aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless/ath9k
diff options
context:
space:
mode:
authorSujith <Sujith.Manoharan@atheros.com>2009-01-16 11:08:42 -0500
committerJohn W. Linville <linville@tuxdriver.com>2009-01-29 16:00:39 -0500
commite8324357902698ffb7615d128d612c85d8e21912 (patch)
tree4a3494bb750655d2312d0a7bb3cc8ca85da6f7a7 /drivers/net/wireless/ath9k
parentdd006395688cd3ce6c92de288d8db090d98dc2c7 (diff)
ath9k: Reorganize code in xmit.c
This patch starts cleaning up all the crufty code in transmission path, grouping functions into logical blocks. Signed-off-by: Sujith <Sujith.Manoharan@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
Diffstat (limited to 'drivers/net/wireless/ath9k')
-rw-r--r--drivers/net/wireless/ath9k/core.h6
-rw-r--r--drivers/net/wireless/ath9k/rc.c2
-rw-r--r--drivers/net/wireless/ath9k/xmit.c2596
3 files changed, 1180 insertions, 1424 deletions
diff --git a/drivers/net/wireless/ath9k/core.h b/drivers/net/wireless/ath9k/core.h
index b687ae9c9e1..4eb21a7f0d8 100644
--- a/drivers/net/wireless/ath9k/core.h
+++ b/drivers/net/wireless/ath9k/core.h
@@ -490,23 +490,17 @@ void ath_tx_draintxq(struct ath_softc *sc,
490 struct ath_txq *txq, bool retry_tx); 490 struct ath_txq *txq, bool retry_tx);
491void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an); 491void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an);
492void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an); 492void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an);
493void ath_tx_node_free(struct ath_softc *sc, struct ath_node *an);
494void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq); 493void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq);
495int ath_tx_init(struct ath_softc *sc, int nbufs); 494int ath_tx_init(struct ath_softc *sc, int nbufs);
496int ath_tx_cleanup(struct ath_softc *sc); 495int ath_tx_cleanup(struct ath_softc *sc);
497int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype);
498struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb); 496struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb);
499int ath_txq_update(struct ath_softc *sc, int qnum, 497int ath_txq_update(struct ath_softc *sc, int qnum,
500 struct ath9k_tx_queue_info *q); 498 struct ath9k_tx_queue_info *q);
501int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb, 499int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb,
502 struct ath_tx_control *txctl); 500 struct ath_tx_control *txctl);
503void ath_tx_tasklet(struct ath_softc *sc); 501void ath_tx_tasklet(struct ath_softc *sc);
504u32 ath_txq_depth(struct ath_softc *sc, int qnum);
505u32 ath_txq_aggr_depth(struct ath_softc *sc, int qnum);
506void ath_tx_cabq(struct ath_softc *sc, struct sk_buff *skb); 502void ath_tx_cabq(struct ath_softc *sc, struct sk_buff *skb);
507void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid);
508bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno); 503bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno);
509void ath_tx_aggr_teardown(struct ath_softc *sc, struct ath_node *an, u8 tidno);
510int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, 504int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
511 u16 tid, u16 *ssn); 505 u16 tid, u16 *ssn);
512int ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid); 506int ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid);
diff --git a/drivers/net/wireless/ath9k/rc.c b/drivers/net/wireless/ath9k/rc.c
index 68bda2309ce..46172b5f492 100644
--- a/drivers/net/wireless/ath9k/rc.c
+++ b/drivers/net/wireless/ath9k/rc.c
@@ -23,7 +23,7 @@ static struct ath_rate_table ar5416_11na_ratetable = {
23 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */ 23 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
24 5400, 0x0b, 0x00, 12, 24 5400, 0x0b, 0x00, 12,
25 0, 2, 1, 0, 0, 0, 0, 0 }, 25 0, 2, 1, 0, 0, 0, 0, 0 },
26 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */ 26 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
27 7800, 0x0f, 0x00, 18, 27 7800, 0x0f, 0x00, 18,
28 0, 3, 1, 1, 1, 1, 1, 0 }, 28 0, 3, 1, 1, 1, 1, 1, 0 },
29 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */ 29 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
diff --git a/drivers/net/wireless/ath9k/xmit.c b/drivers/net/wireless/ath9k/xmit.c
index 522078d8093..5e6e5cf9b67 100644
--- a/drivers/net/wireless/ath9k/xmit.c
+++ b/drivers/net/wireless/ath9k/xmit.c
@@ -55,94 +55,19 @@ static u32 bits_per_symbol[][2] = {
55 55
56#define IS_HT_RATE(_rate) ((_rate) & 0x80) 56#define IS_HT_RATE(_rate) ((_rate) & 0x80)
57 57
58/* 58static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
59 * Insert a chain of ath_buf (descriptors) on a txq and 59 struct ath_atx_tid *tid,
60 * assume the descriptors are already chained together by caller. 60 struct list_head *bf_head);
61 * NB: must be called with txq lock held 61static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
62 */ 62 struct list_head *bf_q,
63 63 int txok, int sendbar);
64static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 64static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
65 struct list_head *head) 65 struct list_head *head);
66{ 66static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf);
67 struct ath_hal *ah = sc->sc_ah;
68 struct ath_buf *bf;
69
70 /*
71 * Insert the frame on the outbound list and
72 * pass it on to the hardware.
73 */
74
75 if (list_empty(head))
76 return;
77
78 bf = list_first_entry(head, struct ath_buf, list);
79
80 list_splice_tail_init(head, &txq->axq_q);
81 txq->axq_depth++;
82 txq->axq_totalqueued++;
83 txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list);
84
85 DPRINTF(sc, ATH_DBG_QUEUE,
86 "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
87
88 if (txq->axq_link == NULL) {
89 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
90 DPRINTF(sc, ATH_DBG_XMIT,
91 "TXDP[%u] = %llx (%p)\n",
92 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
93 } else {
94 *txq->axq_link = bf->bf_daddr;
95 DPRINTF(sc, ATH_DBG_XMIT, "link[%u] (%p)=%llx (%p)\n",
96 txq->axq_qnum, txq->axq_link,
97 ito64(bf->bf_daddr), bf->bf_desc);
98 }
99 txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
100 ath9k_hw_txstart(ah, txq->axq_qnum);
101}
102 67
103static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 68/*********************/
104 struct ath_xmit_status *tx_status) 69/* Aggregation logic */
105{ 70/*********************/
106 struct ieee80211_hw *hw = sc->hw;
107 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
108 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
109 int hdrlen, padsize;
110
111 DPRINTF(sc, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
112
113 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK ||
114 tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED) {
115 kfree(tx_info_priv);
116 tx_info->rate_driver_data[0] = NULL;
117 }
118
119 if (tx_status->flags & ATH_TX_BAR) {
120 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
121 tx_status->flags &= ~ATH_TX_BAR;
122 }
123
124 if (!(tx_status->flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
125 /* Frame was ACKed */
126 tx_info->flags |= IEEE80211_TX_STAT_ACK;
127 }
128
129 tx_info->status.rates[0].count = tx_status->retries + 1;
130
131 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
132 padsize = hdrlen & 3;
133 if (padsize && hdrlen >= 24) {
134 /*
135 * Remove MAC header padding before giving the frame back to
136 * mac80211.
137 */
138 memmove(skb->data + padsize, skb->data, hdrlen);
139 skb_pull(skb, padsize);
140 }
141
142 ieee80211_tx_status(hw, skb);
143}
144
145/* Check if it's okay to send out aggregates */
146 71
147static int ath_aggr_query(struct ath_softc *sc, struct ath_node *an, u8 tidno) 72static int ath_aggr_query(struct ath_softc *sc, struct ath_node *an, u8 tidno)
148{ 73{
@@ -156,230 +81,19 @@ static int ath_aggr_query(struct ath_softc *sc, struct ath_node *an, u8 tidno)
156 return 0; 81 return 0;
157} 82}
158 83
159static void ath_get_beaconconfig(struct ath_softc *sc, int if_id,
160 struct ath_beacon_config *conf)
161{
162 struct ieee80211_hw *hw = sc->hw;
163
164 /* fill in beacon config data */
165
166 conf->beacon_interval = hw->conf.beacon_int;
167 conf->listen_interval = 100;
168 conf->dtim_count = 1;
169 conf->bmiss_timeout = ATH_DEFAULT_BMISS_LIMIT * conf->listen_interval;
170}
171
172/* Calculate Atheros packet type from IEEE80211 packet header */
173
174static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
175{
176 struct ieee80211_hdr *hdr;
177 enum ath9k_pkt_type htype;
178 __le16 fc;
179
180 hdr = (struct ieee80211_hdr *)skb->data;
181 fc = hdr->frame_control;
182
183 if (ieee80211_is_beacon(fc))
184 htype = ATH9K_PKT_TYPE_BEACON;
185 else if (ieee80211_is_probe_resp(fc))
186 htype = ATH9K_PKT_TYPE_PROBE_RESP;
187 else if (ieee80211_is_atim(fc))
188 htype = ATH9K_PKT_TYPE_ATIM;
189 else if (ieee80211_is_pspoll(fc))
190 htype = ATH9K_PKT_TYPE_PSPOLL;
191 else
192 htype = ATH9K_PKT_TYPE_NORMAL;
193
194 return htype;
195}
196
197static bool is_pae(struct sk_buff *skb)
198{
199 struct ieee80211_hdr *hdr;
200 __le16 fc;
201
202 hdr = (struct ieee80211_hdr *)skb->data;
203 fc = hdr->frame_control;
204
205 if (ieee80211_is_data(fc)) {
206 if (ieee80211_is_nullfunc(fc) ||
207 /* Port Access Entity (IEEE 802.1X) */
208 (skb->protocol == cpu_to_be16(ETH_P_PAE))) {
209 return true;
210 }
211 }
212
213 return false;
214}
215
216static int get_hw_crypto_keytype(struct sk_buff *skb)
217{
218 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
219
220 if (tx_info->control.hw_key) {
221 if (tx_info->control.hw_key->alg == ALG_WEP)
222 return ATH9K_KEY_TYPE_WEP;
223 else if (tx_info->control.hw_key->alg == ALG_TKIP)
224 return ATH9K_KEY_TYPE_TKIP;
225 else if (tx_info->control.hw_key->alg == ALG_CCMP)
226 return ATH9K_KEY_TYPE_AES;
227 }
228
229 return ATH9K_KEY_TYPE_CLEAR;
230}
231
232/* Called only when tx aggregation is enabled and HT is supported */
233
234static void assign_aggr_tid_seqno(struct sk_buff *skb,
235 struct ath_buf *bf)
236{
237 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
238 struct ieee80211_hdr *hdr;
239 struct ath_node *an;
240 struct ath_atx_tid *tid;
241 __le16 fc;
242 u8 *qc;
243
244 if (!tx_info->control.sta)
245 return;
246
247 an = (struct ath_node *)tx_info->control.sta->drv_priv;
248 hdr = (struct ieee80211_hdr *)skb->data;
249 fc = hdr->frame_control;
250
251 /* Get tidno */
252
253 if (ieee80211_is_data_qos(fc)) {
254 qc = ieee80211_get_qos_ctl(hdr);
255 bf->bf_tidno = qc[0] & 0xf;
256 }
257
258 /* Get seqno */
259 /* For HT capable stations, we save tidno for later use.
260 * We also override seqno set by upper layer with the one
261 * in tx aggregation state.
262 *
263 * If fragmentation is on, the sequence number is
264 * not overridden, since it has been
265 * incremented by the fragmentation routine.
266 *
267 * FIXME: check if the fragmentation threshold exceeds
268 * IEEE80211 max.
269 */
270 tid = ATH_AN_2_TID(an, bf->bf_tidno);
271 hdr->seq_ctrl = cpu_to_le16(tid->seq_next <<
272 IEEE80211_SEQ_SEQ_SHIFT);
273 bf->bf_seqno = tid->seq_next;
274 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
275}
276
277static int setup_tx_flags(struct ath_softc *sc, struct sk_buff *skb,
278 struct ath_txq *txq)
279{
280 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
281 int flags = 0;
282
283 flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
284 flags |= ATH9K_TXDESC_INTREQ;
285
286 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
287 flags |= ATH9K_TXDESC_NOACK;
288 if (tx_info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
289 flags |= ATH9K_TXDESC_RTSENA;
290
291 return flags;
292}
293
294static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
295{
296 struct ath_buf *bf = NULL;
297
298 spin_lock_bh(&sc->tx.txbuflock);
299
300 if (unlikely(list_empty(&sc->tx.txbuf))) {
301 spin_unlock_bh(&sc->tx.txbuflock);
302 return NULL;
303 }
304
305 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
306 list_del(&bf->list);
307
308 spin_unlock_bh(&sc->tx.txbuflock);
309
310 return bf;
311}
312
313/* To complete a chain of buffers associated a frame */
314
315static void ath_tx_complete_buf(struct ath_softc *sc,
316 struct ath_buf *bf,
317 struct list_head *bf_q,
318 int txok, int sendbar)
319{
320 struct sk_buff *skb = bf->bf_mpdu;
321 struct ath_xmit_status tx_status;
322 unsigned long flags;
323
324 /*
325 * Set retry information.
326 * NB: Don't use the information in the descriptor, because the frame
327 * could be software retried.
