aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/wan
diff options
context:
space:
mode:
authorJonathan Herman <hermanjl@cs.unc.edu>2013-01-22 10:38:37 -0500
committerJonathan Herman <hermanjl@cs.unc.edu>2013-01-22 10:38:37 -0500
commitfcc9d2e5a6c89d22b8b773a64fb4ad21ac318446 (patch)
treea57612d1888735a2ec7972891b68c1ac5ec8faea /drivers/net/wan
parent8dea78da5cee153b8af9c07a2745f6c55057fe12 (diff)
Added missing tegra files.HEADmaster
Diffstat (limited to 'drivers/net/wan')
-rw-r--r--drivers/net/wan/pc300-falc-lh.h1238
-rw-r--r--drivers/net/wan/pc300.h436
-rw-r--r--drivers/net/wan/pc300_drv.c3679
-rw-r--r--drivers/net/wan/pc300_tty.c1097
4 files changed, 6450 insertions, 0 deletions
diff --git a/drivers/net/wan/pc300-falc-lh.h b/drivers/net/wan/pc300-falc-lh.h
new file mode 100644
index 00000000000..01ed23ca76c
--- /dev/null
+++ b/drivers/net/wan/pc300-falc-lh.h
@@ -0,0 +1,1238 @@
1/*
2 * falc.h Description of the Siemens FALC T1/E1 framer.
3 *
4 * Author: Ivan Passos <ivan@cyclades.com>
5 *
6 * Copyright: (c) 2000-2001 Cyclades Corp.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * $Log: falc-lh.h,v $
14 * Revision 3.1 2001/06/15 12:41:10 regina
15 * upping major version number
16 *
17 * Revision 1.1.1.1 2001/06/13 20:24:47 daniela
18 * PC300 initial CVS version (3.4.0-pre1)
19 *
20 * Revision 1.1 2000/05/15 ivan
21 * Included DJA bits for the LIM2 register.
22 *
23 * Revision 1.0 2000/02/22 ivan
24 * Initial version.
25 *
26 */
27
28#ifndef _FALC_LH_H
29#define _FALC_LH_H
30
31#define NUM_OF_T1_CHANNELS 24
32#define NUM_OF_E1_CHANNELS 32
33
34/*>>>>>>>>>>>>>>>>> FALC Register Bits (Transmit Mode) <<<<<<<<<<<<<<<<<<< */
35
36/* CMDR (Command Register)
37 ---------------- E1 & T1 ------------------------------ */
38#define CMDR_RMC 0x80
39#define CMDR_RRES 0x40
40#define CMDR_XREP 0x20
41#define CMDR_XRES 0x10
42#define CMDR_XHF 0x08
43#define CMDR_XTF 0x04
44#define CMDR_XME 0x02
45#define CMDR_SRES 0x01
46
47/* MODE (Mode Register)
48 ----------------- E1 & T1 ----------------------------- */
49#define MODE_MDS2 0x80
50#define MODE_MDS1 0x40
51#define MODE_MDS0 0x20
52#define MODE_BRAC 0x10
53#define MODE_HRAC 0x08
54
55/* IPC (Interrupt Port Configuration)
56 ----------------- E1 & T1 ----------------------------- */
57#define IPC_VIS 0x80
58#define IPC_SCI 0x04
59#define IPC_IC1 0x02
60#define IPC_IC0 0x01
61
62/* CCR1 (Common Configuration Register 1)
63 ----------------- E1 & T1 ----------------------------- */
64#define CCR1_SFLG 0x80
65#define CCR1_XTS16RA 0x40
66#define CCR1_BRM 0x40
67#define CCR1_CASSYM 0x20
68#define CCR1_EDLX 0x20
69#define CCR1_EITS 0x10
70#define CCR1_ITF 0x08
71#define CCR1_RFT1 0x02
72#define CCR1_RFT0 0x01
73
74/* CCR3 (Common Configuration Register 3)
75 ---------------- E1 & T1 ------------------------------ */
76
77#define CCR3_PRE1 0x80
78#define CCR3_PRE0 0x40
79#define CCR3_EPT 0x20
80#define CCR3_RADD 0x10
81#define CCR3_RCRC 0x04
82#define CCR3_XCRC 0x02
83
84
85/* RTR1-4 (Receive Timeslot Register 1-4)
86 ---------------- E1 & T1 ------------------------------ */
87
88#define RTR1_TS0 0x80
89#define RTR1_TS1 0x40
90#define RTR1_TS2 0x20
91#define RTR1_TS3 0x10
92#define RTR1_TS4 0x08
93#define RTR1_TS5 0x04
94#define RTR1_TS6 0x02
95#define RTR1_TS7 0x01
96
97#define RTR2_TS8 0x80
98#define RTR2_TS9 0x40
99#define RTR2_TS10 0x20
100#define RTR2_TS11 0x10
101#define RTR2_TS12 0x08
102#define RTR2_TS13 0x04
103#define RTR2_TS14 0x02
104#define RTR2_TS15 0x01
105
106#define RTR3_TS16 0x80
107#define RTR3_TS17 0x40
108#define RTR3_TS18 0x20
109#define RTR3_TS19 0x10
110#define RTR3_TS20 0x08
111#define RTR3_TS21 0x04
112#define RTR3_TS22 0x02
113#define RTR3_TS23 0x01
114
115#define RTR4_TS24 0x80
116#define RTR4_TS25 0x40
117#define RTR4_TS26 0x20
118#define RTR4_TS27 0x10
119#define RTR4_TS28 0x08
120#define RTR4_TS29 0x04
121#define RTR4_TS30 0x02
122#define RTR4_TS31 0x01
123
124
125/* TTR1-4 (Transmit Timeslot Register 1-4)
126 ---------------- E1 & T1 ------------------------------ */
127
128#define TTR1_TS0 0x80
129#define TTR1_TS1 0x40
130#define TTR1_TS2 0x20
131#define TTR1_TS3 0x10
132#define TTR1_TS4 0x08
133#define TTR1_TS5 0x04
134#define TTR1_TS6 0x02
135#define TTR1_TS7 0x01
136
137#define TTR2_TS8 0x80
138#define TTR2_TS9 0x40
139#define TTR2_TS10 0x20
140#define TTR2_TS11 0x10
141#define TTR2_TS12 0x08
142#define TTR2_TS13 0x04
143#define TTR2_TS14 0x02
144#define TTR2_TS15 0x01
145
146#define TTR3_TS16 0x80
147#define TTR3_TS17 0x40
148#define TTR3_TS18 0x20
149#define TTR3_TS19 0x10
150#define TTR3_TS20 0x08
151#define TTR3_TS21 0x04
152#define TTR3_TS22 0x02
153#define TTR3_TS23 0x01
154
155#define TTR4_TS24 0x80
156#define TTR4_TS25 0x40
157#define TTR4_TS26 0x20
158#define TTR4_TS27 0x10
159#define TTR4_TS28 0x08
160#define TTR4_TS29 0x04
161#define TTR4_TS30 0x02
162#define TTR4_TS31 0x01
163
164
165
166/* IMR0-4 (Interrupt Mask Register 0-4)
167
168 ----------------- E1 & T1 ----------------------------- */
169
170#define IMR0_RME 0x80
171#define IMR0_RFS 0x40
172#define IMR0_T8MS 0x20
173#define IMR0_ISF 0x20
174#define IMR0_RMB 0x10
175#define IMR0_CASC 0x08
176#define IMR0_RSC 0x08
177#define IMR0_CRC6 0x04
