pid);
4198 if (p != NULL)
4199 retval = sched_setscheduler(p, policy, &lparam);
4200 rcu_read_unlock();
4201
4202 return retval;
4203}
4204
4205/**
4206 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4207 * @pid: the pid in question.
4208 * @policy: new policy.
4209 * @param: structure containing the new RT priority.
4210 */
4211SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4212 struct sched_param __user *, param)
4213{
4214 /* negative values for policy are not valid */
4215 if (policy < 0)
4216 return -EINVAL;
4217
4218 return do_sched_setscheduler(pid, policy, param);
4219}
4220
4221/**
4222 * sys_sched_setparam - set/change the RT priority of a thread
4223 * @pid: the pid in question.
4224 * @param: structure containing the new RT priority.
4225 */
4226SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4227{
4228 return do_sched_setscheduler(pid, -1, param);
4229}
4230
4231/**
4232 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4233 * @pid: the pid in question.
4234 */
4235SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4236{
4237 struct task_struct *p;
4238 int retval;
4239
4240 if (pid < 0)
4241 return -EINVAL;
4242
4243 retval = -ESRCH;
4244 rcu_read_lock();
4245 p = find_process_by_pid(pid);
4246 if (p) {
4247 retval = security_task_getscheduler(p);
4248 if (!retval)
4249 retval = p->policy
4250 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4251 }
4252 rcu_read_unlock();
4253 return retval;
4254}
4255
4256/**
4257 * sys_sched_getparam - get the RT priority of a thread
4258 * @pid: the pid in question.
4259 * @param: structure containing the RT priority.
4260 */
4261SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4262{
4263 struct sched_param lp;
4264 struct task_struct *p;
4265 int retval;
4266
4267 if (!param || pid < 0)
4268 return -EINVAL;
4269
4270 rcu_read_lock();
4271 p = find_process_by_pid(pid);
4272 retval = -ESRCH;
4273 if (!p)
4274 goto out_unlock;
4275
4276 retval = security_task_getscheduler(p);
4277 if (retval)
4278 goto out_unlock;
4279
4280 lp.sched_priority = p->rt_priority;
4281 rcu_read_unlock();
4282
4283 /*
4284 * This one might sleep, we cannot do it with a spinlock held ...
4285 */
4286 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4287
4288 return retval;
4289
4290out_unlock:
4291 rcu_read_unlock();
4292 return retval;
4293}
4294
4295long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4296{
4297 cpumask_var_t cpus_allowed, new_mask;
4298 struct task_struct *p;
4299 int retval;
4300
4301 get_online_cpus();
4302 rcu_read_lock();
4303
4304 p = find_process_by_pid(pid);
4305 if (!p) {
4306 rcu_read_unlock();
4307 put_online_cpus();
4308 return -ESRCH;
4309 }
4310
4311 /* Prevent p going away */
4312 get_task_struct(p);
4313 rcu_read_unlock();
4314
4315 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4316 retval = -ENOMEM;
4317 goto out_put_task;
4318 }
4319 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4320 retval = -ENOMEM;
4321 goto out_free_cpus_allowed;
4322 }
4323 retval = -EPERM;
4324 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
4325 goto out_unlock;
4326
4327 retval = security_task_setscheduler(p);
4328 if (retval)
4329 goto out_unlock;
4330
4331 cpuset_cpus_allowed(p, cpus_allowed);
4332 cpumask_and(new_mask, in_mask, cpus_allowed);
4333again:
4334 retval = set_cpus_allowed_ptr(p, new_mask);
4335
4336 if (!retval) {
4337 cpuset_cpus_allowed(p, cpus_allowed);
4338 if (!cpumask_subset(new_mask, cpus_allowed)) {
4339 /*
4340 * We must have raced with a concurrent cpuset
4341 * update. Just reset the cpus_allowed to the
4342 * cpuset's cpus_allowed
4343 */
4344 cpumask_copy(new_mask, cpus_allowed);
4345 goto again;
4346 }
4347 }
4348out_unlock:
4349 free_cpumask_var(new_mask);
4350out_free_cpus_allowed:
4351 free_cpumask_var(cpus_allowed);
4352out_put_task:
4353 put_task_struct(p);
4354 put_online_cpus();
4355 return retval;
4356}
4357
4358static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4359 struct cpumask *new_mask)
4360{
4361 if (len < cpumask_size())
4362 cpumask_clear(new_mask);
4363 else if (len > cpumask_size())
4364 len = cpumask_size();
4365
4366 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4367}
4368
4369/**
4370 * sys_sched_setaffinity - set the cpu affinity of a process
4371 * @pid: pid of the process
4372 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4373 * @user_mask_ptr: user-space pointer to the new cpu mask
4374 */
4375SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4376 unsigned long __user *, user_mask_ptr)
4377{
4378 cpumask_var_t new_mask;
4379 int retval;
4380
4381 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4382 return -ENOMEM;
4383
4384 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4385 if (retval == 0)
4386 retval = sched_setaffinity(pid, new_mask);
4387 free_cpumask_var(new_mask);
4388 return retval;
4389}
4390
4391long sched_getaffinity(pid_t pid, struct cpumask *mask)
4392{
4393 struct task_struct *p;
4394 unsigned long flags;
4395 int retval;
4396
4397 get_online_cpus();
4398 rcu_read_lock();
4399
4400 retval = -ESRCH;
4401 p = find_process_by_pid(pid);
4402 if (!p)
4403 goto out_unlock;
4404
4405 retval = security_task_getscheduler(p);
4406 if (retval)
4407 goto out_unlock;
4408
4409 raw_spin_lock_irqsave(&p->pi_lock, flags);
4410 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4411 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4412
4413out_unlock:
4414 rcu_read_unlock();
4415 put_online_cpus();
4416
4417 return retval;
4418}
4419
4420/**
4421 * sys_sched_getaffinity - get the cpu affinity of a process
4422 * @pid: pid of the process
4423 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4424 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4425 */
4426SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4427 unsigned long __user *, user_mask_ptr)
4428{
4429 int ret;
4430 cpumask_var_t mask;
4431
4432 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4433 return -EINVAL;
4434 if (len & (sizeof(unsigned long)-1))
4435 return -EINVAL;
4436
4437 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4438 return -ENOMEM;
4439
4440 ret = sched_getaffinity(pid, mask);
4441 if (ret == 0) {
4442 size_t retlen = min_t(size_t, len, cpumask_size());
4443
4444 if (copy_to_user(user_mask_ptr, mask, retlen))
4445 ret = -EFAULT;
4446 else
4447 ret = retlen;
4448 }
4449 free_cpumask_var(mask);
4450
4451 return ret;
4452}
4453
4454/**
4455 * sys_sched_yield - yield the current processor to other threads.
4456 *
4457 * This function yields the current CPU to other tasks. If there are no
4458 * other threads running on this CPU then this function will return.
4459 */
4460SYSCALL_DEFINE0(sched_yield)
4461{
4462 struct rq *rq = this_rq_lock();
4463
4464 schedstat_inc(rq, yld_count);
4465 current->sched_class->yield_task(rq);
4466
4467 /*
4468 * Since we are going to call schedule() anyway, there's
4469 * no need to preempt or enable interrupts:
4470 */
4471 __release(rq->lock);
4472 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4473 do_raw_spin_unlock(&rq->lock);
4474 preempt_enable_no_resched();
4475
4476 schedule();
4477
4478 return 0;
4479}
4480
4481static inline int should_resched(void)
4482{
4483 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4484}
4485
4486static void __cond_resched(void)
4487{
4488 add_preempt_count(PREEMPT_ACTIVE);
4489 __schedule();
4490 sub_preempt_count(PREEMPT_ACTIVE);
4491}
4492
4493int __sched _cond_resched(void)
4494{
4495 if (should_resched()) {
4496 __cond_resched();
4497 return 1;
4498 }
4499 return 0;
4500}
4501EXPORT_SYMBOL(_cond_resched);
4502
4503/*
4504 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4505 * call schedule, and on return reacquire the lock.
4506 *
4507 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4508 * operations here to prevent schedule() from being called twice (once via
4509 * spin_unlock(), once by hand).
4510 */
4511int __cond_resched_lock(spinlock_t *lock)
4512{
4513 int resched = should_resched();
4514 int ret = 0;
4515
4516 lockdep_assert_held(lock);
4517
4518 if (spin_needbreak(lock) || resched) {
4519 spin_unlock(lock);
4520 if (resched)
4521 __cond_resched();
4522 else
4523 cpu_relax();
4524 ret = 1;
4525 spin_lock(lock);
4526 }
4527 return ret;
4528}
4529EXPORT_SYMBOL(__cond_resched_lock);
4530
4531int __sched __cond_resched_softirq(void)
4532{
4533 BUG_ON(!in_softirq());
4534
4535 if (should_resched()) {
4536 local_bh_enable();
4537 __cond_resched();
4538 local_bh_disable();
4539 return 1;
4540 }
4541 return 0;
4542}
4543EXPORT_SYMBOL(__cond_resched_softirq);
4544
4545/**
4546 * yield - yield the current processor to other threads.
4547 *
4548 * This is a shortcut for kernel-space yielding - it marks the
4549 * thread runnable and calls sys_sched_yield().
4550 */
4551void __sched yield(void)
4552{
4553 set_current_state(TASK_RUNNING);
4554 sys_sched_yield();
4555}
4556EXPORT_SYMBOL(yield);
4557
4558/**
4559 * yield_to - yield the current processor to another thread in
4560 * your thread group, or accelerate that thread toward the
4561 * processor it's on.
4562 * @p: target task
4563 * @preempt: whether task preemption is allowed or not
4564 *
4565 * It's the caller's job to ensure that the target task struct
4566 * can't go away on us before we can do any checks.
4567 *
4568 * Returns true if we indeed boosted the target task.
4569 */
4570bool __sched yield_to(struct task_struct *p, bool preempt)
4571{
4572 struct task_struct *curr = current;
4573 struct rq *rq, *p_rq;
4574 unsigned long flags;
4575 bool yielded = 0;
4576
4577 local_irq_save(flags);
4578 rq = this_rq();
4579
4580again:
4581 p_rq = task_rq(p);
4582 double_rq_lock(rq, p_rq);
4583 while (task_rq(p) != p_rq) {
4584 double_rq_unlock(rq, p_rq);
4585 goto again;
4586 }
4587
4588 if (!curr->sched_class->yield_to_task)
4589 goto out;
4590
4591 if (curr->sched_class != p->sched_class)
4592 goto out;
4593
4594 if (task_running(p_rq, p) || p->state)
4595 goto out;
4596
4597 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4598 if (yielded) {
4599 schedstat_inc(rq, yld_count);
4600 /*
4601 * Make p's CPU reschedule; pick_next_entity takes care of
4602 * fairness.
4603 */
4604 if (preempt && rq != p_rq)
4605 resched_task(p_rq->curr);
4606 } else {
4607 /*
4608 * We might have set it in task_yield_fair(), but are
4609 * not going to schedule(), so don't want to skip
4610 * the next update.
4611 */
4612 rq->skip_clock_update = 0;
4613 }
4614
4615out:
4616 double_rq_unlock(rq, p_rq);
4617 local_irq_restore(flags);
4618
4619 if (yielded)
4620 schedule();
4621
4622 return yielded;
4623}
4624EXPORT_SYMBOL_GPL(yield_to);
4625
4626/*
4627 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4628 * that process accounting knows that this is a task in IO wait state.
4629 */
4630void __sched io_schedule(void)
4631{
4632 struct rq *rq = raw_rq();
4633
4634 delayacct_blkio_start();
4635 atomic_inc(&rq->nr_iowait);
4636 blk_flush_plug(current);
4637 current->in_iowait = 1;
4638 schedule();
4639 current->in_iowait = 0;
4640 atomic_dec(&rq->nr_iowait);
4641 delayacct_blkio_end();
4642}
4643EXPORT_SYMBOL(io_schedule);
4644
4645long __sched io_schedule_timeout(long timeout)
4646{
4647 struct rq *rq = raw_rq();
4648 long ret;
4649
4650 delayacct_blkio_start();
4651 atomic_inc(&rq->nr_iowait);
4652 blk_flush_plug(current);
4653 current->in_iowait = 1;
4654 ret = schedule_timeout(timeout);
4655 current->in_iowait = 0;
4656 atomic_dec(&rq->nr_iowait);
4657 delayacct_blkio_end();
4658 return ret;
4659}
4660
4661/**
4662 * sys_sched_get_priority_max - return maximum RT priority.
4663 * @policy: scheduling class.
4664 *
4665 * this syscall returns the maximum rt_priority that can be used
4666 * by a given scheduling class.
4667 */
4668SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4669{
4670 int ret = -EINVAL;
4671
4672 switch (policy) {
4673 case SCHED_FIFO:
4674 case SCHED_RR:
4675 ret = MAX_USER_RT_PRIO-1;
4676 break;
4677 case SCHED_NORMAL:
4678 case SCHED_BATCH:
4679 case SCHED_IDLE:
4680 ret = 0;
4681 break;
4682 }
4683 return ret;
4684}
4685
4686/**
4687 * sys_sched_get_priority_min - return minimum RT priority.
4688 * @policy: scheduling class.
4689 *
4690 * this syscall returns the minimum rt_priority that can be used
4691 * by a given scheduling class.
4692 */
4693SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4694{
4695 int ret = -EINVAL;
4696
4697 switch (policy) {
4698 case SCHED_FIFO:
4699 case SCHED_RR:
4700 ret = 1;
4701 break;
4702 case SCHED_NORMAL:
4703 case SCHED_BATCH:
4704 case SCHED_IDLE:
4705 ret = 0;
4706 }
4707 return ret;
4708}
4709
4710/**
4711 * sys_sched_rr_get_interval - return the default timeslice of a process.
4712 * @pid: pid of the process.
4713 * @interval: userspace pointer to the timeslice value.
4714 *
4715 * this syscall writes the default timeslice value of a given process
4716 * into the user-space timespec buffer. A value of '0' means infinity.