328 */
329 tx_status.retries = bf->bf_retries;
330 tx_status.flags = 0;
331
332 if (sendbar)
333 tx_status.flags = ATH_TX_BAR;
334
335 if (!txok) {
336 tx_status.flags |= ATH_TX_ERROR;
337
338 if (bf_isxretried(bf))
339 tx_status.flags |= ATH_TX_XRETRY;
340 }
341
342 /* Unmap this frame */
343 dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE);
344
345 /* complete this frame */
346 ath_tx_complete(sc, skb, &tx_status);
347
348 /*
349 * Return the list of ath_buf of this mpdu to free queue
350 */
351 spin_lock_irqsave(&sc->tx.txbuflock, flags);
352 list_splice_tail_init(bf_q, &sc->tx.txbuf);
353 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
354}
355
356/*
357 * queue up a dest/ac pair for tx scheduling
358 * NB: must be called with txq lock held
359 */
360
361static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid) 84static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
362{ 85{
363 struct ath_atx_ac *ac = tid->ac; 86 struct ath_atx_ac *ac = tid->ac;
364 87
365 /*
366 * if tid is paused, hold off
367 */
368 if (tid->paused) 88 if (tid->paused)
369 return; 89 return;
370 90
371 /*
372 * add tid to ac atmost once
373 */
374 if (tid->sched) 91 if (tid->sched)
375 return; 92 return;
376 93
377 tid->sched = true; 94 tid->sched = true;
378 list_add_tail(&tid->list, &ac->tid_q); 95 list_add_tail(&tid->list, &ac->tid_q);
379 96
380 /*
381 * add node ac to txq atmost once
382 */
383 if (ac->sched) 97 if (ac->sched)
384 return; 98 return;
385 99
@@ -387,22 +101,16 @@ static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
387 list_add_tail(&ac->list, &txq->axq_acq); 101 list_add_tail(&ac->list, &txq->axq_acq);
388} 102}
389 103
390/* pause a tid */
391
392static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 104static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
393{ 105{
394 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum]; 106 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
395 107
396 spin_lock_bh(&txq->axq_lock); 108 spin_lock_bh(&txq->axq_lock);
397
398 tid->paused++; 109 tid->paused++;
399
400 spin_unlock_bh(&txq->axq_lock); 110 spin_unlock_bh(&txq->axq_lock);
401} 111}
402 112
403/* resume a tid and schedule aggregate */ 113static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
404
405void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
406{ 114{
407 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum]; 115 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
408 116
@@ -417,63 +125,39 @@ void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
417 if (list_empty(&tid->buf_q)) 125 if (list_empty(&tid->buf_q))
418 goto unlock; 126 goto unlock;
419 127
420 /*
421 * Add this TID to scheduler and try to send out aggregates
422 */
423 ath_tx_queue_tid(txq, tid); 128 ath_tx_queue_tid(txq, tid);
424 ath_txq_schedule(sc, txq); 129 ath_txq_schedule(sc, txq);
425unlock: 130unlock:
426 spin_unlock_bh(&txq->axq_lock); 131 spin_unlock_bh(&txq->axq_lock);
427} 132}
428 133
429/* Compute the number of bad frames */ 134static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
430
431static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
432 int txok)
433{ 135{
434 struct ath_buf *bf_last = bf->bf_lastbf; 136 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
435 struct ath_desc *ds = bf_last->bf_desc; 137 struct ath_buf *bf;
436 u16 seq_st = 0; 138 struct list_head bf_head;
437 u32 ba[WME_BA_BMP_SIZE >> 5]; 139 INIT_LIST_HEAD(&bf_head);
438 int ba_index;
439 int nbad = 0;
440 int isaggr = 0;
441
442 if (ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED)
443 return 0;
444 140
445 isaggr = bf_isaggr(bf); 141 ASSERT(tid->paused > 0);
446 if (isaggr) { 142 spin_lock_bh(&txq->axq_lock);
447 seq_st = ATH_DS_BA_SEQ(ds);
448 memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3);
449 }
450 143
451 while (bf) { 144 tid->paused--;
452 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
453 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
454 nbad++;
455 145
456 bf = bf->bf_next; 146 if (tid->paused > 0) {
147 spin_unlock_bh(&txq->axq_lock);
148 return;
457 } 149 }
458 150
459 return nbad; 151 while (!list_empty(&tid->buf_q)) {
460} 152 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
461 153 ASSERT(!bf_isretried(bf));
462static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf) 154 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
463{ 155 ath_tx_send_normal(sc, txq, tid, &bf_head);
464 struct sk_buff *skb; 156 }
465 struct ieee80211_hdr *hdr;
466
467 bf->bf_state.bf_type |= BUF_RETRY;
468 bf->bf_retries++;
469 157
470 skb = bf->bf_mpdu; 158 spin_unlock_bh(&txq->axq_lock);
471 hdr = (struct ieee80211_hdr *)skb->data;
472 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
473} 159}
474 160
475/* Update block ack window */
476
477static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 161static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
478 int seqno) 162 int seqno)
479{ 163{
@@ -490,247 +174,75 @@ static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
490 } 174 }
491} 175}
492 176
493/* 177static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
494 * ath_pkt_dur - compute packet duration (NB: not NAV) 178 struct ath_buf *bf)
495 *
496 * rix - rate index
497 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
498 * width - 0 for 20 MHz, 1 for 40 MHz
499 * half_gi - to use 4us v/s 3.6 us for symbol time
500 */
501static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
502 int width, int half_gi, bool shortPreamble)
503{
504 struct ath_rate_table *rate_table = sc->cur_rate_table;
505 u32 nbits, nsymbits, duration, nsymbols;
506 u8 rc;
507 int streams, pktlen;
508
509 pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
510 rc = rate_table->info[rix].ratecode;
511
512 /* for legacy rates, use old function to compute packet duration */
513 if (!IS_HT_RATE(rc))
514 return ath9k_hw_computetxtime(sc->sc_ah, rate_table, pktlen,
515 rix, shortPreamble);
516
517 /* find number of symbols: PLCP + data */
518 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
519 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
520 nsymbols = (nbits + nsymbits - 1) / nsymbits;
521
522 if (!half_gi)
523 duration = SYMBOL_TIME(nsymbols);
524 else
525 duration = SYMBOL_TIME_HALFGI(nsymbols);
526
527 /* addup duration for legacy/ht training and signal fields */
528 streams = HT_RC_2_STREAMS(rc);
529 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
530
531 return duration;
532}
533
534/* Rate module function to set rate related fields in tx descriptor */
535
536static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
537{ 179{
538 struct ath_hal *ah = sc->sc_ah; 180 int index, cindex;
539 struct ath_rate_table *rt;
540 struct ath_desc *ds = bf->bf_desc;
541 struct ath_desc *lastds = bf->bf_lastbf->bf_desc;
542 struct ath9k_11n_rate_series series[4];
543 struct sk_buff *skb;
544 struct ieee80211_tx_info *tx_info;
545 struct ieee80211_tx_rate *rates;
546 struct ieee80211_hdr *hdr;
547 struct ieee80211_hw *hw = sc->hw;
548 int i, flags, rtsctsena = 0, enable_g_protection = 0;
549 u32 ctsduration = 0;
550 u8 rix = 0, cix, ctsrate = 0;
551 __le16 fc;
552
553 memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
554
555 skb = (struct sk_buff *)bf->bf_mpdu;
556 hdr = (struct ieee80211_hdr *)skb->data;
557 fc = hdr->frame_control;
558 tx_info = IEEE80211_SKB_CB(skb);
559 rates = tx_info->control.rates;
560
561 if (ieee80211_has_morefrags(fc) ||
562 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
563 rates[1].count = rates[2].count = rates[3].count = 0;
564 rates[1].idx = rates[2].idx = rates[3].idx = 0;
565 rates[0].count = ATH_TXMAXTRY;
566 }
567
568 /* get the cix for the lowest valid rix */
569 rt = sc->cur_rate_table;
570 for (i = 3; i >= 0; i--) {
571 if (rates[i].count && (rates[i].idx >= 0)) {
572 rix = rates[i].idx;
573 break;
574 }
575 }
576
577 flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA));
578 cix = rt->info[rix].ctrl_rate;
579
580 /* All protection frames are transmited at 2Mb/s for 802.11g,
581 * otherwise we transmit them at 1Mb/s */
582 if (hw->conf.channel->band == IEEE80211_BAND_2GHZ &&
583 !conf_is_ht(&hw->conf))
584 enable_g_protection = 1;
585
586 /*
587 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
588 * just CTS. Note that this is only done for OFDM/HT unicast frames.
589 */
590 if (sc->sc_protmode != PROT_M_NONE && !(bf->bf_flags & ATH9K_TXDESC_NOACK)
591 && (rt->info[rix].phy == WLAN_RC_PHY_OFDM ||
592 WLAN_RC_PHY_HT(rt->info[rix].phy))) {
593 if (sc->sc_protmode == PROT_M_RTSCTS)
594 flags = ATH9K_TXDESC_RTSENA;
595 else if (sc->sc_protmode == PROT_M_CTSONLY)
596 flags = ATH9K_TXDESC_CTSENA;
597
598 cix = rt->info[enable_g_protection].ctrl_rate;
599 rtsctsena = 1;
600 }
601
602 /* For 11n, the default behavior is to enable RTS for hw retried frames.
603 * We enable the global flag here and let rate series flags determine
604 * which rates will actually use RTS.
605 */
606 if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) && bf_isdata(bf)) {
607 /* 802.11g protection not needed, use our default behavior */
608 if (!rtsctsena)
609 flags = ATH9K_TXDESC_RTSENA;
610 }
611
612 /* Set protection if aggregate protection on */
613 if (sc->sc_config.ath_aggr_prot &&
614 (!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) {
615 flags = ATH9K_TXDESC_RTSENA;
616 cix = rt->info[enable_g_protection].ctrl_rate;
617 rtsctsena = 1;
618 }
619
620 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
621 if (bf_isaggr(bf) && (bf->bf_al > ah->ah_caps.rts_aggr_limit))
622 flags &= ~(ATH9K_TXDESC_RTSENA);
623
624 /*
625 * CTS transmit rate is derived from the transmit rate by looking in the
626 * h/w rate table. We must also factor in whether or not a short
627 * preamble is to be used. NB: cix is set above where RTS/CTS is enabled
628 */
629 ctsrate = rt->info[cix].ratecode |
630 (bf_isshpreamble(bf) ? rt->info[cix].short_preamble : 0);
631
632 for (i = 0; i < 4; i++) {
633 if (!rates[i].count || (rates[i].idx < 0))
634 continue;
635
636 rix = rates[i].idx;
637
638 series[i].Rate = rt->info[rix].ratecode |
639 (bf_isshpreamble(bf) ? rt->info[rix].short_preamble : 0);
640
641 series[i].Tries = rates[i].count;
642 181
643 series[i].RateFlags = ( 182 if (bf_isretried(bf))
644 (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) ? 183 return;
645 ATH9K_RATESERIES_RTS_CTS : 0) |
646 ((rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ?
647 ATH9K_RATESERIES_2040 : 0) |
648 ((rates[i].flags & IEEE80211_TX_RC_SHORT_GI) ?
649 ATH9K_RATESERIES_HALFGI : 0);
650 184
651 series[i].PktDuration = ath_pkt_duration(sc, rix, bf, 185 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
652 (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) != 0, 186 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
653 (rates[i].flags & IEEE80211_TX_RC_SHORT_GI),
654 bf_isshpreamble(bf));
655 187
656 series[i].ChSel = sc->sc_tx_chainmask; 188 ASSERT(tid->tx_buf[cindex] == NULL);
189 tid->tx_buf[cindex] = bf;
657 190
658 if (rtsctsena) 191 if (index >= ((tid->baw_tail - tid->baw_head) &
659 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 192 (ATH_TID_MAX_BUFS - 1))) {
193 tid->baw_tail = cindex;
194 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
660 } 195 }
661
662 /* set dur_update_en for l-sig computation except for PS-Poll frames */
663 ath9k_hw_set11n_ratescenario(ah, ds, lastds, !bf_ispspoll(bf),
664 ctsrate, ctsduration,
665 series, 4, flags);
666
667 if (sc->sc_config.ath_aggr_prot && flags)
668 ath9k_hw_set11n_burstduration(ah, ds, 8192);
669} 196}
670 197
671/* 198/*
672 * Function to send a normal HT (non-AMPDU) frame 199 * TODO: For frame(s) that are in the retry state, we will reuse the
673 * NB: must be called with txq lock held 200 * sequence number(s) without setting the retry bit. The
201 * alternative is to give up on these and BAR the receiver's window
202 * forward.
674 */ 203 */
675static int ath_tx_send_normal(struct ath_softc *sc, 204static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
676 struct ath_txq *txq, 205 struct ath_atx_tid *tid)
677 struct ath_atx_tid *tid,
678 struct list_head *bf_head)
679{
680 struct ath_buf *bf;
681
682 BUG_ON(list_empty(bf_head));
683
684 bf = list_first_entry(bf_head, struct ath_buf, list);
685 bf->bf_state.bf_type &= ~BUF_AMPDU; /* regular HT frame */
686
687 /* update starting sequence number for subsequent ADDBA request */
688 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
689
690 /* Queue to h/w without aggregation */
691 bf->bf_nframes = 1;
692 bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
693 ath_buf_set_rate(sc, bf);
694 ath_tx_txqaddbuf(sc, txq, bf_head);
695
696 return 0;
697}
698
699/* flush tid's software queue and send frames as non-ampdu's */
700 206
701static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
702{ 207{
703 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
704 struct ath_buf *bf; 208 struct ath_buf *bf;
705 struct list_head bf_head; 209 struct list_head bf_head;
706 INIT_LIST_HEAD(&bf_head); 210 INIT_LIST_HEAD(&bf_head);
707 211
708 ASSERT(tid->paused > 0); 212 for (;;) {
709 spin_lock_bh(&txq->axq_lock); 213 if (list_empty(&tid->buf_q))
214 break;
215 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
710 216
711 tid->paused--; 217 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
712 218
713 if (tid->paused > 0) { 219 if (bf_isretried(bf))
714 spin_unlock_bh(&txq->axq_lock); 220 ath_tx_update_baw(sc, tid, bf->bf_seqno);
715 return;
716 }
717 221
718 while (!list_empty(&tid->buf_q)) { 222 spin_unlock(&txq->axq_lock);
719 bf = list_first_entry(&tid->buf_q, struct ath_buf, list); 223 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
720 ASSERT(!bf_isretried(bf)); 224 spin_lock(&txq->axq_lock);
721 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
722 ath_tx_send_normal(sc, txq, tid, &bf_head);
723 } 225 }
724 226
725 spin_unlock_bh(&txq->axq_lock); 227 tid->seq_next = tid->seq_start;
228 tid->baw_tail = tid->baw_head;
726} 229}
727 230
728/* Completion routine of an aggregate */ 231static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
232{
233 struct sk_buff *skb;
234 struct ieee80211_hdr *hdr;
235
236 bf->bf_state.bf_type |= BUF_RETRY;
237 bf->bf_retries++;
238
239 skb = bf->bf_mpdu;
240 hdr = (struct ieee80211_hdr *)skb->data;
241 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
242}
729 243
730static void ath_tx_complete_aggr_rifs(struct ath_softc *sc, 244static void ath_tx_complete_aggr_rifs(struct ath_softc *sc, struct ath_txq *txq,
731 struct ath_txq *txq, 245 struct ath_buf *bf, struct list_head *bf_q,
732 struct ath_buf *bf,
733 struct list_head *bf_q,
734 int txok) 246 int txok)
735{ 247{
736 struct ath_node *an = NULL; 248 struct ath_node *an = NULL;
@@ -757,14 +269,9 @@ static void ath_tx_complete_aggr_rifs(struct ath_softc *sc,
757 if (isaggr) { 269 if (isaggr) {
758 if (txok) { 270 if (txok) {
759 if (ATH_DS_TX_BA(ds)) { 271 if (ATH_DS_TX_BA(ds)) {
760 /*
761 * extract starting sequence and
762 * block-ack bitmap
763 */
764 seq_st = ATH_DS_BA_SEQ(ds); 272 seq_st = ATH_DS_BA_SEQ(ds);
765 memcpy(ba, 273 memcpy(ba, ATH_DS_BA_BITMAP(ds),
766 ATH_DS_BA_BITMAP(ds), 274 WME_BA_BMP_SIZE >> 3);
767 WME_BA_BMP_SIZE >> 3);
768 } else { 275 } else {
769 memset(ba, 0, WME_BA_BMP_SIZE >> 3); 276 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
770 277
@@ -816,31 +323,15 @@ static void ath_tx_complete_aggr_rifs(struct ath_softc *sc,
816 txfail = 1; 323 txfail = 1;
817 } 324 }
818 } 325 }
819 /*
820 * Remove ath_buf's of this sub-frame from aggregate queue.