178#define IMR0_CRC4 0x04
179#define IMR0_PDEN 0x02
180#define IMR0_RPF 0x01
181
182#define IMR1_CASE 0x80
183#define IMR1_RDO 0x40
184#define IMR1_ALLS 0x20
185#define IMR1_XDU 0x10
186#define IMR1_XMB 0x08
187#define IMR1_XLSC 0x02
188#define IMR1_XPR 0x01
189#define IMR1_LLBSC 0x80
190
191#define IMR2_FAR 0x80
192#define IMR2_LFA 0x40
193#define IMR2_MFAR 0x20
194#define IMR2_T400MS 0x10
195#define IMR2_LMFA 0x10
196#define IMR2_AIS 0x08
197#define IMR2_LOS 0x04
198#define IMR2_RAR 0x02
199#define IMR2_RA 0x01
200
201#define IMR3_ES 0x80
202#define IMR3_SEC 0x40
203#define IMR3_LMFA16 0x20
204#define IMR3_AIS16 0x10
205#define IMR3_RA16 0x08
206#define IMR3_API 0x04
207#define IMR3_XSLP 0x20
208#define IMR3_XSLN 0x10
209#define IMR3_LLBSC 0x08
210#define IMR3_XRS 0x04
211#define IMR3_SLN 0x02
212#define IMR3_SLP 0x01
213
214#define IMR4_LFA 0x80
215#define IMR4_FER 0x40
216#define IMR4_CER 0x20
217#define IMR4_AIS 0x10
218#define IMR4_LOS 0x08
219#define IMR4_CVE 0x04
220#define IMR4_SLIP 0x02
221#define IMR4_EBE 0x01
222
223/* FMR0-5 for E1 and T1 (Framer Mode Register ) */
224
225#define FMR0_XC1 0x80
226#define FMR0_XC0 0x40
227#define FMR0_RC1 0x20
228#define FMR0_RC0 0x10
229#define FMR0_EXTD 0x08
230#define FMR0_ALM 0x04
231#define E1_FMR0_FRS 0x02
232#define T1_FMR0_FRS 0x08
233#define FMR0_SRAF 0x04
234#define FMR0_EXLS 0x02
235#define FMR0_SIM 0x01
236
237#define FMR1_MFCS 0x80
238#define FMR1_AFR 0x40
239#define FMR1_ENSA 0x20
240#define FMR1_CTM 0x80
241#define FMR1_SIGM 0x40
242#define FMR1_EDL 0x20
243#define FMR1_PMOD 0x10
244#define FMR1_XFS 0x08
245#define FMR1_CRC 0x08
246#define FMR1_ECM 0x04
247#define FMR1_IMOD 0x02
248#define FMR1_XAIS 0x01
249
250#define FMR2_RFS1 0x80
251#define FMR2_RFS0 0x40
252#define FMR2_MCSP 0x40
253#define FMR2_RTM 0x20
254#define FMR2_SSP 0x20
255#define FMR2_DAIS 0x10
256#define FMR2_SAIS 0x08
257#define FMR2_PLB 0x04
258#define FMR2_AXRA 0x02
259#define FMR2_ALMF 0x01
260#define FMR2_EXZE 0x01
261
262#define LOOP_RTM 0x40
263#define LOOP_SFM 0x40
264#define LOOP_ECLB 0x20
265#define LOOP_CLA 0x1f
266
267/*--------------------- E1 ----------------------------*/
268#define FMR3_XLD 0x20
269#define FMR3_XLU 0x10
270
271/*--------------------- T1 ----------------------------*/
272#define FMR4_AIS3 0x80
273#define FMR4_TM 0x40
274#define FMR4_XRA 0x20
275#define FMR4_SSC1 0x10
276#define FMR4_SSC0 0x08
277#define FMR4_AUTO 0x04
278#define FMR4_FM1 0x02
279#define FMR4_FM0 0x01
280
281#define FMR5_SRS 0x80
282#define FMR5_EIBR 0x40
283#define FMR5_XLD 0x20
284#define FMR5_XLU 0x10
285
286
287/* LOOP (Channel Loop Back)
288
289 ------------------ E1 & T1 ---------------------------- */
290
291#define LOOP_SFM 0x40
292#define LOOP_ECLB 0x20
293#define LOOP_CLA4 0x10
294#define LOOP_CLA3 0x08
295#define LOOP_CLA2 0x04
296#define LOOP_CLA1 0x02
297#define LOOP_CLA0 0x01
298
299
300
301/* XSW (Transmit Service Word Pulseframe)
302
303 ------------------- E1 --------------------------- */
304
305#define XSW_XSIS 0x80
306#define XSW_XTM 0x40
307#define XSW_XRA 0x20
308#define XSW_XY0 0x10
309#define XSW_XY1 0x08
310#define XSW_XY2 0x04
311#define XSW_XY3 0x02
312#define XSW_XY4 0x01
313
314
315/* XSP (Transmit Spare Bits)
316
317 ------------------- E1 --------------------------- */
318
319#define XSP_XAP 0x80
320#define XSP_CASEN 0x40
321#define XSP_TT0 0x20
322#define XSP_EBP 0x10
323#define XSP_AXS 0x08
324#define XSP_XSIF 0x04
325#define XSP_XS13 0x02
326#define XSP_XS15 0x01
327
328
329/* XC0/1 (Transmit Control 0/1)
330 ------------------ E1 & T1 ---------------------------- */
331
332#define XC0_SA8E 0x80
333#define XC0_SA7E 0x40
334#define XC0_SA6E 0x20
335#define XC0_SA5E 0x10
336#define XC0_SA4E 0x08
337#define XC0_BRM 0x80
338#define XC0_MFBS 0x40
339#define XC0_SFRZ 0x10
340#define XC0_XCO2 0x04
341#define XC0_XCO1 0x02
342#define XC0_XCO0 0x01
343
344#define XC1_XTO5 0x20
345#define XC1_XTO4 0x10
346#define XC1_XTO3 0x08
347#define XC1_XTO2 0x04
348#define XC1_XTO1 0x02
349#define XC1_XTO0 0x01
350
351
352/* RC0/1 (Receive Control 0/1)
353 ------------------ E1 & T1 ---------------------------- */
354
355#define RC0_SICS 0x40
356#define RC0_CRCI 0x20
357#define RC0_XCRCI 0x10
358#define RC0_RDIS 0x08
359#define RC0_RCO2 0x04
360#define RC0_RCO1 0x02
361#define RC0_RCO0 0x01
362
363#define RC1_SWD 0x80
364#define RC1_ASY4 0x40
365#define RC1_RRAM 0x40
366#define RC1_RTO5 0x20
367#define RC1_RTO4 0x10
368#define RC1_RTO3 0x08
369#define RC1_RTO2 0x04
370#define RC1_RTO1 0x02
371#define RC1_RTO0 0x01
372
373
374
375/* XPM0-2 (Transmit Pulse Mask 0-2)
376 --------------------- E1 & T1 ------------------------- */
377
378#define XPM0_XP12 0x80
379#define XPM0_XP11 0x40
380#define XPM0_XP10 0x20
381#define XPM0_XP04 0x10
382#define XPM0_XP03 0x08
383#define XPM0_XP02 0x04
384#define XPM0_XP01 0x02
385#define XPM0_XP00 0x01
386
387#define XPM1_XP30 0x80
388#define XPM1_XP24 0x40
389#define XPM1_XP23 0x20
390#define XPM1_XP22 0x10
391#define XPM1_XP21 0x08
392#define XPM1_XP20 0x04
393#define XPM1_XP14 0x02
394#define XPM1_XP13 0x01
395
396#define XPM2_XLHP 0x80
397#define XPM2_XLT 0x40
398#define XPM2_DAXLT 0x20