4717 */
4718SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4719 struct timespec __user *, interval)
4720{
4721 struct task_struct *p;
4722 unsigned int time_slice;
4723 unsigned long flags;
4724 struct rq *rq;
4725 int retval;
4726 struct timespec t;
4727
4728 if (pid < 0)
4729 return -EINVAL;
4730
4731 retval = -ESRCH;
4732 rcu_read_lock();
4733 p = find_process_by_pid(pid);
4734 if (!p)
4735 goto out_unlock;
4736
4737 retval = security_task_getscheduler(p);
4738 if (retval)
4739 goto out_unlock;
4740
4741 rq = task_rq_lock(p, &flags);
4742 time_slice = p->sched_class->get_rr_interval(rq, p);
4743 task_rq_unlock(rq, p, &flags);
4744
4745 rcu_read_unlock();
4746 jiffies_to_timespec(time_slice, &t);
4747 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4748 return retval;
4749
4750out_unlock:
4751 rcu_read_unlock();
4752 return retval;
4753}
4754
4755static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4756
4757void sched_show_task(struct task_struct *p)
4758{
4759 unsigned long free = 0;
4760 unsigned state;
4761
4762 state = p->state ? __ffs(p->state) + 1 : 0;
4763 printk(KERN_INFO "%-15.15s %c", p->comm,
4764 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4765#if BITS_PER_LONG == 32
4766 if (state == TASK_RUNNING)
4767 printk(KERN_CONT " running ");
4768 else
4769 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4770#else
4771 if (state == TASK_RUNNING)
4772 printk(KERN_CONT " running task ");
4773 else
4774 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4775#endif
4776#ifdef CONFIG_DEBUG_STACK_USAGE
4777 free = stack_not_used(p);
4778#endif
4779 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4780 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4781 (unsigned long)task_thread_info(p)->flags);
4782
4783 show_stack(p, NULL);
4784}
4785
4786void show_state_filter(unsigned long state_filter)
4787{
4788 struct task_struct *g, *p;
4789
4790#if BITS_PER_LONG == 32
4791 printk(KERN_INFO
4792 " task PC stack pid father\n");
4793#else
4794 printk(KERN_INFO
4795 " task PC stack pid father\n");
4796#endif
4797 rcu_read_lock();
4798 do_each_thread(g, p) {
4799 /*
4800 * reset the NMI-timeout, listing all files on a slow
4801 * console might take a lot of time:
4802 */
4803 touch_nmi_watchdog();
4804 if (!state_filter || (p->state & state_filter))
4805 sched_show_task(p);
4806 } while_each_thread(g, p);
4807
4808 touch_all_softlockup_watchdogs();
4809
4810#ifdef CONFIG_SCHED_DEBUG
4811 sysrq_sched_debug_show();
4812#endif
4813 rcu_read_unlock();
4814 /*
4815 * Only show locks if all tasks are dumped:
4816 */
4817 if (!state_filter)
4818 debug_show_all_locks();
4819}
4820
4821void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4822{
4823 idle->sched_class = &idle_sched_class;
4824}
4825
4826/**
4827 * init_idle - set up an idle thread for a given CPU
4828 * @idle: task in question
4829 * @cpu: cpu the idle task belongs to
4830 *
4831 * NOTE: this function does not set the idle thread's NEED_RESCHED
4832 * flag, to make booting more robust.
4833 */
4834void __cpuinit init_idle(struct task_struct *idle, int cpu)
4835{
4836 struct rq *rq = cpu_rq(cpu);
4837 unsigned long flags;
4838
4839 raw_spin_lock_irqsave(&rq->lock, flags);
4840
4841 __sched_fork(idle);
4842 idle->state = TASK_RUNNING;
4843 idle->se.exec_start = sched_clock();
4844
4845 do_set_cpus_allowed(idle, cpumask_of(cpu));
4846 /*
4847 * We're having a chicken and egg problem, even though we are
4848 * holding rq->lock, the cpu isn't yet set to this cpu so the
4849 * lockdep check in task_group() will fail.
4850 *
4851 * Similar case to sched_fork(). / Alternatively we could
4852 * use task_rq_lock() here and obtain the other rq->lock.
4853 *
4854 * Silence PROVE_RCU
4855 */
4856 rcu_read_lock();
4857 __set_task_cpu(idle, cpu);
4858 rcu_read_unlock();
4859
4860 rq->curr = rq->idle = idle;
4861#if defined(CONFIG_SMP)
4862 idle->on_cpu = 1;
4863#endif
4864 raw_spin_unlock_irqrestore(&rq->lock, flags);
4865
4866 /* Set the preempt count _outside_ the spinlocks! */
4867 task_thread_info(idle)->preempt_count = 0;
4868
4869 /*
4870 * The idle tasks have their own, simple scheduling class:
4871 */
4872 idle->sched_class = &idle_sched_class;
4873 ftrace_graph_init_idle_task(idle, cpu);
4874#if defined(CONFIG_SMP)
4875 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4876#endif
4877}
4878
4879#ifdef CONFIG_SMP
4880void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4881{
4882 if (p->sched_class && p->sched_class->set_cpus_allowed)
4883 p->sched_class->set_cpus_allowed(p, new_mask);
4884
4885 cpumask_copy(&p->cpus_allowed, new_mask);
4886 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4887}
4888
4889/*
4890 * This is how migration works:
4891 *
4892 * 1) we invoke migration_cpu_stop() on the target CPU using
4893 * stop_one_cpu().
4894 * 2) stopper starts to run (implicitly forcing the migrated thread
4895 * off the CPU)
4896 * 3) it checks whether the migrated task is still in the wrong runqueue.
4897 * 4) if it's in the wrong runqueue then the migration thread removes
4898 * it and puts it into the right queue.
4899 * 5) stopper completes and stop_one_cpu() returns and the migration
4900 * is done.
4901 */
4902
4903/*
4904 * Change a given task's CPU affinity. Migrate the thread to a
4905 * proper CPU and schedule it away if the CPU it's executing on
4906 * is removed from the allowed bitmask.
4907 *
4908 * NOTE: the caller must have a valid reference to the task, the
4909 * task must not exit() & deallocate itself prematurely. The
4910 * call is not atomic; no spinlocks may be held.
4911 */
4912int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4913{
4914 unsigned long flags;
4915 struct rq *rq;
4916 unsigned int dest_cpu;
4917 int ret = 0;
4918
4919 rq = task_rq_lock(p, &flags);
4920
4921 if (cpumask_equal(&p->cpus_allowed, new_mask))
4922 goto out;
4923
4924 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4925 ret = -EINVAL;
4926 goto out;
4927 }
4928
4929 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4930 ret = -EINVAL;
4931 goto out;
4932 }
4933
4934 do_set_cpus_allowed(p, new_mask);
4935
4936 /* Can the task run on the task's current CPU? If so, we're done */
4937 if (cpumask_test_cpu(task_cpu(p), new_mask))
4938 goto out;
4939
4940 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4941 if (p->on_rq) {
4942 struct migration_arg arg = { p, dest_cpu };
4943 /* Need help from migration thread: drop lock and wait. */
4944 task_rq_unlock(rq, p, &flags);
4945 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4946 tlb_migrate_finish(p->mm);
4947 return 0;
4948 }
4949out:
4950 task_rq_unlock(rq, p, &flags);
4951
4952 return ret;
4953}
4954EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4955
4956/*
4957 * Move (not current) task off this cpu, onto dest cpu. We're doing
4958 * this because either it can't run here any more (set_cpus_allowed()
4959 * away from this CPU, or CPU going down), or because we're
4960 * attempting to rebalance this task on exec (sched_exec).
4961 *
4962 * So we race with normal scheduler movements, but that's OK, as long
4963 * as the task is no longer on this CPU.
4964 *
4965 * Returns non-zero if task was successfully migrated.
4966 */
4967static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4968{
4969 struct rq *rq_dest, *rq_src;
4970 int ret = 0;
4971
4972 if (unlikely(!cpu_active(dest_cpu)))
4973 return ret;
4974
4975 rq_src = cpu_rq(src_cpu);
4976 rq_dest = cpu_rq(dest_cpu);
4977
4978 raw_spin_lock(&p->pi_lock);
4979 double_rq_lock(rq_src, rq_dest);
4980 /* Already moved. */
4981 if (task_cpu(p) != src_cpu)
4982 goto done;
4983 /* Affinity changed (again). */
4984 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4985 goto fail;
4986
4987 /*
4988 * If we're not on a rq, the next wake-up will ensure we're
4989 * placed properly.
4990 */
4991 if (p->on_rq) {
4992 deactivate_task(rq_src, p, 0);
4993 set_task_cpu(p, dest_cpu);
4994 activate_task(rq_dest, p, 0);
4995 check_preempt_curr(rq_dest, p, 0);
4996 }
4997done:
4998 ret = 1;
4999fail:
5000 double_rq_unlock(rq_src, rq_dest);
5001 raw_spin_unlock(&p->pi_lock);
5002 return ret;
5003}
5004
5005/*
5006 * migration_cpu_stop - this will be executed by a highprio stopper thread
5007 * and performs thread migration by bumping thread off CPU then
5008 * 'pushing' onto another runqueue.
5009 */
5010static int migration_cpu_stop(void *data)
5011{
5012 struct migration_arg *arg = data;
5013
5014 /*
5015 * The original target cpu might have gone down and we might
5016 * be on another cpu but it doesn't matter.
5017 */
5018 local_irq_disable();
5019 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5020 local_irq_enable();
5021 return 0;
5022}
5023
5024#ifdef CONFIG_HOTPLUG_CPU
5025
5026/*
5027 * Ensures that the idle task is using init_mm right before its cpu goes
5028 * offline.
5029 */
5030void idle_task_exit(void)
5031{
5032 struct mm_struct *mm = current->active_mm;
5033
5034 BUG_ON(cpu_online(smp_processor_id()));
5035
5036 if (mm != &init_mm)
5037 switch_mm(mm, &init_mm, current);
5038 mmdrop(mm);
5039}
5040
5041/*
5042 * While a dead CPU has no uninterruptible tasks queued at this point,
5043 * it might still have a nonzero ->nr_uninterruptible counter, because
5044 * for performance reasons the counter is not stricly tracking tasks to
5045 * their home CPUs. So we just add the counter to another CPU's counter,
5046 * to keep the global sum constant after CPU-down:
5047 */
5048static void migrate_nr_uninterruptible(struct rq *rq_src)
5049{
5050 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5051
5052 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5053 rq_src->nr_uninterruptible = 0;
5054}
5055
5056/*
5057 * remove the tasks which were accounted by rq from calc_load_tasks.
5058 */
5059static void calc_global_load_remove(struct rq *rq)
5060{
5061 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5062 rq->calc_load_active = 0;
5063}
5064
5065/*
5066 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5067 * try_to_wake_up()->select_task_rq().
5068 *
5069 * Called with rq->lock held even though we'er in stop_machine() and
5070 * there's no concurrency possible, we hold the required locks anyway
5071 * because of lock validation efforts.
5072 */
5073static void migrate_tasks(unsigned int dead_cpu)
5074{
5075 struct rq *rq = cpu_rq(dead_cpu);
5076 struct task_struct *next, *stop = rq->stop;
5077 int dest_cpu;
5078
5079 /*
5080 * Fudge the rq selection such that the below task selection loop
5081 * doesn't get stuck on the currently eligible stop task.
5082 *
5083 * We're currently inside stop_machine() and the rq is either stuck
5084 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5085 * either way we should never end up calling schedule() until we're
5086 * done here.
5087 */
5088 rq->stop = NULL;
5089
5090 /* Ensure any throttled groups are reachable by pick_next_task */
5091 unthrottle_offline_cfs_rqs(rq);
5092
5093 for ( ; ; ) {
5094 /*
5095 * There's this thread running, bail when that's the only
5096 * remaining thread.
5097 */
5098 if (rq->nr_running == 1)
5099 break;
5100
5101 next = pick_next_task(rq);
5102 BUG_ON(!next);
5103 next->sched_class->put_prev_task(rq, next);
5104
5105 /* Find suitable destination for @next, with force if needed. */
5106 dest_cpu = select_fallback_rq(dead_cpu, next);
5107 raw_spin_unlock(&rq->lock);
5108
5109 __migrate_task(next, dead_cpu, dest_cpu);
5110
5111 raw_spin_lock(&rq->lock);
5112 }
5113
5114 rq->stop = stop;
5115}
5116
5117#endif /* CONFIG_HOTPLUG_CPU */
5118
5119#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5120
5121static struct ctl_table sd_ctl_dir[] = {
5122 {
5123 .procname = "sched_domain",
5124 .mode = 0555,
5125 },
5126 {}
5127};
5128
5129static struct ctl_table sd_ctl_root[] = {
5130 {
5131 .procname = "kernel",
5132 .mode = 0555,
5133 .child = sd_ctl_dir,
5134 },
5135 {}
5136};
5137
5138static struct ctl_table *sd_alloc_ctl_entry(int n)
5139{
5140 struct ctl_table *entry =
5141 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5142
5143 return entry;
5144}
5145
5146static void sd_free_ctl_entry(struct ctl_table **tablep)
5147{
5148 struct ctl_table *entry;
5149
5150 /*
5151 * In the intermediate directories, both the child directory and
5152 * procname are dynamically allocated and could fail but the mode
5153 * will always be set. In the lowest directory the names are
5154 * static strings and all have proc handlers.
