aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2009-12-05 18:30:49 -0500
committerLinus Torvalds <torvalds@linux-foundation.org>2009-12-05 18:30:49 -0500
commit897e81bea1fcfcd2c5cdb720c9efdb25da9ff374 (patch)
tree92cf33ed2c35c1ece633f09365702f1c8e24d415 /kernel/sched.c
parentc3fa27d1367fac63ac8533d6f20ea851d0d70a10 (diff)
parent0cf55e1ec08bb5a22e068309e2d8ba1180ab4239 (diff)
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (35 commits) sched, cputime: Introduce thread_group_times() sched, cputime: Cleanups related to task_times() Revert "sched, x86: Optimize branch hint in __switch_to()" sched: Fix isolcpus boot option sched: Revert 498657a478c60be092208422fefa9c7b248729c2 sched, time: Define nsecs_to_jiffies() sched: Remove task_{u,s,g}time() sched: Introduce task_times() to replace task_{u,s}time() pair sched: Limit the number of scheduler debug messages sched.c: Call debug_show_all_locks() when dumping all tasks sched, x86: Optimize branch hint in __switch_to() sched: Optimize branch hint in context_switch() sched: Optimize branch hint in pick_next_task_fair() sched_feat_write(): Update ppos instead of file->f_pos sched: Sched_rt_periodic_timer vs cpu hotplug sched, kvm: Fix race condition involving sched_in_preempt_notifers sched: More generic WAKE_AFFINE vs select_idle_sibling() sched: Cleanup select_task_rq_fair() sched: Fix granularity of task_u/stime() sched: Fix/add missing update_rq_clock() calls ...
Diffstat (limited to 'kernel/sched.c')
-rw-r--r--kernel/sched.c270
1 files changed, 174 insertions, 96 deletions
diff --git a/kernel/sched.c b/kernel/sched.c
index 6ae2739b8f1..aa31244caa9 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -535,14 +535,12 @@ struct rq {
535 #define CPU_LOAD_IDX_MAX 5 535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537#ifdef CONFIG_NO_HZ 537#ifdef CONFIG_NO_HZ
538 unsigned long last_tick_seen;
539 unsigned char in_nohz_recently; 538 unsigned char in_nohz_recently;
540#endif 539#endif
541 /* capture load from *all* tasks on this cpu: */ 540 /* capture load from *all* tasks on this cpu: */
542 struct load_weight load; 541 struct load_weight load;
543 unsigned long nr_load_updates; 542 unsigned long nr_load_updates;
544 u64 nr_switches; 543 u64 nr_switches;
545 u64 nr_migrations_in;
546 544
547 struct cfs_rq cfs; 545 struct cfs_rq cfs;
548 struct rt_rq rt; 546 struct rt_rq rt;
@@ -591,6 +589,8 @@ struct rq {
591 589
592 u64 rt_avg; 590 u64 rt_avg;
593 u64 age_stamp; 591 u64 age_stamp;
592 u64 idle_stamp;
593 u64 avg_idle;
594#endif 594#endif
595 595
596 /* calc_load related fields */ 596 /* calc_load related fields */
@@ -772,7 +772,7 @@ sched_feat_write(struct file *filp, const char __user *ubuf,
772 if (!sched_feat_names[i]) 772 if (!sched_feat_names[i])
773 return -EINVAL; 773 return -EINVAL;
774 774
775 filp->f_pos += cnt; 775 *ppos += cnt;
776 776
777 return cnt; 777 return cnt;
778} 778}
@@ -2017,6 +2017,7 @@ void kthread_bind(struct task_struct *p, unsigned int cpu)
2017 } 2017 }
2018 2018
2019 spin_lock_irqsave(&rq->lock, flags); 2019 spin_lock_irqsave(&rq->lock, flags);
2020 update_rq_clock(rq);
2020 set_task_cpu(p, cpu); 2021 set_task_cpu(p, cpu);
2021 p->cpus_allowed = cpumask_of_cpu(cpu); 2022 p->cpus_allowed = cpumask_of_cpu(cpu);
2022 p->rt.nr_cpus_allowed = 1; 2023 p->rt.nr_cpus_allowed = 1;
@@ -2078,7 +2079,6 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2078#endif 2079#endif
2079 if (old_cpu != new_cpu) { 2080 if (old_cpu != new_cpu) {
2080 p->se.nr_migrations++; 2081 p->se.nr_migrations++;
2081 new_rq->nr_migrations_in++;
2082#ifdef CONFIG_SCHEDSTATS 2082#ifdef CONFIG_SCHEDSTATS
2083 if (task_hot(p, old_rq->clock, NULL)) 2083 if (task_hot(p, old_rq->clock, NULL))
2084 schedstat_inc(p, se.nr_forced2_migrations); 2084 schedstat_inc(p, se.nr_forced2_migrations);
@@ -2115,6 +2115,7 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2115 * it is sufficient to simply update the task's cpu field. 2115 * it is sufficient to simply update the task's cpu field.