399#define XPM2_XP34 0x08
400#define XPM2_XP33 0x04
401#define XPM2_XP32 0x02
402#define XPM2_XP31 0x01
403
404
405/* TSWM (Transparent Service Word Mask)
406 ------------------ E1 ---------------------------- */
407
408#define TSWM_TSIS 0x80
409#define TSWM_TSIF 0x40
410#define TSWM_TRA 0x20
411#define TSWM_TSA4 0x10
412#define TSWM_TSA5 0x08
413#define TSWM_TSA6 0x04
414#define TSWM_TSA7 0x02
415#define TSWM_TSA8 0x01
416
417/* IDLE <Idle Channel Code Register>
418
419 ------------------ E1 & T1 ----------------------- */
420
421#define IDLE_IDL7 0x80
422#define IDLE_IDL6 0x40
423#define IDLE_IDL5 0x20
424#define IDLE_IDL4 0x10
425#define IDLE_IDL3 0x08
426#define IDLE_IDL2 0x04
427#define IDLE_IDL1 0x02
428#define IDLE_IDL0 0x01
429
430
431/* XSA4-8 <Transmit SA4-8 Register(Read/Write) >
432 -------------------E1 ----------------------------- */
433
434#define XSA4_XS47 0x80
435#define XSA4_XS46 0x40
436#define XSA4_XS45 0x20
437#define XSA4_XS44 0x10
438#define XSA4_XS43 0x08
439#define XSA4_XS42 0x04
440#define XSA4_XS41 0x02
441#define XSA4_XS40 0x01
442
443#define XSA5_XS57 0x80
444#define XSA5_XS56 0x40
445#define XSA5_XS55 0x20
446#define XSA5_XS54 0x10
447#define XSA5_XS53 0x08
448#define XSA5_XS52 0x04
449#define XSA5_XS51 0x02
450#define XSA5_XS50 0x01
451
452#define XSA6_XS67 0x80
453#define XSA6_XS66 0x40
454#define XSA6_XS65 0x20
455#define XSA6_XS64 0x10
456#define XSA6_XS63 0x08
457#define XSA6_XS62 0x04
458#define XSA6_XS61 0x02
459#define XSA6_XS60 0x01
460
461#define XSA7_XS77 0x80
462#define XSA7_XS76 0x40
463#define XSA7_XS75 0x20
464#define XSA7_XS74 0x10
465#define XSA7_XS73 0x08
466#define XSA7_XS72 0x04
467#define XSA7_XS71 0x02
468#define XSA7_XS70 0x01
469
470#define XSA8_XS87 0x80
471#define XSA8_XS86 0x40
472#define XSA8_XS85 0x20
473#define XSA8_XS84 0x10
474#define XSA8_XS83 0x08
475#define XSA8_XS82 0x04
476#define XSA8_XS81 0x02
477#define XSA8_XS80 0x01
478
479
480/* XDL1-3 (Transmit DL-Bit Register1-3 (read/write))
481 ----------------------- T1 --------------------- */
482
483#define XDL1_XDL17 0x80
484#define XDL1_XDL16 0x40
485#define XDL1_XDL15 0x20
486#define XDL1_XDL14 0x10
487#define XDL1_XDL13 0x08
488#define XDL1_XDL12 0x04
489#define XDL1_XDL11 0x02
490#define XDL1_XDL10 0x01
491
492#define XDL2_XDL27 0x80
493#define XDL2_XDL26 0x40
494#define XDL2_XDL25 0x20
495#define XDL2_XDL24 0x10
496#define XDL2_XDL23 0x08
497#define XDL2_XDL22 0x04
498#define XDL2_XDL21 0x02
499#define XDL2_XDL20 0x01
500
501#define XDL3_XDL37 0x80
502#define XDL3_XDL36 0x40
503#define XDL3_XDL35 0x20
504#define XDL3_XDL34 0x10
505#define XDL3_XDL33 0x08
506#define XDL3_XDL32 0x04
507#define XDL3_XDL31 0x02
508#define XDL3_XDL30 0x01
509
510
511/* ICB1-4 (Idle Channel Register 1-4)
512 ------------------ E1 ---------------------------- */
513
514#define E1_ICB1_IC0 0x80
515#define E1_ICB1_IC1 0x40
516#define E1_ICB1_IC2 0x20
517#define E1_ICB1_IC3 0x10
518#define E1_ICB1_IC4 0x08
519#define E1_ICB1_IC5 0x04
520#define E1_ICB1_IC6 0x02
521#define E1_ICB1_IC7 0x01
522
523#define E1_ICB2_IC8 0x80
524#define E1_ICB2_IC9 0x40
525#define E1_ICB2_IC10 0x20
526#define E1_ICB2_IC11 0x10
527#define E1_ICB2_IC12 0x08
528#define E1_ICB2_IC13 0x04
529#define E1_ICB2_IC14 0x02
530#define E1_ICB2_IC15 0x01
531
532#define E1_ICB3_IC16 0x80
533#define E1_ICB3_IC17 0x40
534#define E1_ICB3_IC18 0x20
535#define E1_ICB3_IC19 0x10
536#define E1_ICB3_IC20 0x08
537#define E1_ICB3_IC21 0x04
538#define E1_ICB3_IC22 0x02
539#define E1_ICB3_IC23 0x01
540
541#define E1_ICB4_IC24 0x80
542#define E1_ICB4_IC25 0x40
543#define E1_ICB4_IC26 0x20
544#define E1_ICB4_IC27 0x10
545#define E1_ICB4_IC28 0x08
546#define E1_ICB4_IC29 0x04
547#define E1_ICB4_IC30 0x02
548#define E1_ICB4_IC31 0x01
549
550/* ICB1-4 (Idle Channel Register 1-4)
551 ------------------ T1 ---------------------------- */
552
553#define T1_ICB1_IC1 0x80
554#define T1_ICB1_IC2 0x40
555#define T1_ICB1_IC3 0x20
556#define T1_ICB1_IC4 0x10
557#define T1_ICB1_IC5 0x08
558#define T1_ICB1_IC6 0x04
559#define T1_ICB1_IC7 0x02
560#define T1_ICB1_IC8 0x01
561
562#define T1_ICB2_IC9 0x80
563#define T1_ICB2_IC10 0x40
564#define T1_ICB2_IC11 0x20
565#define T1_ICB2_IC12 0x10
566#define T1_ICB2_IC13 0x08
567#define T1_ICB2_IC14 0x04
568#define T1_ICB2_IC15 0x02
569#define T1_ICB2_IC16 0x01
570
571#define T1_ICB3_IC17 0x80
572#define T1_ICB3_IC18 0x40
573#define T1_ICB3_IC19 0x20
574#define T1_ICB3_IC20 0x10
575#define T1_ICB3_IC21 0x08
576#define T1_ICB3_IC22 0x04
577#define T1_ICB3_IC23 0x02
578#define T1_ICB3_IC24 0x01
579
580/* FMR3 (Framer Mode Register 3)
581 --------------------E1------------------------ */
582
583#define FMR3_CMI 0x08
584#define FMR3_SYNSA 0x04
585#define FMR3_CFRZ 0x02
586#define FMR3_EXTIW 0x01
587
588
589
590/* CCB1-3 (Clear Channel Register)
591 ------------------- T1 ----------------------- */
592
593#define CCB1_CH1 0x80
594#define CCB1_CH2 0x40
595#define CCB1_CH3 0x20
596#define CCB1_CH4 0x10
597#define CCB1_CH5 0x08
598#define CCB1_CH6 0x04
599#define CCB1_CH7 0x02
600#define CCB1_CH8 0x01
601
602#define CCB2_CH9 0x80
603#define CCB2_CH10 0x40
604#define CCB2_CH11 0x20
605#define CCB2_CH12 0x10
606#define CCB2_CH13 0x08