5155 */
5156 for (entry = *tablep; entry->mode; entry++) {
5157 if (entry->child)
5158 sd_free_ctl_entry(&entry->child);
5159 if (entry->proc_handler == NULL)
5160 kfree(entry->procname);
5161 }
5162
5163 kfree(*tablep);
5164 *tablep = NULL;
5165}
5166
5167static void
5168set_table_entry(struct ctl_table *entry,
5169 const char *procname, void *data, int maxlen,
5170 mode_t mode, proc_handler *proc_handler)
5171{
5172 entry->procname = procname;
5173 entry->data = data;
5174 entry->maxlen = maxlen;
5175 entry->mode = mode;
5176 entry->proc_handler = proc_handler;
5177}
5178
5179static struct ctl_table *
5180sd_alloc_ctl_domain_table(struct sched_domain *sd)
5181{
5182 struct ctl_table *table = sd_alloc_ctl_entry(13);
5183
5184 if (table == NULL)
5185 return NULL;
5186
5187 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5188 sizeof(long), 0644, proc_doulongvec_minmax);
5189 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5190 sizeof(long), 0644, proc_doulongvec_minmax);
5191 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5192 sizeof(int), 0644, proc_dointvec_minmax);
5193 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5194 sizeof(int), 0644, proc_dointvec_minmax);
5195 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5196 sizeof(int), 0644, proc_dointvec_minmax);
5197 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5198 sizeof(int), 0644, proc_dointvec_minmax);
5199 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5200 sizeof(int), 0644, proc_dointvec_minmax);
5201 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5202 sizeof(int), 0644, proc_dointvec_minmax);
5203 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5204 sizeof(int), 0644, proc_dointvec_minmax);
5205 set_table_entry(&table[9], "cache_nice_tries",
5206 &sd->cache_nice_tries,
5207 sizeof(int), 0644, proc_dointvec_minmax);
5208 set_table_entry(&table[10], "flags", &sd->flags,
5209 sizeof(int), 0644, proc_dointvec_minmax);
5210 set_table_entry(&table[11], "name", sd->name,
5211 CORENAME_MAX_SIZE, 0444, proc_dostring);
5212 /* &table[12] is terminator */
5213
5214 return table;
5215}
5216
5217static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5218{
5219 struct ctl_table *entry, *table;
5220 struct sched_domain *sd;
5221 int domain_num = 0, i;
5222 char buf[32];
5223
5224 for_each_domain(cpu, sd)
5225 domain_num++;
5226 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5227 if (table == NULL)
5228 return NULL;
5229
5230 i = 0;
5231 for_each_domain(cpu, sd) {
5232 snprintf(buf, 32, "domain%d", i);
5233 entry->procname = kstrdup(buf, GFP_KERNEL);
5234 entry->mode = 0555;
5235 entry->child = sd_alloc_ctl_domain_table(sd);
5236 entry++;
5237 i++;
5238 }
5239 return table;
5240}
5241
5242static struct ctl_table_header *sd_sysctl_header;
5243static void register_sched_domain_sysctl(void)
5244{
5245 int i, cpu_num = num_possible_cpus();
5246 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5247 char buf[32];
5248
5249 WARN_ON(sd_ctl_dir[0].child);
5250 sd_ctl_dir[0].child = entry;
5251
5252 if (entry == NULL)
5253 return;
5254
5255 for_each_possible_cpu(i) {
5256 snprintf(buf, 32, "cpu%d", i);
5257 entry->procname = kstrdup(buf, GFP_KERNEL);
5258 entry->mode = 0555;
5259 entry->child = sd_alloc_ctl_cpu_table(i);
5260 entry++;
5261 }
5262
5263 WARN_ON(sd_sysctl_header);
5264 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5265}
5266
5267/* may be called multiple times per register */
5268static void unregister_sched_domain_sysctl(void)
5269{
5270 if (sd_sysctl_header)
5271 unregister_sysctl_table(sd_sysctl_header);
5272 sd_sysctl_header = NULL;
5273 if (sd_ctl_dir[0].child)
5274 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5275}
5276#else
5277static void register_sched_domain_sysctl(void)
5278{
5279}
5280static void unregister_sched_domain_sysctl(void)
5281{
5282}
5283#endif
5284
5285static void set_rq_online(struct rq *rq)
5286{
5287 if (!rq->online) {
5288 const struct sched_class *class;
5289
5290 cpumask_set_cpu(rq->cpu, rq->rd->online);
5291 rq->online = 1;
5292
5293 for_each_class(class) {
5294 if (class->rq_online)
5295 class->rq_online(rq);
5296 }
5297 }
5298}
5299
5300static void set_rq_offline(struct rq *rq)
5301{
5302 if (rq->online) {
5303 const struct sched_class *class;
5304
5305 for_each_class(class) {
5306 if (class->rq_offline)
5307 class->rq_offline(rq);
5308 }
5309
5310 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5311 rq->online = 0;
5312 }
5313}
5314
5315/*
5316 * migration_call - callback that gets triggered when a CPU is added.
5317 * Here we can start up the necessary migration thread for the new CPU.
5318 */
5319static int __cpuinit
5320migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5321{
5322 int cpu = (long)hcpu;
5323 unsigned long flags;
5324 struct rq *rq = cpu_rq(cpu);
5325
5326 switch (action & ~CPU_TASKS_FROZEN) {
5327
5328 case CPU_UP_PREPARE:
5329 rq->calc_load_update = calc_load_update;
5330 break;
5331
5332 case CPU_ONLINE:
5333 /* Update our root-domain */
5334 raw_spin_lock_irqsave(&rq->lock, flags);
5335 if (rq->rd) {
5336 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5337
5338 set_rq_online(rq);
5339 }
5340 raw_spin_unlock_irqrestore(&rq->lock, flags);
5341 break;
5342
5343#ifdef CONFIG_HOTPLUG_CPU
5344 case CPU_DYING:
5345 sched_ttwu_pending();
5346 /* Update our root-domain */
5347 raw_spin_lock_irqsave(&rq->lock, flags);
5348 if (rq->rd) {
5349 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5350 set_rq_offline(rq);
5351 }
5352 migrate_tasks(cpu);
5353 BUG_ON(rq->nr_running != 1); /* the migration thread */
5354 raw_spin_unlock_irqrestore(&rq->lock, flags);
5355
5356 migrate_nr_uninterruptible(rq);
5357 calc_global_load_remove(rq);
5358 break;
5359#endif
5360 }
5361
5362 update_max_interval();
5363
5364 return NOTIFY_OK;
5365}
5366
5367/*
5368 * Register at high priority so that task migration (migrate_all_tasks)
5369 * happens before everything else. This has to be lower priority than
5370 * the notifier in the perf_event subsystem, though.
5371 */
5372static struct notifier_block __cpuinitdata migration_notifier = {
5373 .notifier_call = migration_call,
5374 .priority = CPU_PRI_MIGRATION,
5375};
5376
5377static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5378 unsigned long action, void *hcpu)
5379{
5380 switch (action & ~CPU_TASKS_FROZEN) {
5381 case CPU_ONLINE:
5382 case CPU_DOWN_FAILED:
5383 set_cpu_active((long)hcpu, true);
5384 return NOTIFY_OK;
5385 default:
5386 return NOTIFY_DONE;
5387 }
5388}
5389
5390static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5391 unsigned long action, void *hcpu)
5392{
5393 switch (action & ~CPU_TASKS_FROZEN) {
5394 case CPU_DOWN_PREPARE:
5395 set_cpu_active((long)hcpu, false);
5396 return NOTIFY_OK;
5397 default:
5398 return NOTIFY_DONE;
5399 }
5400}
5401
5402static int __init migration_init(void)
5403{
5404 void *cpu = (void *)(long)smp_processor_id();
5405 int err;
5406
5407 /* Initialize migration for the boot CPU */
5408 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5409 BUG_ON(err == NOTIFY_BAD);
5410 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5411 register_cpu_notifier(&migration_notifier);
5412
5413 /* Register cpu active notifiers */
5414 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5415 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5416
5417 return 0;
5418}
5419early_initcall(migration_init);
5420#endif
5421
5422#ifdef CONFIG_SMP
5423
5424static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5425
5426#ifdef CONFIG_SCHED_DEBUG
5427
5428static __read_mostly int sched_domain_debug_enabled;
5429
5430static int __init sched_domain_debug_setup(char *str)
5431{
5432 sched_domain_debug_enabled = 1;
5433
5434 return 0;
5435}
5436early_param("sched_debug", sched_domain_debug_setup);
5437
5438static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5439 struct cpumask *groupmask)
5440{
5441 struct sched_group *group = sd->groups;
5442 char str[256];
5443
5444 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5445 cpumask_clear(groupmask);
5446
5447 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5448
5449 if (!(sd->flags & SD_LOAD_BALANCE)) {
5450 printk("does not load-balance\n");
5451 if (sd->parent)
5452 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5453 " has parent");
5454 return -1;
5455 }
5456
5457 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5458
5459 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5460 printk(KERN_ERR "ERROR: domain->span does not contain "
5461 "CPU%d\n", cpu);
5462 }
5463 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5464 printk(KERN_ERR "ERROR: domain->groups does not contain"
5465 " CPU%d\n", cpu);
5466 }
5467
5468 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5469 do {
5470 if (!group) {
5471 printk("\n");
5472 printk(KERN_ERR "ERROR: group is NULL\n");
5473 break;
5474 }
5475
5476 if (!group->sgp->power) {
5477 printk(KERN_CONT "\n");
5478 printk(KERN_ERR "ERROR: domain->cpu_power not "
5479 "set\n");
5480 break;
5481 }
5482
5483 if (!cpumask_weight(sched_group_cpus(group))) {
5484 printk(KERN_CONT "\n");
5485 printk(KERN_ERR "ERROR: empty group\n");
5486 break;
5487 }
5488
5489 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5490 printk(KERN_CONT "\n");
5491 printk(KERN_ERR "ERROR: repeated CPUs\n");
5492 break;
5493 }
5494
5495 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5496
5497 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5498
5499 printk(KERN_CONT " %s", str);
5500 if (group->sgp->power != SCHED_POWER_SCALE) {
5501 printk(KERN_CONT " (cpu_power = %d)",
5502 group->sgp->power);
5503 }
5504
5505 group = group->next;
5506 } while (group != sd->groups);
5507 printk(KERN_CONT "\n");
5508
5509 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5510 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5511
5512 if (sd->parent &&
5513 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5514 printk(KERN_ERR "ERROR: parent span is not a superset "
5515 "of domain->span\n");
5516 return 0;
5517}
5518
5519static void sched_domain_debug(struct sched_domain *sd, int cpu)
5520{
5521 int level = 0;
5522
5523 if (!sched_domain_debug_enabled)
5524 return;
5525
5526 if (!sd) {
5527 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5528 return;
5529 }
5530
5531 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5532
5533 for (;;) {
5534 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5535 break;
5536 level++;
5537 sd = sd->parent;
5538 if (!sd)
5539 break;
5540 }
5541}
5542#else /* !CONFIG_SCHED_DEBUG */
5543# define sched_domain_debug(sd, cpu) do { } while (0)
5544#endif /* CONFIG_SCHED_DEBUG */
5545
5546static int sd_degenerate(struct sched_domain *sd)
5547{
5548 if (cpumask_weight(sched_domain_span(sd)) == 1)
5549 return 1;
5550
5551 /* Following flags need at least 2 groups */
5552 if (sd->flags & (SD_LOAD_BALANCE |
5553 SD_BALANCE_NEWIDLE |
5554 SD_BALANCE_FORK |
5555 SD_BALANCE_EXEC |
5556 SD_SHARE_CPUPOWER |
5557 SD_SHARE_PKG_RESOURCES)) {
5558 if (sd->groups != sd->groups->next)
5559 return 0;
5560 }
5561
5562 /* Following flags don't use groups */
5563 if (sd->flags & (SD_WAKE_AFFINE))
5564 return 0;
5565
5566 return 1;
5567}
5568
5569static int
5570sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5571{
5572 unsigned long cflags = sd->flags, pflags = parent->flags;
5573
5574 if (sd_degenerate(parent))
5575 return 1;
5576
5577 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5578 return 0;
5579
5580 /* Flags needing groups don't count if only 1 group in parent */
5581 if (parent->groups == parent->groups->next) {
5582 pflags &= ~(SD_LOAD_BALANCE |
5583 SD_BALANCE_NEWIDLE |
5584 SD_BALANCE_FORK |
5585 SD_BALANCE_EXEC |
5586 SD_SHARE_CPUPOWER |
5587 SD_SHARE_PKG_RESOURCES);
5588 if (nr_node_ids == 1)
5589 pflags &= ~SD_SERIALIZE;
5590 }
5591 if (~cflags & pflags)
5592 return 0;
5593
5594 return 1;
5595}
5596
5597static void free_rootdomain(struct rcu_head *rcu)
5598{
5599 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5600
5601 cpupri_cleanup(&rd->cpupri);
5602 free_cpumask_var(rd->rto_mask);
5603 free_cpumask_var(rd->online);
5604 free_cpumask_var(rd->span);
5605 kfree(rd);
5606}
5607
5608static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5609{
5610 struct root_domain *old_rd = NULL;
5611 unsigned long flags;
5612
5613 raw_spin_lock_irqsave(&rq->lock, flags);
5614
5615 if (rq->rd) {
5616 old_rd = rq->rd;
5617
5618 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5619 set_rq_offline(rq);
5620
5621 cpumask_clear_cpu(rq->cpu, old_rd->span);
5622
5623 /*
5624 * If we dont want to free the old_rt yet then
5625 * set old_rd to NULL to skip the freeing later
5626 * in this function:
5627 */
5628 if (!atomic_dec_and_test(&old_rd->refcount))
5629 old_rd = NULL;
5630 }
5631
5632 atomic_inc(&rd->refcount);
5633 rq->rd = rd;
5634
5635 cpumask_set_cpu(rq->cpu, rd->span);
5636 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5637 set_rq_online(rq);
5638
5639 raw_spin_unlock_irqrestore(&rq->lock, flags);
5640
5641 if (old_rd)
5642 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5643}
5644
5645static int init_rootdomain(struct root_domain *rd)
5646{
5647 memset(rd, 0, sizeof(*rd));
5648
5649 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5650 goto out;
5651 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5652 goto free_span;
5653 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5654 goto free_online;
5655
5656 if (cpupri_init(&rd->cpupri) != 0)
5657 goto free_rto_mask;
5658 return 0;
5659
5660free_rto_mask:
5661 free_cpumask_var(rd->rto_mask);
5662free_online:
5663 free_cpumask_var(rd->online);
5664free_span:
5665 free_cpumask_var(rd->span);
5666out:
5667 return -ENOMEM;
5668}
5669
5670/*
5671 * By default the system creates a single root-domain with all cpus as
5672 * members (mimicking the global state we have today).