2116 */ 2116 */
2117 if (!p->se.on_rq && !task_running(rq, p)) { 2117 if (!p->se.on_rq && !task_running(rq, p)) {
2118 update_rq_clock(rq);
2118 set_task_cpu(p, dest_cpu); 2119 set_task_cpu(p, dest_cpu);
2119 return 0; 2120 return 0;
2120 } 2121 }
@@ -2376,14 +2377,15 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state,
2376 task_rq_unlock(rq, &flags); 2377 task_rq_unlock(rq, &flags);
2377 2378
2378 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags); 2379 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2379 if (cpu != orig_cpu) 2380 if (cpu != orig_cpu) {
2381 local_irq_save(flags);
2382 rq = cpu_rq(cpu);
2383 update_rq_clock(rq);
2380 set_task_cpu(p, cpu); 2384 set_task_cpu(p, cpu);
2381 2385 local_irq_restore(flags);
2386 }
2382 rq = task_rq_lock(p, &flags); 2387 rq = task_rq_lock(p, &flags);
2383 2388
2384 if (rq != orig_rq)
2385 update_rq_clock(rq);
2386
2387 WARN_ON(p->state != TASK_WAKING); 2389 WARN_ON(p->state != TASK_WAKING);
2388 cpu = task_cpu(p); 2390 cpu = task_cpu(p);
2389 2391
@@ -2440,6 +2442,17 @@ out_running:
2440#ifdef CONFIG_SMP 2442#ifdef CONFIG_SMP
2441 if (p->sched_class->task_wake_up) 2443 if (p->sched_class->task_wake_up)
2442 p->sched_class->task_wake_up(rq, p); 2444 p->sched_class->task_wake_up(rq, p);
2445
2446 if (unlikely(rq->idle_stamp)) {
2447 u64 delta = rq->clock - rq->idle_stamp;
2448 u64 max = 2*sysctl_sched_migration_cost;
2449
2450 if (delta > max)
2451 rq->avg_idle = max;
2452 else
2453 update_avg(&rq->avg_idle, delta);
2454 rq->idle_stamp = 0;
2455 }
2443#endif 2456#endif
2444out: 2457out:
2445 task_rq_unlock(rq, &flags); 2458 task_rq_unlock(rq, &flags);
@@ -2545,6 +2558,7 @@ static void __sched_fork(struct task_struct *p)
2545void sched_fork(struct task_struct *p, int clone_flags) 2558void sched_fork(struct task_struct *p, int clone_flags)
2546{ 2559{
2547 int cpu = get_cpu(); 2560 int cpu = get_cpu();
2561 unsigned long flags;
2548 2562
2549 __sched_fork(p); 2563 __sched_fork(p);
2550 2564
@@ -2581,7 +2595,10 @@ void sched_fork(struct task_struct *p, int clone_flags)
2581#ifdef CONFIG_SMP 2595#ifdef CONFIG_SMP
2582 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0); 2596 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2583#endif 2597#endif
2598 local_irq_save(flags);
2599 update_rq_clock(cpu_rq(cpu));
2584 set_task_cpu(p, cpu); 2600 set_task_cpu(p, cpu);
2601 local_irq_restore(flags);
2585 2602
2586#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 2603#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2587 if (likely(sched_info_on())) 2604 if (likely(sched_info_on()))
@@ -2848,14 +2865,14 @@ context_switch(struct rq *rq, struct task_struct *prev,
2848 */ 2865 */
2849 arch_start_context_switch(prev); 2866 arch_start_context_switch(prev);
2850 2867
2851 if (unlikely(!mm)) { 2868 if (likely(!mm)) {
2852 next->active_mm = oldmm; 2869 next->active_mm = oldmm;
2853 atomic_inc(&oldmm->mm_count); 2870 atomic_inc(&oldmm->mm_count);
2854 enter_lazy_tlb(oldmm, next); 2871 enter_lazy_tlb(oldmm, next);
2855 } else 2872 } else
2856 switch_mm(oldmm, mm, next); 2873 switch_mm(oldmm, mm, next);
2857 2874
2858 if (unlikely(!prev->mm)) { 2875 if (likely(!prev->mm)) {
2859 prev->active_mm = NULL; 2876 prev->active_mm = NULL;
2860 rq->prev_mm = oldmm; 2877 rq->prev_mm = oldmm;
2861 } 2878 }
@@ -3018,15 +3035,6 @@ static void calc_load_account_active(struct rq *this_rq)
3018} 3035}
3019 3036
3020/* 3037/*
3021 * Externally visible per-cpu scheduler statistics:
3022 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3023 */
3024u64 cpu_nr_migrations(int cpu)
3025{
3026 return cpu_rq(cpu)->nr_migrations_in;
3027}
3028
3029/*
3030 * Update rq->cpu_load[] statistics. This function is usually called every 3038 * Update rq->cpu_load[] statistics. This function is usually called every
3031 * scheduler tick (TICK_NSEC). 3039 * scheduler tick (TICK_NSEC).
3032 */ 3040 */
@@ -4126,7 +4134,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
4126 unsigned long flags; 4134 unsigned long flags;
4127 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); 4135 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4128 4136
4129 cpumask_setall(cpus); 4137 cpumask_copy(cpus, cpu_online_mask);
4130 4138
4131 /* 4139 /*
4132 * When power savings policy is enabled for the parent domain, idle 4140 * When power savings policy is enabled for the parent domain, idle
@@ -4289,7 +4297,7 @@ load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4289 int all_pinned = 0; 4297 int all_pinned = 0;
4290 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); 4298 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4291 4299
4292 cpumask_setall(cpus); 4300 cpumask_copy(cpus, cpu_online_mask);
4293 4301
4294 /* 4302 /*
4295 * When power savings policy is enabled for the parent domain, idle 4303 * When power savings policy is enabled for the parent domain, idle
@@ -4429,6 +4437,11 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
4429 int pulled_task = 0; 4437 int pulled_task = 0;
4430 unsigned long next_balance = jiffies + HZ; 4438 unsigned long next_balance = jiffies + HZ;
4431 4439
4440 this_rq->idle_stamp = this_rq->clock;
4441
4442 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4443 return;
4444
4432 for_each_domain(this_cpu, sd) { 4445 for_each_domain(this_cpu, sd) {
4433 unsigned long interval; 4446 unsigned long interval;
4434 4447
@@ -4443,8 +4456,10 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
4443 interval = msecs_to_jiffies(sd->balance_interval); 4456 interval = msecs_to_jiffies(sd->balance_interval);
4444 if (time_after(next_balance, sd->last_balance + interval)) 4457 if (time_after(next_balance, sd->last_balance + interval))
4445 next_balance = sd->last_balance + interval; 4458 next_balance = sd->last_balance + interval;
4446 if (pulled_task) 4459 if (pulled_task) {
4460 this_rq->idle_stamp = 0;
4447 break; 4461 break;
4462 }
4448 } 4463 }
4449 if (pulled_task || time_after(jiffies, this_rq->next_balance)) { 4464 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4450 /* 4465 /*
@@ -5046,8 +5061,13 @@ static void account_guest_time(struct task_struct *p, cputime_t cputime,
5046 p->gtime = cputime_add(p->gtime, cputime); 5061 p->gtime = cputime_add(p->gtime, cputime);
5047 5062
5048 /* Add guest time to cpustat. */ 5063 /* Add guest time to cpustat. */
5049 cpustat->user = cputime64_add(cpustat->user, tmp); 5064 if (TASK_NICE(p) > 0) {
5050 cpustat->guest = cputime64_add(cpustat->guest, tmp); 5065 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5066 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5067 } else {
5068 cpustat->user = cputime64_add(cpustat->user, tmp);
5069 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5070 }
5051} 5071}
5052 5072
5053/* 5073/*
@@ -5162,60 +5182,86 @@ void account_idle_ticks(unsigned long ticks)
5162 * Use precise platform statistics if available: 5182 * Use precise platform statistics if available:
5163 */ 5183 */
5164#ifdef CONFIG_VIRT_CPU_ACCOUNTING 5184#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5165cputime_t task_utime(struct task_struct *p) 5185void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5166{ 5186{
5167 return p->utime; 5187 *ut = p->utime;
5188 *st = p->stime;
5168} 5189}
5169 5190
5170cputime_t task_stime(struct task_struct *p) 5191void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5171{ 5192{
5172 return p->stime; 5193 struct task_cputime cputime;
5194
5195 thread_group_cputime(p, &cputime);
5196
5197 *ut = cputime.utime;
5198 *st = cputime.stime;
5173} 5199}
5174#else 5200#else
5175cputime_t task_utime(struct task_struct *p) 5201
5202#ifndef nsecs_to_cputime
5203# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
5204#endif
5205
5206void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5176{ 5207{
5177 clock_t utime = cputime_to_clock_t(p->utime), 5208 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5178 total = utime + cputime_to_clock_t(p->stime);
5179 u64 temp;
5180 5209
5181 /* 5210 /*
5182 * Use CFS's precise accounting: 5211 * Use CFS's precise accounting:
5183 */ 5212 */
5184 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); 5213 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5185 5214
5186 if (total) { 5215 if (total) {
5187 temp *= utime; 5216 u64 temp;
5217
5218 temp = (u64)(rtime * utime);
5188 do_div(temp, total); 5219 do_div(temp, total);
5189 } 5220 utime = (cputime_t)temp;
5190 utime = (clock_t)temp; 5221 } else
5222 utime = rtime;
5223
5224 /*
5225 * Compare with previous values, to keep monotonicity:
5226 */
5227 p->prev_utime = max(p->prev_utime, utime);
5228 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5191 5229
5192 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); 5230 *ut = p->prev_utime;
5193 return p->prev_utime; 5231 *st = p->prev_stime;
5194} 5232}
5195 5233
5196cputime_t task_stime(struct task_struct *p) 5234/*
5235 * Must be called with siglock held.
5236 */
5237void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5197{ 5238{
5198 clock_t stime; 5239 struct signal_struct *sig = p->signal;
5240 struct task_cputime cputime;
5241 cputime_t rtime, utime, total;
5199 5242
5200 /* 5243 thread_group_cputime(p, &cputime);
5201 * Use CFS's precise accounting. (we subtract utime from
5202 * the total, to make sure the total observed by userspace
5203 * grows monotonically - apps rely on that):
5204 */
5205 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5206 cputime_to_clock_t(task_utime(p));
5207 5244
5208 if (stime >= 0) 5245 total = cputime_add(cputime.utime, cputime.stime);
5209 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); 5246 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5210 5247
5211 return p->prev_stime; 5248 if (total) {
5212} 5249 u64 temp;
5213#endif
5214 5250
5215inline cputime_t task_gtime(struct task_struct *p) 5251 temp = (u64)(rtime * cputime.utime);
5216{ 5252 do_div(temp, total);
5217 return p->gtime; 5253 utime = (cputime_t)temp;
5254 } else
5255 utime = rtime;
5256
5257 sig->prev_utime = max(sig->prev_utime, utime);
5258 sig->prev_stime = max(sig->prev_stime,
5259 cputime_sub(rtime, sig->prev_utime));
5260
5261 *ut = sig->prev_utime;
5262 *st = sig->prev_stime;
5218} 5263}
5264#endif
5219 5265
5220/* 5266/*
5221 * This function gets called by the timer code, with HZ frequency. 5267 * This function gets called by the timer code, with HZ frequency.