607#define CCB2_CH14 0x04
608#define CCB2_CH15 0x02
609#define CCB2_CH16 0x01
610
611#define CCB3_CH17 0x80
612#define CCB3_CH18 0x40
613#define CCB3_CH19 0x20
614#define CCB3_CH20 0x10
615#define CCB3_CH21 0x08
616#define CCB3_CH22 0x04
617#define CCB3_CH23 0x02
618#define CCB3_CH24 0x01
619
620
621/* LIM0/1 (Line Interface Mode 0/1)
622 ------------------- E1 & T1 --------------------------- */
623
624#define LIM0_XFB 0x80
625#define LIM0_XDOS 0x40
626#define LIM0_SCL1 0x20
627#define LIM0_SCL0 0x10
628#define LIM0_EQON 0x08
629#define LIM0_ELOS 0x04
630#define LIM0_LL 0x02
631#define LIM0_MAS 0x01
632
633#define LIM1_EFSC 0x80
634#define LIM1_RIL2 0x40
635#define LIM1_RIL1 0x20
636#define LIM1_RIL0 0x10
637#define LIM1_DCOC 0x08
638#define LIM1_JATT 0x04
639#define LIM1_RL 0x02
640#define LIM1_DRS 0x01
641
642
643/* PCDR (Pulse Count Detection Register(Read/Write))
644 ------------------ E1 & T1 ------------------------- */
645
646#define PCDR_PCD7 0x80
647#define PCDR_PCD6 0x40
648#define PCDR_PCD5 0x20
649#define PCDR_PCD4 0x10
650#define PCDR_PCD3 0x08
651#define PCDR_PCD2 0x04
652#define PCDR_PCD1 0x02
653#define PCDR_PCD0 0x01
654
655#define PCRR_PCR7 0x80
656#define PCRR_PCR6 0x40
657#define PCRR_PCR5 0x20
658#define PCRR_PCR4 0x10
659#define PCRR_PCR3 0x08
660#define PCRR_PCR2 0x04
661#define PCRR_PCR1 0x02
662#define PCRR_PCR0 0x01
663
664
665/* LIM2 (Line Interface Mode 2)
666
667 ------------------ E1 & T1 ---------------------------- */
668
669#define LIM2_DJA2 0x20
670#define LIM2_DJA1 0x10
671#define LIM2_LOS2 0x02
672#define LIM2_LOS1 0x01
673
674/* LCR1 (Loop Code Register 1) */
675
676#define LCR1_EPRM 0x80
677#define LCR1_XPRBS 0x40
678
679/* SIC1 (System Interface Control 1) */
680#define SIC1_SRSC 0x80
681#define SIC1_RBS1 0x20
682#define SIC1_RBS0 0x10
683#define SIC1_SXSC 0x08
684#define SIC1_XBS1 0x02
685#define SIC1_XBS0 0x01
686
687/* DEC (Disable Error Counter)
688 ------------------ E1 & T1 ---------------------------- */
689
690#define DEC_DCEC3 0x20
691#define DEC_DBEC 0x10
692#define DEC_DCEC1 0x08
693#define DEC_DCEC 0x08
694#define DEC_DEBC 0x04
695#define DEC_DCVC 0x02
696#define DEC_DFEC 0x01
697
698
699/* FALC Register Bits (Receive Mode)
700 ---------------------------------------------------------------------------- */
701
702
703/* FRS0/1 (Framer Receive Status Register 0/1)
704 ----------------- E1 & T1 ---------------------------------- */
705
706#define FRS0_LOS 0x80
707#define FRS0_AIS 0x40
708#define FRS0_LFA 0x20
709#define FRS0_RRA 0x10
710#define FRS0_API 0x08
711#define FRS0_NMF 0x04
712#define FRS0_LMFA 0x02
713#define FRS0_FSRF 0x01
714
715#define FRS1_TS16RA 0x40
716#define FRS1_TS16LOS 0x20
717#define FRS1_TS16AIS 0x10
718#define FRS1_TS16LFA 0x08
719#define FRS1_EXZD 0x80
720#define FRS1_LLBDD 0x10
721#define FRS1_LLBAD 0x08
722#define FRS1_XLS 0x02
723#define FRS1_XLO 0x01
724#define FRS1_PDEN 0x40
725
726/* FRS2/3 (Framer Receive Status Register 2/3)
727 ----------------- T1 ---------------------------------- */
728
729#define FRS2_ESC2 0x80
730#define FRS2_ESC1 0x40
731#define FRS2_ESC0 0x20
732
733#define FRS3_FEH5 0x20
734#define FRS3_FEH4 0x10
735#define FRS3_FEH3 0x08
736#define FRS3_FEH2 0x04
737#define FRS3_FEH1 0x02
738#define FRS3_FEH0 0x01
739
740
741/* RSW (Receive Service Word Pulseframe)
742 ----------------- E1 ------------------------------ */
743
744#define RSW_RSI 0x80
745#define RSW_RRA 0x20
746#define RSW_RYO 0x10
747#define RSW_RY1 0x08
748#define RSW_RY2 0x04
749#define RSW_RY3 0x02
750#define RSW_RY4 0x01
751
752
753/* RSP (Receive Spare Bits / Additional Status)
754 ---------------- E1 ------------------------------- */
755
756#define RSP_SI1 0x80
757#define RSP_SI2 0x40
758#define RSP_LLBDD 0x10
759#define RSP_LLBAD 0x08
760#define RSP_RSIF 0x04
761#define RSP_RS13 0x02
762#define RSP_RS15 0x01
763
764
765/* FECL (Framing Error Counter)
766 ---------------- E1 & T1 -------------------------- */
767
768#define FECL_FE7 0x80
769#define FECL_FE6 0x40
770#define FECL_FE5 0x20
771#define FECL_FE4 0x10
772#define FECL_FE3 0x08
773#define FECL_FE2 0x04
774#define FECL_FE1 0x02
775#define FECL_FE0 0x01
776
777#define FECH_FE15 0x80
778#define FECH_FE14 0x40
779#define FECH_FE13 0x20
780#define FECH_FE12 0x10
781#define FECH_FE11 0x08
782#define FECH_FE10 0x04
783#define FECH_FE9 0x02
784#define FECH_FE8 0x01
785
786
787/* CVCl (Code Violation Counter)
788 ----------------- E1 ------------------------- */
789
790#define CVCL_CV7 0x80
791#define CVCL_CV6 0x40
792#define CVCL_CV5 0x20
793#define CVCL_CV4 0x10
794#define CVCL_CV3 0x08
795#define CVCL_CV2 0x04
796#define CVCL_CV1 0x02
797#define CVCL_CV0 0x01
798
799#define CVCH_CV15 0x80
800#define CVCH_CV14 0x40
801#define CVCH_CV13 0x20
802#define CVCH_CV12 0x10
803#define CVCH_CV11 0x08
804#define CVCH_CV10 0x04
805#define CVCH_CV9 0x02
806#define CVCH_CV8 0x01
807
808
809/* CEC1-3L (CRC Error Counter)
810 ------------------ E1 ----------------------------- */
811
812#define CEC1L_CR7 0x80
813#define CEC1L_CR6 0x40
814#define CEC1L_CR5 0x20
815#define CEC1L_CR4 0x10
816#define CEC1L_CR3 0x08
817#define CEC1L_CR2 0x04
818#define CEC1L_CR1 0x02