5673 */
5674struct root_domain def_root_domain;
5675
5676static void init_defrootdomain(void)
5677{
5678 init_rootdomain(&def_root_domain);
5679
5680 atomic_set(&def_root_domain.refcount, 1);
5681}
5682
5683static struct root_domain *alloc_rootdomain(void)
5684{
5685 struct root_domain *rd;
5686
5687 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5688 if (!rd)
5689 return NULL;
5690
5691 if (init_rootdomain(rd) != 0) {
5692 kfree(rd);
5693 return NULL;
5694 }
5695
5696 return rd;
5697}
5698
5699static void free_sched_groups(struct sched_group *sg, int free_sgp)
5700{
5701 struct sched_group *tmp, *first;
5702
5703 if (!sg)
5704 return;
5705
5706 first = sg;
5707 do {
5708 tmp = sg->next;
5709
5710 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5711 kfree(sg->sgp);
5712
5713 kfree(sg);
5714 sg = tmp;
5715 } while (sg != first);
5716}
5717
5718static void free_sched_domain(struct rcu_head *rcu)
5719{
5720 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5721
5722 /*
5723 * If its an overlapping domain it has private groups, iterate and
5724 * nuke them all.
5725 */
5726 if (sd->flags & SD_OVERLAP) {
5727 free_sched_groups(sd->groups, 1);
5728 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5729 kfree(sd->groups->sgp);
5730 kfree(sd->groups);
5731 }
5732 kfree(sd);
5733}
5734
5735static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5736{
5737 call_rcu(&sd->rcu, free_sched_domain);
5738}
5739
5740static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5741{
5742 for (; sd; sd = sd->parent)
5743 destroy_sched_domain(sd, cpu);
5744}
5745
5746/*
5747 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5748 * hold the hotplug lock.
5749 */
5750static void
5751cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5752{
5753 struct rq *rq = cpu_rq(cpu);
5754 struct sched_domain *tmp;
5755
5756 /* Remove the sched domains which do not contribute to scheduling. */
5757 for (tmp = sd; tmp; ) {
5758 struct sched_domain *parent = tmp->parent;
5759 if (!parent)
5760 break;
5761
5762 if (sd_parent_degenerate(tmp, parent)) {
5763 tmp->parent = parent->parent;
5764 if (parent->parent)
5765 parent->parent->child = tmp;
5766 destroy_sched_domain(parent, cpu);
5767 } else
5768 tmp = tmp->parent;
5769 }
5770
5771 if (sd && sd_degenerate(sd)) {
5772 tmp = sd;
5773 sd = sd->parent;
5774 destroy_sched_domain(tmp, cpu);
5775 if (sd)
5776 sd->child = NULL;
5777 }
5778
5779 sched_domain_debug(sd, cpu);
5780
5781 rq_attach_root(rq, rd);
5782 tmp = rq->sd;
5783 rcu_assign_pointer(rq->sd, sd);
5784 destroy_sched_domains(tmp, cpu);
5785}
5786
5787/* cpus with isolated domains */
5788static cpumask_var_t cpu_isolated_map;
5789
5790/* Setup the mask of cpus configured for isolated domains */
5791static int __init isolated_cpu_setup(char *str)
5792{
5793 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5794 cpulist_parse(str, cpu_isolated_map);
5795 return 1;
5796}
5797
5798__setup("isolcpus=", isolated_cpu_setup);
5799
5800#ifdef CONFIG_NUMA
5801
5802/**
5803 * find_next_best_node - find the next node to include in a sched_domain
5804 * @node: node whose sched_domain we're building
5805 * @used_nodes: nodes already in the sched_domain
5806 *
5807 * Find the next node to include in a given scheduling domain. Simply
5808 * finds the closest node not already in the @used_nodes map.
5809 *
5810 * Should use nodemask_t.
5811 */
5812static int find_next_best_node(int node, nodemask_t *used_nodes)
5813{
5814 int i, n, val, min_val, best_node = -1;
5815
5816 min_val = INT_MAX;
5817
5818 for (i = 0; i < nr_node_ids; i++) {
5819 /* Start at @node */
5820 n = (node + i) % nr_node_ids;
5821
5822 if (!nr_cpus_node(n))
5823 continue;
5824
5825 /* Skip already used nodes */
5826 if (node_isset(n, *used_nodes))
5827 continue;
5828
5829 /* Simple min distance search */
5830 val = node_distance(node, n);
5831
5832 if (val < min_val) {
5833 min_val = val;
5834 best_node = n;
5835 }
5836 }
5837
5838 if (best_node != -1)
5839 node_set(best_node, *used_nodes);
5840 return best_node;
5841}
5842
5843/**
5844 * sched_domain_node_span - get a cpumask for a node's sched_domain
5845 * @node: node whose cpumask we're constructing
5846 * @span: resulting cpumask
5847 *
5848 * Given a node, construct a good cpumask for its sched_domain to span. It
5849 * should be one that prevents unnecessary balancing, but also spreads tasks
5850 * out optimally.
5851 */
5852static void sched_domain_node_span(int node, struct cpumask *span)
5853{
5854 nodemask_t used_nodes;
5855 int i;
5856
5857 cpumask_clear(span);
5858 nodes_clear(used_nodes);
5859
5860 cpumask_or(span, span, cpumask_of_node(node));
5861 node_set(node, used_nodes);
5862
5863 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5864 int next_node = find_next_best_node(node, &used_nodes);
5865 if (next_node < 0)
5866 break;
5867 cpumask_or(span, span, cpumask_of_node(next_node));
5868 }
5869}
5870
5871static const struct cpumask *cpu_node_mask(int cpu)
5872{
5873 lockdep_assert_held(&sched_domains_mutex);
5874
5875 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5876
5877 return sched_domains_tmpmask;
5878}
5879
5880static const struct cpumask *cpu_allnodes_mask(int cpu)
5881{
5882 return cpu_possible_mask;
5883}
5884#endif /* CONFIG_NUMA */
5885
5886static const struct cpumask *cpu_cpu_mask(int cpu)
5887{
5888 return cpumask_of_node(cpu_to_node(cpu));
5889}
5890
5891int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5892
5893struct sd_data {
5894 struct sched_domain **__percpu sd;
5895 struct sched_group **__percpu sg;
5896 struct sched_group_power **__percpu sgp;
5897};
5898
5899struct s_data {
5900 struct sched_domain ** __percpu sd;
5901 struct root_domain *rd;
5902};
5903
5904enum s_alloc {
5905 sa_rootdomain,
5906 sa_sd,
5907 sa_sd_storage,
5908 sa_none,
5909};
5910
5911struct sched_domain_topology_level;
5912
5913typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5914typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5915
5916#define SDTL_OVERLAP 0x01
5917
5918struct sched_domain_topology_level {
5919 sched_domain_init_f init;
5920 sched_domain_mask_f mask;
5921 int flags;
5922 struct sd_data data;
5923};
5924
5925static int
5926build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5927{
5928 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5929 const struct cpumask *span = sched_domain_span(sd);
5930 struct cpumask *covered = sched_domains_tmpmask;
5931 struct sd_data *sdd = sd->private;
5932 struct sched_domain *child;
5933 int i;
5934
5935 cpumask_clear(covered);
5936
5937 for_each_cpu(i, span) {
5938 struct cpumask *sg_span;
5939
5940 if (cpumask_test_cpu(i, covered))
5941 continue;
5942
5943 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5944 GFP_KERNEL, cpu_to_node(cpu));
5945
5946 if (!sg)
5947 goto fail;
5948
5949 sg_span = sched_group_cpus(sg);
5950
5951 child = *per_cpu_ptr(sdd->sd, i);
5952 if (child->child) {
5953 child = child->child;
5954 cpumask_copy(sg_span, sched_domain_span(child));
5955 } else
5956 cpumask_set_cpu(i, sg_span);
5957
5958 cpumask_or(covered, covered, sg_span);
5959
5960 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
5961 atomic_inc(&sg->sgp->ref);
5962
5963 if (cpumask_test_cpu(cpu, sg_span))
5964 groups = sg;
5965
5966 if (!first)
5967 first = sg;
5968 if (last)
5969 last->next = sg;
5970 last = sg;
5971 last->next = first;
5972 }
5973 sd->groups = groups;
5974
5975 return 0;
5976
5977fail:
5978 free_sched_groups(first, 0);
5979
5980 return -ENOMEM;
5981}
5982
5983static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5984{
5985 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5986 struct sched_domain *child = sd->child;
5987
5988 if (child)
5989 cpu = cpumask_first(sched_domain_span(child));
5990
5991 if (sg) {
5992 *sg = *per_cpu_ptr(sdd->sg, cpu);
5993 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5994 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5995 }
5996
5997 return cpu;
5998}
5999
6000/*
6001 * build_sched_groups will build a circular linked list of the groups
6002 * covered by the given span, and will set each group's ->cpumask correctly,
6003 * and ->cpu_power to 0.
6004 *
6005 * Assumes the sched_domain tree is fully constructed
6006 */
6007static int
6008build_sched_groups(struct sched_domain *sd, int cpu)
6009{
6010 struct sched_group *first = NULL, *last = NULL;
6011 struct sd_data *sdd = sd->private;
6012 const struct cpumask *span = sched_domain_span(sd);
6013 struct cpumask *covered;
6014 int i;
6015
6016 get_group(cpu, sdd, &sd->groups);
6017 atomic_inc(&sd->groups->ref);
6018
6019 if (cpu != cpumask_first(sched_domain_span(sd)))
6020 return 0;
6021
6022 lockdep_assert_held(&sched_domains_mutex);
6023 covered = sched_domains_tmpmask;
6024
6025 cpumask_clear(covered);
6026
6027 for_each_cpu(i, span) {
6028 struct sched_group *sg;
6029 int group = get_group(i, sdd, &sg);
6030 int j;
6031
6032 if (cpumask_test_cpu(i, covered))
6033 continue;
6034
6035 cpumask_clear(sched_group_cpus(sg));
6036 sg->sgp->power = 0;
6037
6038 for_each_cpu(j, span) {
6039 if (get_group(j, sdd, NULL) != group)
6040 continue;
6041
6042 cpumask_set_cpu(j, covered);
6043 cpumask_set_cpu(j, sched_group_cpus(sg));
6044 }
6045
6046 if (!first)
6047 first = sg;
6048 if (last)
6049 last->next = sg;
6050 last = sg;
6051 }
6052 last->next = first;
6053
6054 return 0;
6055}
6056
6057/*
6058 * Initialize sched groups cpu_power.
6059 *
6060 * cpu_power indicates the capacity of sched group, which is used while
6061 * distributing the load between different sched groups in a sched domain.
6062 * Typically cpu_power for all the groups in a sched domain will be same unless
6063 * there are asymmetries in the topology. If there are asymmetries, group
6064 * having more cpu_power will pickup more load compared to the group having
6065 * less cpu_power.
6066 */
6067static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6068{
6069 struct sched_group *sg = sd->groups;
6070
6071 WARN_ON(!sd || !sg);
6072
6073 do {
6074 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6075 sg = sg->next;
6076 } while (sg != sd->groups);
6077
6078 if (cpu != group_first_cpu(sg))
6079 return;
6080
6081 update_group_power(sd, cpu);
6082 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6083}
6084
6085int __weak arch_sd_sibling_asym_packing(void)
6086{
6087 return 0*SD_ASYM_PACKING;
6088}
6089
6090/*
6091 * Initializers for schedule domains
6092 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6093 */
6094
6095#ifdef CONFIG_SCHED_DEBUG
6096# define SD_INIT_NAME(sd, type) sd->name = #type
6097#else
6098# define SD_INIT_NAME(sd, type) do { } while (0)
6099#endif
6100
6101#define SD_INIT_FUNC(type) \
6102static noinline struct sched_domain * \
6103sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6104{ \
6105 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6106 *sd = SD_##type##_INIT; \
6107 SD_INIT_NAME(sd, type); \
6108 sd->private = &tl->data; \
6109 return sd; \
6110}
6111
6112SD_INIT_FUNC(CPU)
6113#ifdef CONFIG_NUMA
6114 SD_INIT_FUNC(ALLNODES)
6115 SD_INIT_FUNC(NODE)
6116#endif
6117#ifdef CONFIG_SCHED_SMT
6118 SD_INIT_FUNC(SIBLING)
6119#endif
6120#ifdef CONFIG_SCHED_MC
6121 SD_INIT_FUNC(MC)
6122#endif
6123#ifdef CONFIG_SCHED_BOOK
6124 SD_INIT_FUNC(BOOK)
6125#endif
6126
6127static int default_relax_domain_level = -1;
6128int sched_domain_level_max;
6129
6130static int __init setup_relax_domain_level(char *str)
6131{
6132 unsigned long val;
6133
6134 val = simple_strtoul(str, NULL, 0);
6135 if (val < sched_domain_level_max)
6136 default_relax_domain_level = val;
6137
6138 return 1;
6139}
6140__setup("relax_domain_level=", setup_relax_domain_level);
6141
6142static void set_domain_attribute(struct sched_domain *sd,
6143 struct sched_domain_attr *attr)
6144{
6145 int request;
6146
6147 if (!attr || attr->relax_domain_level < 0) {
6148 if (default_relax_domain_level < 0)
6149 return;
6150 else
6151 request = default_relax_domain_level;
6152 } else
6153 request = attr->relax_domain_level;
6154 if (request < sd->level) {
6155 /* turn off idle balance on this domain */
6156 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6157 } else {
6158 /* turn on idle balance on this domain */
6159 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6160 }
6161}
6162
6163static void __sdt_free(const struct cpumask *cpu_map);
6164static int __sdt_alloc(const struct cpumask *cpu_map);
6165
6166static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6167 const struct cpumask *cpu_map)
6168{
6169 switch (what) {
6170 case sa_rootdomain:
6171 if (!atomic_read(&d->rd->refcount))
6172 free_rootdomain(&d->rd->rcu); /* fall through */
6173 case sa_sd:
6174 free_percpu(d->sd); /* fall through */
6175 case sa_sd_storage:
6176 __sdt_free(cpu_map); /* fall through */
6177 case sa_none:
6178 break;
6179 }
6180}
6181
6182static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6183 const struct cpumask *cpu_map)
6184{
6185 memset(d, 0, sizeof(*d));
6186
6187 if (__sdt_alloc(cpu_map))
6188 return sa_sd_storage;
6189 d->sd = alloc_percpu(struct sched_domain *);
6190 if (!d->sd)
6191 return sa_sd_storage;
6192 d->rd = alloc_rootdomain();
6193 if (!d->rd)
6194 return sa_sd;
6195 return sa_rootdomain;
6196}
6197
6198/*
6199 * NULL the sd_data elements we've used to build the sched_domain and
6200 * sched_group structure so that the subsequent __free_domain_allocs()
6201 * will not free the data we're using.