@@ -6175,22 +6221,14 @@ __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6175 BUG_ON(p->se.on_rq); 6221 BUG_ON(p->se.on_rq);
6176 6222
6177 p->policy = policy; 6223 p->policy = policy;
6178 switch (p->policy) {
6179 case SCHED_NORMAL:
6180 case SCHED_BATCH:
6181 case SCHED_IDLE:
6182 p->sched_class = &fair_sched_class;
6183 break;
6184 case SCHED_FIFO:
6185 case SCHED_RR:
6186 p->sched_class = &rt_sched_class;
6187 break;
6188 }
6189
6190 p->rt_priority = prio; 6224 p->rt_priority = prio;
6191 p->normal_prio = normal_prio(p); 6225 p->normal_prio = normal_prio(p);
6192 /* we are holding p->pi_lock already */ 6226 /* we are holding p->pi_lock already */
6193 p->prio = rt_mutex_getprio(p); 6227 p->prio = rt_mutex_getprio(p);
6228 if (rt_prio(p->prio))
6229 p->sched_class = &rt_sched_class;
6230 else
6231 p->sched_class = &fair_sched_class;
6194 set_load_weight(p); 6232 set_load_weight(p);
6195} 6233}
6196 6234
@@ -6935,7 +6973,7 @@ void show_state_filter(unsigned long state_filter)
6935 /* 6973 /*
6936 * Only show locks if all tasks are dumped: 6974 * Only show locks if all tasks are dumped:
6937 */ 6975 */
6938 if (state_filter == -1) 6976 if (!state_filter)
6939 debug_show_all_locks(); 6977 debug_show_all_locks();
6940} 6978}
6941 6979
@@ -7740,6 +7778,16 @@ early_initcall(migration_init);
7740 7778
7741#ifdef CONFIG_SCHED_DEBUG 7779#ifdef CONFIG_SCHED_DEBUG
7742 7780
7781static __read_mostly int sched_domain_debug_enabled;
7782
7783static int __init sched_domain_debug_setup(char *str)
7784{
7785 sched_domain_debug_enabled = 1;
7786
7787 return 0;
7788}
7789early_param("sched_debug", sched_domain_debug_setup);
7790
7743static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 7791static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7744 struct cpumask *groupmask) 7792 struct cpumask *groupmask)
7745{ 7793{
@@ -7826,6 +7874,9 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu)
7826 cpumask_var_t groupmask; 7874 cpumask_var_t groupmask;
7827 int level = 0; 7875 int level = 0;
7828 7876
7877 if (!sched_domain_debug_enabled)
7878 return;
7879
7829 if (!sd) { 7880 if (!sd) {
7830 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 7881 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7831 return; 7882 return;
@@ -7905,6 +7956,8 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7905 7956
7906static void free_rootdomain(struct root_domain *rd) 7957static void free_rootdomain(struct root_domain *rd)
7907{ 7958{
7959 synchronize_sched();
7960
7908 cpupri_cleanup(&rd->cpupri); 7961 cpupri_cleanup(&rd->cpupri);
7909 7962
7910 free_cpumask_var(rd->rto_mask); 7963 free_cpumask_var(rd->rto_mask);
@@ -8045,6 +8098,7 @@ static cpumask_var_t cpu_isolated_map;
8045/* Setup the mask of cpus configured for isolated domains */ 8098/* Setup the mask of cpus configured for isolated domains */
8046static int __init isolated_cpu_setup(char *str) 8099static int __init isolated_cpu_setup(char *str)
8047{ 8100{
8101 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8048 cpulist_parse(str, cpu_isolated_map); 8102 cpulist_parse(str, cpu_isolated_map);
8049 return 1; 8103 return 1;
8050} 8104}
@@ -8881,7 +8935,7 @@ static int build_sched_domains(const struct cpumask *cpu_map)
8881 return __build_sched_domains(cpu_map, NULL); 8935 return __build_sched_domains(cpu_map, NULL);
8882} 8936}
8883 8937
8884static struct cpumask *doms_cur; /* current sched domains */ 8938static cpumask_var_t *doms_cur; /* current sched domains */
8885static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 8939static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8886static struct sched_domain_attr *dattr_cur; 8940static struct sched_domain_attr *dattr_cur;
8887 /* attribues of custom domains in 'doms_cur' */ 8941 /* attribues of custom domains in 'doms_cur' */