819#define CEC1L_CR0 0x01
820
821#define CEC1H_CR15 0x80
822#define CEC1H_CR14 0x40
823#define CEC1H_CR13 0x20
824#define CEC1H_CR12 0x10
825#define CEC1H_CR11 0x08
826#define CEC1H_CR10 0x04
827#define CEC1H_CR9 0x02
828#define CEC1H_CR8 0x01
829
830#define CEC2L_CR7 0x80
831#define CEC2L_CR6 0x40
832#define CEC2L_CR5 0x20
833#define CEC2L_CR4 0x10
834#define CEC2L_CR3 0x08
835#define CEC2L_CR2 0x04
836#define CEC2L_CR1 0x02
837#define CEC2L_CR0 0x01
838
839#define CEC2H_CR15 0x80
840#define CEC2H_CR14 0x40
841#define CEC2H_CR13 0x20
842#define CEC2H_CR12 0x10
843#define CEC2H_CR11 0x08
844#define CEC2H_CR10 0x04
845#define CEC2H_CR9 0x02
846#define CEC2H_CR8 0x01
847
848#define CEC3L_CR7 0x80
849#define CEC3L_CR6 0x40
850#define CEC3L_CR5 0x20
851#define CEC3L_CR4 0x10
852#define CEC3L_CR3 0x08
853#define CEC3L_CR2 0x04
854#define CEC3L_CR1 0x02
855#define CEC3L_CR0 0x01
856
857#define CEC3H_CR15 0x80
858#define CEC3H_CR14 0x40
859#define CEC3H_CR13 0x20
860#define CEC3H_CR12 0x10
861#define CEC3H_CR11 0x08
862#define CEC3H_CR10 0x04
863#define CEC3H_CR9 0x02
864#define CEC3H_CR8 0x01
865
866
867/* CECL (CRC Error Counter)
868
869 ------------------ T1 ----------------------------- */
870
871#define CECL_CR7 0x80
872#define CECL_CR6 0x40
873#define CECL_CR5 0x20
874#define CECL_CR4 0x10
875#define CECL_CR3 0x08
876#define CECL_CR2 0x04
877#define CECL_CR1 0x02
878#define CECL_CR0 0x01
879
880#define CECH_CR15 0x80
881#define CECH_CR14 0x40
882#define CECH_CR13 0x20
883#define CECH_CR12 0x10
884#define CECH_CR11 0x08
885#define CECH_CR10 0x04
886#define CECH_CR9 0x02
887#define CECH_CR8 0x01
888
889/* EBCL (E Bit Error Counter)
890 ------------------- E1 & T1 ------------------------- */
891
892#define EBCL_EB7 0x80
893#define EBCL_EB6 0x40
894#define EBCL_EB5 0x20
895#define EBCL_EB4 0x10
896#define EBCL_EB3 0x08
897#define EBCL_EB2 0x04
898#define EBCL_EB1 0x02
899#define EBCL_EB0 0x01
900
901#define EBCH_EB15 0x80
902#define EBCH_EB14 0x40
903#define EBCH_EB13 0x20
904#define EBCH_EB12 0x10
905#define EBCH_EB11 0x08
906#define EBCH_EB10 0x04
907#define EBCH_EB9 0x02
908#define EBCH_EB8 0x01
909
910
911/* RSA4-8 (Receive Sa4-8-Bit Register)
912 -------------------- E1 --------------------------- */
913
914#define RSA4_RS47 0x80
915#define RSA4_RS46 0x40
916#define RSA4_RS45 0x20
917#define RSA4_RS44 0x10
918#define RSA4_RS43 0x08
919#define RSA4_RS42 0x04
920#define RSA4_RS41 0x02
921#define RSA4_RS40 0x01
922
923#define RSA5_RS57 0x80
924#define RSA5_RS56 0x40
925#define RSA5_RS55 0x20
926#define RSA5_RS54 0x10
927#define RSA5_RS53 0x08
928#define RSA5_RS52 0x04
929#define RSA5_RS51 0x02
930#define RSA5_RS50 0x01
931
932#define RSA6_RS67 0x80
933#define RSA6_RS66 0x40
934#define RSA6_RS65 0x20
935#define RSA6_RS64 0x10
936#define RSA6_RS63 0x08
937#define RSA6_RS62 0x04
938#define RSA6_RS61 0x02
939#define RSA6_RS60 0x01
940
941#define RSA7_RS77 0x80
942#define RSA7_RS76 0x40
943#define RSA7_RS75 0x20
944#define RSA7_RS74 0x10
945#define RSA7_RS73 0x08
946#define RSA7_RS72 0x04
947#define RSA7_RS71 0x02
948#define RSA7_RS70 0x01
949
950#define RSA8_RS87 0x80
951#define RSA8_RS86 0x40
952#define RSA8_RS85 0x20
953#define RSA8_RS84 0x10
954#define RSA8_RS83 0x08
955#define RSA8_RS82 0x04
956#define RSA8_RS81 0x02
957#define RSA8_RS80 0x01
958
959/* RSA6S (Receive Sa6 Bit Status Register)
960 ------------------------ T1 ------------------------- */
961
962#define RSA6S_SX 0x20
963#define RSA6S_SF 0x10
964#define RSA6S_SE 0x08
965#define RSA6S_SC 0x04
966#define RSA6S_SA 0x02
967#define RSA6S_S8 0x01
968
969
970/* RDL1-3 Receive DL-Bit Register1-3)
971 ------------------------ T1 ------------------------- */
972
973#define RDL1_RDL17 0x80
974#define RDL1_RDL16 0x40
975#define RDL1_RDL15 0x20
976#define RDL1_RDL14 0x10
977#define RDL1_RDL13 0x08
978#define RDL1_RDL12 0x04
979#define RDL1_RDL11 0x02
980#define RDL1_RDL10 0x01
981
982#define RDL2_RDL27 0x80
983#define RDL2_RDL26 0x40
984#define RDL2_RDL25 0x20
985#define RDL2_RDL24 0x10
986#define RDL2_RDL23 0x08
987#define RDL2_RDL22 0x04
988#define RDL2_RDL21 0x02
989#define RDL2_RDL20 0x01
990
991#define RDL3_RDL37 0x80
992#define RDL3_RDL36 0x40
993#define RDL3_RDL35 0x20
994#define RDL3_RDL34 0x10
995#define RDL3_RDL33 0x08
996#define RDL3_RDL32 0x04
997#define RDL3_RDL31 0x02
998#define RDL3_RDL30 0x01
999
1000
1001/* SIS (Signaling Status Register)
1002
1003 -------------------- E1 & T1 -------------------------- */
1004
1005#define SIS_XDOV 0x80
1006#define SIS_XFW 0x40
1007#define SIS_XREP 0x20
1008#define SIS_RLI 0x08
1009#define SIS_CEC 0x04
1010#define SIS_BOM 0x01
1011
1012
1013/* RSIS (Receive Signaling Status Register)
1014
1015 -------------------- E1 & T1 --------------------------- */
1016
1017#define RSIS_VFR 0x80
1018#define RSIS_RDO 0x40
1019#define RSIS_CRC16 0x20
1020#define RSIS_RAB 0x10
1021#define RSIS_HA1 0x08
1022#define RSIS_HA0 0x04
1023#define RSIS_HFR 0x02
1024#define RSIS_LA 0x01
1025
1026
1027/* RBCL/H (Receive Byte Count Low/High)
1028
1029 ------------------- E1 & T1 ----------------------- */
1030
1031#define RBCL_RBC7 0x80
1032#define RBCL_RBC6 0x40
1033#define RBCL_RBC5 0x20
1034#define RBCL_RBC4 0x10
