aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/staging/wlags49_h2
diff options
context:
space:
mode:
authorDavid Kilroy <kilroyd@googlemail.com>2011-09-15 19:20:48 -0400
committerGreg Kroah-Hartman <gregkh@suse.de>2011-09-16 14:34:52 -0400
commit543fd0a349dbb2f6ab896ec97cedbbd6fe4d1ee6 (patch)
tree5a16aab08f8966bb18d7e24697b8d881e18252de /drivers/staging/wlags49_h2
parent788c2bce7e06f9fd682a7a2db9d6b823e1d18d44 (diff)
staging: wlags49_h2: Reindent hcf.c
Untabify with tab-width set to 4 (to match VI header). Then reindent with tab-width reset to 8. Signed-off-by: David Kilroy <kilroyd@googlemail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Diffstat (limited to 'drivers/staging/wlags49_h2')
-rw-r--r--drivers/staging/wlags49_h2/hcf.c6070
1 files changed, 3035 insertions, 3035 deletions
diff --git a/drivers/staging/wlags49_h2/hcf.c b/drivers/staging/wlags49_h2/hcf.c
index 85950d74f8f..304258e2025 100644
--- a/drivers/staging/wlags49_h2/hcf.c
+++ b/drivers/staging/wlags49_h2/hcf.c
@@ -1,97 +1,96 @@
1// vim:tw=110:ts=4:
2/************************************************************************************************************ 1/************************************************************************************************************
3* 2 *
4* FILE : HCF.C 3 * FILE : HCF.C
5* 4 *
6* DATE : $Date: 2004/08/05 11:47:10 $ $Revision: 1.10 $ 5 * DATE : $Date: 2004/08/05 11:47:10 $ $Revision: 1.10 $
7* Original: 2004/06/02 10:22:22 Revision: 1.85 Tag: hcf7_t20040602_01 6 * Original: 2004/06/02 10:22:22 Revision: 1.85 Tag: hcf7_t20040602_01
8* Original: 2004/04/15 09:24:41 Revision: 1.63 Tag: hcf7_t7_20040415_01 7 * Original: 2004/04/15 09:24:41 Revision: 1.63 Tag: hcf7_t7_20040415_01
9* Original: 2004/04/13 14:22:44 Revision: 1.62 Tag: t7_20040413_01 8 * Original: 2004/04/13 14:22:44 Revision: 1.62 Tag: t7_20040413_01
10* Original: 2004/04/01 15:32:55 Revision: 1.59 Tag: t7_20040401_01 9 * Original: 2004/04/01 15:32:55 Revision: 1.59 Tag: t7_20040401_01
11* Original: 2004/03/10 15:39:27 Revision: 1.55 Tag: t20040310_01 10 * Original: 2004/03/10 15:39:27 Revision: 1.55 Tag: t20040310_01
12* Original: 2004/03/04 11:03:37 Revision: 1.53 Tag: t20040304_01 11 * Original: 2004/03/04 11:03:37 Revision: 1.53 Tag: t20040304_01
13* Original: 2004/03/02 14:51:21 Revision: 1.50 Tag: t20040302_03 12 * Original: 2004/03/02 14:51:21 Revision: 1.50 Tag: t20040302_03
14* Original: 2004/02/24 13:00:27 Revision: 1.43 Tag: t20040224_01 13 * Original: 2004/02/24 13:00:27 Revision: 1.43 Tag: t20040224_01
15* Original: 2004/02/19 10:57:25 Revision: 1.39 Tag: t20040219_01 14 * Original: 2004/02/19 10:57:25 Revision: 1.39 Tag: t20040219_01
16* 15 *
17* AUTHOR : Nico Valster 16 * AUTHOR : Nico Valster
18* 17 *
19* SPECIFICATION: ........ 18 * SPECIFICATION: ........
20* 19 *
21* DESCRIPTION : HCF Routines for Hermes-II (callable via the Wireless Connection I/F or WCI) 20 * DESCRIPTION : HCF Routines for Hermes-II (callable via the Wireless Connection I/F or WCI)
22* Local Support Routines for above procedures 21 * Local Support Routines for above procedures
23* 22 *
24* Customizable via HCFCFG.H, which is included by HCF.H 23 * Customizable via HCFCFG.H, which is included by HCF.H
25* 24 *
26************************************************************************************************************* 25 *************************************************************************************************************
27* 26 *
28* 27 *
29* SOFTWARE LICENSE 28 * SOFTWARE LICENSE
30* 29 *
31* This software is provided subject to the following terms and conditions, 30 * This software is provided subject to the following terms and conditions,
32* which you should read carefully before using the software. Using this 31 * which you should read carefully before using the software. Using this
33* software indicates your acceptance of these terms and conditions. If you do 32 * software indicates your acceptance of these terms and conditions. If you do
34* not agree with these terms and conditions, do not use the software. 33 * not agree with these terms and conditions, do not use the software.
35* 34 *
36* COPYRIGHT © 1994 - 1995 by AT&T. All Rights Reserved 35 * COPYRIGHT © 1994 - 1995 by AT&T. All Rights Reserved
37* COPYRIGHT © 1996 - 2000 by Lucent Technologies. All Rights Reserved 36 * COPYRIGHT © 1996 - 2000 by Lucent Technologies. All Rights Reserved
38* COPYRIGHT © 2001 - 2004 by Agere Systems Inc. All Rights Reserved 37 * COPYRIGHT © 2001 - 2004 by Agere Systems Inc. All Rights Reserved
39* All rights reserved. 38 * All rights reserved.
40* 39 *
41* Redistribution and use in source or binary forms, with or without 40 * Redistribution and use in source or binary forms, with or without
42* modifications, are permitted provided that the following conditions are met: 41 * modifications, are permitted provided that the following conditions are met:
43* 42 *
44* . Redistributions of source code must retain the above copyright notice, this 43 * . Redistributions of source code must retain the above copyright notice, this
45* list of conditions and the following Disclaimer as comments in the code as 44 * list of conditions and the following Disclaimer as comments in the code as
46* well as in the documentation and/or other materials provided with the 45 * well as in the documentation and/or other materials provided with the
47* distribution. 46 * distribution.
48* 47 *
49* . Redistributions in binary form must reproduce the above copyright notice, 48 * . Redistributions in binary form must reproduce the above copyright notice,
50* this list of conditions and the following Disclaimer in the documentation 49 * this list of conditions and the following Disclaimer in the documentation
51* and/or other materials provided with the distribution. 50 * and/or other materials provided with the distribution.
52* 51 *
53* . Neither the name of Agere Systems Inc. nor the names of the contributors 52 * . Neither the name of Agere Systems Inc. nor the names of the contributors
54* may be used to endorse or promote products derived from this software 53 * may be used to endorse or promote products derived from this software
55* without specific prior written permission. 54 * without specific prior written permission.
56* 55 *
57* Disclaimer 56 * Disclaimer
58* 57 *
59* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, 58 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
60* INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF 59 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
61* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY 60 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
62* USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN 61 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
63* RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY 62 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
64* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 63 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
65* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
66* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 65 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
67* ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT 66 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
68* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
69* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 68 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
70* DAMAGE. 69 * DAMAGE.
71* 70 *
72* 71 *
73************************************************************************************************************/ 72 ************************************************************************************************************/
74 73
75 74
76/************************************************************************************************************ 75/************************************************************************************************************
77** 76 **
78** Implementation Notes 77 ** Implementation Notes
79** 78 **
80* - a leading marker of //! is used. The purpose of such a sequence is to help to understand the flow 79 * - a leading marker of //! is used. The purpose of such a sequence is to help to understand the flow
81* An example is: //!rc = HCF_SUCCESS; 80 * An example is: //!rc = HCF_SUCCESS;
82* if this is superfluous because rc is already guaranteed to be 0 but it shows to the (maintenance) 81 * if this is superfluous because rc is already guaranteed to be 0 but it shows to the (maintenance)
83* programmer it is an intentional omission at the place where someone could consider it most appropriate at 82 * programmer it is an intentional omission at the place where someone could consider it most appropriate at
84* first glance 83 * first glance
85* - using near pointers in a model where ss!=ds is an invitation for disaster, so be aware of how you specify 84 * - using near pointers in a model where ss!=ds is an invitation for disaster, so be aware of how you specify
86* your model and how you define variables which are used at interrupt time 85 * your model and how you define variables which are used at interrupt time
87* - remember that sign extension on 32 bit platforms may cause problems unless code is carefully constructed, 86 * - remember that sign extension on 32 bit platforms may cause problems unless code is carefully constructed,
88* e.g. use "(hcf_16)~foo" rather than "~foo" 87 * e.g. use "(hcf_16)~foo" rather than "~foo"
89* 88 *
90************************************************************************************************************/ 89 ************************************************************************************************************/
91 90
92#include "hcf.h" // HCF and MSF common include file 91#include "hcf.h" // HCF and MSF common include file
93#include "hcfdef.h" // HCF specific include file 92#include "hcfdef.h" // HCF specific include file
94#include "mmd.h" // MoreModularDriver common include file 93#include "mmd.h" // MoreModularDriver common include file
95#include <linux/kernel.h> 94#include <linux/kernel.h>
96 95
97#if ! defined offsetof 96#if ! defined offsetof
@@ -102,56 +101,56 @@
102/***********************************************************************************************************/ 101/***********************************************************************************************************/
103/*************************************** PROTOTYPES ******************************************************/ 102/*************************************** PROTOTYPES ******************************************************/
104/***********************************************************************************************************/ 103/***********************************************************************************************************/
105HCF_STATIC int cmd_exe( IFBP ifbp, hcf_16 cmd_code, hcf_16 par_0 ); 104HCF_STATIC int cmd_exe( IFBP ifbp, hcf_16 cmd_code, hcf_16 par_0 );
106HCF_STATIC int init( IFBP ifbp ); 105HCF_STATIC int init( IFBP ifbp );
107HCF_STATIC int put_info( IFBP ifbp, LTVP ltvp ); 106HCF_STATIC int put_info( IFBP ifbp, LTVP ltvp );
108#if (HCF_EXT) & HCF_EXT_MB 107#if (HCF_EXT) & HCF_EXT_MB
109HCF_STATIC int put_info_mb( IFBP ifbp, CFG_MB_INFO_STRCT FAR * ltvp ); 108HCF_STATIC int put_info_mb( IFBP ifbp, CFG_MB_INFO_STRCT FAR * ltvp );
110#endif // HCF_EXT_MB 109#endif // HCF_EXT_MB
111#if (HCF_TYPE) & HCF_TYPE_WPA 110#if (HCF_TYPE) & HCF_TYPE_WPA
112HCF_STATIC void calc_mic( hcf_32* p, hcf_32 M ); 111HCF_STATIC void calc_mic( hcf_32* p, hcf_32 M );
113void calc_mic_rx_frag( IFBP ifbp, wci_bufp p, int len ); 112void calc_mic_rx_frag( IFBP ifbp, wci_bufp p, int len );
114void calc_mic_tx_frag( IFBP ifbp, wci_bufp p, int len ); 113void calc_mic_tx_frag( IFBP ifbp, wci_bufp p, int len );
115HCF_STATIC int check_mic( IFBP ifbp ); 114HCF_STATIC int check_mic( IFBP ifbp );
116#endif // HCF_TYPE_WPA 115#endif // HCF_TYPE_WPA
117 116
118HCF_STATIC void calibrate( IFBP ifbp ); 117HCF_STATIC void calibrate( IFBP ifbp );
119HCF_STATIC int cmd_cmpl( IFBP ifbp ); 118HCF_STATIC int cmd_cmpl( IFBP ifbp );
120HCF_STATIC hcf_16 get_fid( IFBP ifbp ); 119HCF_STATIC hcf_16 get_fid( IFBP ifbp );
121HCF_STATIC void isr_info( IFBP ifbp ); 120HCF_STATIC void isr_info( IFBP ifbp );
122#if HCF_DMA 121#if HCF_DMA
123HCF_STATIC DESC_STRCT* get_frame_lst(IFBP ifbp, int tx_rx_flag); 122HCF_STATIC DESC_STRCT* get_frame_lst(IFBP ifbp, int tx_rx_flag);
124#endif // HCF_DMA 123#endif // HCF_DMA
125HCF_STATIC void get_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) ); //char*, byte count (usually even) 124HCF_STATIC void get_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) ); //char*, byte count (usually even)
126#if HCF_DMA 125#if HCF_DMA
127HCF_STATIC void put_frame_lst( IFBP ifbp, DESC_STRCT *descp, int tx_rx_flag ); 126HCF_STATIC void put_frame_lst( IFBP ifbp, DESC_STRCT *descp, int tx_rx_flag );
128#endif // HCF_DMA 127#endif // HCF_DMA
129HCF_STATIC void put_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) ); 128HCF_STATIC void put_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) );
130HCF_STATIC void put_frag_finalize( IFBP ifbp ); 129HCF_STATIC void put_frag_finalize( IFBP ifbp );
131HCF_STATIC int setup_bap( IFBP ifbp, hcf_16 fid, int offset, int type ); 130HCF_STATIC int setup_bap( IFBP ifbp, hcf_16 fid, int offset, int type );
132#if (HCF_ASSERT) & HCF_ASSERT_PRINTF 131#if (HCF_ASSERT) & HCF_ASSERT_PRINTF
133static int fw_printf(IFBP ifbp, CFG_FW_PRINTF_STRCT FAR *ltvp); 132static int fw_printf(IFBP ifbp, CFG_FW_PRINTF_STRCT FAR *ltvp);
134#endif // HCF_ASSERT_PRINTF 133#endif // HCF_ASSERT_PRINTF
135 134
136HCF_STATIC int download( IFBP ifbp, CFG_PROG_STRCT FAR *ltvp ); 135HCF_STATIC int download( IFBP ifbp, CFG_PROG_STRCT FAR *ltvp );
137#if (HCF_ENCAP) & HCF_ENC 136#if (HCF_ENCAP) & HCF_ENC
138HCF_STATIC hcf_8 hcf_encap( wci_bufp type ); 137HCF_STATIC hcf_8 hcf_encap( wci_bufp type );
139#endif // HCF_ENCAP 138#endif // HCF_ENCAP
140HCF_STATIC hcf_8 null_addr[4] = { 0, 0, 0, 0 }; 139HCF_STATIC hcf_8 null_addr[4] = { 0, 0, 0, 0 };
141#if ! defined IN_PORT_WORD //replace I/O Macros with logging facility 140#if ! defined IN_PORT_WORD //replace I/O Macros with logging facility
142extern FILE *log_file; 141extern FILE *log_file;
143 142
144#define IN_PORT_WORD(port) in_port_word( (hcf_io)(port) ) 143#define IN_PORT_WORD(port) in_port_word( (hcf_io)(port) )
145 144
146static hcf_16 in_port_word( hcf_io port ) { 145static hcf_16 in_port_word( hcf_io port ) {
147hcf_16 i = (hcf_16)_inpw( port ); 146 hcf_16 i = (hcf_16)_inpw( port );
148 if ( log_file ) { 147 if ( log_file ) {
149 fprintf( log_file, "\nR %2.2x %4.4x", (port)&0xFF, i); 148 fprintf( log_file, "\nR %2.2x %4.4x", (port)&0xFF, i);
150 } 149 }
151 return i; 150 return i;
152} // in_port_word 151} // in_port_word
153 152
154#define OUT_PORT_WORD(port, value) out_port_word( (hcf_io)(port), (hcf_16)(value) ) 153#define OUT_PORT_WORD(port, value) out_port_word( (hcf_io)(port), (hcf_16)(value) )
155 154
156static void out_port_word( hcf_io port, hcf_16 value ) { 155static void out_port_word( hcf_io port, hcf_16 value ) {
157 _outpw( port, value ); 156 _outpw( port, value );
@@ -160,12 +159,12 @@ static void out_port_word( hcf_io port, hcf_16 value ) {
160 } 159 }
161} 160}
162 161
163void IN_PORT_STRING_32( hcf_io prt, hcf_32 FAR * dst, int n) { 162void IN_PORT_STRING_32( hcf_io prt, hcf_32 FAR * dst, int n) {
164 int i = 0; 163 int i = 0;
165 hcf_16 FAR * p; 164 hcf_16 FAR * p;
166 if ( log_file ) { 165 if ( log_file ) {
167 fprintf( log_file, "\nread string_32 length %04x (%04d) at port %02.2x to addr %lp", 166 fprintf( log_file, "\nread string_32 length %04x (%04d) at port %02.2x to addr %lp",
168 (hcf_16)n, (hcf_16)n, (hcf_16)(prt)&0xFF, dst); 167 (hcf_16)n, (hcf_16)n, (hcf_16)(prt)&0xFF, dst);
169 } 168 }
170 while ( n-- ) { 169 while ( n-- ) {
171 p = (hcf_16 FAR *)dst; 170 p = (hcf_16 FAR *)dst;
@@ -178,12 +177,12 @@ void IN_PORT_STRING_32( hcf_io prt, hcf_32 FAR * dst, int n) {
178 } 177 }
179} // IN_PORT_STRING_32 178} // IN_PORT_STRING_32
180 179
181void IN_PORT_STRING_8_16( hcf_io prt, hcf_8 FAR * dst, int n) { //also handles byte alignment problems 180void IN_PORT_STRING_8_16( hcf_io prt, hcf_8 FAR * dst, int n) { //also handles byte alignment problems
182 hcf_16 FAR * p = (hcf_16 FAR *)dst; //this needs more elaborate code in non-x86 platforms 181 hcf_16 FAR * p = (hcf_16 FAR *)dst; //this needs more elaborate code in non-x86 platforms
183 int i = 0; 182 int i = 0;
184 if ( log_file ) { 183 if ( log_file ) {
185 fprintf( log_file, "\nread string_16 length %04x (%04d) at port %02.2x to addr %lp", 184 fprintf( log_file, "\nread string_16 length %04x (%04d) at port %02.2x to addr %lp",
186 (hcf_16)n, (hcf_16)n, (hcf_16)(prt)&0xFF, dst ); 185 (hcf_16)n, (hcf_16)n, (hcf_16)(prt)&0xFF, dst );
187 } 186 }
188 while ( n-- ) { 187 while ( n-- ) {
189 *p =(hcf_16)_inpw( prt); 188 *p =(hcf_16)_inpw( prt);
@@ -198,12 +197,12 @@ void IN_PORT_STRING_8_16( hcf_io prt, hcf_8 FAR * dst, int n) { //also handles b
198 } 197 }
199} // IN_PORT_STRING_8_16 198} // IN_PORT_STRING_8_16
200 199
201void OUT_PORT_STRING_32( hcf_io prt, hcf_32 FAR * src, int n) { 200void OUT_PORT_STRING_32( hcf_io prt, hcf_32 FAR * src, int n) {
202 int i = 0; 201 int i = 0;
203 hcf_16 FAR * p; 202 hcf_16 FAR * p;
204 if ( log_file ) { 203 if ( log_file ) {
205 fprintf( log_file, "\nwrite string_32 length %04x (%04d) at port %02.2x", 204 fprintf( log_file, "\nwrite string_32 length %04x (%04d) at port %02.2x",
206 (hcf_16)n, (hcf_16)n, (hcf_16)(prt)&0xFF); 205 (hcf_16)n, (hcf_16)n, (hcf_16)(prt)&0xFF);
207 } 206 }
208 while ( n-- ) { 207 while ( n-- ) {
209 p = (hcf_16 FAR *)src; 208 p = (hcf_16 FAR *)src;
@@ -216,8 +215,8 @@ void OUT_PORT_STRING_32( hcf_io prt, hcf_32 FAR * src, int n) {
216 } 215 }
217} // OUT_PORT_STRING_32 216} // OUT_PORT_STRING_32
218 217
219void OUT_PORT_STRING_8_16( hcf_io prt, hcf_8 FAR * src, int n) { //also handles byte alignment problems 218void OUT_PORT_STRING_8_16( hcf_io prt, hcf_8 FAR * src, int n) { //also handles byte alignment problems
220 hcf_16 FAR * p = (hcf_16 FAR *)src; //this needs more elaborate code in non-x86 platforms 219 hcf_16 FAR * p = (hcf_16 FAR *)src; //this needs more elaborate code in non-x86 platforms
221 int i = 0; 220 int i = 0;
222 if ( log_file ) { 221 if ( log_file ) {
223 fprintf( log_file, "\nwrite string_16 length %04x (%04d) at port %04x", n, n, (hcf_16)prt); 222 fprintf( log_file, "\nwrite string_16 length %04x (%04d) at port %04x", n, n, (hcf_16)prt);
@@ -238,27 +237,27 @@ void OUT_PORT_STRING_8_16( hcf_io prt, hcf_8 FAR * src, int n) { //also handles
238#endif // IN_PORT_WORD 237#endif // IN_PORT_WORD
239 238
240/************************************************************************************************************ 239/************************************************************************************************************
241******************************* D A T A D E F I N I T I O N S ******************************************** 240 ******************************* D A T A D E F I N I T I O N S ********************************************
242************************************************************************************************************/ 241 ************************************************************************************************************/
243 242
244#if HCF_ASSERT 243#if HCF_ASSERT
245IFBP BASED assert_ifbp = NULL; //to make asserts easily work under MMD and DHF 244IFBP BASED assert_ifbp = NULL; //to make asserts easily work under MMD and DHF
246#endif // HCF_ASSERT 245#endif // HCF_ASSERT
247 246
248#if HCF_ENCAP 247#if HCF_ENCAP
249/* SNAP header to be inserted in Ethernet-II frames */ 248/* SNAP header to be inserted in Ethernet-II frames */
250HCF_STATIC hcf_8 BASED snap_header[] = { 0xAA, 0xAA, 0x03, 0x00, 0x00, //5 bytes signature + 249HCF_STATIC hcf_8 BASED snap_header[] = { 0xAA, 0xAA, 0x03, 0x00, 0x00, //5 bytes signature +
251 0 }; //1 byte protocol identifier 250 0 }; //1 byte protocol identifier
252#endif // HCF_ENCAP 251#endif // HCF_ENCAP
253 252
254#if (HCF_TYPE) & HCF_TYPE_WPA 253#if (HCF_TYPE) & HCF_TYPE_WPA
255HCF_STATIC hcf_8 BASED mic_pad[8] = { 0x5A, 0, 0, 0, 0, 0, 0, 0 }; //MIC padding of message 254HCF_STATIC hcf_8 BASED mic_pad[8] = { 0x5A, 0, 0, 0, 0, 0, 0, 0 }; //MIC padding of message
256#endif // HCF_TYPE_WPA 255#endif // HCF_TYPE_WPA
257 256
258#if defined MSF_COMPONENT_ID 257#if defined MSF_COMPONENT_ID
259CFG_IDENTITY_STRCT BASED cfg_drv_identity = { 258CFG_IDENTITY_STRCT BASED cfg_drv_identity = {
260 sizeof(cfg_drv_identity)/sizeof(hcf_16) - 1, //length of RID 259 sizeof(cfg_drv_identity)/sizeof(hcf_16) - 1, //length of RID
261 CFG_DRV_IDENTITY, // (0x0826) 260 CFG_DRV_IDENTITY, // (0x0826)
262 MSF_COMPONENT_ID, 261 MSF_COMPONENT_ID,
263 MSF_COMPONENT_VAR, 262 MSF_COMPONENT_VAR,
264 MSF_COMPONENT_MAJOR_VER, 263 MSF_COMPONENT_MAJOR_VER,
@@ -266,186 +265,186 @@ CFG_IDENTITY_STRCT BASED cfg_drv_identity = {
266} ; 265} ;
267 266
268CFG_RANGES_STRCT BASED cfg_drv_sup_range = { 267CFG_RANGES_STRCT BASED cfg_drv_sup_range = {
269 sizeof(cfg_drv_sup_range)/sizeof(hcf_16) - 1, //length of RID 268 sizeof(cfg_drv_sup_range)/sizeof(hcf_16) - 1, //length of RID
270 CFG_DRV_SUP_RANGE, // (0x0827) 269 CFG_DRV_SUP_RANGE, // (0x0827)
271 270
272 COMP_ROLE_SUPL, 271 COMP_ROLE_SUPL,
273 COMP_ID_DUI, 272 COMP_ID_DUI,
274 {{ DUI_COMPAT_VAR, 273 {{ DUI_COMPAT_VAR,
275 DUI_COMPAT_BOT, 274 DUI_COMPAT_BOT,
276 DUI_COMPAT_TOP 275 DUI_COMPAT_TOP
277 }} 276 }}
278} ; 277} ;
279 278
280struct CFG_RANGE3_STRCT BASED cfg_drv_act_ranges_pri = { 279struct CFG_RANGE3_STRCT BASED cfg_drv_act_ranges_pri = {
281 sizeof(cfg_drv_act_ranges_pri)/sizeof(hcf_16) - 1, //length of RID 280 sizeof(cfg_drv_act_ranges_pri)/sizeof(hcf_16) - 1, //length of RID
282 CFG_DRV_ACT_RANGES_PRI, // (0x0828) 281 CFG_DRV_ACT_RANGES_PRI, // (0x0828)
283 282
284 COMP_ROLE_ACT, 283 COMP_ROLE_ACT,
285 COMP_ID_PRI, 284 COMP_ID_PRI,
286 { 285 {
287 { 0, 0, 0 }, // HCF_PRI_VAR_1 not supported by HCF 7 286 { 0, 0, 0 }, // HCF_PRI_VAR_1 not supported by HCF 7
288 { 0, 0, 0 }, // HCF_PRI_VAR_2 not supported by HCF 7 287 { 0, 0, 0 }, // HCF_PRI_VAR_2 not supported by HCF 7
289 { 3, //var_rec[2] - Variant number 288 { 3, //var_rec[2] - Variant number
290 CFG_DRV_ACT_RANGES_PRI_3_BOTTOM, // - Bottom Compatibility 289 CFG_DRV_ACT_RANGES_PRI_3_BOTTOM, // - Bottom Compatibility
291 CFG_DRV_ACT_RANGES_PRI_3_TOP // - Top Compatibility 290 CFG_DRV_ACT_RANGES_PRI_3_TOP // - Top Compatibility
292 } 291 }
293 } 292 }
294} ; 293} ;
295 294
296 295
297struct CFG_RANGE4_STRCT BASED cfg_drv_act_ranges_sta = { 296struct CFG_RANGE4_STRCT BASED cfg_drv_act_ranges_sta = {
298 sizeof(cfg_drv_act_ranges_sta)/sizeof(hcf_16) - 1, //length of RID 297 sizeof(cfg_drv_act_ranges_sta)/sizeof(hcf_16) - 1, //length of RID
299 CFG_DRV_ACT_RANGES_STA, // (0x0829) 298 CFG_DRV_ACT_RANGES_STA, // (0x0829)
300 299
301 COMP_ROLE_ACT, 300 COMP_ROLE_ACT,
302 COMP_ID_STA, 301 COMP_ID_STA,
303 { 302 {
304#if defined HCF_STA_VAR_1 303#if defined HCF_STA_VAR_1
305 { 1, //var_rec[1] - Variant number 304 { 1, //var_rec[1] - Variant number
306 CFG_DRV_ACT_RANGES_STA_1_BOTTOM, // - Bottom Compatibility 305 CFG_DRV_ACT_RANGES_STA_1_BOTTOM, // - Bottom Compatibility
307 CFG_DRV_ACT_RANGES_STA_1_TOP // - Top Compatibility 306 CFG_DRV_ACT_RANGES_STA_1_TOP // - Top Compatibility
308 }, 307 },
309#else 308#else
310 { 0, 0, 0 }, 309 { 0, 0, 0 },
311#endif // HCF_STA_VAR_1 310#endif // HCF_STA_VAR_1
312#if defined HCF_STA_VAR_2 311#if defined HCF_STA_VAR_2
313 { 2, //var_rec[1] - Variant number 312 { 2, //var_rec[1] - Variant number
314 CFG_DRV_ACT_RANGES_STA_2_BOTTOM, // - Bottom Compatibility 313 CFG_DRV_ACT_RANGES_STA_2_BOTTOM, // - Bottom Compatibility
315 CFG_DRV_ACT_RANGES_STA_2_TOP // - Top Compatibility 314 CFG_DRV_ACT_RANGES_STA_2_TOP // - Top Compatibility
316 }, 315 },
317#else 316#else
318 { 0, 0, 0 }, 317 { 0, 0, 0 },
319#endif // HCF_STA_VAR_2 318#endif // HCF_STA_VAR_2
320// For Native_USB (Not used!) 319// For Native_USB (Not used!)
321#if defined HCF_STA_VAR_3 320#if defined HCF_STA_VAR_3
322 { 3, //var_rec[1] - Variant number 321 { 3, //var_rec[1] - Variant number
323 CFG_DRV_ACT_RANGES_STA_3_BOTTOM, // - Bottom Compatibility 322 CFG_DRV_ACT_RANGES_STA_3_BOTTOM, // - Bottom Compatibility
324 CFG_DRV_ACT_RANGES_STA_3_TOP // - Top Compatibility 323 CFG_DRV_ACT_RANGES_STA_3_TOP // - Top Compatibility
325 }, 324 },
326#else 325#else
327 { 0, 0, 0 }, 326 { 0, 0, 0 },
328#endif // HCF_STA_VAR_3 327#endif // HCF_STA_VAR_3
329// Warp 328// Warp
330#if defined HCF_STA_VAR_4 329#if defined HCF_STA_VAR_4
331 { 4, //var_rec[1] - Variant number 330 { 4, //var_rec[1] - Variant number
332 CFG_DRV_ACT_RANGES_STA_4_BOTTOM, // - Bottom Compatibility 331 CFG_DRV_ACT_RANGES_STA_4_BOTTOM, // - Bottom Compatibility
333 CFG_DRV_ACT_RANGES_STA_4_TOP // - Top Compatibility 332 CFG_DRV_ACT_RANGES_STA_4_TOP // - Top Compatibility
334 } 333 }
335#else 334#else
336 { 0, 0, 0 } 335 { 0, 0, 0 }
337#endif // HCF_STA_VAR_4 336#endif // HCF_STA_VAR_4
338 } 337 }
339} ; 338} ;
340 339
341 340
342struct CFG_RANGE6_STRCT BASED cfg_drv_act_ranges_hsi = { 341struct CFG_RANGE6_STRCT BASED cfg_drv_act_ranges_hsi = {
343 sizeof(cfg_drv_act_ranges_hsi)/sizeof(hcf_16) - 1, //length of RID 342 sizeof(cfg_drv_act_ranges_hsi)/sizeof(hcf_16) - 1, //length of RID
344 CFG_DRV_ACT_RANGES_HSI, // (0x082A) 343 CFG_DRV_ACT_RANGES_HSI, // (0x082A)
345 COMP_ROLE_ACT, 344 COMP_ROLE_ACT,
346 COMP_ID_HSI, 345 COMP_ID_HSI,
347 { 346 {
348#if defined HCF_HSI_VAR_0 // Controlled deployment 347#if defined HCF_HSI_VAR_0 // Controlled deployment
349 { 0, // var_rec[1] - Variant number 348 { 0, // var_rec[1] - Variant number
350 CFG_DRV_ACT_RANGES_HSI_0_BOTTOM, // - Bottom Compatibility 349 CFG_DRV_ACT_RANGES_HSI_0_BOTTOM, // - Bottom Compatibility
351 CFG_DRV_ACT_RANGES_HSI_0_TOP // - Top Compatibility 350 CFG_DRV_ACT_RANGES_HSI_0_TOP // - Top Compatibility
352 }, 351 },
353#else 352#else
354 { 0, 0, 0 }, 353 { 0, 0, 0 },
355#endif // HCF_HSI_VAR_0 354#endif // HCF_HSI_VAR_0
356 { 0, 0, 0 }, // HCF_HSI_VAR_1 not supported by HCF 7 355 { 0, 0, 0 }, // HCF_HSI_VAR_1 not supported by HCF 7
357 { 0, 0, 0 }, // HCF_HSI_VAR_2 not supported by HCF 7 356 { 0, 0, 0 }, // HCF_HSI_VAR_2 not supported by HCF 7
358 { 0, 0, 0 }, // HCF_HSI_VAR_3 not supported by HCF 7 357 { 0, 0, 0 }, // HCF_HSI_VAR_3 not supported by HCF 7
359#if defined HCF_HSI_VAR_4 // Hermes-II all types 358#if defined HCF_HSI_VAR_4 // Hermes-II all types
360 { 4, // var_rec[1] - Variant number 359 { 4, // var_rec[1] - Variant number
361 CFG_DRV_ACT_RANGES_HSI_4_BOTTOM, // - Bottom Compatibility 360 CFG_DRV_ACT_RANGES_HSI_4_BOTTOM, // - Bottom Compatibility
362 CFG_DRV_ACT_RANGES_HSI_4_TOP // - Top Compatibility 361 CFG_DRV_ACT_RANGES_HSI_4_TOP // - Top Compatibility
363 }, 362 },
364#else 363#else
365 { 0, 0, 0 }, 364 { 0, 0, 0 },
366#endif // HCF_HSI_VAR_4 365#endif // HCF_HSI_VAR_4
367#if defined HCF_HSI_VAR_5 // WARP Hermes-2.5 366#if defined HCF_HSI_VAR_5 // WARP Hermes-2.5
368 { 5, // var_rec[1] - Variant number 367 { 5, // var_rec[1] - Variant number
369 CFG_DRV_ACT_RANGES_HSI_5_BOTTOM, // - Bottom Compatibility 368 CFG_DRV_ACT_RANGES_HSI_5_BOTTOM, // - Bottom Compatibility
370 CFG_DRV_ACT_RANGES_HSI_5_TOP // - Top Compatibility 369 CFG_DRV_ACT_RANGES_HSI_5_TOP // - Top Compatibility
371 } 370 }
372#else 371#else
373 { 0, 0, 0 } 372 { 0, 0, 0 }
374#endif // HCF_HSI_VAR_5 373#endif // HCF_HSI_VAR_5
375 } 374 }
376} ; 375} ;
377 376
378 377
379CFG_RANGE4_STRCT BASED cfg_drv_act_ranges_apf = { 378CFG_RANGE4_STRCT BASED cfg_drv_act_ranges_apf = {
380 sizeof(cfg_drv_act_ranges_apf)/sizeof(hcf_16) - 1, //length of RID 379 sizeof(cfg_drv_act_ranges_apf)/sizeof(hcf_16) - 1, //length of RID
381 CFG_DRV_ACT_RANGES_APF, // (0x082B) 380 CFG_DRV_ACT_RANGES_APF, // (0x082B)
382 381
383 COMP_ROLE_ACT, 382 COMP_ROLE_ACT,
384 COMP_ID_APF, 383 COMP_ID_APF,
385 { 384 {
386#if defined HCF_APF_VAR_1 //(Fake) Hermes-I 385#if defined HCF_APF_VAR_1 //(Fake) Hermes-I
387 { 1, //var_rec[1] - Variant number 386 { 1, //var_rec[1] - Variant number
388 CFG_DRV_ACT_RANGES_APF_1_BOTTOM, // - Bottom Compatibility 387 CFG_DRV_ACT_RANGES_APF_1_BOTTOM, // - Bottom Compatibility
389 CFG_DRV_ACT_RANGES_APF_1_TOP // - Top Compatibility 388 CFG_DRV_ACT_RANGES_APF_1_TOP // - Top Compatibility
390 }, 389 },
391#else 390#else
392 { 0, 0, 0 }, 391 { 0, 0, 0 },
393#endif // HCF_APF_VAR_1 392#endif // HCF_APF_VAR_1
394#if defined HCF_APF_VAR_2 //Hermes-II 393#if defined HCF_APF_VAR_2 //Hermes-II
395 { 2, // var_rec[1] - Variant number 394 { 2, // var_rec[1] - Variant number
396 CFG_DRV_ACT_RANGES_APF_2_BOTTOM, // - Bottom Compatibility 395 CFG_DRV_ACT_RANGES_APF_2_BOTTOM, // - Bottom Compatibility
397 CFG_DRV_ACT_RANGES_APF_2_TOP // - Top Compatibility 396 CFG_DRV_ACT_RANGES_APF_2_TOP // - Top Compatibility
398 }, 397 },
399#else 398#else
400 { 0, 0, 0 }, 399 { 0, 0, 0 },
401#endif // HCF_APF_VAR_2 400#endif // HCF_APF_VAR_2
402#if defined HCF_APF_VAR_3 // Native_USB 401#if defined HCF_APF_VAR_3 // Native_USB
403 { 3, // var_rec[1] - Variant number 402 { 3, // var_rec[1] - Variant number
404 CFG_DRV_ACT_RANGES_APF_3_BOTTOM, // - Bottom Compatibility !!!!!see note below!!!!!!! 403 CFG_DRV_ACT_RANGES_APF_3_BOTTOM, // - Bottom Compatibility !!!!!see note below!!!!!!!
405 CFG_DRV_ACT_RANGES_APF_3_TOP // - Top Compatibility 404 CFG_DRV_ACT_RANGES_APF_3_TOP // - Top Compatibility
406 }, 405 },
407#else 406#else
408 { 0, 0, 0 }, 407 { 0, 0, 0 },
409#endif // HCF_APF_VAR_3 408#endif // HCF_APF_VAR_3
410#if defined HCF_APF_VAR_4 // WARP Hermes 2.5 409#if defined HCF_APF_VAR_4 // WARP Hermes 2.5
411 { 4, // var_rec[1] - Variant number 410 { 4, // var_rec[1] - Variant number
412 CFG_DRV_ACT_RANGES_APF_4_BOTTOM, // - Bottom Compatibility !!!!!see note below!!!!!!! 411 CFG_DRV_ACT_RANGES_APF_4_BOTTOM, // - Bottom Compatibility !!!!!see note below!!!!!!!
413 CFG_DRV_ACT_RANGES_APF_4_TOP // - Top Compatibility 412 CFG_DRV_ACT_RANGES_APF_4_TOP // - Top Compatibility
414 } 413 }
415#else 414#else
416 { 0, 0, 0 } 415 { 0, 0, 0 }
417#endif // HCF_APF_VAR_4 416#endif // HCF_APF_VAR_4
418 } 417 }
419} ; 418} ;
420#define HCF_VERSION TEXT( "HCF$Revision: 1.10 $" ) 419#define HCF_VERSION TEXT( "HCF$Revision: 1.10 $" )
421 420
422static struct /*CFG_HCF_OPT_STRCT*/ { 421static struct /*CFG_HCF_OPT_STRCT*/ {
423 hcf_16 len; //length of cfg_hcf_opt struct 422 hcf_16 len; //length of cfg_hcf_opt struct
424 hcf_16 typ; //type 0x082C 423 hcf_16 typ; //type 0x082C
425 hcf_16 v0; //offset HCF_VERSION 424 hcf_16 v0; //offset HCF_VERSION
426 hcf_16 v1; // MSF_COMPONENT_ID 425 hcf_16 v1; // MSF_COMPONENT_ID
427 hcf_16 v2; // HCF_ALIGN 426 hcf_16 v2; // HCF_ALIGN
428 hcf_16 v3; // HCF_ASSERT 427 hcf_16 v3; // HCF_ASSERT
429 hcf_16 v4; // HCF_BIG_ENDIAN 428 hcf_16 v4; // HCF_BIG_ENDIAN
430 hcf_16 v5; // /* HCF_DLV | HCF_DLNV */ 429 hcf_16 v5; // /* HCF_DLV | HCF_DLNV */
431 hcf_16 v6; // HCF_DMA 430 hcf_16 v6; // HCF_DMA
432 hcf_16 v7; // HCF_ENCAP 431 hcf_16 v7; // HCF_ENCAP
433 hcf_16 v8; // HCF_EXT 432 hcf_16 v8; // HCF_EXT
434 hcf_16 v9; // HCF_INT_ON 433 hcf_16 v9; // HCF_INT_ON
435 hcf_16 v10; // HCF_IO 434 hcf_16 v10; // HCF_IO
436 hcf_16 v11; // HCF_LEGACY 435 hcf_16 v11; // HCF_LEGACY
437 hcf_16 v12; // HCF_MAX_LTV 436 hcf_16 v12; // HCF_MAX_LTV
438 hcf_16 v13; // HCF_PROT_TIME 437 hcf_16 v13; // HCF_PROT_TIME
439 hcf_16 v14; // HCF_SLEEP 438 hcf_16 v14; // HCF_SLEEP
440 hcf_16 v15; // HCF_TALLIES 439 hcf_16 v15; // HCF_TALLIES
441 hcf_16 v16; // HCF_TYPE 440 hcf_16 v16; // HCF_TYPE
442 hcf_16 v17; // HCF_NIC_TAL_CNT 441 hcf_16 v17; // HCF_NIC_TAL_CNT
443 hcf_16 v18; // HCF_HCF_TAL_CNT 442 hcf_16 v18; // HCF_HCF_TAL_CNT
444 hcf_16 v19; // offset tallies 443 hcf_16 v19; // offset tallies
445 TCHAR val[sizeof(HCF_VERSION)]; 444 TCHAR val[sizeof(HCF_VERSION)];
446} BASED cfg_hcf_opt = { 445} BASED cfg_hcf_opt = {
447 sizeof(cfg_hcf_opt)/sizeof(hcf_16) -1, 446 sizeof(cfg_hcf_opt)/sizeof(hcf_16) -1,
448 CFG_HCF_OPT, // (0x082C) 447 CFG_HCF_OPT, // (0x082C)
449 ( sizeof(cfg_hcf_opt) - sizeof(HCF_VERSION) - 4 )/sizeof(hcf_16), 448 ( sizeof(cfg_hcf_opt) - sizeof(HCF_VERSION) - 4 )/sizeof(hcf_16),
450#if defined MSF_COMPONENT_ID 449#if defined MSF_COMPONENT_ID
451 MSF_COMPONENT_ID, 450 MSF_COMPONENT_ID,
@@ -455,7 +454,7 @@ static struct /*CFG_HCF_OPT_STRCT*/ {
455 HCF_ALIGN, 454 HCF_ALIGN,
456 HCF_ASSERT, 455 HCF_ASSERT,
457 HCF_BIG_ENDIAN, 456 HCF_BIG_ENDIAN,
458 0, // /* HCF_DLV | HCF_DLNV*/, 457 0, // /* HCF_DLV | HCF_DLNV*/,
459 HCF_DMA, 458 HCF_DMA,
460 HCF_ENCAP, 459 HCF_ENCAP,
461 HCF_EXT, 460 HCF_EXT,
@@ -488,208 +487,208 @@ HCF_STATIC LTV_STRCT BASED cfg_null = { 1, CFG_NULL, {0} };
488#endif // HCF_EXT_MB 487#endif // HCF_EXT_MB
489HCF_STATIC hcf_16* BASED xxxx[ ] = { 488HCF_STATIC hcf_16* BASED xxxx[ ] = {
490#if (HCF_EXT) & HCF_EXT_MB 489#if (HCF_EXT) & HCF_EXT_MB
491 &cfg_null.len, //CFG_NULL 0x0820 490 &cfg_null.len, //CFG_NULL 0x0820
492#endif // HCF_EXT_MB 491#endif // HCF_EXT_MB
493#if defined MSF_COMPONENT_ID 492#if defined MSF_COMPONENT_ID
494 &cfg_drv_identity.len, //CFG_DRV_IDENTITY 0x0826 493 &cfg_drv_identity.len, //CFG_DRV_IDENTITY 0x0826
495 &cfg_drv_sup_range.len, //CFG_DRV_SUP_RANGE 0x0827 494 &cfg_drv_sup_range.len, //CFG_DRV_SUP_RANGE 0x0827
496 &cfg_drv_act_ranges_pri.len, //CFG_DRV_ACT_RANGES_PRI 0x0828 495 &cfg_drv_act_ranges_pri.len, //CFG_DRV_ACT_RANGES_PRI 0x0828
497 &cfg_drv_act_ranges_sta.len, //CFG_DRV_ACT_RANGES_STA 0x0829 496 &cfg_drv_act_ranges_sta.len, //CFG_DRV_ACT_RANGES_STA 0x0829
498 &cfg_drv_act_ranges_hsi.len, //CFG_DRV_ACT_RANGES_HSI 0x082A 497 &cfg_drv_act_ranges_hsi.len, //CFG_DRV_ACT_RANGES_HSI 0x082A
499 &cfg_drv_act_ranges_apf.len, //CFG_DRV_ACT_RANGES_APF 0x082B 498 &cfg_drv_act_ranges_apf.len, //CFG_DRV_ACT_RANGES_APF 0x082B
500 &cfg_hcf_opt.len, //CFG_HCF_OPT 0x082C 499 &cfg_hcf_opt.len, //CFG_HCF_OPT 0x082C
501 NULL, //IFB_PRIIdentity placeholder 0xFD02 500 NULL, //IFB_PRIIdentity placeholder 0xFD02
502 NULL, //IFB_PRISup placeholder 0xFD03 501 NULL, //IFB_PRISup placeholder 0xFD03
503#endif // MSF_COMPONENT_ID 502#endif // MSF_COMPONENT_ID
504 NULL //endsentinel 503 NULL //endsentinel
505 }; 504};
506#define xxxx_PRI_IDENTITY_OFFSET (ARRAY_SIZE(xxxx) - 3) 505#define xxxx_PRI_IDENTITY_OFFSET (ARRAY_SIZE(xxxx) - 3)
507 506
508#endif // MSF_COMPONENT_ID / HCF_EXT_MB 507#endif // MSF_COMPONENT_ID / HCF_EXT_MB
509 508
510 509
511/************************************************************************************************************ 510/************************************************************************************************************
512************************** T O P L E V E L H C F R O U T I N E S ************************************** 511 ************************** T O P L E V E L H C F R O U T I N E S **************************************
513************************************************************************************************************/ 512 ************************************************************************************************************/
514 513
515#if (HCF_DL_ONLY) == 0 514#if (HCF_DL_ONLY) == 0
516/************************************************************************************************************ 515/************************************************************************************************************
517* 516 *
518*.MODULE int hcf_action( IFBP ifbp, hcf_16 action ) 517 *.MODULE int hcf_action( IFBP ifbp, hcf_16 action )
519*.PURPOSE Changes the run-time Card behavior. 518 *.PURPOSE Changes the run-time Card behavior.
520* Performs Miscellanuous actions. 519 * Performs Miscellanuous actions.
521* 520 *
522*.ARGUMENTS 521 *.ARGUMENTS
523* ifbp address of the Interface Block 522 * ifbp address of the Interface Block
524* action number identifying the type of change 523 * action number identifying the type of change
525* - HCF_ACT_CCX_OFF disable CKIP 524 * - HCF_ACT_CCX_OFF disable CKIP
526* - HCF_ACT_CCX_ON enable CKIP 525 * - HCF_ACT_CCX_ON enable CKIP
527* - HCF_ACT_INT_FORCE_ON enable interrupt generation by WaveLAN NIC 526 * - HCF_ACT_INT_FORCE_ON enable interrupt generation by WaveLAN NIC
528* - HCF_ACT_INT_OFF disable interrupt generation by WaveLAN NIC 527 * - HCF_ACT_INT_OFF disable interrupt generation by WaveLAN NIC
529* - HCF_ACT_INT_ON compensate 1 HCF_ACT_INT_OFF, enable interrupt generation if balance reached 528 * - HCF_ACT_INT_ON compensate 1 HCF_ACT_INT_OFF, enable interrupt generation if balance reached
530* - HCF_ACT_PRS_SCAN Hermes Probe Respons Scan (F102) command 529 * - HCF_ACT_PRS_SCAN Hermes Probe Respons Scan (F102) command
531* - HCF_ACT_RX_ACK acknowledge non-DMA receiver to Hermes 530 * - HCF_ACT_RX_ACK acknowledge non-DMA receiver to Hermes
532* - HCF_ACT_SCAN Hermes Inquire Scan (F101) command (non-WARP only) 531 * - HCF_ACT_SCAN Hermes Inquire Scan (F101) command (non-WARP only)
533* - HCF_ACT_SLEEP DDS Sleep request 532 * - HCF_ACT_SLEEP DDS Sleep request
534* - HCF_ACT_TALLIES Hermes Inquire Tallies (F100) command 533 * - HCF_ACT_TALLIES Hermes Inquire Tallies (F100) command
535* 534 *
536*.RETURNS 535 *.RETURNS
537* HCF_SUCCESS all (including invalid) 536 * HCF_SUCCESS all (including invalid)
538* HCF_INT_PENDING HCF_ACT_INT_OFF, interrupt pending 537 * HCF_INT_PENDING HCF_ACT_INT_OFF, interrupt pending
539* HCF_ERR_NO_NIC HCF_ACT_INT_OFF, NIC presence check fails 538 * HCF_ERR_NO_NIC HCF_ACT_INT_OFF, NIC presence check fails
540* 539 *
541*.CONDITIONS 540 *.CONDITIONS
542* Except for hcf_action with HCF_ACT_INT_FORCE_ON or HCF_ACT_INT_OFF as parameter or hcf_connect with an I/O 541 * Except for hcf_action with HCF_ACT_INT_FORCE_ON or HCF_ACT_INT_OFF as parameter or hcf_connect with an I/O
543* address (i.e. not HCF_DISCONNECT), all hcf-function calls MUST be preceded by a call of hcf_action with 542 * address (i.e. not HCF_DISCONNECT), all hcf-function calls MUST be preceded by a call of hcf_action with
544* HCF_ACT_INT_OFF as parameter. 543 * HCF_ACT_INT_OFF as parameter.
545* Note that hcf_connect defaults to NIC interrupt disabled mode, i.e. as if hcf_action( HCF_ACT_INT_OFF ) 544 * Note that hcf_connect defaults to NIC interrupt disabled mode, i.e. as if hcf_action( HCF_ACT_INT_OFF )
546* was called. 545 * was called.
547* 546 *
548*.DESCRIPTION 547 *.DESCRIPTION
549* hcf_action supports the following mode changing action-code pairs that are antonyms 548 * hcf_action supports the following mode changing action-code pairs that are antonyms
550* - HCF_ACT_CCX_OFF / HCF_ACT_CCX_ON 549 * - HCF_ACT_CCX_OFF / HCF_ACT_CCX_ON
551* - HCF_ACT_INT_[FORCE_]ON / HCF_ACT_INT_OFF 550 * - HCF_ACT_INT_[FORCE_]ON / HCF_ACT_INT_OFF
552* 551 *
553* Additionally hcf_action can start the following actions in the NIC: 552 * Additionally hcf_action can start the following actions in the NIC:
554* - HCF_ACT_PRS_SCAN 553 * - HCF_ACT_PRS_SCAN
555* - HCF_ACT_RX_ACK 554 * - HCF_ACT_RX_ACK
556* - HCF_ACT_SCAN 555 * - HCF_ACT_SCAN
557* - HCF_ACT_SLEEP 556 * - HCF_ACT_SLEEP
558* - HCF_ACT_TALLIES 557 * - HCF_ACT_TALLIES
559* 558 *
560* o HCF_ACT_INT_OFF: Sets NIC Interrupts mode Disabled. 559 * o HCF_ACT_INT_OFF: Sets NIC Interrupts mode Disabled.
561* This command, and the associated [Force] Enable NIC interrupts command, are only available if the HCF_INT_ON 560 * This command, and the associated [Force] Enable NIC interrupts command, are only available if the HCF_INT_ON
562* compile time option is not set at 0x0000. 561 * compile time option is not set at 0x0000.
563* 562 *
564* o HCF_ACT_INT_ON: Sets NIC Interrupts mode Enabled. 563 * o HCF_ACT_INT_ON: Sets NIC Interrupts mode Enabled.
565* Enable NIC Interrupts, depending on the number of preceding Disable NIC Interrupt calls. 564 * Enable NIC Interrupts, depending on the number of preceding Disable NIC Interrupt calls.
566* 565 *
567* o HCF_ACT_INT_FORCE_ON: Force NIC Interrupts mode Enabled. 566 * o HCF_ACT_INT_FORCE_ON: Force NIC Interrupts mode Enabled.
568* Sets NIC Interrupts mode Enabled, regardless off the number of preceding Disable NIC Interrupt calls. 567 * Sets NIC Interrupts mode Enabled, regardless off the number of preceding Disable NIC Interrupt calls.
569* 568 *
570* The disabling and enabling of interrupts are antonyms. 569 * The disabling and enabling of interrupts are antonyms.
571* These actions must be balanced. 570 * These actions must be balanced.
572* For each "disable interrupts" there must be a matching "enable interrupts". 571 * For each "disable interrupts" there must be a matching "enable interrupts".
573* The disable interrupts may be executed multiple times in a row without intervening enable interrupts, in 572 * The disable interrupts may be executed multiple times in a row without intervening enable interrupts, in
574* other words, the disable interrupts may be nested. 573 * other words, the disable interrupts may be nested.
575* The interrupt generation mechanism is disabled at the first call with HCF_ACT_INT_OFF. 574 * The interrupt generation mechanism is disabled at the first call with HCF_ACT_INT_OFF.
576* The interrupt generation mechanism is re-enabled when the number of calls with HCF_ACT_INT_ON matches the 575 * The interrupt generation mechanism is re-enabled when the number of calls with HCF_ACT_INT_ON matches the
577* number of calls with INT_OFF. 576 * number of calls with INT_OFF.
578* 577 *
579* It is not allowed to have more Enable NIC Interrupts calls than Disable NIC Interrupts calls. 578 * It is not allowed to have more Enable NIC Interrupts calls than Disable NIC Interrupts calls.
580* The interrupt generation mechanism is initially (i.e. after hcf_connect) disabled. 579 * The interrupt generation mechanism is initially (i.e. after hcf_connect) disabled.
581* An MSF based on a interrupt strategy must call hcf_action with INT_ON in its initialization logic. 580 * An MSF based on a interrupt strategy must call hcf_action with INT_ON in its initialization logic.
582* 581 *
583*! The INT_OFF/INT_ON housekeeping is initialized at 0x0000 by hcf_connect, causing the interrupt generation 582 *! The INT_OFF/INT_ON housekeeping is initialized at 0x0000 by hcf_connect, causing the interrupt generation
584* mechanism to be disabled at first. This suits MSF implementation based on a polling strategy. 583 * mechanism to be disabled at first. This suits MSF implementation based on a polling strategy.
585* 584 *
586* o HCF_ACT_CCX_OFF / HCF_ACT_CCX_ON 585 * o HCF_ACT_CCX_OFF / HCF_ACT_CCX_ON
587*!! This can use some more explanation;? 586 *!! This can use some more explanation;?
588* Disables and Enables support in the HCF runtime code for the CCX feature. Each time one of these action 587 * Disables and Enables support in the HCF runtime code for the CCX feature. Each time one of these action
589* codes is used, the effects of the preceding use cease. 588 * codes is used, the effects of the preceding use cease.
590* 589 *
591* o HCF_ACT_SLEEP: Initiates the Disconnected DeepSleep process 590 * o HCF_ACT_SLEEP: Initiates the Disconnected DeepSleep process
592* This command is only available if the HCF_DDS compile time option is set. It triggers the F/W to start the 591 * This command is only available if the HCF_DDS compile time option is set. It triggers the F/W to start the
593* sleep handshaking. Regardless whether the Host initiates a Disconnected DeepSleep (DDS) or the F/W initiates 592 * sleep handshaking. Regardless whether the Host initiates a Disconnected DeepSleep (DDS) or the F/W initiates
594* a Connected DeepSleep (CDS), the Host-F/W sleep handshaking is completed when the NIC Interrupts mode is 593 * a Connected DeepSleep (CDS), the Host-F/W sleep handshaking is completed when the NIC Interrupts mode is
595* enabled (by means of the balancing HCF_ACT_INT_ON), i.e. at that moment the F/W really goes into sleep mode. 594 * enabled (by means of the balancing HCF_ACT_INT_ON), i.e. at that moment the F/W really goes into sleep mode.
596* The F/W is wokenup by the HCF when the NIC Interrupts mode are disabled, i.e. at the first HCF_ACT_INT_OFF 595 * The F/W is wokenup by the HCF when the NIC Interrupts mode are disabled, i.e. at the first HCF_ACT_INT_OFF
597* after going into sleep. 596 * after going into sleep.
598* 597 *
599* The following Miscellanuous actions are defined: 598 * The following Miscellanuous actions are defined:
600* 599 *
601* o HCF_ACT_RX_ACK: Receiver Acknowledgement (non-DMA, non-USB mode only) 600 * o HCF_ACT_RX_ACK: Receiver Acknowledgement (non-DMA, non-USB mode only)
602* Acking the receiver, frees the NIC memory used to hold the Rx frame and allows the F/W to 601 * Acking the receiver, frees the NIC memory used to hold the Rx frame and allows the F/W to
603* report the existence of the next Rx frame. 602 * report the existence of the next Rx frame.
604* If the MSF does not need access (any longer) to the current frame, e.g. because it is rejected based on the 603 * If the MSF does not need access (any longer) to the current frame, e.g. because it is rejected based on the
605* look ahead or copied to another buffer, the receiver may be acked. Acking earlier is assumed to have the 604 * look ahead or copied to another buffer, the receiver may be acked. Acking earlier is assumed to have the
606* potential of improving the performance. 605 * potential of improving the performance.
607* If the MSF does not explitly ack te receiver, the acking is done implicitly if: 606 * If the MSF does not explitly ack te receiver, the acking is done implicitly if:
608* - the received frame fits in the look ahead buffer, by the hcf_service_nic call that reported the Rx frame 607 * - the received frame fits in the look ahead buffer, by the hcf_service_nic call that reported the Rx frame
609* - if not in the above step, by hcf_rcv_msg (assuming hcf_rcv_msg is called) 608 * - if not in the above step, by hcf_rcv_msg (assuming hcf_rcv_msg is called)
610* - if neither of the above implicit acks nor an explicit ack by the MSF, by the first hcf_service_nic after 609 * - if neither of the above implicit acks nor an explicit ack by the MSF, by the first hcf_service_nic after
611* the hcf_service_nic that reported the Rx frame. 610 * the hcf_service_nic that reported the Rx frame.
612* Note: If an Rx frame is already acked, an explicit ACK by the MSF acts as a NoOperation. 611 * Note: If an Rx frame is already acked, an explicit ACK by the MSF acts as a NoOperation.
613* 612 *
614* o HCF_ACT_TALLIES: Inquire Tallies command 613 * o HCF_ACT_TALLIES: Inquire Tallies command
615* This command is only operational if the F/W is enabled. 614 * This command is only operational if the F/W is enabled.
616* The Inquire Tallies command requests the F/W to provide its current set of tallies. 615 * The Inquire Tallies command requests the F/W to provide its current set of tallies.
617* See also hcf_get_info with CFG_TALLIES as parameter. 616 * See also hcf_get_info with CFG_TALLIES as parameter.
618* 617 *
619* o HCF_ACT_PRS_SCAN: Inquire Probe Respons Scan command 618 * o HCF_ACT_PRS_SCAN: Inquire Probe Respons Scan command
620* This command is only operational if the F/W is enabled. 619 * This command is only operational if the F/W is enabled.
621* The Probe Respons Scan command starts a scan sequence. 620 * The Probe Respons Scan command starts a scan sequence.
622* The HCF puts the result of this action in an MSF defined buffer (see CFG_RID_LOG_STRCT). 621 * The HCF puts the result of this action in an MSF defined buffer (see CFG_RID_LOG_STRCT).
623* 622 *
624* o HCF_ACT_SCAN: Inquire Scan command 623 * o HCF_ACT_SCAN: Inquire Scan command
625* This command is only supported for HII F/W (i.e. pre-WARP) and it is operational if the F/W is enabled. 624 * This command is only supported for HII F/W (i.e. pre-WARP) and it is operational if the F/W is enabled.
626* The Inquire Scan command starts a scan sequence. 625 * The Inquire Scan command starts a scan sequence.
627* The HCF puts the result of this action in an MSF defined buffer (see CFG_RID_LOG_STRCT). 626 * The HCF puts the result of this action in an MSF defined buffer (see CFG_RID_LOG_STRCT).
628* 627 *
629* Assert fails if 628 * Assert fails if
630* - ifbp has a recognizable out-of-range value. 629 * - ifbp has a recognizable out-of-range value.
631* - NIC interrupts are not disabled while required by parameter action. 630 * - NIC interrupts are not disabled while required by parameter action.
632* - an invalid code is specified in parameter action. 631 * - an invalid code is specified in parameter action.
633* - HCF_ACT_INT_ON commands outnumber the HCF_ACT_INT_OFF commands. 632 * - HCF_ACT_INT_ON commands outnumber the HCF_ACT_INT_OFF commands.
634* - reentrancy, may be caused by calling hcf_functions without adequate protection against NIC interrupts or 633 * - reentrancy, may be caused by calling hcf_functions without adequate protection against NIC interrupts or
635* multi-threading 634 * multi-threading
636* 635 *
637* - Since the HCF does not maintain status information relative to the F/W enabled state, it is not asserted 636 * - Since the HCF does not maintain status information relative to the F/W enabled state, it is not asserted
638* whether HCF_ACT_SCAN, HCF_ACT_PRS_SCAN or HCF_ACT_TALLIES are only used while F/W is enabled. 637 * whether HCF_ACT_SCAN, HCF_ACT_PRS_SCAN or HCF_ACT_TALLIES are only used while F/W is enabled.
639* 638 *
640*.DIAGRAM 639 *.DIAGRAM
641* 0: The assert embedded in HCFLOGENTRY checks against re-entrancy. Re-entrancy could be caused by a MSF logic 640 * 0: The assert embedded in HCFLOGENTRY checks against re-entrancy. Re-entrancy could be caused by a MSF logic
642* at task-level calling hcf_functions without shielding with HCF_ACT_ON/_OFF. However the HCF_ACT_INT_OFF 641 * at task-level calling hcf_functions without shielding with HCF_ACT_ON/_OFF. However the HCF_ACT_INT_OFF
643* action itself can per definition not be protected this way. Based on code inspection, it can be concluded, 642 * action itself can per definition not be protected this way. Based on code inspection, it can be concluded,
644* that there is no re-entrancy PROBLEM in this particular flow. It does not seem worth the trouble to 643 * that there is no re-entrancy PROBLEM in this particular flow. It does not seem worth the trouble to
645* explicitly check for this condition (although there was a report of an MSF which ran into this assert. 644 * explicitly check for this condition (although there was a report of an MSF which ran into this assert.
646* 2:IFB_IntOffCnt is used to balance the INT_OFF and INT_ON calls. Disabling of the interrupts is achieved by 645 * 2:IFB_IntOffCnt is used to balance the INT_OFF and INT_ON calls. Disabling of the interrupts is achieved by
647* writing a zero to the Hermes IntEn register. In a shared interrupt environment (e.g. the mini-PCI NDIS 646 * writing a zero to the Hermes IntEn register. In a shared interrupt environment (e.g. the mini-PCI NDIS
648* driver) it is considered more correct to return the status HCF_INT_PENDING if and only if, the current 647 * driver) it is considered more correct to return the status HCF_INT_PENDING if and only if, the current
649* invocation of hcf_service_nic is (apparently) called in the ISR when the ISR was activated as result of a 648 * invocation of hcf_service_nic is (apparently) called in the ISR when the ISR was activated as result of a
650* change in HREG_EV_STAT matching a bit in HREG_INT_EN, i.e. not if invoked as result of another device 649 * change in HREG_EV_STAT matching a bit in HREG_INT_EN, i.e. not if invoked as result of another device
651* generating an interrupt on the shared interrupt line. 650 * generating an interrupt on the shared interrupt line.
652* Note 1: it has been observed that under certain adverse conditions on certain platforms the writing of 651 * Note 1: it has been observed that under certain adverse conditions on certain platforms the writing of
653* HREG_INT_EN can apparently fail, therefor it is paramount that HREG_INT_EN is written again with 0 for 652 * HREG_INT_EN can apparently fail, therefor it is paramount that HREG_INT_EN is written again with 0 for
654* each and every call to HCF_ACT_INT_OFF. 653 * each and every call to HCF_ACT_INT_OFF.
655* Note 2: it has been observed that under certain H/W & S/W architectures this logic is called when there is 654 * Note 2: it has been observed that under certain H/W & S/W architectures this logic is called when there is
656* no NIC at all. To cater for this, the value of HREG_INT_EN is validated. If the unused bit 0x0100 is set, 655 * no NIC at all. To cater for this, the value of HREG_INT_EN is validated. If the unused bit 0x0100 is set,
657* it is assumed there is no NIC. 656 * it is assumed there is no NIC.
658* Note 3: During the download process, some versions of the F/W reset HREG_SW_0, hence checking this 657 * Note 3: During the download process, some versions of the F/W reset HREG_SW_0, hence checking this
659* register for HCF_MAGIC (the classical NIC presence test) when HCF_ACT_INT_OFF is called due to another 658 * register for HCF_MAGIC (the classical NIC presence test) when HCF_ACT_INT_OFF is called due to another
660* card interrupting via a shared IRQ during a download, fails. 659 * card interrupting via a shared IRQ during a download, fails.