6202 */
6203static void claim_allocations(int cpu, struct sched_domain *sd)
6204{
6205 struct sd_data *sdd = sd->private;
6206
6207 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6208 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6209
6210 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6211 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6212
6213 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6214 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6215}
6216
6217#ifdef CONFIG_SCHED_SMT
6218static const struct cpumask *cpu_smt_mask(int cpu)
6219{
6220 return topology_thread_cpumask(cpu);
6221}
6222#endif
6223
6224/*
6225 * Topology list, bottom-up.
6226 */
6227static struct sched_domain_topology_level default_topology[] = {
6228#ifdef CONFIG_SCHED_SMT
6229 { sd_init_SIBLING, cpu_smt_mask, },
6230#endif
6231#ifdef CONFIG_SCHED_MC
6232 { sd_init_MC, cpu_coregroup_mask, },
6233#endif
6234#ifdef CONFIG_SCHED_BOOK
6235 { sd_init_BOOK, cpu_book_mask, },
6236#endif
6237 { sd_init_CPU, cpu_cpu_mask, },
6238#ifdef CONFIG_NUMA
6239 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6240 { sd_init_ALLNODES, cpu_allnodes_mask, },
6241#endif
6242 { NULL, },
6243};
6244
6245static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6246
6247static int __sdt_alloc(const struct cpumask *cpu_map)
6248{
6249 struct sched_domain_topology_level *tl;
6250 int j;
6251
6252 for (tl = sched_domain_topology; tl->init; tl++) {
6253 struct sd_data *sdd = &tl->data;
6254
6255 sdd->sd = alloc_percpu(struct sched_domain *);
6256 if (!sdd->sd)
6257 return -ENOMEM;
6258
6259 sdd->sg = alloc_percpu(struct sched_group *);
6260 if (!sdd->sg)
6261 return -ENOMEM;
6262
6263 sdd->sgp = alloc_percpu(struct sched_group_power *);
6264 if (!sdd->sgp)
6265 return -ENOMEM;
6266
6267 for_each_cpu(j, cpu_map) {
6268 struct sched_domain *sd;
6269 struct sched_group *sg;
6270 struct sched_group_power *sgp;
6271
6272 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6273 GFP_KERNEL, cpu_to_node(j));
6274 if (!sd)
6275 return -ENOMEM;
6276
6277 *per_cpu_ptr(sdd->sd, j) = sd;
6278
6279 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6280 GFP_KERNEL, cpu_to_node(j));
6281 if (!sg)
6282 return -ENOMEM;
6283
6284 *per_cpu_ptr(sdd->sg, j) = sg;
6285
6286 sgp = kzalloc_node(sizeof(struct sched_group_power),
6287 GFP_KERNEL, cpu_to_node(j));
6288 if (!sgp)
6289 return -ENOMEM;
6290
6291 *per_cpu_ptr(sdd->sgp, j) = sgp;
6292 }
6293 }
6294
6295 return 0;
6296}
6297
6298static void __sdt_free(const struct cpumask *cpu_map)
6299{
6300 struct sched_domain_topology_level *tl;
6301 int j;
6302
6303 for (tl = sched_domain_topology; tl->init; tl++) {
6304 struct sd_data *sdd = &tl->data;
6305
6306 for_each_cpu(j, cpu_map) {
6307 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6308 if (sd && (sd->flags & SD_OVERLAP))
6309 free_sched_groups(sd->groups, 0);
6310 kfree(*per_cpu_ptr(sdd->sd, j));
6311 kfree(*per_cpu_ptr(sdd->sg, j));
6312 kfree(*per_cpu_ptr(sdd->sgp, j));
6313 }
6314 free_percpu(sdd->sd);
6315 free_percpu(sdd->sg);
6316 free_percpu(sdd->sgp);
6317 }
6318}
6319
6320struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6321 struct s_data *d, const struct cpumask *cpu_map,
6322 struct sched_domain_attr *attr, struct sched_domain *child,
6323 int cpu)
6324{
6325 struct sched_domain *sd = tl->init(tl, cpu);
6326 if (!sd)
6327 return child;
6328
6329 set_domain_attribute(sd, attr);
6330 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6331 if (child) {
6332 sd->level = child->level + 1;
6333 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6334 child->parent = sd;
6335 }
6336 sd->child = child;
6337
6338 return sd;
6339}
6340
6341/*
6342 * Build sched domains for a given set of cpus and attach the sched domains
6343 * to the individual cpus
6344 */
6345static int build_sched_domains(const struct cpumask *cpu_map,
6346 struct sched_domain_attr *attr)
6347{
6348 enum s_alloc alloc_state = sa_none;
6349 struct sched_domain *sd;
6350 struct s_data d;
6351 int i, ret = -ENOMEM;
6352
6353 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6354 if (alloc_state != sa_rootdomain)
6355 goto error;
6356
6357 /* Set up domains for cpus specified by the cpu_map. */
6358 for_each_cpu(i, cpu_map) {
6359 struct sched_domain_topology_level *tl;
6360
6361 sd = NULL;
6362 for (tl = sched_domain_topology; tl->init; tl++) {
6363 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6364 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6365 sd->flags |= SD_OVERLAP;
6366 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6367 break;
6368 }
6369
6370 while (sd->child)
6371 sd = sd->child;
6372
6373 *per_cpu_ptr(d.sd, i) = sd;
6374 }
6375
6376 /* Build the groups for the domains */
6377 for_each_cpu(i, cpu_map) {
6378 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6379 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6380 if (sd->flags & SD_OVERLAP) {
6381 if (build_overlap_sched_groups(sd, i))
6382 goto error;
6383 } else {
6384 if (build_sched_groups(sd, i))
6385 goto error;
6386 }
6387 }
6388 }
6389
6390 /* Calculate CPU power for physical packages and nodes */
6391 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6392 if (!cpumask_test_cpu(i, cpu_map))
6393 continue;
6394
6395 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6396 claim_allocations(i, sd);
6397 init_sched_groups_power(i, sd);
6398 }
6399 }
6400
6401 /* Attach the domains */
6402 rcu_read_lock();
6403 for_each_cpu(i, cpu_map) {
6404 sd = *per_cpu_ptr(d.sd, i);
6405 cpu_attach_domain(sd, d.rd, i);
6406 }
6407 rcu_read_unlock();
6408
6409 ret = 0;
6410error:
6411 __free_domain_allocs(&d, alloc_state, cpu_map);
6412 return ret;
6413}
6414
6415static cpumask_var_t *doms_cur; /* current sched domains */
6416static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6417static struct sched_domain_attr *dattr_cur;
6418 /* attribues of custom domains in 'doms_cur' */
6419
6420/*
6421 * Special case: If a kmalloc of a doms_cur partition (array of
6422 * cpumask) fails, then fallback to a single sched domain,
6423 * as determined by the single cpumask fallback_doms.
6424 */
6425static cpumask_var_t fallback_doms;
6426
6427/*
6428 * arch_update_cpu_topology lets virtualized architectures update the
6429 * cpu core maps. It is supposed to return 1 if the topology changed
6430 * or 0 if it stayed the same.
6431 */
6432int __attribute__((weak)) arch_update_cpu_topology(void)
6433{
6434 return 0;
6435}
6436
6437cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6438{
6439 int i;
6440 cpumask_var_t *doms;
6441
6442 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6443 if (!doms)
6444 return NULL;
6445 for (i = 0; i < ndoms; i++) {
6446 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6447 free_sched_domains(doms, i);
6448 return NULL;
6449 }
6450 }
6451 return doms;
6452}
6453
6454void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6455{
6456 unsigned int i;
6457 for (i = 0; i < ndoms; i++)
6458 free_cpumask_var(doms[i]);
6459 kfree(doms);
6460}
6461
6462/*
6463 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6464 * For now this just excludes isolated cpus, but could be used to
6465 * exclude other special cases in the future.
6466 */
6467static int init_sched_domains(const struct cpumask *cpu_map)
6468{
6469 int err;
6470
6471 arch_update_cpu_topology();
6472 ndoms_cur = 1;
6473 doms_cur = alloc_sched_domains(ndoms_cur);
6474 if (!doms_cur)
6475 doms_cur = &fallback_doms;
6476 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6477 dattr_cur = NULL;
6478 err = build_sched_domains(doms_cur[0], NULL);
6479 register_sched_domain_sysctl();
6480
6481 return err;
6482}
6483
6484/*
6485 * Detach sched domains from a group of cpus specified in cpu_map
6486 * These cpus will now be attached to the NULL domain
6487 */
6488static void detach_destroy_domains(const struct cpumask *cpu_map)
6489{
6490 int i;
6491
6492 rcu_read_lock();
6493 for_each_cpu(i, cpu_map)
6494 cpu_attach_domain(NULL, &def_root_domain, i);
6495 rcu_read_unlock();
6496}
6497
6498/* handle null as "default" */
6499static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6500 struct sched_domain_attr *new, int idx_new)
6501{
6502 struct sched_domain_attr tmp;
6503
6504 /* fast path */
6505 if (!new && !cur)
6506 return 1;
6507
6508 tmp = SD_ATTR_INIT;
6509 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6510 new ? (new + idx_new) : &tmp,
6511 sizeof(struct sched_domain_attr));
6512}
6513
6514/*
6515 * Partition sched domains as specified by the 'ndoms_new'
6516 * cpumasks in the array doms_new[] of cpumasks. This compares
6517 * doms_new[] to the current sched domain partitioning, doms_cur[].
6518 * It destroys each deleted domain and builds each new domain.
6519 *
6520 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6521 * The masks don't intersect (don't overlap.) We should setup one
6522 * sched domain for each mask. CPUs not in any of the cpumasks will
6523 * not be load balanced. If the same cpumask appears both in the
6524 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6525 * it as it is.
6526 *
6527 * The passed in 'doms_new' should be allocated using
6528 * alloc_sched_domains. This routine takes ownership of it and will
6529 * free_sched_domains it when done with it. If the caller failed the
6530 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6531 * and partition_sched_domains() will fallback to the single partition
6532 * 'fallback_doms', it also forces the domains to be rebuilt.
6533 *
6534 * If doms_new == NULL it will be replaced with cpu_online_mask.
6535 * ndoms_new == 0 is a special case for destroying existing domains,
6536 * and it will not create the default domain.
6537 *
6538 * Call with hotplug lock held
6539 */
6540void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6541 struct sched_domain_attr *dattr_new)
6542{
6543 int i, j, n;
6544 int new_topology;
6545
6546 mutex_lock(&sched_domains_mutex);
6547
6548 /* always unregister in case we don't destroy any domains */
6549 unregister_sched_domain_sysctl();
6550
6551 /* Let architecture update cpu core mappings. */
6552 new_topology = arch_update_cpu_topology();
6553
6554 n = doms_new ? ndoms_new : 0;
6555
6556 /* Destroy deleted domains */
6557 for (i = 0; i < ndoms_cur; i++) {
6558 for (j = 0; j < n && !new_topology; j++) {
6559 if (cpumask_equal(doms_cur[i], doms_new[j])
6560 && dattrs_equal(dattr_cur, i, dattr_new, j))
6561 goto match1;
6562 }
6563 /* no match - a current sched domain not in new doms_new[] */
6564 detach_destroy_domains(doms_cur[i]);
6565match1:
6566 ;
6567 }
6568
6569 if (doms_new == NULL) {
6570 ndoms_cur = 0;
6571 doms_new = &fallback_doms;
6572 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6573 WARN_ON_ONCE(dattr_new);
6574 }
6575
6576 /* Build new domains */
6577 for (i = 0; i < ndoms_new; i++) {
6578 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6579 if (cpumask_equal(doms_new[i], doms_cur[j])
6580 && dattrs_equal(dattr_new, i, dattr_cur, j))
6581 goto match2;
6582 }
6583 /* no match - add a new doms_new */
6584 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6585match2:
6586 ;
6587 }
6588
6589 /* Remember the new sched domains */
6590 if (doms_cur != &fallback_doms)
6591 free_sched_domains(doms_cur, ndoms_cur);
6592 kfree(dattr_cur); /* kfree(NULL) is safe */
6593 doms_cur = doms_new;
6594 dattr_cur = dattr_new;
6595 ndoms_cur = ndoms_new;
6596
6597 register_sched_domain_sysctl();
6598
6599 mutex_unlock(&sched_domains_mutex);
6600}
6601
6602#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6603static void reinit_sched_domains(void)
6604{
6605 get_online_cpus();
6606
6607 /* Destroy domains first to force the rebuild */
6608 partition_sched_domains(0, NULL, NULL);
6609
6610 rebuild_sched_domains();
6611 put_online_cpus();
6612}
6613
6614static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6615{
6616 unsigned int level = 0;
6617
6618 if (sscanf(buf, "%u", &level) != 1)
6619 return -EINVAL;
6620
6621 /*
6622 * level is always be positive so don't check for
6623 * level < POWERSAVINGS_BALANCE_NONE which is 0
6624 * What happens on 0 or 1 byte write,
6625 * need to check for count as well?