1035#define RBCL_RBC3 0x08
1036#define RBCL_RBC2 0x04
1037#define RBCL_RBC1 0x02
1038#define RBCL_RBC0 0x01
1039
1040#define RBCH_OV 0x10
1041#define RBCH_RBC11 0x08
1042#define RBCH_RBC10 0x04
1043#define RBCH_RBC9 0x02
1044#define RBCH_RBC8 0x01
1045
1046
1047/* ISR1-3 (Interrupt Status Register 1-3)
1048
1049 ------------------ E1 & T1 ------------------------------ */
1050
1051#define FISR0_RME 0x80
1052#define FISR0_RFS 0x40
1053#define FISR0_T8MS 0x20
1054#define FISR0_ISF 0x20
1055#define FISR0_RMB 0x10
1056#define FISR0_CASC 0x08
1057#define FISR0_RSC 0x08
1058#define FISR0_CRC6 0x04
1059#define FISR0_CRC4 0x04
1060#define FISR0_PDEN 0x02
1061#define FISR0_RPF 0x01
1062
1063#define FISR1_CASE 0x80
1064#define FISR1_LLBSC 0x80
1065#define FISR1_RDO 0x40
1066#define FISR1_ALLS 0x20
1067#define FISR1_XDU 0x10
1068#define FISR1_XMB 0x08
1069#define FISR1_XLSC 0x02
1070#define FISR1_XPR 0x01
1071
1072#define FISR2_FAR 0x80
1073#define FISR2_LFA 0x40
1074#define FISR2_MFAR 0x20
1075#define FISR2_T400MS 0x10
1076#define FISR2_LMFA 0x10
1077#define FISR2_AIS 0x08
1078#define FISR2_LOS 0x04
1079#define FISR2_RAR 0x02
1080#define FISR2_RA 0x01
1081
1082#define FISR3_ES 0x80
1083#define FISR3_SEC 0x40
1084#define FISR3_LMFA16 0x20
1085#define FISR3_AIS16 0x10
1086#define FISR3_RA16 0x08
1087#define FISR3_API 0x04
1088#define FISR3_XSLP 0x20
1089#define FISR3_XSLN 0x10
1090#define FISR3_LLBSC 0x08
1091#define FISR3_XRS 0x04
1092#define FISR3_SLN 0x02
1093#define FISR3_SLP 0x01
1094
1095
1096/* GIS (Global Interrupt Status Register)
1097
1098 --------------------- E1 & T1 --------------------- */
1099
1100#define GIS_ISR3 0x08
1101#define GIS_ISR2 0x04
1102#define GIS_ISR1 0x02
1103#define GIS_ISR0 0x01
1104
1105
1106/* VSTR (Version Status Register)
1107
1108 --------------------- E1 & T1 --------------------- */
1109
1110#define VSTR_VN3 0x08
1111#define VSTR_VN2 0x04
1112#define VSTR_VN1 0x02
1113#define VSTR_VN0 0x01
1114
1115
1116/*>>>>>>>>>>>>>>>>>>>>> Local Control Structures <<<<<<<<<<<<<<<<<<<<<<<<< */
1117
1118/* Write-only Registers (E1/T1 control mode write registers) */
1119#define XFIFOH 0x00 /* Tx FIFO High Byte */
1120#define XFIFOL 0x01 /* Tx FIFO Low Byte */
1121#define CMDR 0x02 /* Command Reg */
1122#define DEC 0x60 /* Disable Error Counter */
1123#define TEST2 0x62 /* Manuf. Test Reg 2 */
1124#define XS(nbr) (0x70 + (nbr)) /* Tx CAS Reg (0 to 15) */
1125
1126/* Read-write Registers (E1/T1 status mode read registers) */
1127#define MODE 0x03 /* Mode Reg */
1128#define RAH1 0x04 /* Receive Address High 1 */
1129#define RAH2 0x05 /* Receive Address High 2 */
1130#define RAL1 0x06 /* Receive Address Low 1 */
1131#define RAL2 0x07 /* Receive Address Low 2 */
1132#define IPC 0x08 /* Interrupt Port Configuration */
1133#define CCR1 0x09 /* Common Configuration Reg 1 */
1134#define CCR3 0x0A /* Common Configuration Reg 3 */
1135#define PRE 0x0B /* Preamble Reg */
1136#define RTR1 0x0C /* Receive Timeslot Reg 1 */
1137#define RTR2 0x0D /* Receive Timeslot Reg 2 */
1138#define RTR3 0x0E /* Receive Timeslot Reg 3 */
1139#define RTR4 0x0F /* Receive Timeslot Reg 4 */
1140#define TTR1 0x10 /* Transmit Timeslot Reg 1 */
1141#define TTR2 0x11 /* Transmit Timeslot Reg 2 */
1142#define TTR3 0x12 /* Transmit Timeslot Reg 3 */
1143#define TTR4 0x13 /* Transmit Timeslot Reg 4 */
1144#define IMR0 0x14 /* Interrupt Mask Reg 0 */
1145#define IMR1 0x15 /* Interrupt Mask Reg 1 */
1146#define IMR2 0x16 /* Interrupt Mask Reg 2 */
1147#define IMR3 0x17 /* Interrupt Mask Reg 3 */
1148#define IMR4 0x18 /* Interrupt Mask Reg 4 */
1149#define IMR5 0x19 /* Interrupt Mask Reg 5 */
1150#define FMR0 0x1A /* Framer Mode Reigster 0 */
1151#define FMR1 0x1B /* Framer Mode Reigster 1 */
1152#define FMR2 0x1C /* Framer Mode Reigster 2 */
1153#define LOOP 0x1D /* Channel Loop Back */
1154#define XSW 0x1E /* Transmit Service Word */
1155#define FMR4 0x1E /* Framer Mode Reg 4 */
1156#define XSP 0x1F /* Transmit Spare Bits */
1157#define FMR5 0x1F /* Framer Mode Reg 5 */
1158#define XC0 0x20 /* Transmit Control 0 */
1159#define XC1 0x21 /* Transmit Control 1 */
1160#define RC0 0x22 /* Receive Control 0 */
1161#define RC1 0x23 /* Receive Control 1 */
1162#define XPM0 0x24 /* Transmit Pulse Mask 0 */
1163#define XPM1 0x25 /* Transmit Pulse Mask 1 */
1164#define XPM2 0x26 /* Transmit Pulse Mask 2 */
1165#define TSWM 0x27 /* Transparent Service Word Mask */
1166#define TEST1 0x28 /* Manuf. Test Reg 1 */
1167#define IDLE 0x29 /* Idle Channel Code */
1168#define XSA4 0x2A /* Transmit SA4 Bit Reg */
1169#define XDL1 0x2A /* Transmit DL-Bit Reg 2 */
1170#define XSA5 0x2B /* Transmit SA4 Bit Reg */
1171#define XDL2 0x2B /* Transmit DL-Bit Reg 2 */
1172#define XSA6 0x2C /* Transmit SA4 Bit Reg */
1173#define XDL3 0x2C /* Transmit DL-Bit Reg 2 */
1174#define XSA7 0x2D /* Transmit SA4 Bit Reg */
1175#define CCB1 0x2D /* Clear Channel Reg 1 */
1176#define XSA8 0x2E /* Transmit SA4 Bit Reg */
1177#define CCB2 0x2E /* Clear Channel Reg 2 */
1178#define FMR3 0x2F /* Framer Mode Reg. 3 */
1179#define CCB3 0x2F /* Clear Channel Reg 3 */
1180#define ICB1 0x30 /* Idle Channel Reg 1 */
1181#define ICB2 0x31 /* Idle Channel Reg 2 */