821 */
822 if (bf_next == NULL) { /* last subframe in the aggregate */
823 ASSERT(bf->bf_lastfrm == bf_last);
824
825 /*
826 * The last descriptor of the last sub frame could be
827 * a holding descriptor for h/w. If that's the case,
828 * bf->bf_lastfrm won't be in the bf_q.
829 * Make sure we handle bf_q properly here.
830 */
831 326
327 if (bf_next == NULL) {
328 ASSERT(bf->bf_lastfrm == bf_last);
832 if (!list_empty(bf_q)) { 329 if (!list_empty(bf_q)) {
833 bf_lastq = list_entry(bf_q->prev, 330 bf_lastq = list_entry(bf_q->prev,
834 struct ath_buf, list); 331 struct ath_buf, list);
835 list_cut_position(&bf_head, 332 list_cut_position(&bf_head,
836 bf_q, &bf_lastq->list); 333 bf_q, &bf_lastq->list);
837 } else { 334 } else {
838 /*
839 * XXX: if the last subframe only has one
840 * descriptor which is also being used as
841 * a holding descriptor. Then the ath_buf
842 * is not in the bf_q at all.
843 */
844 INIT_LIST_HEAD(&bf_head); 335 INIT_LIST_HEAD(&bf_head);
845 } 336 }
846 } else { 337 } else {
@@ -858,18 +349,11 @@ static void ath_tx_complete_aggr_rifs(struct ath_softc *sc,
858 ath_tx_update_baw(sc, tid, bf->bf_seqno); 349 ath_tx_update_baw(sc, tid, bf->bf_seqno);
859 spin_unlock_bh(&txq->axq_lock); 350 spin_unlock_bh(&txq->axq_lock);
860 351
861 /* complete this sub-frame */
862 ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar); 352 ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar);
863 } else { 353 } else {
864 /* 354 /*
865 * retry the un-acked ones 355 * retry the un-acked ones
866 */ 356 */
867 /*
868 * XXX: if the last descriptor is holding descriptor,
869 * in order to requeue the frame to software queue, we
870 * need to allocate a new descriptor and
871 * copy the content of holding descriptor to it.
872 */
873 if (bf->bf_next == NULL && 357 if (bf->bf_next == NULL &&
874 bf_last->bf_status & ATH_BUFSTATUS_STALE) { 358 bf_last->bf_status & ATH_BUFSTATUS_STALE) {
875 struct ath_buf *tbf; 359 struct ath_buf *tbf;
@@ -950,8 +434,6 @@ static void ath_tx_complete_aggr_rifs(struct ath_softc *sc,
950 */ 434 */
951 if (!list_empty(&bf_pending)) { 435 if (!list_empty(&bf_pending)) {
952 spin_lock_bh(&txq->axq_lock); 436 spin_lock_bh(&txq->axq_lock);
953 /* Note: we _prepend_, we _do_not_ at to
954 * the end of the queue ! */
955 list_splice(&bf_pending, &tid->buf_q); 437 list_splice(&bf_pending, &tid->buf_q);
956 ath_tx_queue_tid(txq, tid); 438 ath_tx_queue_tid(txq, tid);
957 spin_unlock_bh(&txq->axq_lock); 439 spin_unlock_bh(&txq->axq_lock);
@@ -963,292 +445,7 @@ static void ath_tx_complete_aggr_rifs(struct ath_softc *sc,
963 return; 445 return;
964} 446}
965 447
966static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds, int nbad) 448static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
967{
968 struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
969 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
970 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
971
972 tx_info_priv->update_rc = false;
973 if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT)
974 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
975
976 if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
977 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
978 if (bf_isdata(bf)) {
979 memcpy(&tx_info_priv->tx, &ds->ds_txstat,
980 sizeof(tx_info_priv->tx));
981 tx_info_priv->n_frames = bf->bf_nframes;
982 tx_info_priv->n_bad_frames = nbad;
983 tx_info_priv->update_rc = true;
984 }
985 }
986}
987
988/* Process completed xmit descriptors from the specified queue */
989
990static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
991{
992 struct ath_hal *ah = sc->sc_ah;
993 struct ath_buf *bf, *lastbf, *bf_held = NULL;
994 struct list_head bf_head;
995 struct ath_desc *ds;
996 int txok, nbad = 0;
997 int status;
998
999 DPRINTF(sc, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
1000 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
1001 txq->axq_link);
1002
1003 for (;;) {
1004 spin_lock_bh(&txq->axq_lock);
1005 if (list_empty(&txq->axq_q)) {
1006 txq->axq_link = NULL;
1007 txq->axq_linkbuf = NULL;
1008 spin_unlock_bh(&txq->axq_lock);
1009 break;
1010 }
1011 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
1012
1013 /*
1014 * There is a race condition that a BH gets scheduled
1015 * after sw writes TxE and before hw re-load the last
1016 * descriptor to get the newly chained one.
1017 * Software must keep the last DONE descriptor as a
1018 * holding descriptor - software does so by marking
1019 * it with the STALE flag.
1020 */
1021 bf_held = NULL;
1022 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
1023 bf_held = bf;
1024 if (list_is_last(&bf_held->list, &txq->axq_q)) {
1025 /* FIXME:
1026 * The holding descriptor is the last
1027 * descriptor in queue. It's safe to remove
1028 * the last holding descriptor in BH context.
1029 */
1030 spin_unlock_bh(&txq->axq_lock);
1031 break;
1032 } else {
1033 /* Lets work with the next buffer now */
1034 bf = list_entry(bf_held->list.next,
1035 struct ath_buf, list);
1036 }
1037 }
1038
1039 lastbf = bf->bf_lastbf;
1040 ds = lastbf->bf_desc; /* NB: last decriptor */
1041
1042 status = ath9k_hw_txprocdesc(ah, ds);
1043 if (status == -EINPROGRESS) {
1044 spin_unlock_bh(&txq->axq_lock);
1045 break;
1046 }
1047 if (bf->bf_desc == txq->axq_lastdsWithCTS)
1048 txq->axq_lastdsWithCTS = NULL;
1049 if (ds == txq->axq_gatingds)
1050 txq->axq_gatingds = NULL;
1051
1052 /*
1053 * Remove ath_buf's of the same transmit unit from txq,
1054 * however leave the last descriptor back as the holding
1055 * descriptor for hw.
1056 */
1057 lastbf->bf_status |= ATH_BUFSTATUS_STALE;
1058 INIT_LIST_HEAD(&bf_head);
1059
1060 if (!list_is_singular(&lastbf->list))
1061 list_cut_position(&bf_head,
1062 &txq->axq_q, lastbf->list.prev);
1063
1064 txq->axq_depth--;
1065
1066 if (bf_isaggr(bf))
1067 txq->axq_aggr_depth--;
1068
1069 txok = (ds->ds_txstat.ts_status == 0);
1070
1071 spin_unlock_bh(&txq->axq_lock);
1072
1073 if (bf_held) {
1074 list_del(&bf_held->list);
1075 spin_lock_bh(&sc->tx.txbuflock);
1076 list_add_tail(&bf_held->list, &sc->tx.txbuf);
1077 spin_unlock_bh(&sc->tx.txbuflock);
1078 }
1079
1080 if (!bf_isampdu(bf)) {
1081 /*
1082 * This frame is sent out as a single frame.
1083 * Use hardware retry status for this frame.
1084 */
1085 bf->bf_retries = ds->ds_txstat.ts_longretry;
1086 if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY)
1087 bf->bf_state.bf_type |= BUF_XRETRY;
1088 nbad = 0;
1089 } else {
1090 nbad = ath_tx_num_badfrms(sc, bf, txok);
1091 }
1092
1093 ath_tx_rc_status(bf, ds, nbad);
1094
1095 /*
1096 * Complete this transmit unit
1097 */
1098 if (bf_isampdu(bf))
1099 ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, txok);
1100 else
1101 ath_tx_complete_buf(sc, bf, &bf_head, txok, 0);
1102
1103 /* Wake up mac80211 queue */
1104
1105 spin_lock_bh(&txq->axq_lock);
1106 if (txq->stopped && ath_txq_depth(sc, txq->axq_qnum) <=
1107 (ATH_TXBUF - 20)) {
1108 int qnum;
1109 qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
1110 if (qnum != -1) {
1111 ieee80211_wake_queue(sc->hw, qnum);
1112 txq->stopped = 0;
1113 }
1114
1115 }
1116
1117 /*
1118 * schedule any pending packets if aggregation is enabled
1119 */
1120 if (sc->sc_flags & SC_OP_TXAGGR)
1121 ath_txq_schedule(sc, txq);
1122 spin_unlock_bh(&txq->axq_lock);
1123 }
1124}
1125
1126static void ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
1127{
1128 struct ath_hal *ah = sc->sc_ah;
1129
1130 (void) ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1131 DPRINTF(sc, ATH_DBG_XMIT, "tx queue [%u] %x, link %p\n",
1132 txq->axq_qnum, ath9k_hw_gettxbuf(ah, txq->axq_qnum),
1133 txq->axq_link);
1134}
1135
1136/* Drain only the data queues */
1137
1138static void ath_drain_txdataq(struct ath_softc *sc, bool retry_tx)
1139{
1140 struct ath_hal *ah = sc->sc_ah;
1141 int i, npend = 0;
1142
1143 if (!(sc->sc_flags & SC_OP_INVALID)) {
1144 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1145 if (ATH_TXQ_SETUP(sc, i)) {
1146 ath_tx_stopdma(sc, &sc->tx.txq[i]);
1147 /* The TxDMA may not really be stopped.
1148 * Double check the hal tx pending count */
1149 npend += ath9k_hw_numtxpending(ah,
1150 sc->tx.txq[i].axq_qnum);
1151 }
1152 }
1153 }
1154
1155 if (npend) {
1156 int r;
1157 /* TxDMA not stopped, reset the hal */
1158 DPRINTF(sc, ATH_DBG_XMIT, "Unable to stop TxDMA. Reset HAL!\n");
1159
1160 spin_lock_bh(&sc->sc_resetlock);
1161 r = ath9k_hw_reset(ah, sc->sc_ah->ah_curchan, true);
1162 if (r)
1163 DPRINTF(sc, ATH_DBG_FATAL,
1164 "Unable to reset hardware; reset status %u\n",
1165 r);
1166 spin_unlock_bh(&sc->sc_resetlock);
1167 }
1168
1169 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1170 if (ATH_TXQ_SETUP(sc, i))
1171 ath_tx_draintxq(sc, &sc->tx.txq[i], retry_tx);
1172 }
1173}
1174
1175/* Add a sub-frame to block ack window */
1176
1177static void ath_tx_addto_baw(struct ath_softc *sc,
1178 struct ath_atx_tid *tid,
1179 struct ath_buf *bf)
1180{
1181 int index, cindex;
1182
1183 if (bf_isretried(bf))
1184 return;
1185
1186 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
1187 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
1188
1189 ASSERT(tid->tx_buf[cindex] == NULL);
1190 tid->tx_buf[cindex] = bf;
1191
1192 if (index >= ((tid->baw_tail - tid->baw_head) &
1193 (ATH_TID_MAX_BUFS - 1))) {
1194 tid->baw_tail = cindex;
1195 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
1196 }
1197}
1198
1199/*
1200 * Function to send an A-MPDU
1201 * NB: must be called with txq lock held
1202 */
1203static int ath_tx_send_ampdu(struct ath_softc *sc,
1204 struct ath_atx_tid *tid,
1205 struct list_head *bf_head,
1206 struct ath_tx_control *txctl)
1207{
1208 struct ath_buf *bf;
1209
1210 BUG_ON(list_empty(bf_head));
1211
1212 bf = list_first_entry(bf_head, struct ath_buf, list);
1213 bf->bf_state.bf_type |= BUF_AMPDU;
1214
1215 /*
1216 * Do not queue to h/w when any of the following conditions is true:
1217 * - there are pending frames in software queue
1218 * - the TID is currently paused for ADDBA/BAR request
1219 * - seqno is not within block-ack window
1220 * - h/w queue depth exceeds low water mark
1221 */
1222 if (!list_empty(&tid->buf_q) || tid->paused ||
1223 !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
1224 txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
1225 /*
1226 * Add this frame to software queue for scheduling later
1227 * for aggregation.