6626 */
6627
6628 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6629 return -EINVAL;
6630
6631 if (smt)
6632 sched_smt_power_savings = level;
6633 else
6634 sched_mc_power_savings = level;
6635
6636 reinit_sched_domains();
6637
6638 return count;
6639}
6640
6641#ifdef CONFIG_SCHED_MC
6642static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
6643 struct sysdev_class_attribute *attr,
6644 char *page)
6645{
6646 return sprintf(page, "%u\n", sched_mc_power_savings);
6647}
6648static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
6649 struct sysdev_class_attribute *attr,
6650 const char *buf, size_t count)
6651{
6652 return sched_power_savings_store(buf, count, 0);
6653}
6654static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
6655 sched_mc_power_savings_show,
6656 sched_mc_power_savings_store);
6657#endif
6658
6659#ifdef CONFIG_SCHED_SMT
6660static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
6661 struct sysdev_class_attribute *attr,
6662 char *page)
6663{
6664 return sprintf(page, "%u\n", sched_smt_power_savings);
6665}
6666static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
6667 struct sysdev_class_attribute *attr,
6668 const char *buf, size_t count)
6669{
6670 return sched_power_savings_store(buf, count, 1);
6671}
6672static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
6673 sched_smt_power_savings_show,
6674 sched_smt_power_savings_store);
6675#endif
6676
6677int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6678{
6679 int err = 0;
6680
6681#ifdef CONFIG_SCHED_SMT
6682 if (smt_capable())
6683 err = sysfs_create_file(&cls->kset.kobj,
6684 &attr_sched_smt_power_savings.attr);
6685#endif
6686#ifdef CONFIG_SCHED_MC
6687 if (!err && mc_capable())
6688 err = sysfs_create_file(&cls->kset.kobj,
6689 &attr_sched_mc_power_savings.attr);
6690#endif
6691 return err;
6692}
6693#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6694
6695/*
6696 * Update cpusets according to cpu_active mask. If cpusets are
6697 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6698 * around partition_sched_domains().
6699 */
6700static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6701 void *hcpu)
6702{
6703 switch (action & ~CPU_TASKS_FROZEN) {
6704 case CPU_ONLINE:
6705 case CPU_DOWN_FAILED:
6706 cpuset_update_active_cpus();
6707 return NOTIFY_OK;
6708 default:
6709 return NOTIFY_DONE;
6710 }
6711}
6712
6713static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6714 void *hcpu)
6715{
6716 switch (action & ~CPU_TASKS_FROZEN) {
6717 case CPU_DOWN_PREPARE:
6718 cpuset_update_active_cpus();
6719 return NOTIFY_OK;
6720 default:
6721 return NOTIFY_DONE;
6722 }
6723}
6724
6725void __init sched_init_smp(void)
6726{
6727 cpumask_var_t non_isolated_cpus;
6728
6729 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6730 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6731
6732 get_online_cpus();
6733 mutex_lock(&sched_domains_mutex);
6734 init_sched_domains(cpu_active_mask);
6735 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6736 if (cpumask_empty(non_isolated_cpus))
6737 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6738 mutex_unlock(&sched_domains_mutex);
6739 put_online_cpus();
6740
6741 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6742 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6743
6744 /* RT runtime code needs to handle some hotplug events */
6745 hotcpu_notifier(update_runtime, 0);
6746
6747 init_hrtick();
6748
6749 /* Move init over to a non-isolated CPU */
6750 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6751 BUG();
6752 sched_init_granularity();
6753 free_cpumask_var(non_isolated_cpus);
6754
6755 init_sched_rt_class();
6756}
6757#else
6758void __init sched_init_smp(void)
6759{
6760 sched_init_granularity();
6761}
6762#endif /* CONFIG_SMP */
6763
6764const_debug unsigned int sysctl_timer_migration = 1;
6765
6766int in_sched_functions(unsigned long addr)
6767{
6768 return in_lock_functions(addr) ||
6769 (addr >= (unsigned long)__sched_text_start
6770 && addr < (unsigned long)__sched_text_end);
6771}
6772
6773#ifdef CONFIG_CGROUP_SCHED
6774struct task_group root_task_group;
6775#endif
6776
6777DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6778
6779void __init sched_init(void)
6780{
6781 int i, j;
6782 unsigned long alloc_size = 0, ptr;
6783
6784#ifdef CONFIG_FAIR_GROUP_SCHED
6785 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6786#endif
6787#ifdef CONFIG_RT_GROUP_SCHED
6788 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6789#endif
6790#ifdef CONFIG_CPUMASK_OFFSTACK
6791 alloc_size += num_possible_cpus() * cpumask_size();
6792#endif
6793 if (alloc_size) {
6794 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6795
6796#ifdef CONFIG_FAIR_GROUP_SCHED
6797 root_task_group.se = (struct sched_entity **)ptr;
6798 ptr += nr_cpu_ids * sizeof(void **);
6799
6800 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6801 ptr += nr_cpu_ids * sizeof(void **);
6802
6803#endif /* CONFIG_FAIR_GROUP_SCHED */
6804#ifdef CONFIG_RT_GROUP_SCHED
6805 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6806 ptr += nr_cpu_ids * sizeof(void **);
6807
6808 root_task_group.rt_rq = (struct rt_rq **)ptr;
6809 ptr += nr_cpu_ids * sizeof(void **);
6810
6811#endif /* CONFIG_RT_GROUP_SCHED */
6812#ifdef CONFIG_CPUMASK_OFFSTACK
6813 for_each_possible_cpu(i) {
6814 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6815 ptr += cpumask_size();
6816 }
6817#endif /* CONFIG_CPUMASK_OFFSTACK */
6818 }
6819
6820#ifdef CONFIG_SMP
6821 init_defrootdomain();
6822#endif
6823
6824 init_rt_bandwidth(&def_rt_bandwidth,
6825 global_rt_period(), global_rt_runtime());
6826
6827#ifdef CONFIG_RT_GROUP_SCHED
6828 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6829 global_rt_period(), global_rt_runtime());
6830#endif /* CONFIG_RT_GROUP_SCHED */
6831
6832#ifdef CONFIG_CGROUP_SCHED
6833 list_add(&root_task_group.list, &task_groups);
6834 INIT_LIST_HEAD(&root_task_group.children);
6835 INIT_LIST_HEAD(&root_task_group.siblings);
6836 autogroup_init(&init_task);
6837
6838#endif /* CONFIG_CGROUP_SCHED */
6839
6840#ifdef CONFIG_CGROUP_CPUACCT
6841 root_cpuacct.cpustat = &kernel_cpustat;
6842 root_cpuacct.cpuusage = alloc_percpu(u64);
6843 /* Too early, not expected to fail */
6844 BUG_ON(!root_cpuacct.cpuusage);
6845#endif
6846 for_each_possible_cpu(i) {
6847 struct rq *rq;
6848
6849 rq = cpu_rq(i);
6850 raw_spin_lock_init(&rq->lock);
6851 rq->nr_running = 0;
6852 rq->calc_load_active = 0;
6853 rq->calc_load_update = jiffies + LOAD_FREQ;
6854 init_cfs_rq(&rq->cfs);
6855 init_rt_rq(&rq->rt, rq);
6856#ifdef CONFIG_FAIR_GROUP_SCHED
6857 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6858 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6859 /*
6860 * How much cpu bandwidth does root_task_group get?
6861 *
6862 * In case of task-groups formed thr' the cgroup filesystem, it
6863 * gets 100% of the cpu resources in the system. This overall
6864 * system cpu resource is divided among the tasks of
6865 * root_task_group and its child task-groups in a fair manner,
6866 * based on each entity's (task or task-group's) weight
6867 * (se->load.weight).
6868 *
6869 * In other words, if root_task_group has 10 tasks of weight
6870 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6871 * then A0's share of the cpu resource is:
6872 *
6873 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6874 *
6875 * We achieve this by letting root_task_group's tasks sit
6876 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6877 */
6878 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6879 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6880#endif /* CONFIG_FAIR_GROUP_SCHED */
6881
6882 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6883#ifdef CONFIG_RT_GROUP_SCHED
6884 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6885 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6886#endif
6887
6888 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6889 rq->cpu_load[j] = 0;
6890
6891 rq->last_load_update_tick = jiffies;
6892
6893#ifdef CONFIG_SMP
6894 rq->sd = NULL;
6895 rq->rd = NULL;
6896 rq->cpu_power = SCHED_POWER_SCALE;
6897 rq->post_schedule = 0;
6898 rq->active_balance = 0;
6899 rq->next_balance = jiffies;
6900 rq->push_cpu = 0;
6901 rq->cpu = i;
6902 rq->online = 0;
6903 rq->idle_stamp = 0;
6904 rq->avg_idle = 2*sysctl_sched_migration_cost;
6905 rq_attach_root(rq, &def_root_domain);
6906#ifdef CONFIG_NO_HZ
6907 rq->nohz_flags = 0;
6908#endif
6909#endif
6910 init_rq_hrtick(rq);
6911 atomic_set(&rq->nr_iowait, 0);
6912 }
6913
6914 set_load_weight(&init_task);
6915
6916#ifdef CONFIG_PREEMPT_NOTIFIERS
6917 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6918#endif
6919
6920#ifdef CONFIG_RT_MUTEXES
6921 plist_head_init(&init_task.pi_waiters);
6922#endif
6923
6924 /*
6925 * The boot idle thread does lazy MMU switching as well:
6926 */
6927 atomic_inc(&init_mm.mm_count);
6928 enter_lazy_tlb(&init_mm, current);
6929
6930 /*
6931 * Make us the idle thread. Technically, schedule() should not be
6932 * called from this thread, however somewhere below it might be,
6933 * but because we are the idle thread, we just pick up running again
6934 * when this runqueue becomes "idle".
6935 */
6936 init_idle(current, smp_processor_id());
6937
6938 calc_load_update = jiffies + LOAD_FREQ;
6939
6940 /*
6941 * During early bootup we pretend to be a normal task:
6942 */
6943 current->sched_class = &fair_sched_class;
6944
6945#ifdef CONFIG_SMP
6946 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6947 /* May be allocated at isolcpus cmdline parse time */
6948 if (cpu_isolated_map == NULL)
6949 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6950#endif
6951 init_sched_fair_class();
6952
6953 scheduler_running = 1;
6954}
6955
6956#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6957static inline int preempt_count_equals(int preempt_offset)
6958{
6959 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6960
6961 return (nested == preempt_offset);
6962}
6963
6964void __might_sleep(const char *file, int line, int preempt_offset)
6965{
6966 static unsigned long prev_jiffy; /* ratelimiting */
6967
6968 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6969 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6970 system_state != SYSTEM_RUNNING || oops_in_progress)
6971 return;
6972 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6973 return;
6974 prev_jiffy = jiffies;
6975
6976 printk(KERN_ERR
6977 "BUG: sleeping function called from invalid context at %s:%d\n",
6978 file, line);
6979 printk(KERN_ERR
6980 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6981 in_atomic(), irqs_disabled(),
6982 current->pid, current->comm);
6983
6984 debug_show_held_locks(current);
6985 if (irqs_disabled())
6986 print_irqtrace_events(current);
6987 dump_stack();
6988}
6989EXPORT_SYMBOL(__might_sleep);
6990#endif
6991
6992#ifdef CONFIG_MAGIC_SYSRQ
6993static void normalize_task(struct rq *rq, struct task_struct *p)
6994{
6995 const struct sched_class *prev_class = p->sched_class;
6996 int old_prio = p->prio;
6997 int on_rq;
6998
6999 on_rq = p->on_rq;
7000 if (on_rq)
7001 deactivate_task(rq, p, 0);
7002 __setscheduler(rq, p, SCHED_NORMAL, 0);
7003 if (on_rq) {
7004 activate_task(rq, p, 0);
7005 resched_task(rq->curr);
7006 }
7007
7008 check_class_changed(rq, p, prev_class, old_prio);
7009}
7010
7011void normalize_rt_tasks(void)
7012{
7013 struct task_struct *g, *p;
7014 unsigned long flags;
7015 struct rq *rq;
7016
7017 read_lock_irqsave(&tasklist_lock, flags);
7018 do_each_thread(g, p) {
7019 /*
7020 * Only normalize user tasks:
7021 */
7022 if (!p->mm)
7023 continue;
7024
7025 p->se.exec_start = 0;
7026#ifdef CONFIG_SCHEDSTATS
7027 p->se.statistics.wait_start = 0;
7028 p->se.statistics.sleep_start = 0;
7029 p->se.statistics.block_start = 0;
7030#endif
7031
7032 if (!rt_task(p)) {
7033 /*
7034 * Renice negative nice level userspace
7035 * tasks back to 0:
7036 */
7037 if (TASK_NICE(p) < 0 && p->mm)
7038 set_user_nice(p, 0);
7039 continue;
7040 }
7041
7042 raw_spin_lock(&p->pi_lock);
7043 rq = __task_rq_lock(p);
7044
7045 normalize_task(rq, p);
7046
7047 __task_rq_unlock(rq);
7048 raw_spin_unlock(&p->pi_lock);
7049 } while_each_thread(g, p);
7050
7051 read_unlock_irqrestore(&tasklist_lock, flags);
7052}
7053
7054#endif /* CONFIG_MAGIC_SYSRQ */
7055
7056#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7057/*
7058 * These functions are only useful for the IA64 MCA handling, or kdb.
7059 *
7060 * They can only be called when the whole system has been
7061 * stopped - every CPU needs to be quiescent, and no scheduling
7062 * activity can take place. Using them for anything else would
7063 * be a serious bug, and as a result, they aren't even visible
7064 * under any other configuration.
7065 */
7066
7067/**
7068 * curr_task - return the current task for a given cpu.
7069 * @cpu: the processor in question.
7070 *
7071 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7072 */
7073struct task_struct *curr_task(int cpu)
7074{
7075 return cpu_curr(cpu);
7076}
7077
7078#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7079
7080#ifdef CONFIG_IA64
7081/**
7082 * set_curr_task - set the current task for a given cpu.
7083 * @cpu: the processor in question.
7084 * @p: the task pointer to set.