1182#define ICB3 0x32 /* Idle Channel Reg 3 */
1183#define ICB4 0x33 /* Idle Channel Reg 4 */
1184#define LIM0 0x34 /* Line Interface Mode 0 */
1185#define LIM1 0x35 /* Line Interface Mode 1 */
1186#define PCDR 0x36 /* Pulse Count Detection */
1187#define PCRR 0x37 /* Pulse Count Recovery */
1188#define LIM2 0x38 /* Line Interface Mode Reg 2 */
1189#define LCR1 0x39 /* Loop Code Reg 1 */
1190#define LCR2 0x3A /* Loop Code Reg 2 */
1191#define LCR3 0x3B /* Loop Code Reg 3 */
1192#define SIC1 0x3C /* System Interface Control 1 */
1193
1194/* Read-only Registers (E1/T1 control mode read registers) */
1195#define RFIFOH 0x00 /* Receive FIFO */
1196#define RFIFOL 0x01 /* Receive FIFO */
1197#define FRS0 0x4C /* Framer Receive Status 0 */
1198#define FRS1 0x4D /* Framer Receive Status 1 */
1199#define RSW 0x4E /* Receive Service Word */
1200#define FRS2 0x4E /* Framer Receive Status 2 */
1201#define RSP 0x4F /* Receive Spare Bits */
1202#define FRS3 0x4F /* Framer Receive Status 3 */
1203#define FECL 0x50 /* Framing Error Counter */
1204#define FECH 0x51 /* Framing Error Counter */
1205#define CVCL 0x52 /* Code Violation Counter */
1206#define CVCH 0x53 /* Code Violation Counter */
1207#define CECL 0x54 /* CRC Error Counter 1 */
1208#define CECH 0x55 /* CRC Error Counter 1 */
1209#define EBCL 0x56 /* E-Bit Error Counter */
1210#define EBCH 0x57 /* E-Bit Error Counter */
1211#define BECL 0x58 /* Bit Error Counter Low */
1212#define BECH 0x59 /* Bit Error Counter Low */
1213#define CEC3 0x5A /* CRC Error Counter 3 (16-bit) */
1214#define RSA4 0x5C /* Receive SA4 Bit Reg */
1215#define RDL1 0x5C /* Receive DL-Bit Reg 1 */
1216#define RSA5 0x5D /* Receive SA5 Bit Reg */
1217#define RDL2 0x5D /* Receive DL-Bit Reg 2 */
1218#define RSA6 0x5E /* Receive SA6 Bit Reg */
1219#define RDL3 0x5E /* Receive DL-Bit Reg 3 */
1220#define RSA7 0x5F /* Receive SA7 Bit Reg */
1221#define RSA8 0x60 /* Receive SA8 Bit Reg */
1222#define RSA6S 0x61 /* Receive SA6 Bit Status Reg */
1223#define TSR0 0x62 /* Manuf. Test Reg 0 */
1224#define TSR1 0x63 /* Manuf. Test Reg 1 */
1225#define SIS 0x64 /* Signaling Status Reg */
1226#define RSIS 0x65 /* Receive Signaling Status Reg */
1227#define RBCL 0x66 /* Receive Byte Control */
1228#define RBCH 0x67 /* Receive Byte Control */
1229#define FISR0 0x68 /* Interrupt Status Reg 0 */
1230#define FISR1 0x69 /* Interrupt Status Reg 1 */
1231#define FISR2 0x6A /* Interrupt Status Reg 2 */
1232#define FISR3 0x6B /* Interrupt Status Reg 3 */
1233#define GIS 0x6E /* Global Interrupt Status */
1234#define VSTR 0x6F /* Version Status */
1235#define RS(nbr) (0x70 + (nbr)) /* Rx CAS Reg (0 to 15) */
1236
1237#endif /* _FALC_LH_H */
1238
diff --git a/drivers/net/wan/pc300.h b/drivers/net/wan/pc300.h
new file mode 100644
index 00000000000..2e4f84f6cad
--- /dev/null
+++ b/drivers/net/wan/pc300.h
@@ -0,0 +1,436 @@
1/*
2 * pc300.h Cyclades-PC300(tm) Kernel API Definitions.
3 *
4 * Author: Ivan Passos <ivan@cyclades.com>
5 *
6 * Copyright: (c) 1999-2002 Cyclades Corp.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * $Log: pc300.h,v $
14 * Revision 3.12 2002/03/07 14:17:09 henrique
15 * License data fixed
16 *
17 * Revision 3.11 2002/01/28 21:09:39 daniela
18 * Included ';' after pc300hw.bus.
19 *
20 * Revision 3.10 2002/01/17 17:58:52 ivan
21 * Support for PC300-TE/M (PMC).
22 *
23 * Revision 3.9 2001/09/28 13:30:53 daniela
24 * Renamed dma_start routine to rx_dma_start.
25 *
26 * Revision 3.8 2001/09/24 13:03:45 daniela
27 * Fixed BOF interrupt treatment. Created dma_start routine.
28 *
29 * Revision 3.7 2001/08/10 17:19:58 daniela
30 * Fixed IOCTLs defines.
31 *
32 * Revision 3.6 2001/07/18 19:24:42 daniela
33 * Included kernel version.
34 *
35 * Revision 3.5 2001/07/05 18:38:08 daniela
36 * DMA transmission bug fix.
37 *
38 * Revision 3.4 2001/06/26 17:10:40 daniela
39 * New configuration parameters (line code, CRC calculation and clock).
40 *
41 * Revision 3.3 2001/06/22 13:13:02 regina
42 * MLPPP implementation
43 *
44 * Revision 3.2 2001/06/18 17:56:09 daniela
45 * Increased DEF_MTU and TX_QUEUE_LEN.
46 *
47 * Revision 3.1 2001/06/15 12:41:10 regina
48 * upping major version number
49 *
50 * Revision 1.1.1.1 2001/06/13 20:25:06 daniela
51 * PC300 initial CVS version (3.4.0-pre1)
52 *
53 * Revision 2.3 2001/03/05 daniela
54 * Created struct pc300conf, to provide the hardware information to pc300util.
55 * Inclusion of 'alloc_ramsize' field on structure 'pc300hw'.
56 *
57 * Revision 2.2 2000/12/22 daniela
58 * Structures and defines to support pc300util: statistics, status,
59 * loopback tests, trace.
60 *
61 * Revision 2.1 2000/09/28 ivan
62 * Inclusion of 'iophys' and 'iosize' fields on structure 'pc300hw', to
63 * allow release of I/O region at module unload.
64 * Changed location of include files.
65 *
66 * Revision 2.0 2000/03/27 ivan
67 * Added support for the PC300/TE cards.
68 *
69 * Revision 1.1 2000/01/31 ivan
70 * Replaced 'pc300[drv|sca].h' former PC300 driver include files.
71 *
72 * Revision 1.0 1999/12/16 ivan
73 * First official release.
74 * Inclusion of 'nchan' field on structure 'pc300hw', to allow variable
75 * number of ports per card.