1228 */
1229 list_splice_tail_init(bf_head, &tid->buf_q);
1230 ath_tx_queue_tid(txctl->txq, tid);
1231 return 0;
1232 }
1233
1234 /* Add sub-frame to BAW */
1235 ath_tx_addto_baw(sc, tid, bf);
1236
1237 /* Queue to h/w without aggregation */
1238 bf->bf_nframes = 1;
1239 bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
1240 ath_buf_set_rate(sc, bf);
1241 ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
1242
1243 return 0;
1244}
1245
1246/*
1247 * looks up the rate
1248 * returns aggr limit based on lowest of the rates
1249 */
1250static u32 ath_lookup_rate(struct ath_softc *sc,
1251 struct ath_buf *bf,
1252 struct ath_atx_tid *tid) 449 struct ath_atx_tid *tid)
1253{ 450{
1254 struct ath_rate_table *rate_table = sc->cur_rate_table; 451 struct ath_rate_table *rate_table = sc->cur_rate_table;
@@ -1314,10 +511,8 @@ static u32 ath_lookup_rate(struct ath_softc *sc,
1314 * meet the minimum required mpdudensity. 511 * meet the minimum required mpdudensity.
1315 * caller should make sure that the rate is HT rate . 512 * caller should make sure that the rate is HT rate .
1316 */ 513 */
1317static int ath_compute_num_delims(struct ath_softc *sc, 514static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
1318 struct ath_atx_tid *tid, 515 struct ath_buf *bf, u16 frmlen)
1319 struct ath_buf *bf,
1320 u16 frmlen)
1321{ 516{
1322 struct ath_rate_table *rt = sc->cur_rate_table; 517 struct ath_rate_table *rt = sc->cur_rate_table;
1323 struct sk_buff *skb = bf->bf_mpdu; 518 struct sk_buff *skb = bf->bf_mpdu;
@@ -1381,16 +576,10 @@ static int ath_compute_num_delims(struct ath_softc *sc,
1381 return ndelim; 576 return ndelim;
1382} 577}
1383 578
1384/*
1385 * For aggregation from software buffer queue.
1386 * NB: must be called with txq lock held
1387 */
1388static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc, 579static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
1389 struct ath_atx_tid *tid, 580 struct ath_atx_tid *tid, struct list_head *bf_q,
1390 struct list_head *bf_q, 581 struct ath_buf **bf_last, struct aggr_rifs_param *param,
1391 struct ath_buf **bf_last, 582 int *prev_frames)
1392 struct aggr_rifs_param *param,
1393 int *prev_frames)
1394{ 583{
1395#define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) 584#define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
1396 struct ath_buf *bf, *tbf, *bf_first, *bf_prev = NULL; 585 struct ath_buf *bf, *tbf, *bf_first, *bf_prev = NULL;
@@ -1485,15 +674,6 @@ static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
1485 } 674 }
1486 bf_prev = bf; 675 bf_prev = bf;
1487 676
1488#ifdef AGGR_NOSHORT
1489 /*
1490 * terminate aggregation on a small packet boundary
1491 */
1492 if (bf->bf_frmlen < ATH_AGGR_MINPLEN) {
1493 status = ATH_AGGR_SHORTPKT;
1494 break;
1495 }
1496#endif
1497 } while (!list_empty(&tid->buf_q)); 677 } while (!list_empty(&tid->buf_q));
1498 678
1499 bf_first->bf_al = al; 679 bf_first->bf_al = al;
@@ -1503,12 +683,8 @@ static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
1503#undef PADBYTES 683#undef PADBYTES
1504} 684}
1505 685
1506/* 686static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1507 * process pending frames possibly doing a-mpdu aggregation 687 struct ath_atx_tid *tid)
1508 * NB: must be called with txq lock held
1509 */
1510static void ath_tx_sched_aggr(struct ath_softc *sc,
1511 struct ath_txq *txq, struct ath_atx_tid *tid)
1512{ 688{
1513 struct ath_buf *bf, *tbf, *bf_last, *bf_lastaggr = NULL; 689 struct ath_buf *bf, *tbf, *bf_last, *bf_lastaggr = NULL;
1514 enum ATH_AGGR_STATUS status; 690 enum ATH_AGGR_STATUS status;
@@ -1588,313 +764,190 @@ static void ath_tx_sched_aggr(struct ath_softc *sc,
1588 status != ATH_AGGR_BAW_CLOSED); 764 status != ATH_AGGR_BAW_CLOSED);
1589} 765}
1590 766
1591/* Called with txq lock held */ 767int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
768 u16 tid, u16 *ssn)
769{
770 struct ath_atx_tid *txtid;
771 struct ath_node *an;
1592 772
1593static void ath_tid_drain(struct ath_softc *sc, 773 an = (struct ath_node *)sta->drv_priv;
1594 struct ath_txq *txq, 774
1595 struct ath_atx_tid *tid) 775 if (sc->sc_flags & SC_OP_TXAGGR) {
776 txtid = ATH_AN_2_TID(an, tid);
777 txtid->state |= AGGR_ADDBA_PROGRESS;
778 ath_tx_pause_tid(sc, txtid);
779 }
1596 780
781 return 0;
782}
783
784int ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1597{ 785{
786 struct ath_node *an = (struct ath_node *)sta->drv_priv;
787 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
788 struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
1598 struct ath_buf *bf; 789 struct ath_buf *bf;
1599 struct list_head bf_head; 790 struct list_head bf_head;
1600 INIT_LIST_HEAD(&bf_head); 791 INIT_LIST_HEAD(&bf_head);
1601 792
1602 for (;;) { 793 if (txtid->state & AGGR_CLEANUP)
1603 if (list_empty(&tid->buf_q)) 794 return 0;
1604 break;
1605 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
1606
1607 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
1608 795
1609 /* update baw for software retried frame */ 796 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
1610 if (bf_isretried(bf)) 797 txtid->addba_exchangeattempts = 0;
1611 ath_tx_update_baw(sc, tid, bf->bf_seqno); 798 return 0;
799 }
1612 800
1613 /* 801 ath_tx_pause_tid(sc, txtid);
1614 * do not indicate packets while holding txq spinlock.
1615 * unlock is intentional here
1616 */
1617 spin_unlock(&txq->axq_lock);
1618 802
1619 /* complete this sub-frame */ 803 /* drop all software retried frames and mark this TID */
804 spin_lock_bh(&txq->axq_lock);
805 while (!list_empty(&txtid->buf_q)) {
806 bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
807 if (!bf_isretried(bf)) {
808 /*
809 * NB: it's based on the assumption that
810 * software retried frame will always stay
811 * at the head of software queue.
812 */
813 break;
814 }
815 list_cut_position(&bf_head,
816 &txtid->buf_q, &bf->bf_lastfrm->list);
817 ath_tx_update_baw(sc, txtid, bf->bf_seqno);
1620 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); 818 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
819 }
1621 820
1622 spin_lock(&txq->axq_lock); 821 if (txtid->baw_head != txtid->baw_tail) {
822 spin_unlock_bh(&txq->axq_lock);
823 txtid->state |= AGGR_CLEANUP;
824 } else {
825 txtid->state &= ~AGGR_ADDBA_COMPLETE;
826 txtid->addba_exchangeattempts = 0;
827 spin_unlock_bh(&txq->axq_lock);
828 ath_tx_flush_tid(sc, txtid);
1623 } 829 }
1624 830
1625 /* 831 return 0;
1626 * TODO: For frame(s) that are in the retry state, we will reuse the
1627 * sequence number(s) without setting the retry bit. The
1628 * alternative is to give up on these and BAR the receiver's window
1629 * forward.
1630 */
1631 tid->seq_next = tid->seq_start;
1632 tid->baw_tail = tid->baw_head;
1633} 832}
1634 833
1635/* 834void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1636 * Drain all pending buffers
1637 * NB: must be called with txq lock held
1638 */
1639static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
1640 struct ath_txq *txq)
1641{ 835{
1642 struct ath_atx_ac *ac, *ac_tmp; 836 struct ath_atx_tid *txtid;
1643 struct ath_atx_tid *tid, *tid_tmp; 837 struct ath_node *an;
1644 838
1645 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) { 839 an = (struct ath_node *)sta->drv_priv;
1646 list_del(&ac->list); 840
1647 ac->sched = false; 841 if (sc->sc_flags & SC_OP_TXAGGR) {
1648 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) { 842 txtid = ATH_AN_2_TID(an, tid);
1649 list_del(&tid->list); 843 txtid->baw_size =
1650 tid->sched = false; 844 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1651 ath_tid_drain(sc, txq, tid); 845 txtid->state |= AGGR_ADDBA_COMPLETE;
1652 } 846 txtid->state &= ~AGGR_ADDBA_PROGRESS;
847 ath_tx_resume_tid(sc, txtid);
1653 } 848 }
1654} 849}
1655 850
1656static int ath_tx_setup_buffer(struct ath_softc *sc, struct ath_buf *bf, 851bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
1657 struct sk_buff *skb,
1658 struct ath_tx_control *txctl)
1659{ 852{
1660 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 853 struct ath_atx_tid *txtid;
1661 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1662 struct ath_tx_info_priv *tx_info_priv;
1663 int hdrlen;
1664 __le16 fc;
1665
1666 tx_info_priv = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC);
1667 if (unlikely(!tx_info_priv))
1668 return -ENOMEM;
1669 tx_info->rate_driver_data[0] = tx_info_priv;
1670 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1671 fc = hdr->frame_control;
1672
1673 ATH_TXBUF_RESET(bf);
1674
1675 /* Frame type */
1676
1677 bf->bf_frmlen = skb->len + FCS_LEN - (hdrlen & 3);
1678
1679 ieee80211_is_data(fc) ?
1680 (bf->bf_state.bf_type |= BUF_DATA) :
1681 (bf->bf_state.bf_type &= ~BUF_DATA);
1682 ieee80211_is_back_req(fc) ?
1683 (bf->bf_state.bf_type |= BUF_BAR) :
1684 (bf->bf_state.bf_type &= ~BUF_BAR);
1685 ieee80211_is_pspoll(fc) ?
1686 (bf->bf_state.bf_type |= BUF_PSPOLL) :
1687 (bf->bf_state.bf_type &= ~BUF_PSPOLL);
1688 (sc->sc_flags & SC_OP_PREAMBLE_SHORT) ?
1689 (bf->bf_state.bf_type |= BUF_SHORT_PREAMBLE) :
1690 (bf->bf_state.bf_type &= ~BUF_SHORT_PREAMBLE);
1691 (conf_is_ht(&sc->hw->conf) && !is_pae(skb) &&
1692 (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) ?
1693 (bf->bf_state.bf_type |= BUF_HT) :
1694 (bf->bf_state.bf_type &= ~BUF_HT);
1695
1696 bf->bf_flags = setup_tx_flags(sc, skb, txctl->txq);
1697 854
1698 /* Crypto */ 855 if (!(sc->sc_flags & SC_OP_TXAGGR))
856 return false;
1699 857
1700 bf->bf_keytype = get_hw_crypto_keytype(skb); 858 txtid = ATH_AN_2_TID(an, tidno);
1701 859
1702 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) { 860 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
1703 bf->bf_frmlen += tx_info->control.hw_key->icv_len; 861 if (!(txtid->state & AGGR_ADDBA_PROGRESS) &&
1704 bf->bf_keyix = tx_info->control.hw_key->hw_key_idx; 862 (txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) {
1705 } else { 863 txtid->addba_exchangeattempts++;
1706 bf->bf_keyix = ATH9K_TXKEYIX_INVALID; 864 return true;
865 }
1707 } 866 }
1708 867
1709 /* Assign seqno, tidno */ 868 return false;
1710 869}
1711 if (ieee80211_is_data_qos(fc) && (sc->sc_flags & SC_OP_TXAGGR))
1712 assign_aggr_tid_seqno(skb, bf);
1713
1714 /* DMA setup */
1715 bf->bf_mpdu = skb;
1716 870
1717 bf->bf_dmacontext = dma_map_single(sc->dev, skb->data, 871/********************/
1718 skb->len, DMA_TO_DEVICE); 872/* Queue Management */
1719 if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) { 873/********************/
1720 bf->bf_mpdu = NULL;
1721 DPRINTF(sc, ATH_DBG_CONFIG,
1722 "dma_mapping_error() on TX\n");
1723 return -ENOMEM;
1724 }
1725 874
1726 bf->bf_buf_addr = bf->bf_dmacontext; 875static u32 ath_txq_depth(struct ath_softc *sc, int qnum)
1727 return 0; 876{
877 return sc->tx.txq[qnum].axq_depth;
1728} 878}
1729 879
1730/* FIXME: tx power */ 880static void ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
1731static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
1732 struct ath_tx_control *txctl)
1733{ 881{
1734 struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
1735 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1736 struct ath_node *an = NULL;
1737 struct list_head bf_head;
1738 struct ath_desc *ds;
1739 struct ath_atx_tid *tid;
1740 struct ath_hal *ah = sc->sc_ah; 882 struct ath_hal *ah = sc->sc_ah;
1741 int frm_type; 883 (void) ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1742
1743 frm_type = get_hw_packet_type(skb);
1744
1745 INIT_LIST_HEAD(&bf_head);
1746 list_add_tail(&bf->list, &bf_head);
1747
1748 /* setup descriptor */
1749
1750 ds = bf->bf_desc;
1751 ds->ds_link = 0;
1752 ds->ds_data = bf->bf_buf_addr;
1753
1754 /* Formulate first tx descriptor with tx controls */
1755
1756 ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
1757 bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
1758
1759 ath9k_hw_filltxdesc(ah, ds,
1760 skb->len, /* segment length */
1761 true, /* first segment */
1762 true, /* last segment */
1763 ds); /* first descriptor */
1764
1765 bf->bf_lastfrm = bf;
1766
1767 spin_lock_bh(&txctl->txq->axq_lock);
1768
1769 if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
1770 tx_info->control.sta) {
1771 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1772 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1773
1774 if (ath_aggr_query(sc, an, bf->bf_tidno)) {
1775 /*
1776 * Try aggregation if it's a unicast data frame
1777 * and the destination is HT capable.