@@ -8903,6 +8957,31 @@ int __attribute__((weak)) arch_update_cpu_topology(void)
8903 return 0; 8957 return 0;
8904} 8958}
8905 8959
8960cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8961{
8962 int i;
8963 cpumask_var_t *doms;
8964
8965 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8966 if (!doms)
8967 return NULL;
8968 for (i = 0; i < ndoms; i++) {
8969 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8970 free_sched_domains(doms, i);
8971 return NULL;
8972 }
8973 }
8974 return doms;
8975}
8976
8977void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8978{
8979 unsigned int i;
8980 for (i = 0; i < ndoms; i++)
8981 free_cpumask_var(doms[i]);
8982 kfree(doms);
8983}
8984
8906/* 8985/*
8907 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 8986 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8908 * For now this just excludes isolated cpus, but could be used to 8987 * For now this just excludes isolated cpus, but could be used to
@@ -8914,12 +8993,12 @@ static int arch_init_sched_domains(const struct cpumask *cpu_map)
8914 8993
8915 arch_update_cpu_topology(); 8994 arch_update_cpu_topology();
8916 ndoms_cur = 1; 8995 ndoms_cur = 1;
8917 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL); 8996 doms_cur = alloc_sched_domains(ndoms_cur);
8918 if (!doms_cur) 8997 if (!doms_cur)
8919 doms_cur = fallback_doms; 8998 doms_cur = &fallback_doms;
8920 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map); 8999 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
8921 dattr_cur = NULL; 9000 dattr_cur = NULL;
8922 err = build_sched_domains(doms_cur); 9001 err = build_sched_domains(doms_cur[0]);
8923 register_sched_domain_sysctl(); 9002 register_sched_domain_sysctl();
8924 9003
8925 return err; 9004 return err;
@@ -8969,19 +9048,19 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8969 * doms_new[] to the current sched domain partitioning, doms_cur[]. 9048 * doms_new[] to the current sched domain partitioning, doms_cur[].
8970 * It destroys each deleted domain and builds each new domain. 9049 * It destroys each deleted domain and builds each new domain.
8971 * 9050 *
8972 * 'doms_new' is an array of cpumask's of length 'ndoms_new'. 9051 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
8973 * The masks don't intersect (don't overlap.) We should setup one 9052 * The masks don't intersect (don't overlap.) We should setup one
8974 * sched domain for each mask. CPUs not in any of the cpumasks will 9053 * sched domain for each mask. CPUs not in any of the cpumasks will
8975 * not be load balanced. If the same cpumask appears both in the 9054 * not be load balanced. If the same cpumask appears both in the
8976 * current 'doms_cur' domains and in the new 'doms_new', we can leave 9055 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8977 * it as it is. 9056 * it as it is.
8978 * 9057 *
8979 * The passed in 'doms_new' should be kmalloc'd. This routine takes 9058 * The passed in 'doms_new' should be allocated using
8980 * ownership of it and will kfree it when done with it. If the caller 9059 * alloc_sched_domains. This routine takes ownership of it and will
8981 * failed the kmalloc call, then it can pass in doms_new == NULL && 9060 * free_sched_domains it when done with it. If the caller failed the
8982 * ndoms_new == 1, and partition_sched_domains() will fallback to 9061 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
8983 * the single partition 'fallback_doms', it also forces the domains 9062 * and partition_sched_domains() will fallback to the single partition
8984 * to be rebuilt. 9063 * 'fallback_doms', it also forces the domains to be rebuilt.
8985 * 9064 *
8986 * If doms_new == NULL it will be replaced with cpu_online_mask. 9065 * If doms_new == NULL it will be replaced with cpu_online_mask.