7085 *
7086 * Description: This function must only be used when non-maskable interrupts
7087 * are serviced on a separate stack. It allows the architecture to switch the
7088 * notion of the current task on a cpu in a non-blocking manner. This function
7089 * must be called with all CPU's synchronized, and interrupts disabled, the
7090 * and caller must save the original value of the current task (see
7091 * curr_task() above) and restore that value before reenabling interrupts and
7092 * re-starting the system.
7093 *
7094 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7095 */
7096void set_curr_task(int cpu, struct task_struct *p)
7097{
7098 cpu_curr(cpu) = p;
7099}
7100
7101#endif
7102
7103#ifdef CONFIG_RT_GROUP_SCHED
7104#else /* !CONFIG_RT_GROUP_SCHED */
7105#endif /* CONFIG_RT_GROUP_SCHED */
7106
7107#ifdef CONFIG_CGROUP_SCHED
7108/* task_group_lock serializes the addition/removal of task groups */
7109static DEFINE_SPINLOCK(task_group_lock);
7110
7111static void free_sched_group(struct task_group *tg)
7112{
7113 free_fair_sched_group(tg);
7114 free_rt_sched_group(tg);
7115 autogroup_free(tg);
7116 kfree(tg);
7117}
7118
7119/* allocate runqueue etc for a new task group */
7120struct task_group *sched_create_group(struct task_group *parent)
7121{
7122 struct task_group *tg;
7123 unsigned long flags;
7124
7125 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7126 if (!tg)
7127 return ERR_PTR(-ENOMEM);
7128
7129 if (!alloc_fair_sched_group(tg, parent))
7130 goto err;
7131
7132 if (!alloc_rt_sched_group(tg, parent))
7133 goto err;
7134
7135 spin_lock_irqsave(&task_group_lock, flags);
7136 list_add_rcu(&tg->list, &task_groups);
7137
7138 WARN_ON(!parent); /* root should already exist */
7139
7140 tg->parent = parent;
7141 INIT_LIST_HEAD(&tg->children);
7142 list_add_rcu(&tg->siblings, &parent->children);
7143 spin_unlock_irqrestore(&task_group_lock, flags);
7144
7145 return tg;
7146
7147err:
7148 free_sched_group(tg);
7149 return ERR_PTR(-ENOMEM);
7150}
7151
7152/* rcu callback to free various structures associated with a task group */
7153static void free_sched_group_rcu(struct rcu_head *rhp)
7154{
7155 /* now it should be safe to free those cfs_rqs */
7156 free_sched_group(container_of(rhp, struct task_group, rcu));
7157}
7158
7159/* Destroy runqueue etc associated with a task group */
7160void sched_destroy_group(struct task_group *tg)
7161{
7162 unsigned long flags;
7163 int i;
7164
7165 /* end participation in shares distribution */
7166 for_each_possible_cpu(i)
7167 unregister_fair_sched_group(tg, i);
7168
7169 spin_lock_irqsave(&task_group_lock, flags);
7170 list_del_rcu(&tg->list);
7171 list_del_rcu(&tg->siblings);
7172 spin_unlock_irqrestore(&task_group_lock, flags);
7173
7174 /* wait for possible concurrent references to cfs_rqs complete */
7175 call_rcu(&tg->rcu, free_sched_group_rcu);
7176}
7177
7178/* change task's runqueue when it moves between groups.
7179 * The caller of this function should have put the task in its new group
7180 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7181 * reflect its new group.
7182 */
7183void sched_move_task(struct task_struct *tsk)
7184{
7185 int on_rq, running;
7186 unsigned long flags;
7187 struct rq *rq;
7188
7189 rq = task_rq_lock(tsk, &flags);
7190
7191 running = task_current(rq, tsk);
7192 on_rq = tsk->on_rq;
7193
7194 if (on_rq)
7195 dequeue_task(rq, tsk, 0);
7196 if (unlikely(running))
7197 tsk->sched_class->put_prev_task(rq, tsk);
7198
7199#ifdef CONFIG_FAIR_GROUP_SCHED
7200 if (tsk->sched_class->task_move_group)
7201 tsk->sched_class->task_move_group(tsk, on_rq);
7202 else
7203#endif
7204 set_task_rq(tsk, task_cpu(tsk));
7205
7206 if (unlikely(running))
7207 tsk->sched_class->set_curr_task(rq);
7208 if (on_rq)
7209 enqueue_task(rq, tsk, 0);
7210
7211 task_rq_unlock(rq, tsk, &flags);
7212}
7213#endif /* CONFIG_CGROUP_SCHED */
7214
7215#ifdef CONFIG_FAIR_GROUP_SCHED
7216#endif
7217
7218#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7219static unsigned long to_ratio(u64 period, u64 runtime)
7220{
7221 if (runtime == RUNTIME_INF)
7222 return 1ULL << 20;
7223
7224 return div64_u64(runtime << 20, period);
7225}
7226#endif
7227
7228#ifdef CONFIG_RT_GROUP_SCHED
7229/*
7230 * Ensure that the real time constraints are schedulable.
7231 */
7232static DEFINE_MUTEX(rt_constraints_mutex);
7233
7234/* Must be called with tasklist_lock held */
7235static inline int tg_has_rt_tasks(struct task_group *tg)
7236{
7237 struct task_struct *g, *p;
7238
7239 do_each_thread(g, p) {
7240 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7241 return 1;
7242 } while_each_thread(g, p);
7243
7244 return 0;
7245}
7246
7247struct rt_schedulable_data {
7248 struct task_group *tg;
7249 u64 rt_period;
7250 u64 rt_runtime;
7251};
7252
7253static int tg_rt_schedulable(struct task_group *tg, void *data)
7254{
7255 struct rt_schedulable_data *d = data;
7256 struct task_group *child;
7257 unsigned long total, sum = 0;
7258 u64 period, runtime;
7259
7260 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7261 runtime = tg->rt_bandwidth.rt_runtime;
7262
7263 if (tg == d->tg) {
7264 period = d->rt_period;
7265 runtime = d->rt_runtime;
7266 }
7267
7268 /*
7269 * Cannot have more runtime than the period.
7270 */
7271 if (runtime > period && runtime != RUNTIME_INF)
7272 return -EINVAL;
7273
7274 /*
7275 * Ensure we don't starve existing RT tasks.
7276 */
7277 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7278 return -EBUSY;
7279
7280 total = to_ratio(period, runtime);
7281
7282 /*
7283 * Nobody can have more than the global setting allows.
7284 */
7285 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7286 return -EINVAL;
7287
7288 /*
7289 * The sum of our children's runtime should not exceed our own.
7290 */
7291 list_for_each_entry_rcu(child, &tg->children, siblings) {
7292 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7293 runtime = child->rt_bandwidth.rt_runtime;
7294
7295 if (child == d->tg) {
7296 period = d->rt_period;
7297 runtime = d->rt_runtime;
7298 }
7299
7300 sum += to_ratio(period, runtime);
7301 }
7302
7303 if (sum > total)
7304 return -EINVAL;
7305
7306 return 0;
7307}
7308
7309static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7310{
7311 int ret;
7312
7313 struct rt_schedulable_data data = {
7314 .tg = tg,
7315 .rt_period = period,
7316 .rt_runtime = runtime,
7317 };
7318
7319 rcu_read_lock();
7320 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7321 rcu_read_unlock();
7322
7323 return ret;
7324}
7325
7326static int tg_set_rt_bandwidth(struct task_group *tg,
7327 u64 rt_period, u64 rt_runtime)
7328{
7329 int i, err = 0;
7330
7331 mutex_lock(&rt_constraints_mutex);
7332 read_lock(&tasklist_lock);
7333 err = __rt_schedulable(tg, rt_period, rt_runtime);
7334 if (err)
7335 goto unlock;
7336
7337 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7338 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7339 tg->rt_bandwidth.rt_runtime = rt_runtime;
7340
7341 for_each_possible_cpu(i) {
7342 struct rt_rq *rt_rq = tg->rt_rq[i];
7343
7344 raw_spin_lock(&rt_rq->rt_runtime_lock);
7345 rt_rq->rt_runtime = rt_runtime;
7346 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7347 }
7348 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7349unlock:
7350 read_unlock(&tasklist_lock);
7351 mutex_unlock(&rt_constraints_mutex);
7352
7353 return err;
7354}
7355
7356int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7357{
7358 u64 rt_runtime, rt_period;
7359
7360 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7361 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7362 if (rt_runtime_us < 0)
7363 rt_runtime = RUNTIME_INF;
7364
7365 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7366}
7367
7368long sched_group_rt_runtime(struct task_group *tg)
7369{
7370 u64 rt_runtime_us;
7371
7372 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7373 return -1;
7374
7375 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7376 do_div(rt_runtime_us, NSEC_PER_USEC);
7377 return rt_runtime_us;
7378}
7379
7380int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7381{
7382 u64 rt_runtime, rt_period;
7383
7384 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7385 rt_runtime = tg->rt_bandwidth.rt_runtime;
7386
7387 if (rt_period == 0)
7388 return -EINVAL;
7389
7390 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7391}
7392
7393long sched_group_rt_period(struct task_group *tg)
7394{
7395 u64 rt_period_us;
7396
7397 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7398 do_div(rt_period_us, NSEC_PER_USEC);
7399 return rt_period_us;
7400}
7401
7402static int sched_rt_global_constraints(void)
7403{
7404 u64 runtime, period;
7405 int ret = 0;
7406
7407 if (sysctl_sched_rt_period <= 0)
7408 return -EINVAL;
7409
7410 runtime = global_rt_runtime();
7411 period = global_rt_period();
7412
7413 /*
7414 * Sanity check on the sysctl variables.
7415 */
7416 if (runtime > period && runtime != RUNTIME_INF)
7417 return -EINVAL;
7418
7419 mutex_lock(&rt_constraints_mutex);
7420 read_lock(&tasklist_lock);
7421 ret = __rt_schedulable(NULL, 0, 0);
7422 read_unlock(&tasklist_lock);
7423 mutex_unlock(&rt_constraints_mutex);
7424
7425 return ret;
7426}
7427
7428int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7429{
7430 /* Don't accept realtime tasks when there is no way for them to run */
7431 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7432 return 0;
7433
7434 return 1;
7435}
7436
7437#else /* !CONFIG_RT_GROUP_SCHED */
7438static int sched_rt_global_constraints(void)
7439{
7440 unsigned long flags;
7441 int i;
7442
7443 if (sysctl_sched_rt_period <= 0)
7444 return -EINVAL;
7445
7446 /*
7447 * There's always some RT tasks in the root group
7448 * -- migration, kstopmachine etc..
7449 */
7450 if (sysctl_sched_rt_runtime == 0)
7451 return -EBUSY;
7452
7453 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7454 for_each_possible_cpu(i) {
7455 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7456
7457 raw_spin_lock(&rt_rq->rt_runtime_lock);
7458 rt_rq->rt_runtime = global_rt_runtime();
7459 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7460 }
7461 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7462
7463 return 0;
7464}
7465#endif /* CONFIG_RT_GROUP_SCHED */
7466
7467int sched_rt_handler(struct ctl_table *table, int write,
7468 void __user *buffer, size_t *lenp,
7469 loff_t *ppos)
7470{
7471 int ret;
7472 int old_period, old_runtime;
7473 static DEFINE_MUTEX(mutex);
7474
7475 mutex_lock(&mutex);
7476 old_period = sysctl_sched_rt_period;
7477 old_runtime = sysctl_sched_rt_runtime;
7478
7479 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7480
7481 if (!ret && write) {
7482 ret = sched_rt_global_constraints();
7483 if (ret) {
7484 sysctl_sched_rt_period = old_period;
7485 sysctl_sched_rt_runtime = old_runtime;
7486 } else {
7487 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7488 def_rt_bandwidth.rt_period =
7489 ns_to_ktime(global_rt_period());
7490 }
7491 }
7492 mutex_unlock(&mutex);
7493
7494 return ret;
7495}
7496
7497#ifdef CONFIG_CGROUP_SCHED
7498
7499/* return corresponding task_group object of a cgroup */
7500static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7501{
7502 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7503 struct task_group, css);
7504}
7505
7506static struct cgroup_subsys_state *
7507cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7508{
7509 struct task_group *tg, *parent;
7510
7511 if (!cgrp->parent) {
7512 /* This is early initialization for the top cgroup */
7513 return &root_task_group.css;
7514 }
7515
7516 parent = cgroup_tg(cgrp->parent);
7517 tg = sched_create_group(parent);
7518 if (IS_ERR(tg))
7519 return ERR_PTR(-ENOMEM);
7520
7521 return &tg->css;
7522}
7523
7524static void
7525cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7526{
7527 struct task_group *tg = cgroup_tg(cgrp);
7528
7529 sched_destroy_group(tg);
7530}
7531
7532static int
7533cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
7534{
7535#ifdef CONFIG_RT_GROUP_SCHED
7536 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
7537 return -EINVAL;
7538#else
7539 /* We don't support RT-tasks being in separate groups */
7540 if (tsk->sched_class != &fair_sched_class)
7541 return -EINVAL;
7542#endif
7543 return 0;
7544}
7545
7546static void
7547cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
7548{
7549 sched_move_task(tsk);
7550}
7551
7552static void
7553cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7554 struct cgroup *old_cgrp, struct task_struct *task)
7555{
7556 /*
7557 * cgroup_exit() is called in the copy_process() failure path.
7558 * Ignore this case since the task hasn't ran yet, this avoids
7559 * trying to poke a half freed task state from generic code.
7560 */
7561 if (!(task->flags & PF_EXITING))
7562 return;
7563
7564 sched_move_task(task);
7565}
7566
7567#ifdef CONFIG_FAIR_GROUP_SCHED
7568static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7569 u64 shareval)
7570{
7571 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7572}
7573
7574static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7575{
7576 struct task_group *tg = cgroup_tg(cgrp);
7577
7578 return (u64) scale_load_down(tg->shares);
7579}
7580
7581#ifdef CONFIG_CFS_BANDWIDTH
7582static DEFINE_MUTEX(cfs_constraints_mutex);
7583
7584const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7585const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7586
7587static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7588
7589static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7590{
7591 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7592 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7593
7594 if (tg == &root_task_group)
7595 return -EINVAL;
7596
7597 /*
7598 * Ensure we have at some amount of bandwidth every period. This is
7599 * to prevent reaching a state of large arrears when throttled via
7600 * entity_tick() resulting in prolonged exit starvation.