1778 */
1779 ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
1780 } else {
1781 /*
1782 * Send this frame as regular when ADDBA
1783 * exchange is neither complete nor pending.
1784 */
1785 ath_tx_send_normal(sc, txctl->txq,
1786 tid, &bf_head);
1787 }
1788 } else {
1789 bf->bf_lastbf = bf;
1790 bf->bf_nframes = 1;
1791
1792 ath_buf_set_rate(sc, bf);
1793 ath_tx_txqaddbuf(sc, txctl->txq, &bf_head);
1794 }
1795
1796 spin_unlock_bh(&txctl->txq->axq_lock);
1797} 884}
1798 885
1799/* Upon failure caller should free skb */ 886static void ath_get_beaconconfig(struct ath_softc *sc, int if_id,
1800int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb, 887 struct ath_beacon_config *conf)
1801 struct ath_tx_control *txctl)
1802{ 888{
1803 struct ath_buf *bf; 889 struct ieee80211_hw *hw = sc->hw;
1804 int r;
1805
1806 /* Check if a tx buffer is available */
1807
1808 bf = ath_tx_get_buffer(sc);
1809 if (!bf) {
1810 DPRINTF(sc, ATH_DBG_XMIT, "TX buffers are full\n");
1811 return -1;
1812 }
1813
1814 r = ath_tx_setup_buffer(sc, bf, skb, txctl);
1815 if (unlikely(r)) {
1816 struct ath_txq *txq = txctl->txq;
1817
1818 DPRINTF(sc, ATH_DBG_FATAL, "TX mem alloc failure\n");
1819
1820 /* upon ath_tx_processq() this TX queue will be resumed, we
1821 * guarantee this will happen by knowing beforehand that
1822 * we will at least have to run TX completionon one buffer
1823 * on the queue */
1824 spin_lock_bh(&txq->axq_lock);
1825 if (ath_txq_depth(sc, txq->axq_qnum) > 1) {
1826 ieee80211_stop_queue(sc->hw,
1827 skb_get_queue_mapping(skb));
1828 txq->stopped = 1;
1829 }
1830 spin_unlock_bh(&txq->axq_lock);
1831
1832 spin_lock_bh(&sc->tx.txbuflock);
1833 list_add_tail(&bf->list, &sc->tx.txbuf);
1834 spin_unlock_bh(&sc->tx.txbuflock);
1835
1836 return r;
1837 }
1838 890
1839 ath_tx_start_dma(sc, bf, txctl); 891 /* fill in beacon config data */
1840 892
1841 return 0; 893 conf->beacon_interval = hw->conf.beacon_int;
894 conf->listen_interval = 100;
895 conf->dtim_count = 1;
896 conf->bmiss_timeout = ATH_DEFAULT_BMISS_LIMIT * conf->listen_interval;
1842} 897}
1843 898
1844/* Initialize TX queue and h/w */ 899static void ath_drain_txdataq(struct ath_softc *sc, bool retry_tx)
1845
1846int ath_tx_init(struct ath_softc *sc, int nbufs)
1847{ 900{
1848 int error = 0; 901 struct ath_hal *ah = sc->sc_ah;
1849 902 int i, npend = 0;
1850 do {
1851 spin_lock_init(&sc->tx.txbuflock);
1852 903
1853 /* Setup tx descriptors */ 904 if (!(sc->sc_flags & SC_OP_INVALID)) {
1854 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, 905 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1855 "tx", nbufs, 1); 906 if (ATH_TXQ_SETUP(sc, i)) {
1856 if (error != 0) { 907 ath_tx_stopdma(sc, &sc->tx.txq[i]);
1857 DPRINTF(sc, ATH_DBG_FATAL, 908 npend += ath9k_hw_numtxpending(ah,
1858 "Failed to allocate tx descriptors: %d\n", 909 sc->tx.txq[i].axq_qnum);
1859 error); 910 }
1860 break;
1861 } 911 }
912 }
1862 913
1863 /* XXX allocate beacon state together with vap */ 914 if (npend) {
1864 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, 915 int r;
1865 "beacon", ATH_BCBUF, 1);
1866 if (error != 0) {
1867 DPRINTF(sc, ATH_DBG_FATAL,
1868 "Failed to allocate beacon descriptors: %d\n",
1869 error);
1870 break;
1871 }
1872 916
1873 } while (0); 917 DPRINTF(sc, ATH_DBG_XMIT, "Unable to stop TxDMA. Reset HAL!\n");
1874 918
1875 if (error != 0) 919 spin_lock_bh(&sc->sc_resetlock);
1876 ath_tx_cleanup(sc); 920 r = ath9k_hw_reset(ah, sc->sc_ah->ah_curchan, true);
921 if (r)
922 DPRINTF(sc, ATH_DBG_FATAL,
923 "Unable to reset hardware; reset status %u\n",
924 r);
925 spin_unlock_bh(&sc->sc_resetlock);
926 }
1877 927
1878 return error; 928 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
929 if (ATH_TXQ_SETUP(sc, i))
930 ath_tx_draintxq(sc, &sc->tx.txq[i], retry_tx);
931 }
1879} 932}
1880 933
1881/* Reclaim all tx queue resources */ 934static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
1882 935 struct ath_txq *txq)
1883int ath_tx_cleanup(struct ath_softc *sc)
1884{ 936{
1885 /* cleanup beacon descriptors */ 937 struct ath_atx_ac *ac, *ac_tmp;
1886 if (sc->beacon.bdma.dd_desc_len != 0) 938 struct ath_atx_tid *tid, *tid_tmp;
1887 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
1888
1889 /* cleanup tx descriptors */
1890 if (sc->tx.txdma.dd_desc_len != 0)
1891 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
1892 939
1893 return 0; 940 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
941 list_del(&ac->list);
942 ac->sched = false;
943 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
944 list_del(&tid->list);
945 tid->sched = false;
946 ath_tid_drain(sc, txq, tid);
947 }
948 }
1894} 949}
1895 950
1896/* Setup a h/w transmit queue */
1897
1898struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 951struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1899{ 952{
1900 struct ath_hal *ah = sc->sc_ah; 953 struct ath_hal *ah = sc->sc_ah;
@@ -1960,43 +1013,7 @@ struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1960 return &sc->tx.txq[qnum]; 1013 return &sc->tx.txq[qnum];
1961} 1014}
1962 1015
1963/* Reclaim resources for a setup queue */ 1016static int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
1964
1965void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1966{
1967 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1968 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1969}
1970
1971/*
1972 * Setup a hardware data transmit queue for the specified
1973 * access control. The hal may not support all requested
1974 * queues in which case it will return a reference to a
1975 * previously setup queue. We record the mapping from ac's
1976 * to h/w queues for use by ath_tx_start and also track
1977 * the set of h/w queues being used to optimize work in the
1978 * transmit interrupt handler and related routines.
1979 */
1980
1981int ath_tx_setup(struct ath_softc *sc, int haltype)
1982{
1983 struct ath_txq *txq;
1984
1985 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
1986 DPRINTF(sc, ATH_DBG_FATAL,
1987 "HAL AC %u out of range, max %zu!\n",
1988 haltype, ARRAY_SIZE(sc->tx.hwq_map));
1989 return 0;
1990 }
1991 txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
1992 if (txq != NULL) {
1993 sc->tx.hwq_map[haltype] = txq->axq_qnum;
1994 return 1;
1995 } else
1996 return 0;
1997}
1998
1999int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
2000{ 1017{
2001 int qnum; 1018 int qnum;
2002 1019
@@ -2022,8 +1039,6 @@ int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
2022 return qnum; 1039 return qnum;
2023} 1040}
2024 1041
2025/* Get a transmit queue, if available */
2026
2027struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb) 1042struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb)
2028{ 1043{
2029 struct ath_txq *txq = NULL; 1044 struct ath_txq *txq = NULL;
@@ -2034,7 +1049,6 @@ struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb)
2034 1049
2035 spin_lock_bh(&txq->axq_lock); 1050 spin_lock_bh(&txq->axq_lock);
2036 1051
2037 /* Try to avoid running out of descriptors */
2038 if (txq->axq_depth >= (ATH_TXBUF - 20)) { 1052 if (txq->axq_depth >= (ATH_TXBUF - 20)) {
2039 DPRINTF(sc, ATH_DBG_FATAL, 1053 DPRINTF(sc, ATH_DBG_FATAL,
2040 "TX queue: %d is full, depth: %d\n", 1054 "TX queue: %d is full, depth: %d\n",
@@ -2050,8 +1064,6 @@ struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb)
2050 return txq; 1064 return txq;
2051} 1065}
2052 1066
2053/* Update parameters for a transmit queue */
2054
2055int ath_txq_update(struct ath_softc *sc, int qnum, 1067int ath_txq_update(struct ath_softc *sc, int qnum,
2056 struct ath9k_tx_queue_info *qinfo) 1068 struct ath9k_tx_queue_info *qinfo)
2057{ 1069{
@@ -2083,7 +1095,7 @@ int ath_txq_update(struct ath_softc *sc, int qnum,
2083 "Unable to update hardware queue %u!\n", qnum); 1095 "Unable to update hardware queue %u!\n", qnum);
2084 error = -EIO; 1096 error = -EIO;
2085 } else { 1097 } else {
2086 ath9k_hw_resettxqueue(ah, qnum); /* push to h/w */ 1098 ath9k_hw_resettxqueue(ah, qnum);
2087 } 1099 }
2088 1100
2089 return error; 1101 return error;
@@ -2112,26 +1124,7 @@ int ath_cabq_update(struct ath_softc *sc)
2112 return 0; 1124 return 0;
2113} 1125}
2114 1126
2115/* Deferred processing of transmit interrupt */ 1127void ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
2116
2117void ath_tx_tasklet(struct ath_softc *sc)
2118{
2119 int i;
2120 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2121
2122 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2123
2124 /*
2125 * Process each active queue.
2126 */
2127 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2128 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2129 ath_tx_processq(sc, &sc->tx.txq[i]);
2130 }
2131}
2132
2133void ath_tx_draintxq(struct ath_softc *sc,
2134 struct ath_txq *txq, bool retry_tx)
2135{ 1128{
2136 struct ath_buf *bf, *lastbf; 1129 struct ath_buf *bf, *lastbf;
2137 struct list_head bf_head; 1130 struct list_head bf_head;
@@ -2191,44 +1184,245 @@ void ath_tx_draintxq(struct ath_softc *sc,
2191 } 1184 }
2192} 1185}
2193 1186
2194/* Drain the transmit queues and reclaim resources */ 1187void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1188{
1189 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1190 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1191}
2195 1192
2196void ath_draintxq(struct ath_softc *sc, bool retry_tx) 1193void ath_draintxq(struct ath_softc *sc, bool retry_tx)
2197{ 1194{
2198 /* stop beacon queue. The beacon will be freed when 1195 if (!(sc->sc_flags & SC_OP_INVALID))
2199 * we go to INIT state */
2200 if (!(sc->sc_flags & SC_OP_INVALID)) {
2201 (void) ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq); 1196 (void) ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2202 DPRINTF(sc, ATH_DBG_XMIT, "beacon queue %x\n",
2203 ath9k_hw_gettxbuf(sc->sc_ah, sc->beacon.beaconq));
2204 }
2205 1197
2206 ath_drain_txdataq(sc, retry_tx); 1198 ath_drain_txdataq(sc, retry_tx);
2207} 1199}
2208 1200
2209u32 ath_txq_depth(struct ath_softc *sc, int qnum) 1201void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
2210{ 1202{
2211 return sc->tx.txq[qnum].axq_depth; 1203 struct ath_atx_ac *ac;
1204 struct ath_atx_tid *tid;
1205
1206 if (list_empty(&txq->axq_acq))
1207 return;
1208
1209 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1210 list_del(&ac->list);
1211 ac->sched = false;
1212
1213 do {
1214 if (list_empty(&ac->tid_q))
1215 return;
1216
1217 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
1218 list_del(&tid->list);
1219 tid->sched = false;
1220
1221 if (tid->paused)
1222 continue;
1223
1224 if ((txq->axq_depth % 2) == 0)
1225 ath_tx_sched_aggr(sc, txq, tid);
1226
1227 /*
1228 * add tid to round-robin queue if more frames
1229 * are pending for the tid
1230 */
1231 if (!list_empty(&tid->buf_q))
1232 ath_tx_queue_tid(txq, tid);
1233
1234 break;
1235 } while (!list_empty(&ac->tid_q));
1236
1237 if (!list_empty(&ac->tid_q)) {
1238 if (!ac->sched) {
1239 ac->sched = true;
1240 list_add_tail(&ac->list, &txq->axq_acq);
1241 }
1242 }
1243}
1244
1245int ath_tx_setup(struct ath_softc *sc, int haltype)
1246{
1247 struct ath_txq *txq;
1248
1249 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
1250 DPRINTF(sc, ATH_DBG_FATAL,
1251 "HAL AC %u out of range, max %zu!\n",
1252 haltype, ARRAY_SIZE(sc->tx.hwq_map));
1253 return 0;
1254 }
1255 txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
1256 if (txq != NULL) {
1257 sc->tx.hwq_map[haltype] = txq->axq_qnum;
1258 return 1;
1259 } else
1260 return 0;
2212} 1261}
2213 1262
2214u32 ath_txq_aggr_depth(struct ath_softc *sc, int qnum) 1263/***********/
1264/* TX, DMA */
1265/***********/
1266
1267/*
1268 * Insert a chain of ath_buf (descriptors) on a txq and
1269 * assume the descriptors are already chained together by caller.
1270 */
1271static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1272 struct list_head *head)
2215{ 1273{
2216 return sc->tx.txq[qnum].axq_aggr_depth; 1274 struct ath_hal *ah = sc->sc_ah;
1275 struct ath_buf *bf;
1276
1277 /*
1278 * Insert the frame on the outbound list and
1279 * pass it on to the hardware.