661*4: The construction "if ( ifbp->IFB_IntOffCnt-- == 0 )" is optimal (in the sense of shortest/quickest 660 *4: The construction "if ( ifbp->IFB_IntOffCnt-- == 0 )" is optimal (in the sense of shortest/quickest
662* path in error free flows) but NOT fail safe in case of too many INT_ON invocations compared to INT_OFF). 661 * path in error free flows) but NOT fail safe in case of too many INT_ON invocations compared to INT_OFF).
663* Enabling of the interrupts is achieved by writing the Hermes IntEn register. 662 * Enabling of the interrupts is achieved by writing the Hermes IntEn register.
664* - If the HCF is in Defunct mode, the interrupts stay disabled. 663 * - If the HCF is in Defunct mode, the interrupts stay disabled.
665* - Under "normal" conditions, the HCF is only interested in Info Events, Rx Events and Notify Events. 664 * - Under "normal" conditions, the HCF is only interested in Info Events, Rx Events and Notify Events.
666* - When the HCF is out of Tx/Notify resources, the HCF is also interested in Alloc Events. 665 * - When the HCF is out of Tx/Notify resources, the HCF is also interested in Alloc Events.
667* - via HCF_EXT, the MSF programmer can also request HREG_EV_TICK and/or HREG_EV_TX_EXC interrupts. 666 * - via HCF_EXT, the MSF programmer can also request HREG_EV_TICK and/or HREG_EV_TX_EXC interrupts.
668* For DMA operation, the DMA hardware handles the alloc events. The DMA engine will generate a 'TxDmaDone' 667 * For DMA operation, the DMA hardware handles the alloc events. The DMA engine will generate a 'TxDmaDone'
669* event as soon as it has pumped a frame from host ram into NIC-RAM (note that the frame does not have to be 668 * event as soon as it has pumped a frame from host ram into NIC-RAM (note that the frame does not have to be
670* transmitted then), and a 'RxDmaDone' event as soon as a received frame has been pumped from NIC-RAM into 669 * transmitted then), and a 'RxDmaDone' event as soon as a received frame has been pumped from NIC-RAM into
671* host ram. Note that the 'alloc' event has been removed from the event-mask, because the DMA engine will 670 * host ram. Note that the 'alloc' event has been removed from the event-mask, because the DMA engine will
672* react to and acknowledge this event. 671 * react to and acknowledge this event.
673*6: ack the "old" Rx-event. See "Rx Buffer free strategy" in hcf_service_nic above for more explanation. 672 *6: ack the "old" Rx-event. See "Rx Buffer free strategy" in hcf_service_nic above for more explanation.
674* IFB_RxFID and IFB_RxLen must be cleared to bring both the internal HCF house keeping and the information 673 * IFB_RxFID and IFB_RxLen must be cleared to bring both the internal HCF house keeping and the information
675* supplied to the MSF in the state "no frame received". 674 * supplied to the MSF in the state "no frame received".
676*8: The HCF_ACT_SCAN, HCF_ACT_PRS_SCAN and HCF_ACT_TALLIES activity are merged by "clever" algebraic 675 *8: The HCF_ACT_SCAN, HCF_ACT_PRS_SCAN and HCF_ACT_TALLIES activity are merged by "clever" algebraic
677* manipulations of the RID-values and action codes, so foregoing robustness against migration problems for 676 * manipulations of the RID-values and action codes, so foregoing robustness against migration problems for
678* ease of implementation. The assumptions about numerical relationships between CFG_TALLIES etc and 677 * ease of implementation. The assumptions about numerical relationships between CFG_TALLIES etc and
679* HCF_ACT_TALLIES etc are checked by the "#if" statements just prior to the body of this routine, resulting 678 * HCF_ACT_TALLIES etc are checked by the "#if" statements just prior to the body of this routine, resulting
680* in: err "maintenance" during compilation if the assumptions are no longer met. The writing of HREG_PARAM_1 679 * in: err "maintenance" during compilation if the assumptions are no longer met. The writing of HREG_PARAM_1
681* with 0x3FFF in case of an PRS scan, is a kludge to get around lack of specification, hence different 680 * with 0x3FFF in case of an PRS scan, is a kludge to get around lack of specification, hence different
682* implementation in F/W and Host. 681 * implementation in F/W and Host.
683* When there is no NIC RAM available, some versions of the Hermes F/W do report 0x7F00 as error in the 682 * When there is no NIC RAM available, some versions of the Hermes F/W do report 0x7F00 as error in the
684* Result field of the Status register and some F/W versions don't. To mask this difference to the MSF all 683 * Result field of the Status register and some F/W versions don't. To mask this difference to the MSF all
685* return codes of the Hermes are ignored ("best" and "most simple" solution to these types of analomies with 684 * return codes of the Hermes are ignored ("best" and "most simple" solution to these types of analomies with
686* an acceptable loss due to ignoring all error situations as well). 685 * an acceptable loss due to ignoring all error situations as well).
687* The "No inquire space" is reported via the Hermes tallies. 686 * The "No inquire space" is reported via the Hermes tallies.
688*30: do not HCFASSERT( rc, rc ) since rc == HCF_INT_PENDING is no error 687 *30: do not HCFASSERT( rc, rc ) since rc == HCF_INT_PENDING is no error
689* 688 *
690*.ENDDOC END DOCUMENTATION 689 *.ENDDOC END DOCUMENTATION
691* 690 *
692************************************************************************************************************/ 691 ************************************************************************************************************/
693#if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0 692#if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
694#if CFG_SCAN != CFG_TALLIES - HCF_ACT_TALLIES + HCF_ACT_SCAN 693#if CFG_SCAN != CFG_TALLIES - HCF_ACT_TALLIES + HCF_ACT_SCAN
695err: "maintenance" apparently inviolated the underlying assumption about the numerical values of these macros 694err: "maintenance" apparently inviolated the underlying assumption about the numerical values of these macros
@@ -701,43 +700,43 @@ err: "maintenance" apparently inviolated the underlying assumption about the num
701int 700int
702hcf_action( IFBP ifbp, hcf_16 action ) 701hcf_action( IFBP ifbp, hcf_16 action )
703{ 702{
704int rc = HCF_SUCCESS; 703 int rc = HCF_SUCCESS;
705 704
706 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic ); 705 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic );
707#if HCF_INT_ON 706#if HCF_INT_ON
708 HCFLOGENTRY( action == HCF_ACT_INT_FORCE_ON ? HCF_TRACE_ACTION_KLUDGE : HCF_TRACE_ACTION, action ); /* 0 */ 707 HCFLOGENTRY( action == HCF_ACT_INT_FORCE_ON ? HCF_TRACE_ACTION_KLUDGE : HCF_TRACE_ACTION, action ); /* 0 */
709#if (HCF_SLEEP) 708#if (HCF_SLEEP)
710 HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE || action == HCF_ACT_INT_OFF, 709 HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE || action == HCF_ACT_INT_OFF,
711 MERGE_2( action, ifbp->IFB_IntOffCnt ) ); 710 MERGE_2( action, ifbp->IFB_IntOffCnt ) );
712#else 711#else
713 HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE, action ); 712 HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE, action );
714#endif // HCF_SLEEP 713#endif // HCF_SLEEP
715 HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFF || 714 HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFF ||
716 action == HCF_ACT_INT_OFF || action == HCF_ACT_INT_FORCE_ON, action ); 715 action == HCF_ACT_INT_OFF || action == HCF_ACT_INT_FORCE_ON, action );
717 HCFASSERT( ifbp->IFB_IntOffCnt <= 16 || ifbp->IFB_IntOffCnt >= 0xFFFE, 716 HCFASSERT( ifbp->IFB_IntOffCnt <= 16 || ifbp->IFB_IntOffCnt >= 0xFFFE,
718 MERGE_2( action, ifbp->IFB_IntOffCnt ) ); //nesting more than 16 deep seems unreasonable 717 MERGE_2( action, ifbp->IFB_IntOffCnt ) ); //nesting more than 16 deep seems unreasonable
719#endif // HCF_INT_ON 718#endif // HCF_INT_ON
720 719
721 switch (action) { 720 switch (action) {
722#if HCF_INT_ON 721#if HCF_INT_ON
723hcf_16 i; 722 hcf_16 i;
724 case HCF_ACT_INT_OFF: // Disable Interrupt generation 723 case HCF_ACT_INT_OFF: // Disable Interrupt generation
725#if HCF_SLEEP 724#if HCF_SLEEP
726 if ( ifbp->IFB_IntOffCnt == 0xFFFE ) { // WakeUp test ;?tie this to the "new" super-LinkStat 725 if ( ifbp->IFB_IntOffCnt == 0xFFFE ) { // WakeUp test ;?tie this to the "new" super-LinkStat
727 ifbp->IFB_IntOffCnt++; // restore conventional I/F 726 ifbp->IFB_IntOffCnt++; // restore conventional I/F
728 OPW(HREG_IO, HREG_IO_WAKEUP_ASYNC ); // set wakeup bit 727 OPW(HREG_IO, HREG_IO_WAKEUP_ASYNC ); // set wakeup bit
729 OPW(HREG_IO, HREG_IO_WAKEUP_ASYNC ); // set wakeup bit to counteract the clearing by F/W 728 OPW(HREG_IO, HREG_IO_WAKEUP_ASYNC ); // set wakeup bit to counteract the clearing by F/W
730 // 800 us latency before FW switches to high power 729 // 800 us latency before FW switches to high power
731 MSF_WAIT(800); // MSF-defined function to wait n microseconds. 730 MSF_WAIT(800); // MSF-defined function to wait n microseconds.
732//OOR if ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_DS_OOR ) { // OutOfRange 731//OOR if ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_DS_OOR ) { // OutOfRange
733// printk( "<5>ACT_INT_OFF: Deepsleep phase terminated, enable and go to AwaitConnection\n" ); //;?remove me 1 day 732// printk( "<5>ACT_INT_OFF: Deepsleep phase terminated, enable and go to AwaitConnection\n" ); //;?remove me 1 day
734// hcf_cntl( ifbp, HCF_CNTL_ENABLE ); 733// hcf_cntl( ifbp, HCF_CNTL_ENABLE );
735// } 734// }
736// ifbp->IFB_DSLinkStat &= ~( CFG_LINK_STAT_DS_IR | CFG_LINK_STAT_DS_OOR); //clear IR/OOR state 735// ifbp->IFB_DSLinkStat &= ~( CFG_LINK_STAT_DS_IR | CFG_LINK_STAT_DS_OOR); //clear IR/OOR state
737 } 736 }
738#endif // HCF_SLEEP 737#endif // HCF_SLEEP
739/*2*/ ifbp->IFB_IntOffCnt++; 738 /*2*/ ifbp->IFB_IntOffCnt++;
740//! rc = 0; 739//! rc = 0;
741 i = IPW( HREG_INT_EN ); 740 i = IPW( HREG_INT_EN );
742 OPW( HREG_INT_EN, 0 ); 741 OPW( HREG_INT_EN, 0 );
743 if ( i & 0x1000 ) { 742 if ( i & 0x1000 ) {
@@ -749,89 +748,89 @@ hcf_16 i;
749 } 748 }
750 break; 749 break;
751 750
752 case HCF_ACT_INT_FORCE_ON: // Enforce Enable Interrupt generation 751 case HCF_ACT_INT_FORCE_ON: // Enforce Enable Interrupt generation
753 ifbp->IFB_IntOffCnt = 0; 752 ifbp->IFB_IntOffCnt = 0;
754 //Fall through in HCF_ACT_INT_ON 753 //Fall through in HCF_ACT_INT_ON
755 754
756 case HCF_ACT_INT_ON: // Enable Interrupt generation 755 case HCF_ACT_INT_ON: // Enable Interrupt generation
757/*4*/ if ( ifbp->IFB_IntOffCnt-- == 0 && ifbp->IFB_CardStat == 0 ) { 756 /*4*/ if ( ifbp->IFB_IntOffCnt-- == 0 && ifbp->IFB_CardStat == 0 ) {
758 //determine Interrupt Event mask 757 //determine Interrupt Event mask
759#if HCF_DMA 758#if HCF_DMA
760 if ( ifbp->IFB_CntlOpt & USE_DMA ) { 759 if ( ifbp->IFB_CntlOpt & USE_DMA ) {
761 i = HREG_EV_INFO | HREG_EV_RDMAD | HREG_EV_TDMAD | HREG_EV_TX_EXT; //mask when DMA active 760 i = HREG_EV_INFO | HREG_EV_RDMAD | HREG_EV_TDMAD | HREG_EV_TX_EXT; //mask when DMA active
762 } else 761 } else
763#endif // HCF_DMA 762#endif // HCF_DMA
764 { 763 {
765 i = HREG_EV_INFO | HREG_EV_RX | HREG_EV_TX_EXT; //mask when DMA not active 764 i = HREG_EV_INFO | HREG_EV_RX | HREG_EV_TX_EXT; //mask when DMA not active
766 if ( ifbp->IFB_RscInd == 0 ) { 765 if ( ifbp->IFB_RscInd == 0 ) {
767 i |= HREG_EV_ALLOC; //mask when no TxFID available 766 i |= HREG_EV_ALLOC; //mask when no TxFID available
768 } 767 }
769 } 768 }
770#if HCF_SLEEP 769#if HCF_SLEEP
771 if ( ( IPW(HREG_EV_STAT) & ( i | HREG_EV_SLEEP_REQ ) ) == HREG_EV_SLEEP_REQ ) { 770 if ( ( IPW(HREG_EV_STAT) & ( i | HREG_EV_SLEEP_REQ ) ) == HREG_EV_SLEEP_REQ ) {
772 // firmware indicates it would like to go into sleep modus 771 // firmware indicates it would like to go into sleep modus
773 // only acknowledge this request if no other events that can cause an interrupt are pending 772 // only acknowledge this request if no other events that can cause an interrupt are pending
774 ifbp->IFB_IntOffCnt--; //becomes 0xFFFE 773 ifbp->IFB_IntOffCnt--; //becomes 0xFFFE
775 OPW( HREG_INT_EN, i | HREG_EV_TICK ); 774 OPW( HREG_INT_EN, i | HREG_EV_TICK );
776 OPW( HREG_EV_ACK, HREG_EV_SLEEP_REQ | HREG_EV_TICK | HREG_EV_ACK_REG_READY ); 775 OPW( HREG_EV_ACK, HREG_EV_SLEEP_REQ | HREG_EV_TICK | HREG_EV_ACK_REG_READY );
777 } else 776 } else
778#endif // HCF_SLEEP 777#endif // HCF_SLEEP
779 { 778 {
780 OPW( HREG_INT_EN, i | HREG_EV_SLEEP_REQ ); 779 OPW( HREG_INT_EN, i | HREG_EV_SLEEP_REQ );
781 } 780 }
782 } 781 }
783 break; 782 break;
784#endif // HCF_INT_ON 783#endif // HCF_INT_ON
785 784
786#if (HCF_SLEEP) & HCF_DDS 785#if (HCF_SLEEP) & HCF_DDS
787 case HCF_ACT_SLEEP: // DDS Sleep request 786 case HCF_ACT_SLEEP: // DDS Sleep request
788 hcf_cntl( ifbp, HCF_CNTL_DISABLE ); 787 hcf_cntl( ifbp, HCF_CNTL_DISABLE );
789 cmd_exe( ifbp, HCMD_SLEEP, 0 ); 788 cmd_exe( ifbp, HCMD_SLEEP, 0 );
790 break; 789 break;
791// case HCF_ACT_WAKEUP: // DDS Wakeup request 790// case HCF_ACT_WAKEUP: // DDS Wakeup request
792// HCFASSERT( ifbp->IFB_IntOffCnt == 0xFFFE, ifbp->IFB_IntOffCnt ); 791// HCFASSERT( ifbp->IFB_IntOffCnt == 0xFFFE, ifbp->IFB_IntOffCnt );
793// ifbp->IFB_IntOffCnt++; // restore conventional I/F 792// ifbp->IFB_IntOffCnt++; // restore conventional I/F
794// OPW( HREG_IO, HREG_IO_WAKEUP_ASYNC ); 793// OPW( HREG_IO, HREG_IO_WAKEUP_ASYNC );
795// MSF_WAIT(800); // MSF-defined function to wait n microseconds. 794// MSF_WAIT(800); // MSF-defined function to wait n microseconds.
796// rc = hcf_action( ifbp, HCF_ACT_INT_OFF ); /*bogus, IFB_IntOffCnt == 0xFFFF, so if you carefully look 795// rc = hcf_action( ifbp, HCF_ACT_INT_OFF ); /*bogus, IFB_IntOffCnt == 0xFFFF, so if you carefully look
797// *at the #if HCF_DDS statements, HCF_ACT_INT_OFF is empty 796// *at the #if HCF_DDS statements, HCF_ACT_INT_OFF is empty
798// *for DDS. "Much" better would be to merge the flows for 797// *for DDS. "Much" better would be to merge the flows for
799// *DDS and DEEP_SLEEP 798// *DDS and DEEP_SLEEP
800// */ 799// */
801// break; 800// break;
802#endif // HCF_DDS 801#endif // HCF_DDS
803 802
804#if (HCF_TYPE) & HCF_TYPE_CCX 803#if (HCF_TYPE) & HCF_TYPE_CCX
805 case HCF_ACT_CCX_ON: // enable CKIP 804 case HCF_ACT_CCX_ON: // enable CKIP
806 case HCF_ACT_CCX_OFF: // disable CKIP 805 case HCF_ACT_CCX_OFF: // disable CKIP
807 ifbp->IFB_CKIPStat = action; 806 ifbp->IFB_CKIPStat = action;
808 break; 807 break;
809#endif // HCF_TYPE_CCX 808#endif // HCF_TYPE_CCX
810 809
811 case HCF_ACT_RX_ACK: //Receiver ACK 810 case HCF_ACT_RX_ACK: //Receiver ACK
812/*6*/ if ( ifbp->IFB_RxFID ) { 811 /*6*/ if ( ifbp->IFB_RxFID ) {
813 DAWA_ACK( HREG_EV_RX ); 812 DAWA_ACK( HREG_EV_RX );
814 } 813 }
815 ifbp->IFB_RxFID = ifbp->IFB_RxLen = 0; 814 ifbp->IFB_RxFID = ifbp->IFB_RxLen = 0;
816 break; 815 break;
817 816
818/*8*/ case HCF_ACT_PRS_SCAN: // Hermes PRS Scan (F102) 817 /*8*/ case HCF_ACT_PRS_SCAN: // Hermes PRS Scan (F102)
819 OPW( HREG_PARAM_1, 0x3FFF ); 818 OPW( HREG_PARAM_1, 0x3FFF );
820 //Fall through in HCF_ACT_TALLIES 819 //Fall through in HCF_ACT_TALLIES
821 case HCF_ACT_TALLIES: // Hermes Inquire Tallies (F100) 820 case HCF_ACT_TALLIES: // Hermes Inquire Tallies (F100)
822#if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0 821#if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
823 case HCF_ACT_SCAN: // Hermes Inquire Scan (F101) 822 case HCF_ACT_SCAN: // Hermes Inquire Scan (F101)
824#endif // HCF_TYPE_HII5 823#endif // HCF_TYPE_HII5
825 /*!! the assumptions about numerical relationships between CFG_TALLIES etc and HCF_ACT_TALLIES etc 824 /*!! the assumptions about numerical relationships between CFG_TALLIES etc and HCF_ACT_TALLIES etc
826 * are checked by #if statements just prior to this routine resulting in: err "maintenance" */ 825 * are checked by #if statements just prior to this routine resulting in: err "maintenance" */
827 cmd_exe( ifbp, HCMD_INQUIRE, action - HCF_ACT_TALLIES + CFG_TALLIES ); 826 cmd_exe( ifbp, HCMD_INQUIRE, action - HCF_ACT_TALLIES + CFG_TALLIES );
828 break; 827 break;
829 828
830 default: 829 default:
831 HCFASSERT( DO_ASSERT, action ); 830 HCFASSERT( DO_ASSERT, action );
832 break; 831 break;
833 } 832 }
834 //! do not HCFASSERT( rc == HCF_SUCCESS, rc ) /* 30*/ 833 //! do not HCFASSERT( rc == HCF_SUCCESS, rc ) /* 30*/
835 HCFLOGEXIT( HCF_TRACE_ACTION ); 834 HCFLOGEXIT( HCF_TRACE_ACTION );
836 return rc; 835 return rc;
837} // hcf_action 836} // hcf_action
@@ -839,137 +838,137 @@ hcf_16 i;
839 838
840 839
841/************************************************************************************************************ 840/************************************************************************************************************
842* 841 *
843*.MODULE int hcf_cntl( IFBP ifbp, hcf_16 cmd ) 842 *.MODULE int hcf_cntl( IFBP ifbp, hcf_16 cmd )
844*.PURPOSE Connect or disconnect a specific port to a specific network. 843 *.PURPOSE Connect or disconnect a specific port to a specific network.
845*!! ;???????????????? continue needs more explanation 844 *!! ;???????????????? continue needs more explanation
846* recovers by means of "continue" when the connect process in CCX mode fails 845 * recovers by means of "continue" when the connect process in CCX mode fails
847* Enables or disables data transmission and reception for the NIC. 846 * Enables or disables data transmission and reception for the NIC.
848* Activates static NIC configuration for a specific port at connect. 847 * Activates static NIC configuration for a specific port at connect.
849* Activates static configuration for all ports at enable. 848 * Activates static configuration for all ports at enable.
850* 849 *
851*.ARGUMENTS 850 *.ARGUMENTS
852* ifbp address of the Interface Block 851 * ifbp address of the Interface Block
853* cmd 0x001F: Hermes command (disable, enable, connect, disconnect, continue) 852 * cmd 0x001F: Hermes command (disable, enable, connect, disconnect, continue)
854* HCF_CNTL_ENABLE Enable 853 * HCF_CNTL_ENABLE Enable
855* HCF_CNTL_DISABLE Disable 854 * HCF_CNTL_DISABLE Disable
856* HCF_CNTL_CONTINUE Continue 855 * HCF_CNTL_CONTINUE Continue
857* HCF_CNTL_CONNECT Connect 856 * HCF_CNTL_CONNECT Connect
858* HCF_CNTL_DISCONNECT Disconnect 857 * HCF_CNTL_DISCONNECT Disconnect
859* 0x0100: command qualifier (continue) 858 * 0x0100: command qualifier (continue)
860* HCMD_RETRY retry flag 859 * HCMD_RETRY retry flag
861* 0x0700: port number (connect/disconnect) 860 * 0x0700: port number (connect/disconnect)
862* HCF_PORT_0 MAC Port 0 861 * HCF_PORT_0 MAC Port 0
863* HCF_PORT_1 MAC Port 1 862 * HCF_PORT_1 MAC Port 1
864* HCF_PORT_2 MAC Port 2 863 * HCF_PORT_2 MAC Port 2
865* HCF_PORT_3 MAC Port 3 864 * HCF_PORT_3 MAC Port 3
866* HCF_PORT_4 MAC Port 4 865 * HCF_PORT_4 MAC Port 4
867* HCF_PORT_5 MAC Port 5 866 * HCF_PORT_5 MAC Port 5
868* HCF_PORT_6 MAC Port 6 867 * HCF_PORT_6 MAC Port 6
869* 868 *
870*.RETURNS 869 *.RETURNS
871* HCF_SUCCESS 870 * HCF_SUCCESS
872*!! via cmd_exe 871 *!! via cmd_exe
873* HCF_ERR_NO_NIC 872 * HCF_ERR_NO_NIC
874* HCF_ERR_DEFUNCT_... 873 * HCF_ERR_DEFUNCT_...
875* HCF_ERR_TIME_OUT 874 * HCF_ERR_TIME_OUT
876* 875 *
877*.DESCRIPTION 876 *.DESCRIPTION
878* The parameter cmd contains a number of subfields. 877 * The parameter cmd contains a number of subfields.
879* The actual value for cmd is created by logical or-ing the appropriate mnemonics for the subfields. 878 * The actual value for cmd is created by logical or-ing the appropriate mnemonics for the subfields.
880* The field 0x001F contains the command code 879 * The field 0x001F contains the command code
881* - HCF_CNTL_ENABLE 880 * - HCF_CNTL_ENABLE
882* - HCF_CNTL_DISABLE 881 * - HCF_CNTL_DISABLE
883* - HCF_CNTL_CONNECT 882 * - HCF_CNTL_CONNECT
884* - HCF_CNTL_DISCONNECT 883 * - HCF_CNTL_DISCONNECT
885* - HCF_CNTL_CONTINUE 884 * - HCF_CNTL_CONTINUE
886* 885 *
887* For HCF_CNTL_CONTINUE, the field 0x0100 contains the retry flag HCMD_RETRY. 886 * For HCF_CNTL_CONTINUE, the field 0x0100 contains the retry flag HCMD_RETRY.
888* For HCF_CNTL_CONNECT and HCF_CNTL_DISCONNECT, the field 0x0700 contains the port number as HCF_PORT_#. 887 * For HCF_CNTL_CONNECT and HCF_CNTL_DISCONNECT, the field 0x0700 contains the port number as HCF_PORT_#.
889* For Station as well as AccessPoint F/W, MAC Port 0 is the "normal" communication channel. 888 * For Station as well as AccessPoint F/W, MAC Port 0 is the "normal" communication channel.
890* For AccessPoint F/W, MAC Port 1 through 6 control the WDS links. 889 * For AccessPoint F/W, MAC Port 1 through 6 control the WDS links.
891* 890 *
892* Note that despite the names HCF_CNTL_DISABLE and HCF_CNTL_ENABLE, hcf_cntl does not influence the NIC 891 * Note that despite the names HCF_CNTL_DISABLE and HCF_CNTL_ENABLE, hcf_cntl does not influence the NIC
893* Interrupts mode. 892 * Interrupts mode.
894* 893 *
895* The Connect is used by the MSF to bring a particular port in an inactive state as far as data transmission 894 * The Connect is used by the MSF to bring a particular port in an inactive state as far as data transmission
896* and reception are concerned. 895 * and reception are concerned.
897* When a particular port is disconnected: 896 * When a particular port is disconnected:
898* - the F/W disables the receiver for that port. 897 * - the F/W disables the receiver for that port.
899* - the F/W ignores send commands for that port. 898 * - the F/W ignores send commands for that port.
900* - all frames (Receive as well as pending Transmit) for that port on the NIC are discarded. 899 * - all frames (Receive as well as pending Transmit) for that port on the NIC are discarded.
901* 900 *
902* When the NIC is disabled, above list applies to all ports, i.e. the result is like all ports are 901 * When the NIC is disabled, above list applies to all ports, i.e. the result is like all ports are
903* disconnected. 902 * disconnected.
904* 903 *
905* When a particular port is connected: 904 * When a particular port is connected:
906* - the F/W effectuates the static configuration for that port. 905 * - the F/W effectuates the static configuration for that port.
907* - enables the receiver for that port. 906 * - enables the receiver for that port.
908* - accepts send commands for that port. 907 * - accepts send commands for that port.
909* 908 *
910* Enabling has the following effects: 909 * Enabling has the following effects:
911* - the F/W effectuates the static configuration for all ports. 910 * - the F/W effectuates the static configuration for all ports.
912* The F/W only updates its static configuration at a transition from disabled to enabled or from 911 * The F/W only updates its static configuration at a transition from disabled to enabled or from
913* disconnected to connected. 912 * disconnected to connected.
914* In order to enforce the static configuration, the MSF must assure that such a transition takes place. 913 * In order to enforce the static configuration, the MSF must assure that such a transition takes place.
915* Due to such a disable/enable or disconnect/connect sequence, Rx/Tx frames may be lost, in other words, 914 * Due to such a disable/enable or disconnect/connect sequence, Rx/Tx frames may be lost, in other words,
916* configuration may impact communication. 915 * configuration may impact communication.
917* - The DMA Engine (if applicable) is enabled. 916 * - The DMA Engine (if applicable) is enabled.
918* Note that the Enable Function by itself only enables data transmission and reception, it 917 * Note that the Enable Function by itself only enables data transmission and reception, it
919* does not enable the Interrupt Generation mechanism. This is done by hcf_action. 918 * does not enable the Interrupt Generation mechanism. This is done by hcf_action.
920* 919 *
921* Disabling has the following effects: 920 * Disabling has the following effects:
922*!! ;?????is the following statement really true 921 *!! ;?????is the following statement really true
923* - it acts as a disconnect on all ports. 922 * - it acts as a disconnect on all ports.
924* - The DMA Engine (if applicable) is disabled. 923 * - The DMA Engine (if applicable) is disabled.
925* 924 *
926* For impact of the disable command on the behavior of hcf_dma_tx/rx_get see the appropriate sections. 925 * For impact of the disable command on the behavior of hcf_dma_tx/rx_get see the appropriate sections.
927* 926 *
928* Although the Enable/Disable and Connect/Disconnect are antonyms, there is no restriction on their sequencing, 927 * Although the Enable/Disable and Connect/Disconnect are antonyms, there is no restriction on their sequencing,
929* in other words, they may be called multiple times in arbitrary sequence without being paired or balanced. 928 * in other words, they may be called multiple times in arbitrary sequence without being paired or balanced.
930* Each time one of these functions is called, the effects of the preceding calls cease. 929 * Each time one of these functions is called, the effects of the preceding calls cease.
931* 930 *
932* Assert fails if 931 * Assert fails if
933* - ifbp has a recognizable out-of-range value. 932 * - ifbp has a recognizable out-of-range value.
934* - NIC interrupts are not disabled. 933 * - NIC interrupts are not disabled.
935* - A command other than Continue, Enable, Disable, Connect or Disconnect is given. 934 * - A command other than Continue, Enable, Disable, Connect or Disconnect is given.
936* - An invalid combination of the subfields is given or a bit outside the subfields is given. 935 * - An invalid combination of the subfields is given or a bit outside the subfields is given.
937* - any return code besides HCF_SUCCESS. 936 * - any return code besides HCF_SUCCESS.
938* - reentrancy, may be caused by calling a hcf_function without adequate protection against NIC interrupts or 937 * - reentrancy, may be caused by calling a hcf_function without adequate protection against NIC interrupts or
939* multi-threading 938 * multi-threading
940* 939 *
941*.DIAGRAM 940 *.DIAGRAM
942* hcf_cntl takes successively the following actions: 941 * hcf_cntl takes successively the following actions:
943*2: If the HCF is in Defunct mode or incompatible with the Primary or Station Supplier in the Hermes, 942 *2: If the HCF is in Defunct mode or incompatible with the Primary or Station Supplier in the Hermes,
944* hcf_cntl() returns immediately with HCF_ERR_NO_NIC;? as status. 943 * hcf_cntl() returns immediately with HCF_ERR_NO_NIC;? as status.
945*8: when the port is disabled, the DMA engine needs to be de-activated, so the host can safely reclaim tx 944 *8: when the port is disabled, the DMA engine needs to be de-activated, so the host can safely reclaim tx
946* packets from the tx descriptor chain. 945 * packets from the tx descriptor chain.
947* 946 *
948*.ENDDOC END DOCUMENTATION 947 *.ENDDOC END DOCUMENTATION
949* 948 *
950************************************************************************************************************/ 949 ************************************************************************************************************/
951int 950int
952hcf_cntl( IFBP ifbp, hcf_16 cmd ) 951hcf_cntl( IFBP ifbp, hcf_16 cmd )
953{ 952{
954int rc = HCF_ERR_INCOMP_FW; 953 int rc = HCF_ERR_INCOMP_FW;
955#if HCF_ASSERT 954#if HCF_ASSERT
956{ int x = cmd & HCMD_CMD_CODE; 955 { int x = cmd & HCMD_CMD_CODE;
957 if ( x == HCF_CNTL_CONTINUE ) x &= ~HCMD_RETRY; 956 if ( x == HCF_CNTL_CONTINUE ) x &= ~HCMD_RETRY;
958 else if ( (x == HCMD_DISABLE || x == HCMD_ENABLE) && ifbp->IFB_FWIdentity.comp_id == COMP_ID_FW_AP ) { 957 else if ( (x == HCMD_DISABLE || x == HCMD_ENABLE) && ifbp->IFB_FWIdentity.comp_id == COMP_ID_FW_AP ) {
959 x &= ~HFS_TX_CNTL_PORT; 958 x &= ~HFS_TX_CNTL_PORT;
960 } 959 }
961 HCFASSERT( x==HCF_CNTL_ENABLE || x==HCF_CNTL_DISABLE || HCF_CNTL_CONTINUE || 960 HCFASSERT( x==HCF_CNTL_ENABLE || x==HCF_CNTL_DISABLE || HCF_CNTL_CONTINUE ||
962 x==HCF_CNTL_CONNECT || x==HCF_CNTL_DISCONNECT, cmd ); 961 x==HCF_CNTL_CONNECT || x==HCF_CNTL_DISCONNECT, cmd );
963} 962 }
964#endif // HCF_ASSERT 963#endif // HCF_ASSERT
965// #if (HCF_SLEEP) & HCF_DDS 964// #if (HCF_SLEEP) & HCF_DDS
966// HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE, cmd ); 965// HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE, cmd );
967// #endif // HCF_DDS 966// #endif // HCF_DDS
968 HCFLOGENTRY( HCF_TRACE_CNTL, cmd ); 967 HCFLOGENTRY( HCF_TRACE_CNTL, cmd );
969 if ( ifbp->IFB_CardStat == 0 ) { /*2*/ 968 if ( ifbp->IFB_CardStat == 0 ) { /*2*/
970/*6*/ rc = cmd_exe( ifbp, cmd, 0 ); 969 /*6*/ rc = cmd_exe( ifbp, cmd, 0 );
971#if (HCF_SLEEP) & HCF_DDS 970#if (HCF_SLEEP) & HCF_DDS
972 ifbp->IFB_TickCnt = 0; //start 2 second period (with 1 tick uncertanty) 971 ifbp->IFB_TickCnt = 0; //start 2 second period (with 1 tick uncertanty)
973#endif // HCF_DDS 972#endif // HCF_DDS
974 } 973 }
975#if HCF_DMA 974#if HCF_DMA
@@ -980,7 +979,7 @@ int rc = HCF_ERR_INCOMP_FW;
980 hcf_io io_port = ifbp->IFB_IOBase; 979 hcf_io io_port = ifbp->IFB_IOBase;
981 DESC_STRCT *p; 980 DESC_STRCT *p;
982 if ( cmd == HCF_CNTL_DISABLE || cmd == HCF_CNTL_ENABLE ) { 981 if ( cmd == HCF_CNTL_DISABLE || cmd == HCF_CNTL_ENABLE ) {
983 OUT_PORT_DWORD( (io_port + HREG_DMA_CTRL), DMA_CTRLSTAT_RESET); /*8*/ 982 OUT_PORT_DWORD( (io_port + HREG_DMA_CTRL), DMA_CTRLSTAT_RESET); /*8*/
984 ifbp->IFB_CntlOpt &= ~DMA_ENABLED; 983 ifbp->IFB_CntlOpt &= ~DMA_ENABLED;
985 } 984 }
986 if ( cmd == HCF_CNTL_ENABLE ) { 985 if ( cmd == HCF_CNTL_ENABLE ) {
@@ -993,7 +992,7 @@ int rc = HCF_ERR_INCOMP_FW;
993 // make the entire rx descriptor chain DMA-owned, so the DMA engine can (re-)use it. 992 // make the entire rx descriptor chain DMA-owned, so the DMA engine can (re-)use it.
994 p = ifbp->IFB_FirstDesc[DMA_RX]; 993 p = ifbp->IFB_FirstDesc[DMA_RX];
995 if (p != NULL) { //;? Think this over again in the light of the new chaining strategy 994 if (p != NULL) { //;? Think this over again in the light of the new chaining strategy
996 if ( 1 ) { //begin alternative 995 if ( 1 ) { //begin alternative
997 HCFASSERT( NT_ASSERT, NEVER_TESTED ); 996 HCFASSERT( NT_ASSERT, NEVER_TESTED );
998 put_frame_lst( ifbp, ifbp->IFB_FirstDesc[DMA_RX], DMA_RX ); 997 put_frame_lst( ifbp, ifbp->IFB_FirstDesc[DMA_RX], DMA_RX );
999 if ( ifbp->IFB_FirstDesc[DMA_RX] ) { 998 if ( ifbp->IFB_FirstDesc[DMA_RX] ) {
@@ -1020,140 +1019,140 @@ int rc = HCF_ERR_INCOMP_FW;
1020 1019
1021 1020
1022/************************************************************************************************************ 1021/************************************************************************************************************
1023* 1022 *
1024*.MODULE int hcf_connect( IFBP ifbp, hcf_io io_base ) 1023 *.MODULE int hcf_connect( IFBP ifbp, hcf_io io_base )
1025*.PURPOSE Grants access right for the HCF to the IFB. 1024 *.PURPOSE Grants access right for the HCF to the IFB.
1026* Initializes Card and HCF housekeeping. 1025 * Initializes Card and HCF housekeeping.
1027* 1026 *
1028*.ARGUMENTS 1027 *.ARGUMENTS
1029* ifbp (near) address of the Interface Block 1028 * ifbp (near) address of the Interface Block
1030* io_base non-USB: I/O Base address of the NIC (connect) 1029 * io_base non-USB: I/O Base address of the NIC (connect)
1031* non-USB: HCF_DISCONNECT 1030 * non-USB: HCF_DISCONNECT
1032* USB: HCF_CONNECT, HCF_DISCONNECT 1031 * USB: HCF_CONNECT, HCF_DISCONNECT
1033* 1032 *
1034*.RETURNS 1033 *.RETURNS
1035* HCF_SUCCESS 1034 * HCF_SUCCESS
1036* HCF_ERR_INCOMP_PRI 1035 * HCF_ERR_INCOMP_PRI
1037* HCF_ERR_INCOMP_FW 1036 * HCF_ERR_INCOMP_FW
1038* HCF_ERR_DEFUNCT_CMD_SEQ 1037 * HCF_ERR_DEFUNCT_CMD_SEQ
1039*!! HCF_ERR_NO_NIC really returned ;? 1038 *!! HCF_ERR_NO_NIC really returned ;?
1040* HCF_ERR_NO_NIC 1039 * HCF_ERR_NO_NIC
1041* HCF_ERR_TIME_OUT 1040 * HCF_ERR_TIME_OUT
1042* 1041 *
1043* MSF-accessible fields of Result Block: 1042 * MSF-accessible fields of Result Block:
1044* IFB_IOBase entry parameter io_base 1043 * IFB_IOBase entry parameter io_base
1045* IFB_IORange HREG_IO_RANGE (0x40/0x80) 1044 * IFB_IORange HREG_IO_RANGE (0x40/0x80)
1046* IFB_Version version of the IFB layout 1045 * IFB_Version version of the IFB layout
1047* IFB_FWIdentity CFG_FW_IDENTITY_STRCT, specifies the identity of the 1046 * IFB_FWIdentity CFG_FW_IDENTITY_STRCT, specifies the identity of the
1048* "running" F/W, i.e. tertiary F/W under normal conditions 1047 * "running" F/W, i.e. tertiary F/W under normal conditions
1049* IFB_FWSup CFG_SUP_RANGE_STRCT, specifies the supplier range of 1048 * IFB_FWSup CFG_SUP_RANGE_STRCT, specifies the supplier range of
1050* the "running" F/W, i.e. tertiary F/W under normal conditions 1049 * the "running" F/W, i.e. tertiary F/W under normal conditions
1051* IFB_HSISup CFG_SUP_RANGE_STRCT, specifies the HW/SW I/F range of the NIC 1050 * IFB_HSISup CFG_SUP_RANGE_STRCT, specifies the HW/SW I/F range of the NIC
1052* IFB_PRIIdentity CFG_PRI_IDENTITY_STRCT, specifies the Identity of the Primary F/W 1051 * IFB_PRIIdentity CFG_PRI_IDENTITY_STRCT, specifies the Identity of the Primary F/W
1053* IFB_PRISup CFG_SUP_RANGE_STRCT, specifies the supplier range of the Primary F/W 1052 * IFB_PRISup CFG_SUP_RANGE_STRCT, specifies the supplier range of the Primary F/W
1054* all other all MSF accessible fields, which are not specified above, are zero-filled 1053 * all other all MSF accessible fields, which are not specified above, are zero-filled
1055* 1054 *
1056*.CONDITIONS 1055 *.CONDITIONS
1057* It is the responsibility of the MSF to assure the correctness of the I/O Base address. 1056 * It is the responsibility of the MSF to assure the correctness of the I/O Base address.
1058* 1057 *
1059* Note: hcf_connect defaults to NIC interrupt disabled mode, i.e. as if hcf_action( HCF_ACT_INT_OFF ) 1058 * Note: hcf_connect defaults to NIC interrupt disabled mode, i.e. as if hcf_action( HCF_ACT_INT_OFF )
1060* was called. 1059 * was called.
1061* 1060 *
1062*.DESCRIPTION 1061 *.DESCRIPTION
1063* hcf_connect passes the MSF-defined location of the IFB to the HCF and grants or revokes access right for the 1062 * hcf_connect passes the MSF-defined location of the IFB to the HCF and grants or revokes access right for the
1064* HCF to the IFB. Revoking is done by specifying HCF_DISCONNECT rather than an I/O address for the parameter 1063 * HCF to the IFB. Revoking is done by specifying HCF_DISCONNECT rather than an I/O address for the parameter
1065* io_base. Every call of hcf_connect in "connect" mode, must eventually be followed by a call of hcf_connect 1064 * io_base. Every call of hcf_connect in "connect" mode, must eventually be followed by a call of hcf_connect
1066* in "disconnect" mode. Clalling hcf_connect in "connect"/"disconnect" mode can not be nested. 1065 * in "disconnect" mode. Clalling hcf_connect in "connect"/"disconnect" mode can not be nested.
1067* The IFB address must be used as a handle with all subsequent HCF-function calls and the HCF uses the IFB 1066 * The IFB address must be used as a handle with all subsequent HCF-function calls and the HCF uses the IFB
1068* address as a handle when it performs a call(back) of an MSF-function (i.e. msf_assert). 1067 * address as a handle when it performs a call(back) of an MSF-function (i.e. msf_assert).
1069* 1068 *
1070* Note that not only the MSF accessible fields are cleared, but also all internal housekeeping 1069 * Note that not only the MSF accessible fields are cleared, but also all internal housekeeping
1071* information is re-initialized. 1070 * information is re-initialized.
1072* This implies that all settings which are done via hcf_action and hcf_put_info (e.g. CFG_MB_ASSERT, CFG_REG_MB, 1071 * This implies that all settings which are done via hcf_action and hcf_put_info (e.g. CFG_MB_ASSERT, CFG_REG_MB,
1073* CFG_REG_INFO_LOG) must be done again. The only field which is not cleared, is IFB_MSFSup. 1072 * CFG_REG_INFO_LOG) must be done again. The only field which is not cleared, is IFB_MSFSup.
1074* 1073 *
1075* If HCF_INT_ON is selected as compile option, NIC interrupts are disabled. 1074 * If HCF_INT_ON is selected as compile option, NIC interrupts are disabled.
1076* 1075 *
1077* Assert fails if 1076 * Assert fails if
1078* - ifbp is not properly aligned ( ref chapter HCF_ALIGN in 4.1.1) 1077 * - ifbp is not properly aligned ( ref chapter HCF_ALIGN in 4.1.1)
1079* - I/O Base Address is not a multiple of 0x40 (note: 0x0000 is explicitly allowed). 1078 * - I/O Base Address is not a multiple of 0x40 (note: 0x0000 is explicitly allowed).
1080* 1079 *
1081*.DIAGRAM 1080 *.DIAGRAM
1082* 1081 *
1083*0: Throughout hcf_connect you need to distinguish the connect from the disconnect case, which requires 1082 *0: Throughout hcf_connect you need to distinguish the connect from the disconnect case, which requires
1084* some attention about what to use as "I/O" address when for which purpose. 1083 * some attention about what to use as "I/O" address when for which purpose.
1085*2: 1084 *2:
1086*2a: Reset H-II by toggling reset bit in IO-register on and off. 1085 *2a: Reset H-II by toggling reset bit in IO-register on and off.
1087* The HCF_TYPE_PRELOADED caters for the DOS environment where H-II is loaded by a separate program to 1086 * The HCF_TYPE_PRELOADED caters for the DOS environment where H-II is loaded by a separate program to
1088* overcome the 64k size limit posed on DOS drivers. 1087 * overcome the 64k size limit posed on DOS drivers.
1089* The macro OPW is not yet useable because the IFB_IOBase field is not set. 1088 * The macro OPW is not yet useable because the IFB_IOBase field is not set.
1090* Note 1: hopefully the clearing and initializing of the IFB (see below) acts as a delay which meets the 1089 * Note 1: hopefully the clearing and initializing of the IFB (see below) acts as a delay which meets the
1091* specification for S/W reset 1090 * specification for S/W reset
1092* Note 2: it turns out that on some H/W constellations, the clock to access the EEProm is not lowered 1091 * Note 2: it turns out that on some H/W constellations, the clock to access the EEProm is not lowered
1093* to an appropriate frequency by HREG_IO_SRESET. By giving an HCMD_INI first, this problem is worked around. 1092 * to an appropriate frequency by HREG_IO_SRESET. By giving an HCMD_INI first, this problem is worked around.
1094*2b: Experimentally it is determined over a wide range of F/W versions that waiting for the for Cmd bit in 1093 *2b: Experimentally it is determined over a wide range of F/W versions that waiting for the for Cmd bit in
1095* Ev register gives a workable strategy. The available documentation does not give much clues. 1094 * Ev register gives a workable strategy. The available documentation does not give much clues.
1096*4: clear and initialize the IFB 1095 *4: clear and initialize the IFB
1097* The HCF house keeping info is designed such that zero is the appropriate initial value for as much as 1096 * The HCF house keeping info is designed such that zero is the appropriate initial value for as much as
1098* feasible IFB-items. 1097 * feasible IFB-items.
1099* The readable fields mentioned in the description section and some HCF specific fields are given their 1098 * The readable fields mentioned in the description section and some HCF specific fields are given their
1100* actual value. 1099 * actual value.
1101* IFB_TickIni is initialized at best guess before calibration 1100 * IFB_TickIni is initialized at best guess before calibration
1102* Hcf_connect defaults to "no interrupt generation" (implicitly achieved by the zero-filling). 1101 * Hcf_connect defaults to "no interrupt generation" (implicitly achieved by the zero-filling).
1103*6: Register compile-time linked MSF Routine and set default filter level 1102 *6: Register compile-time linked MSF Routine and set default filter level
1104* cast needed to get around the "near" problem in DOS COM model 1103 * cast needed to get around the "near" problem in DOS COM model
1105* er C2446: no conversion from void (__near __cdecl *)(unsigned char __far *,unsigned int,unsigned short,int) 1104 * er C2446: no conversion from void (__near __cdecl *)(unsigned char __far *,unsigned int,unsigned short,int)
1106* to void (__far __cdecl *)(unsigned char __far *,unsigned int,unsigned short,int) 1105 * to void (__far __cdecl *)(unsigned char __far *,unsigned int,unsigned short,int)
1107*8: If a command is apparently still active (as indicated by the Busy bit in Cmd register) this may indicate a 1106 *8: If a command is apparently still active (as indicated by the Busy bit in Cmd register) this may indicate a
1108* blocked cmd pipe line. To unblock the following actions are done: 1107 * blocked cmd pipe line. To unblock the following actions are done:
1109* - Ack everything 1108 * - Ack everything
1110* - Wait for Busy bit drop in Cmd register 1109 * - Wait for Busy bit drop in Cmd register
1111* - Wait for Cmd bit raise in Ev register 1110 * - Wait for Cmd bit raise in Ev register
1112* The two waits are combined in a single HCF_WAIT_WHILE to optimize memory size. If either of these waits 1111 * The two waits are combined in a single HCF_WAIT_WHILE to optimize memory size. If either of these waits
1113* fail (prot_cnt becomes 0), then something is serious wrong. Rather than PANICK, the assumption is that the 1112 * fail (prot_cnt becomes 0), then something is serious wrong. Rather than PANICK, the assumption is that the
1114* next cmd_exe will fail, causing the HCF to go into DEFUNCT mode 1113 * next cmd_exe will fail, causing the HCF to go into DEFUNCT mode
1115*10: Ack everything to unblock a (possibly blocked) cmd pipe line 1114 *10: Ack everything to unblock a (possibly blocked) cmd pipe line
1116* Note 1: it is very likely that an Alloc event is pending and very well possible that a (Send) Cmd event is 1115 * Note 1: it is very likely that an Alloc event is pending and very well possible that a (Send) Cmd event is
1117* pending on non-initial calls 1116 * pending on non-initial calls
1118* Note 2: it is assumed that this strategy takes away the need to ack every conceivable event after an 1117 * Note 2: it is assumed that this strategy takes away the need to ack every conceivable event after an
1119* Hermes Initialize 1118 * Hermes Initialize
1120*12: Only H-II NEEDS the Hermes Initialize command. Due to the different semantics for H-I and H-II 1119 *12: Only H-II NEEDS the Hermes Initialize command. Due to the different semantics for H-I and H-II
1121* Initialize command, init() does not (and can not, since it is called e.g. after a download) execute the 1120 * Initialize command, init() does not (and can not, since it is called e.g. after a download) execute the
1122* Hermes Initialize command. Executing the Hermes Initialize command for H-I would not harm but not do 1121 * Hermes Initialize command. Executing the Hermes Initialize command for H-I would not harm but not do
1123* anything useful either, so it is skipped. 1122 * anything useful either, so it is skipped.
1124* The return status of cmd_exe is ignored. It is assumed that if cmd_exe fails, init fails too 1123 * The return status of cmd_exe is ignored. It is assumed that if cmd_exe fails, init fails too
1125*14: use io_base as a flag to merge hcf_connect and hcf_disconnect into 1 routine 1124 *14: use io_base as a flag to merge hcf_connect and hcf_disconnect into 1 routine
1126* the call to init and its subsequent call of cmd_exe will return HCF_ERR_NO_NIC if appropriate. This status 1125 * the call to init and its subsequent call of cmd_exe will return HCF_ERR_NO_NIC if appropriate. This status
1127* is (badly) needed by some legacy combination of NT4 and card services which do not yield an I/O address in 1126 * is (badly) needed by some legacy combination of NT4 and card services which do not yield an I/O address in
1128* time. 1127 * time.
1129* 1128 *
1130*.NOTICE 1129 *.NOTICE
1131* On platforms where the NULL-pointer is not a bit-pattern of all zeros, the zero-filling of the IFB results 1130 * On platforms where the NULL-pointer is not a bit-pattern of all zeros, the zero-filling of the IFB results
1132* in an incorrect initialization of pointers. 1131 * in an incorrect initialization of pointers.
1133* The implementation of the MailBox manipulation in put_mb_info protects against the absence of a MailBox 1132 * The implementation of the MailBox manipulation in put_mb_info protects against the absence of a MailBox
1134* based on IFB_MBSize, IFB_MBWp and ifbp->IFB_MBRp. This has ramifications on the initialization of the 1133 * based on IFB_MBSize, IFB_MBWp and ifbp->IFB_MBRp. This has ramifications on the initialization of the
1135* MailBox via hcf_put_info with the CFG_REG_MB type, but it prevents dependency on the "NULL-"ness of 1134 * MailBox via hcf_put_info with the CFG_REG_MB type, but it prevents dependency on the "NULL-"ness of
1136* IFB_MBp. 1135 * IFB_MBp.
1137* 1136 *
1138*.NOTICE 1137 *.NOTICE
1139* There are a number of problems when asserting and logging hcf_connect, e.g. 1138 * There are a number of problems when asserting and logging hcf_connect, e.g.
1140* - Asserting on re-entrancy of hcf_connect by means of 1139 * - Asserting on re-entrancy of hcf_connect by means of
1141* "HCFASSERT( (ifbp->IFB_AssertTrace & HCF_ASSERT_CONNECT) == 0, 0 )" is not useful because IFB contents 1140 * "HCFASSERT( (ifbp->IFB_AssertTrace & HCF_ASSERT_CONNECT) == 0, 0 )" is not useful because IFB contents
1142* are undefined 1141 * are undefined
1143* - Asserting before the IFB is cleared will cause mdd_assert() to interpret the garbage in IFB_AssertRtn 1142 * - Asserting before the IFB is cleared will cause mdd_assert() to interpret the garbage in IFB_AssertRtn
1144* as a routine address 1143 * as a routine address
1145* Therefore HCFTRACE nor HCFLOGENTRY is called by hcf_connect. 1144 * Therefore HCFTRACE nor HCFLOGENTRY is called by hcf_connect.
1146*.ENDDOC END DOCUMENTATION 1145 *.ENDDOC END DOCUMENTATION
1147* 1146 *
1148************************************************************************************************************/ 1147 ************************************************************************************************************/
1149int 1148int
1150hcf_connect( IFBP ifbp, hcf_io io_base ) 1149hcf_connect( IFBP ifbp, hcf_io io_base )
1151{ 1150{
1152int rc = HCF_SUCCESS; 1151 int rc = HCF_SUCCESS;
1153hcf_io io_addr; 1152 hcf_io io_addr;
1154hcf_32 prot_cnt; 1153 hcf_32 prot_cnt;
1155hcf_8 *q; 1154 hcf_8 *q;
1156LTV_STRCT x; 1155 LTV_STRCT x;
1157#if HCF_ASSERT 1156#if HCF_ASSERT
1158 hcf_16 xa = ifbp->IFB_FWIdentity.typ; 1157 hcf_16 xa = ifbp->IFB_FWIdentity.typ;
1159 /* is assumed to cause an assert later on if hcf_connect is called without intervening hcf_disconnect. 1158 /* is assumed to cause an assert later on if hcf_connect is called without intervening hcf_disconnect.
@@ -1163,51 +1162,51 @@ LTV_STRCT x;
1163 */ 1162 */
1164#endif // HCF_ASSERT 1163#endif // HCF_ASSERT
1165 1164
1166 if ( io_base == HCF_DISCONNECT ) { //disconnect 1165 if ( io_base == HCF_DISCONNECT ) { //disconnect
1167 io_addr = ifbp->IFB_IOBase; 1166 io_addr = ifbp->IFB_IOBase;
1168 OPW( HREG_INT_EN, 0 ); //;?workaround against dying F/W on subsequent hcf_connect calls 1167 OPW( HREG_INT_EN, 0 ); //;?workaround against dying F/W on subsequent hcf_connect calls
1169 } else { //connect /* 0 */ 1168 } else { //connect /* 0 */
1170 io_addr = io_base; 1169 io_addr = io_base;
1171 } 1170 }
1172 1171
1173#if 0 //;? if a subsequent hcf_connect is preceded by an hcf_disconnect the wakeup is not needed !! 1172#if 0 //;? if a subsequent hcf_connect is preceded by an hcf_disconnect the wakeup is not needed !!
1174#if HCF_SLEEP 1173#if HCF_SLEEP
1175 OUT_PORT_WORD( .....+HREG_IO, HREG_IO_WAKEUP_ASYNC ); //OPW not yet useable 1174 OUT_PORT_WORD( .....+HREG_IO, HREG_IO_WAKEUP_ASYNC ); //OPW not yet useable
1176 MSF_WAIT(800); // MSF-defined function to wait n microseconds. 1175 MSF_WAIT(800); // MSF-defined function to wait n microseconds.
1177 note that MSF_WAIT uses not yet defined!!!! IFB_IOBase and IFB_TickIni (via PROT_CNT_INI) 1176 note that MSF_WAIT uses not yet defined!!!! IFB_IOBase and IFB_TickIni (via PROT_CNT_INI)
1178 so be careful if this code is restored 1177 so be careful if this code is restored
1179#endif // HCF_SLEEP 1178#endif // HCF_SLEEP
1180#endif // 0 1179#endif // 0
1181 1180
1182#if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0 //switch clock back for SEEPROM access !!! 1181#if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0 //switch clock back for SEEPROM access !!!
1183 OUT_PORT_WORD( io_addr + HREG_CMD, HCMD_INI ); //OPW not yet useable 1182 OUT_PORT_WORD( io_addr + HREG_CMD, HCMD_INI ); //OPW not yet useable
1184 prot_cnt = INI_TICK_INI; 1183 prot_cnt = INI_TICK_INI;
1185 HCF_WAIT_WHILE( (IN_PORT_WORD( io_addr + HREG_EV_STAT) & HREG_EV_CMD) == 0 ); 1184 HCF_WAIT_WHILE( (IN_PORT_WORD( io_addr + HREG_EV_STAT) & HREG_EV_CMD) == 0 );
1186 OUT_PORT_WORD( (io_addr + HREG_IO), HREG_IO_SRESET ); //OPW not yet useable /* 2a*/ 1185 OUT_PORT_WORD( (io_addr + HREG_IO), HREG_IO_SRESET ); //OPW not yet useable /* 2a*/
1187#endif // HCF_TYPE_PRELOADED 1186#endif // HCF_TYPE_PRELOADED
1188 for ( q = (hcf_8*)(&ifbp->IFB_Magic); q > (hcf_8*)ifbp; *--q = 0 ) /*NOP*/; /* 4 */ 1187 for ( q = (hcf_8*)(&ifbp->IFB_Magic); q > (hcf_8*)ifbp; *--q = 0 ) /*NOP*/; /* 4 */
1189 ifbp->IFB_Magic = HCF_MAGIC; 1188 ifbp->IFB_Magic = HCF_MAGIC;
1190 ifbp->IFB_Version = IFB_VERSION; 1189 ifbp->IFB_Version = IFB_VERSION;
1191#if defined MSF_COMPONENT_ID //a new IFB demonstrates how dirty the solution is 1190#if defined MSF_COMPONENT_ID //a new IFB demonstrates how dirty the solution is
1192 xxxx[xxxx_PRI_IDENTITY_OFFSET] = NULL; //IFB_PRIIdentity placeholder 0xFD02 1191 xxxx[xxxx_PRI_IDENTITY_OFFSET] = NULL; //IFB_PRIIdentity placeholder 0xFD02
1193 xxxx[xxxx_PRI_IDENTITY_OFFSET+1] = NULL; //IFB_PRISup placeholder 0xFD03 1192 xxxx[xxxx_PRI_IDENTITY_OFFSET+1] = NULL; //IFB_PRISup placeholder 0xFD03
1194#endif // MSF_COMPONENT_ID 1193#endif // MSF_COMPONENT_ID
1195#if (HCF_TALLIES) & ( HCF_TALLIES_NIC | HCF_TALLIES_HCF ) 1194#if (HCF_TALLIES) & ( HCF_TALLIES_NIC | HCF_TALLIES_HCF )
1196 ifbp->IFB_TallyLen = 1 + 2 * (HCF_NIC_TAL_CNT + HCF_HCF_TAL_CNT); //convert # of Tallies to L value for LTV 1195 ifbp->IFB_TallyLen = 1 + 2 * (HCF_NIC_TAL_CNT + HCF_HCF_TAL_CNT); //convert # of Tallies to L value for LTV
1197 ifbp->IFB_TallyTyp = CFG_TALLIES; //IFB_TallyTyp: set T value 1196 ifbp->IFB_TallyTyp = CFG_TALLIES; //IFB_TallyTyp: set T value
1198#endif // HCF_TALLIES_NIC / HCF_TALLIES_HCF 1197#endif // HCF_TALLIES_NIC / HCF_TALLIES_HCF
1199 ifbp->IFB_IOBase = io_addr; //set IO_Base asap, so asserts via HREG_SW_2 don't harm 1198 ifbp->IFB_IOBase = io_addr; //set IO_Base asap, so asserts via HREG_SW_2 don't harm
1200 ifbp->IFB_IORange = HREG_IO_RANGE; 1199 ifbp->IFB_IORange = HREG_IO_RANGE;
1201 ifbp->IFB_CntlOpt = USE_16BIT; 1200 ifbp->IFB_CntlOpt = USE_16BIT;
1202#if HCF_ASSERT 1201#if HCF_ASSERT
1203 assert_ifbp = ifbp; 1202 assert_ifbp = ifbp;
1204 ifbp->IFB_AssertLvl = 1; 1203 ifbp->IFB_AssertLvl = 1;
1205#if (HCF_ASSERT) & HCF_ASSERT_LNK_MSF_RTN 1204#if (HCF_ASSERT) & HCF_ASSERT_LNK_MSF_RTN
1206 if ( io_base != HCF_DISCONNECT ) { 1205 if ( io_base != HCF_DISCONNECT ) {
1207 ifbp->IFB_AssertRtn = (MSF_ASSERT_RTNP)msf_assert; /* 6 */ 1206 ifbp->IFB_AssertRtn = (MSF_ASSERT_RTNP)msf_assert; /* 6 */
1208 } 1207 }
1209#endif // HCF_ASSERT_LNK_MSF_RTN 1208#endif // HCF_ASSERT_LNK_MSF_RTN
1210#if (HCF_ASSERT) & HCF_ASSERT_MB //build the structure to pass the assert info to hcf_put_info 1209#if (HCF_ASSERT) & HCF_ASSERT_MB //build the structure to pass the assert info to hcf_put_info
1211 ifbp->IFB_AssertStrct.len = sizeof(ifbp->IFB_AssertStrct)/sizeof(hcf_16) - 1; 1210 ifbp->IFB_AssertStrct.len = sizeof(ifbp->IFB_AssertStrct)/sizeof(hcf_16) - 1;
1212 ifbp->IFB_AssertStrct.typ = CFG_MB_INFO; 1211 ifbp->IFB_AssertStrct.typ = CFG_MB_INFO;
1213 ifbp->IFB_AssertStrct.base_typ = CFG_MB_ASSERT; 1212 ifbp->IFB_AssertStrct.base_typ = CFG_MB_ASSERT;
@@ -1220,31 +1219,31 @@ LTV_STRCT x;
1220 IF_PROT_TIME( prot_cnt = ifbp->IFB_TickIni = INI_TICK_INI ); 1219 IF_PROT_TIME( prot_cnt = ifbp->IFB_TickIni = INI_TICK_INI );
1221#if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0 1220#if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0
1222 //!! No asserts before Reset-bit in HREG_IO is cleared 1221 //!! No asserts before Reset-bit in HREG_IO is cleared
1223 OPW( HREG_IO, 0x0000 ); //OPW useable /* 2b*/ 1222 OPW( HREG_IO, 0x0000 ); //OPW useable /* 2b*/
1224 HCF_WAIT_WHILE( (IPW( HREG_EV_STAT) & HREG_EV_CMD) == 0 ); 1223 HCF_WAIT_WHILE( (IPW( HREG_EV_STAT) & HREG_EV_CMD) == 0 );
1225 IF_PROT_TIME( HCFASSERT( prot_cnt, IPW( HREG_EV_STAT) ) ); 1224 IF_PROT_TIME( HCFASSERT( prot_cnt, IPW( HREG_EV_STAT) ) );
1226 IF_PROT_TIME( if ( prot_cnt ) prot_cnt = ifbp->IFB_TickIni ); 1225 IF_PROT_TIME( if ( prot_cnt ) prot_cnt = ifbp->IFB_TickIni );
1227#endif // HCF_TYPE_PRELOADED 1226#endif // HCF_TYPE_PRELOADED
1228 //!! No asserts before Reset-bit in HREG_IO is cleared 1227 //!! No asserts before Reset-bit in HREG_IO is cleared
1229 HCFASSERT( DO_ASSERT, MERGE_2( HCF_ASSERT, 0xCAF0 ) ); //just to proof that the complete assert machinery is working 1228 HCFASSERT( DO_ASSERT, MERGE_2( HCF_ASSERT, 0xCAF0 ) ); //just to proof that the complete assert machinery is working
1230 HCFASSERT( xa != CFG_FW_IDENTITY, 0 ); // assert if hcf_connect is called without intervening hcf_disconnect. 1229 HCFASSERT( xa != CFG_FW_IDENTITY, 0 ); // assert if hcf_connect is called without intervening hcf_disconnect.