7601 */
7602 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7603 return -EINVAL;
7604
7605 /*
7606 * Likewise, bound things on the otherside by preventing insane quota
7607 * periods. This also allows us to normalize in computing quota
7608 * feasibility.
7609 */
7610 if (period > max_cfs_quota_period)
7611 return -EINVAL;
7612
7613 mutex_lock(&cfs_constraints_mutex);
7614 ret = __cfs_schedulable(tg, period, quota);
7615 if (ret)
7616 goto out_unlock;
7617
7618 runtime_enabled = quota != RUNTIME_INF;
7619 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7620 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7621 raw_spin_lock_irq(&cfs_b->lock);
7622 cfs_b->period = ns_to_ktime(period);
7623 cfs_b->quota = quota;
7624
7625 __refill_cfs_bandwidth_runtime(cfs_b);
7626 /* restart the period timer (if active) to handle new period expiry */
7627 if (runtime_enabled && cfs_b->timer_active) {
7628 /* force a reprogram */
7629 cfs_b->timer_active = 0;
7630 __start_cfs_bandwidth(cfs_b);
7631 }
7632 raw_spin_unlock_irq(&cfs_b->lock);
7633
7634 for_each_possible_cpu(i) {
7635 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7636 struct rq *rq = cfs_rq->rq;
7637
7638 raw_spin_lock_irq(&rq->lock);
7639 cfs_rq->runtime_enabled = runtime_enabled;
7640 cfs_rq->runtime_remaining = 0;
7641
7642 if (cfs_rq->throttled)
7643 unthrottle_cfs_rq(cfs_rq);
7644 raw_spin_unlock_irq(&rq->lock);
7645 }
7646out_unlock:
7647 mutex_unlock(&cfs_constraints_mutex);
7648
7649 return ret;
7650}
7651
7652int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7653{
7654 u64 quota, period;
7655
7656 period = ktime_to_ns(tg->cfs_bandwidth.period);
7657 if (cfs_quota_us < 0)
7658 quota = RUNTIME_INF;
7659 else
7660 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7661
7662 return tg_set_cfs_bandwidth(tg, period, quota);
7663}
7664
7665long tg_get_cfs_quota(struct task_group *tg)
7666{
7667 u64 quota_us;
7668
7669 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7670 return -1;
7671
7672 quota_us = tg->cfs_bandwidth.quota;
7673 do_div(quota_us, NSEC_PER_USEC);
7674
7675 return quota_us;
7676}
7677
7678int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7679{
7680 u64 quota, period;
7681
7682 period = (u64)cfs_period_us * NSEC_PER_USEC;
7683 quota = tg->cfs_bandwidth.quota;
7684
7685 if (period <= 0)
7686 return -EINVAL;
7687
7688 return tg_set_cfs_bandwidth(tg, period, quota);
7689}
7690
7691long tg_get_cfs_period(struct task_group *tg)
7692{
7693 u64 cfs_period_us;
7694
7695 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7696 do_div(cfs_period_us, NSEC_PER_USEC);
7697
7698 return cfs_period_us;
7699}
7700
7701static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7702{
7703 return tg_get_cfs_quota(cgroup_tg(cgrp));
7704}
7705
7706static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7707 s64 cfs_quota_us)
7708{
7709 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7710}
7711
7712static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7713{
7714 return tg_get_cfs_period(cgroup_tg(cgrp));
7715}
7716
7717static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7718 u64 cfs_period_us)
7719{
7720 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7721}
7722
7723struct cfs_schedulable_data {
7724 struct task_group *tg;
7725 u64 period, quota;
7726};
7727
7728/*
7729 * normalize group quota/period to be quota/max_period
7730 * note: units are usecs
7731 */
7732static u64 normalize_cfs_quota(struct task_group *tg,
7733 struct cfs_schedulable_data *d)
7734{
7735 u64 quota, period;
7736
7737 if (tg == d->tg) {
7738 period = d->period;
7739 quota = d->quota;
7740 } else {
7741 period = tg_get_cfs_period(tg);
7742 quota = tg_get_cfs_quota(tg);
7743 }
7744
7745 /* note: these should typically be equivalent */
7746 if (quota == RUNTIME_INF || quota == -1)
7747 return RUNTIME_INF;
7748
7749 return to_ratio(period, quota);
7750}
7751
7752static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7753{
7754 struct cfs_schedulable_data *d = data;
7755 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7756 s64 quota = 0, parent_quota = -1;
7757
7758 if (!tg->parent) {
7759 quota = RUNTIME_INF;
7760 } else {
7761 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7762
7763 quota = normalize_cfs_quota(tg, d);
7764 parent_quota = parent_b->hierarchal_quota;
7765
7766 /*
7767 * ensure max(child_quota) <= parent_quota, inherit when no
7768 * limit is set
7769 */
7770 if (quota == RUNTIME_INF)
7771 quota = parent_quota;
7772 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7773 return -EINVAL;
7774 }
7775 cfs_b->hierarchal_quota = quota;
7776
7777 return 0;
7778}
7779
7780static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7781{
7782 int ret;
7783 struct cfs_schedulable_data data = {
7784 .tg = tg,
7785 .period = period,
7786 .quota = quota,
7787 };
7788
7789 if (quota != RUNTIME_INF) {
7790 do_div(data.period, NSEC_PER_USEC);
7791 do_div(data.quota, NSEC_PER_USEC);
7792 }
7793
7794 rcu_read_lock();
7795 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7796 rcu_read_unlock();
7797
7798 return ret;
7799}
7800
7801static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7802 struct cgroup_map_cb *cb)
7803{
7804 struct task_group *tg = cgroup_tg(cgrp);
7805 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7806
7807 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7808 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7809 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7810
7811 return 0;
7812}
7813#endif /* CONFIG_CFS_BANDWIDTH */
7814#endif /* CONFIG_FAIR_GROUP_SCHED */
7815
7816#ifdef CONFIG_RT_GROUP_SCHED
7817static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7818 s64 val)
7819{
7820 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7821}
7822
7823static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7824{
7825 return sched_group_rt_runtime(cgroup_tg(cgrp));
7826}
7827
7828static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7829 u64 rt_period_us)
7830{
7831 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7832}
7833
7834static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7835{
7836 return sched_group_rt_period(cgroup_tg(cgrp));
7837}
7838#endif /* CONFIG_RT_GROUP_SCHED */
7839
7840static struct cftype cpu_files[] = {
7841#ifdef CONFIG_FAIR_GROUP_SCHED
7842 {
7843 .name = "shares",
7844 .read_u64 = cpu_shares_read_u64,
7845 .write_u64 = cpu_shares_write_u64,
7846 },
7847#endif
7848#ifdef CONFIG_CFS_BANDWIDTH
7849 {
7850 .name = "cfs_quota_us",
7851 .read_s64 = cpu_cfs_quota_read_s64,
7852 .write_s64 = cpu_cfs_quota_write_s64,
7853 },
7854 {
7855 .name = "cfs_period_us",
7856 .read_u64 = cpu_cfs_period_read_u64,
7857 .write_u64 = cpu_cfs_period_write_u64,
7858 },
7859 {
7860 .name = "stat",
7861 .read_map = cpu_stats_show,
7862 },
7863#endif
7864#ifdef CONFIG_RT_GROUP_SCHED
7865 {
7866 .name = "rt_runtime_us",
7867 .read_s64 = cpu_rt_runtime_read,
7868 .write_s64 = cpu_rt_runtime_write,
7869 },
7870 {
7871 .name = "rt_period_us",
7872 .read_u64 = cpu_rt_period_read_uint,
7873 .write_u64 = cpu_rt_period_write_uint,
7874 },
7875#endif
7876};
7877
7878static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7879{
7880 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7881}
7882
7883struct cgroup_subsys cpu_cgroup_subsys = {
7884 .name = "cpu",
7885 .create = cpu_cgroup_create,
7886 .destroy = cpu_cgroup_destroy,
7887 .can_attach_task = cpu_cgroup_can_attach_task,
7888 .attach_task = cpu_cgroup_attach_task,
7889 .exit = cpu_cgroup_exit,
7890 .populate = cpu_cgroup_populate,
7891 .subsys_id = cpu_cgroup_subsys_id,
7892 .early_init = 1,
7893};
7894
7895#endif /* CONFIG_CGROUP_SCHED */
7896
7897#ifdef CONFIG_CGROUP_CPUACCT
7898
7899/*
7900 * CPU accounting code for task groups.
7901 *
7902 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7903 * (balbir@in.ibm.com).
7904 */
7905
7906/* create a new cpu accounting group */
7907static struct cgroup_subsys_state *cpuacct_create(
7908 struct cgroup_subsys *ss, struct cgroup *cgrp)
7909{
7910 struct cpuacct *ca;
7911
7912 if (!cgrp->parent)
7913 return &root_cpuacct.css;
7914
7915 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7916 if (!ca)
7917 goto out;
7918
7919 ca->cpuusage = alloc_percpu(u64);
7920 if (!ca->cpuusage)
7921 goto out_free_ca;
7922
7923 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7924 if (!ca->cpustat)
7925 goto out_free_cpuusage;
7926
7927 return &ca->css;
7928
7929out_free_cpuusage:
7930 free_percpu(ca->cpuusage);
7931out_free_ca:
7932 kfree(ca);
7933out:
7934 return ERR_PTR(-ENOMEM);
7935}
7936
7937/* destroy an existing cpu accounting group */
7938static void
7939cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7940{
7941 struct cpuacct *ca = cgroup_ca(cgrp);
7942
7943 free_percpu(ca->cpustat);
7944 free_percpu(ca->cpuusage);
7945 kfree(ca);
7946}
7947
7948static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7949{
7950 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7951 u64 data;
7952
7953#ifndef CONFIG_64BIT
7954 /*
7955 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7956 */
7957 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7958 data = *cpuusage;
7959 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7960#else
7961 data = *cpuusage;
7962#endif
7963
7964 return data;
7965}
7966
7967static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7968{
7969 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7970
7971#ifndef CONFIG_64BIT
7972 /*
7973 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
7974 */
7975 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7976 *cpuusage = val;
7977 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7978#else
7979 *cpuusage = val;
7980#endif
7981}
7982
7983/* return total cpu usage (in nanoseconds) of a group */
7984static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7985{
7986 struct cpuacct *ca = cgroup_ca(cgrp);
7987 u64 totalcpuusage = 0;
7988 int i;
7989
7990 for_each_present_cpu(i)
7991 totalcpuusage += cpuacct_cpuusage_read(ca, i);
7992
7993 return totalcpuusage;
7994}
7995
7996static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
7997 u64 reset)
7998{
7999 struct cpuacct *ca = cgroup_ca(cgrp);
8000 int err = 0;
8001 int i;
8002
8003 if (reset) {
8004 err = -EINVAL;
8005 goto out;
8006 }
8007
8008 for_each_present_cpu(i)
8009 cpuacct_cpuusage_write(ca, i, 0);
8010
8011out:
8012 return err;
8013}
8014
8015static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8016 struct seq_file *m)
8017{
8018 struct cpuacct *ca = cgroup_ca(cgroup);
8019 u64 percpu;
8020 int i;
8021
8022 for_each_present_cpu(i) {
8023 percpu = cpuacct_cpuusage_read(ca, i);
8024 seq_printf(m, "%llu ", (unsigned long long) percpu);
8025 }
8026 seq_printf(m, "\n");
8027 return 0;
8028}
8029
8030static const char *cpuacct_stat_desc[] = {
8031 [CPUACCT_STAT_USER] = "user",
8032 [CPUACCT_STAT_SYSTEM] = "system",
8033};
8034
8035static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8036 struct cgroup_map_cb *cb)
8037{
8038 struct cpuacct *ca = cgroup_ca(cgrp);
8039 int cpu;
8040 s64 val = 0;
8041
8042 for_each_online_cpu(cpu) {
8043 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8044 val += kcpustat->cpustat[CPUTIME_USER];
8045 val += kcpustat->cpustat[CPUTIME_NICE];
8046 }
8047 val = cputime64_to_clock_t(val);
8048 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8049
8050 val = 0;
8051 for_each_online_cpu(cpu) {
8052 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8053 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8054 val += kcpustat->cpustat[CPUTIME_IRQ];
8055 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8056 }
8057
8058 val = cputime64_to_clock_t(val);
8059 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8060
8061 return 0;
8062}
8063
8064static struct cftype files[] = {
8065 {
8066 .name = "usage",
8067 .read_u64 = cpuusage_read,
8068 .write_u64 = cpuusage_write,
8069 },
8070 {
8071 .name = "usage_percpu",
8072 .read_seq_string = cpuacct_percpu_seq_read,
8073 },
8074 {
8075 .name = "stat",
8076 .read_map = cpuacct_stats_show,
8077 },
8078};
8079
8080static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8081{
8082 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8083}
8084
8085/*
8086 * charge this task's execution time to its accounting group.
8087 *
8088 * called with rq->lock held.
8089 */
8090void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8091{
8092 struct cpuacct *ca;
8093 int cpu;
8094
8095 if (unlikely(!cpuacct_subsys.active))
8096 return;
8097
8098 cpu = task_cpu(tsk);
8099
8100 rcu_read_lock();
8101
8102 ca = task_ca(tsk);
8103
8104 for (; ca; ca = parent_ca(ca)) {
8105 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8106 *cpuusage += cputime;
8107 }
8108
8109 rcu_read_unlock();
8110}
8111
8112struct cgroup_subsys cpuacct_subsys = {
8113 .name = "cpuacct",
8114 .create = cpuacct_create,
8115 .destroy = cpuacct_destroy,
8116 .populate = cpuacct_populate,
8117 .subsys_id = cpuacct_subsys_id,
8118};
8119#endif /* CONFIG_CGROUP_CPUACCT */