1280 */
1281
1282 if (list_empty(head))
1283 return;
1284
1285 bf = list_first_entry(head, struct ath_buf, list);
1286
1287 list_splice_tail_init(head, &txq->axq_q);
1288 txq->axq_depth++;
1289 txq->axq_totalqueued++;
1290 txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list);
1291
1292 DPRINTF(sc, ATH_DBG_QUEUE,
1293 "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
1294
1295 if (txq->axq_link == NULL) {
1296 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1297 DPRINTF(sc, ATH_DBG_XMIT,
1298 "TXDP[%u] = %llx (%p)\n",
1299 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1300 } else {
1301 *txq->axq_link = bf->bf_daddr;
1302 DPRINTF(sc, ATH_DBG_XMIT, "link[%u] (%p)=%llx (%p)\n",
1303 txq->axq_qnum, txq->axq_link,
1304 ito64(bf->bf_daddr), bf->bf_desc);
1305 }
1306 txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
1307 ath9k_hw_txstart(ah, txq->axq_qnum);
2217} 1308}
2218 1309
2219bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno) 1310static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
2220{ 1311{
2221 struct ath_atx_tid *txtid; 1312 struct ath_buf *bf = NULL;
2222 1313
2223 if (!(sc->sc_flags & SC_OP_TXAGGR)) 1314 spin_lock_bh(&sc->tx.txbuflock);
2224 return false;
2225 1315
2226 txtid = ATH_AN_2_TID(an, tidno); 1316 if (unlikely(list_empty(&sc->tx.txbuf))) {
1317 spin_unlock_bh(&sc->tx.txbuflock);
1318 return NULL;
1319 }
2227 1320
2228 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) { 1321 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
2229 if (!(txtid->state & AGGR_ADDBA_PROGRESS) && 1322 list_del(&bf->list);
2230 (txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) { 1323
2231 txtid->addba_exchangeattempts++; 1324 spin_unlock_bh(&sc->tx.txbuflock);
1325
1326 return bf;
1327}
1328
1329static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1330 struct list_head *bf_head,
1331 struct ath_tx_control *txctl)
1332{
1333 struct ath_buf *bf;
1334
1335 BUG_ON(list_empty(bf_head));
1336
1337 bf = list_first_entry(bf_head, struct ath_buf, list);
1338 bf->bf_state.bf_type |= BUF_AMPDU;
1339
1340 /*
1341 * Do not queue to h/w when any of the following conditions is true:
1342 * - there are pending frames in software queue
1343 * - the TID is currently paused for ADDBA/BAR request
1344 * - seqno is not within block-ack window
1345 * - h/w queue depth exceeds low water mark
1346 */
1347 if (!list_empty(&tid->buf_q) || tid->paused ||
1348 !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
1349 txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
1350 /*
1351 * Add this frame to software queue for scheduling later
1352 * for aggregation.
1353 */
1354 list_splice_tail_init(bf_head, &tid->buf_q);
1355 ath_tx_queue_tid(txctl->txq, tid);
1356 return;
1357 }
1358
1359 /* Add sub-frame to BAW */
1360 ath_tx_addto_baw(sc, tid, bf);
1361
1362 /* Queue to h/w without aggregation */
1363 bf->bf_nframes = 1;
1364 bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
1365 ath_buf_set_rate(sc, bf);
1366 ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
1367
1368 return;
1369}
1370
1371static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1372 struct ath_atx_tid *tid,
1373 struct list_head *bf_head)
1374{
1375 struct ath_buf *bf;
1376
1377 BUG_ON(list_empty(bf_head));
1378
1379 bf = list_first_entry(bf_head, struct ath_buf, list);
1380 bf->bf_state.bf_type &= ~BUF_AMPDU;
1381
1382 /* update starting sequence number for subsequent ADDBA request */
1383 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
1384
1385 bf->bf_nframes = 1;
1386 bf->bf_lastbf = bf->bf_lastfrm;
1387 ath_buf_set_rate(sc, bf);
1388 ath_tx_txqaddbuf(sc, txq, bf_head);
1389}
1390
1391static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1392{
1393 struct ieee80211_hdr *hdr;
1394 enum ath9k_pkt_type htype;
1395 __le16 fc;
1396
1397 hdr = (struct ieee80211_hdr *)skb->data;
1398 fc = hdr->frame_control;
1399
1400 if (ieee80211_is_beacon(fc))
1401 htype = ATH9K_PKT_TYPE_BEACON;
1402 else if (ieee80211_is_probe_resp(fc))
1403 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1404 else if (ieee80211_is_atim(fc))
1405 htype = ATH9K_PKT_TYPE_ATIM;
1406 else if (ieee80211_is_pspoll(fc))
1407 htype = ATH9K_PKT_TYPE_PSPOLL;
1408 else
1409 htype = ATH9K_PKT_TYPE_NORMAL;
1410
1411 return htype;
1412}
1413
1414static bool is_pae(struct sk_buff *skb)
1415{
1416 struct ieee80211_hdr *hdr;
1417 __le16 fc;
1418
1419 hdr = (struct ieee80211_hdr *)skb->data;
1420 fc = hdr->frame_control;
1421
1422 if (ieee80211_is_data(fc)) {
1423 if (ieee80211_is_nullfunc(fc) ||
1424 /* Port Access Entity (IEEE 802.1X) */
1425 (skb->protocol == cpu_to_be16(ETH_P_PAE))) {
2232 return true; 1426 return true;
2233 } 1427 }
2234 } 1428 }
@@ -2236,175 +1430,801 @@ bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
2236 return false; 1430 return false;
2237} 1431}
2238 1432
2239/* Start TX aggregation */ 1433static int get_hw_crypto_keytype(struct sk_buff *skb)
1434{
1435 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2240 1436
2241int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, 1437 if (tx_info->control.hw_key) {
2242 u16 tid, u16 *ssn) 1438 if (tx_info->control.hw_key->alg == ALG_WEP)
1439 return ATH9K_KEY_TYPE_WEP;
1440 else if (tx_info->control.hw_key->alg == ALG_TKIP)
1441 return ATH9K_KEY_TYPE_TKIP;
1442 else if (tx_info->control.hw_key->alg == ALG_CCMP)
1443 return ATH9K_KEY_TYPE_AES;
1444 }
1445
1446 return ATH9K_KEY_TYPE_CLEAR;
1447}
1448
1449static void assign_aggr_tid_seqno(struct sk_buff *skb,
1450 struct ath_buf *bf)
2243{ 1451{
2244 struct ath_atx_tid *txtid; 1452 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1453 struct ieee80211_hdr *hdr;
2245 struct ath_node *an; 1454 struct ath_node *an;
1455 struct ath_atx_tid *tid;
1456 __le16 fc;
1457 u8 *qc;
2246 1458
2247 an = (struct ath_node *)sta->drv_priv; 1459 if (!tx_info->control.sta)
1460 return;
2248 1461
2249 if (sc->sc_flags & SC_OP_TXAGGR) { 1462 an = (struct ath_node *)tx_info->control.sta->drv_priv;
2250 txtid = ATH_AN_2_TID(an, tid); 1463 hdr = (struct ieee80211_hdr *)skb->data;
2251 txtid->state |= AGGR_ADDBA_PROGRESS; 1464 fc = hdr->frame_control;
2252 ath_tx_pause_tid(sc, txtid); 1465
1466 if (ieee80211_is_data_qos(fc)) {
1467 qc = ieee80211_get_qos_ctl(hdr);
1468 bf->bf_tidno = qc[0] & 0xf;
2253 } 1469 }
2254 1470
2255 return 0; 1471 /*
1472 * For HT capable stations, we save tidno for later use.
1473 * We also override seqno set by upper layer with the one
1474 * in tx aggregation state.
1475 *
1476 * If fragmentation is on, the sequence number is
1477 * not overridden, since it has been
1478 * incremented by the fragmentation routine.
1479 *
1480 * FIXME: check if the fragmentation threshold exceeds
1481 * IEEE80211 max.
1482 */
1483 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1484 hdr->seq_ctrl = cpu_to_le16(tid->seq_next <<
1485 IEEE80211_SEQ_SEQ_SHIFT);
1486 bf->bf_seqno = tid->seq_next;
1487 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2256} 1488}
2257 1489
2258/* Stop tx aggregation */ 1490static int setup_tx_flags(struct ath_softc *sc, struct sk_buff *skb,
2259 1491 struct ath_txq *txq)
2260int ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
2261{ 1492{
2262 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1493 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1494 int flags = 0;
2263 1495
2264 ath_tx_aggr_teardown(sc, an, tid); 1496 flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
2265 return 0; 1497 flags |= ATH9K_TXDESC_INTREQ;
1498
1499 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1500 flags |= ATH9K_TXDESC_NOACK;
1501 if (tx_info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
1502 flags |= ATH9K_TXDESC_RTSENA;
1503
1504 return flags;
2266} 1505}
2267 1506
2268/* Resume tx aggregation */ 1507/*
1508 * rix - rate index
1509 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1510 * width - 0 for 20 MHz, 1 for 40 MHz
1511 * half_gi - to use 4us v/s 3.6 us for symbol time
1512 */
1513static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
1514 int width, int half_gi, bool shortPreamble)
1515{
1516 struct ath_rate_table *rate_table = sc->cur_rate_table;
1517 u32 nbits, nsymbits, duration, nsymbols;
1518 u8 rc;
1519 int streams, pktlen;
2269 1520
2270void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) 1521 pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
1522 rc = rate_table->info[rix].ratecode;
1523
1524 /* for legacy rates, use old function to compute packet duration */
1525 if (!IS_HT_RATE(rc))
1526 return ath9k_hw_computetxtime(sc->sc_ah, rate_table, pktlen,
1527 rix, shortPreamble);
1528
1529 /* find number of symbols: PLCP + data */
1530 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1531 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
1532 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1533
1534 if (!half_gi)
1535 duration = SYMBOL_TIME(nsymbols);
1536 else
1537 duration = SYMBOL_TIME_HALFGI(nsymbols);
1538
1539 /* addup duration for legacy/ht training and signal fields */
1540 streams = HT_RC_2_STREAMS(rc);
1541 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1542
1543 return duration;
1544}
1545
1546static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
2271{ 1547{
2272 struct ath_atx_tid *txtid; 1548 struct ath_hal *ah = sc->sc_ah;
2273 struct ath_node *an; 1549 struct ath_rate_table *rt;
1550 struct ath_desc *ds = bf->bf_desc;
1551 struct ath_desc *lastds = bf->bf_lastbf->bf_desc;
1552 struct ath9k_11n_rate_series series[4];
1553 struct sk_buff *skb;
1554 struct ieee80211_tx_info *tx_info;
1555 struct ieee80211_tx_rate *rates;
1556 struct ieee80211_hdr *hdr;
1557 struct ieee80211_hw *hw = sc->hw;
1558 int i, flags, rtsctsena = 0, enable_g_protection = 0;
1559 u32 ctsduration = 0;
1560 u8 rix = 0, cix, ctsrate = 0;
1561 __le16 fc;
2274 1562
2275 an = (struct ath_node *)sta->drv_priv; 1563 memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
2276 1564
2277 if (sc->sc_flags & SC_OP_TXAGGR) { 1565 skb = (struct sk_buff *)bf->bf_mpdu;
2278 txtid = ATH_AN_2_TID(an, tid); 1566 hdr = (struct ieee80211_hdr *)skb->data;
2279 txtid->baw_size = 1567 fc = hdr->frame_control;
2280 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor; 1568 tx_info = IEEE80211_SKB_CB(skb);
2281 txtid->state |= AGGR_ADDBA_COMPLETE; 1569 rates = tx_info->control.rates;
2282 txtid->state &= ~AGGR_ADDBA_PROGRESS; 1570
2283 ath_tx_resume_tid(sc, txtid); 1571 if (ieee80211_has_morefrags(fc) ||
1572 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
1573 rates[1].count = rates[2].count = rates[3].count = 0;
1574 rates[1].idx = rates[2].idx = rates[3].idx = 0;
1575 rates[0].count = ATH_TXMAXTRY;
1576 }
1577
1578 /* get the cix for the lowest valid rix */
1579 rt = sc->cur_rate_table;
1580 for (i = 3; i >= 0; i--) {
1581 if (rates[i].count && (rates[i].idx >= 0)) {
1582 rix = rates[i].idx;
1583 break;
1584 }
1585 }
1586
1587 flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA));
1588 cix = rt->info[rix].ctrl_rate;
1589
1590 /* All protection frames are transmited at 2Mb/s for 802.11g,
1591 * otherwise we transmit them at 1Mb/s */
1592 if (hw->conf.channel->band == IEEE80211_BAND_2GHZ &&
1593 !conf_is_ht(&hw->conf))
1594 enable_g_protection = 1;
1595
1596 /*
1597 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
1598 * just CTS. Note that this is only done for OFDM/HT unicast frames.
1599 */
1600 if (sc->sc_protmode != PROT_M_NONE && !(bf->bf_flags & ATH9K_TXDESC_NOACK)
1601 && (rt->info[rix].phy == WLAN_RC_PHY_OFDM ||
1602 WLAN_RC_PHY_HT(rt->info[rix].phy))) {
1603 if (sc->sc_protmode == PROT_M_RTSCTS)
1604 flags = ATH9K_TXDESC_RTSENA;
1605 else if (sc->sc_protmode == PROT_M_CTSONLY)
1606 flags = ATH9K_TXDESC_CTSENA;
1607
1608 cix = rt->info[enable_g_protection].ctrl_rate;
1609 rtsctsena = 1;
2284 } 1610 }
1611
1612 /* For 11n, the default behavior is to enable RTS for hw retried frames.
1613 * We enable the global flag here and let rate series flags determine
1614 * which rates will actually use RTS.