1231 HCFASSERT( ((hcf_32)(void*)ifbp & (HCF_ALIGN-1) ) == 0, (hcf_32)(void*)ifbp ); 1230 HCFASSERT( ((hcf_32)(void*)ifbp & (HCF_ALIGN-1) ) == 0, (hcf_32)(void*)ifbp );
1232 HCFASSERT( (io_addr & 0x003F) == 0, io_addr ); 1231 HCFASSERT( (io_addr & 0x003F) == 0, io_addr );
1233 //if Busy bit in Cmd register 1232 //if Busy bit in Cmd register
1234 if (IPW( HREG_CMD ) & HCMD_BUSY ) { /* 8 */ 1233 if (IPW( HREG_CMD ) & HCMD_BUSY ) { /* 8 */
1235 //. Ack all to unblock a (possibly) blocked cmd pipe line 1234 //. Ack all to unblock a (possibly) blocked cmd pipe line
1236 OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ ); 1235 OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ );
1237 //. Wait for Busy bit drop in Cmd register 1236 //. Wait for Busy bit drop in Cmd register
1238 //. Wait for Cmd bit raise in Ev register 1237 //. Wait for Cmd bit raise in Ev register
1239 HCF_WAIT_WHILE( ( IPW( HREG_CMD ) & HCMD_BUSY ) && (IPW( HREG_EV_STAT) & HREG_EV_CMD) == 0 ); 1238 HCF_WAIT_WHILE( ( IPW( HREG_CMD ) & HCMD_BUSY ) && (IPW( HREG_EV_STAT) & HREG_EV_CMD) == 0 );
1240 IF_PROT_TIME( HCFASSERT( prot_cnt, IPW( HREG_EV_STAT) ) ); /* if prot_cnt == 0, cmd_exe will fail, causing DEFUNCT */ 1239 IF_PROT_TIME( HCFASSERT( prot_cnt, IPW( HREG_EV_STAT) ) ); /* if prot_cnt == 0, cmd_exe will fail, causing DEFUNCT */
1241 } 1240 }
1242 OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ ); 1241 OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ );
1243#if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0 /*12*/ 1242#if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0 /*12*/
1244 (void)cmd_exe( ifbp, HCMD_INI, 0 ); 1243 (void)cmd_exe( ifbp, HCMD_INI, 0 );
1245#endif // HCF_TYPE_PRELOADED 1244#endif // HCF_TYPE_PRELOADED
1246if ( io_base != HCF_DISCONNECT ) { 1245 if ( io_base != HCF_DISCONNECT ) {
1247 rc = init( ifbp ); /*14*/ 1246 rc = init( ifbp ); /*14*/
1248 if ( rc == HCF_SUCCESS ) { 1247 if ( rc == HCF_SUCCESS ) {
1249 x.len = 2; 1248 x.len = 2;
1250 x.typ = CFG_NIC_BUS_TYPE; 1249 x.typ = CFG_NIC_BUS_TYPE;
@@ -1253,10 +1252,10 @@ if ( io_base != HCF_DISCONNECT ) {
1253 //CFG_NIC_BUS_TYPE not supported -> default 32 bits/DMA, MSF has to overrule via CFG_CNTL_OPT 1252 //CFG_NIC_BUS_TYPE not supported -> default 32 bits/DMA, MSF has to overrule via CFG_CNTL_OPT
1254 if ( x.len == 0 || x.val[0] == 0x0002 || x.val[0] == 0x0003 ) { 1253 if ( x.len == 0 || x.val[0] == 0x0002 || x.val[0] == 0x0003 ) {
1255#if (HCF_IO) & HCF_IO_32BITS 1254#if (HCF_IO) & HCF_IO_32BITS
1256 ifbp->IFB_CntlOpt &= ~USE_16BIT; //reset USE_16BIT 1255 ifbp->IFB_CntlOpt &= ~USE_16BIT; //reset USE_16BIT
1257#endif // HCF_IO_32BITS 1256#endif // HCF_IO_32BITS
1258#if HCF_DMA 1257#if HCF_DMA
1259 ifbp->IFB_CntlOpt |= USE_DMA; //SET DMA 1258 ifbp->IFB_CntlOpt |= USE_DMA; //SET DMA
1260#else 1259#else
1261 ifbp->IFB_IORange = 0x40 /*i.s.o. HREG_IO_RANGE*/; 1260 ifbp->IFB_IORange = 0x40 /*i.s.o. HREG_IO_RANGE*/;
1262#endif // HCF_DMA 1261#endif // HCF_DMA
@@ -1264,147 +1263,147 @@ if ( io_base != HCF_DISCONNECT ) {
1264 } 1263 }
1265 } else HCFASSERT( ( ifbp->IFB_Magic ^= HCF_MAGIC ) == 0, ifbp->IFB_Magic ) /*NOP*/; 1264 } else HCFASSERT( ( ifbp->IFB_Magic ^= HCF_MAGIC ) == 0, ifbp->IFB_Magic ) /*NOP*/;
1266 /* of above HCFASSERT only the side effect is needed, NOP in case HCFASSERT is dummy */ 1265 /* of above HCFASSERT only the side effect is needed, NOP in case HCFASSERT is dummy */
1267 ifbp->IFB_IOBase = io_base; /* 0*/ 1266 ifbp->IFB_IOBase = io_base; /* 0*/
1268 return rc; 1267 return rc;
1269} // hcf_connect 1268} // hcf_connect
1270 1269
1271#if HCF_DMA 1270#if HCF_DMA
1272/************************************************************************************************************ 1271/************************************************************************************************************
1273* Function get_frame_lst 1272 * Function get_frame_lst
1274* - resolve the "last host-owned descriptor" problems when a descriptor list is reclaimed by the MSF. 1273 * - resolve the "last host-owned descriptor" problems when a descriptor list is reclaimed by the MSF.
1275* 1274 *
1276* The FrameList to be reclaimed as well as the DescriptorList always start in IFB_FirstDesc[tx_rx_flag] 1275 * The FrameList to be reclaimed as well as the DescriptorList always start in IFB_FirstDesc[tx_rx_flag]
1277* and this is always the "current" DELWA Descriptor. 1276 * and this is always the "current" DELWA Descriptor.
1278* 1277 *
1279* If a FrameList is available, the last descriptor of the FrameList to turned into a new DELWA Descriptor: 1278 * If a FrameList is available, the last descriptor of the FrameList to turned into a new DELWA Descriptor:
1280* - a copy is made from the information in the last descriptor of the FrameList into the current 1279 * - a copy is made from the information in the last descriptor of the FrameList into the current
1281* DELWA Descriptor 1280 * DELWA Descriptor
1282* - the remainder of the DescriptorList is detached from the copy by setting the next_desc_addr at NULL 1281 * - the remainder of the DescriptorList is detached from the copy by setting the next_desc_addr at NULL
1283* - the DMA control bits of the copy are cleared to do not confuse the MSF 1282 * - the DMA control bits of the copy are cleared to do not confuse the MSF
1284* - the copy of the last descriptor (i.e. the "old" DELWA Descriptor) is chained to the prev Descriptor 1283 * - the copy of the last descriptor (i.e. the "old" DELWA Descriptor) is chained to the prev Descriptor
1285* of the FrameList, thus replacing the original last Descriptor of the FrameList. 1284 * of the FrameList, thus replacing the original last Descriptor of the FrameList.
1286* - IFB_FirstDesc is changed to the address of that replaced (original) last descriptor of the FrameList, 1285 * - IFB_FirstDesc is changed to the address of that replaced (original) last descriptor of the FrameList,
1287* i.e. the "new" DELWA Descriptor. 1286 * i.e. the "new" DELWA Descriptor.
1288* 1287 *
1289* This function makes a copy of that last host-owned descriptor, so the MSF will get a copy of the descriptor. 1288 * This function makes a copy of that last host-owned descriptor, so the MSF will get a copy of the descriptor.
1290* On top of that, it adjusts DMA related fields in the IFB structure. 1289 * On top of that, it adjusts DMA related fields in the IFB structure.
1291 // perform a copying-scheme to circumvent the 'last host owned descriptor cannot be reclaimed' limitation imposed by H2.5's DMA hardware design 1290 // perform a copying-scheme to circumvent the 'last host owned descriptor cannot be reclaimed' limitation imposed by H2.5's DMA hardware design
1292 // a 'reclaim descriptor' should be available in the HCF: 1291 // a 'reclaim descriptor' should be available in the HCF:
1293* 1292 *
1294* Returns: address of the first descriptor of the FrameList 1293 * Returns: address of the first descriptor of the FrameList
1295* 1294 *
1296 8: Be careful once you start re-ordering the steps in the copy process, that it still works for cases 1295 8: Be careful once you start re-ordering the steps in the copy process, that it still works for cases
1297* of FrameLists of 1, 2 and more than 2 descriptors 1296 * of FrameLists of 1, 2 and more than 2 descriptors
1298* 1297 *
1299* Input parameters: 1298 * Input parameters:
1300* tx_rx_flag : specifies 'transmit' or 'receive' descriptor. 1299 * tx_rx_flag : specifies 'transmit' or 'receive' descriptor.
1301* 1300 *
1302************************************************************************************************************/ 1301 ************************************************************************************************************/
1303HCF_STATIC DESC_STRCT* 1302HCF_STATIC DESC_STRCT*
1304get_frame_lst( IFBP ifbp, int tx_rx_flag ) 1303get_frame_lst( IFBP ifbp, int tx_rx_flag )
1305{ 1304{
1306 1305
1307DESC_STRCT *head = ifbp->IFB_FirstDesc[tx_rx_flag]; 1306 DESC_STRCT *head = ifbp->IFB_FirstDesc[tx_rx_flag];
1308DESC_STRCT *copy, *p, *prev; 1307 DESC_STRCT *copy, *p, *prev;
1309 1308
1310 HCFASSERT( tx_rx_flag == DMA_RX || tx_rx_flag == DMA_TX, tx_rx_flag ); 1309 HCFASSERT( tx_rx_flag == DMA_RX || tx_rx_flag == DMA_TX, tx_rx_flag );
1311 //if FrameList 1310 //if FrameList
1312 if ( head ) { 1311 if ( head ) {
1313 //. search for last descriptor of first FrameList 1312 //. search for last descriptor of first FrameList
1314 p = prev = head; 1313 p = prev = head;
1315 while ( ( p->BUF_SIZE & DESC_EOP ) == 0 && p->next_desc_addr ) { 1314 while ( ( p->BUF_SIZE & DESC_EOP ) == 0 && p->next_desc_addr ) {
1316 if ( ( ifbp->IFB_CntlOpt & DMA_ENABLED ) == 0 ) { //clear control bits when disabled 1315 if ( ( ifbp->IFB_CntlOpt & DMA_ENABLED ) == 0 ) { //clear control bits when disabled
1317 p->BUF_CNT &= DESC_CNT_MASK; 1316 p->BUF_CNT &= DESC_CNT_MASK;
1318 } 1317 }
1319 prev = p; 1318 prev = p;
1320 p = p->next_desc_addr; 1319 p = p->next_desc_addr;
1321 } 1320 }
1322 //. if DMA enabled 1321 //. if DMA enabled
1323 if ( ifbp->IFB_CntlOpt & DMA_ENABLED ) { 1322 if ( ifbp->IFB_CntlOpt & DMA_ENABLED ) {
1324 //. . if last descriptor of FrameList is DMA owned 1323 //. . if last descriptor of FrameList is DMA owned
1325 //. . or if FrameList is single (DELWA) Descriptor 1324 //. . or if FrameList is single (DELWA) Descriptor
1326 if ( p->BUF_CNT & DESC_DMA_OWNED || head->next_desc_addr == NULL ) { 1325 if ( p->BUF_CNT & DESC_DMA_OWNED || head->next_desc_addr == NULL ) {
1327 //. . . refuse to return FrameList to caller 1326 //. . . refuse to return FrameList to caller
1328 head = NULL; 1327 head = NULL;
1329 } 1328 }
1330 } 1329 }
1331 } 1330 }
1332 //if returnable FrameList found 1331 //if returnable FrameList found
1333 if ( head ) { 1332 if ( head ) {
1334 //. if FrameList is single (DELWA) Descriptor (implies DMA disabled) 1333 //. if FrameList is single (DELWA) Descriptor (implies DMA disabled)
1335 if ( head->next_desc_addr == NULL ) { 1334 if ( head->next_desc_addr == NULL ) {
1336 //. . clear DescriptorList 1335 //. . clear DescriptorList
1337 /*;?ifbp->IFB_LastDesc[tx_rx_flag] =*/ ifbp->IFB_FirstDesc[tx_rx_flag] = NULL; 1336 /*;?ifbp->IFB_LastDesc[tx_rx_flag] =*/ ifbp->IFB_FirstDesc[tx_rx_flag] = NULL;
1338 //. else 1337 //. else
1339 } else { 1338 } else {
1340 //. . strip hardware-related bits from last descriptor 1339 //. . strip hardware-related bits from last descriptor
1341 //. . remove DELWA Descriptor from head of DescriptorList 1340 //. . remove DELWA Descriptor from head of DescriptorList
1342 copy = head; 1341 copy = head;
1343 head = head->next_desc_addr; 1342 head = head->next_desc_addr;
1344 //. . exchange first (Confined) and last (possibly imprisoned) Descriptor 1343 //. . exchange first (Confined) and last (possibly imprisoned) Descriptor
1345 copy->buf_phys_addr = p->buf_phys_addr; 1344 copy->buf_phys_addr = p->buf_phys_addr;
1346 copy->buf_addr = p->buf_addr; 1345 copy->buf_addr = p->buf_addr;
1347 copy->BUF_SIZE = p->BUF_SIZE &= DESC_CNT_MASK; //get rid of DESC_EOP and possibly DESC_SOP 1346 copy->BUF_SIZE = p->BUF_SIZE &= DESC_CNT_MASK; //get rid of DESC_EOP and possibly DESC_SOP
1348 copy->BUF_CNT = p->BUF_CNT &= DESC_CNT_MASK; //get rid of DESC_DMA_OWNED 1347 copy->BUF_CNT = p->BUF_CNT &= DESC_CNT_MASK; //get rid of DESC_DMA_OWNED
1349#if (HCF_EXT) & HCF_DESC_STRCT_EXT 1348#if (HCF_EXT) & HCF_DESC_STRCT_EXT
1350 copy->DESC_MSFSup = p->DESC_MSFSup; 1349 copy->DESC_MSFSup = p->DESC_MSFSup;
1351#endif // HCF_DESC_STRCT_EXT 1350#endif // HCF_DESC_STRCT_EXT
1352 //. . turn into a DELWA Descriptor 1351 //. . turn into a DELWA Descriptor
1353 p->buf_addr = NULL; 1352 p->buf_addr = NULL;
1354 //. . chain copy to prev /* 8*/ 1353 //. . chain copy to prev /* 8*/
1355 prev->next_desc_addr = copy; 1354 prev->next_desc_addr = copy;
1356 //. . detach remainder of the DescriptorList from FrameList 1355 //. . detach remainder of the DescriptorList from FrameList
1357 copy->next_desc_addr = NULL; 1356 copy->next_desc_addr = NULL;
1358 copy->next_desc_phys_addr = 0xDEAD0000; //! just to be nice, not really needed 1357 copy->next_desc_phys_addr = 0xDEAD0000; //! just to be nice, not really needed
1359 //. . save the new start (i.e. DELWA Descriptor) in IFB_FirstDesc 1358 //. . save the new start (i.e. DELWA Descriptor) in IFB_FirstDesc
1360 ifbp->IFB_FirstDesc[tx_rx_flag] = p; 1359 ifbp->IFB_FirstDesc[tx_rx_flag] = p;
1361 } 1360 }
1362 //. strip DESC_SOP from first descriptor 1361 //. strip DESC_SOP from first descriptor
1363 head->BUF_SIZE &= DESC_CNT_MASK; 1362 head->BUF_SIZE &= DESC_CNT_MASK;
1364 //head->BUF_CNT &= DESC_CNT_MASK; get rid of DESC_DMA_OWNED 1363 //head->BUF_CNT &= DESC_CNT_MASK; get rid of DESC_DMA_OWNED
1365 head->next_desc_phys_addr = 0xDEAD0000; //! just to be nice, not really needed 1364 head->next_desc_phys_addr = 0xDEAD0000; //! just to be nice, not really needed
1366 } 1365 }
1367 //return the just detached FrameList (if any) 1366 //return the just detached FrameList (if any)
1368 return head; 1367 return head;
1369} // get_frame_lst 1368} // get_frame_lst
1370 1369
1371 1370
1372/************************************************************************************************************ 1371/************************************************************************************************************
1373* Function put_frame_lst 1372 * Function put_frame_lst
1374* 1373 *
1375* This function 1374 * This function
1376* 1375 *
1377* Returns: address of the first descriptor of the FrameList 1376 * Returns: address of the first descriptor of the FrameList
1378* 1377 *
1379* Input parameters: 1378 * Input parameters:
1380* tx_rx_flag : specifies 'transmit' or 'receive' descriptor. 1379 * tx_rx_flag : specifies 'transmit' or 'receive' descriptor.
1381* 1380 *
1382* The following list should be kept in sync with hcf_dma_tx/rx_put, in order to get them in the WCI-spec !!!! 1381 * The following list should be kept in sync with hcf_dma_tx/rx_put, in order to get them in the WCI-spec !!!!
1383* Assert fails if 1382 * Assert fails if
1384* - DMA is not enabled 1383 * - DMA is not enabled
1385* - descriptor list is NULL 1384 * - descriptor list is NULL
1386* - a descriptor in the descriptor list is not double word aligned 1385 * - a descriptor in the descriptor list is not double word aligned
1387* - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble. 1386 * - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble.
1388* - the DELWA descriptor is not a "singleton" DescriptorList. 1387 * - the DELWA descriptor is not a "singleton" DescriptorList.
1389* - the DELWA descriptor is not the first Descriptor supplied 1388 * - the DELWA descriptor is not the first Descriptor supplied
1390* - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied 1389 * - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied
1391* - Possibly more checks could be added !!!!!!!!!!!!! 1390 * - Possibly more checks could be added !!!!!!!!!!!!!
1392 1391
1393*.NOTICE 1392 *.NOTICE
1394* The asserts marked with *sc* are really sanity checks for the HCF, they can (supposedly) not be influenced 1393 * The asserts marked with *sc* are really sanity checks for the HCF, they can (supposedly) not be influenced
1395* by incorrect MSF behavior 1394 * by incorrect MSF behavior
1396 1395
1397 // The MSF is required to supply the HCF with a single descriptor for MSF tx reclaim purposes. 1396 // The MSF is required to supply the HCF with a single descriptor for MSF tx reclaim purposes.
1398 // This 'reclaim descriptor' can be recognized by the fact that its buf_addr field is zero. 1397 // This 'reclaim descriptor' can be recognized by the fact that its buf_addr field is zero.
1399 ********************************************************************************************* 1398 *********************************************************************************************
1400 * Although not required from a hardware perspective: 1399 * Although not required from a hardware perspective:
1401 * - make each descriptor in this rx-chain DMA-owned. 1400 * - make each descriptor in this rx-chain DMA-owned.
1402 * - Also set the count to zero. EOP and SOP bits are also cleared. 1401 * - Also set the count to zero. EOP and SOP bits are also cleared.
1403 *********************************************************************************************/ 1402 *********************************************************************************************/
1404HCF_STATIC void 1403HCF_STATIC void
1405put_frame_lst( IFBP ifbp, DESC_STRCT *descp, int tx_rx_flag ) 1404put_frame_lst( IFBP ifbp, DESC_STRCT *descp, int tx_rx_flag )
1406{ 1405{
1407 DESC_STRCT *p = descp; 1406 DESC_STRCT *p = descp;
1408 hcf_16 port; 1407 hcf_16 port;
1409 1408
1410 HCFASSERT( ifbp->IFB_CntlOpt & USE_DMA, ifbp->IFB_CntlOpt); //only hcf_dma_tx_put must also be DMA_ENABLED 1409 HCFASSERT( ifbp->IFB_CntlOpt & USE_DMA, ifbp->IFB_CntlOpt); //only hcf_dma_tx_put must also be DMA_ENABLED
@@ -1415,37 +1414,37 @@ put_frame_lst( IFBP ifbp, DESC_STRCT *descp, int tx_rx_flag )
1415 HCFASSERT( ((hcf_32)p & 3 ) == 0, (hcf_32)p ); 1414 HCFASSERT( ((hcf_32)p & 3 ) == 0, (hcf_32)p );
1416 HCFASSERT( (p->BUF_CNT & ~DESC_CNT_MASK) == 0, p->BUF_CNT ); 1415 HCFASSERT( (p->BUF_CNT & ~DESC_CNT_MASK) == 0, p->BUF_CNT );
1417 HCFASSERT( (p->BUF_SIZE & ~DESC_CNT_MASK) == 0, p->BUF_SIZE ); 1416 HCFASSERT( (p->BUF_SIZE & ~DESC_CNT_MASK) == 0, p->BUF_SIZE );
1418 p->BUF_SIZE &= DESC_CNT_MASK; //!!this SHOULD be superfluous in case of correct MSF 1417 p->BUF_SIZE &= DESC_CNT_MASK; //!!this SHOULD be superfluous in case of correct MSF
1419 p->BUF_CNT &= tx_rx_flag == DMA_RX ? 0 : DESC_CNT_MASK; //!!this SHOULD be superfluous in case of correct MSF 1418 p->BUF_CNT &= tx_rx_flag == DMA_RX ? 0 : DESC_CNT_MASK; //!!this SHOULD be superfluous in case of correct MSF
1420 p->BUF_CNT |= DESC_DMA_OWNED; 1419 p->BUF_CNT |= DESC_DMA_OWNED;
1421 if ( p->next_desc_addr ) { 1420 if ( p->next_desc_addr ) {
1422// HCFASSERT( p->buf_addr && p->buf_phys_addr && p->BUF_SIZE && +/- p->BUF_SIZE, ... ); 1421// HCFASSERT( p->buf_addr && p->buf_phys_addr && p->BUF_SIZE && +/- p->BUF_SIZE, ... );
1423 HCFASSERT( p->next_desc_addr->desc_phys_addr, (hcf_32)p->next_desc_addr ); 1422 HCFASSERT( p->next_desc_addr->desc_phys_addr, (hcf_32)p->next_desc_addr );
1424 p->next_desc_phys_addr = p->next_desc_addr->desc_phys_addr; 1423 p->next_desc_phys_addr = p->next_desc_addr->desc_phys_addr;
1425 } else { // 1424 } else { //
1426 p->next_desc_phys_addr = 0; 1425 p->next_desc_phys_addr = 0;
1427 if ( p->buf_addr == NULL ) { // DELWA Descriptor 1426 if ( p->buf_addr == NULL ) { // DELWA Descriptor
1428 HCFASSERT( descp == p, (hcf_32)descp ); //singleton DescriptorList 1427 HCFASSERT( descp == p, (hcf_32)descp ); //singleton DescriptorList
1429 HCFASSERT( ifbp->IFB_FirstDesc[tx_rx_flag] == NULL, (hcf_32)ifbp->IFB_FirstDesc[tx_rx_flag]); 1428 HCFASSERT( ifbp->IFB_FirstDesc[tx_rx_flag] == NULL, (hcf_32)ifbp->IFB_FirstDesc[tx_rx_flag]);
1430 HCFASSERT( ifbp->IFB_LastDesc[tx_rx_flag] == NULL, (hcf_32)ifbp->IFB_LastDesc[tx_rx_flag]); 1429 HCFASSERT( ifbp->IFB_LastDesc[tx_rx_flag] == NULL, (hcf_32)ifbp->IFB_LastDesc[tx_rx_flag]);
1431 descp->BUF_CNT = 0; //&= ~DESC_DMA_OWNED; 1430 descp->BUF_CNT = 0; //&= ~DESC_DMA_OWNED;
1432 ifbp->IFB_FirstDesc[tx_rx_flag] = descp; 1431 ifbp->IFB_FirstDesc[tx_rx_flag] = descp;
1433// part of alternative ifbp->IFB_LastDesc[tx_rx_flag] = ifbp->IFB_FirstDesc[tx_rx_flag] = descp; 1432// part of alternative ifbp->IFB_LastDesc[tx_rx_flag] = ifbp->IFB_FirstDesc[tx_rx_flag] = descp;
1434 // if "recycling" a FrameList 1433 // if "recycling" a FrameList
1435 // (e.g. called from hcf_cntl( HCF_CNTL_ENABLE ) 1434 // (e.g. called from hcf_cntl( HCF_CNTL_ENABLE )
1436 // . prepare for activation DMA controller 1435 // . prepare for activation DMA controller
1437// part of alternative descp = descp->next_desc_addr; 1436// part of alternative descp = descp->next_desc_addr;
1438 } else { //a "real" FrameList, hand it over to the DMA engine 1437 } else { //a "real" FrameList, hand it over to the DMA engine
1439 HCFASSERT( ifbp->IFB_FirstDesc[tx_rx_flag], (hcf_32)descp ); 1438 HCFASSERT( ifbp->IFB_FirstDesc[tx_rx_flag], (hcf_32)descp );
1440 HCFASSERT( ifbp->IFB_LastDesc[tx_rx_flag], (hcf_32)descp ); 1439 HCFASSERT( ifbp->IFB_LastDesc[tx_rx_flag], (hcf_32)descp );
1441 HCFASSERT( ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_addr == NULL, 1440 HCFASSERT( ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_addr == NULL,
1442 (hcf_32)ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_addr); 1441 (hcf_32)ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_addr);
1443// p->buf_cntl.cntl_stat |= DESC_DMA_OWNED; 1442// p->buf_cntl.cntl_stat |= DESC_DMA_OWNED;
1444 ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_addr = descp; 1443 ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_addr = descp;
1445 ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_phys_addr = descp->desc_phys_addr; 1444 ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_phys_addr = descp->desc_phys_addr;
1446 port = HREG_RXDMA_PTR32; 1445 port = HREG_RXDMA_PTR32;
1447 if ( tx_rx_flag ) { 1446 if ( tx_rx_flag ) {
1448 p->BUF_SIZE |= DESC_EOP; // p points at the last descriptor in the caller-supplied descriptor chain 1447 p->BUF_SIZE |= DESC_EOP; // p points at the last descriptor in the caller-supplied descriptor chain
1449 descp->BUF_SIZE |= DESC_SOP; 1448 descp->BUF_SIZE |= DESC_SOP;
1450 port = HREG_TXDMA_PTR32; 1449 port = HREG_TXDMA_PTR32;
1451 } 1450 }
@@ -1459,87 +1458,87 @@ put_frame_lst( IFBP ifbp, DESC_STRCT *descp, int tx_rx_flag )
1459 1458
1460 1459
1461/************************************************************************************************************ 1460/************************************************************************************************************
1462* 1461 *
1463*.MODULE DESC_STRCT* hcf_dma_rx_get( IFBP ifbp ) 1462 *.MODULE DESC_STRCT* hcf_dma_rx_get( IFBP ifbp )
1464*.PURPOSE decapsulate a message and provides that message to the MSF. 1463 *.PURPOSE decapsulate a message and provides that message to the MSF.
1465* reclaim all descriptors in the rx descriptor chain. 1464 * reclaim all descriptors in the rx descriptor chain.
1466* 1465 *
1467*.ARGUMENTS 1466 *.ARGUMENTS
1468* ifbp address of the Interface Block 1467 * ifbp address of the Interface Block
1469* 1468 *
1470*.RETURNS 1469 *.RETURNS
1471* pointer to a FrameList 1470 * pointer to a FrameList
1472* 1471 *
1473*.DESCRIPTION 1472 *.DESCRIPTION
1474* hcf_dma_rx_get is intended to return a received frame when such a frame is deposited in Host memory by the 1473 * hcf_dma_rx_get is intended to return a received frame when such a frame is deposited in Host memory by the
1475* DMA engine. In addition hcf_dma_rx_get can be used to reclaim all descriptors in the rx descriptor chain 1474 * DMA engine. In addition hcf_dma_rx_get can be used to reclaim all descriptors in the rx descriptor chain
1476* when the DMA Engine is disabled, e.g. as part of a driver unloading strategy. 1475 * when the DMA Engine is disabled, e.g. as part of a driver unloading strategy.
1477* hcf_dma_rx_get must be called repeatedly by the MSF when hcf_service_nic signals availability of a rx frame 1476 * hcf_dma_rx_get must be called repeatedly by the MSF when hcf_service_nic signals availability of a rx frame
1478* through the HREG_EV_RDMAD flag of IFB_DmaPackets. The calling must stop when a NULL pointer is returned, at 1477 * through the HREG_EV_RDMAD flag of IFB_DmaPackets. The calling must stop when a NULL pointer is returned, at
1479* which time the HREG_EV_RDMAD flag is also cleared by the HCF to arm the mechanism for the next frame 1478 * which time the HREG_EV_RDMAD flag is also cleared by the HCF to arm the mechanism for the next frame
1480* reception. 1479 * reception.
1481* Regardless whether the DMA Engine is currently enabled (as controlled via hcf_cntl), if the DMA controller 1480 * Regardless whether the DMA Engine is currently enabled (as controlled via hcf_cntl), if the DMA controller
1482* deposited an Rx-frame in the Rx-DescriptorList, this frame is detached from the Rx-DescriptorList, 1481 * deposited an Rx-frame in the Rx-DescriptorList, this frame is detached from the Rx-DescriptorList,
1483* transformed into a FrameList (i.e. updating the housekeeping fields in the descriptors) and returned to the 1482 * transformed into a FrameList (i.e. updating the housekeeping fields in the descriptors) and returned to the
1484* caller. 1483 * caller.
1485* If no such Rx-frame is available in the Rx-DescriptorList, the behavior of hcf_dma_rx_get depends on the 1484 * If no such Rx-frame is available in the Rx-DescriptorList, the behavior of hcf_dma_rx_get depends on the
1486* status of the DMA Engine. 1485 * status of the DMA Engine.
1487* If the DMA Engine is enabled, a NULL pointer is returned. 1486 * If the DMA Engine is enabled, a NULL pointer is returned.
1488* If the DMA Engine is disabled, the following strategy is used: 1487 * If the DMA Engine is disabled, the following strategy is used:
1489* - the complete Rx-DescriptorList is returned. The DELWA Descriptor is not part of the Rx-DescriptorList. 1488 * - the complete Rx-DescriptorList is returned. The DELWA Descriptor is not part of the Rx-DescriptorList.
1490* - If there is no Rx-DescriptorList, the DELWA Descriptor is returned. 1489 * - If there is no Rx-DescriptorList, the DELWA Descriptor is returned.
1491* - If there is no DELWA Descriptor, a NULL pointer is returned. 1490 * - If there is no DELWA Descriptor, a NULL pointer is returned.
1492* 1491 *
1493* If the MSF performs an disable/enable sequence without exhausting the Rx-DescriptorList as described above, 1492 * If the MSF performs an disable/enable sequence without exhausting the Rx-DescriptorList as described above,
1494* the enable command will reset all house keeping information, i.e. already received but not yet by the MSF 1493 * the enable command will reset all house keeping information, i.e. already received but not yet by the MSF
1495* retrieved frames are lost and the next frame will be received starting with the oldest descriptor. 1494 * retrieved frames are lost and the next frame will be received starting with the oldest descriptor.
1496* 1495 *
1497* The HCF can be used in 2 fashions: with and without decapsulation for data transfer. 1496 * The HCF can be used in 2 fashions: with and without decapsulation for data transfer.
1498* This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant. 1497 * This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant.
1499* If appropriate, decapsulation is done by moving some data inside the buffers and updating the descriptors 1498 * If appropriate, decapsulation is done by moving some data inside the buffers and updating the descriptors
1500* accordingly. 1499 * accordingly.
1501*!! ;?????where did I describe why a simple manipulation with the count values does not suffice? 1500 *!! ;?????where did I describe why a simple manipulation with the count values does not suffice?
1502* 1501 *
1503*.DIAGRAM 1502 *.DIAGRAM
1504* 1503 *
1505*.ENDDOC END DOCUMENTATION 1504 *.ENDDOC END DOCUMENTATION
1506* 1505 *
1507************************************************************************************************************/ 1506 ************************************************************************************************************/
1508 1507
1509DESC_STRCT* 1508DESC_STRCT*
1510hcf_dma_rx_get (IFBP ifbp) 1509hcf_dma_rx_get (IFBP ifbp)
1511{ 1510{
1512DESC_STRCT *descp; // pointer to start of FrameList 1511 DESC_STRCT *descp; // pointer to start of FrameList
1513 1512
1514 descp = get_frame_lst( ifbp, DMA_RX ); 1513 descp = get_frame_lst( ifbp, DMA_RX );
1515 if ( descp && descp->buf_addr ) //!be aware of the missing curly bracket 1514 if ( descp && descp->buf_addr ) //!be aware of the missing curly bracket
1516 1515
1517 //skip decapsulation at confined descriptor 1516 //skip decapsulation at confined descriptor
1518#if (HCF_ENCAP) == HCF_ENC 1517#if (HCF_ENCAP) == HCF_ENC
1519#if (HCF_TYPE) & HCF_TYPE_CCX 1518#if (HCF_TYPE) & HCF_TYPE_CCX
1520 if ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_OFF ) 1519 if ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_OFF )
1521#endif // HCF_TYPE_CCX 1520#endif // HCF_TYPE_CCX
1522 { 1521 {
1523int i; 1522 int i;
1524DESC_STRCT *p = descp->next_desc_addr; //pointer to 2nd descriptor of frame 1523 DESC_STRCT *p = descp->next_desc_addr; //pointer to 2nd descriptor of frame
1525 HCFASSERT(p, 0); 1524 HCFASSERT(p, 0);
1526 // The 2nd descriptor contains (maybe) a SNAP header plus part or whole of the payload. 1525 // The 2nd descriptor contains (maybe) a SNAP header plus part or whole of the payload.
1527 //determine decapsulation sub-flag in RxFS 1526 //determine decapsulation sub-flag in RxFS
1528 i = *(wci_recordp)&descp->buf_addr[HFS_STAT] & ( HFS_STAT_MSG_TYPE | HFS_STAT_ERR ); 1527 i = *(wci_recordp)&descp->buf_addr[HFS_STAT] & ( HFS_STAT_MSG_TYPE | HFS_STAT_ERR );
1529 if ( i == HFS_STAT_TUNNEL || 1528 if ( i == HFS_STAT_TUNNEL ||
1530 ( i == HFS_STAT_1042 && hcf_encap( (wci_bufp)&p->buf_addr[HCF_DASA_SIZE] ) != ENC_TUNNEL )) { 1529 ( i == HFS_STAT_1042 && hcf_encap( (wci_bufp)&p->buf_addr[HCF_DASA_SIZE] ) != ENC_TUNNEL )) {
1531 // The 2nd descriptor contains a SNAP header plus part or whole of the payload. 1530 // The 2nd descriptor contains a SNAP header plus part or whole of the payload.
1532 HCFASSERT( p->BUF_CNT == (p->buf_addr[5] + (p->buf_addr[4]<<8) + 2*6 + 2 - 8), p->BUF_CNT ); 1531 HCFASSERT( p->BUF_CNT == (p->buf_addr[5] + (p->buf_addr[4]<<8) + 2*6 + 2 - 8), p->BUF_CNT );
1533 // perform decapsulation 1532 // perform decapsulation
1534 HCFASSERT(p->BUF_SIZE >=8, p->BUF_SIZE); 1533 HCFASSERT(p->BUF_SIZE >=8, p->BUF_SIZE);
1535 // move SA[2:5] in the second buffer to replace part of the SNAP header 1534 // move SA[2:5] in the second buffer to replace part of the SNAP header
1536 for ( i=3; i >= 0; i--) p->buf_addr[i+8] = p->buf_addr[i]; 1535 for ( i=3; i >= 0; i--) p->buf_addr[i+8] = p->buf_addr[i];
1537 // copy DA[0:5], SA[0:1] from first buffer to second buffer 1536 // copy DA[0:5], SA[0:1] from first buffer to second buffer
1538 for ( i=0; i<8; i++) p->buf_addr[i] = descp->buf_addr[HFS_ADDR_DEST + i]; 1537 for ( i=0; i<8; i++) p->buf_addr[i] = descp->buf_addr[HFS_ADDR_DEST + i];
1539 // make first buffer shorter in count 1538 // make first buffer shorter in count
1540 descp->BUF_CNT = HFS_ADDR_DEST; 1539 descp->BUF_CNT = HFS_ADDR_DEST;
1540 }
1541 } 1541 }
1542 }
1543#endif // HCF_ENC 1542#endif // HCF_ENC
1544 if ( descp == NULL ) ifbp->IFB_DmaPackets &= (hcf_16)~HREG_EV_RDMAD; //;?could be integrated into get_frame_lst 1543 if ( descp == NULL ) ifbp->IFB_DmaPackets &= (hcf_16)~HREG_EV_RDMAD; //;?could be integrated into get_frame_lst
1545 HCFLOGEXIT( HCF_TRACE_DMA_RX_GET ); 1544 HCFLOGEXIT( HCF_TRACE_DMA_RX_GET );
@@ -1548,50 +1547,50 @@ DESC_STRCT *p = descp->next_desc_addr; //pointer to 2nd descriptor of frame
1548 1547
1549 1548
1550/************************************************************************************************************ 1549/************************************************************************************************************
1551* 1550 *
1552*.MODULE void hcf_dma_rx_put( IFBP ifbp, DESC_STRCT *descp ) 1551 *.MODULE void hcf_dma_rx_put( IFBP ifbp, DESC_STRCT *descp )
1553*.PURPOSE supply buffers for receive purposes. 1552 *.PURPOSE supply buffers for receive purposes.
1554* supply the Rx-DELWA descriptor. 1553 * supply the Rx-DELWA descriptor.
1555* 1554 *
1556*.ARGUMENTS 1555 *.ARGUMENTS
1557* ifbp address of the Interface Block 1556 * ifbp address of the Interface Block
1558* descp address of a DescriptorList 1557 * descp address of a DescriptorList
1559* 1558 *
1560*.RETURNS N.A. 1559 *.RETURNS N.A.
1561* 1560 *
1562*.DESCRIPTION 1561 *.DESCRIPTION
1563* This function is called by the MSF to supply the HCF with new/more buffers for receive purposes. 1562 * This function is called by the MSF to supply the HCF with new/more buffers for receive purposes.
1564* The HCF can be used in 2 fashions: with and without encapsulation for data transfer. 1563 * The HCF can be used in 2 fashions: with and without encapsulation for data transfer.
1565* This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant. 1564 * This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant.
1566* As a consequence, some additional constraints apply to the number of descriptor and the buffers associated 1565 * As a consequence, some additional constraints apply to the number of descriptor and the buffers associated
1567* with the first 2 descriptors. Independent of the encapsulation feature, the COUNT fields are ignored. 1566 * with the first 2 descriptors. Independent of the encapsulation feature, the COUNT fields are ignored.
1568* A special case is the supplying of the DELWA descriptor, which must be supplied as the first descriptor. 1567 * A special case is the supplying of the DELWA descriptor, which must be supplied as the first descriptor.
1569* 1568 *
1570* Assert fails if 1569 * Assert fails if
1571* - ifbp has a recognizable out-of-range value. 1570 * - ifbp has a recognizable out-of-range value.
1572* - NIC interrupts are not disabled while required by parameter action. 1571 * - NIC interrupts are not disabled while required by parameter action.
1573* - in case decapsulation by the HCF is selected: 1572 * - in case decapsulation by the HCF is selected:
1574* - The first databuffer does not have the exact size corresponding with the RxFS up to the 802.3 DestAddr 1573 * - The first databuffer does not have the exact size corresponding with the RxFS up to the 802.3 DestAddr
1575* field (== 29 words). 1574 * field (== 29 words).
1576* - The FrameList does not consists of at least 2 Descriptors. 1575 * - The FrameList does not consists of at least 2 Descriptors.
1577* - The second databuffer does not have the minimum size of 8 bytes. 1576 * - The second databuffer does not have the minimum size of 8 bytes.
1578*!! The 2nd part of the list of asserts should be kept in sync with put_frame_lst, in order to get 1577 *!! The 2nd part of the list of asserts should be kept in sync with put_frame_lst, in order to get
1579*!! them in the WCI-spec !!!! 1578 *!! them in the WCI-spec !!!!
1580* - DMA is not enabled 1579 * - DMA is not enabled
1581* - descriptor list is NULL 1580 * - descriptor list is NULL
1582* - a descriptor in the descriptor list is not double word aligned 1581 * - a descriptor in the descriptor list is not double word aligned
1583* - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble. 1582 * - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble.
1584* - the DELWA descriptor is not a "singleton" DescriptorList. 1583 * - the DELWA descriptor is not a "singleton" DescriptorList.
1585* - the DELWA descriptor is not the first Descriptor supplied 1584 * - the DELWA descriptor is not the first Descriptor supplied
1586* - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied 1585 * - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied
1587*!! - Possibly more checks could be added !!!!!!!!!!!!! 1586 *!! - Possibly more checks could be added !!!!!!!!!!!!!
1588* 1587 *
1589*.DIAGRAM 1588 *.DIAGRAM
1590* 1589 *
1591* 1590 *
1592*.ENDDOC END DOCUMENTATION 1591 *.ENDDOC END DOCUMENTATION
1593* 1592 *
1594************************************************************************************************************/ 1593 ************************************************************************************************************/
1595void 1594void
1596hcf_dma_rx_put( IFBP ifbp, DESC_STRCT *descp ) 1595hcf_dma_rx_put( IFBP ifbp, DESC_STRCT *descp )
1597{ 1596{
@@ -1614,47 +1613,47 @@ hcf_dma_rx_put( IFBP ifbp, DESC_STRCT *descp )
1614 1613
1615 1614
1616/************************************************************************************************************ 1615/************************************************************************************************************
1617* 1616 *
1618*.MODULE DESC_STRCT* hcf_dma_tx_get( IFBP ifbp ) 1617 *.MODULE DESC_STRCT* hcf_dma_tx_get( IFBP ifbp )
1619*.PURPOSE DMA mode: reclaims and decapsulates packets in the tx descriptor chain if: 1618 *.PURPOSE DMA mode: reclaims and decapsulates packets in the tx descriptor chain if:
1620* - A Tx packet has been copied from host-RAM into NIC-RAM by the DMA engine 1619 * - A Tx packet has been copied from host-RAM into NIC-RAM by the DMA engine
1621* - The Hermes/DMAengine have been disabled 1620 * - The Hermes/DMAengine have been disabled
1622* 1621 *
1623*.ARGUMENTS 1622 *.ARGUMENTS
1624* ifbp address of the Interface Block 1623 * ifbp address of the Interface Block
1625* 1624 *
1626*.RETURNS 1625 *.RETURNS
1627* pointer to a reclaimed Tx packet. 1626 * pointer to a reclaimed Tx packet.
1628* 1627 *
1629*.DESCRIPTION 1628 *.DESCRIPTION
1630* impact of the disable command: 1629 * impact of the disable command:
1631* When a non-empty pool of Tx descriptors exists (created by means of hcf_dma_put_tx), the MSF 1630 * When a non-empty pool of Tx descriptors exists (created by means of hcf_dma_put_tx), the MSF
1632* is supposed to empty that pool by means of hcf_dma_tx_get calls after the disable in an 1631 * is supposed to empty that pool by means of hcf_dma_tx_get calls after the disable in an
1633* disable/enable sequence. 1632 * disable/enable sequence.
1634* 1633 *
1635*.DIAGRAM 1634 *.DIAGRAM
1636* 1635 *
1637*.NOTICE 1636 *.NOTICE
1638* 1637 *
1639*.ENDDOC END DOCUMENTATION 1638 *.ENDDOC END DOCUMENTATION
1640* 1639 *
1641************************************************************************************************************/ 1640 ************************************************************************************************************/
1642DESC_STRCT* 1641DESC_STRCT*
1643hcf_dma_tx_get( IFBP ifbp ) 1642hcf_dma_tx_get( IFBP ifbp )
1644{ 1643{
1645DESC_STRCT *descp; // pointer to start of FrameList 1644 DESC_STRCT *descp; // pointer to start of FrameList
1646 1645
1647 descp = get_frame_lst( ifbp, DMA_TX ); 1646 descp = get_frame_lst( ifbp, DMA_TX );
1648 if ( descp && descp->buf_addr ) //!be aware of the missing curly bracket 1647 if ( descp && descp->buf_addr ) //!be aware of the missing curly bracket
1649 //skip decapsulation at confined descriptor 1648 //skip decapsulation at confined descriptor
1650#if (HCF_ENCAP) == HCF_ENC 1649#if (HCF_ENCAP) == HCF_ENC
1651 if ( ( descp->BUF_CNT == HFS_TYPE ) 1650 if ( ( descp->BUF_CNT == HFS_TYPE )
1652#if (HCF_TYPE) & HCF_TYPE_CCX 1651#if (HCF_TYPE) & HCF_TYPE_CCX
1653 || ( descp->BUF_CNT == HFS_DAT ) 1652 || ( descp->BUF_CNT == HFS_DAT )
1654#endif // HCF_TYPE_CCX 1653#endif // HCF_TYPE_CCX
1655 ) { // perform decapsulation if needed 1654 ) { // perform decapsulation if needed
1656 descp->next_desc_addr->buf_phys_addr -= HCF_DASA_SIZE; 1655 descp->next_desc_addr->buf_phys_addr -= HCF_DASA_SIZE;
1657 descp->next_desc_addr->BUF_CNT += HCF_DASA_SIZE; 1656 descp->next_desc_addr->BUF_CNT += HCF_DASA_SIZE;
1658 } 1657 }
1659#endif // HCF_ENC 1658#endif // HCF_ENC
1660 if ( descp == NULL ) { //;?could be integrated into get_frame_lst 1659 if ( descp == NULL ) { //;?could be integrated into get_frame_lst
@@ -1666,125 +1665,125 @@ DESC_STRCT *descp; // pointer to start of FrameList
1666 1665
1667 1666
1668/************************************************************************************************************ 1667/************************************************************************************************************
1669* 1668 *
1670*.MODULE void hcf_dma_tx_put( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl ) 1669 *.MODULE void hcf_dma_tx_put( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
1671*.PURPOSE puts a packet in the Tx DMA queue in host ram and kicks off the TxDma engine. 1670 *.PURPOSE puts a packet in the Tx DMA queue in host ram and kicks off the TxDma engine.
1672* supply the Tx-DELWA descriptor. 1671 * supply the Tx-DELWA descriptor.
1673* 1672 *
1674*.ARGUMENTS 1673 *.ARGUMENTS
1675* ifbp address of the Interface Block 1674 * ifbp address of the Interface Block
1676* descp address of Tx Descriptor Chain (i.e. a single Tx frame) 1675 * descp address of Tx Descriptor Chain (i.e. a single Tx frame)
1677* tx_cntl indicates MAC-port and (Hermes) options 1676 * tx_cntl indicates MAC-port and (Hermes) options
1678* 1677 *
1679*.RETURNS N.A. 1678 *.RETURNS N.A.
1680* 1679 *
1681*.DESCRIPTION 1680 *.DESCRIPTION
1682* The HCF can be used in 2 fashions: with and without encapsulation for data transfer. 1681 * The HCF can be used in 2 fashions: with and without encapsulation for data transfer.
1683* This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant. 1682 * This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant.
1684* 1683 *
1685* Regardless of the HCF_ENCAP system constant, the descriptor list created to describe the frame to be 1684 * Regardless of the HCF_ENCAP system constant, the descriptor list created to describe the frame to be
1686* transmitted, must supply space to contain the 802.11 header, preceding the actual frame to be transmitted. 1685 * transmitted, must supply space to contain the 802.11 header, preceding the actual frame to be transmitted.
1687* Basically, this only supplies working storage to the HCF which passes this on to the DMA engine. 1686 * Basically, this only supplies working storage to the HCF which passes this on to the DMA engine.
1688* As a consequence the contents of this space do not matter. 1687 * As a consequence the contents of this space do not matter.
1689* Nevertheless BUF_CNT must take in account this storage. 1688 * Nevertheless BUF_CNT must take in account this storage.
1690* This working space to contain the 802.11 header may not be fragmented, the first buffer must be 1689 * This working space to contain the 802.11 header may not be fragmented, the first buffer must be
1691* sufficiently large to contain at least the 802.11 header, i.e. HFS_ADDR_DEST (29 words or 0x3A bytes). 1690 * sufficiently large to contain at least the 802.11 header, i.e. HFS_ADDR_DEST (29 words or 0x3A bytes).
1692* This way, the HCF can simply, regardless whether or not the HCF encapsulates the frame, write the parameter 1691 * This way, the HCF can simply, regardless whether or not the HCF encapsulates the frame, write the parameter
1693* tx_cntl at offset 0x36 (HFS_TX_CNTL) in the first buffer. 1692 * tx_cntl at offset 0x36 (HFS_TX_CNTL) in the first buffer.
1694* Note that it is allowed to have part or all of the actual frame represented by the first descriptor as long 1693 * Note that it is allowed to have part or all of the actual frame represented by the first descriptor as long
1695* as the requirement for storage for the 802.11 header is met, i.e. the 802.3 frame starts at offset 1694 * as the requirement for storage for the 802.11 header is met, i.e. the 802.3 frame starts at offset
1696* HFS_ADDR_DEST. 1695 * HFS_ADDR_DEST.
1697* Except for the Assert on the 1st buffer in case of Encapsualtion, the SIZE fields are ignored. 1696 * Except for the Assert on the 1st buffer in case of Encapsualtion, the SIZE fields are ignored.
1698* 1697 *
1699* In case the encapsulation feature is compiled in, there are the following additional requirements. 1698 * In case the encapsulation feature is compiled in, there are the following additional requirements.
1700* o The BUF_CNT of the first buffer changes from a minimum of 0x3A bytes to exactly 0x3A, i.e. the workspace 1699 * o The BUF_CNT of the first buffer changes from a minimum of 0x3A bytes to exactly 0x3A, i.e. the workspace
1701* to store the 802.11 header 1700 * to store the 802.11 header
1702* o The BUF_SIZE of the first buffer is at least the space needed to store the 1701 * o The BUF_SIZE of the first buffer is at least the space needed to store the
1703* - 802.11 header (29 words) 1702 * - 802.11 header (29 words)
1704* - 802.3 header, i.e. 12 bytes addressing information and 2 bytes length field 1703 * - 802.3 header, i.e. 12 bytes addressing information and 2 bytes length field
1705* - 6 bytes SNAP-header 1704 * - 6 bytes SNAP-header
1706* This results in 39 words or 0x4E bytes or HFS_TYPE. 1705 * This results in 39 words or 0x4E bytes or HFS_TYPE.
1707* Note that if the BUF_SIZE is larger than 0x4E, this surplus is not used. 1706 * Note that if the BUF_SIZE is larger than 0x4E, this surplus is not used.
1708* o The actual frame begins in the 2nd descriptor (which is already implied by the BUF_CNT == 0x3A requirement) and the associated buffer contains at least the 802.3 header, i.e. the 14 bytes representing addressing information and length/type field 1707 * o The actual frame begins in the 2nd descriptor (which is already implied by the BUF_CNT == 0x3A requirement) and the associated buffer contains at least the 802.3 header, i.e. the 14 bytes representing addressing information and length/type field
1709* 1708 *
1710* When the HCF does not encapsulates (i.e. length/type field <= 1500), no changes are made to descriptors 1709 * When the HCF does not encapsulates (i.e. length/type field <= 1500), no changes are made to descriptors
1711* or buffers. 1710 * or buffers.
1712* 1711 *
1713* When the HCF actually encapsulates (i.e. length/type field > 1500), it successively writes, starting at 1712 * When the HCF actually encapsulates (i.e. length/type field > 1500), it successively writes, starting at
1714* offset HFS_ADDR_DEST (0x3A) in the first buffer: 1713 * offset HFS_ADDR_DEST (0x3A) in the first buffer:
1715* - the 802.3 addressing information, copied from the begin of the second buffer 1714 * - the 802.3 addressing information, copied from the begin of the second buffer
1716* - the frame length, derived from the total length of the individual fragments, corrected for the SNAP 1715 * - the frame length, derived from the total length of the individual fragments, corrected for the SNAP
1717* header length and Type field and ignoring the Destination Address, Source Address and Length field 1716 * header length and Type field and ignoring the Destination Address, Source Address and Length field
1718* - the appropriate snap header (Tunnel or 1042, depending on the value of the type field). 1717 * - the appropriate snap header (Tunnel or 1042, depending on the value of the type field).
1719* 1718 *
1720* The information in the first two descriptors is adjusted accordingly: 1719 * The information in the first two descriptors is adjusted accordingly:
1721* - the first descriptor count is changed from 0x3A to 0x4E (HFS_TYPE), which matches 0x3A + 12 + 2 + 6 1720 * - the first descriptor count is changed from 0x3A to 0x4E (HFS_TYPE), which matches 0x3A + 12 + 2 + 6
1722* - the second descriptor count is decreased by 12, being the moved addressing information 1721 * - the second descriptor count is decreased by 12, being the moved addressing information
1723* - the second descriptor (physical) buffer address is increased by 12. 1722 * - the second descriptor (physical) buffer address is increased by 12.
1724* 1723 *
1725* When the descriptors are returned by hcf_dma_tx_get, the transformation of the first two descriptors is 1724 * When the descriptors are returned by hcf_dma_tx_get, the transformation of the first two descriptors is
1726* undone. 1725 * undone.
1727* 1726 *
1728* Under any of the above scenarios, the assert BUF_CNT <= BUF_SIZE must be true for all descriptors 1727 * Under any of the above scenarios, the assert BUF_CNT <= BUF_SIZE must be true for all descriptors
1729* In case of encapsulation, BUF_SIZE of the 1st descriptor is asserted to be at least HFS_TYPE (0x4E), so it is NOT tested. 1728 * In case of encapsulation, BUF_SIZE of the 1st descriptor is asserted to be at least HFS_TYPE (0x4E), so it is NOT tested.
1730* 1729 *
1731* Assert fails if 1730 * Assert fails if
1732* - ifbp has a recognizable out-of-range value. 1731 * - ifbp has a recognizable out-of-range value.
1733* - tx_cntl has a recognizable out-of-range value. 1732 * - tx_cntl has a recognizable out-of-range value.
1734* - NIC interrupts are not disabled while required by parameter action. 1733 * - NIC interrupts are not disabled while required by parameter action.
1735* - in case encapsulation by the HCF is selected: 1734 * - in case encapsulation by the HCF is selected:
1736* - The FrameList does not consists of at least 2 Descriptors. 1735 * - The FrameList does not consists of at least 2 Descriptors.
1737* - The first databuffer does not contain exactly the (space for) the 802.11 header (== 28 words) 1736 * - The first databuffer does not contain exactly the (space for) the 802.11 header (== 28 words)
1738* - The first databuffer does not have a size to additionally accommodate the 802.3 header and the 1737 * - The first databuffer does not have a size to additionally accommodate the 802.3 header and the
1739* SNAP header of the frame after encapsulation (== 39 words). 1738 * SNAP header of the frame after encapsulation (== 39 words).
1740* - The second databuffer does not contain at least DA, SA and 'type/length' (==14 bytes or 7 words) 1739 * - The second databuffer does not contain at least DA, SA and 'type/length' (==14 bytes or 7 words)
1741*!! The 2nd part of the list of asserts should be kept in sync with put_frame_lst, in order to get 1740 *!! The 2nd part of the list of asserts should be kept in sync with put_frame_lst, in order to get
1742*!! them in the WCI-spec !!!! 1741 *!! them in the WCI-spec !!!!
1743* - DMA is not enabled 1742 * - DMA is not enabled
1744* - descriptor list is NULL 1743 * - descriptor list is NULL
1745* - a descriptor in the descriptor list is not double word aligned 1744 * - a descriptor in the descriptor list is not double word aligned
1746* - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble. 1745 * - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble.
1747* - the DELWA descriptor is not a "singleton" DescriptorList. 1746 * - the DELWA descriptor is not a "singleton" DescriptorList.
1748* - the DELWA descriptor is not the first Descriptor supplied 1747 * - the DELWA descriptor is not the first Descriptor supplied
1749* - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied 1748 * - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied
1750*!! - Possibly more checks could be added !!!!!!!!!!!!! 1749 *!! - Possibly more checks could be added !!!!!!!!!!!!!
1751*.DIAGRAM 1750 *.DIAGRAM
1752* 1751 *
1753*.NOTICE 1752 *.NOTICE
1754* 1753 *
1755*.ENDDOC END DOCUMENTATION 1754 *.ENDDOC END DOCUMENTATION
1756* 1755 *
1757* 1756 *
1758*1: Write tx_cntl parameter to HFS_TX_CNTL field into the Hermes-specific header in buffer 1 1757 *1: Write tx_cntl parameter to HFS_TX_CNTL field into the Hermes-specific header in buffer 1
1759*4: determine whether encapsulation is needed and write the type (tunnel or 1042) already at the appropriate 1758 *4: determine whether encapsulation is needed and write the type (tunnel or 1042) already at the appropriate
1760* offset in the 1st buffer 1759 * offset in the 1st buffer
1761*6: Build the encapsualtion enveloppe in the free space at the end of the 1st buffer 1760 *6: Build the encapsualtion enveloppe in the free space at the end of the 1st buffer
1762* - Copy DA/SA fields from the 2nd buffer 1761 * - Copy DA/SA fields from the 2nd buffer
1763* - Calculate total length of the message (snap-header + type-field + the length of all buffer fragments 1762 * - Calculate total length of the message (snap-header + type-field + the length of all buffer fragments
1764* associated with the 802.3 frame (i.e all descriptors except the first), but not the DestinationAddress, 1763 * associated with the 802.3 frame (i.e all descriptors except the first), but not the DestinationAddress,
1765* SourceAddress and length-field) 1764 * SourceAddress and length-field)
1766* Assert the message length 1765 * Assert the message length
1767* Write length. Note that the message is in BE format, hence on LE platforms the length must be converted 1766 * Write length. Note that the message is in BE format, hence on LE platforms the length must be converted
1768* ;? THIS IS NOT WHAT CURRENTLY IS IMPLEMENTED 1767 * ;? THIS IS NOT WHAT CURRENTLY IS IMPLEMENTED
1769* - Write snap header. Note that the last byte of the snap header is NOT copied, that byte is already in 1768 * - Write snap header. Note that the last byte of the snap header is NOT copied, that byte is already in
1770* place as result of the call to hcf_encap. 1769 * place as result of the call to hcf_encap.
1771* Note that there are many ways to skin a cat. To express the offsets in the 1st buffer while writing 1770 * Note that there are many ways to skin a cat. To express the offsets in the 1st buffer while writing
1772* the snap header, HFS_TYPE is chosen as a reference point to make it easier to grasp that the snap header 1771 * the snap header, HFS_TYPE is chosen as a reference point to make it easier to grasp that the snap header
1773* and encapsualtion type are at least relative in the right. 1772 * and encapsualtion type are at least relative in the right.
1774*8: modify 1st descriptor to reflect moved part of the 802.3 header + Snap-header 1773 *8: modify 1st descriptor to reflect moved part of the 802.3 header + Snap-header
1775* modify 2nd descriptor to skip the moved part of the 802.3 header (DA/SA 1774 * modify 2nd descriptor to skip the moved part of the 802.3 header (DA/SA
1776*10: set each descriptor to 'DMA owned', clear all other control bits. 1775 *10: set each descriptor to 'DMA owned', clear all other control bits.
1777* Set SOP bit on first descriptor. Set EOP bit on last descriptor. 1776 * Set SOP bit on first descriptor. Set EOP bit on last descriptor.
1778*12: Either append the current frame to an existing descriptor list or 1777 *12: Either append the current frame to an existing descriptor list or
1779*14: create a list beginning with the current frame 1778 *14: create a list beginning with the current frame
1780*16: remember the new end of the list 1779 *16: remember the new end of the list
1781*20: hand the frame over to the DMA engine 1780 *20: hand the frame over to the DMA engine
1782************************************************************************************************************/ 1781 ************************************************************************************************************/
1783void 1782void
1784hcf_dma_tx_put( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl ) 1783hcf_dma_tx_put( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
1785{ 1784{
1786DESC_STRCT *p = descp->next_desc_addr; 1785 DESC_STRCT *p = descp->next_desc_addr;
1787int i; 1786 int i;
1788 1787
1789#if HCF_ASSERT 1788#if HCF_ASSERT
1790 int x = ifbp->IFB_FWIdentity.comp_id == COMP_ID_FW_AP ? tx_cntl & ~HFS_TX_CNTL_PORT : tx_cntl; 1789 int x = ifbp->IFB_FWIdentity.comp_id == COMP_ID_FW_AP ? tx_cntl & ~HFS_TX_CNTL_PORT : tx_cntl;
@@ -1796,21 +1795,21 @@ int i;
1796 HCFASSERT( ( ifbp->IFB_CntlOpt & (USE_DMA|DMA_ENABLED) ) == (USE_DMA|DMA_ENABLED), ifbp->IFB_CntlOpt); 1795 HCFASSERT( ( ifbp->IFB_CntlOpt & (USE_DMA|DMA_ENABLED) ) == (USE_DMA|DMA_ENABLED), ifbp->IFB_CntlOpt);
1797 1796
1798 if ( descp->buf_addr ) { 1797 if ( descp->buf_addr ) {
1799 *(hcf_16*)(descp->buf_addr + HFS_TX_CNTL) = tx_cntl; /*1*/ 1798 *(hcf_16*)(descp->buf_addr + HFS_TX_CNTL) = tx_cntl; /*1*/
1800#if (HCF_ENCAP) == HCF_ENC 1799#if (HCF_ENCAP) == HCF_ENC
1801 HCFASSERT( descp->next_desc_addr, 0 ); //at least 2 descripors 1800 HCFASSERT( descp->next_desc_addr, 0 ); //at least 2 descripors
1802 HCFASSERT( descp->BUF_CNT == HFS_ADDR_DEST, descp->BUF_CNT ); //exact length required for 1st buffer 1801 HCFASSERT( descp->BUF_CNT == HFS_ADDR_DEST, descp->BUF_CNT ); //exact length required for 1st buffer
1803 HCFASSERT( descp->BUF_SIZE >= HCF_DMA_TX_BUF1_SIZE, descp->BUF_SIZE ); //minimal storage for encapsulation 1802 HCFASSERT( descp->BUF_SIZE >= HCF_DMA_TX_BUF1_SIZE, descp->BUF_SIZE ); //minimal storage for encapsulation
1804 HCFASSERT( p->BUF_CNT >= 14, p->BUF_CNT ); //at least DA, SA and 'type' in 2nd buffer 1803 HCFASSERT( p->BUF_CNT >= 14, p->BUF_CNT ); //at least DA, SA and 'type' in 2nd buffer
1805 1804
1806#if (HCF_TYPE) & HCF_TYPE_CCX 1805#if (HCF_TYPE) & HCF_TYPE_CCX
1807 /* if we are doing PPK +/- CMIC, or we are sending a DDP frame */ 1806 /* if we are doing PPK +/- CMIC, or we are sending a DDP frame */
1808 if ( ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_ON ) || 1807 if ( ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_ON ) ||
1809 ( ( p->BUF_CNT >= 20 ) && ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_OFF ) && 1808 ( ( p->BUF_CNT >= 20 ) && ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_OFF ) &&
1810 ( p->buf_addr[12] == 0xAA ) && ( p->buf_addr[13] == 0xAA ) && 1809 ( p->buf_addr[12] == 0xAA ) && ( p->buf_addr[13] == 0xAA ) &&
1811 ( p->buf_addr[14] == 0x03 ) && ( p->buf_addr[15] == 0x00 ) && 1810 ( p->buf_addr[14] == 0x03 ) && ( p->buf_addr[15] == 0x00 ) &&
1812 ( p->buf_addr[16] == 0x40 ) && ( p->buf_addr[17] == 0x96 ) && 1811 ( p->buf_addr[16] == 0x40 ) && ( p->buf_addr[17] == 0x96 ) &&
1813 ( p->buf_addr[18] == 0x00 ) && ( p->buf_addr[19] == 0x00 ))) 1812 ( p->buf_addr[18] == 0x00 ) && ( p->buf_addr[19] == 0x00 )))
1814 { 1813 {
1815 /* copy the DA/SA to the first buffer */ 1814 /* copy the DA/SA to the first buffer */
1816 for ( i = 0; i < HCF_DASA_SIZE; i++ ) { 1815 for ( i = 0; i < HCF_DASA_SIZE; i++ ) {
@@ -1821,34 +1820,34 @@ int i;
1821 do { i += p->BUF_CNT; } while( p = p->next_desc_addr ); 1820 do { i += p->BUF_CNT; } while( p = p->next_desc_addr );
1822 i -= HCF_DASA_SIZE ; 1821 i -= HCF_DASA_SIZE ;
1823 /* convert the length field to big endian, using the endian friendly macros */ 1822 /* convert the length field to big endian, using the endian friendly macros */
1824 i = CNV_SHORT_TO_BIG(i); //!! this converts ONLY on LE platforms, how does that relate to the non-CCX code 1823 i = CNV_SHORT_TO_BIG(i); //!! this converts ONLY on LE platforms, how does that relate to the non-CCX code
1825 *(hcf_16*)(&descp->buf_addr[HFS_LEN]) = (hcf_16)i; 1824 *(hcf_16*)(&descp->buf_addr[HFS_LEN]) = (hcf_16)i;
1826 descp->BUF_CNT = HFS_DAT; 1825 descp->BUF_CNT = HFS_DAT;
1827 // modify 2nd descriptor to skip the 'Da/Sa' fields 1826 // modify 2nd descriptor to skip the 'Da/Sa' fields
1828 descp->next_desc_addr->buf_phys_addr += HCF_DASA_SIZE; 1827 descp->next_desc_addr->buf_phys_addr += HCF_DASA_SIZE;
1829 descp->next_desc_addr->BUF_CNT -= HCF_DASA_SIZE; 1828 descp->next_desc_addr->BUF_CNT -= HCF_DASA_SIZE;
1830 } 1829 }
1831 else 1830 else
1832#endif // HCF_TYPE_CCX 1831#endif // HCF_TYPE_CCX
1833 { 1832 {
1834 descp->buf_addr[HFS_TYPE-1] = hcf_encap(&descp->next_desc_addr->buf_addr[HCF_DASA_SIZE]); /*4*/ 1833 descp->buf_addr[HFS_TYPE-1] = hcf_encap(&descp->next_desc_addr->buf_addr[HCF_DASA_SIZE]); /*4*/
1835 if ( descp->buf_addr[HFS_TYPE-1] != ENC_NONE ) { 1834 if ( descp->buf_addr[HFS_TYPE-1] != ENC_NONE ) {
1836 for ( i=0; i < HCF_DASA_SIZE; i++ ) { /*6*/ 1835 for ( i=0; i < HCF_DASA_SIZE; i++ ) { /*6*/
1837 descp->buf_addr[i + HFS_ADDR_DEST] = descp->next_desc_addr->buf_addr[i]; 1836 descp->buf_addr[i + HFS_ADDR_DEST] = descp->next_desc_addr->buf_addr[i];
1838 } 1837 }
1839 i = sizeof(snap_header) + 2 - ( 2*6 + 2 ); 1838 i = sizeof(snap_header) + 2 - ( 2*6 + 2 );
1840 do { i += p->BUF_CNT; } while ( ( p = p->next_desc_addr ) != NULL ); 1839 do { i += p->BUF_CNT; } while ( ( p = p->next_desc_addr ) != NULL );
1841 *(hcf_16*)(&descp->buf_addr[HFS_LEN]) = CNV_END_SHORT(i); //!! this converts on ALL platforms, how does that relate to the CCX code 1840 *(hcf_16*)(&descp->buf_addr[HFS_LEN]) = CNV_END_SHORT(i); //!! this converts on ALL platforms, how does that relate to the CCX code
1842 for ( i=0; i < sizeof(snap_header) - 1; i++) { 1841 for ( i=0; i < sizeof(snap_header) - 1; i++) {
1843 descp->buf_addr[HFS_TYPE - sizeof(snap_header) + i] = snap_header[i]; 1842 descp->buf_addr[HFS_TYPE - sizeof(snap_header) + i] = snap_header[i];
1844 } 1843 }
1845 descp->BUF_CNT = HFS_TYPE; /*8*/ 1844 descp->BUF_CNT = HFS_TYPE; /*8*/
1846 descp->next_desc_addr->buf_phys_addr += HCF_DASA_SIZE; 1845 descp->next_desc_addr->buf_phys_addr += HCF_DASA_SIZE;
1847 descp->next_desc_addr->BUF_CNT -= HCF_DASA_SIZE; 1846 descp->next_desc_addr->BUF_CNT -= HCF_DASA_SIZE;
1848 } 1847 }
1849 } 1848 }
1850#endif // HCF_ENC 1849#endif // HCF_ENC
1851 } 1850 }
1852 put_frame_lst( ifbp, descp, DMA_TX ); 1851 put_frame_lst( ifbp, descp, DMA_TX );
1853 HCFLOGEXIT( HCF_TRACE_DMA_TX_PUT ); 1852 HCFLOGEXIT( HCF_TRACE_DMA_TX_PUT );
1854} // hcf_dma_tx_put 1853} // hcf_dma_tx_put
@@ -1857,44 +1856,44 @@ int i;
1857 1856
1858#if (HCF_DL_ONLY) == 0 1857#if (HCF_DL_ONLY) == 0
1859/************************************************************************************************************ 1858/************************************************************************************************************
1860* 1859 *
1861*.MODULE hcf_8 hcf_encap( wci_bufp type ) 1860 *.MODULE hcf_8 hcf_encap( wci_bufp type )
1862*.PURPOSE test whether RFC1042 or Bridge-Tunnel encapsulation is needed. 1861 *.PURPOSE test whether RFC1042 or Bridge-Tunnel encapsulation is needed.