8987 * ndoms_new == 0 is a special case for destroying existing domains, 9066 * ndoms_new == 0 is a special case for destroying existing domains,
@@ -8989,8 +9068,7 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8989 * 9068 *
8990 * Call with hotplug lock held 9069 * Call with hotplug lock held
8991 */ 9070 */
8992/* FIXME: Change to struct cpumask *doms_new[] */ 9071void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
8993void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8994 struct sched_domain_attr *dattr_new) 9072 struct sched_domain_attr *dattr_new)
8995{ 9073{
8996 int i, j, n; 9074 int i, j, n;
@@ -9009,40 +9087,40 @@ void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
9009 /* Destroy deleted domains */ 9087 /* Destroy deleted domains */
9010 for (i = 0; i < ndoms_cur; i++) { 9088 for (i = 0; i < ndoms_cur; i++) {
9011 for (j = 0; j < n && !new_topology; j++) { 9089 for (j = 0; j < n && !new_topology; j++) {
9012 if (cpumask_equal(&doms_cur[i], &doms_new[j]) 9090 if (cpumask_equal(doms_cur[i], doms_new[j])
9013 && dattrs_equal(dattr_cur, i, dattr_new, j)) 9091 && dattrs_equal(dattr_cur, i, dattr_new, j))
9014 goto match1; 9092 goto match1;
9015 } 9093 }
9016 /* no match - a current sched domain not in new doms_new[] */ 9094 /* no match - a current sched domain not in new doms_new[] */
9017 detach_destroy_domains(doms_cur + i); 9095 detach_destroy_domains(doms_cur[i]);
9018match1: 9096match1:
9019 ; 9097 ;
9020 } 9098 }
9021 9099
9022 if (doms_new == NULL) { 9100 if (doms_new == NULL) {
9023 ndoms_cur = 0; 9101 ndoms_cur = 0;
9024 doms_new = fallback_doms; 9102 doms_new = &fallback_doms;
9025 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map); 9103 cpumask_andnot(doms_new[0], cpu_online_mask, cpu_isolated_map);
9026 WARN_ON_ONCE(dattr_new); 9104 WARN_ON_ONCE(dattr_new);
9027 } 9105 }
9028 9106
9029 /* Build new domains */ 9107 /* Build new domains */
9030 for (i = 0; i < ndoms_new; i++) { 9108 for (i = 0; i < ndoms_new; i++) {
9031 for (j = 0; j < ndoms_cur && !new_topology; j++) { 9109 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9032 if (cpumask_equal(&doms_new[i], &doms_cur[j]) 9110 if (cpumask_equal(doms_new[i], doms_cur[j])
9033 && dattrs_equal(dattr_new, i, dattr_cur, j)) 9111 && dattrs_equal(dattr_new, i, dattr_cur, j))
9034 goto match2; 9112 goto match2;
9035 } 9113 }
9036 /* no match - add a new doms_new */ 9114 /* no match - add a new doms_new */
9037 __build_sched_domains(doms_new + i, 9115 __build_sched_domains(doms_new[i],
9038 dattr_new ? dattr_new + i : NULL); 9116 dattr_new ? dattr_new + i : NULL);
9039match2: 9117match2:
9040 ; 9118 ;
9041 } 9119 }
9042 9120
9043 /* Remember the new sched domains */ 9121 /* Remember the new sched domains */
9044 if (doms_cur != fallback_doms) 9122 if (doms_cur != &fallback_doms)
9045 kfree(doms_cur); 9123 free_sched_domains(doms_cur, ndoms_cur);
9046 kfree(dattr_cur); /* kfree(NULL) is safe */ 9124 kfree(dattr_cur); /* kfree(NULL) is safe */
9047 doms_cur = doms_new; 9125 doms_cur = doms_new;
9048 dattr_cur = dattr_new; 9126 dattr_cur = dattr_new;
@@ -9364,10 +9442,6 @@ void __init sched_init(void)
9364#ifdef CONFIG_CPUMASK_OFFSTACK 9442#ifdef CONFIG_CPUMASK_OFFSTACK
9365 alloc_size += num_possible_cpus() * cpumask_size(); 9443 alloc_size += num_possible_cpus() * cpumask_size();
9366#endif 9444#endif
9367 /*
9368 * As sched_init() is called before page_alloc is setup,
9369 * we use alloc_bootmem().
9370 */
9371 if (alloc_size) { 9445 if (alloc_size) {
9372 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 9446 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9373 9447
@@ -9522,6 +9596,8 @@ void __init sched_init(void)
9522 rq->cpu = i; 9596 rq->cpu = i;
9523 rq->online = 0; 9597 rq->online = 0;
9524 rq->migration_thread = NULL; 9598 rq->migration_thread = NULL;
9599 rq->idle_stamp = 0;
9600 rq->avg_idle = 2*sysctl_sched_migration_cost;
9525 INIT_LIST_HEAD(&rq->migration_queue); 9601 INIT_LIST_HEAD(&rq->migration_queue);
9526 rq_attach_root(rq, &def_root_domain); 9602 rq_attach_root(rq, &def_root_domain);
9527#endif 9603#endif
@@ -9571,7 +9647,9 @@ void __init sched_init(void)
9571 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT); 9647 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9572 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT); 9648 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9573#endif 9649#endif
9574 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 9650 /* May be allocated at isolcpus cmdline parse time */
9651 if (cpu_isolated_map == NULL)
9652 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9575#endif /* SMP */ 9653#endif /* SMP */
9576 9654
9577 perf_event_init(); 9655 perf_event_init();