1615 */
1616 if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) && bf_isdata(bf)) {
1617 /* 802.11g protection not needed, use our default behavior */
1618 if (!rtsctsena)
1619 flags = ATH9K_TXDESC_RTSENA;
1620 }
1621
1622 /* Set protection if aggregate protection on */
1623 if (sc->sc_config.ath_aggr_prot &&
1624 (!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) {
1625 flags = ATH9K_TXDESC_RTSENA;
1626 cix = rt->info[enable_g_protection].ctrl_rate;
1627 rtsctsena = 1;
1628 }
1629
1630 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1631 if (bf_isaggr(bf) && (bf->bf_al > ah->ah_caps.rts_aggr_limit))
1632 flags &= ~(ATH9K_TXDESC_RTSENA);
1633
1634 /*
1635 * CTS transmit rate is derived from the transmit rate by looking in the
1636 * h/w rate table. We must also factor in whether or not a short
1637 * preamble is to be used. NB: cix is set above where RTS/CTS is enabled
1638 */
1639 ctsrate = rt->info[cix].ratecode |
1640 (bf_isshpreamble(bf) ? rt->info[cix].short_preamble : 0);
1641
1642 for (i = 0; i < 4; i++) {
1643 if (!rates[i].count || (rates[i].idx < 0))
1644 continue;
1645
1646 rix = rates[i].idx;
1647
1648 series[i].Rate = rt->info[rix].ratecode |
1649 (bf_isshpreamble(bf) ? rt->info[rix].short_preamble : 0);
1650
1651 series[i].Tries = rates[i].count;
1652
1653 series[i].RateFlags = (
1654 (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) ?
1655 ATH9K_RATESERIES_RTS_CTS : 0) |
1656 ((rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ?
1657 ATH9K_RATESERIES_2040 : 0) |
1658 ((rates[i].flags & IEEE80211_TX_RC_SHORT_GI) ?
1659 ATH9K_RATESERIES_HALFGI : 0);
1660
1661 series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
1662 (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) != 0,
1663 (rates[i].flags & IEEE80211_TX_RC_SHORT_GI),
1664 bf_isshpreamble(bf));
1665
1666 series[i].ChSel = sc->sc_tx_chainmask;
1667
1668 if (rtsctsena)
1669 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1670 }
1671
1672 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1673 ath9k_hw_set11n_ratescenario(ah, ds, lastds, !bf_ispspoll(bf),
1674 ctsrate, ctsduration,
1675 series, 4, flags);
1676
1677 if (sc->sc_config.ath_aggr_prot && flags)
1678 ath9k_hw_set11n_burstduration(ah, ds, 8192);
2285} 1679}
2286 1680
2287/* 1681static int ath_tx_setup_buffer(struct ath_softc *sc, struct ath_buf *bf,
2288 * Performs transmit side cleanup when TID changes from aggregated to 1682 struct sk_buff *skb,
2289 * unaggregated. 1683 struct ath_tx_control *txctl)
2290 * - Pause the TID and mark cleanup in progress 1684{
2291 * - Discard all retry frames from the s/w queue. 1685 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2292 */ 1686 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1687 struct ath_tx_info_priv *tx_info_priv;
1688 int hdrlen;
1689 __le16 fc;
1690
1691 tx_info_priv = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC);
1692 if (unlikely(!tx_info_priv))
1693 return -ENOMEM;
1694 tx_info->rate_driver_data[0] = tx_info_priv;
1695 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1696 fc = hdr->frame_control;
1697
1698 ATH_TXBUF_RESET(bf);
1699
1700 bf->bf_frmlen = skb->len + FCS_LEN - (hdrlen & 3);
2293 1701
2294void ath_tx_aggr_teardown(struct ath_softc *sc, struct ath_node *an, u8 tid) 1702 ieee80211_is_data(fc) ?
1703 (bf->bf_state.bf_type |= BUF_DATA) :
1704 (bf->bf_state.bf_type &= ~BUF_DATA);
1705 ieee80211_is_back_req(fc) ?
1706 (bf->bf_state.bf_type |= BUF_BAR) :
1707 (bf->bf_state.bf_type &= ~BUF_BAR);
1708 ieee80211_is_pspoll(fc) ?
1709 (bf->bf_state.bf_type |= BUF_PSPOLL) :
1710 (bf->bf_state.bf_type &= ~BUF_PSPOLL);
1711 (sc->sc_flags & SC_OP_PREAMBLE_SHORT) ?
1712 (bf->bf_state.bf_type |= BUF_SHORT_PREAMBLE) :
1713 (bf->bf_state.bf_type &= ~BUF_SHORT_PREAMBLE);
1714 (conf_is_ht(&sc->hw->conf) && !is_pae(skb) &&
1715 (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) ?
1716 (bf->bf_state.bf_type |= BUF_HT) :
1717 (bf->bf_state.bf_type &= ~BUF_HT);
1718
1719 bf->bf_flags = setup_tx_flags(sc, skb, txctl->txq);
1720
1721 bf->bf_keytype = get_hw_crypto_keytype(skb);
1722
1723 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
1724 bf->bf_frmlen += tx_info->control.hw_key->icv_len;
1725 bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
1726 } else {
1727 bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
1728 }
1729
1730 if (ieee80211_is_data_qos(fc) && (sc->sc_flags & SC_OP_TXAGGR))
1731 assign_aggr_tid_seqno(skb, bf);
1732
1733 bf->bf_mpdu = skb;
1734
1735 bf->bf_dmacontext = dma_map_single(sc->dev, skb->data,
1736 skb->len, DMA_TO_DEVICE);
1737 if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) {
1738 bf->bf_mpdu = NULL;
1739 DPRINTF(sc, ATH_DBG_CONFIG,
1740 "dma_mapping_error() on TX\n");
1741 return -ENOMEM;
1742 }
1743
1744 bf->bf_buf_addr = bf->bf_dmacontext;
1745 return 0;
1746}
1747
1748/* FIXME: tx power */
1749static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
1750 struct ath_tx_control *txctl)
2295{ 1751{
2296 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); 1752 struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
2297 struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum]; 1753 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2298 struct ath_buf *bf; 1754 struct ath_node *an = NULL;
2299 struct list_head bf_head; 1755 struct list_head bf_head;
1756 struct ath_desc *ds;
1757 struct ath_atx_tid *tid;
1758 struct ath_hal *ah = sc->sc_ah;
1759 int frm_type;
1760
1761 frm_type = get_hw_packet_type(skb);
1762
2300 INIT_LIST_HEAD(&bf_head); 1763 INIT_LIST_HEAD(&bf_head);
1764 list_add_tail(&bf->list, &bf_head);
2301 1765
2302 if (txtid->state & AGGR_CLEANUP) /* cleanup is in progress */ 1766 ds = bf->bf_desc;
2303 return; 1767 ds->ds_link = 0;
1768 ds->ds_data = bf->bf_buf_addr;
2304 1769
2305 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) { 1770 ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
2306 txtid->addba_exchangeattempts = 0; 1771 bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
2307 return;
2308 }
2309 1772
2310 /* TID must be paused first */ 1773 ath9k_hw_filltxdesc(ah, ds,
2311 ath_tx_pause_tid(sc, txtid); 1774 skb->len, /* segment length */
1775 true, /* first segment */
1776 true, /* last segment */
1777 ds); /* first descriptor */
2312 1778
2313 /* drop all software retried frames and mark this TID */ 1779 bf->bf_lastfrm = bf;
2314 spin_lock_bh(&txq->axq_lock); 1780
2315 while (!list_empty(&txtid->buf_q)) { 1781 spin_lock_bh(&txctl->txq->axq_lock);
2316 bf = list_first_entry(&txtid->buf_q, struct ath_buf, list); 1782
2317 if (!bf_isretried(bf)) { 1783 if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
1784 tx_info->control.sta) {
1785 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1786 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1787
1788 if (ath_aggr_query(sc, an, bf->bf_tidno)) {
2318 /* 1789 /*
2319 * NB: it's based on the assumption that 1790 * Try aggregation if it's a unicast data frame
2320 * software retried frame will always stay 1791 * and the destination is HT capable.
2321 * at the head of software queue.
2322 */ 1792 */
2323 break; 1793 ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
1794 } else {
1795 /*
1796 * Send this frame as regular when ADDBA
1797 * exchange is neither complete nor pending.
1798 */
1799 ath_tx_send_normal(sc, txctl->txq,
1800 tid, &bf_head);
2324 } 1801 }
2325 list_cut_position(&bf_head, 1802 } else {
2326 &txtid->buf_q, &bf->bf_lastfrm->list); 1803 bf->bf_lastbf = bf;
2327 ath_tx_update_baw(sc, txtid, bf->bf_seqno); 1804 bf->bf_nframes = 1;
2328 1805
2329 /* complete this sub-frame */ 1806 ath_buf_set_rate(sc, bf);
2330 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); 1807 ath_tx_txqaddbuf(sc, txctl->txq, &bf_head);
2331 } 1808 }
2332 1809
2333 if (txtid->baw_head != txtid->baw_tail) { 1810 spin_unlock_bh(&txctl->txq->axq_lock);
2334 spin_unlock_bh(&txq->axq_lock); 1811}
2335 txtid->state |= AGGR_CLEANUP; 1812
2336 } else { 1813/* Upon failure caller should free skb */
2337 txtid->state &= ~AGGR_ADDBA_COMPLETE; 1814int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb,
2338 txtid->addba_exchangeattempts = 0; 1815 struct ath_tx_control *txctl)
1816{
1817 struct ath_buf *bf;
1818 int r;
1819
1820 bf = ath_tx_get_buffer(sc);
1821 if (!bf) {
1822 DPRINTF(sc, ATH_DBG_XMIT, "TX buffers are full\n");
1823 return -1;
1824 }
1825
1826 r = ath_tx_setup_buffer(sc, bf, skb, txctl);
1827 if (unlikely(r)) {
1828 struct ath_txq *txq = txctl->txq;
1829
1830 DPRINTF(sc, ATH_DBG_FATAL, "TX mem alloc failure\n");
1831
1832 /* upon ath_tx_processq() this TX queue will be resumed, we
1833 * guarantee this will happen by knowing beforehand that
1834 * we will at least have to run TX completionon one buffer
1835 * on the queue */
1836 spin_lock_bh(&txq->axq_lock);
1837 if (ath_txq_depth(sc, txq->axq_qnum) > 1) {
1838 ieee80211_stop_queue(sc->hw,
1839 skb_get_queue_mapping(skb));
1840 txq->stopped = 1;
1841 }
2339 spin_unlock_bh(&txq->axq_lock); 1842 spin_unlock_bh(&txq->axq_lock);
2340 ath_tx_flush_tid(sc, txtid); 1843
1844 spin_lock_bh(&sc->tx.txbuflock);
1845 list_add_tail(&bf->list, &sc->tx.txbuf);
1846 spin_unlock_bh(&sc->tx.txbuflock);
1847
1848 return r;
2341 } 1849 }
2342}
2343 1850
2344/* 1851 ath_tx_start_dma(sc, bf, txctl);
2345 * Tx scheduling logic
2346 * NB: must be called with txq lock held
2347 */
2348 1852
2349void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) 1853 return 0;
1854}
1855
1856void ath_tx_cabq(struct ath_softc *sc, struct sk_buff *skb)
2350{ 1857{
2351 struct ath_atx_ac *ac; 1858 int hdrlen, padsize;
2352 struct ath_atx_tid *tid; 1859 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1860 struct ath_tx_control txctl;
2353 1861
2354 /* nothing to schedule */ 1862 memset(&txctl, 0, sizeof(struct ath_tx_control));
2355 if (list_empty(&txq->axq_acq))
2356 return;
2357 /*
2358 * get the first node/ac pair on the queue
2359 */
2360 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
2361 list_del(&ac->list);
2362 ac->sched = false;
2363 1863
2364 /* 1864 /*
2365 * process a single tid per destination 1865 * As a temporary workaround, assign seq# here; this will likely need
1866 * to be cleaned up to work better with Beacon transmission and virtual
1867 * BSSes.
2366 */ 1868 */
2367 do { 1869 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2368 /* nothing to schedule */ 1870 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2369 if (list_empty(&ac->tid_q)) 1871 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1872 sc->tx.seq_no += 0x10;
1873 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1874 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1875 }
1876
1877 /* Add the padding after the header if this is not already done */
1878 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1879 if (hdrlen & 3) {
1880 padsize = hdrlen % 4;
1881 if (skb_headroom(skb) < padsize) {
1882 DPRINTF(sc, ATH_DBG_XMIT, "TX CABQ padding failed\n");
1883 dev_kfree_skb_any(skb);
2370 return; 1884 return;
1885 }
1886 skb_push(skb, padsize);
1887 memmove(skb->data, skb->data + padsize, hdrlen);
1888 }
2371 1889
2372 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list); 1890 txctl.txq = sc->beacon.cabq;
2373 list_del(&tid->list);
2374 tid->sched = false;
2375 1891
2376 if (tid->paused) /* check next tid to keep h/w busy */ 1892 DPRINTF(sc, ATH_DBG_XMIT, "transmitting CABQ packet, skb: %p\n", skb);
2377 continue;
2378 1893
2379 if ((txq->axq_depth % 2) == 0) 1894 if (ath_tx_start(sc, skb, &txctl) != 0) {
2380 ath_tx_sched_aggr(sc, txq, tid); 1895 DPRINTF(sc, ATH_DBG_XMIT, "CABQ TX failed\n");
1896 goto exit;
1897 }
2381 1898
1899 return;
1900exit:
1901 dev_kfree_skb_any(skb);
1902}
1903
1904/*****************/
1905/* TX Completion */
1906/*****************/
1907
1908static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
1909 struct ath_xmit_status *tx_status)
1910{
1911 struct ieee80211_hw *hw = sc->hw;
1912 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1913 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1914 int hdrlen, padsize;
1915
1916 DPRINTF(sc, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
1917
1918 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK ||
1919 tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED) {
1920 kfree(tx_info_priv);
1921 tx_info->rate_driver_data[0] = NULL;
1922 }
1923
1924 if (tx_status->flags & ATH_TX_BAR) {
1925 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
1926 tx_status->flags &= ~ATH_TX_BAR;
1927 }
1928
1929 if (!(tx_status->flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
1930 /* Frame was ACKed */
1931 tx_info->flags |= IEEE80211_TX_STAT_ACK;
1932 }
1933
1934 tx_info->status.rates[0].count = tx_status->retries + 1;
1935
1936 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1937 padsize = hdrlen & 3;
1938 if (padsize && hdrlen >= 24) {
2382 /* 1939 /*
2383 * add tid to round-robin queue if more frames 1940 * Remove MAC header padding before giving the frame back to
2384 * are pending for the tid 1941 * mac80211.