1863* 1862 *
1864*.ARGUMENTS 1863 *.ARGUMENTS
1865* type (Far) pointer to the (Big Endian) Type/Length field in the message 1864 * type (Far) pointer to the (Big Endian) Type/Length field in the message
1866* 1865 *
1867*.RETURNS 1866 *.RETURNS
1868* ENC_NONE len/type is "len" ( (BIG_ENDIAN)type <= 1500 ) 1867 * ENC_NONE len/type is "len" ( (BIG_ENDIAN)type <= 1500 )
1869* ENC_TUNNEL len/type is "type" and 0x80F3 or 0x8137 1868 * ENC_TUNNEL len/type is "type" and 0x80F3 or 0x8137
1870* ENC_1042 len/type is "type" but not 0x80F3 or 0x8137 1869 * ENC_1042 len/type is "type" but not 0x80F3 or 0x8137
1871* 1870 *
1872*.CONDITIONS 1871 *.CONDITIONS
1873* NIC Interrupts d.c 1872 * NIC Interrupts d.c
1874* 1873 *
1875*.DESCRIPTION 1874 *.DESCRIPTION
1876* Type must point to the Len/Type field of the message, this is the 2-byte field immediately after the 6 byte 1875 * Type must point to the Len/Type field of the message, this is the 2-byte field immediately after the 6 byte
1877* Destination Address and 6 byte Source Address. The 2 successive bytes addressed by type are interpreted as 1876 * Destination Address and 6 byte Source Address. The 2 successive bytes addressed by type are interpreted as
1878* a Big Endian value. If that value is less than or equal to 1500, the message is assumed to be in 802.3 1877 * a Big Endian value. If that value is less than or equal to 1500, the message is assumed to be in 802.3
1879* format. Otherwise the message is assumed to be in Ethernet-II format. Depending on the value of Len/Typ, 1878 * format. Otherwise the message is assumed to be in Ethernet-II format. Depending on the value of Len/Typ,
1880* Bridge Tunnel or RFC1042 encapsulation is needed. 1879 * Bridge Tunnel or RFC1042 encapsulation is needed.
1881* 1880 *
1882*.DIAGRAM 1881 *.DIAGRAM
1883* 1882 *
1884* 1: presume 802.3, hence preset return value at ENC_NONE 1883 * 1: presume 802.3, hence preset return value at ENC_NONE
1885* 2: convert type from "network" Endian format to native Endian 1884 * 2: convert type from "network" Endian format to native Endian
1886* 4: the litmus test to distinguish type and len. 1885 * 4: the litmus test to distinguish type and len.
1887* The hard code "magic" value of 1500 is intentional and should NOT be replaced by a mnemonic because it is 1886 * The hard code "magic" value of 1500 is intentional and should NOT be replaced by a mnemonic because it is
1888* not related at all to the maximum frame size supported by the Hermes. 1887 * not related at all to the maximum frame size supported by the Hermes.
1889* 6: check type against: 1888 * 6: check type against:
1890* 0x80F3 //AppleTalk Address Resolution Protocol (AARP) 1889 * 0x80F3 //AppleTalk Address Resolution Protocol (AARP)
1891* 0x8137 //IPX 1890 * 0x8137 //IPX
1892* to determine the type of encapsulation 1891 * to determine the type of encapsulation
1893* 1892 *
1894*.ENDDOC END DOCUMENTATION 1893 *.ENDDOC END DOCUMENTATION
1895* 1894 *
1896************************************************************************************************************/ 1895 ************************************************************************************************************/
1897#if HCF_ENCAP //i.e HCF_ENC or HCF_ENC_SUP 1896#if HCF_ENCAP //i.e HCF_ENC or HCF_ENC_SUP
1898#if ! ( (HCF_ENCAP) & HCF_ENC_SUP ) 1897#if ! ( (HCF_ENCAP) & HCF_ENC_SUP )
1899HCF_STATIC 1898HCF_STATIC
1900#endif // HCF_ENCAP 1899#endif // HCF_ENCAP
@@ -1902,12 +1901,12 @@ hcf_8
1902hcf_encap( wci_bufp type ) 1901hcf_encap( wci_bufp type )
1903{ 1902{
1904 1903
1905hcf_8 rc = ENC_NONE; /* 1 */ 1904 hcf_8 rc = ENC_NONE; /* 1 */
1906hcf_16 t = (hcf_16)(*type<<8) + *(type+1); /* 2 */ 1905 hcf_16 t = (hcf_16)(*type<<8) + *(type+1); /* 2 */
1907 1906
1908 if ( t > 1500 ) { /* 4 */ 1907 if ( t > 1500 ) { /* 4 */
1909 if ( t == 0x8137 || t == 0x80F3 ) { 1908 if ( t == 0x8137 || t == 0x80F3 ) {
1910 rc = ENC_TUNNEL; /* 6 */ 1909 rc = ENC_TUNNEL; /* 6 */
1911 } else { 1910 } else {
1912 rc = ENC_1042; 1911 rc = ENC_1042;
1913 } 1912 }
@@ -1919,121 +1918,121 @@ hcf_16 t = (hcf_16)(*type<<8) + *(type+1); /* 2 */
1919 1918
1920 1919
1921/************************************************************************************************************ 1920/************************************************************************************************************
1922* 1921 *
1923*.MODULE int hcf_get_info( IFBP ifbp, LTVP ltvp ) 1922 *.MODULE int hcf_get_info( IFBP ifbp, LTVP ltvp )
1924*.PURPOSE Obtains transient and persistent configuration information from the Card and from the HCF. 1923 *.PURPOSE Obtains transient and persistent configuration information from the Card and from the HCF.
1925* 1924 *
1926*.ARGUMENTS 1925 *.ARGUMENTS
1927* ifbp address of the Interface Block 1926 * ifbp address of the Interface Block
1928* ltvp address of LengthTypeValue structure specifying the "what" and the "how much" of the 1927 * ltvp address of LengthTypeValue structure specifying the "what" and the "how much" of the
1929* information to be collected from the HCF or from the Hermes 1928 * information to be collected from the HCF or from the Hermes
1930* 1929 *
1931*.RETURNS 1930 *.RETURNS
1932* HCF_ERR_LEN The provided buffer was too small 1931 * HCF_ERR_LEN The provided buffer was too small
1933* HCF_SUCCESS Success 1932 * HCF_SUCCESS Success
1934*!! via cmd_exe ( type >= CFG_RID_FW_MIN ) 1933 *!! via cmd_exe ( type >= CFG_RID_FW_MIN )
1935* HCF_ERR_NO_NIC NIC removed during retrieval 1934 * HCF_ERR_NO_NIC NIC removed during retrieval
1936* HCF_ERR_TIME_OUT Expected Hermes event did not occur in expected time 1935 * HCF_ERR_TIME_OUT Expected Hermes event did not occur in expected time
1937*!! via cmd_exe and setup_bap (type >= CFG_RID_FW_MIN ) 1936 *!! via cmd_exe and setup_bap (type >= CFG_RID_FW_MIN )
1938* HCF_ERR_DEFUNCT_... HCF is in defunct mode (bits 0x7F reflect cause) 1937 * HCF_ERR_DEFUNCT_... HCF is in defunct mode (bits 0x7F reflect cause)
1939* 1938 *
1940*.DESCRIPTION 1939 *.DESCRIPTION
1941* The T-field of the LTV-record (provided by the MSF in parameter ltvp) specifies the RID wanted. The RID 1940 * The T-field of the LTV-record (provided by the MSF in parameter ltvp) specifies the RID wanted. The RID
1942* information identified by the T-field is copied into the V-field. 1941 * information identified by the T-field is copied into the V-field.
1943* On entry, the L-field specifies the size of the buffer, also called the "Initial DataLength". The L-value 1942 * On entry, the L-field specifies the size of the buffer, also called the "Initial DataLength". The L-value
1944* includes the size of the T-field, but not the size of the L-field itself. 1943 * includes the size of the T-field, but not the size of the L-field itself.
1945* On return, the L-field indicates the number of words actually contained by the Type and Value fields. 1944 * On return, the L-field indicates the number of words actually contained by the Type and Value fields.
1946* As the size of the Type field in the LTV-record is included in the "Initial DataLength" of the record, the 1945 * As the size of the Type field in the LTV-record is included in the "Initial DataLength" of the record, the
1947* V-field can contain at most "Initial DataLength" - 1 words of data. 1946 * V-field can contain at most "Initial DataLength" - 1 words of data.
1948* Copying stops if either the complete Information is copied or if the number of words indicated by the 1947 * Copying stops if either the complete Information is copied or if the number of words indicated by the
1949* "Initial DataLength" were copied. The "Initial DataLength" acts as a safe guard against Configuration 1948 * "Initial DataLength" were copied. The "Initial DataLength" acts as a safe guard against Configuration
1950* Information blocks that have different sizes for different F/W versions, e.g. when later versions support 1949 * Information blocks that have different sizes for different F/W versions, e.g. when later versions support
1951* more tallies than earlier versions. 1950 * more tallies than earlier versions.
1952* If the size of Value field of the RID exceeds the size of the "Initial DataLength" -1, as much data 1951 * If the size of Value field of the RID exceeds the size of the "Initial DataLength" -1, as much data
1953* as fits is copied, and an error status of HCF_ERR_LEN is returned. 1952 * as fits is copied, and an error status of HCF_ERR_LEN is returned.
1954* 1953 *
1955* It is the responsibility of the MSF to detect card removal and re-insertion and not call the HCF when the 1954 * It is the responsibility of the MSF to detect card removal and re-insertion and not call the HCF when the
1956* NIC is absent. The MSF cannot, however, timely detect a Card removal if the Card is removed while 1955 * NIC is absent. The MSF cannot, however, timely detect a Card removal if the Card is removed while
1957* hcf_get_info is in progress. Therefore, the HCF performs its own check on Card presence after the read 1956 * hcf_get_info is in progress. Therefore, the HCF performs its own check on Card presence after the read
1958* operation of the NIC data. If the Card is not present or removed during the execution of hcf_get_info, 1957 * operation of the NIC data. If the Card is not present or removed during the execution of hcf_get_info,
1959* HCF_ERR_NO_NIC is returned and the content of the Data Buffer is unpredictable. This check is not performed 1958 * HCF_ERR_NO_NIC is returned and the content of the Data Buffer is unpredictable. This check is not performed
1960* in case of the "HCF embedded" pseudo RIDs like CFG_TALLIES. 1959 * in case of the "HCF embedded" pseudo RIDs like CFG_TALLIES.
1961* 1960 *
1962* Assert fails if 1961 * Assert fails if
1963* - ifbp has a recognizable out-of-range value. 1962 * - ifbp has a recognizable out-of-range value.
1964* - reentrancy, may be caused by calling hcf_functions without adequate protection 1963 * - reentrancy, may be caused by calling hcf_functions without adequate protection
1965* against NIC interrupts or multi-threading. 1964 * against NIC interrupts or multi-threading.
1966* - ltvp is a NULL pointer. 1965 * - ltvp is a NULL pointer.
1967* - length field of the LTV-record at entry is 0 or 1 or has an excessive value (i.e. exceeds HCF_MAX_LTV). 1966 * - length field of the LTV-record at entry is 0 or 1 or has an excessive value (i.e. exceeds HCF_MAX_LTV).
1968* - type field of the LTV-record is invalid. 1967 * - type field of the LTV-record is invalid.
1969* 1968 *
1970*.DIAGRAM 1969 *.DIAGRAM
1971* Hcf_get_mb_info copies the contents of the oldest MailBox Info block in the MailBox to PC RAM. If len is 1970 * Hcf_get_mb_info copies the contents of the oldest MailBox Info block in the MailBox to PC RAM. If len is
1972* less than the size of the MailBox Info block, only as much as fits in the PC RAM buffer is copied. After 1971 * less than the size of the MailBox Info block, only as much as fits in the PC RAM buffer is copied. After
1973* the copying the MailBox Read pointer is updated to point to the next MailBox Info block, hence the 1972 * the copying the MailBox Read pointer is updated to point to the next MailBox Info block, hence the
1974* remainder of an "oversized" MailBox Info block is lost. The truncation of the MailBox Info block is NOT 1973 * remainder of an "oversized" MailBox Info block is lost. The truncation of the MailBox Info block is NOT
1975* reflected in the return status. Note that hcf_get_info guarantees the length of the PC RAM buffer meets 1974 * reflected in the return status. Note that hcf_get_info guarantees the length of the PC RAM buffer meets
1976* the minimum requirements of at least 2, so no PC RAM buffer overrun. 1975 * the minimum requirements of at least 2, so no PC RAM buffer overrun.
1977* 1976 *
1978* Calling hcf_get_mb_info when their is no MailBox Info block available or when there is no MailBox at all, 1977 * Calling hcf_get_mb_info when their is no MailBox Info block available or when there is no MailBox at all,
1979* results in a "NULL" MailBox Info block. 1978 * results in a "NULL" MailBox Info block.
1980* 1979 *
1981*12: see NOTICE 1980 *12: see NOTICE
1982*17: The return status of cmd_wait and the first hcfio_in_string can be ignored, because when one fails, the 1981 *17: The return status of cmd_wait and the first hcfio_in_string can be ignored, because when one fails, the
1983* other fails via the IFB_DefunctStat mechanism 1982 * other fails via the IFB_DefunctStat mechanism
1984*20: "HCFASSERT( rc == HCF_SUCCESS, rc )" is not suitable because this will always trigger as side effect of 1983 *20: "HCFASSERT( rc == HCF_SUCCESS, rc )" is not suitable because this will always trigger as side effect of
1985* the HCFASSERT in hcf_put_info which calls hcf_get_info to figure out whether the RID exists at all. 1984 * the HCFASSERT in hcf_put_info which calls hcf_get_info to figure out whether the RID exists at all.
1986 1985
1987*.NOTICE 1986 *.NOTICE
1988* 1987 *
1989* "HCF embedded" pseudo RIDs: 1988 * "HCF embedded" pseudo RIDs:
1990* CFG_MB_INFO, CFG_TALLIES, CFG_DRV_IDENTITY, CFG_DRV_SUP_RANGE, CFG_DRV_ACT_RANGES_PRI, 1989 * CFG_MB_INFO, CFG_TALLIES, CFG_DRV_IDENTITY, CFG_DRV_SUP_RANGE, CFG_DRV_ACT_RANGES_PRI,
1991* CFG_DRV_ACT_RANGES_STA, CFG_DRV_ACT_RANGES_HSI 1990 * CFG_DRV_ACT_RANGES_STA, CFG_DRV_ACT_RANGES_HSI
1992* Note the HCF_ERR_LEN is NOT adequately set, when L >= 2 but less than needed 1991 * Note the HCF_ERR_LEN is NOT adequately set, when L >= 2 but less than needed
1993* 1992 *
1994* Remarks: Transfers operation information and transient and persistent configuration information from the 1993 * Remarks: Transfers operation information and transient and persistent configuration information from the
1995* Card and from the HCF to the MSF. 1994 * Card and from the HCF to the MSF.
1996* The exact layout of the provided data structure depends on the action code. Copying stops if either the 1995 * The exact layout of the provided data structure depends on the action code. Copying stops if either the
1997* complete Configuration Information is copied or if the number of bytes indicated by len is copied. Len 1996 * complete Configuration Information is copied or if the number of bytes indicated by len is copied. Len
1998* acts as a safe guard against Configuration Information blocks which have different sizes for different 1997 * acts as a safe guard against Configuration Information blocks which have different sizes for different
1999* Hermes versions, e.g. when later versions support more tallies than earlier versions. It is a conscious 1998 * Hermes versions, e.g. when later versions support more tallies than earlier versions. It is a conscious
2000* decision that unused parts of the PC RAM buffer are not cleared. 1999 * decision that unused parts of the PC RAM buffer are not cleared.
2001* 2000 *
2002* Remarks: The only error against which is protected is the "Read error" as result of Card removal. Only the 2001 * Remarks: The only error against which is protected is the "Read error" as result of Card removal. Only the
2003* last hcf_io_string need to be protected because if the first fails the second will fail as well. Checking 2002 * last hcf_io_string need to be protected because if the first fails the second will fail as well. Checking
2004* for cmd_exe errors is supposed superfluous because problems in cmd_exe are already caught or will be 2003 * for cmd_exe errors is supposed superfluous because problems in cmd_exe are already caught or will be
2005* caught by hcf_enable. 2004 * caught by hcf_enable.
2006* 2005 *
2007* CFG_MB_INFO: copy the oldest MailBox Info Block or the "null" block if none available. 2006 * CFG_MB_INFO: copy the oldest MailBox Info Block or the "null" block if none available.
2008* 2007 *
2009* The mechanism to HCF_ASSERT on invalid typ-codes in the LTV record is based on the following strategy: 2008 * The mechanism to HCF_ASSERT on invalid typ-codes in the LTV record is based on the following strategy:
2010* - during the pseudo-asynchronous Hermes commands (diagnose, download) only CFG_MB_INFO is acceptable 2009 * - during the pseudo-asynchronous Hermes commands (diagnose, download) only CFG_MB_INFO is acceptable
2011* - some codes (e.g. CFG_TALLIES) are explicitly handled by the HCF which implies that these codes 2010 * - some codes (e.g. CFG_TALLIES) are explicitly handled by the HCF which implies that these codes
2012* are valid 2011 * are valid
2013* - all other codes in the range 0xFC00 through 0xFFFF are passed to the Hermes. The Hermes returns an 2012 * - all other codes in the range 0xFC00 through 0xFFFF are passed to the Hermes. The Hermes returns an
2014* LTV record with a zero value in the L-field for all Typ-codes it does not recognize. This is 2013 * LTV record with a zero value in the L-field for all Typ-codes it does not recognize. This is
2015* defined and intended behavior, so HCF_ASSERT does not catch on this phenomena. 2014 * defined and intended behavior, so HCF_ASSERT does not catch on this phenomena.
2016* - all remaining codes are invalid and cause an ASSERT. 2015 * - all remaining codes are invalid and cause an ASSERT.
2017* 2016 *
2018*.CONDITIONS 2017 *.CONDITIONS
2019* In case of USB, HCF_MAX_MSG ;?USED;? to limit the amount of data that can be retrieved via hcf_get_info. 2018 * In case of USB, HCF_MAX_MSG ;?USED;? to limit the amount of data that can be retrieved via hcf_get_info.
2020* 2019 *
2021* 2020 *
2022*.ENDDOC END DOCUMENTATION 2021 *.ENDDOC END DOCUMENTATION
2023* 2022 *
2024************************************************************************************************************/ 2023 ************************************************************************************************************/
2025int 2024int
2026hcf_get_info( IFBP ifbp, LTVP ltvp ) 2025hcf_get_info( IFBP ifbp, LTVP ltvp )
2027{ 2026{
2028 2027
2029int rc = HCF_SUCCESS; 2028 int rc = HCF_SUCCESS;
2030hcf_16 len = ltvp->len; 2029 hcf_16 len = ltvp->len;
2031hcf_16 type = ltvp->typ; 2030 hcf_16 type = ltvp->typ;
2032wci_recordp p = &ltvp->len; //destination word pointer (in LTV record) 2031 wci_recordp p = &ltvp->len; //destination word pointer (in LTV record)
2033hcf_16 *q = NULL; /* source word pointer Note!! DOS COM can't cope with FAR 2032 hcf_16 *q = NULL; /* source word pointer Note!! DOS COM can't cope with FAR
2034 * as a consequence MailBox must be near which is usually true anyway 2033 * as a consequence MailBox must be near which is usually true anyway
2035 */ 2034 */
2036int i; 2035 int i;
2037 2036
2038 HCFLOGENTRY( HCF_TRACE_GET_INFO, ltvp->typ ); 2037 HCFLOGENTRY( HCF_TRACE_GET_INFO, ltvp->typ );
2039 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic ); 2038 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic );
@@ -2041,12 +2040,12 @@ int i;
2041 HCFASSERT( ltvp, 0 ); 2040 HCFASSERT( ltvp, 0 );
2042 HCFASSERT( 1 < ltvp->len && ltvp->len <= HCF_MAX_LTV + 1, MERGE_2( ltvp->typ, ltvp->len ) ); 2041 HCFASSERT( 1 < ltvp->len && ltvp->len <= HCF_MAX_LTV + 1, MERGE_2( ltvp->typ, ltvp->len ) );
2043 2042
2044 ltvp->len = 0; //default to: No Info Available 2043 ltvp->len = 0; //default to: No Info Available
2045#if defined MSF_COMPONENT_ID || (HCF_EXT) & HCF_EXT_MB //filter out all specials 2044#if defined MSF_COMPONENT_ID || (HCF_EXT) & HCF_EXT_MB //filter out all specials
2046 for ( i = 0; ( q = xxxx[i] ) != NULL && q[1] != type; i++ ) /*NOP*/; 2045 for ( i = 0; ( q = xxxx[i] ) != NULL && q[1] != type; i++ ) /*NOP*/;
2047#endif // MSF_COMPONENT_ID / HCF_EXT_MB 2046#endif // MSF_COMPONENT_ID / HCF_EXT_MB
2048#if HCF_TALLIES 2047#if HCF_TALLIES
2049 if ( type == CFG_TALLIES ) { /*3*/ 2048 if ( type == CFG_TALLIES ) { /*3*/
2050 (void)hcf_action( ifbp, HCF_ACT_TALLIES ); 2049 (void)hcf_action( ifbp, HCF_ACT_TALLIES );
2051 q = (hcf_16*)&ifbp->IFB_TallyLen; 2050 q = (hcf_16*)&ifbp->IFB_TallyLen;
2052 } 2051 }
@@ -2058,7 +2057,7 @@ int i;
2058 ifbp->IFB_MBRp = 0; //;?Probably superfluous 2057 ifbp->IFB_MBRp = 0; //;?Probably superfluous
2059 } 2058 }
2060 q = &ifbp->IFB_MBp[ifbp->IFB_MBRp]; 2059 q = &ifbp->IFB_MBp[ifbp->IFB_MBRp];
2061 ifbp->IFB_MBRp += *q + 1; //update read pointer 2060 ifbp->IFB_MBRp += *q + 1; //update read pointer
2062 if ( ifbp->IFB_MBp[ifbp->IFB_MBRp] == 0xFFFF ) { 2061 if ( ifbp->IFB_MBp[ifbp->IFB_MBRp] == 0xFFFF ) {
2063 ifbp->IFB_MBRp = 0; 2062 ifbp->IFB_MBRp = 0;
2064 } 2063 }
@@ -2066,8 +2065,8 @@ int i;
2066 } 2065 }
2067 } 2066 }
2068#endif // HCF_EXT_MB 2067#endif // HCF_EXT_MB
2069 if ( q != NULL ) { //a special or CFG_TALLIES or CFG_MB_INFO 2068 if ( q != NULL ) { //a special or CFG_TALLIES or CFG_MB_INFO
2070 i = min( len, *q ) + 1; //total size of destination (including T-field) 2069 i = min( len, *q ) + 1; //total size of destination (including T-field)
2071 while ( i-- ) { 2070 while ( i-- ) {
2072 *p++ = *q; 2071 *p++ = *q;
2073#if (HCF_TALLIES) & HCF_TALLIES_RESET 2072#if (HCF_TALLIES) & HCF_TALLIES_RESET
@@ -2077,50 +2076,50 @@ int i;
2077#endif // HCF_TALLIES_RESET 2076#endif // HCF_TALLIES_RESET
2078 q++; 2077 q++;
2079 } 2078 }
2080 } else { // not a special nor CFG_TALLIES nor CFG_MB_INFO 2079 } else { // not a special nor CFG_TALLIES nor CFG_MB_INFO
2081 if ( type == CFG_CNTL_OPT ) { //read back effective options 2080 if ( type == CFG_CNTL_OPT ) { //read back effective options
2082 ltvp->len = 2; 2081 ltvp->len = 2;
2083 ltvp->val[0] = ifbp->IFB_CntlOpt; 2082 ltvp->val[0] = ifbp->IFB_CntlOpt;
2084#if (HCF_EXT) & HCF_EXT_NIC_ACCESS 2083#if (HCF_EXT) & HCF_EXT_NIC_ACCESS
2085 } else if ( type == CFG_PROD_DATA ) { //only needed for some test tool on top of H-II NDIS driver 2084 } else if ( type == CFG_PROD_DATA ) { //only needed for some test tool on top of H-II NDIS driver
2086hcf_io io_port; 2085 hcf_io io_port;
2087wci_bufp pt; //pointer with the "right" type, just to help ease writing macros with embedded assembly 2086 wci_bufp pt; //pointer with the "right" type, just to help ease writing macros with embedded assembly
2088 OPW( HREG_AUX_PAGE, (hcf_16)(PLUG_DATA_OFFSET >> 7) ); 2087 OPW( HREG_AUX_PAGE, (hcf_16)(PLUG_DATA_OFFSET >> 7) );
2089 OPW( HREG_AUX_OFFSET, (hcf_16)(PLUG_DATA_OFFSET & 0x7E) ); 2088 OPW( HREG_AUX_OFFSET, (hcf_16)(PLUG_DATA_OFFSET & 0x7E) );
2090 io_port = ifbp->IFB_IOBase + HREG_AUX_DATA; //to prevent side effects of the MSF-defined macro 2089 io_port = ifbp->IFB_IOBase + HREG_AUX_DATA; //to prevent side effects of the MSF-defined macro
2091 p = ltvp->val; //destination char pointer (in LTV record) 2090 p = ltvp->val; //destination char pointer (in LTV record)
2092 i = len - 1; 2091 i = len - 1;
2093 if (i > 0 ) { 2092 if (i > 0 ) {
2094 pt = (wci_bufp)p; //just to help ease writing macros with embedded assembly 2093 pt = (wci_bufp)p; //just to help ease writing macros with embedded assembly
2095 IN_PORT_STRING_8_16( io_port, pt, i ); //space used by T: -1 2094 IN_PORT_STRING_8_16( io_port, pt, i ); //space used by T: -1
2096 } 2095 }
2097 } else if ( type == CFG_CMD_HCF ) { 2096 } else if ( type == CFG_CMD_HCF ) {
2098#define P ((CFG_CMD_HCF_STRCT FAR *)ltvp) 2097#define P ((CFG_CMD_HCF_STRCT FAR *)ltvp)
2099 HCFASSERT( P->cmd == CFG_CMD_HCF_REG_ACCESS, P->cmd ); //only Hermes register access supported 2098 HCFASSERT( P->cmd == CFG_CMD_HCF_REG_ACCESS, P->cmd ); //only Hermes register access supported
2100 if ( P->cmd == CFG_CMD_HCF_REG_ACCESS ) { 2099 if ( P->cmd == CFG_CMD_HCF_REG_ACCESS ) {
2101 HCFASSERT( P->mode < ifbp->IFB_IOBase, P->mode ); //Check Register space 2100 HCFASSERT( P->mode < ifbp->IFB_IOBase, P->mode ); //Check Register space
2102 ltvp->len = min( len, 4 ); //RESTORE ltv length 2101 ltvp->len = min( len, 4 ); //RESTORE ltv length
2103 P->add_info = IPW( P->mode ); 2102 P->add_info = IPW( P->mode );
2104 } 2103 }
2105#undef P 2104#undef P
2106#endif // HCF_EXT_NIC_ACCESS 2105#endif // HCF_EXT_NIC_ACCESS
2107#if (HCF_ASSERT) & HCF_ASSERT_PRINTF 2106#if (HCF_ASSERT) & HCF_ASSERT_PRINTF
2108 } else if (type == CFG_FW_PRINTF) { 2107 } else if (type == CFG_FW_PRINTF) {
2109 rc = fw_printf(ifbp, (CFG_FW_PRINTF_STRCT*)ltvp); 2108 rc = fw_printf(ifbp, (CFG_FW_PRINTF_STRCT*)ltvp);
2110#endif // HCF_ASSERT_PRINTF 2109#endif // HCF_ASSERT_PRINTF
2111 } else if ( type >= CFG_RID_FW_MIN ) { 2110 } else if ( type >= CFG_RID_FW_MIN ) {
2112//;? by using HCMD_BUSY option when calling cmd_exe, using a get_frag with length 0 just to set up the 2111//;? by using HCMD_BUSY option when calling cmd_exe, using a get_frag with length 0 just to set up the
2113//;? BAP and calling cmd_cmpl, you could merge the 2 Busy waits. Whether this really helps (and what 2112//;? BAP and calling cmd_cmpl, you could merge the 2 Busy waits. Whether this really helps (and what
2114//;? would be the optimal sequence in cmd_exe and get_frag) would have to be MEASURED 2113//;? would be the optimal sequence in cmd_exe and get_frag) would have to be MEASURED
2115/*17*/ if ( ( rc = cmd_exe( ifbp, HCMD_ACCESS, type ) ) == HCF_SUCCESS && 2114 /*17*/ if ( ( rc = cmd_exe( ifbp, HCMD_ACCESS, type ) ) == HCF_SUCCESS &&
2116 ( rc = setup_bap( ifbp, type, 0, IO_IN ) ) == HCF_SUCCESS ) { 2115 ( rc = setup_bap( ifbp, type, 0, IO_IN ) ) == HCF_SUCCESS ) {
2117 get_frag( ifbp, (wci_bufp)&ltvp->len, 2*len+2 BE_PAR(2) ); 2116 get_frag( ifbp, (wci_bufp)&ltvp->len, 2*len+2 BE_PAR(2) );
2118 if ( IPW( HREG_STAT ) == 0xFFFF ) { //NIC removal test 2117 if ( IPW( HREG_STAT ) == 0xFFFF ) { //NIC removal test
2119 ltvp->len = 0; 2118 ltvp->len = 0;
2120 HCFASSERT( DO_ASSERT, type ); 2119 HCFASSERT( DO_ASSERT, type );
2121 } 2120 }
2122 } 2121 }
2123/*12*/ } else HCFASSERT( DO_ASSERT, type ) /*NOP*/; //NOP in case HCFASSERT is dummy 2122 /*12*/ } else HCFASSERT( DO_ASSERT, type ) /*NOP*/; //NOP in case HCFASSERT is dummy
2124 } 2123 }
2125 if ( len < ltvp->len ) { 2124 if ( len < ltvp->len ) {
2126 ltvp->len = len; 2125 ltvp->len = len;
@@ -2129,86 +2128,86 @@ wci_bufp pt; //pointer with the "right" type, just to help ease writing macr
2129 } 2128 }
2130 } 2129 }
2131 HCFASSERT( rc == HCF_SUCCESS || ( rc == HCF_ERR_LEN && ifbp->IFB_AssertTrace & 1<<HCF_TRACE_PUT_INFO ), 2130 HCFASSERT( rc == HCF_SUCCESS || ( rc == HCF_ERR_LEN && ifbp->IFB_AssertTrace & 1<<HCF_TRACE_PUT_INFO ),
2132 MERGE_2( type, rc ) ); /*20*/ 2131 MERGE_2( type, rc ) ); /*20*/
2133 HCFLOGEXIT( HCF_TRACE_GET_INFO ); 2132 HCFLOGEXIT( HCF_TRACE_GET_INFO );
2134 return rc; 2133 return rc;
2135} // hcf_get_info 2134} // hcf_get_info
2136 2135
2137 2136
2138/************************************************************************************************************ 2137/************************************************************************************************************
2139* 2138 *
2140*.MODULE int hcf_put_info( IFBP ifbp, LTVP ltvp ) 2139 *.MODULE int hcf_put_info( IFBP ifbp, LTVP ltvp )
2141*.PURPOSE Transfers operation and configuration information to the Card and to the HCF. 2140 *.PURPOSE Transfers operation and configuration information to the Card and to the HCF.
2142* 2141 *
2143*.ARGUMENTS 2142 *.ARGUMENTS
2144* ifbp address of the Interface Block 2143 * ifbp address of the Interface Block
2145* ltvp specifies the RID (as defined by Hermes I/F) or pseudo-RID (as defined by WCI) 2144 * ltvp specifies the RID (as defined by Hermes I/F) or pseudo-RID (as defined by WCI)
2146* 2145 *
2147*.RETURNS 2146 *.RETURNS
2148* HCF_SUCCESS 2147 * HCF_SUCCESS
2149*!! via cmd_exe 2148 *!! via cmd_exe
2150* HCF_ERR_NO_NIC NIC removed during data retrieval 2149 * HCF_ERR_NO_NIC NIC removed during data retrieval
2151* HCF_ERR_TIME_OUT Expected F/W event did not occur in time 2150 * HCF_ERR_TIME_OUT Expected F/W event did not occur in time
2152* HCF_ERR_DEFUNCT_... 2151 * HCF_ERR_DEFUNCT_...
2153*!! via download CFG_DLNV_START <= type <= CFG_DL_STOP 2152 *!! via download CFG_DLNV_START <= type <= CFG_DL_STOP
2154*!! via put_info CFG_RID_CFG_MIN <= type <= CFG_RID_CFG_MAX 2153 *!! via put_info CFG_RID_CFG_MIN <= type <= CFG_RID_CFG_MAX
2155*!! via put_frag 2154 *!! via put_frag
2156* 2155 *
2157*.DESCRIPTION 2156 *.DESCRIPTION
2158* The L-field of the LTV-record (provided by the MSF in parameter ltvp) specifies the size of the buffer. 2157 * The L-field of the LTV-record (provided by the MSF in parameter ltvp) specifies the size of the buffer.
2159* The L-value includes the size of the T-field, but not the size of the L-field. 2158 * The L-value includes the size of the T-field, but not the size of the L-field.
2160* The T- field specifies the RID placed in the V-field by the MSF. 2159 * The T- field specifies the RID placed in the V-field by the MSF.
2161* 2160 *
2162* Not all CFG-codes can be used for hcf_put_info. The following CFG-codes are valid for hcf_put_info: 2161 * Not all CFG-codes can be used for hcf_put_info. The following CFG-codes are valid for hcf_put_info:
2163* o One of the CFG-codes in the group "Network Parameters, Static Configuration Entities" 2162 * o One of the CFG-codes in the group "Network Parameters, Static Configuration Entities"
2164* Changes made by hcf_put_info to CFG_codes in this group will not affect the F/W 2163 * Changes made by hcf_put_info to CFG_codes in this group will not affect the F/W
2165* and HCF behavior until hcf_cntl_port( HCF_PORT_ENABLE) is called. 2164 * and HCF behavior until hcf_cntl_port( HCF_PORT_ENABLE) is called.
2166* o One of the CFG-codes in the group "Network Parameters, Dynamic Configuration Entities" 2165 * o One of the CFG-codes in the group "Network Parameters, Dynamic Configuration Entities"
2167* Changes made by hcf_put_info to CFG_codes will affect the F/W and HCF behavior immediately. 2166 * Changes made by hcf_put_info to CFG_codes will affect the F/W and HCF behavior immediately.
2168* o CFG_PROG. 2167 * o CFG_PROG.
2169* This code is used to initiate and terminate the process to download data either to 2168 * This code is used to initiate and terminate the process to download data either to
2170* volatile or to non-volatile RAM on the NIC as well as for the actual download. 2169 * volatile or to non-volatile RAM on the NIC as well as for the actual download.
2171* o CFG-codes related to the HCF behavior. 2170 * o CFG-codes related to the HCF behavior.
2172* The related CFG-codes are: 2171 * The related CFG-codes are:
2173* - CFG_REG_MB 2172 * - CFG_REG_MB
2174* - CFG_REG_ASSERT_RTNP 2173 * - CFG_REG_ASSERT_RTNP
2175* - CFG_REG_INFO_LOG 2174 * - CFG_REG_INFO_LOG
2176* - CFG_CMD_NIC 2175 * - CFG_CMD_NIC
2177* - CFG_CMD_DONGLE 2176 * - CFG_CMD_DONGLE
2178* - CFG_CMD_HCF 2177 * - CFG_CMD_HCF
2179* - CFG_NOTIFY 2178 * - CFG_NOTIFY
2180* 2179 *
2181* All LTV-records "unknown" to the HCF are forwarded to the F/W. 2180 * All LTV-records "unknown" to the HCF are forwarded to the F/W.
2182* 2181 *
2183* Assert fails if 2182 * Assert fails if
2184* - ifbp has a recognizable out-of-range value. 2183 * - ifbp has a recognizable out-of-range value.
2185* - ltvp is a NULL pointer. 2184 * - ltvp is a NULL pointer.
2186* - hcf_put_info was called without prior call to hcf_connect 2185 * - hcf_put_info was called without prior call to hcf_connect
2187* - type field of the LTV-record is invalid, i.e. neither HCF nor F/W can handle the value. 2186 * - type field of the LTV-record is invalid, i.e. neither HCF nor F/W can handle the value.
2188* - length field of the LTV-record at entry is less than 1 or exceeds MAX_LTV_SIZE. 2187 * - length field of the LTV-record at entry is less than 1 or exceeds MAX_LTV_SIZE.
2189* - registering a MailBox with size less than 60 or a non-aligned buffer address is used. 2188 * - registering a MailBox with size less than 60 or a non-aligned buffer address is used.
2190* - reentrancy, may be caused by calling hcf_functions without adequate protection against 2189 * - reentrancy, may be caused by calling hcf_functions without adequate protection against
2191* NIC interrupts or multi-threading. 2190 * NIC interrupts or multi-threading.
2192* 2191 *
2193*.DIAGRAM 2192 *.DIAGRAM
2194* 2193 *
2195*.NOTICE 2194 *.NOTICE
2196* Remarks: In case of Hermes Configuration LTVs, the codes for the type are "cleverly" chosen to be 2195 * Remarks: In case of Hermes Configuration LTVs, the codes for the type are "cleverly" chosen to be
2197* identical to the RID. Hermes Configuration information is copied from the provided data structure into the 2196 * identical to the RID. Hermes Configuration information is copied from the provided data structure into the
2198* Card. 2197 * Card.
2199* In case of HCF Configuration LTVs, the type values are chosen in a range which does not overlap the 2198 * In case of HCF Configuration LTVs, the type values are chosen in a range which does not overlap the
2200* RID-range. 2199 * RID-range.
2201* 2200 *
2202*20: 2201 *20:
2203* 2202 *
2204*.ENDDOC END DOCUMENTATION 2203 *.ENDDOC END DOCUMENTATION
2205* 2204 *
2206************************************************************************************************************/ 2205 ************************************************************************************************************/
2207 2206
2208int 2207int
2209hcf_put_info( IFBP ifbp, LTVP ltvp ) 2208hcf_put_info( IFBP ifbp, LTVP ltvp )
2210{ 2209{
2211int rc = HCF_SUCCESS; 2210 int rc = HCF_SUCCESS;
2212 2211
2213 HCFLOGENTRY( HCF_TRACE_PUT_INFO, ltvp->typ ); 2212 HCFLOGENTRY( HCF_TRACE_PUT_INFO, ltvp->typ );
2214 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic ); 2213 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic );
@@ -2216,115 +2215,116 @@ int rc = HCF_SUCCESS;
2216 HCFASSERT( ltvp, 0 ); 2215 HCFASSERT( ltvp, 0 );
2217 HCFASSERT( 1 < ltvp->len && ltvp->len <= HCF_MAX_LTV + 1, ltvp->len ); 2216 HCFASSERT( 1 < ltvp->len && ltvp->len <= HCF_MAX_LTV + 1, ltvp->len );
2218 2217
2219 //all codes between 0xFA00 and 0xFCFF are passed to Hermes 2218 //all codes between 0xFA00 and 0xFCFF are passed to Hermes
2220#if (HCF_TYPE) & HCF_TYPE_WPA 2219#if (HCF_TYPE) & HCF_TYPE_WPA
2221 { hcf_16 i; 2220 {
2222 hcf_32 FAR * key_p; 2221 hcf_16 i;
2223 2222 hcf_32 FAR * key_p;
2224 if ( ltvp->typ == CFG_ADD_TKIP_DEFAULT_KEY || ltvp->typ == CFG_ADD_TKIP_MAPPED_KEY ) { 2223
2225 key_p = (hcf_32*)((CFG_ADD_TKIP_MAPPED_KEY_STRCT FAR *)ltvp)->tx_mic_key; 2224 if ( ltvp->typ == CFG_ADD_TKIP_DEFAULT_KEY || ltvp->typ == CFG_ADD_TKIP_MAPPED_KEY ) {
2226 i = TX_KEY; //i.e. TxKeyIndicator == 1, KeyID == 0 2225 key_p = (hcf_32*)((CFG_ADD_TKIP_MAPPED_KEY_STRCT FAR *)ltvp)->tx_mic_key;
2227 if ( ltvp->typ == CFG_ADD_TKIP_DEFAULT_KEY ) { 2226 i = TX_KEY; //i.e. TxKeyIndicator == 1, KeyID == 0
2228 key_p = (hcf_32*)((CFG_ADD_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp)->tx_mic_key; 2227 if ( ltvp->typ == CFG_ADD_TKIP_DEFAULT_KEY ) {
2229 i = CNV_LITTLE_TO_SHORT(((CFG_ADD_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp)->tkip_key_id_info); 2228 key_p = (hcf_32*)((CFG_ADD_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp)->tx_mic_key;
2230 } 2229 i = CNV_LITTLE_TO_SHORT(((CFG_ADD_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp)->tkip_key_id_info);
2231 if ( i & TX_KEY ) { /* TxKeyIndicator == 1 2230 }
2232 (either really set by MSF in case of DEFAULT or faked by HCF in case of MAPPED ) */ 2231 if ( i & TX_KEY ) { /* TxKeyIndicator == 1
2233 ifbp->IFB_MICTxCntl = (hcf_16)( HFS_TX_CNTL_MIC | (i & KEY_ID )<<8 ); 2232 (either really set by MSF in case of DEFAULT or faked by HCF in case of MAPPED ) */
2234 ifbp->IFB_MICTxKey[0] = CNV_LONGP_TO_LITTLE( key_p ); 2233 ifbp->IFB_MICTxCntl = (hcf_16)( HFS_TX_CNTL_MIC | (i & KEY_ID )<<8 );
2235 ifbp->IFB_MICTxKey[1] = CNV_LONGP_TO_LITTLE( (key_p+1) ); 2234 ifbp->IFB_MICTxKey[0] = CNV_LONGP_TO_LITTLE( key_p );
2235 ifbp->IFB_MICTxKey[1] = CNV_LONGP_TO_LITTLE( (key_p+1) );
2236 }
2237 i = ( i & KEY_ID ) * 2;
2238 ifbp->IFB_MICRxKey[i] = CNV_LONGP_TO_LITTLE( (key_p+2) );
2239 ifbp->IFB_MICRxKey[i+1] = CNV_LONGP_TO_LITTLE( (key_p+3) );
2236 } 2240 }
2237 i = ( i & KEY_ID ) * 2;
2238 ifbp->IFB_MICRxKey[i] = CNV_LONGP_TO_LITTLE( (key_p+2) );
2239 ifbp->IFB_MICRxKey[i+1] = CNV_LONGP_TO_LITTLE( (key_p+3) );
2240 }
2241#define P ((CFG_REMOVE_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp) 2241#define P ((CFG_REMOVE_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp)
2242 if ( ( ltvp->typ == CFG_REMOVE_TKIP_MAPPED_KEY ) || 2242 if ( ( ltvp->typ == CFG_REMOVE_TKIP_MAPPED_KEY ) ||
2243 ( ltvp->typ == CFG_REMOVE_TKIP_DEFAULT_KEY && 2243 ( ltvp->typ == CFG_REMOVE_TKIP_DEFAULT_KEY &&
2244 ( (ifbp->IFB_MICTxCntl >> 8) & KEY_ID ) == CNV_SHORT_TO_LITTLE(P->tkip_key_id ) 2244 ( (ifbp->IFB_MICTxCntl >> 8) & KEY_ID ) == CNV_SHORT_TO_LITTLE(P->tkip_key_id )
2245 ) 2245 )
2246 ) { ifbp->IFB_MICTxCntl = 0; } //disable MIC-engine 2246 ) { ifbp->IFB_MICTxCntl = 0; } //disable MIC-engine
2247#undef P 2247#undef P
2248 } 2248 }
2249#endif // HCF_TYPE_WPA 2249#endif // HCF_TYPE_WPA
2250 2250
2251 if ( ltvp->typ == CFG_PROG ) { 2251 if ( ltvp->typ == CFG_PROG ) {
2252 rc = download( ifbp, (CFG_PROG_STRCT FAR *)ltvp ); 2252 rc = download( ifbp, (CFG_PROG_STRCT FAR *)ltvp );
2253 } else switch (ltvp->typ) { 2253 } else switch (ltvp->typ) {
2254#if (HCF_ASSERT) & HCF_ASSERT_RT_MSF_RTN 2254#if (HCF_ASSERT) & HCF_ASSERT_RT_MSF_RTN
2255 case CFG_REG_ASSERT_RTNP: //Register MSF Routines 2255 case CFG_REG_ASSERT_RTNP: //Register MSF Routines
2256#define P ((CFG_REG_ASSERT_RTNP_STRCT FAR *)ltvp) 2256#define P ((CFG_REG_ASSERT_RTNP_STRCT FAR *)ltvp)
2257 ifbp->IFB_AssertRtn = P->rtnp; 2257 ifbp->IFB_AssertRtn = P->rtnp;
2258// ifbp->IFB_AssertLvl = P->lvl; //TODO not yet supported so default is set in hcf_connect 2258// ifbp->IFB_AssertLvl = P->lvl; //TODO not yet supported so default is set in hcf_connect
2259 HCFASSERT( DO_ASSERT, MERGE_2( HCF_ASSERT, 0xCAF1 ) ); //just to proof that the complete assert machinery is working 2259 HCFASSERT( DO_ASSERT, MERGE_2( HCF_ASSERT, 0xCAF1 ) ); //just to proof that the complete assert machinery is working
2260#undef P 2260#undef P
2261 break; 2261 break;
2262#endif // HCF_ASSERT_RT_MSF_RTN 2262#endif // HCF_ASSERT_RT_MSF_RTN
2263#if (HCF_EXT) & HCF_EXT_INFO_LOG 2263#if (HCF_EXT) & HCF_EXT_INFO_LOG
2264 case CFG_REG_INFO_LOG: //Register Log filter 2264 case CFG_REG_INFO_LOG: //Register Log filter
2265 ifbp->IFB_RIDLogp = ((CFG_RID_LOG_STRCT FAR*)ltvp)->recordp; 2265 ifbp->IFB_RIDLogp = ((CFG_RID_LOG_STRCT FAR*)ltvp)->recordp;
2266 break; 2266 break;
2267#endif // HCF_EXT_INFO_LOG 2267#endif // HCF_EXT_INFO_LOG
2268 case CFG_CNTL_OPT: //overrule option 2268 case CFG_CNTL_OPT: //overrule option
2269 HCFASSERT( ( ltvp->val[0] & ~(USE_DMA | USE_16BIT) ) == 0, ltvp->val[0] ); 2269 HCFASSERT( ( ltvp->val[0] & ~(USE_DMA | USE_16BIT) ) == 0, ltvp->val[0] );
2270 if ( ( ltvp->val[0] & USE_DMA ) == 0 ) ifbp->IFB_CntlOpt &= ~USE_DMA; 2270 if ( ( ltvp->val[0] & USE_DMA ) == 0 ) ifbp->IFB_CntlOpt &= ~USE_DMA;
2271 ifbp->IFB_CntlOpt |= ltvp->val[0] & USE_16BIT; 2271 ifbp->IFB_CntlOpt |= ltvp->val[0] & USE_16BIT;
2272 break; 2272 break;
2273#if (HCF_EXT) & HCF_EXT_MB 2273#if (HCF_EXT) & HCF_EXT_MB
2274 case CFG_REG_MB: //Register MailBox 2274 case CFG_REG_MB: //Register MailBox
2275#define P ((CFG_REG_MB_STRCT FAR *)ltvp) 2275#define P ((CFG_REG_MB_STRCT FAR *)ltvp)
2276 HCFASSERT( ( (hcf_32)P->mb_addr & 0x0001 ) == 0, (hcf_32)P->mb_addr ); 2276 HCFASSERT( ( (hcf_32)P->mb_addr & 0x0001 ) == 0, (hcf_32)P->mb_addr );
2277 HCFASSERT( (P)->mb_size >= 60, (P)->mb_size ); 2277 HCFASSERT( (P)->mb_size >= 60, (P)->mb_size );
2278 ifbp->IFB_MBp = P->mb_addr; 2278 ifbp->IFB_MBp = P->mb_addr;
2279 /* if no MB present, size must be 0 for ;?the old;? put_info_mb to work correctly */ 2279 /* if no MB present, size must be 0 for ;?the old;? put_info_mb to work correctly */
2280 ifbp->IFB_MBSize = ifbp->IFB_MBp == NULL ? 0 : P->mb_size; 2280 ifbp->IFB_MBSize = ifbp->IFB_MBp == NULL ? 0 : P->mb_size;
2281 ifbp->IFB_MBWp = ifbp->IFB_MBRp = 0; 2281 ifbp->IFB_MBWp = ifbp->IFB_MBRp = 0;
2282 ifbp->IFB_MBp[0] = 0; //flag the MailBox as empty 2282 ifbp->IFB_MBp[0] = 0; //flag the MailBox as empty
2283 ifbp->IFB_MBInfoLen = 0; 2283 ifbp->IFB_MBInfoLen = 0;
2284 HCFASSERT( ifbp->IFB_MBSize >= 60 || ifbp->IFB_MBp == NULL, ifbp->IFB_MBSize ); 2284 HCFASSERT( ifbp->IFB_MBSize >= 60 || ifbp->IFB_MBp == NULL, ifbp->IFB_MBSize );
2285#undef P 2285#undef P
2286 break; 2286 break;
2287 case CFG_MB_INFO: //store MailBoxInfoBlock 2287 case CFG_MB_INFO: //store MailBoxInfoBlock
2288 rc = put_info_mb( ifbp, (CFG_MB_INFO_STRCT FAR *)ltvp ); 2288 rc = put_info_mb( ifbp, (CFG_MB_INFO_STRCT FAR *)ltvp );
2289 break; 2289 break;
2290#endif // HCF_EXT_MB 2290#endif // HCF_EXT_MB
2291 2291
2292#if (HCF_EXT) & HCF_EXT_NIC_ACCESS 2292#if (HCF_EXT) & HCF_EXT_NIC_ACCESS
2293 case CFG_CMD_NIC: 2293 case CFG_CMD_NIC:
2294#define P ((CFG_CMD_NIC_STRCT FAR *)ltvp) 2294#define P ((CFG_CMD_NIC_STRCT FAR *)ltvp)
2295 OPW( HREG_PARAM_2, P->parm2 ); 2295 OPW( HREG_PARAM_2, P->parm2 );
2296 OPW( HREG_PARAM_1, P->parm1 ); 2296 OPW( HREG_PARAM_1, P->parm1 );
2297 rc = cmd_exe( ifbp, P->cmd, P->parm0 ); 2297 rc = cmd_exe( ifbp, P->cmd, P->parm0 );
2298 P->hcf_stat = (hcf_16)rc; 2298 P->hcf_stat = (hcf_16)rc;
2299 P->stat = IPW( HREG_STAT ); 2299 P->stat = IPW( HREG_STAT );
2300 P->resp0 = IPW( HREG_RESP_0 ); 2300 P->resp0 = IPW( HREG_RESP_0 );
2301 P->resp1 = IPW( HREG_RESP_1 ); 2301 P->resp1 = IPW( HREG_RESP_1 );
2302 P->resp2 = IPW( HREG_RESP_2 ); 2302 P->resp2 = IPW( HREG_RESP_2 );
2303 P->ifb_err_cmd = ifbp->IFB_ErrCmd; 2303 P->ifb_err_cmd = ifbp->IFB_ErrCmd;
2304 P->ifb_err_qualifier = ifbp->IFB_ErrQualifier; 2304 P->ifb_err_qualifier = ifbp->IFB_ErrQualifier;
2305#undef P 2305#undef P
2306 break; 2306 break;
2307 case CFG_CMD_HCF: 2307 case CFG_CMD_HCF:
2308#define P ((CFG_CMD_HCF_STRCT FAR *)ltvp) 2308#define P ((CFG_CMD_HCF_STRCT FAR *)ltvp)
2309 HCFASSERT( P->cmd == CFG_CMD_HCF_REG_ACCESS, P->cmd ); //only Hermes register access supported 2309 HCFASSERT( P->cmd == CFG_CMD_HCF_REG_ACCESS, P->cmd ); //only Hermes register access supported
2310 if ( P->cmd == CFG_CMD_HCF_REG_ACCESS ) { 2310 if ( P->cmd == CFG_CMD_HCF_REG_ACCESS ) {
2311 HCFASSERT( P->mode < ifbp->IFB_IOBase, P->mode ); //Check Register space 2311 HCFASSERT( P->mode < ifbp->IFB_IOBase, P->mode ); //Check Register space
2312 OPW( P->mode, P->add_info); 2312 OPW( P->mode, P->add_info);
2313 } 2313 }
2314#undef P 2314#undef P
2315 break; 2315 break;
2316#endif // HCF_EXT_NIC_ACCESS 2316#endif // HCF_EXT_NIC_ACCESS
2317 2317
2318#if (HCF_ASSERT) & HCF_ASSERT_PRINTF 2318#if (HCF_ASSERT) & HCF_ASSERT_PRINTF
2319 case CFG_FW_PRINTF_BUFFER_LOCATION: 2319 case CFG_FW_PRINTF_BUFFER_LOCATION:
2320 ifbp->IFB_FwPfBuff = *(CFG_FW_PRINTF_BUFFER_LOCATION_STRCT*)ltvp; 2320 ifbp->IFB_FwPfBuff = *(CFG_FW_PRINTF_BUFFER_LOCATION_STRCT*)ltvp;
2321 break; 2321 break;
2322#endif // HCF_ASSERT_PRINTF 2322#endif // HCF_ASSERT_PRINTF
2323 2323
2324 default: //pass everything unknown above the "FID" range to the Hermes or Dongle 2324 default: //pass everything unknown above the "FID" range to the Hermes or Dongle
2325 rc = put_info( ifbp, ltvp ); 2325 rc = put_info( ifbp, ltvp );
2326 } 2326 }
2327 //DO NOT !!! HCFASSERT( rc == HCF_SUCCESS, rc ) /* 20 */ 2327 //DO NOT !!! HCFASSERT( rc == HCF_SUCCESS, rc ) /* 20 */
2328 HCFLOGEXIT( HCF_TRACE_PUT_INFO ); 2328 HCFLOGEXIT( HCF_TRACE_PUT_INFO );
2329 return rc; 2329 return rc;
2330} // hcf_put_info 2330} // hcf_put_info
@@ -2332,121 +2332,121 @@ int rc = HCF_SUCCESS;
2332 2332
2333#if (HCF_DL_ONLY) == 0 2333#if (HCF_DL_ONLY) == 0
2334/************************************************************************************************************ 2334/************************************************************************************************************
2335* 2335 *
2336*.MODULE int hcf_rcv_msg( IFBP ifbp, DESC_STRCT *descp, unsigned int offset ) 2336 *.MODULE int hcf_rcv_msg( IFBP ifbp, DESC_STRCT *descp, unsigned int offset )
2337*.PURPOSE All: decapsulate a message. 2337 *.PURPOSE All: decapsulate a message.
2338* pre-HermesII.5: verify MIC. 2338 * pre-HermesII.5: verify MIC.
2339* non-USB, non-DMA mode: Transfer a message from the NIC to the Host and acknowledge reception. 2339 * non-USB, non-DMA mode: Transfer a message from the NIC to the Host and acknowledge reception.
2340* USB: Transform a message from proprietary USB format to 802.3 format 2340 * USB: Transform a message from proprietary USB format to 802.3 format
2341* 2341 *
2342*.ARGUMENTS 2342 *.ARGUMENTS
2343* ifbp address of the Interface Block 2343 * ifbp address of the Interface Block
2344* descp Pointer to the Descriptor List location. 2344 * descp Pointer to the Descriptor List location.
2345* offset USB: not used 2345 * offset USB: not used
2346* non-USB: specifies the beginning of the data to be obtained (0 corresponds with DestAddr field 2346 * non-USB: specifies the beginning of the data to be obtained (0 corresponds with DestAddr field
2347* of frame). 2347 * of frame).
2348* 2348 *
2349*.RETURNS 2349 *.RETURNS
2350* HCF_SUCCESS No SSN error ( or HCF_ERR_MIC already reported by hcf_service_nic) 2350 * HCF_SUCCESS No SSN error ( or HCF_ERR_MIC already reported by hcf_service_nic)
2351* HCF_ERR_MIC message contains an erroneous MIC ( HCF_SUCCESS is reported if HCF_ERR_MIC is already 2351 * HCF_ERR_MIC message contains an erroneous MIC ( HCF_SUCCESS is reported if HCF_ERR_MIC is already
2352* reported by hcf_service_nic) 2352 * reported by hcf_service_nic)
2353* HCF_ERR_NO_NIC NIC removed during data retrieval 2353 * HCF_ERR_NO_NIC NIC removed during data retrieval
2354* HCF_ERR_DEFUNCT... 2354 * HCF_ERR_DEFUNCT...
2355* 2355 *
2356*.DESCRIPTION 2356 *.DESCRIPTION
2357* The Receive Message Function can be executed by the MSF to obtain the Data Info fields of the message that 2357 * The Receive Message Function can be executed by the MSF to obtain the Data Info fields of the message that
2358* is reported to be available by the Service NIC Function. 2358 * is reported to be available by the Service NIC Function.
2359* 2359 *
2360* The Receive Message Function copies the message data available in the Card memory into a buffer structure 2360 * The Receive Message Function copies the message data available in the Card memory into a buffer structure
2361* provided by the MSF. 2361 * provided by the MSF.
2362* Only data of the message indicated by the Service NIC Function can be obtained. 2362 * Only data of the message indicated by the Service NIC Function can be obtained.
2363* Execution of the Service NIC function may result in the availability of a new message, but it definitely 2363 * Execution of the Service NIC function may result in the availability of a new message, but it definitely
2364* makes the message reported by the preceding Service NIC function, unavailable. 2364 * makes the message reported by the preceding Service NIC function, unavailable.
2365* 2365 *
2366* in non-USB/non-DMA mode, hcf_rcv_msg starts the copy process at the (non-negative) offset requested by the 2366 * in non-USB/non-DMA mode, hcf_rcv_msg starts the copy process at the (non-negative) offset requested by the
2367* parameter offset, relative to HFS_ADDR_DEST, e.g offset 0 starts copying from the Destination Address, the 2367 * parameter offset, relative to HFS_ADDR_DEST, e.g offset 0 starts copying from the Destination Address, the
2368* very begin of the 802.3 frame message. Offset must either lay within the part of the 802.3 frame as stored 2368 * very begin of the 802.3 frame message. Offset must either lay within the part of the 802.3 frame as stored
2369* by hcf_service_nic in the lookahead buffer or be just behind it, i.e. the first byte not yet read. 2369 * by hcf_service_nic in the lookahead buffer or be just behind it, i.e. the first byte not yet read.
2370* When offset is within lookahead, data is copied from lookahead. 2370 * When offset is within lookahead, data is copied from lookahead.
2371* When offset is beyond lookahead, data is read directly from RxFS in NIC with disregard of the actual value 2371 * When offset is beyond lookahead, data is read directly from RxFS in NIC with disregard of the actual value
2372* of offset 2372 * of offset
2373* 2373 *
2374*.NOTICE: 2374 *.NOTICE:
2375* o at entry: look ahead buffer as passed with hcf_service_nic is still accessible and unchanged 2375 * o at entry: look ahead buffer as passed with hcf_service_nic is still accessible and unchanged
2376* o at exit: Receive Frame in NIC memory is released 2376 * o at exit: Receive Frame in NIC memory is released
2377* 2377 *
2378* Description: 2378 * Description:
2379* Starting at the byte indicated by the Offset value, the bytes are copied from the Data Info 2379 * Starting at the byte indicated by the Offset value, the bytes are copied from the Data Info
2380* Part of the current Receive Frame Structure to the Host memory data buffer structure 2380 * Part of the current Receive Frame Structure to the Host memory data buffer structure
2381* identified by descp. 2381 * identified by descp.
2382* The maximum value for Offset is the number of characters of the 802.3 frame read into the 2382 * The maximum value for Offset is the number of characters of the 802.3 frame read into the
2383* look ahead buffer by hcf_service_nic (i.e. the look ahead buffer size minus 2383 * look ahead buffer by hcf_service_nic (i.e. the look ahead buffer size minus
2384* Control and 802.11 fields) 2384 * Control and 802.11 fields)
2385* If Offset is less than the maximum value, copying starts from the look ahead buffer till the 2385 * If Offset is less than the maximum value, copying starts from the look ahead buffer till the
2386* end of that buffer is reached 2386 * end of that buffer is reached
2387* Then (or if the maximum value is specified for Offset), the 2387 * Then (or if the maximum value is specified for Offset), the
2388* message is directly copied from NIC memory to Host memory. 2388 * message is directly copied from NIC memory to Host memory.
2389* If an invalid (i.e. too large) offset is specified, an assert catches but the buffer contents are 2389 * If an invalid (i.e. too large) offset is specified, an assert catches but the buffer contents are
2390* undefined. 2390 * undefined.
2391* Copying stops if either: 2391 * Copying stops if either:
2392* o the end of the 802.3 frame is reached 2392 * o the end of the 802.3 frame is reached
2393* o the Descriptor with a NULL pointer in the next_desc_addr field is reached 2393 * o the Descriptor with a NULL pointer in the next_desc_addr field is reached
2394* 2394 *
2395* When the copying stops, the receiver is ack'ed, thus freeing the NIC memory where the frame is stored 2395 * When the copying stops, the receiver is ack'ed, thus freeing the NIC memory where the frame is stored
2396* As a consequence, hcf_rcv_msg can only be called once for any particular Rx frame. 2396 * As a consequence, hcf_rcv_msg can only be called once for any particular Rx frame.
2397* 2397 *
2398* For the time being (PCI Bus mastering not yet supported), only the following fields of each 2398 * For the time being (PCI Bus mastering not yet supported), only the following fields of each
2399* of the descriptors in the descriptor list must be set by the MSF: 2399 * of the descriptors in the descriptor list must be set by the MSF:
2400* o buf_cntl.buf_dim[1] 2400 * o buf_cntl.buf_dim[1]
2401* o *next_desc_addr 2401 * o *next_desc_addr
2402* o *buf_addr 2402 * o *buf_addr
2403* At return from hcf_rcv_msg, the field buf_cntl.buf_dim[0] of the used Descriptors reflects 2403 * At return from hcf_rcv_msg, the field buf_cntl.buf_dim[0] of the used Descriptors reflects
2404* the number of bytes in the buffer corresponding with the Descriptor. 2404 * the number of bytes in the buffer corresponding with the Descriptor.
2405* On the last used Descriptor, buf_cntl.buf_dim[0] is less or equal to buf_cntl.buf_dim[1]. 2405 * On the last used Descriptor, buf_cntl.buf_dim[0] is less or equal to buf_cntl.buf_dim[1].
2406* On all preceding Descriptors buf_cntl.buf_dim[0] is equal to buf_cntl.buf_dim[1]. 2406 * On all preceding Descriptors buf_cntl.buf_dim[0] is equal to buf_cntl.buf_dim[1].
2407* On all succeeding (unused) Descriptors, buf_cntl.buf_dim[0] is zero. 2407 * On all succeeding (unused) Descriptors, buf_cntl.buf_dim[0] is zero.
2408* Note: this I/F is based on the assumptions how the I/F needed for PCI Bus mastering will 2408 * Note: this I/F is based on the assumptions how the I/F needed for PCI Bus mastering will
2409* be, so it may change. 2409 * be, so it may change.
2410* 2410 *
2411* The most likely handling of HCF_ERR_NO_NIC by the MSF is to drop the already copied 2411 * The most likely handling of HCF_ERR_NO_NIC by the MSF is to drop the already copied
2412* data as elegantly as possible under the constraints and requirements posed by the (N)OS. 2412 * data as elegantly as possible under the constraints and requirements posed by the (N)OS.
2413* If no received Frame Structure is pending, "Success" rather than "Read error" is returned. 2413 * If no received Frame Structure is pending, "Success" rather than "Read error" is returned.
2414* This error constitutes a logic flaw in the MSF 2414 * This error constitutes a logic flaw in the MSF
2415* The HCF can only catch a minority of this 2415 * The HCF can only catch a minority of this
2416* type of errors 2416 * type of errors
2417* Based on consistency ideas, the HCF catches none of these errors. 2417 * Based on consistency ideas, the HCF catches none of these errors.
2418* 2418 *
2419* Assert fails if 2419 * Assert fails if
2420* - ifbp has a recognizable out-of-range value 2420 * - ifbp has a recognizable out-of-range value
2421* - there is no unacknowledged Rx-message available 2421 * - there is no unacknowledged Rx-message available
2422* - offset is out of range (outside look ahead buffer) 2422 * - offset is out of range (outside look ahead buffer)
2423* - descp is a NULL pointer 2423 * - descp is a NULL pointer
2424* - any of the descriptors is not double word aligned 2424 * - any of the descriptors is not double word aligned
2425* - reentrancy, may be caused by calling hcf_functions without adequate protection 2425 * - reentrancy, may be caused by calling hcf_functions without adequate protection
2426* against NIC interrupts or multi-threading. 2426 * against NIC interrupts or multi-threading.
2427* - Interrupts are enabled. 2427 * - Interrupts are enabled.
2428* 2428 *
2429*.DIAGRAM 2429 *.DIAGRAM
2430* 2430 *
2431*.NOTICE 2431 *.NOTICE
2432* - by using unsigned int as type for offset, no need to worry about negative offsets 2432 * - by using unsigned int as type for offset, no need to worry about negative offsets
2433* - Asserting on being enabled/present is superfluous, since a non-zero IFB_lal implies that hcf_service_nic 2433 * - Asserting on being enabled/present is superfluous, since a non-zero IFB_lal implies that hcf_service_nic
2434* was called and detected a Rx-message. A zero IFB_lal will set the BUF_CNT field of at least the first 2434 * was called and detected a Rx-message. A zero IFB_lal will set the BUF_CNT field of at least the first
2435* descriptor to zero. 2435 * descriptor to zero.
2436* 2436 *
2437*.ENDDOC END DOCUMENTATION 2437 *.ENDDOC END DOCUMENTATION
2438* 2438 *
2439************************************************************************************************************/ 2439 ************************************************************************************************************/
2440int 2440int
2441hcf_rcv_msg( IFBP ifbp, DESC_STRCT *descp, unsigned int offset ) 2441hcf_rcv_msg( IFBP ifbp, DESC_STRCT *descp, unsigned int offset )
2442{ 2442{
2443int rc = HCF_SUCCESS; 2443 int rc = HCF_SUCCESS;
2444wci_bufp cp; //char oriented working pointer 2444 wci_bufp cp; //char oriented working pointer
2445hcf_16 i; 2445 hcf_16 i;
2446int tot_len = ifbp->IFB_RxLen - offset; //total length 2446 int tot_len = ifbp->IFB_RxLen - offset; //total length
2447wci_bufp lap = ifbp->IFB_lap + offset; //start address in LookAhead Buffer 2447 wci_bufp lap = ifbp->IFB_lap + offset; //start address in LookAhead Buffer
2448hcf_16 lal = ifbp->IFB_lal - offset; //available data within LookAhead Buffer 2448 hcf_16 lal = ifbp->IFB_lal - offset; //available data within LookAhead Buffer
2449hcf_16 j; 2449 hcf_16 j;
2450 2450
2451 HCFLOGENTRY( HCF_TRACE_RCV_MSG, offset ); 2451 HCFLOGENTRY( HCF_TRACE_RCV_MSG, offset );
2452 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic ); 2452 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic );
@@ -2458,34 +2458,34 @@ hcf_16 j;
2458 HCFASSERT( (ifbp->IFB_CntlOpt & USE_DMA) == 0, 0xDADA ); 2458 HCFASSERT( (ifbp->IFB_CntlOpt & USE_DMA) == 0, 0xDADA );
2459 2459
2460 if ( tot_len < 0 ) { 2460 if ( tot_len < 0 ) {
2461 lal = 0; tot_len = 0; //suppress all copying activity in the do--while loop 2461 lal = 0; tot_len = 0; //suppress all copying activity in the do--while loop
2462 } 2462 }
2463 do { //loop over all available fragments 2463 do { //loop over all available fragments
2464 // obnoxious hcf.c(1480) : warning C4769: conversion of near pointer to long integer 2464 // obnoxious hcf.c(1480) : warning C4769: conversion of near pointer to long integer
2465 HCFASSERT( ((hcf_32)descp & 3 ) == 0, (hcf_32)descp ); 2465 HCFASSERT( ((hcf_32)descp & 3 ) == 0, (hcf_32)descp );
2466 cp = descp->buf_addr; 2466 cp = descp->buf_addr;
2467 j = min( (hcf_16)tot_len, descp->BUF_SIZE ); //minimum of "what's` available" and fragment size 2467 j = min( (hcf_16)tot_len, descp->BUF_SIZE ); //minimum of "what's` available" and fragment size
2468 descp->BUF_CNT = j; 2468 descp->BUF_CNT = j;
2469 tot_len -= j; //adjust length still to go 2469 tot_len -= j; //adjust length still to go
2470 if ( lal ) { //if lookahead Buffer not yet completely copied 2470 if ( lal ) { //if lookahead Buffer not yet completely copied
2471 i = min( lal, j ); //minimum of "what's available" in LookAhead and fragment size 2471 i = min( lal, j ); //minimum of "what's available" in LookAhead and fragment size
2472 lal -= i; //adjust length still available in LookAhead 2472 lal -= i; //adjust length still available in LookAhead
2473 j -= i; //adjust length still available in current fragment 2473 j -= i; //adjust length still available in current fragment
2474 /*;? while loop could be improved by moving words but that is complicated on platforms with 2474 /*;? while loop could be improved by moving words but that is complicated on platforms with
2475 * alignment requirements*/ 2475 * alignment requirements*/
2476 while ( i-- ) *cp++ = *lap++; 2476 while ( i-- ) *cp++ = *lap++;
2477 } 2477 }
2478 if ( j ) { //if LookAhead Buffer exhausted but still space in fragment, copy directly from NIC RAM 2478 if ( j ) { //if LookAhead Buffer exhausted but still space in fragment, copy directly from NIC RAM
2479 get_frag( ifbp, cp, j BE_PAR(0) ); 2479 get_frag( ifbp, cp, j BE_PAR(0) );
2480 CALC_RX_MIC( cp, j ); 2480 CALC_RX_MIC( cp, j );
2481 } 2481 }
2482 } while ( ( descp = descp->next_desc_addr ) != NULL ); 2482 } while ( ( descp = descp->next_desc_addr ) != NULL );
2483#if (HCF_TYPE) & HCF_TYPE_WPA 2483#if (HCF_TYPE) & HCF_TYPE_WPA
2484 if ( ifbp->IFB_RxFID ) { 2484 if ( ifbp->IFB_RxFID ) {
2485 rc = check_mic( ifbp ); //prevents MIC error report if hcf_service_nic already consumed all 2485 rc = check_mic( ifbp ); //prevents MIC error report if hcf_service_nic already consumed all
2486 } 2486 }
2487#endif // HCF_TYPE_WPA 2487#endif // HCF_TYPE_WPA
2488 (void)hcf_action( ifbp, HCF_ACT_RX_ACK ); //only 1 shot to get the data, so free the resources in the NIC 2488 (void)hcf_action( ifbp, HCF_ACT_RX_ACK ); //only 1 shot to get the data, so free the resources in the NIC
2489 HCFASSERT( rc == HCF_SUCCESS, rc ); 2489 HCFASSERT( rc == HCF_SUCCESS, rc );
2490 HCFLOGEXIT( HCF_TRACE_RCV_MSG ); 2490 HCFLOGEXIT( HCF_TRACE_RCV_MSG );
2491 return rc; 2491 return rc;
@@ -2495,168 +2495,168 @@ hcf_16 j;
2495 2495
2496#if (HCF_DL_ONLY) == 0 2496#if (HCF_DL_ONLY) == 0
2497/************************************************************************************************************ 2497/************************************************************************************************************
2498* 2498 *
2499*.MODULE int hcf_send_msg( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl ) 2499 *.MODULE int hcf_send_msg( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
2500*.PURPOSE Encapsulate a message and append padding and MIC. 2500 *.PURPOSE Encapsulate a message and append padding and MIC.
2501* non-USB: Transfers the resulting message from Host to NIC and initiates transmission. 2501 * non-USB: Transfers the resulting message from Host to NIC and initiates transmission.
2502* USB: Transfer resulting message into a flat buffer. 2502 * USB: Transfer resulting message into a flat buffer.
2503* 2503 *
2504*.ARGUMENTS 2504 *.ARGUMENTS
2505* ifbp address of the Interface Block 2505 * ifbp address of the Interface Block
2506* descp pointer to the DescriptorList or NULL 2506 * descp pointer to the DescriptorList or NULL
2507* tx_cntl indicates MAC-port and (Hermes) options 2507 * tx_cntl indicates MAC-port and (Hermes) options
2508* HFS_TX_CNTL_SPECTRALINK 2508 * HFS_TX_CNTL_SPECTRALINK
2509* HFS_TX_CNTL_PRIO 2509 * HFS_TX_CNTL_PRIO
2510* HFS_TX_CNTL_TX_OK 2510 * HFS_TX_CNTL_TX_OK
2511* HFS_TX_CNTL_TX_EX 2511 * HFS_TX_CNTL_TX_EX
2512* HFS_TX_CNTL_TX_DELAY 2512 * HFS_TX_CNTL_TX_DELAY
2513* HFS_TX_CNTL_TX_CONT 2513 * HFS_TX_CNTL_TX_CONT
2514* HCF_PORT_0 MAC Port 0 (default) 2514 * HCF_PORT_0 MAC Port 0 (default)
2515* HCF_PORT_1 (AP only) MAC Port 1 2515 * HCF_PORT_1 (AP only) MAC Port 1
2516* HCF_PORT_2 (AP only) MAC Port 2 2516 * HCF_PORT_2 (AP only) MAC Port 2
2517* HCF_PORT_3 (AP only) MAC Port 3 2517 * HCF_PORT_3 (AP only) MAC Port 3
2518* HCF_PORT_4 (AP only) MAC Port 4 2518 * HCF_PORT_4 (AP only) MAC Port 4
2519* HCF_PORT_5 (AP only) MAC Port 5 2519 * HCF_PORT_5 (AP only) MAC Port 5
2520* HCF_PORT_6 (AP only) MAC Port 6 2520 * HCF_PORT_6 (AP only) MAC Port 6
2521* 2521 *
2522*.RETURNS 2522 *.RETURNS
2523* HCF_SUCCESS 2523 * HCF_SUCCESS
2524* HCF_ERR_DEFUNCT_.. 2524 * HCF_ERR_DEFUNCT_..
2525* HCF_ERR_TIME_OUT 2525 * HCF_ERR_TIME_OUT
2526* 2526 *
2527*.DESCRIPTION: 2527 *.DESCRIPTION:
2528* The Send Message Function embodies 2 functions: 2528 * The Send Message Function embodies 2 functions:
2529* o transfers a message (including MAC header) from the provided buffer structure in Host memory to the Transmit 2529 * o transfers a message (including MAC header) from the provided buffer structure in Host memory to the Transmit
2530* Frame Structure (TxFS) in NIC memory. 2530 * Frame Structure (TxFS) in NIC memory.
2531* o Issue a send command to the F/W to actually transmit the contents of the TxFS. 2531 * o Issue a send command to the F/W to actually transmit the contents of the TxFS.
2532* 2532 *
2533* Control is based on the Resource Indicator IFB_RscInd. 2533 * Control is based on the Resource Indicator IFB_RscInd.
2534* The Resource Indicator is maintained by the HCF and should only be interpreted but not changed by the MSF. 2534 * The Resource Indicator is maintained by the HCF and should only be interpreted but not changed by the MSF.
2535* The MSF must check IFB_RscInd to be non-zero before executing the call to the Send Message Function. 2535 * The MSF must check IFB_RscInd to be non-zero before executing the call to the Send Message Function.
2536* When no resources are available, the MSF must handle the queuing of the Transmit frame and check the 2536 * When no resources are available, the MSF must handle the queuing of the Transmit frame and check the
2537* Resource Indicator periodically after calling hcf_service_nic. 2537 * Resource Indicator periodically after calling hcf_service_nic.
2538* 2538 *
2539* The Send Message Functions transfers a message to NIC memory when it is called with a non-NULL descp. 2539 * The Send Message Functions transfers a message to NIC memory when it is called with a non-NULL descp.
2540* Before the Send Message Function is invoked this way, the Resource Indicator (IFB_RscInd) must be checked. 2540 * Before the Send Message Function is invoked this way, the Resource Indicator (IFB_RscInd) must be checked.
2541* If the Resource is not available, Send Message Function execution must be postponed until after processing of 2541 * If the Resource is not available, Send Message Function execution must be postponed until after processing of
2542* a next hcf_service_nic it appears that the Resource has become available. 2542 * a next hcf_service_nic it appears that the Resource has become available.
2543* The message is copied from the buffer structure identified by descp to the NIC. 2543 * The message is copied from the buffer structure identified by descp to the NIC.
2544* Copying stops if a NULL pointer in the next_desc_addr field is reached. 2544 * Copying stops if a NULL pointer in the next_desc_addr field is reached.
2545* Hcf_send_msg does not check for transmit buffer overflow, because the F/W does this protection. 2545 * Hcf_send_msg does not check for transmit buffer overflow, because the F/W does this protection.
2546* In case of a transmit buffer overflow, the surplus which does not fit in the buffer is simply dropped. 2546 * In case of a transmit buffer overflow, the surplus which does not fit in the buffer is simply dropped.
2547* 2547 *
2548* The Send Message Function activates the F/W to actually send the message to the medium when the 2548 * The Send Message Function activates the F/W to actually send the message to the medium when the
2549* HFS_TX_CNTL_TX_DELAY bit of the tx_cntl parameter is not set. 2549 * HFS_TX_CNTL_TX_DELAY bit of the tx_cntl parameter is not set.
2550* If the descp parameter of the current call is non-NULL, the message as represented by descp is send. 2550 * If the descp parameter of the current call is non-NULL, the message as represented by descp is send.
2551* If the descp parameter of the current call is NULL, and if the preceding call of the Send Message Function had 2551 * If the descp parameter of the current call is NULL, and if the preceding call of the Send Message Function had
2552* a non-NULL descp and the preceding call had the HFS_TX_CNTL_TX_DELAY bit of tx_cntl set, then the message as 2552 * a non-NULL descp and the preceding call had the HFS_TX_CNTL_TX_DELAY bit of tx_cntl set, then the message as
2553* represented by the descp of the preceding call is send. 2553 * represented by the descp of the preceding call is send.
2554* 2554 *
2555* Hcf_send_msg supports encapsulation (see HCF_ENCAP) of Ethernet-II frames. 2555 * Hcf_send_msg supports encapsulation (see HCF_ENCAP) of Ethernet-II frames.
2556* An Ethernet-II frame is transferred to the Transmit Frame structure as an 802.3 frame. 2556 * An Ethernet-II frame is transferred to the Transmit Frame structure as an 802.3 frame.
2557* Hcf_send_msg distinguishes between an 802.3 and an Ethernet-II frame by looking at the data length/type field 2557 * Hcf_send_msg distinguishes between an 802.3 and an Ethernet-II frame by looking at the data length/type field
2558* of the frame. If this field contains a value larger than 1514, the frame is considered to be an Ethernet-II 2558 * of the frame. If this field contains a value larger than 1514, the frame is considered to be an Ethernet-II
2559* frame, otherwise it is treated as an 802.3 frame. 2559 * frame, otherwise it is treated as an 802.3 frame.
2560* To ease implementation of the HCF, this type/type field must be located in the first descriptor structure, 2560 * To ease implementation of the HCF, this type/type field must be located in the first descriptor structure,
2561* i.e. the 1st fragment must have a size of at least 14 (to contain DestAddr, SrcAddr and Len/Type field). 2561 * i.e. the 1st fragment must have a size of at least 14 (to contain DestAddr, SrcAddr and Len/Type field).
2562* An Ethernet-II frame is encapsulated by inserting a SNAP header between the addressing information and the 2562 * An Ethernet-II frame is encapsulated by inserting a SNAP header between the addressing information and the
2563* type field. This insertion is transparent for the MSF. 2563 * type field. This insertion is transparent for the MSF.
2564* The HCF contains a fixed table that stores a number of types. If the value specified by the type/type field 2564 * The HCF contains a fixed table that stores a number of types. If the value specified by the type/type field
2565* occurs in this table, Bridge Tunnel Encapsulation is used, otherwise RFC1042 encapsulation is used. 2565 * occurs in this table, Bridge Tunnel Encapsulation is used, otherwise RFC1042 encapsulation is used.
2566* Bridge Tunnel uses AA AA 03 00 00 F8 as SNAP header, 2566 * Bridge Tunnel uses AA AA 03 00 00 F8 as SNAP header,
2567* RFC1042 uses AA AA 03 00 00 00 as SNAP header. 2567 * RFC1042 uses AA AA 03 00 00 00 as SNAP header.
2568* The table currently contains: 2568 * The table currently contains:
2569* 0 0x80F3 AppleTalk Address Resolution Protocol (AARP) 2569 * 0 0x80F3 AppleTalk Address Resolution Protocol (AARP)
2570* 0 0x8137 IPX 2570 * 0 0x8137 IPX
2571* 2571 *
2572* The algorithm to distinguish between 802.3 and Ethernet-II frames limits the maximum length for frames of 2572 * The algorithm to distinguish between 802.3 and Ethernet-II frames limits the maximum length for frames of
2573* 802.3 frames to 1514 bytes. 2573 * 802.3 frames to 1514 bytes.
2574* Encapsulation can be suppressed by means of the system constant HCF_ENCAP, e.g. to support proprietary 2574 * Encapsulation can be suppressed by means of the system constant HCF_ENCAP, e.g. to support proprietary
2575* protocols with 802.3 like frames with a size larger than 1514 bytes. 2575 * protocols with 802.3 like frames with a size larger than 1514 bytes.
2576* 2576 *
2577* In case the HCF encapsulates the frame, the number of bytes that is actually transmitted is determined by the 2577 * In case the HCF encapsulates the frame, the number of bytes that is actually transmitted is determined by the
2578* cumulative value of the buf_cntl.buf_dim[0] fields. 2578 * cumulative value of the buf_cntl.buf_dim[0] fields.
2579* In case the HCF does not encapsulate the frame, the number of bytes that is actually transmitted is not 2579 * In case the HCF does not encapsulate the frame, the number of bytes that is actually transmitted is not
2580* determined by the cumulative value of the buf_cntl.buf_dim[DESC_CNTL_CNT] fields of the desc_strct's but by 2580 * determined by the cumulative value of the buf_cntl.buf_dim[DESC_CNTL_CNT] fields of the desc_strct's but by
2581* the Length field of the 802.3 frame. 2581 * the Length field of the 802.3 frame.
2582* If there is a conflict between the cumulative value of the buf_cntl.buf_dim[0] fields and the 2582 * If there is a conflict between the cumulative value of the buf_cntl.buf_dim[0] fields and the
2583* 802.3 Length field the 802.3 Length field determines the number of bytes actually transmitted by the NIC while 2583 * 802.3 Length field the 802.3 Length field determines the number of bytes actually transmitted by the NIC while
2584* the cumulative value of the buf_cntl.buf_dim[0] fields determines the position of the MIC, hence a mismatch 2584 * the cumulative value of the buf_cntl.buf_dim[0] fields determines the position of the MIC, hence a mismatch
2585* will result in MIC errors on the Receiving side. 2585 * will result in MIC errors on the Receiving side.
2586* Currently this problem is flagged on the Transmit side by an Assert. 2586 * Currently this problem is flagged on the Transmit side by an Assert.
2587* The following fields of each of the descriptors in the descriptor list must be set by the MSF: 2587 * The following fields of each of the descriptors in the descriptor list must be set by the MSF:
2588* o buf_cntl.buf_dim[0] 2588 * o buf_cntl.buf_dim[0]
2589* o *next_desc_addr 2589 * o *next_desc_addr
2590* o *buf_addr 2590 * o *buf_addr
2591* 2591 *
2592* All bits of the tx_cntl parameter except HFS_TX_CNTL_TX_DELAY and the HCF_PORT# bits are passed to the F/W via 2592 * All bits of the tx_cntl parameter except HFS_TX_CNTL_TX_DELAY and the HCF_PORT# bits are passed to the F/W via
2593* the HFS_TX_CNTL field of the TxFS. 2593 * the HFS_TX_CNTL field of the TxFS.
2594* 2594 *
2595* Note that hcf_send_msg does not detect NIC absence. The MSF is supposed to have its own -platform dependent- 2595 * Note that hcf_send_msg does not detect NIC absence. The MSF is supposed to have its own -platform dependent-
2596* way to recognize card removal/insertion. 2596 * way to recognize card removal/insertion.
2597* The total system must be robust against card removal and there is no principal difference between card removal 2597 * The total system must be robust against card removal and there is no principal difference between card removal
2598* just after hcf_send_msg returns but before the actual transmission took place or sometime earlier. 2598 * just after hcf_send_msg returns but before the actual transmission took place or sometime earlier.
2599* 2599 *
2600* Assert fails if 2600 * Assert fails if
2601* - ifbp has a recognizable out-of-range value 2601 * - ifbp has a recognizable out-of-range value
2602* - descp is a NULL pointer 2602 * - descp is a NULL pointer
2603* - no resources for PIF available. 2603 * - no resources for PIF available.
2604* - Interrupts are enabled. 2604 * - Interrupts are enabled.
2605* - reentrancy, may be caused by calling hcf_functions without adequate protection 2605 * - reentrancy, may be caused by calling hcf_functions without adequate protection
2606* against NIC interrupts or multi-threading. 2606 * against NIC interrupts or multi-threading.
2607* 2607 *
2608*.DIAGRAM 2608 *.DIAGRAM
2609*4: for the normal case (i.e. no HFS_TX_CNTL_TX_DELAY option active), a fid is acquired via the 2609 *4: for the normal case (i.e. no HFS_TX_CNTL_TX_DELAY option active), a fid is acquired via the
2610* routine get_fid. If no FID is acquired, the remainder is skipped without an error notification. After 2610 * routine get_fid. If no FID is acquired, the remainder is skipped without an error notification. After
2611* all, the MSF is not supposed to call hcf_send_msg when no Resource is available. 2611 * all, the MSF is not supposed to call hcf_send_msg when no Resource is available.
2612*7: The ControlField of the TxFS is written. Since put_frag can only return the fatal Defunct or "No NIC", the 2612 *7: The ControlField of the TxFS is written. Since put_frag can only return the fatal Defunct or "No NIC", the
2613* return status can be ignored because when it fails, cmd_wait will fail as well. (see also the note on the 2613 * return status can be ignored because when it fails, cmd_wait will fail as well. (see also the note on the
2614* need for a return code below). 2614 * need for a return code below).
2615* Note that HFS_TX_CNTL has different values for H-I, H-I/SSN and H-II and HFS_ADDR_DEST has different 2615 * Note that HFS_TX_CNTL has different values for H-I, H-I/SSN and H-II and HFS_ADDR_DEST has different
2616* values for H-I (regardless of SSN) and H-II. 2616 * values for H-I (regardless of SSN) and H-II.
2617* By writing 17, 1 or 2 ( implying 16, 0 or 1 garbage word after HFS_TX_CNTL) the BAP just gets to 2617 * By writing 17, 1 or 2 ( implying 16, 0 or 1 garbage word after HFS_TX_CNTL) the BAP just gets to
2618* HFS_ADDR_DEST for H-I, H-I/SSN and H-II respectively. 2618 * HFS_ADDR_DEST for H-I, H-I/SSN and H-II respectively.
2619*10: if neither encapsulation nor MIC calculation is needed, splitting the first fragment in two does not 2619 *10: if neither encapsulation nor MIC calculation is needed, splitting the first fragment in two does not
2620* really help but it makes the flow easier to follow to do not optimize on this difference 2620 * really help but it makes the flow easier to follow to do not optimize on this difference
2621* 2621 *
2622* hcf_send_msg checks whether the frame is an Ethernet-II rather than an "official" 802.3 frame. 2622 * hcf_send_msg checks whether the frame is an Ethernet-II rather than an "official" 802.3 frame.
2623* The E-II check is based on the length/type field in the MAC header. If this field has a value larger than 2623 * The E-II check is based on the length/type field in the MAC header. If this field has a value larger than
2624* 1500, E-II is assumed. The implementation of this test fails if the length/type field is not in the first 2624 * 1500, E-II is assumed. The implementation of this test fails if the length/type field is not in the first
2625* descriptor. If E-II is recognized, a SNAP header is inserted. This SNAP header represents either RFC1042 2625 * descriptor. If E-II is recognized, a SNAP header is inserted. This SNAP header represents either RFC1042
2626* or Bridge-Tunnel encapsulation, depending on the return status of the support routine hcf_encap. 2626 * or Bridge-Tunnel encapsulation, depending on the return status of the support routine hcf_encap.
2627* 2627 *
2628*.NOTICE 2628 *.NOTICE
2629* hcf_send_msg leaves the responsibility to only send messages on enabled ports at the MSF level. 2629 * hcf_send_msg leaves the responsibility to only send messages on enabled ports at the MSF level.
2630* This is considered the strategy which is sufficiently adequate for all "robust" MSFs, have the least 2630 * This is considered the strategy which is sufficiently adequate for all "robust" MSFs, have the least
2631* processor utilization and being still acceptable robust at the WCI !!!!! 2631 * processor utilization and being still acceptable robust at the WCI !!!!!
2632* 2632 *
2633* hcf_send_msg does not NEED a return value to report NIC absence or removal during the execution of 2633 * hcf_send_msg does not NEED a return value to report NIC absence or removal during the execution of
2634* hcf_send_msg(), because the MSF and higher layers must be able to cope anyway with the NIC being removed 2634 * hcf_send_msg(), because the MSF and higher layers must be able to cope anyway with the NIC being removed
2635* after a successful completion of hcf_send_msg() but before the actual transmission took place. 2635 * after a successful completion of hcf_send_msg() but before the actual transmission took place.
2636* To accommodate user expectations the current implementation does report NIC absence. 2636 * To accommodate user expectations the current implementation does report NIC absence.
2637* Defunct blocks all NIC access and will (also) be reported on a number of other calls. 2637 * Defunct blocks all NIC access and will (also) be reported on a number of other calls.
2638* 2638 *
2639* hcf_send_msg does not check for transmit buffer overflow because the Hermes does this protection. 2639 * hcf_send_msg does not check for transmit buffer overflow because the Hermes does this protection.
2640* In case of a transmit buffer overflow, the surplus which does not fit in the buffer is simply dropped. 2640 * In case of a transmit buffer overflow, the surplus which does not fit in the buffer is simply dropped.
2641* Note that this possibly results in the transmission of incomplete frames. 2641 * Note that this possibly results in the transmission of incomplete frames.
2642* 2642 *
2643* After some deliberation with F/W team, it is decided that - being in the twilight zone of not knowing 2643 * After some deliberation with F/W team, it is decided that - being in the twilight zone of not knowing
2644* whether the problem at hand is an MSF bug, HCF buf, F/W bug, H/W malfunction or even something else - there 2644 * whether the problem at hand is an MSF bug, HCF buf, F/W bug, H/W malfunction or even something else - there
2645* is no "best thing to do" in case of a failing send, hence the HCF considers the TxFID ownership to be taken 2645 * is no "best thing to do" in case of a failing send, hence the HCF considers the TxFID ownership to be taken
2646* over by the F/W and hopes for an Allocate event in due time 2646 * over by the F/W and hopes for an Allocate event in due time
2647* 2647 *
2648*.ENDDOC END DOCUMENTATION 2648 *.ENDDOC END DOCUMENTATION
2649* 2649 *
2650************************************************************************************************************/ 2650 ************************************************************************************************************/
2651int 2651int
2652hcf_send_msg( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl ) 2652hcf_send_msg( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
2653{ 2653{
2654int rc = HCF_SUCCESS; 2654 int rc = HCF_SUCCESS;
2655DESC_STRCT *p /* = descp*/; //working pointer 2655 DESC_STRCT *p /* = descp*/; //working pointer
2656hcf_16 len; // total byte count 2656 hcf_16 len; // total byte count
2657hcf_16 i; 2657 hcf_16 i;
2658 2658
2659hcf_16 fid = 0; 2659 hcf_16 fid = 0;
2660 2660
2661 HCFASSERT( ifbp->IFB_RscInd || descp == NULL, ifbp->IFB_RscInd ); 2661 HCFASSERT( ifbp->IFB_RscInd || descp == NULL, ifbp->IFB_RscInd );
2662 HCFASSERT( (ifbp->IFB_CntlOpt & USE_DMA) == 0, 0xDADB ); 2662 HCFASSERT( (ifbp->IFB_CntlOpt & USE_DMA) == 0, 0xDADB );
@@ -2668,22 +2668,22 @@ hcf_16 fid = 0;
2668 * so skip */ 2668 * so skip */
2669 HCFASSERT( ((hcf_32)descp & 3 ) == 0, (hcf_32)descp ); 2669 HCFASSERT( ((hcf_32)descp & 3 ) == 0, (hcf_32)descp );
2670#if HCF_ASSERT 2670#if HCF_ASSERT
2671{ int x = ifbp->IFB_FWIdentity.comp_id == COMP_ID_FW_AP ? tx_cntl & ~HFS_TX_CNTL_PORT : tx_cntl; 2671 { int x = ifbp->IFB_FWIdentity.comp_id == COMP_ID_FW_AP ? tx_cntl & ~HFS_TX_CNTL_PORT : tx_cntl;
2672 HCFASSERT( (x & ~HCF_TX_CNTL_MASK ) == 0, tx_cntl ); 2672 HCFASSERT( (x & ~HCF_TX_CNTL_MASK ) == 0, tx_cntl );
2673} 2673 }
2674#endif // HCF_ASSERT 2674#endif // HCF_ASSERT
2675 2675
2676 if ( descp ) ifbp->IFB_TxFID = 0; //cancel a pre-put message 2676 if ( descp ) ifbp->IFB_TxFID = 0; //cancel a pre-put message
2677 2677
2678#if (HCF_EXT) & HCF_EXT_TX_CONT // Continuous transmit test 2678#if (HCF_EXT) & HCF_EXT_TX_CONT // Continuous transmit test
2679 if ( tx_cntl == HFS_TX_CNTL_TX_CONT ) { 2679 if ( tx_cntl == HFS_TX_CNTL_TX_CONT ) {
2680 fid = get_fid(ifbp); 2680 fid = get_fid(ifbp);
2681 if (fid != 0 ) { 2681 if (fid != 0 ) {
2682 //setup BAP to begin of TxFS 2682 //setup BAP to begin of TxFS
2683 (void)setup_bap( ifbp, fid, 0, IO_OUT ); 2683 (void)setup_bap( ifbp, fid, 0, IO_OUT );
2684 //copy all the fragments in a transparent fashion 2684 //copy all the fragments in a transparent fashion
2685 for ( p = descp; p; p = p->next_desc_addr ) { 2685 for ( p = descp; p; p = p->next_desc_addr ) {
2686 /* obnoxious warning C4769: conversion of near pointer to long integer */ 2686 /* obnoxious warning C4769: conversion of near pointer to long integer */
2687 HCFASSERT( ((hcf_32)p & 3 ) == 0, (hcf_32)p ); 2687 HCFASSERT( ((hcf_32)p & 3 ) == 0, (hcf_32)p );
2688 put_frag( ifbp, p->buf_addr, p->BUF_CNT BE_PAR(0) ); 2688 put_frag( ifbp, p->buf_addr, p->BUF_CNT BE_PAR(0) );
2689 } 2689 }
@@ -2692,79 +2692,79 @@ hcf_16 fid = 0;
2692 ifbp->IFB_RscInd = get_fid( ifbp ); 2692 ifbp->IFB_RscInd = get_fid( ifbp );
2693 } 2693 }
2694 } 2694 }
2695 // een slecht voorbeeld doet goed volgen ;? 2695 // een slecht voorbeeld doet goed volgen ;?
2696 HCFLOGEXIT( HCF_TRACE_SEND_MSG ); 2696 HCFLOGEXIT( HCF_TRACE_SEND_MSG );
2697 return rc; 2697 return rc;
2698 } 2698 }
2699#endif // HCF_EXT_TX_CONT 2699#endif // HCF_EXT_TX_CONT
2700 /* the following initialization code is redundant for a pre-put message 2700 /* the following initialization code is redundant for a pre-put message
2701 * but moving it inside the "if fid" logic makes the merging with the 2701 * but moving it inside the "if fid" logic makes the merging with the
2702 * USB flow awkward 2702 * USB flow awkward
2703 */ 2703 */
2704#if (HCF_TYPE) & HCF_TYPE_WPA 2704#if (HCF_TYPE) & HCF_TYPE_WPA
2705 tx_cntl |= ifbp->IFB_MICTxCntl; 2705 tx_cntl |= ifbp->IFB_MICTxCntl;
2706#endif // HCF_TYPE_WPA 2706#endif // HCF_TYPE_WPA
2707 fid = ifbp->IFB_TxFID; 2707 fid = ifbp->IFB_TxFID;
2708 if (fid == 0 && ( fid = get_fid( ifbp ) ) != 0 ) /* 4 */ 2708 if (fid == 0 && ( fid = get_fid( ifbp ) ) != 0 ) /* 4 */
2709 /* skip the next compound statement if: 2709 /* skip the next compound statement if:
2710 - pre-put message or 2710 - pre-put message or
2711 - no fid available (which should never occur if the MSF adheres to the WCI) 2711 - no fid available (which should never occur if the MSF adheres to the WCI)
2712 */ 2712 */
2713 { // to match the closing curly bracket of above "if" in case of HCF_TYPE_USB 2713 { // to match the closing curly bracket of above "if" in case of HCF_TYPE_USB
2714 //calculate total length ;? superfluous unless CCX or Encapsulation 2714 //calculate total length ;? superfluous unless CCX or Encapsulation
2715 len = 0; 2715 len = 0;
2716 p = descp; 2716 p = descp;
2717 do len += p->BUF_CNT; while ( ( p = p->next_desc_addr ) != NULL ); 2717 do len += p->BUF_CNT; while ( ( p = p->next_desc_addr ) != NULL );
2718 p = descp; 2718 p = descp;
2719//;? HCFASSERT( len <= HCF_MAX_MSG, len ); 2719//;? HCFASSERT( len <= HCF_MAX_MSG, len );
2720/*7*/ (void)setup_bap( ifbp, fid, HFS_TX_CNTL, IO_OUT ); 2720 /*7*/ (void)setup_bap( ifbp, fid, HFS_TX_CNTL, IO_OUT );
2721#if (HCF_TYPE) & HCF_TYPE_TX_DELAY 2721#if (HCF_TYPE) & HCF_TYPE_TX_DELAY
2722 HCFASSERT( ( descp != NULL ) ^ ( tx_cntl & HFS_TX_CNTL_TX_DELAY ), tx_cntl ); 2722 HCFASSERT( ( descp != NULL ) ^ ( tx_cntl & HFS_TX_CNTL_TX_DELAY ), tx_cntl );
2723 if ( tx_cntl & HFS_TX_CNTL_TX_DELAY ) { 2723 if ( tx_cntl & HFS_TX_CNTL_TX_DELAY ) {
2724 tx_cntl &= ~HFS_TX_CNTL_TX_DELAY; //!!HFS_TX_CNTL_TX_DELAY no longer available 2724 tx_cntl &= ~HFS_TX_CNTL_TX_DELAY; //!!HFS_TX_CNTL_TX_DELAY no longer available
2725 ifbp->IFB_TxFID = fid; 2725 ifbp->IFB_TxFID = fid;
2726 fid = 0; //!!fid no longer available, be careful when modifying code 2726 fid = 0; //!!fid no longer available, be careful when modifying code
2727 } 2727 }
2728#endif // HCF_TYPE_TX_DELAY 2728#endif // HCF_TYPE_TX_DELAY
2729 OPW( HREG_DATA_1, tx_cntl ) ; 2729 OPW( HREG_DATA_1, tx_cntl ) ;
2730 OPW( HREG_DATA_1, 0 ); 2730 OPW( HREG_DATA_1, 0 );
2731#if ! ( (HCF_TYPE) & HCF_TYPE_CCX ) 2731#if ! ( (HCF_TYPE) & HCF_TYPE_CCX )
2732 HCFASSERT( p->BUF_CNT >= 14, p->BUF_CNT ); 2732 HCFASSERT( p->BUF_CNT >= 14, p->BUF_CNT );
2733 /* assume DestAddr/SrcAddr/Len/Type ALWAYS contained in 1st fragment 2733 /* assume DestAddr/SrcAddr/Len/Type ALWAYS contained in 1st fragment
2734 * otherwise life gets too cumbersome for MIC and Encapsulation !!!!!!!! 2734 * otherwise life gets too cumbersome for MIC and Encapsulation !!!!!!!!
2735 if ( p->BUF_CNT >= 14 ) { alternatively: add a safety escape !!!!!!!!!!!! } */ 2735 if ( p->BUF_CNT >= 14 ) { alternatively: add a safety escape !!!!!!!!!!!! } */
2736#endif // HCF_TYPE_CCX 2736#endif // HCF_TYPE_CCX
2737 CALC_TX_MIC( NULL, -1 ); //initialize MIC 2737 CALC_TX_MIC( NULL, -1 ); //initialize MIC
2738/*10*/ put_frag( ifbp, p->buf_addr, HCF_DASA_SIZE BE_PAR(0) ); //write DA, SA with MIC calculation 2738 /*10*/ put_frag( ifbp, p->buf_addr, HCF_DASA_SIZE BE_PAR(0) ); //write DA, SA with MIC calculation
2739 CALC_TX_MIC( p->buf_addr, HCF_DASA_SIZE ); //MIC over DA, SA 2739 CALC_TX_MIC( p->buf_addr, HCF_DASA_SIZE ); //MIC over DA, SA
2740 CALC_TX_MIC( null_addr, 4 ); //MIC over (virtual) priority field 2740 CALC_TX_MIC( null_addr, 4 ); //MIC over (virtual) priority field
2741#if (HCF_TYPE) & HCF_TYPE_CCX 2741#if (HCF_TYPE) & HCF_TYPE_CCX
2742 //!!be careful do not use positive test on HCF_ACT_CCX_OFF, because IFB_CKIPStat is initially 0 2742 //!!be careful do not use positive test on HCF_ACT_CCX_OFF, because IFB_CKIPStat is initially 0
2743 if(( ifbp->IFB_CKIPStat == HCF_ACT_CCX_ON ) || 2743 if(( ifbp->IFB_CKIPStat == HCF_ACT_CCX_ON ) ||
2744 ((GET_BUF_CNT(p) >= 20 ) && ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_OFF ) && 2744 ((GET_BUF_CNT(p) >= 20 ) && ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_OFF ) &&
2745 (p->buf_addr[12] == 0xAA) && (p->buf_addr[13] == 0xAA) && 2745 (p->buf_addr[12] == 0xAA) && (p->buf_addr[13] == 0xAA) &&
2746 (p->buf_addr[14] == 0x03) && (p->buf_addr[15] == 0x00) && 2746 (p->buf_addr[14] == 0x03) && (p->buf_addr[15] == 0x00) &&
2747 (p->buf_addr[16] == 0x40) && (p->buf_addr[17] == 0x96) && 2747 (p->buf_addr[16] == 0x40) && (p->buf_addr[17] == 0x96) &&
2748 (p->buf_addr[18] == 0x00) && (p->buf_addr[19] == 0x00))) 2748 (p->buf_addr[18] == 0x00) && (p->buf_addr[19] == 0x00)))
2749 { 2749 {
2750 i = HCF_DASA_SIZE; 2750 i = HCF_DASA_SIZE;
2751 2751
2752 OPW( HREG_DATA_1, CNV_SHORT_TO_BIG( len - i )); 2752 OPW( HREG_DATA_1, CNV_SHORT_TO_BIG( len - i ));
2753 2753
2754 /* need to send out the remainder of the fragment */ 2754 /* need to send out the remainder of the fragment */
2755 put_frag( ifbp, &p->buf_addr[i], GET_BUF_CNT(p) - i BE_PAR(0) ); 2755 put_frag( ifbp, &p->buf_addr[i], GET_BUF_CNT(p) - i BE_PAR(0) );
2756 } 2756 }
2757 else 2757 else
2758#endif // HCF_TYPE_CCX 2758#endif // HCF_TYPE_CCX
2759 { 2759 {
2760 //if encapsulation needed 2760 //if encapsulation needed
2761#if (HCF_ENCAP) == HCF_ENC 2761#if (HCF_ENCAP) == HCF_ENC
2762 //write length (with SNAP-header,Type, without //DA,SA,Length ) no MIC calc. 2762 //write length (with SNAP-header,Type, without //DA,SA,Length ) no MIC calc.
2763 if ( ( snap_header[sizeof(snap_header)-1] = hcf_encap( &p->buf_addr[HCF_DASA_SIZE] ) ) != ENC_NONE ) { 2763 if ( ( snap_header[sizeof(snap_header)-1] = hcf_encap( &p->buf_addr[HCF_DASA_SIZE] ) ) != ENC_NONE ) {
2764 OPW( HREG_DATA_1, CNV_END_SHORT( len + (sizeof(snap_header) + 2) - ( 2*6 + 2 ) ) ); 2764 OPW( HREG_DATA_1, CNV_END_SHORT( len + (sizeof(snap_header) + 2) - ( 2*6 + 2 ) ) );
2765 //write splice with MIC calculation 2765 //write splice with MIC calculation
2766 put_frag( ifbp, snap_header, sizeof(snap_header) BE_PAR(0) ); 2766 put_frag( ifbp, snap_header, sizeof(snap_header) BE_PAR(0) );
2767 CALC_TX_MIC( snap_header, sizeof(snap_header) ); //MIC over 6 byte SNAP 2767 CALC_TX_MIC( snap_header, sizeof(snap_header) ); //MIC over 6 byte SNAP
2768 i = HCF_DASA_SIZE; 2768 i = HCF_DASA_SIZE;
2769 } else 2769 } else
2770#endif // HCF_ENC 2770#endif // HCF_ENC
@@ -2772,11 +2772,11 @@ hcf_16 fid = 0;
2772 OPW( HREG_DATA_1, *(wci_recordp)&p->buf_addr[HCF_DASA_SIZE] ); 2772 OPW( HREG_DATA_1, *(wci_recordp)&p->buf_addr[HCF_DASA_SIZE] );
2773 i = 14; 2773 i = 14;
2774 } 2774 }
2775 //complete 1st fragment starting with Type with MIC calculation 2775 //complete 1st fragment starting with Type with MIC calculation
2776 put_frag( ifbp, &p->buf_addr[i], p->BUF_CNT - i BE_PAR(0) ); 2776 put_frag( ifbp, &p->buf_addr[i], p->BUF_CNT - i BE_PAR(0) );
2777 CALC_TX_MIC( &p->buf_addr[i], p->BUF_CNT - i ); 2777 CALC_TX_MIC( &p->buf_addr[i], p->BUF_CNT - i );
2778 } 2778 }
2779 //do the remaining fragments with MIC calculation 2779 //do the remaining fragments with MIC calculation
2780 while ( ( p = p->next_desc_addr ) != NULL ) { 2780 while ( ( p = p->next_desc_addr ) != NULL ) {
2781 /* obnoxious c:/hcf/hcf.c(1480) : warning C4769: conversion of near pointer to long integer, 2781 /* obnoxious c:/hcf/hcf.c(1480) : warning C4769: conversion of near pointer to long integer,
2782 * so skip */ 2782 * so skip */
@@ -2784,18 +2784,18 @@ hcf_16 fid = 0;
2784 put_frag( ifbp, p->buf_addr, p->BUF_CNT BE_PAR(0) ); 2784 put_frag( ifbp, p->buf_addr, p->BUF_CNT BE_PAR(0) );
2785 CALC_TX_MIC( p->buf_addr, p->BUF_CNT ); 2785 CALC_TX_MIC( p->buf_addr, p->BUF_CNT );
2786 } 2786 }
2787 //pad message, finalize MIC calculation and write MIC to NIC 2787 //pad message, finalize MIC calculation and write MIC to NIC
2788 put_frag_finalize( ifbp ); 2788 put_frag_finalize( ifbp );
2789 } 2789 }
2790 if ( fid ) { 2790 if ( fid ) {
2791/*16*/ rc = cmd_exe( ifbp, HCMD_BUSY | HCMD_TX | HCMD_RECL, fid ); 2791 /*16*/ rc = cmd_exe( ifbp, HCMD_BUSY | HCMD_TX | HCMD_RECL, fid );
2792 ifbp->IFB_TxFID = 0; 2792 ifbp->IFB_TxFID = 0;
2793 /* probably this (i.e. no RscInd AND "HREG_EV_ALLOC") at this point in time occurs so infrequent, 2793 /* probably this (i.e. no RscInd AND "HREG_EV_ALLOC") at this point in time occurs so infrequent,
2794 * that it might just as well be acceptable to skip this 2794 * that it might just as well be acceptable to skip this
2795 * "optimization" code and handle that additional interrupt once in a while 2795 * "optimization" code and handle that additional interrupt once in a while
2796 */ 2796 */
2797// 180 degree error in logic ;? #if ALLOC_15 2797// 180 degree error in logic ;? #if ALLOC_15
2798/*20*/ if ( ifbp->IFB_RscInd == 0 ) { 2798 /*20*/ if ( ifbp->IFB_RscInd == 0 ) {
2799 ifbp->IFB_RscInd = get_fid( ifbp ); 2799 ifbp->IFB_RscInd = get_fid( ifbp );
2800 } 2800 }
2801// #endif // ALLOC_15 2801// #endif // ALLOC_15
@@ -2809,41 +2809,41 @@ hcf_16 fid = 0;
2809 2809
2810#if (HCF_DL_ONLY) == 0 2810#if (HCF_DL_ONLY) == 0
2811/************************************************************************************************************ 2811/************************************************************************************************************
2812* 2812 *
2813*.MODULE int hcf_service_nic( IFBP ifbp, wci_bufp bufp, unsigned int len ) 2813 *.MODULE int hcf_service_nic( IFBP ifbp, wci_bufp bufp, unsigned int len )
2814*.PURPOSE Services (most) NIC events. 2814 *.PURPOSE Services (most) NIC events.
2815* Provides received message 2815 * Provides received message
2816* Provides status information. 2816 * Provides status information.
2817* 2817 *
2818*.ARGUMENTS 2818 *.ARGUMENTS
2819* ifbp address of the Interface Block 2819 * ifbp address of the Interface Block
2820* In non-DMA mode: 2820 * In non-DMA mode:
2821* bufp address of char buffer, sufficiently large to hold the first part of the RxFS up through HFS_TYPE 2821 * bufp address of char buffer, sufficiently large to hold the first part of the RxFS up through HFS_TYPE
2822* len length in bytes of buffer specified by bufp 2822 * len length in bytes of buffer specified by bufp
2823* value between HFS_TYPE + 2 and HFS_ADDR_DEST + HCF_MAX_MSG 2823 * value between HFS_TYPE + 2 and HFS_ADDR_DEST + HCF_MAX_MSG
2824* 2824 *
2825*.RETURNS 2825 *.RETURNS
2826* HCF_SUCCESS 2826 * HCF_SUCCESS
2827* HCF_ERR_MIC message contains an erroneous MIC (only if frame fits completely in bufp) 2827 * HCF_ERR_MIC message contains an erroneous MIC (only if frame fits completely in bufp)
2828* 2828 *
2829*.DESCRIPTION 2829 *.DESCRIPTION
2830* 2830 *
2831* MSF-accessible fields of Result Block 2831 * MSF-accessible fields of Result Block
2832* - IFB_RxLen 0 or Frame size. 2832 * - IFB_RxLen 0 or Frame size.
2833* - IFB_MBInfoLen 0 or the L-field of the oldest MBIB. 2833 * - IFB_MBInfoLen 0 or the L-field of the oldest MBIB.
2834* - IFB_RscInd 2834 * - IFB_RscInd
2835* - IFB_HCF_Tallies updated if a corresponding event occurred. 2835 * - IFB_HCF_Tallies updated if a corresponding event occurred.
2836* - IFB_NIC_Tallies updated if a Tally Info frame received from the NIC. 2836 * - IFB_NIC_Tallies updated if a Tally Info frame received from the NIC.
2837* - IFB_DmaPackets 2837 * - IFB_DmaPackets
2838* - IFB_TxFsStat 2838 * - IFB_TxFsStat
2839* - IFB_TxFsSwSup 2839 * - IFB_TxFsSwSup
2840* - IFB_LinkStat reflects new link status or 0x0000 if no change relative to previous hcf_service_nic call. 2840 * - IFB_LinkStat reflects new link status or 0x0000 if no change relative to previous hcf_service_nic call.
2841or 2841or
2842* - IFB_LinkStat link status, 0x8000 reflects change relative to previous hcf_service_nic call. 2842* - IFB_LinkStat link status, 0x8000 reflects change relative to previous hcf_service_nic call.
2843* 2843*
2844* When IFB_MBInfoLen is non-zero, at least one MBIB is available. 2844* When IFB_MBInfoLen is non-zero, at least one MBIB is available.
2845* 2845*
2846* IFB_RxLen reflects the number of received bytes in 802.3 view (Including DestAddr, SrcAddr and Length, 2846* IFB_RxLen reflects the number of received bytes in 802.3 view (Including DestAddr, SrcAddr and Length,
2847* excluding MIC-padding, MIC and sum check) of active Rx Frame Structure. If no Rx Data s available, IFB_RxLen 2847* excluding MIC-padding, MIC and sum check) of active Rx Frame Structure. If no Rx Data s available, IFB_RxLen
2848* equals 0x0000. 2848* equals 0x0000.
2849* Repeated execution causes the Service NIC Function to provide information about subsequently received 2849* Repeated execution causes the Service NIC Function to provide information about subsequently received
@@ -2891,150 +2891,150 @@ or
2891* specific requirements of that environment to translate the interrupt strategy to a polled strategy. 2891* specific requirements of that environment to translate the interrupt strategy to a polled strategy.
2892* 2892*
2893* hcf_service_nic services the following Hermes events: 2893* hcf_service_nic services the following Hermes events:
2894* - HREG_EV_INFO Asynchronous Information Frame 2894* - HREG_EV_INFO Asynchronous Information Frame
2895* - HREG_EV_INFO_DROP WMAC did not have sufficient RAM to build Unsolicited Information Frame 2895* - HREG_EV_INFO_DROP WMAC did not have sufficient RAM to build Unsolicited Information Frame
2896* - HREG_EV_TX_EXC (if applicable, i.e. selected via HCF_EXT_INT_TX_EX bit of HCF_EXT) 2896* - HREG_EV_TX_EXC (if applicable, i.e. selected via HCF_EXT_INT_TX_EX bit of HCF_EXT)
2897* - HREG_EV_SLEEP_REQ (if applicable, i.e. selected via HCF_DDS/HCF_CDS bit of HCF_SLEEP) 2897* - HREG_EV_SLEEP_REQ (if applicable, i.e. selected via HCF_DDS/HCF_CDS bit of HCF_SLEEP)
2898* ** in non_DMA mode 2898* ** in non_DMA mode
2899* - HREG_EV_ALLOC Asynchronous part of Allocation/Reclaim completed while out of resources at 2899* - HREG_EV_ALLOC Asynchronous part of Allocation/Reclaim completed while out of resources at
2900* completion of hcf_send_msg/notify 2900* completion of hcf_send_msg/notify
2901* - HREG_EV_RX the detection of the availability of received messages 2901* - HREG_EV_RX the detection of the availability of received messages
2902* including WaveLAN Management Protocol (WMP) message processing 2902* including WaveLAN Management Protocol (WMP) message processing
2903* ** in DMA mode 2903* ** in DMA mode
2904* - HREG_EV_RDMAD 2904* - HREG_EV_RDMAD
2905* - HREG_EV_TDMAD 2905* - HREG_EV_TDMAD
2906*!! hcf_service_nic does not service the following Hermes events: 2906*!! hcf_service_nic does not service the following Hermes events:
2907*!! HREG_EV_TX (the "OK" Tx Event) is no longer supported by the WCI, if it occurs it is unclear 2907*!! HREG_EV_TX (the "OK" Tx Event) is no longer supported by the WCI, if it occurs it is unclear
2908*!! what the cause is, so no meaningful strategy is available. Not acking the bit is 2908*!! what the cause is, so no meaningful strategy is available. Not acking the bit is
2909*!! probably the best help that can be given to the debugger. 2909*!! probably the best help that can be given to the debugger.
2910*!! HREG_EV_CMD handled in cmd_wait. 2910*!! HREG_EV_CMD handled in cmd_wait.
2911*!! HREG_EV_FW_DMA (i.e. HREG_EV_RXDMA, HREG_EV_TXDMA and_EV_LPESC) are either not used or used 2911*!! HREG_EV_FW_DMA (i.e. HREG_EV_RXDMA, HREG_EV_TXDMA and_EV_LPESC) are either not used or used
2912*!! between the F/W and the DMA engine. 2912*!! between the F/W and the DMA engine.
2913*!! HREG_EV_ACK_REG_READY is only applicable for H-II (i.e. not HII.5 and up, see DAWA) 2913*!! HREG_EV_ACK_REG_READY is only applicable for H-II (i.e. not HII.5 and up, see DAWA)
2914* 2914*
2915* If, in non-DMA mode, a Rx message is available, its length is reflected by the IFB_RxLen field of the IFB. 2915* If, in non-DMA mode, a Rx message is available, its length is reflected by the IFB_RxLen field of the IFB.
2916* This length reflects the data itself and the Destination Address, Source Address and DataLength/Type field 2916* This length reflects the data itself and the Destination Address, Source Address and DataLength/Type field
2917* but not the SNAP-header in case of decapsulation by the HCF. If no message is available, IFB_RxLen is 2917* but not the SNAP-header in case of decapsulation by the HCF. If no message is available, IFB_RxLen is
2918* zero. Former versions of the HCF handled WMP messages and supported a "monitor" mode in hcf_service_nic, 2918* zero. Former versions of the HCF handled WMP messages and supported a "monitor" mode in hcf_service_nic,
2919* which deposited certain or all Rx messages in the MailBox. The responsibility to handle these frames is 2919* which deposited certain or all Rx messages in the MailBox. The responsibility to handle these frames is
2920* moved to the MSF. The HCF offers as supports hcf_put_info with CFG_MB_INFO as parameter to emulate the old 2920* moved to the MSF. The HCF offers as supports hcf_put_info with CFG_MB_INFO as parameter to emulate the old
2921* implementation under control of the MSF. 2921* implementation under control of the MSF.
2922* 2922*
2923* **Rx Buffer free strategy 2923* **Rx Buffer free strategy
2924* When hcf_service_nic reports the availability of a non-DMA message, the MSF can access that message by 2924* When hcf_service_nic reports the availability of a non-DMA message, the MSF can access that message by
2925* means of hcf_rcv_msg. It must be prevented that the LAN Controller writes new data in the NIC buffer 2925* means of hcf_rcv_msg. It must be prevented that the LAN Controller writes new data in the NIC buffer
2926* before the MSF is finished with the current message. The NIC buffer is returned to the LAN Controller 2926* before the MSF is finished with the current message. The NIC buffer is returned to the LAN Controller
2927* when: 2927* when:
2928* - the complete frame fits in the lookahead buffer or 2928* - the complete frame fits in the lookahead buffer or
2929* - hcf_rcv_msg is called or 2929* - hcf_rcv_msg is called or
2930* - hcf_action with HCF_ACT_RX is called or 2930* - hcf_action with HCF_ACT_RX is called or
2931* - hcf_service_nic is called again 2931* - hcf_service_nic is called again
2932* It can be reasoned that hcf_action( INT_ON ) should not be given before the MSF has completely processed 2932* It can be reasoned that hcf_action( INT_ON ) should not be given before the MSF has completely processed
2933* a reported Rx-frame. The reason is that the INT_ON action is guaranteed to cause a (Rx-)interrupt (the 2933* a reported Rx-frame. The reason is that the INT_ON action is guaranteed to cause a (Rx-)interrupt (the
2934* MSF is processing a Rx-frame, hence the Rx-event bit in the Hermes register must be active). This 2934* MSF is processing a Rx-frame, hence the Rx-event bit in the Hermes register must be active). This
2935* interrupt will cause hcf_service_nic to be called, which will cause the ack-ing of the "last" Rx-event 2935* interrupt will cause hcf_service_nic to be called, which will cause the ack-ing of the "last" Rx-event
2936* to the Hermes, causing the Hermes to discard the associated NIC RAM buffer. 2936* to the Hermes, causing the Hermes to discard the associated NIC RAM buffer.
2937* Assert fails if 2937* Assert fails if
2938* - ifbp is zero or other recognizable out-of-range value. 2938* - ifbp is zero or other recognizable out-of-range value.
2939* - hcf_service_nic is called without a prior call to hcf_connect. 2939* - hcf_service_nic is called without a prior call to hcf_connect.
2940* - interrupts are enabled. 2940* - interrupts are enabled.
2941* - reentrancy, may be caused by calling hcf_functions without adequate protection 2941* - reentrancy, may be caused by calling hcf_functions without adequate protection
2942* against NIC interrupts or multi-threading. 2942* against NIC interrupts or multi-threading.
2943* 2943*
2944* 2944*
2945*.DIAGRAM 2945*.DIAGRAM
2946*1: IFB_LinkStat is cleared, if a LinkStatus frame is received, IFB_LinkStat will be updated accordingly 2946*1: IFB_LinkStat is cleared, if a LinkStatus frame is received, IFB_LinkStat will be updated accordingly
2947* by isr_info. 2947* by isr_info.
2948or 2948or
2949*1: IFB_LinkStat change indication is cleared. If a LinkStatus frame is received, IFB_LinkStat will be updated 2949*1: IFB_LinkStat change indication is cleared. If a LinkStatus frame is received, IFB_LinkStat will be updated
2950* accordingly by isr_info. 2950* accordingly by isr_info.
2951*2: IFB_RxLen must be cleared before the NIC presence check otherwise: 2951*2: IFB_RxLen must be cleared before the NIC presence check otherwise:
2952* - this value may stay non-zero if the NIC is pulled out at an inconvenient moment. 2952* - this value may stay non-zero if the NIC is pulled out at an inconvenient moment.
2953* - the RxAck on a zero-FID needs a zero-value for IFB_RxLen to work 2953* - the RxAck on a zero-FID needs a zero-value for IFB_RxLen to work
2954* Note that as side-effect of the hcf_action call, the remainder of Rx related info is re-initialized as 2954* Note that as side-effect of the hcf_action call, the remainder of Rx related info is re-initialized as
2955* well. 2955* well.
2956*4: In case of Defunct mode, the information supplied by Hermes is unreliable, so the body of 2956*4: In case of Defunct mode, the information supplied by Hermes is unreliable, so the body of
2957* hcf_service_nic is skipped. Since hcf_cntl turns into a NOP if Primary or Station F/W is incompatible, 2957* hcf_service_nic is skipped. Since hcf_cntl turns into a NOP if Primary or Station F/W is incompatible,
2958* hcf_service_nic is also skipped in those cases. 2958* hcf_service_nic is also skipped in those cases.
2959* To prevent that hcf_service_nic reports bogus information to the MSF with all - possibly difficult to 2959* To prevent that hcf_service_nic reports bogus information to the MSF with all - possibly difficult to
2960* debug - undesirable side effects, it is paramount to check the NIC presence. In former days the presence 2960* debug - undesirable side effects, it is paramount to check the NIC presence. In former days the presence
2961* test was based on the Hermes register HREG_SW_0. Since in HCF_ACT_INT_OFF is chosen for strategy based on 2961* test was based on the Hermes register HREG_SW_0. Since in HCF_ACT_INT_OFF is chosen for strategy based on
2962* HREG_EV_STAT, this is now also used in hcf_service_nic. The motivation to change strategy is partly 2962* HREG_EV_STAT, this is now also used in hcf_service_nic. The motivation to change strategy is partly
2963* due to inconsistent F/W implementations with respect to HREG_SW_0 manipulation around reset and download. 2963* due to inconsistent F/W implementations with respect to HREG_SW_0 manipulation around reset and download.
2964* Note that in polled environments Card Removal is not detected by INT_OFF which makes the check in 2964* Note that in polled environments Card Removal is not detected by INT_OFF which makes the check in
2965* hcf_service_nic even more important. 2965* hcf_service_nic even more important.