2385 */ 1942 */
2386 if (!list_empty(&tid->buf_q)) 1943 memmove(skb->data + padsize, skb->data, hdrlen);
2387 ath_tx_queue_tid(txq, tid); 1944 skb_pull(skb, padsize);
1945 }
2388 1946
2389 /* only schedule one TID at a time */ 1947 ieee80211_tx_status(hw, skb);
2390 break; 1948}
2391 } while (!list_empty(&ac->tid_q)); 1949
1950static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
1951 struct list_head *bf_q,
1952 int txok, int sendbar)
1953{
1954 struct sk_buff *skb = bf->bf_mpdu;
1955 struct ath_xmit_status tx_status;
1956 unsigned long flags;
2392 1957
2393 /* 1958 /*
2394 * schedule AC if more TIDs need processing 1959 * Set retry information.
1960 * NB: Don't use the information in the descriptor, because the frame
1961 * could be software retried.
2395 */ 1962 */
2396 if (!list_empty(&ac->tid_q)) { 1963 tx_status.retries = bf->bf_retries;
1964 tx_status.flags = 0;
1965
1966 if (sendbar)
1967 tx_status.flags = ATH_TX_BAR;
1968
1969 if (!txok) {
1970 tx_status.flags |= ATH_TX_ERROR;
1971
1972 if (bf_isxretried(bf))
1973 tx_status.flags |= ATH_TX_XRETRY;
1974 }
1975
1976 dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE);
1977 ath_tx_complete(sc, skb, &tx_status);
1978
1979 /*
1980 * Return the list of ath_buf of this mpdu to free queue
1981 */
1982 spin_lock_irqsave(&sc->tx.txbuflock, flags);
1983 list_splice_tail_init(bf_q, &sc->tx.txbuf);
1984 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
1985}
1986
1987static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
1988 int txok)
1989{
1990 struct ath_buf *bf_last = bf->bf_lastbf;
1991 struct ath_desc *ds = bf_last->bf_desc;
1992 u16 seq_st = 0;
1993 u32 ba[WME_BA_BMP_SIZE >> 5];
1994 int ba_index;
1995 int nbad = 0;
1996 int isaggr = 0;
1997
1998 if (ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED)
1999 return 0;
2000
2001 isaggr = bf_isaggr(bf);
2002 if (isaggr) {
2003 seq_st = ATH_DS_BA_SEQ(ds);
2004 memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3);
2005 }
2006
2007 while (bf) {
2008 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
2009 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
2010 nbad++;
2011
2012 bf = bf->bf_next;
2013 }
2014
2015 return nbad;
2016}
2017
2018static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds, int nbad)
2019{
2020 struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
2021 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2022 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
2023
2024 tx_info_priv->update_rc = false;
2025 if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT)
2026 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2027
2028 if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
2029 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
2030 if (bf_isdata(bf)) {
2031 memcpy(&tx_info_priv->tx, &ds->ds_txstat,
2032 sizeof(tx_info_priv->tx));
2033 tx_info_priv->n_frames = bf->bf_nframes;
2034 tx_info_priv->n_bad_frames = nbad;
2035 tx_info_priv->update_rc = true;
2036 }
2037 }
2038}
2039
2040static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2041{
2042 struct ath_hal *ah = sc->sc_ah;
2043 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2044 struct list_head bf_head;
2045 struct ath_desc *ds;
2046 int txok, nbad = 0;
2047 int status;
2048
2049 DPRINTF(sc, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
2050 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2051 txq->axq_link);
2052
2053 for (;;) {
2054 spin_lock_bh(&txq->axq_lock);
2055 if (list_empty(&txq->axq_q)) {
2056 txq->axq_link = NULL;
2057 txq->axq_linkbuf = NULL;
2058 spin_unlock_bh(&txq->axq_lock);
2059 break;
2060 }
2061 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2062
2397 /* 2063 /*
2398 * add dest ac to txq if not already added 2064 * There is a race condition that a BH gets scheduled
2065 * after sw writes TxE and before hw re-load the last
2066 * descriptor to get the newly chained one.
2067 * Software must keep the last DONE descriptor as a
2068 * holding descriptor - software does so by marking
2069 * it with the STALE flag.
2399 */ 2070 */
2400 if (!ac->sched) { 2071 bf_held = NULL;
2401 ac->sched = true; 2072 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
2402 list_add_tail(&ac->list, &txq->axq_acq); 2073 bf_held = bf;
2074 if (list_is_last(&bf_held->list, &txq->axq_q)) {
2075 /* FIXME:
2076 * The holding descriptor is the last
2077 * descriptor in queue. It's safe to remove
2078 * the last holding descriptor in BH context.
2079 */
2080 spin_unlock_bh(&txq->axq_lock);
2081 break;
2082 } else {
2083 bf = list_entry(bf_held->list.next,
2084 struct ath_buf, list);
2085 }
2086 }
2087
2088 lastbf = bf->bf_lastbf;
2089 ds = lastbf->bf_desc;
2090
2091 status = ath9k_hw_txprocdesc(ah, ds);
2092 if (status == -EINPROGRESS) {
2093 spin_unlock_bh(&txq->axq_lock);
2094 break;
2403 } 2095 }
2096 if (bf->bf_desc == txq->axq_lastdsWithCTS)
2097 txq->axq_lastdsWithCTS = NULL;
2098 if (ds == txq->axq_gatingds)
2099 txq->axq_gatingds = NULL;
2100
2101 /*
2102 * Remove ath_buf's of the same transmit unit from txq,
2103 * however leave the last descriptor back as the holding
2104 * descriptor for hw.
2105 */
2106 lastbf->bf_status |= ATH_BUFSTATUS_STALE;
2107 INIT_LIST_HEAD(&bf_head);
2108
2109 if (!list_is_singular(&lastbf->list))
2110 list_cut_position(&bf_head,
2111 &txq->axq_q, lastbf->list.prev);
2112
2113 txq->axq_depth--;
2114
2115 if (bf_isaggr(bf))
2116 txq->axq_aggr_depth--;
2117
2118 txok = (ds->ds_txstat.ts_status == 0);
2119
2120 spin_unlock_bh(&txq->axq_lock);
2121
2122 if (bf_held) {
2123 list_del(&bf_held->list);
2124 spin_lock_bh(&sc->tx.txbuflock);
2125 list_add_tail(&bf_held->list, &sc->tx.txbuf);
2126 spin_unlock_bh(&sc->tx.txbuflock);
2127 }
2128
2129 if (!bf_isampdu(bf)) {
2130 /*
2131 * This frame is sent out as a single frame.
2132 * Use hardware retry status for this frame.
2133 */
2134 bf->bf_retries = ds->ds_txstat.ts_longretry;
2135 if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY)
2136 bf->bf_state.bf_type |= BUF_XRETRY;
2137 nbad = 0;
2138 } else {
2139 nbad = ath_tx_num_badfrms(sc, bf, txok);
2140 }
2141
2142 ath_tx_rc_status(bf, ds, nbad);
2143
2144 if (bf_isampdu(bf))
2145 ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, txok);
2146 else
2147 ath_tx_complete_buf(sc, bf, &bf_head, txok, 0);
2148
2149 spin_lock_bh(&txq->axq_lock);
2150 if (txq->stopped && ath_txq_depth(sc, txq->axq_qnum) <=
2151 (ATH_TXBUF - 20)) {
2152 int qnum;
2153 qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
2154 if (qnum != -1) {
2155 ieee80211_wake_queue(sc->hw, qnum);
2156 txq->stopped = 0;
2157 }
2158
2159 }
2160
2161 if (sc->sc_flags & SC_OP_TXAGGR)
2162 ath_txq_schedule(sc, txq);
2163 spin_unlock_bh(&txq->axq_lock);
2404 } 2164 }
2405} 2165}
2406 2166
2407/* Initialize per-node transmit state */ 2167
2168void ath_tx_tasklet(struct ath_softc *sc)
2169{
2170 int i;
2171 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2172
2173 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2174
2175 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2176 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2177 ath_tx_processq(sc, &sc->tx.txq[i]);
2178 }
2179}
2180
2181/*****************/
2182/* Init, Cleanup */
2183/*****************/
2184
2185int ath_tx_init(struct ath_softc *sc, int nbufs)
2186{
2187 int error = 0;
2188
2189 do {
2190 spin_lock_init(&sc->tx.txbuflock);
2191
2192 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2193 "tx", nbufs, 1);
2194 if (error != 0) {
2195 DPRINTF(sc, ATH_DBG_FATAL,
2196 "Failed to allocate tx descriptors: %d\n",
2197 error);
2198 break;
2199 }
2200
2201 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2202 "beacon", ATH_BCBUF, 1);
2203 if (error != 0) {
2204 DPRINTF(sc, ATH_DBG_FATAL,
2205 "Failed to allocate beacon descriptors: %d\n",
2206 error);
2207 break;
2208 }
2209
2210 } while (0);
2211
2212 if (error != 0)
2213 ath_tx_cleanup(sc);
2214
2215 return error;
2216}
2217
2218int ath_tx_cleanup(struct ath_softc *sc)
2219{
2220 if (sc->beacon.bdma.dd_desc_len != 0)
2221 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2222
2223 if (sc->tx.txdma.dd_desc_len != 0)
2224 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2225
2226 return 0;
2227}
2408 2228
2409void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) 2229void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2410{ 2230{
@@ -2412,9 +2232,6 @@ void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2412 struct ath_atx_ac *ac; 2232 struct ath_atx_ac *ac;
2413 int tidno, acno; 2233 int tidno, acno;
2414 2234
2415 /*
2416 * Init per tid tx state
2417 */
2418 for (tidno = 0, tid = &an->tid[tidno]; 2235 for (tidno = 0, tid = &an->tid[tidno];
2419 tidno < WME_NUM_TID; 2236 tidno < WME_NUM_TID;
2420 tidno++, tid++) { 2237 tidno++, tid++) {
@@ -2424,22 +2241,16 @@ void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2424 tid->baw_size = WME_MAX_BA; 2241 tid->baw_size = WME_MAX_BA;
2425 tid->baw_head = tid->baw_tail = 0; 2242 tid->baw_head = tid->baw_tail = 0;
2426 tid->sched = false; 2243 tid->sched = false;
2427 tid->paused = false; 2244 tid->paused = false;
2428 tid->state &= ~AGGR_CLEANUP; 2245 tid->state &= ~AGGR_CLEANUP;
2429 INIT_LIST_HEAD(&tid->buf_q); 2246 INIT_LIST_HEAD(&tid->buf_q);
2430
2431 acno = TID_TO_WME_AC(tidno); 2247 acno = TID_TO_WME_AC(tidno);
2432 tid->ac = &an->ac[acno]; 2248 tid->ac = &an->ac[acno];
2433
2434 /* ADDBA state */
2435 tid->state &= ~AGGR_ADDBA_COMPLETE; 2249 tid->state &= ~AGGR_ADDBA_COMPLETE;
2436 tid->state &= ~AGGR_ADDBA_PROGRESS; 2250 tid->state &= ~AGGR_ADDBA_PROGRESS;
2437 tid->addba_exchangeattempts = 0; 2251 tid->addba_exchangeattempts = 0;
2438 } 2252 }
2439 2253
2440 /*
2441 * Init per ac tx state
2442 */
2443 for (acno = 0, ac = &an->ac[acno]; 2254 for (acno = 0, ac = &an->ac[acno];
2444 acno < WME_NUM_AC; acno++, ac++) { 2255 acno < WME_NUM_AC; acno++, ac++) {
2445 ac->sched = false; 2256 ac->sched = false;
@@ -2466,14 +2277,13 @@ void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2466 } 2277 }
2467} 2278}
2468 2279
2469/* Cleanupthe pending buffers for the node. */
2470
2471void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) 2280void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2472{ 2281{
2473 int i; 2282 int i;
2474 struct ath_atx_ac *ac, *ac_tmp; 2283 struct ath_atx_ac *ac, *ac_tmp;
2475 struct ath_atx_tid *tid, *tid_tmp; 2284 struct ath_atx_tid *tid, *tid_tmp;
2476 struct ath_txq *txq; 2285 struct ath_txq *txq;
2286
2477 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 2287 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2478 if (ATH_TXQ_SETUP(sc, i)) { 2288 if (ATH_TXQ_SETUP(sc, i)) {
2479 txq = &sc->tx.txq[i]; 2289 txq = &sc->tx.txq[i];
@@ -2504,51 +2314,3 @@ void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2504 } 2314 }
2505 } 2315 }
2506} 2316}
2507
2508void ath_tx_cabq(struct ath_softc *sc, struct sk_buff *skb)
2509{
2510 int hdrlen, padsize;
2511 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2512 struct ath_tx_control txctl;
2513
2514 memset(&txctl, 0, sizeof(struct ath_tx_control));
2515
2516 /*
2517 * As a temporary workaround, assign seq# here; this will likely need
2518 * to be cleaned up to work better with Beacon transmission and virtual
2519 * BSSes.
2520 */
2521 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2522 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2523 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2524 sc->tx.seq_no += 0x10;
2525 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2526 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2527 }
2528
2529 /* Add the padding after the header if this is not already done */
2530 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2531 if (hdrlen & 3) {
2532 padsize = hdrlen % 4;
2533 if (skb_headroom(skb) < padsize) {
2534 DPRINTF(sc, ATH_DBG_XMIT, "TX CABQ padding failed\n");
2535 dev_kfree_skb_any(skb);
2536 return;
2537 }
2538 skb_push(skb, padsize);
2539 memmove(skb->data, skb->data + padsize, hdrlen);
2540 }
2541
2542 txctl.txq = sc->beacon.cabq;
2543
2544 DPRINTF(sc, ATH_DBG_XMIT, "transmitting CABQ packet, skb: %p\n", skb);
2545
2546 if (ath_tx_start(sc, skb, &txctl) != 0) {
2547 DPRINTF(sc, ATH_DBG_XMIT, "CABQ TX failed\n");
2548 goto exit;
2549 }
2550
2551 return;
2552exit:
2553 dev_kfree_skb_any(skb);
2554}