2966*8: The event status register of the Hermes is sampled 2966*8: The event status register of the Hermes is sampled
2967* The assert checks for unexpected events ;?????????????????????????????????????. 2967* The assert checks for unexpected events ;?????????????????????????????????????.
2968* - HREG_EV_INFO_DROP is explicitly excluded from the acceptable HREG_EV_STAT bits because it indicates 2968* - HREG_EV_INFO_DROP is explicitly excluded from the acceptable HREG_EV_STAT bits because it indicates
2969* a too heavily loaded system. 2969* a too heavily loaded system.
2970* - HREG_EV_ACK_REG_READY is 0x0000 for H-I (and hopefully H-II.5) 2970* - HREG_EV_ACK_REG_READY is 0x0000 for H-I (and hopefully H-II.5)
2971* 2971*
2972* 2972*
2973* HREG_EV_TX_EXC is accepted (via HREG_EV_TX_EXT) if and only if HCF_EXT_INT_TX_EX set in the HCF_EXT 2973* HREG_EV_TX_EXC is accepted (via HREG_EV_TX_EXT) if and only if HCF_EXT_INT_TX_EX set in the HCF_EXT
2974* definition at compile time. 2974* definition at compile time.
2975* The following activities are handled: 2975* The following activities are handled:
2976* - Alloc events are handled by hcf_send_msg (and notify). Only if there is no "spare" resource, the 2976* - Alloc events are handled by hcf_send_msg (and notify). Only if there is no "spare" resource, the
2977* alloc event is superficially serviced by hcf_service_nic to create a pseudo-resource with value 2977* alloc event is superficially serviced by hcf_service_nic to create a pseudo-resource with value
2978* 0x001. This value is recognized by get_fid (called by hcf_send_msg and notify) where the real 2978* 0x001. This value is recognized by get_fid (called by hcf_send_msg and notify) where the real
2979* TxFid is retrieved and the Hermes is acked and - hopefully - the "normal" case with a spare TxFid 2979* TxFid is retrieved and the Hermes is acked and - hopefully - the "normal" case with a spare TxFid
2980* in IFB_RscInd is restored. 2980* in IFB_RscInd is restored.
2981* - Info drop events are handled by incrementing a tally 2981* - Info drop events are handled by incrementing a tally
2982* - LinkEvent (including solicited and unsolicited tallies) are handled by procedure isr_info. 2982* - LinkEvent (including solicited and unsolicited tallies) are handled by procedure isr_info.
2983* - TxEx (if selected at compile time) is handled by copying the significant part of the TxFS 2983* - TxEx (if selected at compile time) is handled by copying the significant part of the TxFS
2984* into the IFB for further processing by the MSF. 2984* into the IFB for further processing by the MSF.
2985* Note the complication of the zero-FID protection sub-scheme in DAWA. 2985* Note the complication of the zero-FID protection sub-scheme in DAWA.
2986* Note, the Ack of all of above events is handled at the end of hcf_service_nic 2986* Note, the Ack of all of above events is handled at the end of hcf_service_nic
2987*16: In case of non-DMA ( either not compiled in or due to a run-time choice): 2987*16: In case of non-DMA ( either not compiled in or due to a run-time choice):
2988* If an Rx-frame is available, first the FID of that frame is read, including the complication of the 2988* If an Rx-frame is available, first the FID of that frame is read, including the complication of the
2989* zero-FID protection sub-scheme in DAWA. Note that such a zero-FID is acknowledged at the end of 2989* zero-FID protection sub-scheme in DAWA. Note that such a zero-FID is acknowledged at the end of
2990* hcf_service_nic and that this depends on the IFB_RxLen initialization in the begin of hcf_service_nic. 2990* hcf_service_nic and that this depends on the IFB_RxLen initialization in the begin of hcf_service_nic.
2991* The Assert validates the HCF assumption about Hermes implementation upon which the range of 2991* The Assert validates the HCF assumption about Hermes implementation upon which the range of
2992* Pseudo-RIDs is based. 2992* Pseudo-RIDs is based.
2993* Then the control fields up to the start of the 802.3 frame are read from the NIC into the lookahead buffer. 2993* Then the control fields up to the start of the 802.3 frame are read from the NIC into the lookahead buffer.
2994* The status field is converted to native Endianess. 2994* The status field is converted to native Endianess.
2995* The length is, after implicit Endianess conversion if needed, and adjustment for the 14 bytes of the 2995* The length is, after implicit Endianess conversion if needed, and adjustment for the 14 bytes of the
2996* 802.3 MAC header, stored in IFB_RxLen. 2996* 802.3 MAC header, stored in IFB_RxLen.
2997* In MAC Monitor mode, 802.11 control frames with a TOTAL length of 14 are received, so without this 2997* In MAC Monitor mode, 802.11 control frames with a TOTAL length of 14 are received, so without this
2998* length adjustment, IFB_RxLen could not be used to distinguish these frames from "no frame". 2998* length adjustment, IFB_RxLen could not be used to distinguish these frames from "no frame".
2999* No MIC calculation processes are associated with the reading of these Control fields. 2999* No MIC calculation processes are associated with the reading of these Control fields.
3000*26: This length test feels like superfluous robustness against malformed frames, but it turned out to be 3000*26: This length test feels like superfluous robustness against malformed frames, but it turned out to be
3001* needed in the real (hostile) world. 3001* needed in the real (hostile) world.
3002* The decapsulation check needs sufficient data to represent DA, SA, L, SNAP and Type which amounts to 3002* The decapsulation check needs sufficient data to represent DA, SA, L, SNAP and Type which amounts to
3003* 22 bytes. In MAC Monitor mode, 802.11 control frames with a smaller length are received. To prevent 3003* 22 bytes. In MAC Monitor mode, 802.11 control frames with a smaller length are received. To prevent
3004* that the implementation goes haywire, a check on the length is needed. 3004* that the implementation goes haywire, a check on the length is needed.
3005* The actual decapsulation takes place on the fly in the copying process by overwriting the SNAP header. 3005* The actual decapsulation takes place on the fly in the copying process by overwriting the SNAP header.
3006* Note that in case of decapsulation the SNAP header is not passed to the MSF, hence IFB_RxLen must be 3006* Note that in case of decapsulation the SNAP header is not passed to the MSF, hence IFB_RxLen must be
3007* compensated for the SNAP header length. 3007* compensated for the SNAP header length.
3008* The 22 bytes needed for decapsulation are (more than) sufficient for the exceptional handling of the 3008* The 22 bytes needed for decapsulation are (more than) sufficient for the exceptional handling of the
3009* MIC algorithm of the L-field (replacing the 2 byte L-field with 4 0x00 bytes). 3009* MIC algorithm of the L-field (replacing the 2 byte L-field with 4 0x00 bytes).
3010*30: The 12 in the no-SSN branch corresponds with the get_frag, the 2 with the IPW of the SSN branch 3010*30: The 12 in the no-SSN branch corresponds with the get_frag, the 2 with the IPW of the SSN branch
3011*32: If Hermes reported MIC-presence, than the MIC engine is initialized with the non-dummy MIC calculation 3011*32: If Hermes reported MIC-presence, than the MIC engine is initialized with the non-dummy MIC calculation
3012* routine address and appropriate key. 3012* routine address and appropriate key.
3013*34: The 8 bytes after the DA, SA, L are read and it is checked whether decapsulation is needed i.e.: 3013*34: The 8 bytes after the DA, SA, L are read and it is checked whether decapsulation is needed i.e.:
3014* - the Hermes reported Tunnel encapsulation or 3014* - the Hermes reported Tunnel encapsulation or
3015* - the Hermes reported 1042 Encapsulation and hcf_encap reports that the HCF would not have used 3015* - the Hermes reported 1042 Encapsulation and hcf_encap reports that the HCF would not have used
3016* 1042 as the encapsulation mechanism 3016* 1042 as the encapsulation mechanism
3017* Note that the first field of the RxFS in bufp has Native Endianess due to the conversion done by the 3017* Note that the first field of the RxFS in bufp has Native Endianess due to the conversion done by the
3018* BE_PAR in get_frag. 3018* BE_PAR in get_frag.
3019*36: The Type field is the only word kept (after moving) of the just read 8 bytes, it is moved to the 3019*36: The Type field is the only word kept (after moving) of the just read 8 bytes, it is moved to the
3020* L-field. The original L-field and 6 byte SNAP header are discarded, so IFB_RxLen and buf_addr must 3020* L-field. The original L-field and 6 byte SNAP header are discarded, so IFB_RxLen and buf_addr must
3021* be adjusted by 8. 3021* be adjusted by 8.
3022*40: Determine how much of the frame (starting with DA) fits in the Lookahead buffer, then read the not-yet 3022*40: Determine how much of the frame (starting with DA) fits in the Lookahead buffer, then read the not-yet
3023* read data into the lookahead buffer. 3023* read data into the lookahead buffer.
3024* If the lookahead buffer contains the complete message, check the MIC. The majority considered this 3024* If the lookahead buffer contains the complete message, check the MIC. The majority considered this
3025* I/F more appropriate then have the MSF call hcf_get_data only to check the MIC. 3025* I/F more appropriate then have the MSF call hcf_get_data only to check the MIC.
3026*44: Since the complete message is copied from NIC RAM to PC RAM, the Rx can be acknowledged to the Hermes 3026*44: Since the complete message is copied from NIC RAM to PC RAM, the Rx can be acknowledged to the Hermes
3027* to optimize the flow ( a better chance to get new Rx data in the next pass through hcf_service_nic ). 3027* to optimize the flow ( a better chance to get new Rx data in the next pass through hcf_service_nic ).
3028* This acknowledgement can not be done via hcf_action( HCF_ACT_RX_ACK ) because this also clears 3028* This acknowledgement can not be done via hcf_action( HCF_ACT_RX_ACK ) because this also clears
3029* IFB_RxLEN thus corrupting the I/F to the MSF. 3029* IFB_RxLEN thus corrupting the I/F to the MSF.
3030*;?: In case of DMA (compiled in and activated): 3030*;?: In case of DMA (compiled in and activated):
3031 3031
3032 3032
3033*54: Limiting the number of places where the F/W is acked (e.g. the merging of the Rx-ACK with the other 3033*54: Limiting the number of places where the F/W is acked (e.g. the merging of the Rx-ACK with the other
3034* ACKs), is supposed to diminish the potential of race conditions in the F/W. 3034* ACKs), is supposed to diminish the potential of race conditions in the F/W.
3035* Note 1: The CMD event is acknowledged in cmd_cmpl 3035* Note 1: The CMD event is acknowledged in cmd_cmpl
3036* Note 2: HREG_EV_ACK_REG_READY is 0x0000 for H-I (and hopefully H-II.5) 3036* Note 2: HREG_EV_ACK_REG_READY is 0x0000 for H-I (and hopefully H-II.5)
3037* Note 3: The ALLOC event is acknowledged in get_fid (except for the initialization flow) 3037* Note 3: The ALLOC event is acknowledged in get_fid (except for the initialization flow)
3038* 3038*
3039*.NOTICE 3039*.NOTICE
3040* The Non-DMA HREG_EV_RX is handled different compared with the other F/W events. 3040* The Non-DMA HREG_EV_RX is handled different compared with the other F/W events.
@@ -3047,40 +3047,40 @@ or
3047* 3047*
3048*.NOTICE 3048*.NOTICE
3049* The minimum size for Len must supply space for: 3049* The minimum size for Len must supply space for:
3050* - an F/W dependent number of bytes of Control Info field including the 802.11 Header field 3050* - an F/W dependent number of bytes of Control Info field including the 802.11 Header field
3051* - Destination Address 3051* - Destination Address
3052* - Source Address 3052* - Source Address
3053* - Length field 3053* - Length field
3054* - [ SNAP Header] 3054* - [ SNAP Header]
3055* - [ Ethernet-II Type] 3055* - [ Ethernet-II Type]
3056* This results in 68 for Hermes-I and 80 for Hermes-II 3056* This results in 68 for Hermes-I and 80 for Hermes-II
3057* This way the minimum amount of information is available needed by the HCF to determine whether the frame 3057* This way the minimum amount of information is available needed by the HCF to determine whether the frame
3058* must be decapsulated. 3058* must be decapsulated.
3059*.ENDDOC END DOCUMENTATION 3059*.ENDDOC END DOCUMENTATION
3060* 3060*
3061************************************************************************************************************/ 3061************************************************************************************************************/
3062int 3062int
3063hcf_service_nic( IFBP ifbp, wci_bufp bufp, unsigned int len ) 3063hcf_service_nic( IFBP ifbp, wci_bufp bufp, unsigned int len )
3064{ 3064{
3065 3065
3066int rc = HCF_SUCCESS; 3066 int rc = HCF_SUCCESS;
3067hcf_16 stat; 3067 hcf_16 stat;
3068wci_bufp buf_addr; 3068 wci_bufp buf_addr;
3069hcf_16 i; 3069 hcf_16 i;
3070 3070
3071 HCFLOGENTRY( HCF_TRACE_SERVICE_NIC, ifbp->IFB_IntOffCnt ); 3071 HCFLOGENTRY( HCF_TRACE_SERVICE_NIC, ifbp->IFB_IntOffCnt );
3072 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic ); 3072 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic );
3073 HCFASSERT_INT; 3073 HCFASSERT_INT;
3074 3074
3075 ifbp->IFB_LinkStat = 0; // ;? to be obsoleted ASAP /* 1*/ 3075 ifbp->IFB_LinkStat = 0; // ;? to be obsoleted ASAP /* 1*/
3076 ifbp->IFB_DSLinkStat &= ~CFG_LINK_STAT_CHANGE; /* 1*/ 3076 ifbp->IFB_DSLinkStat &= ~CFG_LINK_STAT_CHANGE; /* 1*/
3077 (void)hcf_action( ifbp, HCF_ACT_RX_ACK ); /* 2*/ 3077 (void)hcf_action( ifbp, HCF_ACT_RX_ACK ); /* 2*/
3078 if ( ifbp->IFB_CardStat == 0 && ( stat = IPW( HREG_EV_STAT ) ) != 0xFFFF ) { /* 4*/ 3078 if ( ifbp->IFB_CardStat == 0 && ( stat = IPW( HREG_EV_STAT ) ) != 0xFFFF ) { /* 4*/
3079/* IF_NOT_DMA( HCFASSERT( !( stat & ~HREG_EV_BASIC_MASK, stat ) ) 3079/* IF_NOT_DMA( HCFASSERT( !( stat & ~HREG_EV_BASIC_MASK, stat ) )
3080 * IF_NOT_USE_DMA( HCFASSERT( !( stat & ~HREG_EV_BASIC_MASK, stat ) ) 3080 * IF_NOT_USE_DMA( HCFASSERT( !( stat & ~HREG_EV_BASIC_MASK, stat ) )
3081 * IF_USE_DMA( HCFASSERT( !( stat & ~( HREG_EV_BASIC_MASK ^ ( HREG_EV_...DMA.... ), stat ) ) 3081 * IF_USE_DMA( HCFASSERT( !( stat & ~( HREG_EV_BASIC_MASK ^ ( HREG_EV_...DMA.... ), stat ) )
3082 */ 3082 */
3083 /* 8*/ 3083 /* 8*/
3084 if ( ifbp->IFB_RscInd == 0 && stat & HREG_EV_ALLOC ) { //Note: IFB_RscInd is ALWAYS 1 for DMA 3084 if ( ifbp->IFB_RscInd == 0 && stat & HREG_EV_ALLOC ) { //Note: IFB_RscInd is ALWAYS 1 for DMA
3085 ifbp->IFB_RscInd = 1; 3085 ifbp->IFB_RscInd = 1;
3086 } 3086 }
@@ -3091,7 +3091,7 @@ hcf_16 i;
3091 } 3091 }
3092#if 0 // (HCF_SLEEP) & HCF_DDS 3092#if 0 // (HCF_SLEEP) & HCF_DDS
3093 if ( ifbp->IFB_TickCnt == 3 && ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_CONNECTED ) == 0 ) { 3093 if ( ifbp->IFB_TickCnt == 3 && ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_CONNECTED ) == 0 ) {
3094CFG_DDS_TICK_TIME_STRCT ltv; 3094 CFG_DDS_TICK_TIME_STRCT ltv;
3095 // 2 second period (with 1 tick uncertanty) in not-connected mode -->go into DS_OOR 3095 // 2 second period (with 1 tick uncertanty) in not-connected mode -->go into DS_OOR
3096 hcf_action( ifbp, HCF_ACT_SLEEP ); 3096 hcf_action( ifbp, HCF_ACT_SLEEP );
3097 ifbp->IFB_DSLinkStat |= CFG_LINK_STAT_DS_OOR; //set OutOfRange 3097 ifbp->IFB_DSLinkStat |= CFG_LINK_STAT_DS_OOR; //set OutOfRange
@@ -3100,7 +3100,7 @@ CFG_DDS_TICK_TIME_STRCT ltv;
3100 ltv.tick_time = ( ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_TIMER ) + 0x10 ) *64; //78 is more right 3100 ltv.tick_time = ( ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_TIMER ) + 0x10 ) *64; //78 is more right
3101 hcf_put_info( ifbp, (LTVP)&ltv ); 3101 hcf_put_info( ifbp, (LTVP)&ltv );
3102 printk( "<5>Preparing for sleep, link_status: %04X, timer : %d\n", 3102 printk( "<5>Preparing for sleep, link_status: %04X, timer : %d\n",
3103 ifbp->IFB_DSLinkStat, ltv.tick_time );//;?remove me 1 day 3103 ifbp->IFB_DSLinkStat, ltv.tick_time );//;?remove me 1 day
3104 ifbp->IFB_TickCnt++; //;?just to make sure we do not keep on printing above message 3104 ifbp->IFB_TickCnt++; //;?just to make sure we do not keep on printing above message
3105 if ( ltv.tick_time < 300 * 125 ) ifbp->IFB_DSLinkStat += 0x0010; 3105 if ( ltv.tick_time < 300 * 125 ) ifbp->IFB_DSLinkStat += 0x0010;
3106 3106
@@ -3121,66 +3121,66 @@ CFG_DDS_TICK_TIME_STRCT ltv;
3121#if HCF_DMA 3121#if HCF_DMA
3122 if ( !( ifbp->IFB_CntlOpt & USE_DMA ) ) //!! be aware of the logical indentations 3122 if ( !( ifbp->IFB_CntlOpt & USE_DMA ) ) //!! be aware of the logical indentations
3123#endif // HCF_DMA 3123#endif // HCF_DMA
3124/*16*/ if ( stat & HREG_EV_RX && ( ifbp->IFB_RxFID = IPW( HREG_RX_FID ) ) != 0 ) { //if 0 then DAWA_ACK 3124 /*16*/ if ( stat & HREG_EV_RX && ( ifbp->IFB_RxFID = IPW( HREG_RX_FID ) ) != 0 ) { //if 0 then DAWA_ACK
3125 HCFASSERT( bufp, len ); 3125 HCFASSERT( bufp, len );
3126 HCFASSERT( len >= HFS_DAT + 2, len ); 3126 HCFASSERT( len >= HFS_DAT + 2, len );
3127 DAWA_ZERO_FID( HREG_RX_FID ); 3127 DAWA_ZERO_FID( HREG_RX_FID );
3128 HCFASSERT( ifbp->IFB_RxFID < CFG_PROD_DATA, ifbp->IFB_RxFID); 3128 HCFASSERT( ifbp->IFB_RxFID < CFG_PROD_DATA, ifbp->IFB_RxFID);
3129 (void)setup_bap( ifbp, ifbp->IFB_RxFID, 0, IO_IN ); 3129 (void)setup_bap( ifbp, ifbp->IFB_RxFID, 0, IO_IN );
3130 get_frag( ifbp, bufp, HFS_ADDR_DEST BE_PAR(1) ); 3130 get_frag( ifbp, bufp, HFS_ADDR_DEST BE_PAR(1) );
3131 ifbp->IFB_lap = buf_addr = bufp + HFS_ADDR_DEST; 3131 ifbp->IFB_lap = buf_addr = bufp + HFS_ADDR_DEST;
3132 ifbp->IFB_RxLen = (hcf_16)(bufp[HFS_DAT_LEN] + (bufp[HFS_DAT_LEN+1]<<8) + 2*6 + 2); 3132 ifbp->IFB_RxLen = (hcf_16)(bufp[HFS_DAT_LEN] + (bufp[HFS_DAT_LEN+1]<<8) + 2*6 + 2);
3133/*26*/ if ( ifbp->IFB_RxLen >= 22 ) { // convenient for MIC calculation (5 DWs + 1 "skipped" W) 3133 /*26*/ if ( ifbp->IFB_RxLen >= 22 ) { // convenient for MIC calculation (5 DWs + 1 "skipped" W)
3134 //. get DA,SA,Len/Type and (SNAP,Type or 8 data bytes) 3134 //. get DA,SA,Len/Type and (SNAP,Type or 8 data bytes)
3135/*30*/ get_frag( ifbp, buf_addr, 22 BE_PAR(0) ); 3135 /*30*/ get_frag( ifbp, buf_addr, 22 BE_PAR(0) );
3136/*32*/ CALC_RX_MIC( bufp, -1 ); //. initialize MIC 3136 /*32*/ CALC_RX_MIC( bufp, -1 ); //. initialize MIC
3137 CALC_RX_MIC( buf_addr, HCF_DASA_SIZE ); //. MIC over DA, SA 3137 CALC_RX_MIC( buf_addr, HCF_DASA_SIZE ); //. MIC over DA, SA
3138 CALC_RX_MIC( null_addr, 4 ); //. MIC over (virtual) priority field 3138 CALC_RX_MIC( null_addr, 4 ); //. MIC over (virtual) priority field
3139 CALC_RX_MIC( buf_addr+14, 8 ); //. skip Len, MIC over SNAP,Type or 8 data bytes) 3139 CALC_RX_MIC( buf_addr+14, 8 ); //. skip Len, MIC over SNAP,Type or 8 data bytes)
3140 buf_addr += 22; 3140 buf_addr += 22;
3141#if (HCF_TYPE) & HCF_TYPE_CCX 3141#if (HCF_TYPE) & HCF_TYPE_CCX
3142//!!be careful do not use positive test on HCF_ACT_CCX_OFF, because IFB_CKIPStat is initially 0 3142//!!be careful do not use positive test on HCF_ACT_CCX_OFF, because IFB_CKIPStat is initially 0
3143 if( ifbp->IFB_CKIPStat != HCF_ACT_CCX_ON ) 3143 if( ifbp->IFB_CKIPStat != HCF_ACT_CCX_ON )
3144#endif // HCF_TYPE_CCX 3144#endif // HCF_TYPE_CCX
3145 { 3145 {
3146#if (HCF_ENCAP) == HCF_ENC 3146#if (HCF_ENCAP) == HCF_ENC
3147 HCFASSERT( len >= HFS_DAT + 2 + sizeof(snap_header), len ); 3147 HCFASSERT( len >= HFS_DAT + 2 + sizeof(snap_header), len );
3148/*34*/ i = *(wci_recordp)&bufp[HFS_STAT] & ( HFS_STAT_MSG_TYPE | HFS_STAT_ERR ); 3148 /*34*/ i = *(wci_recordp)&bufp[HFS_STAT] & ( HFS_STAT_MSG_TYPE | HFS_STAT_ERR );
3149 if ( i == HFS_STAT_TUNNEL || 3149 if ( i == HFS_STAT_TUNNEL ||
3150 ( i == HFS_STAT_1042 && hcf_encap( (wci_bufp)&bufp[HFS_TYPE] ) != ENC_TUNNEL ) ) { 3150 ( i == HFS_STAT_1042 && hcf_encap( (wci_bufp)&bufp[HFS_TYPE] ) != ENC_TUNNEL ) ) {
3151 //. copy E-II Type to 802.3 LEN field 3151 //. copy E-II Type to 802.3 LEN field
3152/*36*/ bufp[HFS_LEN ] = bufp[HFS_TYPE ]; 3152 /*36*/ bufp[HFS_LEN ] = bufp[HFS_TYPE ];
3153 bufp[HFS_LEN+1] = bufp[HFS_TYPE+1]; 3153 bufp[HFS_LEN+1] = bufp[HFS_TYPE+1];
3154 //. discard Snap by overwriting with data 3154 //. discard Snap by overwriting with data
3155 ifbp->IFB_RxLen -= (HFS_TYPE - HFS_LEN); 3155 ifbp->IFB_RxLen -= (HFS_TYPE - HFS_LEN);
3156 buf_addr -= ( HFS_TYPE - HFS_LEN ); // this happens to bring us at a DW boundary of 36 3156 buf_addr -= ( HFS_TYPE - HFS_LEN ); // this happens to bring us at a DW boundary of 36
3157 } 3157 }
3158#endif // HCF_ENC 3158#endif // HCF_ENC
3159 }
3159 } 3160 }
3160 } 3161 /*40*/ ifbp->IFB_lal = min( (hcf_16)(len - HFS_ADDR_DEST), ifbp->IFB_RxLen );
3161/*40*/ ifbp->IFB_lal = min( (hcf_16)(len - HFS_ADDR_DEST), ifbp->IFB_RxLen ); 3162 i = ifbp->IFB_lal - ( buf_addr - ( bufp + HFS_ADDR_DEST ) );
3162 i = ifbp->IFB_lal - ( buf_addr - ( bufp + HFS_ADDR_DEST ) ); 3163 get_frag( ifbp, buf_addr, i BE_PAR(0) );
3163 get_frag( ifbp, buf_addr, i BE_PAR(0) ); 3164 CALC_RX_MIC( buf_addr, i );
3164 CALC_RX_MIC( buf_addr, i );
3165#if (HCF_TYPE) & HCF_TYPE_WPA 3165#if (HCF_TYPE) & HCF_TYPE_WPA
3166 if ( ifbp->IFB_lal == ifbp->IFB_RxLen ) { 3166 if ( ifbp->IFB_lal == ifbp->IFB_RxLen ) {
3167 rc = check_mic( ifbp ); 3167 rc = check_mic( ifbp );
3168 } 3168 }
3169#endif // HCF_TYPE_WPA 3169#endif // HCF_TYPE_WPA
3170/*44*/ if ( len - HFS_ADDR_DEST >= ifbp->IFB_RxLen ) { 3170 /*44*/ if ( len - HFS_ADDR_DEST >= ifbp->IFB_RxLen ) {
3171 ifbp->IFB_RxFID = 0; 3171 ifbp->IFB_RxFID = 0;
3172 } else { /* IFB_RxFID is cleared, so you do not get another Rx_Ack at next entry of hcf_service_nic */ 3172 } else { /* IFB_RxFID is cleared, so you do not get another Rx_Ack at next entry of hcf_service_nic */
3173 stat &= (hcf_16)~HREG_EV_RX; //don't ack Rx if processing not yet completed 3173 stat &= (hcf_16)~HREG_EV_RX; //don't ack Rx if processing not yet completed
3174 }
3174 } 3175 }
3175 }
3176 // in case of DMA: signal availability of rx and/or tx packets to MSF 3176 // in case of DMA: signal availability of rx and/or tx packets to MSF
3177 IF_USE_DMA( ifbp->IFB_DmaPackets |= stat & ( HREG_EV_RDMAD | HREG_EV_TDMAD ) ); 3177 IF_USE_DMA( ifbp->IFB_DmaPackets |= stat & ( HREG_EV_RDMAD | HREG_EV_TDMAD ) );
3178 // rlav : pending HREG_EV_RDMAD or HREG_EV_TDMAD events get acknowledged here. 3178 // rlav : pending HREG_EV_RDMAD or HREG_EV_TDMAD events get acknowledged here.
3179/*54*/ stat &= (hcf_16)~( HREG_EV_SLEEP_REQ | HREG_EV_CMD | HREG_EV_ACK_REG_READY | HREG_EV_ALLOC | HREG_EV_FW_DMA ); 3179 /*54*/ stat &= (hcf_16)~( HREG_EV_SLEEP_REQ | HREG_EV_CMD | HREG_EV_ACK_REG_READY | HREG_EV_ALLOC | HREG_EV_FW_DMA );
3180//a positive mask would be easier to understand /*54*/ stat &= (hcf_16)~( HREG_EV_SLEEP_REQ | HREG_EV_CMD | HREG_EV_ACK_REG_READY | HREG_EV_ALLOC | HREG_EV_FW_DMA ); 3180//a positive mask would be easier to understand /*54*/ stat &= (hcf_16)~( HREG_EV_SLEEP_REQ | HREG_EV_CMD | HREG_EV_ACK_REG_READY | HREG_EV_ALLOC | HREG_EV_FW_DMA );
3181 IF_USE_DMA( stat &= (hcf_16)~HREG_EV_RX ); 3181 IF_USE_DMA( stat &= (hcf_16)~HREG_EV_RX );
3182 if ( stat ) { 3182 if ( stat ) {
3183 DAWA_ACK( stat ); /*DAWA*/ 3183 DAWA_ACK( stat ); /*DAWA*/
3184 } 3184 }
3185 } 3185 }
3186 HCFLOGEXIT( HCF_TRACE_SERVICE_NIC ); 3186 HCFLOGEXIT( HCF_TRACE_SERVICE_NIC );
@@ -3190,41 +3190,41 @@ CFG_DDS_TICK_TIME_STRCT ltv;
3190 3190
3191 3191
3192/************************************************************************************************************ 3192/************************************************************************************************************
3193************************** H C F S U P P O R T R O U T I N E S ****************************************** 3193 ************************** H C F S U P P O R T R O U T I N E S ******************************************
3194************************************************************************************************************/ 3194 ************************************************************************************************************/
3195 3195
3196 3196
3197/************************************************************************************************************ 3197/************************************************************************************************************
3198* 3198 *
3199*.SUBMODULE void calc_mic( hcf_32* p, hcf_32 m ) 3199 *.SUBMODULE void calc_mic( hcf_32* p, hcf_32 m )
3200*.PURPOSE calculate MIC on a quad byte. 3200 *.PURPOSE calculate MIC on a quad byte.
3201* 3201 *
3202*.ARGUMENTS 3202 *.ARGUMENTS
3203* p address of the MIC 3203 * p address of the MIC
3204* m 32 bit value to be processed by the MIC calculation engine 3204 * m 32 bit value to be processed by the MIC calculation engine
3205* 3205 *
3206*.RETURNS N.A. 3206 *.RETURNS N.A.
3207* 3207 *
3208*.DESCRIPTION 3208 *.DESCRIPTION
3209* calc_mic is the implementation of the MIC algorithm. It is a monkey-see monkey-do copy of 3209 * calc_mic is the implementation of the MIC algorithm. It is a monkey-see monkey-do copy of
3210* Michael::appendByte() 3210 * Michael::appendByte()
3211* of Appendix C of .......... 3211 * of Appendix C of ..........
3212* 3212 *
3213* 3213 *
3214*.DIAGRAM 3214 *.DIAGRAM
3215* 3215 *
3216*.NOTICE 3216 *.NOTICE
3217*.ENDDOC END DOCUMENTATION 3217 *.ENDDOC END DOCUMENTATION
3218* 3218 *
3219************************************************************************************************************/ 3219 ************************************************************************************************************/
3220 3220
3221#if (HCF_TYPE) & HCF_TYPE_WPA 3221#if (HCF_TYPE) & HCF_TYPE_WPA
3222 3222
3223#define ROL32( A, n ) ( ((A) << (n)) | ( ((A)>>(32-(n))) & ( (1UL << (n)) - 1 ) ) ) 3223#define ROL32( A, n ) ( ((A) << (n)) | ( ((A)>>(32-(n))) & ( (1UL << (n)) - 1 ) ) )
3224#define ROR32( A, n ) ROL32( (A), 32-(n) ) 3224#define ROR32( A, n ) ROL32( (A), 32-(n) )
3225 3225
3226#define L *p 3226#define L *p
3227#define R *(p+1) 3227#define R *(p+1)
3228 3228
3229void 3229void
3230calc_mic( hcf_32* p, hcf_32 m ) 3230calc_mic( hcf_32* p, hcf_32 m )
@@ -3250,38 +3250,38 @@ calc_mic( hcf_32* p, hcf_32 m )
3250 3250
3251#if (HCF_TYPE) & HCF_TYPE_WPA 3251#if (HCF_TYPE) & HCF_TYPE_WPA
3252/************************************************************************************************************ 3252/************************************************************************************************************
3253* 3253 *
3254*.SUBMODULE void calc_mic_rx_frag( IFBP ifbp, wci_bufp p, int len ) 3254 *.SUBMODULE void calc_mic_rx_frag( IFBP ifbp, wci_bufp p, int len )
3255*.PURPOSE calculate MIC on a single fragment. 3255 *.PURPOSE calculate MIC on a single fragment.
3256* 3256 *
3257*.ARGUMENTS 3257 *.ARGUMENTS
3258* ifbp address of the Interface Block 3258 * ifbp address of the Interface Block
3259* bufp (byte) address of buffer 3259 * bufp (byte) address of buffer
3260* len length in bytes of buffer specified by bufp 3260 * len length in bytes of buffer specified by bufp
3261* 3261 *
3262*.RETURNS N.A. 3262 *.RETURNS N.A.
3263* 3263 *
3264*.DESCRIPTION 3264 *.DESCRIPTION
3265* calc_mic_rx_frag ........ 3265 * calc_mic_rx_frag ........
3266* 3266 *
3267* The MIC is located in the IFB. 3267 * The MIC is located in the IFB.
3268* The MIC is separate for Tx and Rx, thus allowing hcf_send_msg to occur between hcf_service_nic and 3268 * The MIC is separate for Tx and Rx, thus allowing hcf_send_msg to occur between hcf_service_nic and
3269* hcf_rcv_msg. 3269 * hcf_rcv_msg.
3270* 3270 *
3271* 3271 *
3272*.DIAGRAM 3272 *.DIAGRAM
3273* 3273 *
3274*.NOTICE 3274 *.NOTICE
3275*.ENDDOC END DOCUMENTATION 3275 *.ENDDOC END DOCUMENTATION
3276* 3276 *
3277************************************************************************************************************/ 3277 ************************************************************************************************************/
3278void 3278void
3279calc_mic_rx_frag( IFBP ifbp, wci_bufp p, int len ) 3279calc_mic_rx_frag( IFBP ifbp, wci_bufp p, int len )
3280{ 3280{
3281static union { hcf_32 x32; hcf_16 x16[2]; hcf_8 x8[4]; } x; //* area to accumulate 4 bytes input for MIC engine 3281 static union { hcf_32 x32; hcf_16 x16[2]; hcf_8 x8[4]; } x; //* area to accumulate 4 bytes input for MIC engine
3282int i; 3282 int i;
3283 3283
3284 if ( len == -1 ) { //initialize MIC housekeeping 3284 if ( len == -1 ) { //initialize MIC housekeeping
3285 i = *(wci_recordp)&p[HFS_STAT]; 3285 i = *(wci_recordp)&p[HFS_STAT];
3286 /* i = CNV_SHORTP_TO_LITTLE(&p[HFS_STAT]); should not be neede to prevent alignment poroblems 3286 /* i = CNV_SHORTP_TO_LITTLE(&p[HFS_STAT]); should not be neede to prevent alignment poroblems
3287 * since len == -1 if and only if p is lookahaead buffer which MUST be word aligned 3287 * since len == -1 if and only if p is lookahaead buffer which MUST be word aligned
@@ -3289,12 +3289,12 @@ int i;
3289 */ 3289 */
3290 3290
3291 if ( ( i & HFS_STAT_MIC ) == 0 ) { 3291 if ( ( i & HFS_STAT_MIC ) == 0 ) {
3292 ifbp->IFB_MICRxCarry = 0xFFFF; //suppress MIC calculation 3292 ifbp->IFB_MICRxCarry = 0xFFFF; //suppress MIC calculation
3293 } else { 3293 } else {
3294 ifbp->IFB_MICRxCarry = 0; 3294 ifbp->IFB_MICRxCarry = 0;
3295//* Note that "coincidentally" the bit positions used in HFS_STAT 3295//* Note that "coincidentally" the bit positions used in HFS_STAT
3296//* correspond with the offset of the key in IFB_MICKey 3296//* correspond with the offset of the key in IFB_MICKey
3297 i = ( i & HFS_STAT_MIC_KEY_ID ) >> 10; /* coincidentally no shift needed for i itself */ 3297 i = ( i & HFS_STAT_MIC_KEY_ID ) >> 10; /* coincidentally no shift needed for i itself */
3298 ifbp->IFB_MICRx[0] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICRxKey[i ]); 3298 ifbp->IFB_MICRx[0] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICRxKey[i ]);
3299 ifbp->IFB_MICRx[1] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICRxKey[i+1]); 3299 ifbp->IFB_MICRx[1] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICRxKey[i+1]);
3300 } 3300 }
@@ -3308,11 +3308,11 @@ int i;
3308 ifbp->IFB_MICRxCarry = 4; 3308 ifbp->IFB_MICRxCarry = 4;
3309 len -= 4; 3309 len -= 4;
3310 } 3310 }
3311 } else while ( ifbp->IFB_MICRxCarry < 4 && len ) { //note for hcf_16 applies: 0xFFFF > 4 3311 } else while ( ifbp->IFB_MICRxCarry < 4 && len ) { //note for hcf_16 applies: 0xFFFF > 4
3312 x.x8[ifbp->IFB_MICRxCarry++] = *p++; 3312 x.x8[ifbp->IFB_MICRxCarry++] = *p++;
3313 len--; 3313 len--;
3314 } 3314 }
3315 while ( ifbp->IFB_MICRxCarry == 4 ) { //contrived so we have only 1 call to calc_mic so we could bring it in-line 3315 while ( ifbp->IFB_MICRxCarry == 4 ) { //contrived so we have only 1 call to calc_mic so we could bring it in-line
3316 calc_mic( ifbp->IFB_MICRx, x.x32 ); 3316 calc_mic( ifbp->IFB_MICRx, x.x32 );
3317 x.x32 = CNV_LONGP_TO_LITTLE(p); 3317 x.x32 = CNV_LONGP_TO_LITTLE(p);
3318 p += 4; 3318 p += 4;
@@ -3328,92 +3328,92 @@ int i;
3328 3328
3329#if (HCF_TYPE) & HCF_TYPE_WPA 3329#if (HCF_TYPE) & HCF_TYPE_WPA
3330/************************************************************************************************************ 3330/************************************************************************************************************
3331* 3331 *
3332*.SUBMODULE void calc_mic_tx_frag( IFBP ifbp, wci_bufp p, int len ) 3332 *.SUBMODULE void calc_mic_tx_frag( IFBP ifbp, wci_bufp p, int len )
3333*.PURPOSE calculate MIC on a single fragment. 3333 *.PURPOSE calculate MIC on a single fragment.
3334* 3334 *
3335*.ARGUMENTS 3335 *.ARGUMENTS
3336* ifbp address of the Interface Block 3336 * ifbp address of the Interface Block
3337* bufp (byte) address of buffer 3337 * bufp (byte) address of buffer
3338* len length in bytes of buffer specified by bufp 3338 * len length in bytes of buffer specified by bufp
3339* 3339 *
3340*.RETURNS N.A. 3340 *.RETURNS N.A.
3341* 3341 *
3342*.DESCRIPTION 3342 *.DESCRIPTION
3343* calc_mic_tx_frag ........ 3343 * calc_mic_tx_frag ........
3344* 3344 *
3345* The MIC is located in the IFB. 3345 * The MIC is located in the IFB.
3346* The MIC is separate for Tx and Rx, thus allowing hcf_send_msg to occur between hcf_service_nic and 3346 * The MIC is separate for Tx and Rx, thus allowing hcf_send_msg to occur between hcf_service_nic and
3347* hcf_rcv_msg. 3347 * hcf_rcv_msg.
3348* 3348 *
3349* 3349 *
3350*.DIAGRAM 3350 *.DIAGRAM
3351* 3351 *
3352*.NOTICE 3352 *.NOTICE
3353*.ENDDOC END DOCUMENTATION 3353 *.ENDDOC END DOCUMENTATION
3354* 3354 *
3355************************************************************************************************************/ 3355 ************************************************************************************************************/
3356void 3356void
3357calc_mic_tx_frag( IFBP ifbp, wci_bufp p, int len ) 3357calc_mic_tx_frag( IFBP ifbp, wci_bufp p, int len )
3358{ 3358{
3359static union { hcf_32 x32; hcf_16 x16[2]; hcf_8 x8[4]; } x; //* area to accumulate 4 bytes input for MIC engine 3359 static union { hcf_32 x32; hcf_16 x16[2]; hcf_8 x8[4]; } x; //* area to accumulate 4 bytes input for MIC engine
3360 3360
3361 //if initialization request 3361 //if initialization request
3362 if ( len == -1 ) { 3362 if ( len == -1 ) {
3363 //. presume MIC calculation disabled 3363 //. presume MIC calculation disabled
3364 ifbp->IFB_MICTxCarry = 0xFFFF; 3364 ifbp->IFB_MICTxCarry = 0xFFFF;
3365 //. if MIC calculation enabled 3365 //. if MIC calculation enabled
3366 if ( ifbp->IFB_MICTxCntl ) { 3366 if ( ifbp->IFB_MICTxCntl ) {
3367 //. . clear MIC carry 3367 //. . clear MIC carry
3368 ifbp->IFB_MICTxCarry = 0; 3368 ifbp->IFB_MICTxCarry = 0;
3369 //. . initialize MIC-engine 3369 //. . initialize MIC-engine
3370 ifbp->IFB_MICTx[0] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICTxKey[0]); /*Tx always uses Key 0 */ 3370 ifbp->IFB_MICTx[0] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICTxKey[0]); /*Tx always uses Key 0 */
3371 ifbp->IFB_MICTx[1] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICTxKey[1]); 3371 ifbp->IFB_MICTx[1] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICTxKey[1]);
3372 } 3372 }
3373 //else 3373 //else
3374 } else { 3374 } else {
3375 //. if MIC enabled (Tx) / if MIC present (Rx) 3375 //. if MIC enabled (Tx) / if MIC present (Rx)
3376 //. and no carry from previous calc_mic_frag 3376 //. and no carry from previous calc_mic_frag
3377 if ( ifbp->IFB_MICTxCarry == 0 ) { 3377 if ( ifbp->IFB_MICTxCarry == 0 ) {
3378 //. . preset accu with 4 bytes from buffer 3378 //. . preset accu with 4 bytes from buffer
3379 x.x32 = CNV_LONGP_TO_LITTLE(p); 3379 x.x32 = CNV_LONGP_TO_LITTLE(p);
3380 //. . adjust pointer accordingly 3380 //. . adjust pointer accordingly
3381 p += 4; 3381 p += 4;
3382 //. . if buffer contained less then 4 bytes 3382 //. . if buffer contained less then 4 bytes
3383 if ( len < 4 ) { 3383 if ( len < 4 ) {
3384 //. . . promote valid bytes in accu to carry 3384 //. . . promote valid bytes in accu to carry
3385 //. . . flag accu to contain incomplete double word 3385 //. . . flag accu to contain incomplete double word
3386 ifbp->IFB_MICTxCarry = (hcf_16)len; 3386 ifbp->IFB_MICTxCarry = (hcf_16)len;
3387 //. . else 3387 //. . else
3388 } else { 3388 } else {
3389 //. . . flag accu to contain complete double word 3389 //. . . flag accu to contain complete double word
3390 ifbp->IFB_MICTxCarry = 4; 3390 ifbp->IFB_MICTxCarry = 4;
3391 //. . adjust remaining buffer length 3391 //. . adjust remaining buffer length
3392 len -= 4; 3392 len -= 4;
3393 } 3393 }
3394 //. else if MIC enabled 3394 //. else if MIC enabled
3395 //. and if carry bytes from previous calc_mic_tx_frag 3395 //. and if carry bytes from previous calc_mic_tx_frag
3396 //. . move (1-3) bytes from carry into accu 3396 //. . move (1-3) bytes from carry into accu
3397 } else while ( ifbp->IFB_MICTxCarry < 4 && len ) { /* note for hcf_16 applies: 0xFFFF > 4 */ 3397 } else while ( ifbp->IFB_MICTxCarry < 4 && len ) { /* note for hcf_16 applies: 0xFFFF > 4 */
3398 x.x8[ifbp->IFB_MICTxCarry++] = *p++; 3398 x.x8[ifbp->IFB_MICTxCarry++] = *p++;
3399 len--; 3399 len--;
3400 } 3400 }
3401 //. while accu contains complete double word 3401 //. while accu contains complete double word
3402 //. and MIC enabled 3402 //. and MIC enabled
3403 while ( ifbp->IFB_MICTxCarry == 4 ) { 3403 while ( ifbp->IFB_MICTxCarry == 4 ) {
3404 //. . pass accu to MIC engine 3404 //. . pass accu to MIC engine
3405 calc_mic( ifbp->IFB_MICTx, x.x32 ); 3405 calc_mic( ifbp->IFB_MICTx, x.x32 );
3406 //. . copy next 4 bytes from buffer to accu 3406 //. . copy next 4 bytes from buffer to accu
3407 x.x32 = CNV_LONGP_TO_LITTLE(p); 3407 x.x32 = CNV_LONGP_TO_LITTLE(p);
3408 //. . adjust buffer pointer 3408 //. . adjust buffer pointer
3409 p += 4; 3409 p += 4;
3410 //. . if buffer contained less then 4 bytes 3410 //. . if buffer contained less then 4 bytes
3411 //. . . promote valid bytes in accu to carry 3411 //. . . promote valid bytes in accu to carry
3412 //. . . flag accu to contain incomplete double word 3412 //. . . flag accu to contain incomplete double word
3413 if ( len < 4 ) { 3413 if ( len < 4 ) {
3414 ifbp->IFB_MICTxCarry = (hcf_16)len; 3414 ifbp->IFB_MICTxCarry = (hcf_16)len;
3415 } 3415 }
3416 //. . adjust remaining buffer length 3416 //. . adjust remaining buffer length
3417 len -= 4; 3417 len -= 4;
3418 } 3418 }
3419 } 3419 }
@@ -3423,94 +3423,94 @@ static union { hcf_32 x32; hcf_16 x16[2]; hcf_8 x8[4]; } x; //* area to accumula
3423 3423
3424#if HCF_PROT_TIME 3424#if HCF_PROT_TIME
3425/************************************************************************************************************ 3425/************************************************************************************************************
3426* 3426 *
3427*.SUBMODULE void calibrate( IFBP ifbp ) 3427 *.SUBMODULE void calibrate( IFBP ifbp )
3428*.PURPOSE calibrates the S/W protection counter against the Hermes Timer tick. 3428 *.PURPOSE calibrates the S/W protection counter against the Hermes Timer tick.
3429* 3429 *
3430*.ARGUMENTS 3430 *.ARGUMENTS
3431* ifbp address of the Interface Block 3431 * ifbp address of the Interface Block
3432* 3432 *
3433*.RETURNS N.A. 3433 *.RETURNS N.A.
3434* 3434 *
3435*.DESCRIPTION 3435 *.DESCRIPTION
3436* calibrates the S/W protection counter against the Hermes Timer tick 3436 * calibrates the S/W protection counter against the Hermes Timer tick
3437* IFB_TickIni is the value used to initialize the S/W protection counter such that the expiration period 3437 * IFB_TickIni is the value used to initialize the S/W protection counter such that the expiration period
3438* more or less independent of the processor speed. If IFB_TickIni is not yet calibrated, it is done now. 3438 * more or less independent of the processor speed. If IFB_TickIni is not yet calibrated, it is done now.
3439* This calibration is "reasonably" accurate because the Hermes is in a quiet state as a result of the 3439 * This calibration is "reasonably" accurate because the Hermes is in a quiet state as a result of the
3440* Initialize command. 3440 * Initialize command.
3441* 3441 *
3442* 3442 *
3443*.DIAGRAM 3443 *.DIAGRAM
3444* 3444 *
3445*1: IFB_TickIni is initialized at INI_TICK_INI by hcf_connect. If calibrate succeeds, IFB_TickIni is 3445 *1: IFB_TickIni is initialized at INI_TICK_INI by hcf_connect. If calibrate succeeds, IFB_TickIni is
3446* guaranteed to be changed. As a consequence there will be only 1 shot at calibration (regardless of the 3446 * guaranteed to be changed. As a consequence there will be only 1 shot at calibration (regardless of the
3447* number of init calls) under normal circumstances. 3447 * number of init calls) under normal circumstances.
3448*2: Calibration is done HCF_PROT_TIME_CNT times. This diminish the effects of jitter and interference, 3448 *2: Calibration is done HCF_PROT_TIME_CNT times. This diminish the effects of jitter and interference,
3449* especially in a pre-emptive environment. HCF_PROT_TIME_CNT is in the range of 16 through 32 and derived 3449 * especially in a pre-emptive environment. HCF_PROT_TIME_CNT is in the range of 16 through 32 and derived
3450* from the HCF_PROT_TIME specified by the MSF programmer. The divisor needed to scale HCF_PROT_TIME into the 3450 * from the HCF_PROT_TIME specified by the MSF programmer. The divisor needed to scale HCF_PROT_TIME into the
3451* 16-32 range, is used as a multiplicator after the calibration, to scale the found value back to the 3451 * 16-32 range, is used as a multiplicator after the calibration, to scale the found value back to the
3452* requested range. This way a compromise is achieved between accuracy and duration of the calibration 3452 * requested range. This way a compromise is achieved between accuracy and duration of the calibration
3453* process. 3453 * process.
3454*3: Acknowledge the Timer Tick Event. 3454 *3: Acknowledge the Timer Tick Event.
3455* Each cycle is limited to at most INI_TICK_INI samples of the TimerTick status of the Hermes. 3455 * Each cycle is limited to at most INI_TICK_INI samples of the TimerTick status of the Hermes.
3456* Since the start of calibrate is unrelated to the Hermes Internal Timer, the first interval may last from 0 3456 * Since the start of calibrate is unrelated to the Hermes Internal Timer, the first interval may last from 0
3457* to the normal interval, all subsequent intervals should be the full length of the Hermes Tick interval. 3457 * to the normal interval, all subsequent intervals should be the full length of the Hermes Tick interval.
3458* The Hermes Timer Tick is not reprogrammed by the HCF, hence it is running at the default of 10 k 3458 * The Hermes Timer Tick is not reprogrammed by the HCF, hence it is running at the default of 10 k
3459* microseconds. 3459 * microseconds.
3460*4: If the Timer Tick Event is continuously up (prot_cnt still has the value INI_TICK_INI) or no Timer Tick 3460 *4: If the Timer Tick Event is continuously up (prot_cnt still has the value INI_TICK_INI) or no Timer Tick
3461* Event occurred before the protection counter expired, reset IFB_TickIni to INI_TICK_INI, 3461 * Event occurred before the protection counter expired, reset IFB_TickIni to INI_TICK_INI,
3462* set the defunct bit of IFB_CardStat (thus rendering the Hermes inoperable) and exit the calibrate routine. 3462 * set the defunct bit of IFB_CardStat (thus rendering the Hermes inoperable) and exit the calibrate routine.
3463*8: ifbp->IFB_TickIni is multiplied to scale the found value back to the requested range as explained under 2. 3463 *8: ifbp->IFB_TickIni is multiplied to scale the found value back to the requested range as explained under 2.
3464* 3464 *
3465*.NOTICE 3465 *.NOTICE
3466* o Although there are a number of viewpoints possible, calibrate() uses as error strategy that a single 3466 * o Although there are a number of viewpoints possible, calibrate() uses as error strategy that a single
3467* failure of the Hermes TimerTick is considered fatal. 3467 * failure of the Hermes TimerTick is considered fatal.
3468* o There is no hard and concrete time-out value defined for Hermes activities. The default 1 seconds is 3468 * o There is no hard and concrete time-out value defined for Hermes activities. The default 1 seconds is
3469* believed to be sufficiently "relaxed" for real life and to be sufficiently short to be still useful in an 3469 * believed to be sufficiently "relaxed" for real life and to be sufficiently short to be still useful in an
3470* environment with humans. 3470 * environment with humans.
3471* o Note that via IFB_DefunctStat time outs in cmd_wait and in hcfio_string block all Hermes access till the 3471 * o Note that via IFB_DefunctStat time outs in cmd_wait and in hcfio_string block all Hermes access till the
3472* next init so functions which call a mix of cmd_wait and hcfio_string only need to check the return status 3472 * next init so functions which call a mix of cmd_wait and hcfio_string only need to check the return status
3473* of the last call 3473 * of the last call
3474* o The return code is preset at Time out. 3474 * o The return code is preset at Time out.
3475* The additional complication that no calibrated value for the protection count can be assumed since 3475 * The additional complication that no calibrated value for the protection count can be assumed since
3476* calibrate() does not yet have determined a calibrated value (a catch 22), is handled by setting the 3476 * calibrate() does not yet have determined a calibrated value (a catch 22), is handled by setting the
3477* initial value at INI_TICK_INI (by hcf_connect). This approach is considered safe, because: 3477 * initial value at INI_TICK_INI (by hcf_connect). This approach is considered safe, because:
3478* - the HCF does not use the pipeline mechanism of Hermes commands. 3478 * - the HCF does not use the pipeline mechanism of Hermes commands.
3479* - the likelihood of failure (the only time when protection count is relevant) is small. 3479 * - the likelihood of failure (the only time when protection count is relevant) is small.
3480* - the time will be sufficiently large on a fast machine (busy bit drops on good NIC before counter 3480 * - the time will be sufficiently large on a fast machine (busy bit drops on good NIC before counter
3481* expires) 3481 * expires)
3482* - the time will be sufficiently small on a slow machine (counter expires on bad NIC before the end user 3482 * - the time will be sufficiently small on a slow machine (counter expires on bad NIC before the end user
3483* switches the power off in despair 3483 * switches the power off in despair
3484* The time needed to wrap a 32 bit counter around is longer than many humans want to wait, hence the more or 3484 * The time needed to wrap a 32 bit counter around is longer than many humans want to wait, hence the more or
3485* less arbitrary value of 0x40000L is chosen, assuming it does not take too long on an XT and is not too 3485 * less arbitrary value of 0x40000L is chosen, assuming it does not take too long on an XT and is not too
3486* short on a scream-machine. 3486 * short on a scream-machine.
3487* 3487 *
3488*.ENDDOC END DOCUMENTATION 3488 *.ENDDOC END DOCUMENTATION
3489* 3489 *
3490************************************************************************************************************/ 3490 ************************************************************************************************************/
3491HCF_STATIC void 3491HCF_STATIC void
3492calibrate( IFBP ifbp ) 3492calibrate( IFBP ifbp )
3493{ 3493{
3494int cnt = HCF_PROT_TIME_CNT; 3494 int cnt = HCF_PROT_TIME_CNT;
3495hcf_32 prot_cnt; 3495 hcf_32 prot_cnt;
3496 3496
3497 HCFTRACE( ifbp, HCF_TRACE_CALIBRATE ); 3497 HCFTRACE( ifbp, HCF_TRACE_CALIBRATE );
3498 if ( ifbp->IFB_TickIni == INI_TICK_INI ) { /*1*/ 3498 if ( ifbp->IFB_TickIni == INI_TICK_INI ) { /*1*/
3499 ifbp->IFB_TickIni = 0; /*2*/ 3499 ifbp->IFB_TickIni = 0; /*2*/
3500 while ( cnt-- ) { 3500 while ( cnt-- ) {
3501 prot_cnt = INI_TICK_INI; 3501 prot_cnt = INI_TICK_INI;
3502 OPW( HREG_EV_ACK, HREG_EV_TICK ); /*3*/ 3502 OPW( HREG_EV_ACK, HREG_EV_TICK ); /*3*/
3503 while ( (IPW( HREG_EV_STAT ) & HREG_EV_TICK) == 0 && --prot_cnt ) { 3503 while ( (IPW( HREG_EV_STAT ) & HREG_EV_TICK) == 0 && --prot_cnt ) {
3504 ifbp->IFB_TickIni++; 3504 ifbp->IFB_TickIni++;
3505 }
3506 if ( prot_cnt == 0 || prot_cnt == INI_TICK_INI ) { /*4*/
3507 ifbp->IFB_TickIni = INI_TICK_INI;
3508 ifbp->IFB_DefunctStat = HCF_ERR_DEFUNCT_TIMER;
3509 ifbp->IFB_CardStat |= CARD_STAT_DEFUNCT;
3510 HCFASSERT( DO_ASSERT, prot_cnt );
3511 }
3512 } 3505 }
3513 ifbp->IFB_TickIni <<= HCF_PROT_TIME_SHFT; /*8*/ 3506 if ( prot_cnt == 0 || prot_cnt == INI_TICK_INI ) { /*4*/
3507 ifbp->IFB_TickIni = INI_TICK_INI;
3508 ifbp->IFB_DefunctStat = HCF_ERR_DEFUNCT_TIMER;
3509 ifbp->IFB_CardStat |= CARD_STAT_DEFUNCT;
3510 HCFASSERT( DO_ASSERT, prot_cnt );
3511 }
3512 }
3513 ifbp->IFB_TickIni <<= HCF_PROT_TIME_SHFT; /*8*/
3514 } 3514 }
3515 HCFTRACE( ifbp, HCF_TRACE_CALIBRATE | HCF_TRACE_EXIT ); 3515 HCFTRACE( ifbp, HCF_TRACE_CALIBRATE | HCF_TRACE_EXIT );
3516} // calibrate 3516} // calibrate
@@ -3520,48 +3520,48 @@ hcf_32 prot_cnt;
3520#if (HCF_DL_ONLY) == 0 3520#if (HCF_DL_ONLY) == 0
3521#if (HCF_TYPE) & HCF_TYPE_WPA 3521#if (HCF_TYPE) & HCF_TYPE_WPA
3522/************************************************************************************************************ 3522/************************************************************************************************************
3523* 3523 *
3524*.SUBMODULE int check_mic( IFBP ifbp ) 3524 *.SUBMODULE int check_mic( IFBP ifbp )
3525*.PURPOSE verifies the MIC of a received non-USB frame. 3525 *.PURPOSE verifies the MIC of a received non-USB frame.
3526* 3526 *
3527*.ARGUMENTS 3527 *.ARGUMENTS
3528* ifbp address of the Interface Block 3528 * ifbp address of the Interface Block
3529* 3529 *
3530*.RETURNS 3530 *.RETURNS
3531* HCF_SUCCESS 3531 * HCF_SUCCESS
3532* HCF_ERR_MIC 3532 * HCF_ERR_MIC
3533* 3533 *
3534*.DESCRIPTION 3534 *.DESCRIPTION
3535* 3535 *
3536* 3536 *
3537*.DIAGRAM 3537 *.DIAGRAM
3538* 3538 *
3539*4: test whether or not a MIC is reported by the Hermes 3539 *4: test whether or not a MIC is reported by the Hermes
3540*14: the calculated MIC and the received MIC are compared, the return status is set when there is a mismatch 3540 *14: the calculated MIC and the received MIC are compared, the return status is set when there is a mismatch
3541* 3541 *
3542*.NOTICE 3542 *.NOTICE
3543*.ENDDOC END DOCUMENTATION 3543 *.ENDDOC END DOCUMENTATION
3544* 3544 *
3545************************************************************************************************************/ 3545 ************************************************************************************************************/
3546int 3546int
3547check_mic( IFBP ifbp ) 3547check_mic( IFBP ifbp )
3548{ 3548{
3549int rc = HCF_SUCCESS; 3549 int rc = HCF_SUCCESS;
3550hcf_32 x32[2]; //* area to save rcvd 8 bytes MIC 3550 hcf_32 x32[2]; //* area to save rcvd 8 bytes MIC
3551 3551
3552 //if MIC present in RxFS 3552 //if MIC present in RxFS
3553 if ( *(wci_recordp)&ifbp->IFB_lap[-HFS_ADDR_DEST] & HFS_STAT_MIC ) { 3553 if ( *(wci_recordp)&ifbp->IFB_lap[-HFS_ADDR_DEST] & HFS_STAT_MIC ) {
3554 //or if ( ifbp->IFB_MICRxCarry != 0xFFFF ) 3554 //or if ( ifbp->IFB_MICRxCarry != 0xFFFF )
3555 CALC_RX_MIC( mic_pad, 8 ); //. process up to 3 remaining bytes of data and append 5 to 8 bytes of padding to MIC calculation 3555 CALC_RX_MIC( mic_pad, 8 ); //. process up to 3 remaining bytes of data and append 5 to 8 bytes of padding to MIC calculation
3556 get_frag( ifbp, (wci_bufp)x32, 8 BE_PAR(0));//. get 8 byte MIC from NIC 3556 get_frag( ifbp, (wci_bufp)x32, 8 BE_PAR(0));//. get 8 byte MIC from NIC
3557 //. if calculated and received MIC do not match 3557 //. if calculated and received MIC do not match
3558 //. . set status at HCF_ERR_MIC 3558 //. . set status at HCF_ERR_MIC
3559/*14*/ if ( x32[0] != CNV_LITTLE_TO_LONG(ifbp->IFB_MICRx[0]) || 3559 /*14*/ if ( x32[0] != CNV_LITTLE_TO_LONG(ifbp->IFB_MICRx[0]) ||
3560 x32[1] != CNV_LITTLE_TO_LONG(ifbp->IFB_MICRx[1]) ) { 3560 x32[1] != CNV_LITTLE_TO_LONG(ifbp->IFB_MICRx[1]) ) {
3561 rc = HCF_ERR_MIC; 3561 rc = HCF_ERR_MIC;
3562 } 3562 }
3563 } 3563 }
3564 //return status 3564 //return status
3565 return rc; 3565 return rc;
3566} // check_mic 3566} // check_mic
3567#endif // HCF_TYPE_WPA 3567#endif // HCF_TYPE_WPA
@@ -3569,61 +3569,61 @@ hcf_32 x32[2]; //* area to save rcvd 8 bytes MIC
3569 3569
3570 3570
3571/************************************************************************************************************ 3571/************************************************************************************************************
3572* 3572 *
3573*.SUBMODULE int cmd_cmpl( IFBP ifbp ) 3573 *.SUBMODULE int cmd_cmpl( IFBP ifbp )
3574*.PURPOSE waits for Hermes Command Completion. 3574 *.PURPOSE waits for Hermes Command Completion.
3575* 3575 *
3576*.ARGUMENTS 3576 *.ARGUMENTS
3577* ifbp address of the Interface Block 3577 * ifbp address of the Interface Block
3578* 3578 *
3579*.RETURNS 3579 *.RETURNS
3580* IFB_DefunctStat 3580 * IFB_DefunctStat
3581* HCF_ERR_TIME_OUT 3581 * HCF_ERR_TIME_OUT
3582* HCF_ERR_DEFUNCT_CMD_SEQ 3582 * HCF_ERR_DEFUNCT_CMD_SEQ
3583* HCF_SUCCESS 3583 * HCF_SUCCESS
3584* 3584 *
3585*.DESCRIPTION 3585 *.DESCRIPTION
3586* 3586 *
3587* 3587 *
3588*.DIAGRAM 3588 *.DIAGRAM
3589* 3589 *
3590*2: Once cmd_cmpl is called, the Busy option bit in IFB_Cmd must be cleared 3590 *2: Once cmd_cmpl is called, the Busy option bit in IFB_Cmd must be cleared
3591*4: If Status register and command code don't match either: 3591 *4: If Status register and command code don't match either:
3592* - the Hermes and Host are out of sync ( a fatal error) 3592 * - the Hermes and Host are out of sync ( a fatal error)
3593* - error bits are reported via the Status Register. 3593 * - error bits are reported via the Status Register.
3594* Out of sync is considered fatal and brings the HCF in Defunct mode 3594 * Out of sync is considered fatal and brings the HCF in Defunct mode
3595* Errors reported via the Status Register should be caused by sequence violations in Hermes command 3595 * Errors reported via the Status Register should be caused by sequence violations in Hermes command
3596* sequences and hence these bugs should have been found during engineering testing. Since there is no 3596 * sequences and hence these bugs should have been found during engineering testing. Since there is no
3597* strategy to cope with this problem, it might as well be ignored at run time. Note that for any particular 3597 * strategy to cope with this problem, it might as well be ignored at run time. Note that for any particular
3598* situation where a strategy is formulated to handle the consequences of a particular bug causing a 3598 * situation where a strategy is formulated to handle the consequences of a particular bug causing a
3599* particular Error situation reported via the Status Register, the bug should be removed rather than adding 3599 * particular Error situation reported via the Status Register, the bug should be removed rather than adding
3600* logic to cope with the consequences of the bug. 3600 * logic to cope with the consequences of the bug.
3601* There have been HCF versions where an error report via the Status Register even brought the HCF in defunct 3601 * There have been HCF versions where an error report via the Status Register even brought the HCF in defunct
3602* mode (although it was not yet named like that at that time). This is particular undesirable behavior for a 3602 * mode (although it was not yet named like that at that time). This is particular undesirable behavior for a
3603* general library. 3603 * general library.
3604* Simply reporting the error (as "interesting") is debatable. There also have been HCF versions with this 3604 * Simply reporting the error (as "interesting") is debatable. There also have been HCF versions with this
3605* strategy using the "vague" HCF_FAILURE code. 3605 * strategy using the "vague" HCF_FAILURE code.
3606* The error is reported via: 3606 * The error is reported via:
3607* - MiscErr tally of the HCF Tally set 3607 * - MiscErr tally of the HCF Tally set
3608* - the (informative) fields IFB_ErrCmd and IFB_ErrQualifier 3608 * - the (informative) fields IFB_ErrCmd and IFB_ErrQualifier
3609* - the assert mechanism 3609 * - the assert mechanism
3610*8: Here the Defunct case and the Status error are separately treated 3610 *8: Here the Defunct case and the Status error are separately treated
3611* 3611 *
3612* 3612 *
3613*.ENDDOC END DOCUMENTATION 3613 *.ENDDOC END DOCUMENTATION
3614* 3614 *
3615************************************************************************************************************/ 3615 ************************************************************************************************************/
3616HCF_STATIC int 3616HCF_STATIC int
3617cmd_cmpl( IFBP ifbp ) 3617cmd_cmpl( IFBP ifbp )
3618{ 3618{
3619 3619
3620PROT_CNT_INI; 3620 PROT_CNT_INI;
3621int rc = HCF_SUCCESS; 3621 int rc = HCF_SUCCESS;
3622hcf_16 stat; 3622 hcf_16 stat;
3623 3623
3624 HCFLOGENTRY( HCF_TRACE_CMD_CPL, ifbp->IFB_Cmd ); 3624 HCFLOGENTRY( HCF_TRACE_CMD_CPL, ifbp->IFB_Cmd );
3625 ifbp->IFB_Cmd &= ~HCMD_BUSY; /* 2 */ 3625 ifbp->IFB_Cmd &= ~HCMD_BUSY; /* 2 */
3626 HCF_WAIT_WHILE( (IPW( HREG_EV_STAT) & HREG_EV_CMD) == 0 ); /* 4 */ 3626 HCF_WAIT_WHILE( (IPW( HREG_EV_STAT) & HREG_EV_CMD) == 0 ); /* 4 */
3627 stat = IPW( HREG_STAT ); 3627 stat = IPW( HREG_STAT );
3628#if HCF_PROT_TIME 3628#if HCF_PROT_TIME
3629 if ( prot_cnt == 0 ) { 3629 if ( prot_cnt == 0 ) {
@@ -3634,8 +3634,8 @@ hcf_16 stat;
3634#endif // HCF_PROT_TIME 3634#endif // HCF_PROT_TIME
3635 { 3635 {
3636 DAWA_ACK( HREG_EV_CMD ); 3636 DAWA_ACK( HREG_EV_CMD );
3637/*4*/ if ( stat != (ifbp->IFB_Cmd & HCMD_CMD_CODE) ) { 3637 /*4*/ if ( stat != (ifbp->IFB_Cmd & HCMD_CMD_CODE) ) {
3638/*8*/ if ( ( (stat ^ ifbp->IFB_Cmd ) & HCMD_CMD_CODE) != 0 ) { 3638 /*8*/ if ( ( (stat ^ ifbp->IFB_Cmd ) & HCMD_CMD_CODE) != 0 ) {
3639 rc = ifbp->IFB_DefunctStat = HCF_ERR_DEFUNCT_CMD_SEQ; 3639 rc = ifbp->IFB_DefunctStat = HCF_ERR_DEFUNCT_CMD_SEQ;
3640 ifbp->IFB_CardStat |= CARD_STAT_DEFUNCT; 3640 ifbp->IFB_CardStat |= CARD_STAT_DEFUNCT;
3641 } 3641 }
@@ -3653,75 +3653,75 @@ hcf_16 stat;
3653 3653
3654 3654
3655/************************************************************************************************************ 3655/************************************************************************************************************
3656* 3656 *
3657*.SUBMODULE int cmd_exe( IFBP ifbp, int cmd_code, int par_0 ) 3657 *.SUBMODULE int cmd_exe( IFBP ifbp, int cmd_code, int par_0 )
3658*.PURPOSE Executes synchronous part of Hermes Command and - optionally - waits for Command Completion. 3658 *.PURPOSE Executes synchronous part of Hermes Command and - optionally - waits for Command Completion.
3659* 3659 *
3660*.ARGUMENTS 3660 *.ARGUMENTS
3661* ifbp address of the Interface Block 3661 * ifbp address of the Interface Block
3662* cmd_code 3662 * cmd_code
3663* par_0 3663 * par_0
3664* 3664 *
3665*.RETURNS 3665 *.RETURNS
3666* IFB_DefunctStat 3666 * IFB_DefunctStat
3667* HCF_ERR_DEFUNCT_CMD_SEQ 3667 * HCF_ERR_DEFUNCT_CMD_SEQ
3668* HCF_SUCCESS 3668 * HCF_SUCCESS
3669* HCF_ERR_TO_BE_ADDED <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 3669 * HCF_ERR_TO_BE_ADDED <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
3670* 3670 *
3671*.DESCRIPTION 3671 *.DESCRIPTION
3672* Executes synchronous Hermes Command and waits for Command Completion 3672 * Executes synchronous Hermes Command and waits for Command Completion
3673* 3673 *
3674* The general HCF strategy is to wait for command completion. As a consequence: 3674 * The general HCF strategy is to wait for command completion. As a consequence:
3675* - the read of the busy bit before writing the command register is superfluous 3675 * - the read of the busy bit before writing the command register is superfluous
3676* - the Hermes requirement that no Inquiry command may be executed if there is still an unacknowledged 3676 * - the Hermes requirement that no Inquiry command may be executed if there is still an unacknowledged
3677* Inquiry command outstanding, is automatically met. 3677 * Inquiry command outstanding, is automatically met.
3678* The Tx command uses the "Busy" bit in the cmd_code parameter to deviate from this general HCF strategy. 3678 * The Tx command uses the "Busy" bit in the cmd_code parameter to deviate from this general HCF strategy.
3679* The idea is that by not busy-waiting on completion of this frequently used command the processor 3679 * The idea is that by not busy-waiting on completion of this frequently used command the processor
3680* utilization is diminished while using the busy-wait on all other seldom used commands the flow is kept 3680 * utilization is diminished while using the busy-wait on all other seldom used commands the flow is kept
3681* simple. 3681 * simple.
3682* 3682 *
3683* 3683 *
3684* 3684 *
3685*.DIAGRAM 3685 *.DIAGRAM
3686* 3686 *
3687*1: skip the body of cmd_exe when in defunct mode or when - based on the S/W Support register write and 3687 *1: skip the body of cmd_exe when in defunct mode or when - based on the S/W Support register write and
3688* read back test - there is apparently no NIC. 3688 * read back test - there is apparently no NIC.
3689* Note: we gave up on the "old" strategy to write the S/W Support register at magic only when needed. Due to 3689 * Note: we gave up on the "old" strategy to write the S/W Support register at magic only when needed. Due to
3690* the intricateness of Hermes F/W varieties ( which behave differently as far as corruption of the S/W 3690 * the intricateness of Hermes F/W varieties ( which behave differently as far as corruption of the S/W
3691* Support register is involved), the increasing number of Hermes commands which do an implicit initialize 3691 * Support register is involved), the increasing number of Hermes commands which do an implicit initialize
3692* (thus modifying the S/W Support register) and the workarounds of some OS/Support S/W induced aspects (e.g. 3692 * (thus modifying the S/W Support register) and the workarounds of some OS/Support S/W induced aspects (e.g.
3693* the System Soft library at WinNT which postpones the actual mapping of I/O space up to 30 seconds after 3693 * the System Soft library at WinNT which postpones the actual mapping of I/O space up to 30 seconds after
3694* giving the go-ahead), the "magic" strategy is now reduced to a simple write and read back. This means that 3694 * giving the go-ahead), the "magic" strategy is now reduced to a simple write and read back. This means that
3695* problems like a bug tramping over the memory mapped Hermes registers will no longer be noticed as side 3695 * problems like a bug tramping over the memory mapped Hermes registers will no longer be noticed as side
3696* effect of the S/W Support register check. 3696 * effect of the S/W Support register check.
3697*2: check whether the preceding command skipped the busy wait and if so, check for command completion 3697 *2: check whether the preceding command skipped the busy wait and if so, check for command completion
3698* 3698 *
3699*.NOTICE 3699 *.NOTICE
3700*.ENDDOC END DOCUMENTATION 3700 *.ENDDOC END DOCUMENTATION
3701* 3701 *
3702************************************************************************************************************/ 3702 ************************************************************************************************************/
3703 3703
3704HCF_STATIC int 3704HCF_STATIC int
3705cmd_exe( IFBP ifbp, hcf_16 cmd_code, hcf_16 par_0 ) //if HCMD_BUSY of cmd_code set, then do NOT wait for completion 3705cmd_exe( IFBP ifbp, hcf_16 cmd_code, hcf_16 par_0 ) //if HCMD_BUSY of cmd_code set, then do NOT wait for completion
3706{ 3706{
3707int rc; 3707 int rc;
3708 3708
3709 HCFLOGENTRY( HCF_TRACE_CMD_EXE, cmd_code ); 3709 HCFLOGENTRY( HCF_TRACE_CMD_EXE, cmd_code );
3710 HCFASSERT( (cmd_code & HCMD_CMD_CODE) != HCMD_TX || cmd_code & HCMD_BUSY, cmd_code ); //Tx must have Busy bit set 3710 HCFASSERT( (cmd_code & HCMD_CMD_CODE) != HCMD_TX || cmd_code & HCMD_BUSY, cmd_code ); //Tx must have Busy bit set
3711 OPW( HREG_SW_0, HCF_MAGIC ); 3711 OPW( HREG_SW_0, HCF_MAGIC );
3712 if ( IPW( HREG_SW_0 ) == HCF_MAGIC ) { /* 1 */ 3712 if ( IPW( HREG_SW_0 ) == HCF_MAGIC ) { /* 1 */
3713 rc = ifbp->IFB_DefunctStat; 3713 rc = ifbp->IFB_DefunctStat;
3714 } 3714 }
3715 else rc = HCF_ERR_NO_NIC; 3715 else rc = HCF_ERR_NO_NIC;
3716 if ( rc == HCF_SUCCESS ) { 3716 if ( rc == HCF_SUCCESS ) {
3717 //;?is this a hot idea, better MEASURE performance impact 3717 //;?is this a hot idea, better MEASURE performance impact
3718/*2*/ if ( ifbp->IFB_Cmd & HCMD_BUSY ) { 3718 /*2*/ if ( ifbp->IFB_Cmd & HCMD_BUSY ) {
3719 rc = cmd_cmpl( ifbp ); 3719 rc = cmd_cmpl( ifbp );
3720 } 3720 }
3721 OPW( HREG_PARAM_0, par_0 ); 3721 OPW( HREG_PARAM_0, par_0 );
3722 OPW( HREG_CMD, cmd_code &~HCMD_BUSY ); 3722 OPW( HREG_CMD, cmd_code &~HCMD_BUSY );
3723 ifbp->IFB_Cmd = cmd_code; 3723 ifbp->IFB_Cmd = cmd_code;
3724 if ( (cmd_code & HCMD_BUSY) == 0 ) { //;?is this a hot idea, better MEASURE performance impact 3724 if ( (cmd_code & HCMD_BUSY) == 0 ) { //;?is this a hot idea, better MEASURE performance impact
3725 rc = cmd_cmpl( ifbp ); 3725 rc = cmd_cmpl( ifbp );
3726 } 3726 }
3727 } 3727 }
@@ -3732,72 +3732,72 @@ int rc;
3732 3732
3733 3733
3734/************************************************************************************************************ 3734/************************************************************************************************************
3735* 3735 *
3736*.SUBMODULE int download( IFBP ifbp, CFG_PROG_STRCT FAR *ltvp ) 3736 *.SUBMODULE int download( IFBP ifbp, CFG_PROG_STRCT FAR *ltvp )
3737*.PURPOSE downloads F/W image into NIC and initiates execution of the downloaded F/W. 3737 *.PURPOSE downloads F/W image into NIC and initiates execution of the downloaded F/W.
3738* 3738 *
3739*.ARGUMENTS 3739 *.ARGUMENTS
3740* ifbp address of the Interface Block 3740 * ifbp address of the Interface Block
3741* ltvp specifies the pseudo-RID (as defined by WCI) 3741 * ltvp specifies the pseudo-RID (as defined by WCI)
3742* 3742 *
3743*.RETURNS 3743 *.RETURNS
3744* 3744 *
3745*.DESCRIPTION 3745 *.DESCRIPTION
3746* 3746 *
3747* 3747 *
3748*.DIAGRAM 3748 *.DIAGRAM
3749*1: First, Ack everything to unblock a (possibly) blocked cmd pipe line 3749 *1: First, Ack everything to unblock a (possibly) blocked cmd pipe line
3750* Note 1: it is very likely that an Alloc event is pending and very well possible that a (Send) Cmd event is 3750 * Note 1: it is very likely that an Alloc event is pending and very well possible that a (Send) Cmd event is
3751* pending 3751 * pending
3752* Note 2: it is assumed that this strategy takes away the need to ack every conceivable event after an 3752 * Note 2: it is assumed that this strategy takes away the need to ack every conceivable event after an
3753* Hermes Initialize 3753 * Hermes Initialize
3754* 3754 *
3755* 3755 *
3756*.ENDDOC END DOCUMENTATION 3756 *.ENDDOC END DOCUMENTATION
3757* 3757 *
3758************************************************************************************************************/ 3758 ************************************************************************************************************/
3759HCF_STATIC int 3759HCF_STATIC int
3760download( IFBP ifbp, CFG_PROG_STRCT FAR *ltvp ) //Hermes-II download (volatile only) 3760download( IFBP ifbp, CFG_PROG_STRCT FAR *ltvp ) //Hermes-II download (volatile only)
3761{ 3761{
3762hcf_16 i; 3762 hcf_16 i;
3763int rc = HCF_SUCCESS; 3763 int rc = HCF_SUCCESS;
3764wci_bufp cp; 3764 wci_bufp cp;
3765hcf_io io_port = ifbp->IFB_IOBase + HREG_AUX_DATA; 3765 hcf_io io_port = ifbp->IFB_IOBase + HREG_AUX_DATA;
3766 3766
3767 HCFLOGENTRY( HCF_TRACE_DL, ltvp->typ ); 3767 HCFLOGENTRY( HCF_TRACE_DL, ltvp->typ );
3768#if (HCF_TYPE) & HCF_TYPE_PRELOADED 3768#if (HCF_TYPE) & HCF_TYPE_PRELOADED
3769 HCFASSERT( DO_ASSERT, ltvp->mode ); 3769 HCFASSERT( DO_ASSERT, ltvp->mode );
3770#else 3770#else
3771 //if initial "program" LTV 3771 //if initial "program" LTV
3772 if ( ifbp->IFB_DLMode == CFG_PROG_STOP && ltvp->mode == CFG_PROG_VOLATILE) { 3772 if ( ifbp->IFB_DLMode == CFG_PROG_STOP && ltvp->mode == CFG_PROG_VOLATILE) {
3773 //. switch Hermes to initial mode 3773 //. switch Hermes to initial mode
3774/*1*/ OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ ); 3774 /*1*/ OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ );
3775 rc = cmd_exe( ifbp, HCMD_INI, 0 ); /* HCMD_INI can not be part of init() because that is called on 3775 rc = cmd_exe( ifbp, HCMD_INI, 0 ); /* HCMD_INI can not be part of init() because that is called on
3776 * other occasions as well */ 3776 * other occasions as well */
3777 rc = init( ifbp ); 3777 rc = init( ifbp );
3778 } 3778 }
3779 //if final "program" LTV 3779 //if final "program" LTV
3780 if ( ltvp->mode == CFG_PROG_STOP && ifbp->IFB_DLMode == CFG_PROG_VOLATILE) { 3780 if ( ltvp->mode == CFG_PROG_STOP && ifbp->IFB_DLMode == CFG_PROG_VOLATILE) {
3781 //. start tertiary (or secondary) 3781 //. start tertiary (or secondary)
3782 OPW( HREG_PARAM_1, (hcf_16)(ltvp->nic_addr >> 16) ); 3782 OPW( HREG_PARAM_1, (hcf_16)(ltvp->nic_addr >> 16) );
3783 rc = cmd_exe( ifbp, HCMD_EXECUTE, (hcf_16) ltvp->nic_addr ); 3783 rc = cmd_exe( ifbp, HCMD_EXECUTE, (hcf_16) ltvp->nic_addr );
3784 if (rc == HCF_SUCCESS) { 3784 if (rc == HCF_SUCCESS) {
3785 rc = init( ifbp ); /*;? do we really want to skip init if cmd_exe failed, i.e. 3785 rc = init( ifbp ); /*;? do we really want to skip init if cmd_exe failed, i.e.
3786 * IFB_FW_Comp_Id is than possibly incorrect */ 3786 * IFB_FW_Comp_Id is than possibly incorrect */
3787 } 3787 }
3788 //else (non-final) 3788 //else (non-final)
3789 } else { 3789 } else {
3790 //. if mode == Readback SEEPROM 3790 //. if mode == Readback SEEPROM
3791#if 0 //;? as long as the next if contains a hard coded 0, might as well leave it out even more obvious 3791#if 0 //;? as long as the next if contains a hard coded 0, might as well leave it out even more obvious
3792 if ( 0 /*len is definitely not want we want;?*/ && ltvp->mode == CFG_PROG_SEEPROM_READBACK ) { 3792 if ( 0 /*len is definitely not want we want;?*/ && ltvp->mode == CFG_PROG_SEEPROM_READBACK ) {
3793 OPW( HREG_PARAM_1, (hcf_16)(ltvp->nic_addr >> 16) ); 3793 OPW( HREG_PARAM_1, (hcf_16)(ltvp->nic_addr >> 16) );
3794 OPW( HREG_PARAM_2, MUL_BY_2(ltvp->len - 4)); 3794 OPW( HREG_PARAM_2, MUL_BY_2(ltvp->len - 4));
3795 //. . perform Hermes prog cmd with appropriate mode bits 3795 //. . perform Hermes prog cmd with appropriate mode bits
3796 rc = cmd_exe( ifbp, HCMD_PROGRAM | ltvp->mode, (hcf_16)ltvp->nic_addr ); 3796 rc = cmd_exe( ifbp, HCMD_PROGRAM | ltvp->mode, (hcf_16)ltvp->nic_addr );
3797 //. . set up NIC RAM addressability according Resp0-1 3797 //. . set up NIC RAM addressability according Resp0-1
3798 OPW( HREG_AUX_PAGE, IPW( HREG_RESP_1) ); 3798 OPW( HREG_AUX_PAGE, IPW( HREG_RESP_1) );
3799 OPW( HREG_AUX_OFFSET, IPW( HREG_RESP_0) ); 3799 OPW( HREG_AUX_OFFSET, IPW( HREG_RESP_0) );
3800 //. . set up L-field of LTV according Resp2 3800 //. . set up L-field of LTV according Resp2
3801 i = ( IPW( HREG_RESP_2 ) + 1 ) / 2; // i contains max buffer size in words, a probably not very useful piece of information ;? 3801 i = ( IPW( HREG_RESP_2 ) + 1 ) / 2; // i contains max buffer size in words, a probably not very useful piece of information ;?
3802/*Nico's code based on i is the "real amount of data available" 3802/*Nico's code based on i is the "real amount of data available"
3803 if ( ltvp->len - 4 < i ) rc = HCF_ERR_LEN; 3803 if ( ltvp->len - 4 < i ) rc = HCF_ERR_LEN;
@@ -3810,28 +3810,28 @@ hcf_io io_port = ifbp->IFB_IOBase + HREG_AUX_DATA;
3810 ltvp->len = i + 4; 3810 ltvp->len = i + 4;
3811 } 3811 }
3812*/ 3812*/
3813 //. . copy data from NIC via AUX port to LTV 3813 //. . copy data from NIC via AUX port to LTV
3814 cp = (wci_bufp)ltvp->host_addr; /*IN_PORT_STRING_8_16 macro may modify its parameters*/ 3814 cp = (wci_bufp)ltvp->host_addr; /*IN_PORT_STRING_8_16 macro may modify its parameters*/
3815 i = ltvp->len - 4; 3815 i = ltvp->len - 4;
3816 IN_PORT_STRING_8_16( io_port, cp, i ); //!!!WORD length, cp MUST be a char pointer // $$ char 3816 IN_PORT_STRING_8_16( io_port, cp, i ); //!!!WORD length, cp MUST be a char pointer // $$ char
3817 //. else (non-final programming) 3817 //. else (non-final programming)
3818 } else 3818 } else
3819#endif //;? as long as the above if contains a hard coded 0, might as well leave it out even more obvious 3819#endif //;? as long as the above if contains a hard coded 0, might as well leave it out even more obvious
3820 { //. . get number of words to program 3820 { //. . get number of words to program
3821 HCFASSERT( ltvp->segment_size, *ltvp->host_addr ); 3821 HCFASSERT( ltvp->segment_size, *ltvp->host_addr );
3822 i = ltvp->segment_size/2; 3822 i = ltvp->segment_size/2;
3823 //. . copy data (words) from LTV via AUX port to NIC 3823 //. . copy data (words) from LTV via AUX port to NIC
3824 cp = (wci_bufp)ltvp->host_addr; //OUT_PORT_STRING_8_16 macro may modify its parameters 3824 cp = (wci_bufp)ltvp->host_addr; //OUT_PORT_STRING_8_16 macro may modify its parameters
3825 //. . if mode == volatile programming 3825 //. . if mode == volatile programming
3826 if ( ltvp->mode == CFG_PROG_VOLATILE ) { 3826 if ( ltvp->mode == CFG_PROG_VOLATILE ) {
3827 //. . . set up NIC RAM addressability via AUX port 3827 //. . . set up NIC RAM addressability via AUX port
3828 OPW( HREG_AUX_PAGE, (hcf_16)(ltvp->nic_addr >> 16 << 9 | (ltvp->nic_addr & 0xFFFF) >> 7 ) ); 3828 OPW( HREG_AUX_PAGE, (hcf_16)(ltvp->nic_addr >> 16 << 9 | (ltvp->nic_addr & 0xFFFF) >> 7 ) );
3829 OPW( HREG_AUX_OFFSET, (hcf_16)(ltvp->nic_addr & 0x007E) ); 3829 OPW( HREG_AUX_OFFSET, (hcf_16)(ltvp->nic_addr & 0x007E) );
3830 OUT_PORT_STRING_8_16( io_port, cp, i ); //!!!WORD length, cp MUST be a char pointer 3830 OUT_PORT_STRING_8_16( io_port, cp, i ); //!!!WORD length, cp MUST be a char pointer
3831 } 3831 }
3832 } 3832 }
3833 } 3833 }
3834 ifbp->IFB_DLMode = ltvp->mode; //save state in IFB_DLMode 3834 ifbp->IFB_DLMode = ltvp->mode; //save state in IFB_DLMode
3835#endif // HCF_TYPE_PRELOADED 3835#endif // HCF_TYPE_PRELOADED
3836 HCFASSERT( rc == HCF_SUCCESS, rc ); 3836 HCFASSERT( rc == HCF_SUCCESS, rc );
3837 HCFLOGEXIT( HCF_TRACE_DL ); 3837 HCFLOGEXIT( HCF_TRACE_DL );
@@ -3841,82 +3841,82 @@ hcf_io io_port = ifbp->IFB_IOBase + HREG_AUX_DATA;
3841 3841
3842#if (HCF_ASSERT) & HCF_ASSERT_PRINTF 3842#if (HCF_ASSERT) & HCF_ASSERT_PRINTF
3843/************************************************** 3843/**************************************************
3844* Certain Hermes-II firmware versions can generate 3844 * Certain Hermes-II firmware versions can generate
3845* debug information. This debug information is 3845 * debug information. This debug information is
3846* contained in a buffer in nic-RAM, and can be read 3846 * contained in a buffer in nic-RAM, and can be read
3847* via the aux port. 3847 * via the aux port.
3848**************************************************/ 3848 **************************************************/
3849HCF_STATIC int 3849HCF_STATIC int
3850fw_printf(IFBP ifbp, CFG_FW_PRINTF_STRCT FAR *ltvp) 3850fw_printf(IFBP ifbp, CFG_FW_PRINTF_STRCT FAR *ltvp)
3851{ 3851{
3852 int rc = HCF_SUCCESS; 3852 int rc = HCF_SUCCESS;
3853 hcf_16 fw_cnt; 3853 hcf_16 fw_cnt;
3854// hcf_32 DbMsgBuffer = 0x29D2, DbMsgCount= 0x000029D0; 3854// hcf_32 DbMsgBuffer = 0x29D2, DbMsgCount= 0x000029D0;
3855// hcf_16 DbMsgSize=0x00000080; 3855// hcf_16 DbMsgSize=0x00000080;
3856 hcf_32 DbMsgBuffer; 3856 hcf_32 DbMsgBuffer;
3857 CFG_FW_PRINTF_BUFFER_LOCATION_STRCT *p = &ifbp->IFB_FwPfBuff; 3857 CFG_FW_PRINTF_BUFFER_LOCATION_STRCT *p = &ifbp->IFB_FwPfBuff;
3858 ltvp->len = 1; 3858 ltvp->len = 1;
3859 if ( p->DbMsgSize != 0 ) { 3859 if ( p->DbMsgSize != 0 ) {
3860 // first, check the counter in nic-RAM and compare it to the latest counter value of the HCF 3860 // first, check the counter in nic-RAM and compare it to the latest counter value of the HCF
3861 OPW( HREG_AUX_PAGE, (hcf_16)(p->DbMsgCount >> 7) ); 3861 OPW( HREG_AUX_PAGE, (hcf_16)(p->DbMsgCount >> 7) );
3862 OPW( HREG_AUX_OFFSET, (hcf_16)(p->DbMsgCount & 0x7E) ); 3862 OPW( HREG_AUX_OFFSET, (hcf_16)(p->DbMsgCount & 0x7E) );
3863 fw_cnt = ((IPW( HREG_AUX_DATA) >>1 ) & ((hcf_16)p->DbMsgSize - 1)); 3863 fw_cnt = ((IPW( HREG_AUX_DATA) >>1 ) & ((hcf_16)p->DbMsgSize - 1));
3864 if ( fw_cnt != ifbp->IFB_DbgPrintF_Cnt ) { 3864 if ( fw_cnt != ifbp->IFB_DbgPrintF_Cnt ) {
3865// DbgPrint("fw_cnt=%d IFB_DbgPrintF_Cnt=%d\n", fw_cnt, ifbp->IFB_DbgPrintF_Cnt); 3865// DbgPrint("fw_cnt=%d IFB_DbgPrintF_Cnt=%d\n", fw_cnt, ifbp->IFB_DbgPrintF_Cnt);
3866 DbMsgBuffer = p->DbMsgBuffer + ifbp->IFB_DbgPrintF_Cnt * 6; // each entry is 3 words 3866 DbMsgBuffer = p->DbMsgBuffer + ifbp->IFB_DbgPrintF_Cnt * 6; // each entry is 3 words
3867 OPW( HREG_AUX_PAGE, (hcf_16)(DbMsgBuffer >> 7) ); 3867 OPW( HREG_AUX_PAGE, (hcf_16)(DbMsgBuffer >> 7) );
3868 OPW( HREG_AUX_OFFSET, (hcf_16)(DbMsgBuffer & 0x7E) ); 3868 OPW( HREG_AUX_OFFSET, (hcf_16)(DbMsgBuffer & 0x7E) );
3869 ltvp->msg_id = IPW(HREG_AUX_DATA); 3869 ltvp->msg_id = IPW(HREG_AUX_DATA);
3870 ltvp->msg_par = IPW(HREG_AUX_DATA); 3870 ltvp->msg_par = IPW(HREG_AUX_DATA);
3871 ltvp->msg_tstamp = IPW(HREG_AUX_DATA); 3871 ltvp->msg_tstamp = IPW(HREG_AUX_DATA);
3872 ltvp->len = 4; 3872 ltvp->len = 4;
3873 ifbp->IFB_DbgPrintF_Cnt++; 3873 ifbp->IFB_DbgPrintF_Cnt++;
3874 ifbp->IFB_DbgPrintF_Cnt &= (p->DbMsgSize - 1); 3874 ifbp->IFB_DbgPrintF_Cnt &= (p->DbMsgSize - 1);
3875 } 3875 }
3876 } 3876 }
3877 return rc; 3877 return rc;
3878}; 3878};
3879#endif // HCF_ASSERT_PRINTF 3879#endif // HCF_ASSERT_PRINTF
3880 3880
3881 3881
3882#if (HCF_DL_ONLY) == 0 3882#if (HCF_DL_ONLY) == 0
3883/************************************************************************************************************ 3883/************************************************************************************************************
3884* 3884 *
3885*.SUBMODULE hcf_16 get_fid( IFBP ifbp ) 3885 *.SUBMODULE hcf_16 get_fid( IFBP ifbp )
3886*.PURPOSE get allocated FID for either transmit or notify. 3886 *.PURPOSE get allocated FID for either transmit or notify.
3887* 3887 *
3888*.ARGUMENTS 3888 *.ARGUMENTS
3889* ifbp address of the Interface Block 3889 * ifbp address of the Interface Block
3890* 3890 *
3891*.RETURNS 3891 *.RETURNS
3892* 0 no FID available 3892 * 0 no FID available
3893* <>0 FID number 3893 * <>0 FID number
3894* 3894 *
3895*.DESCRIPTION 3895 *.DESCRIPTION
3896* 3896 *
3897* 3897 *
3898*.DIAGRAM 3898 *.DIAGRAM
3899* The preference is to use a "pending" alloc. If no alloc is pending, then - if available - the "spare" FID 3899 * The preference is to use a "pending" alloc. If no alloc is pending, then - if available - the "spare" FID
3900* is used. 3900 * is used.
3901* If the spare FID is used, IFB_RscInd (representing the spare FID) must be cleared 3901 * If the spare FID is used, IFB_RscInd (representing the spare FID) must be cleared
3902* If the pending alloc is used, the alloc event must be acknowledged to the Hermes. 3902 * If the pending alloc is used, the alloc event must be acknowledged to the Hermes.
3903* In case the spare FID was depleted and the IFB_RscInd has been "faked" as pseudo resource with a 0x0001 3903 * In case the spare FID was depleted and the IFB_RscInd has been "faked" as pseudo resource with a 0x0001
3904* value by hcf_service_nic, IFB_RscInd has to be "corrected" again to its 0x0000 value. 3904 * value by hcf_service_nic, IFB_RscInd has to be "corrected" again to its 0x0000 value.
3905* 3905 *
3906* Note that due to the Hermes-II H/W problems which are intended to be worked around by DAWA, the Alloc bit 3906 * Note that due to the Hermes-II H/W problems which are intended to be worked around by DAWA, the Alloc bit
3907* in the Event register is no longer a reliable indication of the presence/absence of a FID. The "Clear FID" 3907 * in the Event register is no longer a reliable indication of the presence/absence of a FID. The "Clear FID"
3908* part of the DAWA logic, together with the choice of the definition of the return information from get_fid, 3908 * part of the DAWA logic, together with the choice of the definition of the return information from get_fid,
3909* handle this automatically, i.e. without additional code in get_fid. 3909 * handle this automatically, i.e. without additional code in get_fid.
3910*.ENDDOC END DOCUMENTATION 3910 *.ENDDOC END DOCUMENTATION
3911* 3911 *
3912************************************************************************************************************/ 3912 ************************************************************************************************************/
3913HCF_STATIC hcf_16 3913HCF_STATIC hcf_16
3914get_fid( IFBP ifbp ) 3914get_fid( IFBP ifbp )
3915{ 3915{
3916 3916
3917hcf_16 fid = 0; 3917 hcf_16 fid = 0;
3918#if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0 3918#if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
3919PROT_CNT_INI; 3919 PROT_CNT_INI;
3920#endif // HCF_TYPE_HII5 3920#endif // HCF_TYPE_HII5
3921 3921
3922 IF_DMA( HCFASSERT(!(ifbp->IFB_CntlOpt & USE_DMA), ifbp->IFB_CntlOpt) ); 3922 IF_DMA( HCFASSERT(!(ifbp->IFB_CntlOpt & USE_DMA), ifbp->IFB_CntlOpt) );
@@ -3929,7 +3929,7 @@ PROT_CNT_INI;
3929 HCF_WAIT_WHILE( ( IPW( HREG_EV_STAT ) & HREG_EV_ACK_REG_READY ) == 0 ); 3929 HCF_WAIT_WHILE( ( IPW( HREG_EV_STAT ) & HREG_EV_ACK_REG_READY ) == 0 );
3930 HCFASSERT( prot_cnt, IPW( HREG_EV_STAT ) ); 3930 HCFASSERT( prot_cnt, IPW( HREG_EV_STAT ) );
3931#endif // HCF_TYPE_HII5 3931#endif // HCF_TYPE_HII5
3932 DAWA_ACK( HREG_EV_ALLOC ); //!!note that HREG_EV_ALLOC is written only once 3932 DAWA_ACK( HREG_EV_ALLOC ); //!!note that HREG_EV_ALLOC is written only once
3933// 180 degree error in logic ;? #if ALLOC_15 3933// 180 degree error in logic ;? #if ALLOC_15
3934 if ( ifbp->IFB_RscInd == 1 ) { 3934 if ( ifbp->IFB_RscInd == 1 ) {
3935 ifbp->IFB_RscInd = 0; 3935 ifbp->IFB_RscInd = 0;
@@ -3947,100 +3947,100 @@ PROT_CNT_INI;
3947 3947
3948 3948
3949/************************************************************************************************************ 3949/************************************************************************************************************
3950* 3950 *
3951*.SUBMODULE void get_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) ) 3951 *.SUBMODULE void get_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
3952*.PURPOSE reads with 16/32 bit I/O via BAP1 port from NIC RAM to Host memory. 3952 *.PURPOSE reads with 16/32 bit I/O via BAP1 port from NIC RAM to Host memory.
3953* 3953 *
3954*.ARGUMENTS 3954 *.ARGUMENTS
3955* ifbp address of the Interface Block 3955 * ifbp address of the Interface Block
3956* bufp (byte) address of buffer 3956 * bufp (byte) address of buffer
3957* len length in bytes of buffer specified by bufp 3957 * len length in bytes of buffer specified by bufp
3958* word_len Big Endian only: number of leading bytes to swap in pairs 3958 * word_len Big Endian only: number of leading bytes to swap in pairs
3959* 3959 *
3960*.RETURNS N.A. 3960 *.RETURNS N.A.
3961* 3961 *
3962*.DESCRIPTION 3962 *.DESCRIPTION
3963* process the single byte (if applicable) read by the previous get_frag and copy len (or len-1) bytes from 3963 * process the single byte (if applicable) read by the previous get_frag and copy len (or len-1) bytes from
3964* NIC to bufp. 3964 * NIC to bufp.
3965* On a Big Endian platform, the parameter word_len controls the number of leading bytes whose endianess is 3965 * On a Big Endian platform, the parameter word_len controls the number of leading bytes whose endianess is
3966* converted (i.e. byte swapped) 3966 * converted (i.e. byte swapped)
3967* 3967 *
3968* 3968 *
3969*.DIAGRAM 3969 *.DIAGRAM
3970*10: The PCMCIA card can be removed in the middle of the transfer. By depositing a "magic number" in the 3970 *10: The PCMCIA card can be removed in the middle of the transfer. By depositing a "magic number" in the
3971* HREG_SW_0 register of the Hermes at initialization time and by verifying this register, it can be 3971 * HREG_SW_0 register of the Hermes at initialization time and by verifying this register, it can be
3972* determined whether the card is still present. The return status is set accordingly. 3972 * determined whether the card is still present. The return status is set accordingly.
3973* Clearing the buffer is a (relative) cheap way to prevent that failing I/O results in run-away behavior 3973 * Clearing the buffer is a (relative) cheap way to prevent that failing I/O results in run-away behavior
3974* because the garbage in the buffer is interpreted by the caller irrespective of the return status (e.g. 3974 * because the garbage in the buffer is interpreted by the caller irrespective of the return status (e.g.
3975* hcf_service_nic has this behavior). 3975 * hcf_service_nic has this behavior).
3976* 3976 *
3977*.NOTICE 3977 *.NOTICE
3978* It turns out DOS ODI uses zero length fragments. The HCF code can cope with it, but as a consequence, no 3978 * It turns out DOS ODI uses zero length fragments. The HCF code can cope with it, but as a consequence, no
3979* Assert on len is possible 3979 * Assert on len is possible
3980* 3980 *
3981*.ENDDOC END DOCUMENTATION 3981 *.ENDDOC END DOCUMENTATION
3982* 3982 *
3983************************************************************************************************************/ 3983 ************************************************************************************************************/
3984HCF_STATIC void 3984HCF_STATIC void
3985get_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) ) 3985get_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
3986{ 3986{
3987hcf_io io_port = ifbp->IFB_IOBase + HREG_DATA_1; //BAP data register 3987 hcf_io io_port = ifbp->IFB_IOBase + HREG_DATA_1; //BAP data register
3988wci_bufp p = bufp; //working pointer 3988 wci_bufp p = bufp; //working pointer
3989int i; //prevent side effects from macro 3989 int i; //prevent side effects from macro
3990int j; 3990 int j;
3991 3991
3992 HCFASSERT( ((hcf_32)bufp & (HCF_ALIGN-1) ) == 0, (hcf_32)bufp ); 3992 HCFASSERT( ((hcf_32)bufp & (HCF_ALIGN-1) ) == 0, (hcf_32)bufp );
3993 3993
3994/*1: here recovery logic for intervening BAP access between hcf_service_nic and hcf_rcv_msg COULD be added 3994/*1: here recovery logic for intervening BAP access between hcf_service_nic and hcf_rcv_msg COULD be added
3995 * if current access is RxInitial 3995 * if current access is RxInitial
3996 * . persistent_offset += len 3996 * . persistent_offset += len
3997 */ 3997 */
3998 3998
3999 i = len; 3999 i = len;
4000 //if buffer length > 0 and carry from previous get_frag 4000 //if buffer length > 0 and carry from previous get_frag
4001 if ( i && ifbp->IFB_CarryIn ) { 4001 if ( i && ifbp->IFB_CarryIn ) {
4002 //. move carry to buffer 4002 //. move carry to buffer
4003 //. adjust buffer length and pointer accordingly 4003 //. adjust buffer length and pointer accordingly
4004 *p++ = (hcf_8)(ifbp->IFB_CarryIn>>8); 4004 *p++ = (hcf_8)(ifbp->IFB_CarryIn>>8);
4005 i--; 4005 i--;
4006 //. clear carry flag 4006 //. clear carry flag
4007 ifbp->IFB_CarryIn = 0; 4007 ifbp->IFB_CarryIn = 0;
4008 } 4008 }
4009#if (HCF_IO) & HCF_IO_32BITS 4009#if (HCF_IO) & HCF_IO_32BITS
4010 //skip zero-length I/O, single byte I/O and I/O not worthwhile (i.e. less than 6 bytes)for DW logic 4010 //skip zero-length I/O, single byte I/O and I/O not worthwhile (i.e. less than 6 bytes)for DW logic
4011 //if buffer length >= 6 and 32 bits I/O support 4011 //if buffer length >= 6 and 32 bits I/O support
4012 if ( !(ifbp->IFB_CntlOpt & USE_16BIT) && i >= 6 ) { 4012 if ( !(ifbp->IFB_CntlOpt & USE_16BIT) && i >= 6 ) {
4013hcf_32 FAR *p4; //prevent side effects from macro 4013 hcf_32 FAR *p4; //prevent side effects from macro
4014 if ( ( (hcf_32)p & 0x1 ) == 0 ) { //. if buffer at least word aligned 4014 if ( ( (hcf_32)p & 0x1 ) == 0 ) { //. if buffer at least word aligned
4015 if ( (hcf_32)p & 0x2 ) { //. . if buffer not double word aligned 4015 if ( (hcf_32)p & 0x2 ) { //. . if buffer not double word aligned
4016 //. . . read single word to get double word aligned 4016 //. . . read single word to get double word aligned
4017 *(wci_recordp)p = IN_PORT_WORD( io_port ); 4017 *(wci_recordp)p = IN_PORT_WORD( io_port );
4018 //. . . adjust buffer length and pointer accordingly 4018 //. . . adjust buffer length and pointer accordingly
4019 p += 2; 4019 p += 2;
4020 i -= 2; 4020 i -= 2;
4021 } 4021 }
4022 //. . read as many double word as possible 4022 //. . read as many double word as possible
4023 p4 = (hcf_32 FAR *)p; 4023 p4 = (hcf_32 FAR *)p;
4024 j = i/4; 4024 j = i/4;
4025 IN_PORT_STRING_32( io_port, p4, j ); 4025 IN_PORT_STRING_32( io_port, p4, j );
4026 //. . adjust buffer length and pointer accordingly 4026 //. . adjust buffer length and pointer accordingly
4027 p += i & ~0x0003; 4027 p += i & ~0x0003;
4028 i &= 0x0003; 4028 i &= 0x0003;
4029 } 4029 }
4030 } 4030 }
4031#endif // HCF_IO_32BITS 4031#endif // HCF_IO_32BITS
4032 //if no 32-bit support OR byte aligned OR 1-3 bytes left 4032 //if no 32-bit support OR byte aligned OR 1-3 bytes left
4033 if ( i ) { 4033 if ( i ) {
4034 //. read as many word as possible in "alignment safe" way 4034 //. read as many word as possible in "alignment safe" way
4035 j = i/2; 4035 j = i/2;
4036 IN_PORT_STRING_8_16( io_port, p, j ); 4036 IN_PORT_STRING_8_16( io_port, p, j );
4037 //. if 1 byte left 4037 //. if 1 byte left
4038 if ( i & 0x0001 ) { 4038 if ( i & 0x0001 ) {
4039 //. . read 1 word 4039 //. . read 1 word
4040 ifbp->IFB_CarryIn = IN_PORT_WORD( io_port ); 4040 ifbp->IFB_CarryIn = IN_PORT_WORD( io_port );
4041 //. . store LSB in last char of buffer 4041 //. . store LSB in last char of buffer
4042 bufp[len-1] = (hcf_8)ifbp->IFB_CarryIn; 4042 bufp[len-1] = (hcf_8)ifbp->IFB_CarryIn;
4043 //. . save MSB in carry, set carry flag 4043 //. . save MSB in carry, set carry flag
4044 ifbp->IFB_CarryIn |= 0x1; 4044 ifbp->IFB_CarryIn |= 0x1;
4045 } 4045 }
4046 } 4046 }
@@ -4050,13 +4050,13 @@ hcf_32 FAR *p4; //prevent side effects from macro
4050 HCFASSERT( word_len <= len, MERGE2( word_len, len ) ); 4050 HCFASSERT( word_len <= len, MERGE2( word_len, len ) );
4051 //see put_frag for an alternative implementation, but be careful about what are int's and what are 4051 //see put_frag for an alternative implementation, but be careful about what are int's and what are
4052 //hcf_16's 4052 //hcf_16's
4053 if ( word_len ) { //. if there is anything to convert 4053 if ( word_len ) { //. if there is anything to convert
4054hcf_8 c; 4054 hcf_8 c;
4055 c = bufp[1]; //. . convert the 1st hcf_16 4055 c = bufp[1]; //. . convert the 1st hcf_16
4056 bufp[1] = bufp[0]; 4056 bufp[1] = bufp[0];
4057 bufp[0] = c; 4057 bufp[0] = c;
4058 if ( word_len > 1 ) { //. . if there is to convert more than 1 word ( i.e 2 ) 4058 if ( word_len > 1 ) { //. . if there is to convert more than 1 word ( i.e 2 )
4059 c = bufp[3]; //. . . convert the 2nd hcf_16 4059 c = bufp[3]; //. . . convert the 2nd hcf_16
4060 bufp[3] = bufp[2]; 4060 bufp[3] = bufp[2];
4061 bufp[2] = c; 4061 bufp[2] = c;
4062 } 4062 }
@@ -4065,108 +4065,108 @@ hcf_8 c;
4065} // get_frag 4065} // get_frag
4066 4066
4067/************************************************************************************************************ 4067/************************************************************************************************************
4068* 4068 *
4069*.SUBMODULE int init( IFBP ifbp ) 4069 *.SUBMODULE int init( IFBP ifbp )
4070*.PURPOSE Handles common initialization aspects (H-I init, calibration, config.mngmt, allocation). 4070 *.PURPOSE Handles common initialization aspects (H-I init, calibration, config.mngmt, allocation).
4071* 4071 *
4072*.ARGUMENTS 4072 *.ARGUMENTS
4073* ifbp address of the Interface Block 4073 * ifbp address of the Interface Block
4074* 4074 *
4075*.RETURNS 4075 *.RETURNS
4076* HCF_ERR_INCOMP_PRI 4076 * HCF_ERR_INCOMP_PRI
4077* HCF_ERR_INCOMP_FW 4077 * HCF_ERR_INCOMP_FW
4078* HCF_ERR_TIME_OUT 4078 * HCF_ERR_TIME_OUT
4079* >>hcf_get_info 4079 * >>hcf_get_info
4080* HCF_ERR_NO_NIC 4080 * HCF_ERR_NO_NIC
4081* HCF_ERR_LEN 4081 * HCF_ERR_LEN
4082* 4082 *
4083*.DESCRIPTION 4083 *.DESCRIPTION
4084* init will successively: 4084 * init will successively:
4085* - in case of a (non-preloaded) H-I, initialize the NIC 4085 * - in case of a (non-preloaded) H-I, initialize the NIC
4086* - calibrate the S/W protection timer against the Hermes Timer 4086 * - calibrate the S/W protection timer against the Hermes Timer
4087* - collect HSI, "active" F/W Configuration Management Information 4087 * - collect HSI, "active" F/W Configuration Management Information
4088* - in case active F/W is Primary F/W: collect Primary F/W Configuration Management Information 4088 * - in case active F/W is Primary F/W: collect Primary F/W Configuration Management Information
4089* - check HSI and Primary F/W compatibility with the HCF 4089 * - check HSI and Primary F/W compatibility with the HCF
4090* - in case active F/W is Station or AP F/W: check Station or AP F/W compatibility with the HCF 4090 * - in case active F/W is Station or AP F/W: check Station or AP F/W compatibility with the HCF
4091* - in case active F/W is not Primary F/W: allocate FIDs to be used in transmit/notify process 4091 * - in case active F/W is not Primary F/W: allocate FIDs to be used in transmit/notify process
4092* 4092 *
4093* 4093 *
4094*.DIAGRAM 4094 *.DIAGRAM
4095*2: drop all error status bits in IFB_CardStat since they are expected to be re-evaluated. 4095 *2: drop all error status bits in IFB_CardStat since they are expected to be re-evaluated.
4096*4: Ack everything except HREG_EV_SLEEP_REQ. It is very likely that an Alloc event is pending and 4096 *4: Ack everything except HREG_EV_SLEEP_REQ. It is very likely that an Alloc event is pending and
4097* very well possible that a Send Cmd event is pending. Acking HREG_EV_SLEEP_REQ is handled by hcf_action( 4097 * very well possible that a Send Cmd event is pending. Acking HREG_EV_SLEEP_REQ is handled by hcf_action(
4098* HCF_ACT_INT_ON ) !!! 4098 * HCF_ACT_INT_ON ) !!!
4099*10: Calibrate the S/W time-out protection mechanism by calling calibrate(). Note that possible errors 4099 *10: Calibrate the S/W time-out protection mechanism by calling calibrate(). Note that possible errors
4100* in the calibration process are nor reported by init but will show up via the defunct mechanism in 4100 * in the calibration process are nor reported by init but will show up via the defunct mechanism in
4101* subsequent hcf-calls. 4101 * subsequent hcf-calls.
4102*14: usb_check_comp() is called to have the minimal visual clutter for the legacy H-I USB dongle 4102 *14: usb_check_comp() is called to have the minimal visual clutter for the legacy H-I USB dongle
4103* compatibility check. 4103 * compatibility check.
4104*16: The following configuration management related information is retrieved from the NIC: 4104 *16: The following configuration management related information is retrieved from the NIC:
4105* - HSI supplier 4105 * - HSI supplier
4106* - F/W Identity 4106 * - F/W Identity
4107* - F/W supplier 4107 * - F/W supplier
4108* if appropriate: 4108 * if appropriate:
4109* - PRI Identity 4109 * - PRI Identity
4110* - PRI supplier 4110 * - PRI supplier
4111* appropriate means on H-I: always 4111 * appropriate means on H-I: always
4112* and on H-II if F/W supplier reflects a primary (i.e. only after an Hermes Reset or Init 4112 * and on H-II if F/W supplier reflects a primary (i.e. only after an Hermes Reset or Init
4113* command). 4113 * command).
4114* QUESTION ;? !!!!!! should, For each of the above RIDs the Endianess is converted to native Endianess. 4114 * QUESTION ;? !!!!!! should, For each of the above RIDs the Endianess is converted to native Endianess.
4115* Only the return code of the first hcf_get_info is used. All hcf_get_info calls are made, regardless of 4115 * Only the return code of the first hcf_get_info is used. All hcf_get_info calls are made, regardless of
4116* the success or failure of the 1st hcf_get_info. The assumptions are: 4116 * the success or failure of the 1st hcf_get_info. The assumptions are:
4117* - if any call fails, they all fail, so remembering the result of the 1st call is adequate 4117 * - if any call fails, they all fail, so remembering the result of the 1st call is adequate
4118* - a failing call will overwrite the L-field with a 0x0000 value, which services both as an 4118 * - a failing call will overwrite the L-field with a 0x0000 value, which services both as an
4119* error indication for the values cached in the IFB as making mmd_check_comp fail. 4119 * error indication for the values cached in the IFB as making mmd_check_comp fail.
4120* In case of H-I, when getting the F/W identity fails, the F/W is assumed to be H-I AP F/W pre-dating 4120 * In case of H-I, when getting the F/W identity fails, the F/W is assumed to be H-I AP F/W pre-dating
4121* version 9.0 and the F/W Identity and Supplier are faked accordingly. 4121 * version 9.0 and the F/W Identity and Supplier are faked accordingly.
4122* In case of H-II, the Primary, Station and AP Identity are merged into a single F/W Identity. 4122 * In case of H-II, the Primary, Station and AP Identity are merged into a single F/W Identity.
4123* The same applies to the Supplier information. As a consequence the PRI information can no longer be 4123 * The same applies to the Supplier information. As a consequence the PRI information can no longer be
4124* retrieved when a Tertiary runs. To accommodate MSFs and Utilities who depend on PRI information being 4124 * retrieved when a Tertiary runs. To accommodate MSFs and Utilities who depend on PRI information being
4125* available at any time, this information is cached in the IFB. In this cache the generic "F/W" value of 4125 * available at any time, this information is cached in the IFB. In this cache the generic "F/W" value of
4126* the typ-fields is overwritten with the specific (legacy) "PRI" values. To actually re-route the (legacy) 4126 * the typ-fields is overwritten with the specific (legacy) "PRI" values. To actually re-route the (legacy)
4127* PRI request via hcf_get_info, the xxxx-table must be set. In case of H-I, this caching, modifying and 4127 * PRI request via hcf_get_info, the xxxx-table must be set. In case of H-I, this caching, modifying and
4128* re-routing is not needed because PRI information is always available directly from the NIC. For 4128 * re-routing is not needed because PRI information is always available directly from the NIC. For
4129* consistency the caching fields in the IFB are filled with the PRI information anyway. 4129 * consistency the caching fields in the IFB are filled with the PRI information anyway.
4130*18: mdd_check_comp() is called to check the Supplier Variant and Range of the Host-S/W I/F (HSI) and the 4130 *18: mdd_check_comp() is called to check the Supplier Variant and Range of the Host-S/W I/F (HSI) and the
4131* Primary Firmware Variant and Range against the Top and Bottom level supported by this HCF. If either of 4131 * Primary Firmware Variant and Range against the Top and Bottom level supported by this HCF. If either of
4132* these tests fails, the CARD_STAT_INCOMP_PRI bit of IFB_CardStat is set 4132 * these tests fails, the CARD_STAT_INCOMP_PRI bit of IFB_CardStat is set
4133* Note: There should always be a primary except during production, so this makes the HCF in its current form 4133 * Note: There should always be a primary except during production, so this makes the HCF in its current form
4134* unsuitable for manufacturing test systems like the FTS. This can be remedied by an adding a test like 4134 * unsuitable for manufacturing test systems like the FTS. This can be remedied by an adding a test like
4135* ifbp->IFB_PRISup.id == COMP_ID_PRI 4135 * ifbp->IFB_PRISup.id == COMP_ID_PRI
4136*20: In case there is Tertiary F/W and this F/W is Station F/W, the Supplier Variant and Range of the Station 4136 *20: In case there is Tertiary F/W and this F/W is Station F/W, the Supplier Variant and Range of the Station
4137* Firmware function as retrieved from the Hermes is checked against the Top and Bottom level supported by 4137 * Firmware function as retrieved from the Hermes is checked against the Top and Bottom level supported by
4138* this HCF. 4138 * this HCF.
4139* Note: ;? the tertiary F/W compatibility checks could be moved to the DHF, which already has checked the 4139 * Note: ;? the tertiary F/W compatibility checks could be moved to the DHF, which already has checked the
4140* CFI and MFI compatibility of the image with the NIC before the image was downloaded. 4140 * CFI and MFI compatibility of the image with the NIC before the image was downloaded.
4141*28: In case of non-Primary F/W: allocates and acknowledge a (TX or Notify) FID and allocates without 4141 *28: In case of non-Primary F/W: allocates and acknowledge a (TX or Notify) FID and allocates without
4142* acknowledge another (TX or Notify) FID (the so-called 1.5 alloc scheme) with the following steps: 4142 * acknowledge another (TX or Notify) FID (the so-called 1.5 alloc scheme) with the following steps:
4143* - execute the allocate command by calling cmd_exe 4143 * - execute the allocate command by calling cmd_exe
4144* - wait till either the alloc event or a time-out occurs 4144 * - wait till either the alloc event or a time-out occurs
4145* - regardless whether the alloc event occurs, call get_fid to 4145 * - regardless whether the alloc event occurs, call get_fid to
4146* - read the FID and save it in IFB_RscInd to be used as "spare FID" 4146 * - read the FID and save it in IFB_RscInd to be used as "spare FID"
4147* - acknowledge the alloc event 4147 * - acknowledge the alloc event
4148* - do another "half" allocate to complete the "1.5 Alloc scheme" 4148 * - do another "half" allocate to complete the "1.5 Alloc scheme"
4149* Note that above 3 steps do not harm and thus give the "cheapest" acceptable strategy. 4149 * Note that above 3 steps do not harm and thus give the "cheapest" acceptable strategy.
4150* If a time-out occurred, then report time out status (after all) 4150 * If a time-out occurred, then report time out status (after all)
4151* 4151 *
4152*.ENDDOC END DOCUMENTATION 4152 *.ENDDOC END DOCUMENTATION
4153* 4153 *
4154************************************************************************************************************/ 4154 ************************************************************************************************************/
4155HCF_STATIC int 4155HCF_STATIC int
4156init( IFBP ifbp ) 4156init( IFBP ifbp )
4157{ 4157{
4158 4158
4159int rc = HCF_SUCCESS; 4159 int rc = HCF_SUCCESS;
4160 4160
4161 HCFLOGENTRY( HCF_TRACE_INIT, 0 ); 4161 HCFLOGENTRY( HCF_TRACE_INIT, 0 );
4162 4162
4163 ifbp->IFB_CardStat = 0; /* 2*/ 4163 ifbp->IFB_CardStat = 0; /* 2*/
4164 OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ ); /* 4*/ 4164 OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ ); /* 4*/
4165 IF_PROT_TIME( calibrate( ifbp ) ); /*10*/ 4165 IF_PROT_TIME( calibrate( ifbp ) ); /*10*/
4166#if 0 // OOR 4166#if 0 // OOR
4167 ifbp->IFB_FWIdentity.len = 2; //misuse the IFB space for a put 4167 ifbp->IFB_FWIdentity.len = 2; //misuse the IFB space for a put
4168 ifbp->IFB_FWIdentity.typ = CFG_TICK_TIME; 4168 ifbp->IFB_FWIdentity.typ = CFG_TICK_TIME;
4169 ifbp->IFB_FWIdentity.comp_id = (1000*1000)/1024 + 1; //roughly 1 second 4169 ifbp->IFB_FWIdentity.comp_id = (1000*1000)/1024 + 1; //roughly 1 second
4170 hcf_put_info( ifbp, (LTVP)&ifbp->IFB_FWIdentity.len ); 4170 hcf_put_info( ifbp, (LTVP)&ifbp->IFB_FWIdentity.len );
4171#endif // OOR 4171#endif // OOR
4172 ifbp->IFB_FWIdentity.len = sizeof(CFG_FW_IDENTITY_STRCT)/sizeof(hcf_16) - 1; 4172 ifbp->IFB_FWIdentity.len = sizeof(CFG_FW_IDENTITY_STRCT)/sizeof(hcf_16) - 1;
@@ -4179,8 +4179,8 @@ int rc = HCF_SUCCESS;
4179 ifbp->IFB_FWIdentity.version_major = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWIdentity.version_major ); 4179 ifbp->IFB_FWIdentity.version_major = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWIdentity.version_major );
4180 ifbp->IFB_FWIdentity.version_minor = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWIdentity.version_minor ); 4180 ifbp->IFB_FWIdentity.version_minor = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWIdentity.version_minor );
4181#endif // HCF_BIG_ENDIAN 4181#endif // HCF_BIG_ENDIAN
4182#if defined MSF_COMPONENT_ID /*14*/ 4182#if defined MSF_COMPONENT_ID /*14*/
4183 if ( rc == HCF_SUCCESS ) { /*16*/ 4183 if ( rc == HCF_SUCCESS ) { /*16*/
4184 ifbp->IFB_HSISup.len = sizeof(CFG_SUP_RANGE_STRCT)/sizeof(hcf_16) - 1; 4184 ifbp->IFB_HSISup.len = sizeof(CFG_SUP_RANGE_STRCT)/sizeof(hcf_16) - 1;
4185 ifbp->IFB_HSISup.typ = CFG_NIC_HSI_SUP_RANGE; 4185 ifbp->IFB_HSISup.typ = CFG_NIC_HSI_SUP_RANGE;
4186 rc = hcf_get_info( ifbp, (LTVP)&ifbp->IFB_HSISup.len ); 4186 rc = hcf_get_info( ifbp, (LTVP)&ifbp->IFB_HSISup.len );
@@ -4207,41 +4207,41 @@ int rc = HCF_SUCCESS;
4207 ifbp->IFB_FWSup.top = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.top ); 4207 ifbp->IFB_FWSup.top = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.top );
4208#endif // HCF_BIG_ENDIAN 4208#endif // HCF_BIG_ENDIAN
4209 4209
4210 if ( ifbp->IFB_FWSup.id == COMP_ID_PRI ) { /* 20*/ 4210 if ( ifbp->IFB_FWSup.id == COMP_ID_PRI ) { /* 20*/
4211int i = sizeof( CFG_FW_IDENTITY_STRCT) + sizeof(CFG_SUP_RANGE_STRCT ); 4211 int i = sizeof( CFG_FW_IDENTITY_STRCT) + sizeof(CFG_SUP_RANGE_STRCT );
4212 while ( i-- ) ((hcf_8*)(&ifbp->IFB_PRIIdentity))[i] = ((hcf_8*)(&ifbp->IFB_FWIdentity))[i]; 4212 while ( i-- ) ((hcf_8*)(&ifbp->IFB_PRIIdentity))[i] = ((hcf_8*)(&ifbp->IFB_FWIdentity))[i];
4213 ifbp->IFB_PRIIdentity.typ = CFG_PRI_IDENTITY; 4213 ifbp->IFB_PRIIdentity.typ = CFG_PRI_IDENTITY;
4214 ifbp->IFB_PRISup.typ = CFG_PRI_SUP_RANGE; 4214 ifbp->IFB_PRISup.typ = CFG_PRI_SUP_RANGE;
4215 xxxx[xxxx_PRI_IDENTITY_OFFSET] = &ifbp->IFB_PRIIdentity.len; 4215 xxxx[xxxx_PRI_IDENTITY_OFFSET] = &ifbp->IFB_PRIIdentity.len;
4216 xxxx[xxxx_PRI_IDENTITY_OFFSET+1] = &ifbp->IFB_PRISup.len; 4216 xxxx[xxxx_PRI_IDENTITY_OFFSET+1] = &ifbp->IFB_PRISup.len;
4217 } 4217 }
4218 if ( !mmd_check_comp( (void*)&cfg_drv_act_ranges_hsi, &ifbp->IFB_HSISup) /* 22*/ 4218 if ( !mmd_check_comp( (void*)&cfg_drv_act_ranges_hsi, &ifbp->IFB_HSISup) /* 22*/
4219#if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0 4219#if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0
4220//;? the PRI compatibility check is only relevant for DHF 4220//;? the PRI compatibility check is only relevant for DHF
4221 || !mmd_check_comp( (void*)&cfg_drv_act_ranges_pri, &ifbp->IFB_PRISup) 4221 || !mmd_check_comp( (void*)&cfg_drv_act_ranges_pri, &ifbp->IFB_PRISup)
4222#endif // HCF_TYPE_PRELOADED 4222#endif // HCF_TYPE_PRELOADED
4223 ) { 4223 ) {
4224 ifbp->IFB_CardStat = CARD_STAT_INCOMP_PRI; 4224 ifbp->IFB_CardStat = CARD_STAT_INCOMP_PRI;
4225 rc = HCF_ERR_INCOMP_PRI; 4225 rc = HCF_ERR_INCOMP_PRI;
4226 } 4226 }
4227 if ( ( ifbp->IFB_FWSup.id == COMP_ID_STA && !mmd_check_comp( (void*)&cfg_drv_act_ranges_sta, &ifbp->IFB_FWSup) ) || 4227 if ( ( ifbp->IFB_FWSup.id == COMP_ID_STA && !mmd_check_comp( (void*)&cfg_drv_act_ranges_sta, &ifbp->IFB_FWSup) ) ||
4228 ( ifbp->IFB_FWSup.id == COMP_ID_APF && !mmd_check_comp( (void*)&cfg_drv_act_ranges_apf, &ifbp->IFB_FWSup) ) 4228 ( ifbp->IFB_FWSup.id == COMP_ID_APF && !mmd_check_comp( (void*)&cfg_drv_act_ranges_apf, &ifbp->IFB_FWSup) )
4229 ) { /* 24 */ 4229 ) { /* 24 */
4230 ifbp->IFB_CardStat |= CARD_STAT_INCOMP_FW; 4230 ifbp->IFB_CardStat |= CARD_STAT_INCOMP_FW;
4231 rc = HCF_ERR_INCOMP_FW; 4231 rc = HCF_ERR_INCOMP_FW;
4232 } 4232 }
4233 } 4233 }
4234#endif // MSF_COMPONENT_ID 4234#endif // MSF_COMPONENT_ID
4235#if (HCF_DL_ONLY) == 0 /* 28 */ 4235#if (HCF_DL_ONLY) == 0 /* 28 */
4236 if ( rc == HCF_SUCCESS && ifbp->IFB_FWIdentity.comp_id >= COMP_ID_FW_STA ) { 4236 if ( rc == HCF_SUCCESS && ifbp->IFB_FWIdentity.comp_id >= COMP_ID_FW_STA ) {
4237PROT_CNT_INI; 4237 PROT_CNT_INI;
4238 /************************************************************************************** 4238 /**************************************************************************************
4239 * rlav: the DMA engine needs the host to cause a 'hanging alloc event' for it to consume. 4239 * rlav: the DMA engine needs the host to cause a 'hanging alloc event' for it to consume.
4240 * not sure if this is the right spot in the HCF, thinking about hcf_enable... 4240 * not sure if this is the right spot in the HCF, thinking about hcf_enable...
4241 **************************************************************************************/ 4241 **************************************************************************************/
4242 rc = cmd_exe( ifbp, HCMD_ALLOC, 0 ); 4242 rc = cmd_exe( ifbp, HCMD_ALLOC, 0 );
4243// 180 degree error in logic ;? #if ALLOC_15 4243// 180 degree error in logic ;? #if ALLOC_15
4244// ifbp->IFB_RscInd = 1; //let's hope that by the time hcf_send_msg isa called, there will be a FID 4244// ifbp->IFB_RscInd = 1; //let's hope that by the time hcf_send_msg isa called, there will be a FID
4245//#else 4245//#else
4246 if ( rc == HCF_SUCCESS ) { 4246 if ( rc == HCF_SUCCESS ) {
4247 HCF_WAIT_WHILE( (IPW( HREG_EV_STAT ) & HREG_EV_ALLOC) == 0 ); 4247 HCF_WAIT_WHILE( (IPW( HREG_EV_STAT ) & HREG_EV_ALLOC) == 0 );
@@ -4266,74 +4266,74 @@ PROT_CNT_INI;
4266 4266
4267#if (HCF_DL_ONLY) == 0 4267#if (HCF_DL_ONLY) == 0
4268/************************************************************************************************************ 4268/************************************************************************************************************
4269* 4269 *
4270*.SUBMODULE void isr_info( IFBP ifbp ) 4270 *.SUBMODULE void isr_info( IFBP ifbp )
4271*.PURPOSE handles link events. 4271 *.PURPOSE handles link events.
4272* 4272 *
4273*.ARGUMENTS 4273 *.ARGUMENTS
4274* ifbp address of the Interface Block 4274 * ifbp address of the Interface Block
4275* 4275 *
4276*.RETURNS N.A. 4276 *.RETURNS N.A.
4277* 4277 *
4278*.DESCRIPTION 4278 *.DESCRIPTION
4279* 4279 *
4280* 4280 *
4281*.DIAGRAM 4281 *.DIAGRAM
4282*1: First the FID number corresponding with the InfoEvent is determined. 4282 *1: First the FID number corresponding with the InfoEvent is determined.
4283* Note the complication of the zero-FID protection sub-scheme in DAWA. 4283 * Note the complication of the zero-FID protection sub-scheme in DAWA.
4284* Next the L-field and the T-field are fetched into scratch buffer info. 4284 * Next the L-field and the T-field are fetched into scratch buffer info.
4285*2: In case of tallies, the 16 bits Hermes values are accumulated in the IFB into 32 bits values. Info[0] 4285 *2: In case of tallies, the 16 bits Hermes values are accumulated in the IFB into 32 bits values. Info[0]
4286* is (expected to be) HCF_NIC_TAL_CNT + 1. The contraption "while ( info[0]-- >1 )" rather than 4286 * is (expected to be) HCF_NIC_TAL_CNT + 1. The contraption "while ( info[0]-- >1 )" rather than
4287* "while ( --info[0] )" is used because it is dangerous to determine the length of the Value field by 4287 * "while ( --info[0] )" is used because it is dangerous to determine the length of the Value field by
4288* decrementing info[0]. As a result of a bug in some version of the F/W, info[0] may be 0, resulting 4288 * decrementing info[0]. As a result of a bug in some version of the F/W, info[0] may be 0, resulting
4289* in a very long loop in the pre-decrement logic. 4289 * in a very long loop in the pre-decrement logic.
4290*4: In case of a link status frame, the information is copied to the IFB field IFB_linkStat 4290 *4: In case of a link status frame, the information is copied to the IFB field IFB_linkStat
4291*6: All other than Tallies (including "unknown" ones) are checked against the selection set by the MSF 4291 *6: All other than Tallies (including "unknown" ones) are checked against the selection set by the MSF
4292* via CFG_RID_LOG. If a match is found or the selection set has the wild-card type (i.e non-NULL buffer 4292 * via CFG_RID_LOG. If a match is found or the selection set has the wild-card type (i.e non-NULL buffer
4293* pointer at the terminating zero-type), the frame is copied to the (type-specific) log buffer. 4293 * pointer at the terminating zero-type), the frame is copied to the (type-specific) log buffer.
4294* Note that to accumulate tallies into IFB AND to log them or to log a frame when a specific match occures 4294 * Note that to accumulate tallies into IFB AND to log them or to log a frame when a specific match occures
4295* AND based on the wild-card selection, you have to call setup_bap again after the 1st copy. 4295 * AND based on the wild-card selection, you have to call setup_bap again after the 1st copy.
4296* 4296 *
4297*.ENDDOC END DOCUMENTATION 4297 *.ENDDOC END DOCUMENTATION
4298* 4298 *
4299************************************************************************************************************/ 4299 ************************************************************************************************************/
4300HCF_STATIC void 4300HCF_STATIC void
4301isr_info( IFBP ifbp ) 4301isr_info( IFBP ifbp )
4302{ 4302{
4303hcf_16 info[2], fid; 4303 hcf_16 info[2], fid;
4304#if (HCF_EXT) & HCF_EXT_INFO_LOG 4304#if (HCF_EXT) & HCF_EXT_INFO_LOG
4305RID_LOGP ridp = ifbp->IFB_RIDLogp; //NULL or pointer to array of RID_LOG structures (terminated by zero typ) 4305 RID_LOGP ridp = ifbp->IFB_RIDLogp; //NULL or pointer to array of RID_LOG structures (terminated by zero typ)
4306#endif // HCF_EXT_INFO_LOG 4306#endif // HCF_EXT_INFO_LOG
4307 4307
4308 HCFTRACE( ifbp, HCF_TRACE_ISR_INFO ); /* 1 */ 4308 HCFTRACE( ifbp, HCF_TRACE_ISR_INFO ); /* 1 */
4309 fid = IPW( HREG_INFO_FID ); 4309 fid = IPW( HREG_INFO_FID );
4310 DAWA_ZERO_FID( HREG_INFO_FID ); 4310 DAWA_ZERO_FID( HREG_INFO_FID );
4311 if ( fid ) { 4311 if ( fid ) {
4312 (void)setup_bap( ifbp, fid, 0, IO_IN ); 4312 (void)setup_bap( ifbp, fid, 0, IO_IN );
4313 get_frag( ifbp, (wci_bufp)info, 4 BE_PAR(2) ); 4313 get_frag( ifbp, (wci_bufp)info, 4 BE_PAR(2) );
4314 HCFASSERT( info[0] <= HCF_MAX_LTV + 1, MERGE_2( info[1], info[0] ) ); //;? a smaller value makes more sense 4314 HCFASSERT( info[0] <= HCF_MAX_LTV + 1, MERGE_2( info[1], info[0] ) ); //;? a smaller value makes more sense
4315#if (HCF_TALLIES) & HCF_TALLIES_NIC //Hermes tally support 4315#if (HCF_TALLIES) & HCF_TALLIES_NIC //Hermes tally support
4316 if ( info[1] == CFG_TALLIES ) { 4316 if ( info[1] == CFG_TALLIES ) {
4317hcf_32 *p; 4317 hcf_32 *p;
4318/*2*/ if ( info[0] > HCF_NIC_TAL_CNT ) { 4318 /*2*/ if ( info[0] > HCF_NIC_TAL_CNT ) {
4319 info[0] = HCF_NIC_TAL_CNT + 1; 4319 info[0] = HCF_NIC_TAL_CNT + 1;
4320 } 4320 }
4321 p = (hcf_32*)&ifbp->IFB_NIC_Tallies; 4321 p = (hcf_32*)&ifbp->IFB_NIC_Tallies;
4322 while ( info[0]-- >1 ) *p++ += IPW( HREG_DATA_1 ); //request may return zero length 4322 while ( info[0]-- >1 ) *p++ += IPW( HREG_DATA_1 ); //request may return zero length
4323 } 4323 }
4324 else 4324 else
4325#endif // HCF_TALLIES_NIC 4325#endif // HCF_TALLIES_NIC
4326 { 4326 {
4327/*4*/ if ( info[1] == CFG_LINK_STAT ) { 4327 /*4*/ if ( info[1] == CFG_LINK_STAT ) {
4328 ifbp->IFB_LinkStat = IPW( HREG_DATA_1 ); 4328 ifbp->IFB_LinkStat = IPW( HREG_DATA_1 );
4329 } 4329 }
4330#if (HCF_EXT) & HCF_EXT_INFO_LOG 4330#if (HCF_EXT) & HCF_EXT_INFO_LOG
4331/*6*/ while ( 1 ) { 4331 /*6*/ while ( 1 ) {
4332 if ( ridp->typ == 0 || ridp->typ == info[1] ) { 4332 if ( ridp->typ == 0 || ridp->typ == info[1] ) {
4333 if ( ridp->bufp ) { 4333 if ( ridp->bufp ) {
4334 HCFASSERT( ridp->len >= 2, ridp->typ ); 4334 HCFASSERT( ridp->len >= 2, ridp->typ );
4335 ridp->bufp[0] = min((hcf_16)(ridp->len - 1), info[0] ); //save L 4335 ridp->bufp[0] = min((hcf_16)(ridp->len - 1), info[0] ); //save L
4336 ridp->bufp[1] = info[1]; //save T 4336 ridp->bufp[1] = info[1]; //save T
4337 get_frag( ifbp, (wci_bufp)&ridp->bufp[2], (ridp->bufp[0] - 1)*2 BE_PAR(0) ); 4337 get_frag( ifbp, (wci_bufp)&ridp->bufp[2], (ridp->bufp[0] - 1)*2 BE_PAR(0) );
4338 } 4338 }
4339 break; 4339 break;
@@ -4351,79 +4351,79 @@ hcf_32 *p;
4351// 4351//
4352// 4352//
4353// #endif // HCF_TALLIES_NIC 4353// #endif // HCF_TALLIES_NIC
4354// /*4*/ if ( info[1] == CFG_LINK_STAT ) { 4354// /*4*/ if ( info[1] == CFG_LINK_STAT ) {
4355// ifbp->IFB_DSLinkStat = IPW( HREG_DATA_1 ) | CFG_LINK_STAT_CHANGE; //corrupts BAP !! ;? 4355// ifbp->IFB_DSLinkStat = IPW( HREG_DATA_1 ) | CFG_LINK_STAT_CHANGE; //corrupts BAP !! ;?
4356// ifbp->IFB_LinkStat = ifbp->IFB_DSLinkStat & CFG_LINK_STAT_FW; //;? to be obsoleted 4356// ifbp->IFB_LinkStat = ifbp->IFB_DSLinkStat & CFG_LINK_STAT_FW; //;? to be obsoleted
4357// printk( "<4>linkstatus: %04x\n", ifbp->IFB_DSLinkStat ); //;?remove me 1 day 4357// printk( "<4>linkstatus: %04x\n", ifbp->IFB_DSLinkStat ); //;?remove me 1 day
4358// #if (HCF_SLEEP) & HCF_DDS 4358// #if (HCF_SLEEP) & HCF_DDS
4359// if ( ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_CONNECTED ) == 0 ) { //even values are disconnected etc. 4359// if ( ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_CONNECTED ) == 0 ) { //even values are disconnected etc.
4360// ifbp->IFB_TickCnt = 0; //start 2 second period (with 1 tick uncertanty) 4360// ifbp->IFB_TickCnt = 0; //start 2 second period (with 1 tick uncertanty)
4361// printk( "<5>isr_info: AwaitConnection phase started, IFB_TickCnt = 0\n" ); //;?remove me 1 day 4361// printk( "<5>isr_info: AwaitConnection phase started, IFB_TickCnt = 0\n" ); //;?remove me 1 day
4362// } 4362// }
4363// #endif // HCF_DDS 4363// #endif // HCF_DDS
4364// } 4364// }
4365// #if (HCF_EXT) & HCF_EXT_INFO_LOG 4365// #if (HCF_EXT) & HCF_EXT_INFO_LOG
4366// /*6*/ while ( 1 ) { 4366// /*6*/ while ( 1 ) {
4367// if ( ridp->typ == 0 || ridp->typ == info[1] ) { 4367// if ( ridp->typ == 0 || ridp->typ == info[1] ) {
4368// if ( ridp->bufp ) { 4368// if ( ridp->bufp ) {
4369// HCFASSERT( ridp->len >= 2, ridp->typ ); 4369// HCFASSERT( ridp->len >= 2, ridp->typ );
4370// (void)setup_bap( ifbp, fid, 2, IO_IN ); //restore BAP for tallies, linkstat and specific type followed by wild card 4370// (void)setup_bap( ifbp, fid, 2, IO_IN ); //restore BAP for tallies, linkstat and specific type followed by wild card
4371// ridp->bufp[0] = min( ridp->len - 1, info[0] ); //save L 4371// ridp->bufp[0] = min( ridp->len - 1, info[0] ); //save L
4372// get_frag( ifbp, (wci_bufp)&ridp->bufp[1], ridp->bufp[0]*2 BE_PAR(0) ); 4372// get_frag( ifbp, (wci_bufp)&ridp->bufp[1], ridp->bufp[0]*2 BE_PAR(0) );
4373// } 4373// }
4374// break; //;?this break is no longer needed due to setup_bap but lets concentrate on DDS first 4374// break; //;?this break is no longer needed due to setup_bap but lets concentrate on DDS first
4375// } 4375// }
4376// ridp++; 4376// ridp++;
4377// } 4377// }
4378// #endif // HCF_EXT_INFO_LOG 4378// #endif // HCF_EXT_INFO_LOG
4379// } 4379// }
4380// HCFTRACE( ifbp, HCF_TRACE_ISR_INFO | HCF_TRACE_EXIT ); 4380// HCFTRACE( ifbp, HCF_TRACE_ISR_INFO | HCF_TRACE_EXIT );
4381// 4381//
4382// 4382//
4383// 4383//
4384// 4384//
4385// return; 4385// return;
4386//} // isr_info 4386//} // isr_info
4387//#endif // HCF_DL_ONLY 4387//#endif // HCF_DL_ONLY
4388 4388
4389 4389
4390/************************************************************************************************************ 4390/************************************************************************************************************
4391* 4391 *
4392*.SUBMODULE void mdd_assert( IFBP ifbp, unsigned int line_number, hcf_32 q ) 4392 *.SUBMODULE void mdd_assert( IFBP ifbp, unsigned int line_number, hcf_32 q )
4393*.PURPOSE filters assert on level and interfaces to the MSF supplied msf_assert routine. 4393 *.PURPOSE filters assert on level and interfaces to the MSF supplied msf_assert routine.
4394* 4394 *
4395*.ARGUMENTS 4395 *.ARGUMENTS
4396* ifbp address of the Interface Block 4396 * ifbp address of the Interface Block
4397* line_number line number of the line which caused the assert 4397 * line_number line number of the line which caused the assert
4398* q qualifier, additional information which may give a clue about the problem 4398 * q qualifier, additional information which may give a clue about the problem
4399* 4399 *
4400*.RETURNS N.A. 4400 *.RETURNS N.A.
4401* 4401 *
4402*.DESCRIPTION 4402 *.DESCRIPTION
4403* 4403 *
4404* 4404 *
4405*.DIAGRAM 4405 *.DIAGRAM
4406* 4406 *
4407*.NOTICE 4407 *.NOTICE
4408* mdd_assert has been through a turmoil, renaming hcf_assert to assert and hcf_assert again and supporting off 4408 * mdd_assert has been through a turmoil, renaming hcf_assert to assert and hcf_assert again and supporting off
4409* and on being called from the MSF level and other ( immature ) ModularDriverDevelopment modules like DHF and 4409 * and on being called from the MSF level and other ( immature ) ModularDriverDevelopment modules like DHF and
4410* MMD. 4410 * MMD.
4411 * !!!! The assert routine is not an hcf_..... routine in the sense that it may be called by the MSF, 4411 * !!!! The assert routine is not an hcf_..... routine in the sense that it may be called by the MSF,
4412 * however it is called from mmd.c and dhf.c, so it must be external. 4412 * however it is called from mmd.c and dhf.c, so it must be external.
4413 * To prevent namespace pollution it needs a prefix, to prevent that MSF programmers think that 4413 * To prevent namespace pollution it needs a prefix, to prevent that MSF programmers think that
4414 * they are allowed to call the assert logic, the prefix HCF can't be used, so MDD is selected!!!! 4414 * they are allowed to call the assert logic, the prefix HCF can't be used, so MDD is selected!!!!
4415 * 4415 *
4416* When called from the DHF module the line number is incremented by DHF_FILE_NAME_OFFSET and when called from 4416 * When called from the DHF module the line number is incremented by DHF_FILE_NAME_OFFSET and when called from
4417* the MMD module by MMD_FILE_NAME_OFFSET. 4417 * the MMD module by MMD_FILE_NAME_OFFSET.
4418* 4418 *
4419*.ENDDOC END DOCUMENTATION 4419 *.ENDDOC END DOCUMENTATION
4420* 4420 *
4421************************************************************************************************************/ 4421 ************************************************************************************************************/
4422#if HCF_ASSERT 4422#if HCF_ASSERT
4423void 4423void
4424mdd_assert( IFBP ifbp, unsigned int line_number, hcf_32 q ) 4424mdd_assert( IFBP ifbp, unsigned int line_number, hcf_32 q )
4425{ 4425{
4426hcf_16 run_time_flag = ifbp->IFB_AssertLvl; 4426 hcf_16 run_time_flag = ifbp->IFB_AssertLvl;
4427 4427
4428 if ( run_time_flag /* > ;?????? */ ) { //prevent recursive behavior, later to be extended to level filtering 4428 if ( run_time_flag /* > ;?????? */ ) { //prevent recursive behavior, later to be extended to level filtering
4429 ifbp->IFB_AssertQualifier = q; 4429 ifbp->IFB_AssertQualifier = q;
@@ -4441,9 +4441,9 @@ hcf_16 run_time_flag = ifbp->IFB_AssertLvl;
4441#endif // HCF_ASSERT_SW_SUP 4441#endif // HCF_ASSERT_SW_SUP
4442 4442
4443#if (HCF_EXT) & HCF_EXT_MB && (HCF_ASSERT) & HCF_ASSERT_MB 4443#if (HCF_EXT) & HCF_EXT_MB && (HCF_ASSERT) & HCF_ASSERT_MB
4444 ifbp->IFB_AssertLvl = 0; // prevent recursive behavior 4444 ifbp->IFB_AssertLvl = 0; // prevent recursive behavior
4445 hcf_put_info( ifbp, (LTVP)&ifbp->IFB_AssertStrct ); 4445 hcf_put_info( ifbp, (LTVP)&ifbp->IFB_AssertStrct );
4446 ifbp->IFB_AssertLvl = run_time_flag; // restore appropriate filter level 4446 ifbp->IFB_AssertLvl = run_time_flag; // restore appropriate filter level
4447#endif // HCF_EXT_MB / HCF_ASSERT_MB 4447#endif // HCF_EXT_MB / HCF_ASSERT_MB
4448 } 4448 }
4449} // mdd_assert 4449} // mdd_assert
@@ -4451,63 +4451,63 @@ hcf_16 run_time_flag = ifbp->IFB_AssertLvl;
4451 4451
4452 4452
4453/************************************************************************************************************ 4453/************************************************************************************************************
4454* 4454 *
4455*.SUBMODULE void put_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) ) 4455 *.SUBMODULE void put_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
4456*.PURPOSE writes with 16/32 bit I/O via BAP1 port from Host memory to NIC RAM. 4456 *.PURPOSE writes with 16/32 bit I/O via BAP1 port from Host memory to NIC RAM.
4457* 4457 *
4458*.ARGUMENTS 4458 *.ARGUMENTS
4459* ifbp address of the Interface Block 4459 * ifbp address of the Interface Block
4460* bufp (byte) address of buffer 4460 * bufp (byte) address of buffer
4461* len length in bytes of buffer specified by bufp 4461 * len length in bytes of buffer specified by bufp
4462* word_len Big Endian only: number of leading bytes to swap in pairs 4462 * word_len Big Endian only: number of leading bytes to swap in pairs
4463* 4463 *
4464*.RETURNS N.A. 4464 *.RETURNS N.A.
4465* 4465 *
4466*.DESCRIPTION 4466 *.DESCRIPTION
4467* process the single byte (if applicable) not yet written by the previous put_frag and copy len 4467 * process the single byte (if applicable) not yet written by the previous put_frag and copy len
4468* (or len-1) bytes from bufp to NIC. 4468 * (or len-1) bytes from bufp to NIC.
4469* 4469 *
4470* 4470 *
4471*.DIAGRAM 4471 *.DIAGRAM
4472* 4472 *
4473*.NOTICE 4473 *.NOTICE
4474* It turns out DOS ODI uses zero length fragments. The HCF code can cope with it, but as a consequence, no 4474 * It turns out DOS ODI uses zero length fragments. The HCF code can cope with it, but as a consequence, no
4475* Assert on len is possible 4475 * Assert on len is possible
4476* 4476 *
4477*.ENDDOC END DOCUMENTATION 4477 *.ENDDOC END DOCUMENTATION
4478* 4478 *
4479************************************************************************************************************/ 4479 ************************************************************************************************************/
4480HCF_STATIC void 4480HCF_STATIC void
4481put_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) ) 4481put_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
4482{ 4482{
4483hcf_io io_port = ifbp->IFB_IOBase + HREG_DATA_1; //BAP data register 4483 hcf_io io_port = ifbp->IFB_IOBase + HREG_DATA_1; //BAP data register
4484int i; //prevent side effects from macro 4484 int i; //prevent side effects from macro
4485hcf_16 j; 4485 hcf_16 j;
4486 HCFASSERT( ((hcf_32)bufp & (HCF_ALIGN-1) ) == 0, (hcf_32)bufp ); 4486 HCFASSERT( ((hcf_32)bufp & (HCF_ALIGN-1) ) == 0, (hcf_32)bufp );
4487#if HCF_BIG_ENDIAN 4487#if HCF_BIG_ENDIAN
4488 HCFASSERT( word_len == 0 || word_len == 2 || word_len == 4, word_len ); 4488 HCFASSERT( word_len == 0 || word_len == 2 || word_len == 4, word_len );
4489 HCFASSERT( word_len == 0 || ((hcf_32)bufp & 1 ) == 0, (hcf_32)bufp ); 4489 HCFASSERT( word_len == 0 || ((hcf_32)bufp & 1 ) == 0, (hcf_32)bufp );
4490 HCFASSERT( word_len <= len, MERGE_2( word_len, len ) ); 4490 HCFASSERT( word_len <= len, MERGE_2( word_len, len ) );
4491 4491
4492 if ( word_len ) { //if there is anything to convert 4492 if ( word_len ) { //if there is anything to convert
4493 //. convert and write the 1st hcf_16 4493 //. convert and write the 1st hcf_16
4494 j = bufp[1] | bufp[0]<<8; 4494 j = bufp[1] | bufp[0]<<8;
4495 OUT_PORT_WORD( io_port, j ); 4495 OUT_PORT_WORD( io_port, j );
4496 //. update pointer and counter accordingly 4496 //. update pointer and counter accordingly
4497 len -= 2; 4497 len -= 2;
4498 bufp += 2; 4498 bufp += 2;
4499 if ( word_len > 1 ) { //. if there is to convert more than 1 word ( i.e 2 ) 4499 if ( word_len > 1 ) { //. if there is to convert more than 1 word ( i.e 2 )
4500 //. . convert and write the 2nd hcf_16 4500 //. . convert and write the 2nd hcf_16
4501 j = bufp[1] | bufp[0]<<8; /*bufp is already incremented by 2*/ 4501 j = bufp[1] | bufp[0]<<8; /*bufp is already incremented by 2*/
4502 OUT_PORT_WORD( io_port, j ); 4502 OUT_PORT_WORD( io_port, j );
4503 //. . update pointer and counter accordingly 4503 //. . update pointer and counter accordingly
4504 len -= 2; 4504 len -= 2;
4505 bufp += 2; 4505 bufp += 2;
4506 } 4506 }
4507 } 4507 }
4508#endif // HCF_BIG_ENDIAN 4508#endif // HCF_BIG_ENDIAN
4509 i = len; 4509 i = len;
4510 if ( i && ifbp->IFB_CarryOut ) { //skip zero-length 4510 if ( i && ifbp->IFB_CarryOut ) { //skip zero-length
4511 j = ((*bufp)<<8) + ( ifbp->IFB_CarryOut & 0xFF ); 4511 j = ((*bufp)<<8) + ( ifbp->IFB_CarryOut & 0xFF );
4512 OUT_PORT_WORD( io_port, j ); 4512 OUT_PORT_WORD( io_port, j );
4513 bufp++; i--; 4513 bufp++; i--;
@@ -4515,35 +4515,35 @@ hcf_16 j;
4515 } 4515 }
4516#if (HCF_IO) & HCF_IO_32BITS 4516#if (HCF_IO) & HCF_IO_32BITS
4517 //skip zero-length I/O, single byte I/O and I/O not worthwhile (i.e. less than 6 bytes)for DW logic 4517 //skip zero-length I/O, single byte I/O and I/O not worthwhile (i.e. less than 6 bytes)for DW logic
4518 //if buffer length >= 6 and 32 bits I/O support 4518 //if buffer length >= 6 and 32 bits I/O support
4519 if ( !(ifbp->IFB_CntlOpt & USE_16BIT) && i >= 6 ) { 4519 if ( !(ifbp->IFB_CntlOpt & USE_16BIT) && i >= 6 ) {
4520hcf_32 FAR *p4; //prevent side effects from macro 4520 hcf_32 FAR *p4; //prevent side effects from macro
4521 if ( ( (hcf_32)bufp & 0x1 ) == 0 ) { //. if buffer at least word aligned 4521 if ( ( (hcf_32)bufp & 0x1 ) == 0 ) { //. if buffer at least word aligned
4522 if ( (hcf_32)bufp & 0x2 ) { //. . if buffer not double word aligned 4522 if ( (hcf_32)bufp & 0x2 ) { //. . if buffer not double word aligned
4523 //. . . write a single word to get double word aligned 4523 //. . . write a single word to get double word aligned
4524 j = *(wci_recordp)bufp; //just to help ease writing macros with embedded assembly 4524 j = *(wci_recordp)bufp; //just to help ease writing macros with embedded assembly
4525 OUT_PORT_WORD( io_port, j ); 4525 OUT_PORT_WORD( io_port, j );
4526 //. . . adjust buffer length and pointer accordingly 4526 //. . . adjust buffer length and pointer accordingly
4527 bufp += 2; i -= 2; 4527 bufp += 2; i -= 2;
4528 } 4528 }
4529 //. . write as many double word as possible 4529 //. . write as many double word as possible
4530 p4 = (hcf_32 FAR *)bufp; 4530 p4 = (hcf_32 FAR *)bufp;
4531 j = (hcf_16)i/4; 4531 j = (hcf_16)i/4;
4532 OUT_PORT_STRING_32( io_port, p4, j ); 4532 OUT_PORT_STRING_32( io_port, p4, j );
4533 //. . adjust buffer length and pointer accordingly 4533 //. . adjust buffer length and pointer accordingly
4534 bufp += i & ~0x0003; 4534 bufp += i & ~0x0003;
4535 i &= 0x0003; 4535 i &= 0x0003;
4536 } 4536 }
4537 } 4537 }
4538#endif // HCF_IO_32BITS 4538#endif // HCF_IO_32BITS
4539 //if no 32-bit support OR byte aligned OR 1 word left 4539 //if no 32-bit support OR byte aligned OR 1 word left
4540 if ( i ) { 4540 if ( i ) {
4541 //. if odd number of bytes left 4541 //. if odd number of bytes left
4542 if ( i & 0x0001 ) { 4542 if ( i & 0x0001 ) {
4543 //. . save left over byte (before bufp is corrupted) in carry, set carry flag 4543 //. . save left over byte (before bufp is corrupted) in carry, set carry flag
4544 ifbp->IFB_CarryOut = (hcf_16)bufp[i-1] | 0x0100; //note that i and bufp are always simultaneously modified, &bufp[i-1] is invariant 4544 ifbp->IFB_CarryOut = (hcf_16)bufp[i-1] | 0x0100; //note that i and bufp are always simultaneously modified, &bufp[i-1] is invariant
4545 } 4545 }
4546 //. write as many word as possible in "alignment safe" way 4546 //. write as many word as possible in "alignment safe" way
4547 j = (hcf_16)i/2; 4547 j = (hcf_16)i/2;
4548 OUT_PORT_STRING_8_16( io_port, bufp, j ); 4548 OUT_PORT_STRING_8_16( io_port, bufp, j );
4549 } 4549 }
@@ -4551,117 +4551,117 @@ hcf_32 FAR *p4; //prevent side effects from macro
4551 4551
4552 4552
4553/************************************************************************************************************ 4553/************************************************************************************************************
4554* 4554 *
4555*.SUBMODULE void put_frag_finalize( IFBP ifbp ) 4555 *.SUBMODULE void put_frag_finalize( IFBP ifbp )
4556*.PURPOSE cleanup after put_frag for trailing odd byte and MIC transfer to NIC. 4556 *.PURPOSE cleanup after put_frag for trailing odd byte and MIC transfer to NIC.
4557* 4557 *
4558*.ARGUMENTS 4558 *.ARGUMENTS
4559* ifbp address of the Interface Block 4559 * ifbp address of the Interface Block
4560* 4560 *
4561*.RETURNS N.A. 4561 *.RETURNS N.A.
4562* 4562 *
4563*.DESCRIPTION 4563 *.DESCRIPTION
4564* finalize the MIC calculation with the padding pattern, output the last byte (if applicable) 4564 * finalize the MIC calculation with the padding pattern, output the last byte (if applicable)
4565* of the message and the MIC to the TxFS 4565 * of the message and the MIC to the TxFS
4566* 4566 *
4567* 4567 *
4568*.DIAGRAM 4568 *.DIAGRAM
4569*2: 1 byte of the last put_frag may be still in IFB_CarryOut ( the put_frag carry holder ), so ........ 4569 *2: 1 byte of the last put_frag may be still in IFB_CarryOut ( the put_frag carry holder ), so ........
4570* 1 - 3 bytes of the last put_frag may be still in IFB_tx_32 ( the MIC engine carry holder ), so ........ 4570 * 1 - 3 bytes of the last put_frag may be still in IFB_tx_32 ( the MIC engine carry holder ), so ........
4571* The call to the MIC calculation routine feeds these remaining bytes (if any) of put_frag and the 4571 * The call to the MIC calculation routine feeds these remaining bytes (if any) of put_frag and the
4572* just as many bytes of the padding as needed to the MIC calculation engine. Note that the "unneeded" pad 4572 * just as many bytes of the padding as needed to the MIC calculation engine. Note that the "unneeded" pad
4573* bytes simply end up in the MIC engine carry holder and are never used. 4573 * bytes simply end up in the MIC engine carry holder and are never used.
4574*8: write the remainder of the MIC and possible some garbage to NIC RAM 4574 *8: write the remainder of the MIC and possible some garbage to NIC RAM
4575* Note: i is always 4 (a loop-invariant of the while in point 2) 4575 * Note: i is always 4 (a loop-invariant of the while in point 2)
4576* 4576 *
4577*.NOTICE 4577 *.NOTICE
4578* 4578 *
4579*.ENDDOC END DOCUMENTATION 4579 *.ENDDOC END DOCUMENTATION
4580* 4580 *
4581************************************************************************************************************/ 4581 ************************************************************************************************************/
4582HCF_STATIC void 4582HCF_STATIC void
4583put_frag_finalize( IFBP ifbp ) 4583put_frag_finalize( IFBP ifbp )
4584{ 4584{
4585#if (HCF_TYPE) & HCF_TYPE_WPA 4585#if (HCF_TYPE) & HCF_TYPE_WPA
4586 if ( ifbp->IFB_MICTxCarry != 0xFFFF) { //if MIC calculation active 4586 if ( ifbp->IFB_MICTxCarry != 0xFFFF) { //if MIC calculation active
4587 CALC_TX_MIC( mic_pad, 8); //. feed (up to 8 bytes of) virtual padding to MIC engine 4587 CALC_TX_MIC( mic_pad, 8); //. feed (up to 8 bytes of) virtual padding to MIC engine
4588 //. write (possibly) trailing byte + (most of) MIC 4588 //. write (possibly) trailing byte + (most of) MIC
4589 put_frag( ifbp, (wci_bufp)ifbp->IFB_MICTx, 8 BE_PAR(0) ); 4589 put_frag( ifbp, (wci_bufp)ifbp->IFB_MICTx, 8 BE_PAR(0) );
4590 } 4590 }
4591#endif // HCF_TYPE_WPA 4591#endif // HCF_TYPE_WPA
4592 put_frag( ifbp, null_addr, 1 BE_PAR(0) ); //write (possibly) trailing data or MIC byte 4592 put_frag( ifbp, null_addr, 1 BE_PAR(0) ); //write (possibly) trailing data or MIC byte
4593} // put_frag_finalize 4593} // put_frag_finalize
4594 4594
4595 4595
4596/************************************************************************************************************ 4596/************************************************************************************************************
4597* 4597 *
4598*.SUBMODULE int put_info( IFBP ifbp, LTVP ltvp ) 4598 *.SUBMODULE int put_info( IFBP ifbp, LTVP ltvp )
4599*.PURPOSE support routine to handle the "basic" task of hcf_put_info to pass RIDs to the NIC. 4599 *.PURPOSE support routine to handle the "basic" task of hcf_put_info to pass RIDs to the NIC.
4600* 4600 *
4601*.ARGUMENTS 4601 *.ARGUMENTS
4602* ifbp address of the Interface Block 4602 * ifbp address of the Interface Block
4603* ltvp address in NIC RAM where LVT-records are located 4603 * ltvp address in NIC RAM where LVT-records are located
4604* 4604 *
4605*.RETURNS 4605 *.RETURNS
4606* HCF_SUCCESS 4606 * HCF_SUCCESS
4607* >>put_frag 4607 * >>put_frag
4608* >>cmd_wait 4608 * >>cmd_wait
4609* 4609 *
4610*.DESCRIPTION 4610 *.DESCRIPTION
4611* 4611 *
4612* 4612 *
4613*.DIAGRAM 4613 *.DIAGRAM
4614*20: do not write RIDs to NICs which have incompatible Firmware 4614 *20: do not write RIDs to NICs which have incompatible Firmware
4615*24: If the RID does not exist, the L-field is set to zero. 4615 *24: If the RID does not exist, the L-field is set to zero.
4616* Note that some RIDs can not be read, e.g. the pseudo RIDs for direct Hermes commands and CFG_DEFAULT_KEYS 4616 * Note that some RIDs can not be read, e.g. the pseudo RIDs for direct Hermes commands and CFG_DEFAULT_KEYS
4617*28: If the RID is written successful, pass it to the NIC by means of an Access Write command 4617 *28: If the RID is written successful, pass it to the NIC by means of an Access Write command
4618* 4618 *
4619*.NOTICE 4619 *.NOTICE
4620* The mechanism to HCF_ASSERT on invalid typ-codes in the LTV record is based on the following strategy: 4620 * The mechanism to HCF_ASSERT on invalid typ-codes in the LTV record is based on the following strategy:
4621* - some codes (e.g. CFG_REG_MB) are explicitly handled by the HCF which implies that these codes 4621 * - some codes (e.g. CFG_REG_MB) are explicitly handled by the HCF which implies that these codes
4622* are valid. These codes are already consumed by hcf_put_info. 4622 * are valid. These codes are already consumed by hcf_put_info.
4623* - all other codes are passed to the Hermes. Before the put action is executed, hcf_get_info is called 4623 * - all other codes are passed to the Hermes. Before the put action is executed, hcf_get_info is called
4624* with an LTV record with a value of 1 in the L-field and the intended put action type in the Typ-code 4624 * with an LTV record with a value of 1 in the L-field and the intended put action type in the Typ-code
4625* field. If the put action type is valid, it is also valid as a get action type code - except 4625 * field. If the put action type is valid, it is also valid as a get action type code - except
4626* for CFG_DEFAULT_KEYS and CFG_ADD_TKIP_DEFAULT_KEY - so the HCF_ASSERT logic of hcf_get_info should 4626 * for CFG_DEFAULT_KEYS and CFG_ADD_TKIP_DEFAULT_KEY - so the HCF_ASSERT logic of hcf_get_info should
4627* not catch. 4627 * not catch.
4628* 4628 *
4629*.ENDDOC END DOCUMENTATION 4629 *.ENDDOC END DOCUMENTATION
4630* 4630 *
4631************************************************************************************************************/ 4631 ************************************************************************************************************/
4632HCF_STATIC int 4632HCF_STATIC int
4633put_info( IFBP ifbp, LTVP ltvp ) 4633put_info( IFBP ifbp, LTVP ltvp )
4634{ 4634{
4635 4635
4636int rc = HCF_SUCCESS; 4636 int rc = HCF_SUCCESS;
4637 4637
4638 HCFASSERT( ifbp->IFB_CardStat == 0, MERGE_2( ltvp->typ, ifbp->IFB_CardStat ) ); 4638 HCFASSERT( ifbp->IFB_CardStat == 0, MERGE_2( ltvp->typ, ifbp->IFB_CardStat ) );
4639 HCFASSERT( CFG_RID_CFG_MIN <= ltvp->typ && ltvp->typ <= CFG_RID_CFG_MAX, ltvp->typ ); 4639 HCFASSERT( CFG_RID_CFG_MIN <= ltvp->typ && ltvp->typ <= CFG_RID_CFG_MAX, ltvp->typ );
4640 4640
4641 if ( ifbp->IFB_CardStat == 0 && /* 20*/ 4641 if ( ifbp->IFB_CardStat == 0 && /* 20*/
4642 ( ( CFG_RID_CFG_MIN <= ltvp->typ && ltvp->typ <= CFG_RID_CFG_MAX ) || 4642 ( ( CFG_RID_CFG_MIN <= ltvp->typ && ltvp->typ <= CFG_RID_CFG_MAX ) ||
4643 ( CFG_RID_ENG_MIN <= ltvp->typ /* && ltvp->typ <= 0xFFFF */ ) ) ) { 4643 ( CFG_RID_ENG_MIN <= ltvp->typ /* && ltvp->typ <= 0xFFFF */ ) ) ) {
4644#if HCF_ASSERT //FCC8, FCB0, FCB4, FCB6, FCB7, FCB8, FCC0, FCC4, FCBC, FCBD, FCBE, FCBF 4644#if HCF_ASSERT //FCC8, FCB0, FCB4, FCB6, FCB7, FCB8, FCC0, FCC4, FCBC, FCBD, FCBE, FCBF
4645 { 4645 {
4646 hcf_16 t = ltvp->typ; 4646 hcf_16 t = ltvp->typ;
4647 LTV_STRCT x = { 2, t, {0} }; /*24*/ 4647 LTV_STRCT x = { 2, t, {0} }; /*24*/
4648 hcf_get_info( ifbp, (LTVP)&x ); 4648 hcf_get_info( ifbp, (LTVP)&x );
4649 if ( x.len == 0 && 4649 if ( x.len == 0 &&
4650 ( t != CFG_DEFAULT_KEYS && t != CFG_ADD_TKIP_DEFAULT_KEY && t != CFG_REMOVE_TKIP_DEFAULT_KEY && 4650 ( t != CFG_DEFAULT_KEYS && t != CFG_ADD_TKIP_DEFAULT_KEY && t != CFG_REMOVE_TKIP_DEFAULT_KEY &&
4651 t != CFG_ADD_TKIP_MAPPED_KEY && t != CFG_REMOVE_TKIP_MAPPED_KEY && 4651 t != CFG_ADD_TKIP_MAPPED_KEY && t != CFG_REMOVE_TKIP_MAPPED_KEY &&
4652 t != CFG_HANDOVER_ADDR && t != CFG_DISASSOCIATE_ADDR && 4652 t != CFG_HANDOVER_ADDR && t != CFG_DISASSOCIATE_ADDR &&
4653 t != CFG_FCBC && t != CFG_FCBD && t != CFG_FCBE && t != CFG_FCBF && 4653 t != CFG_FCBC && t != CFG_FCBD && t != CFG_FCBE && t != CFG_FCBF &&
4654 t != CFG_DEAUTHENTICATE_ADDR 4654 t != CFG_DEAUTHENTICATE_ADDR
4655 ) 4655 )
4656 ) { 4656 ) {
4657 HCFASSERT( DO_ASSERT, ltvp->typ ); 4657 HCFASSERT( DO_ASSERT, ltvp->typ );
4658 }
4658 } 4659 }
4659 }
4660#endif // HCF_ASSERT 4660#endif // HCF_ASSERT
4661 4661
4662 rc = setup_bap( ifbp, ltvp->typ, 0, IO_OUT ); 4662 rc = setup_bap( ifbp, ltvp->typ, 0, IO_OUT );
4663 put_frag( ifbp, (wci_bufp)ltvp, 2*ltvp->len + 2 BE_PAR(2) ); 4663 put_frag( ifbp, (wci_bufp)ltvp, 2*ltvp->len + 2 BE_PAR(2) );
4664/*28*/ if ( rc == HCF_SUCCESS ) { 4664 /*28*/ if ( rc == HCF_SUCCESS ) {
4665 rc = cmd_exe( ifbp, HCMD_ACCESS + HCMD_ACCESS_WRITE, ltvp->typ ); 4665 rc = cmd_exe( ifbp, HCMD_ACCESS + HCMD_ACCESS_WRITE, ltvp->typ );
4666 } 4666 }
4667 } 4667 }
@@ -4671,113 +4671,113 @@ int rc = HCF_SUCCESS;
4671 4671
4672#if (HCF_DL_ONLY) == 0 4672#if (HCF_DL_ONLY) == 0
4673/************************************************************************************************************ 4673/************************************************************************************************************
4674* 4674 *
4675*.SUBMODULE int put_info_mb( IFBP ifbp, CFG_MB_INFO_STRCT FAR * ltvp ) 4675 *.SUBMODULE int put_info_mb( IFBP ifbp, CFG_MB_INFO_STRCT FAR * ltvp )
4676*.PURPOSE accumulates a ( series of) buffers into a single Info block into the MailBox. 4676 *.PURPOSE accumulates a ( series of) buffers into a single Info block into the MailBox.
4677* 4677 *
4678*.ARGUMENTS 4678 *.ARGUMENTS
4679* ifbp address of the Interface Block 4679 * ifbp address of the Interface Block
4680* ltvp address of structure specifying the "type" and the fragments of the information to be synthesized 4680 * ltvp address of structure specifying the "type" and the fragments of the information to be synthesized
4681* as an LTV into the MailBox 4681 * as an LTV into the MailBox
4682* 4682 *
4683*.RETURNS 4683 *.RETURNS
4684* 4684 *
4685*.DESCRIPTION 4685 *.DESCRIPTION
4686* If the data does not fit (including no MailBox is available), the IFB_MBTally is incremented and an 4686 * If the data does not fit (including no MailBox is available), the IFB_MBTally is incremented and an
4687* error status is returned. 4687 * error status is returned.
4688* HCF_ASSERT does not catch. 4688 * HCF_ASSERT does not catch.
4689* Calling put_info_mb when their is no MailBox available, is considered a design error in the MSF. 4689 * Calling put_info_mb when their is no MailBox available, is considered a design error in the MSF.
4690* 4690 *
4691* Note that there is always at least 1 word of unused space in the mail box. 4691 * Note that there is always at least 1 word of unused space in the mail box.
4692* As a consequence: 4692 * As a consequence:
4693* - no problem in pointer arithmetic (MB_RP == MB_WP means unambiguously mail box is completely empty 4693 * - no problem in pointer arithmetic (MB_RP == MB_WP means unambiguously mail box is completely empty
4694* - There is always free space to write an L field with a value of zero after each MB_Info block. This 4694 * - There is always free space to write an L field with a value of zero after each MB_Info block. This
4695* allows for an easy scan mechanism in the "get MB_Info block" logic. 4695 * allows for an easy scan mechanism in the "get MB_Info block" logic.
4696* 4696 *
4697* 4697 *
4698*.DIAGRAM 4698 *.DIAGRAM
4699*1: Calculate L field of the MBIB, i.e. 1 for the T-field + the cumulative length of the fragments. 4699 *1: Calculate L field of the MBIB, i.e. 1 for the T-field + the cumulative length of the fragments.
4700*2: The free space in the MailBox is calculated (2a: free part from Write Ptr to Read Ptr, 2b: free part 4700 *2: The free space in the MailBox is calculated (2a: free part from Write Ptr to Read Ptr, 2b: free part
4701* turns out to wrap around) . If this space suffices to store the number of words reflected by len (T-field 4701 * turns out to wrap around) . If this space suffices to store the number of words reflected by len (T-field
4702* + Value-field) plus the additional MailBox Info L-field + a trailing 0 to act as the L-field of a trailing 4702 * + Value-field) plus the additional MailBox Info L-field + a trailing 0 to act as the L-field of a trailing
4703* dummy or empty LTV record, then a MailBox Info block is build in the MailBox consisting of 4703 * dummy or empty LTV record, then a MailBox Info block is build in the MailBox consisting of
4704* - the value len in the first word 4704 * - the value len in the first word
4705* - type in the second word 4705 * - type in the second word
4706* - a copy of the contents of the fragments in the second and higher word 4706 * - a copy of the contents of the fragments in the second and higher word
4707* 4707 *
4708*4: Since put_info_mb() can more or less directly be called from the MSF level, the I/F must be robust 4708 *4: Since put_info_mb() can more or less directly be called from the MSF level, the I/F must be robust
4709* against out-of-range variables. As failsafe coding, the MB update is skipped by changing tlen to 0 if 4709 * against out-of-range variables. As failsafe coding, the MB update is skipped by changing tlen to 0 if
4710* len == 0; This will indirectly cause an assert as result of the violation of the next if clause. 4710 * len == 0; This will indirectly cause an assert as result of the violation of the next if clause.
4711*6: Check whether the free space in MailBox suffices (this covers the complete absence of the MailBox). 4711 *6: Check whether the free space in MailBox suffices (this covers the complete absence of the MailBox).
4712* Note that len is unsigned, so even MSF I/F violation works out O.K. 4712 * Note that len is unsigned, so even MSF I/F violation works out O.K.
4713* The '2' in the expression "len+2" is used because 1 word is needed for L itself and 1 word is needed 4713 * The '2' in the expression "len+2" is used because 1 word is needed for L itself and 1 word is needed
4714* for the zero-sentinel 4714 * for the zero-sentinel
4715*8: update MailBox Info length report to MSF with "oldest" MB Info Block size. Be careful here, if you get 4715 *8: update MailBox Info length report to MSF with "oldest" MB Info Block size. Be careful here, if you get
4716* here before the MailBox is registered, you can't read from the buffer addressed by IFB_MBp (it is the 4716 * here before the MailBox is registered, you can't read from the buffer addressed by IFB_MBp (it is the
4717* Null buffer) so don't move this code till the end of this routine but keep it where there is garuanteed 4717 * Null buffer) so don't move this code till the end of this routine but keep it where there is garuanteed
4718* a buffer. 4718 * a buffer.
4719* 4719 *
4720*.NOTICE 4720 *.NOTICE
4721* boundary testing depends on the fact that IFB_MBSize is guaranteed to be zero if no MailBox is present, 4721 * boundary testing depends on the fact that IFB_MBSize is guaranteed to be zero if no MailBox is present,
4722* and to a lesser degree, that IFB_MBWp = IFB_MBRp = 0 4722 * and to a lesser degree, that IFB_MBWp = IFB_MBRp = 0
4723* 4723 *
4724*.ENDDOC END DOCUMENTATION 4724 *.ENDDOC END DOCUMENTATION
4725* 4725 *
4726************************************************************************************************************/ 4726 ************************************************************************************************************/
4727#if (HCF_EXT) & HCF_EXT_MB 4727#if (HCF_EXT) & HCF_EXT_MB
4728 4728
4729HCF_STATIC int 4729HCF_STATIC int
4730put_info_mb( IFBP ifbp, CFG_MB_INFO_STRCT FAR * ltvp ) 4730put_info_mb( IFBP ifbp, CFG_MB_INFO_STRCT FAR * ltvp )
4731{ 4731{
4732 4732
4733int rc = HCF_SUCCESS; 4733 int rc = HCF_SUCCESS;
4734hcf_16 i; //work counter 4734 hcf_16 i; //work counter
4735hcf_16 *dp; //destination pointer (in MailBox) 4735 hcf_16 *dp; //destination pointer (in MailBox)
4736wci_recordp sp; //source pointer 4736 wci_recordp sp; //source pointer
4737hcf_16 len; //total length to copy to MailBox 4737 hcf_16 len; //total length to copy to MailBox
4738hcf_16 tlen; //free length/working length/offset in WMP frame 4738 hcf_16 tlen; //free length/working length/offset in WMP frame
4739 4739
4740 if ( ifbp->IFB_MBp == NULL ) return rc; //;?not sufficient 4740 if ( ifbp->IFB_MBp == NULL ) return rc; //;?not sufficient
4741 HCFASSERT( ifbp->IFB_MBp != NULL, 0 ); //!!!be careful, don't get into an endless recursion 4741 HCFASSERT( ifbp->IFB_MBp != NULL, 0 ); //!!!be careful, don't get into an endless recursion
4742 HCFASSERT( ifbp->IFB_MBSize, 0 ); 4742 HCFASSERT( ifbp->IFB_MBSize, 0 );
4743 4743
4744 len = 1; /* 1 */ 4744 len = 1; /* 1 */
4745 for ( i = 0; i < ltvp->frag_cnt; i++ ) { 4745 for ( i = 0; i < ltvp->frag_cnt; i++ ) {
4746 len += ltvp->frag_buf[i].frag_len; 4746 len += ltvp->frag_buf[i].frag_len;
4747 } 4747 }
4748 if ( ifbp->IFB_MBRp > ifbp->IFB_MBWp ) { 4748 if ( ifbp->IFB_MBRp > ifbp->IFB_MBWp ) {
4749 tlen = ifbp->IFB_MBRp - ifbp->IFB_MBWp; /* 2a*/ 4749 tlen = ifbp->IFB_MBRp - ifbp->IFB_MBWp; /* 2a*/
4750 } else { 4750 } else {
4751 if ( ifbp->IFB_MBRp == ifbp->IFB_MBWp ) { 4751 if ( ifbp->IFB_MBRp == ifbp->IFB_MBWp ) {
4752 ifbp->IFB_MBRp = ifbp->IFB_MBWp = 0; // optimize Wrapping 4752 ifbp->IFB_MBRp = ifbp->IFB_MBWp = 0; // optimize Wrapping
4753 } 4753 }
4754 tlen = ifbp->IFB_MBSize - ifbp->IFB_MBWp; /* 2b*/ 4754 tlen = ifbp->IFB_MBSize - ifbp->IFB_MBWp; /* 2b*/
4755 if ( ( tlen <= len + 2 ) && ( len + 2 < ifbp->IFB_MBRp ) ) { //if trailing space is too small but 4755 if ( ( tlen <= len + 2 ) && ( len + 2 < ifbp->IFB_MBRp ) ) { //if trailing space is too small but
4756 // leading space is sufficiently large 4756 // leading space is sufficiently large
4757 ifbp->IFB_MBp[ifbp->IFB_MBWp] = 0xFFFF; //flag dummy LTV to fill the trailing space 4757 ifbp->IFB_MBp[ifbp->IFB_MBWp] = 0xFFFF; //flag dummy LTV to fill the trailing space
4758 ifbp->IFB_MBWp = 0; //reset WritePointer to begin of MailBox 4758 ifbp->IFB_MBWp = 0; //reset WritePointer to begin of MailBox
4759 tlen = ifbp->IFB_MBRp; //get new available space size 4759 tlen = ifbp->IFB_MBRp; //get new available space size
4760 } 4760 }
4761 } 4761 }
4762 dp = &ifbp->IFB_MBp[ifbp->IFB_MBWp]; 4762 dp = &ifbp->IFB_MBp[ifbp->IFB_MBWp];
4763 if ( len == 0 ) { 4763 if ( len == 0 ) {
4764 tlen = 0; //;? what is this good for 4764 tlen = 0; //;? what is this good for
4765 } 4765 }
4766 if ( len + 2 >= tlen ){ /* 6 */ 4766 if ( len + 2 >= tlen ){ /* 6 */
4767 //Do Not ASSERT, this is a normal condition 4767 //Do Not ASSERT, this is a normal condition
4768 IF_TALLY( ifbp->IFB_HCF_Tallies.NoBufMB++ ); 4768 IF_TALLY( ifbp->IFB_HCF_Tallies.NoBufMB++ );
4769 rc = HCF_ERR_LEN; 4769 rc = HCF_ERR_LEN;
4770 } else { 4770 } else {
4771 *dp++ = len; //write Len (= size of T+V in words to MB_Info block 4771 *dp++ = len; //write Len (= size of T+V in words to MB_Info block
4772 *dp++ = ltvp->base_typ; //write Type to MB_Info block 4772 *dp++ = ltvp->base_typ; //write Type to MB_Info block
4773 ifbp->IFB_MBWp += len + 1; //update WritePointer of MailBox 4773 ifbp->IFB_MBWp += len + 1; //update WritePointer of MailBox
4774 for ( i = 0; i < ltvp->frag_cnt; i++ ) { // process each of the fragments 4774 for ( i = 0; i < ltvp->frag_cnt; i++ ) { // process each of the fragments
4775 sp = ltvp->frag_buf[i].frag_addr; 4775 sp = ltvp->frag_buf[i].frag_addr;
4776 len = ltvp->frag_buf[i].frag_len; 4776 len = ltvp->frag_buf[i].frag_len;
4777 while ( len-- ) *dp++ = *sp++; 4777 while ( len-- ) *dp++ = *sp++;
4778 } 4778 }
4779 ifbp->IFB_MBp[ifbp->IFB_MBWp] = 0; //to assure get_info for CFG_MB_INFO stops 4779 ifbp->IFB_MBp[ifbp->IFB_MBWp] = 0; //to assure get_info for CFG_MB_INFO stops
4780 ifbp->IFB_MBInfoLen = ifbp->IFB_MBp[ifbp->IFB_MBRp]; /* 8 */ 4780 ifbp->IFB_MBInfoLen = ifbp->IFB_MBp[ifbp->IFB_MBRp]; /* 8 */
4781 } 4781 }
4782 return rc; 4782 return rc;
4783} // put_info_mb 4783} // put_info_mb
@@ -4787,94 +4787,94 @@ hcf_16 tlen; //free length/working length/offset in WMP frame
4787 4787
4788 4788
4789/************************************************************************************************************ 4789/************************************************************************************************************
4790* 4790 *
4791*.SUBMODULE int setup_bap( IFBP ifbp, hcf_16 fid, int offset, int type ) 4791 *.SUBMODULE int setup_bap( IFBP ifbp, hcf_16 fid, int offset, int type )
4792*.PURPOSE set up data access to NIC RAM via BAP_1. 4792 *.PURPOSE set up data access to NIC RAM via BAP_1.
4793* 4793 *
4794*.ARGUMENTS 4794 *.ARGUMENTS
4795* ifbp address of I/F Block 4795 * ifbp address of I/F Block
4796* fid FID/RID 4796 * fid FID/RID
4797* offset !!even!! offset in FID/RID 4797 * offset !!even!! offset in FID/RID
4798* type IO_IN, IO_OUT 4798 * type IO_IN, IO_OUT
4799* 4799 *
4800*.RETURNS 4800 *.RETURNS
4801* HCF_SUCCESS O.K 4801 * HCF_SUCCESS O.K
4802* HCF_ERR_NO_NIC card is removed 4802 * HCF_ERR_NO_NIC card is removed
4803* HCF_ERR_DEFUNCT_TIME_OUT Fatal malfunction detected 4803 * HCF_ERR_DEFUNCT_TIME_OUT Fatal malfunction detected
4804* HCF_ERR_DEFUNCT_..... if and only if IFB_DefunctStat <> 0 4804 * HCF_ERR_DEFUNCT_..... if and only if IFB_DefunctStat <> 0
4805* 4805 *
4806*.DESCRIPTION 4806 *.DESCRIPTION
4807* 4807 *
4808* A non-zero return status indicates: 4808 * A non-zero return status indicates:
4809* - the NIC is considered nonoperational, e.g. due to a time-out of some Hermes activity in the past 4809 * - the NIC is considered nonoperational, e.g. due to a time-out of some Hermes activity in the past
4810* - BAP_1 could not properly be initialized 4810 * - BAP_1 could not properly be initialized
4811* - the card is removed before completion of the data transfer 4811 * - the card is removed before completion of the data transfer
4812* In all other cases, a zero is returned. 4812 * In all other cases, a zero is returned.
4813* BAP Initialization failure indicates an H/W error which is very likely to signal complete H/W failure. 4813 * BAP Initialization failure indicates an H/W error which is very likely to signal complete H/W failure.
4814* Once a BAP Initialization failure has occurred all subsequent interactions with the Hermes will return a 4814 * Once a BAP Initialization failure has occurred all subsequent interactions with the Hermes will return a
4815* "defunct" status till the Hermes is re-initialized by means of an hcf_connect. 4815 * "defunct" status till the Hermes is re-initialized by means of an hcf_connect.
4816* 4816 *
4817* A BAP is a set of registers (Offset, Select and Data) offering read/write access to a particular FID or 4817 * A BAP is a set of registers (Offset, Select and Data) offering read/write access to a particular FID or
4818* RID. This access is based on a auto-increment feature. 4818 * RID. This access is based on a auto-increment feature.
4819* There are two BAPs but these days the HCF uses only BAP_1 and leaves BAP_0 to the PCI Busmastering H/W. 4819 * There are two BAPs but these days the HCF uses only BAP_1 and leaves BAP_0 to the PCI Busmastering H/W.
4820* 4820 *
4821* The BAP-mechanism is based on the Busy bit in the Offset register (see the Hermes definition). The waiting 4821 * The BAP-mechanism is based on the Busy bit in the Offset register (see the Hermes definition). The waiting
4822* for Busy must occur between writing the Offset register and accessing the Data register. The 4822 * for Busy must occur between writing the Offset register and accessing the Data register. The
4823* implementation to wait for the Busy bit drop after each write to the Offset register, implies that the 4823 * implementation to wait for the Busy bit drop after each write to the Offset register, implies that the
4824* requirement that the Busy bit is low before the Select register is written, is automatically met. 4824 * requirement that the Busy bit is low before the Select register is written, is automatically met.
4825* BAP-setup may be time consuming (e.g. 380 usec for large offsets occurs frequently). The wait for Busy bit 4825 * BAP-setup may be time consuming (e.g. 380 usec for large offsets occurs frequently). The wait for Busy bit
4826* drop is protected by a loop counter, which is initialized with IFB_TickIni, which is calibrated in init. 4826 * drop is protected by a loop counter, which is initialized with IFB_TickIni, which is calibrated in init.
4827* 4827 *
4828* The NIC I/F is optimized for word transfer and can only handle word transfer at a word boundary in NIC 4828 * The NIC I/F is optimized for word transfer and can only handle word transfer at a word boundary in NIC
4829* RAM. The intended solution for transfer of a single byte has multiple H/W flaws. There have been different 4829 * RAM. The intended solution for transfer of a single byte has multiple H/W flaws. There have been different
4830* S/W Workaround strategies. RID access is hcf_16 based by "nature", so no byte access problems. For Tx/Rx 4830 * S/W Workaround strategies. RID access is hcf_16 based by "nature", so no byte access problems. For Tx/Rx
4831* FID access, the byte logic became obsolete by absorbing it in the double word oriented nature of the MIC 4831 * FID access, the byte logic became obsolete by absorbing it in the double word oriented nature of the MIC
4832* feature. 4832 * feature.
4833* 4833 *
4834* 4834 *
4835*.DIAGRAM 4835 *.DIAGRAM
4836* 4836 *
4837*2: the test on rc checks whether the HCF went into "defunct" mode ( e.g. BAP initialization or a call to 4837 *2: the test on rc checks whether the HCF went into "defunct" mode ( e.g. BAP initialization or a call to
4838* cmd_wait did ever fail). 4838 * cmd_wait did ever fail).
4839*4: the select register and offset register are set 4839 *4: the select register and offset register are set
4840* the offset register is monitored till a successful condition (no busy bit) is detected or till the 4840 * the offset register is monitored till a successful condition (no busy bit) is detected or till the
4841* (calibrated) protection counter expires 4841 * (calibrated) protection counter expires
4842* If the counter expires, this is reflected in IFB_DefunctStat, so all subsequent calls to setup_bap fail 4842 * If the counter expires, this is reflected in IFB_DefunctStat, so all subsequent calls to setup_bap fail
4843* immediately ( see 2) 4843 * immediately ( see 2)
4844*6: initialization of the carry as used by pet/get_frag 4844 *6: initialization of the carry as used by pet/get_frag
4845*8: HREG_OFFSET_ERR is ignored as error because: 4845 *8: HREG_OFFSET_ERR is ignored as error because:
4846* a: the Hermes is robust against it 4846 * a: the Hermes is robust against it
4847* b: it is not known what causes it (probably a bug), hence no strategy can be specified which level is 4847 * b: it is not known what causes it (probably a bug), hence no strategy can be specified which level is
4848* to handle this error in which way. In the past, it could be induced by the MSF level, e.g. by calling 4848 * to handle this error in which way. In the past, it could be induced by the MSF level, e.g. by calling
4849* hcf_rcv_msg while there was no Rx-FID available. Since this is an MSF-error which is caught by ASSERT, 4849 * hcf_rcv_msg while there was no Rx-FID available. Since this is an MSF-error which is caught by ASSERT,
4850* there is no run-time action required by the HCF. 4850 * there is no run-time action required by the HCF.
4851* Lumping the Offset error in with the Busy bit error, as has been done in the past turns out to be a 4851 * Lumping the Offset error in with the Busy bit error, as has been done in the past turns out to be a
4852* disaster or a life saver, just depending on what the cause of the error is. Since no prediction can be 4852 * disaster or a life saver, just depending on what the cause of the error is. Since no prediction can be
4853* done about the future, it is "felt" to be the best strategy to ignore this error. One day the code was 4853 * done about the future, it is "felt" to be the best strategy to ignore this error. One day the code was
4854* accompanied by the following comment: 4854 * accompanied by the following comment:
4855* // ignore HREG_OFFSET_ERR, someone, supposedly the MSF programmer ;) made a bug. Since we don't know 4855 * // ignore HREG_OFFSET_ERR, someone, supposedly the MSF programmer ;) made a bug. Since we don't know
4856* // what is going on, we might as well go on - under management pressure - by ignoring it 4856 * // what is going on, we might as well go on - under management pressure - by ignoring it
4857* 4857 *
4858*.ENDDOC END DOCUMENTATION 4858 *.ENDDOC END DOCUMENTATION
4859* 4859 *
4860************************************************************************************************************/ 4860 ************************************************************************************************************/
4861HCF_STATIC int 4861HCF_STATIC int
4862setup_bap( IFBP ifbp, hcf_16 fid, int offset, int type ) 4862setup_bap( IFBP ifbp, hcf_16 fid, int offset, int type )
4863{ 4863{
4864PROT_CNT_INI; 4864 PROT_CNT_INI;
4865int rc; 4865 int rc;
4866 4866
4867 HCFTRACE( ifbp, HCF_TRACE_STRIO ); 4867 HCFTRACE( ifbp, HCF_TRACE_STRIO );
4868 rc = ifbp->IFB_DefunctStat; 4868 rc = ifbp->IFB_DefunctStat;
4869 if (rc == HCF_SUCCESS) { /*2*/ 4869 if (rc == HCF_SUCCESS) { /*2*/
4870 OPW( HREG_SELECT_1, fid ); /*4*/ 4870 OPW( HREG_SELECT_1, fid ); /*4*/
4871 OPW( HREG_OFFSET_1, offset ); 4871 OPW( HREG_OFFSET_1, offset );
4872 if ( type == IO_IN ) { 4872 if ( type == IO_IN ) {
4873 ifbp->IFB_CarryIn = 0; 4873 ifbp->IFB_CarryIn = 0;
4874 } 4874 }
4875 else ifbp->IFB_CarryOut = 0; 4875 else ifbp->IFB_CarryOut = 0;
4876 HCF_WAIT_WHILE( IPW( HREG_OFFSET_1) & HCMD_BUSY ); 4876 HCF_WAIT_WHILE( IPW( HREG_OFFSET_1) & HCMD_BUSY );
4877 HCFASSERT( !( IPW( HREG_OFFSET_1) & HREG_OFFSET_ERR ), MERGE_2( fid, offset ) ); /*8*/ 4877 HCFASSERT( !( IPW( HREG_OFFSET_1) & HREG_OFFSET_ERR ), MERGE_2( fid, offset ) ); /*8*/
4878 if ( prot_cnt == 0 ) { 4878 if ( prot_cnt == 0 ) {
4879 HCFASSERT( DO_ASSERT, MERGE_2( fid, offset ) ); 4879 HCFASSERT( DO_ASSERT, MERGE_2( fid, offset ) );
4880 rc = ifbp->IFB_DefunctStat = HCF_ERR_DEFUNCT_TIME_OUT; 4880 rc = ifbp->IFB_DefunctStat = HCF_ERR_DEFUNCT_TIME_OUT;