76 * Inclusion of 'if_ptr' field on structure 'pc300dev'.
77 *
78 * Revision 0.6 1999/11/17 ivan
79 * Changed X.25-specific function names to comply with adopted convention.
80 *
81 * Revision 0.5 1999/11/16 Daniela Squassoni
82 * X.25 support.
83 *
84 * Revision 0.4 1999/11/15 ivan
85 * Inclusion of 'clock' field on structure 'pc300hw'.
86 *
87 * Revision 0.3 1999/11/10 ivan
88 * IOCTL name changing.
89 * Inclusion of driver function prototypes.
90 *
91 * Revision 0.2 1999/11/03 ivan
92 * Inclusion of 'tx_skb' and union 'ifu' on structure 'pc300dev'.
93 *
94 * Revision 0.1 1999/01/15 ivan
95 * Initial version.
96 *
97 */
98
99#ifndef _PC300_H
100#define _PC300_H
101
102#include <linux/hdlc.h>
103#include "hd64572.h"
104#include "pc300-falc-lh.h"
105
106#define PC300_PROTO_MLPPP 1
107
108#define PC300_MAXCHAN 2 /* Number of channels per card */
109
110#define PC300_RAMSIZE 0x40000 /* RAM window size (256Kb) */
111#define PC300_FALCSIZE 0x400 /* FALC window size (1Kb) */
112
113#define PC300_OSC_CLOCK 24576000
114#define PC300_PCI_CLOCK 33000000
115
116#define BD_DEF_LEN 0x0800 /* DMA buffer length (2KB) */
117#define DMA_TX_MEMSZ 0x8000 /* Total DMA Tx memory size (32KB/ch) */
118#define DMA_RX_MEMSZ 0x10000 /* Total DMA Rx memory size (64KB/ch) */
119
120#define N_DMA_TX_BUF (DMA_TX_MEMSZ / BD_DEF_LEN) /* DMA Tx buffers */
121#define N_DMA_RX_BUF (DMA_RX_MEMSZ / BD_DEF_LEN) /* DMA Rx buffers */
122
123/* DMA Buffer Offsets */
124#define DMA_TX_BASE ((N_DMA_TX_BUF + N_DMA_RX_BUF) * \
125 PC300_MAXCHAN * sizeof(pcsca_bd_t))
126#define DMA_RX_BASE (DMA_TX_BASE + PC300_MAXCHAN*DMA_TX_MEMSZ)
127
128/* DMA Descriptor Offsets */
129#define DMA_TX_BD_BASE 0x0000
130#define DMA_RX_BD_BASE (DMA_TX_BD_BASE + ((PC300_MAXCHAN*DMA_TX_MEMSZ / \
131 BD_DEF_LEN) * sizeof(pcsca_bd_t)))
132
133/* DMA Descriptor Macros */
134#define TX_BD_ADDR(chan, n) (DMA_TX_BD_BASE + \
135 ((N_DMA_TX_BUF*chan) + n) * sizeof(pcsca_bd_t))
136#define RX_BD_ADDR(chan, n) (DMA_RX_BD_BASE + \
137 ((N_DMA_RX_BUF*chan) + n) * sizeof(pcsca_bd_t))
138
139/* Macro to access the FALC registers (TE only) */
140#define F_REG(reg, chan) (0x200*(chan) + ((reg)<<2))
141
142/***************************************
143 * Memory access functions/macros *
144 * (required to support Alpha systems) *
145 ***************************************/
146#define cpc_writeb(port,val) {writeb((u8)(val),(port)); mb();}
147#define cpc_writew(port,val) {writew((ushort)(val),(port)); mb();}
148#define cpc_writel(port,val) {writel((u32)(val),(port)); mb();}
149
150#define cpc_readb(port) readb(port)
151#define cpc_readw(port) readw(port)
152#define cpc_readl(port) readl(port)
153
154/****** Data Structures *****************************************************/
155
156/*
157 * RUNTIME_9050 - PLX PCI9050-1 local configuration and shared runtime
158 * registers. This structure can be used to access the 9050 registers
159 * (memory mapped).
160 */
161struct RUNTIME_9050 {
162 u32 loc_addr_range[4]; /* 00-0Ch : Local Address Ranges */
163 u32 loc_rom_range; /* 10h : Local ROM Range */
164 u32 loc_addr_base[4]; /* 14-20h : Local Address Base Addrs */
165 u32 loc_rom_base; /* 24h : Local ROM Base */
166 u32 loc_bus_descr[4]; /* 28-34h : Local Bus Descriptors */
167 u32 rom_bus_descr; /* 38h : ROM Bus Descriptor */
168 u32 cs_base[4]; /* 3C-48h : Chip Select Base Addrs */
169 u32 intr_ctrl_stat; /* 4Ch : Interrupt Control/Status */
170 u32 init_ctrl; /* 50h : EEPROM ctrl, Init Ctrl, etc */
171};
172
173#define PLX_9050_LINT1_ENABLE 0x01
174#define PLX_9050_LINT1_POL 0x02
175#define PLX_9050_LINT1_STATUS 0x04
176#define PLX_9050_LINT2_ENABLE 0x08
177#define PLX_9050_LINT2_POL 0x10
178#define PLX_9050_LINT2_STATUS 0x20
179#define PLX_9050_INTR_ENABLE 0x40
180#define PLX_9050_SW_INTR 0x80
181
182/* Masks to access the init_ctrl PLX register */
183#define PC300_CLKSEL_MASK (0x00000004UL)
184#define PC300_CHMEDIA_MASK(chan) (0x00000020UL<<(chan*3))
185#define PC300_CTYPE_MASK (0x00000800UL)
186
187/* CPLD Registers (base addr = falcbase, TE only) */
188/* CPLD v. 0 */
189#define CPLD_REG1 0x140 /* Chip resets, DCD/CTS status */
190#define CPLD_REG2 0x144 /* Clock enable , LED control */
191/* CPLD v. 2 or higher */
192#define CPLD_V2_REG1 0x100 /* Chip resets, DCD/CTS status */
193#define CPLD_V2_REG2 0x104 /* Clock enable , LED control */
194#define CPLD_ID_REG 0x108 /* CPLD version */
195
196/* CPLD Register bit description: for the FALC bits, they should always be
197 set based on the channel (use (bit<<(2*ch)) to access the correct bit for
198 that channel) */
199#define CPLD_REG1_FALC_RESET 0x01
200#define CPLD_REG1_SCA_RESET 0x02
201#define CPLD_REG1_GLOBAL_CLK 0x08
202#define CPLD_REG1_FALC_DCD 0x10
203#define CPLD_REG1_FALC_CTS 0x20
204
205#define CPLD_REG2_FALC_TX_CLK 0x01
206#define CPLD_REG2_FALC_RX_CLK 0x02
207#define CPLD_REG2_FALC_LED1 0x10
208#define CPLD_REG2_FALC_LED2 0x20
209
210/* Structure with FALC-related fields (TE only) */
211#define PC300_FALC_MAXLOOP 0x0000ffff /* for falc_issue_cmd() */
212
213typedef struct falc {
214 u8 sync; /* If true FALC is synchronized */
215 u8 active; /* if TRUE then already active */
216 u8 loop_active; /* if TRUE a line loopback UP was received */
217 u8 loop_gen; /* if TRUE a line loopback UP was issued */
218
219 u8 num_channels;
220 u8 offset; /* 1 for T1, 0 for E1 */
221 u8 full_bandwidth;
222
223 u8 xmb_cause;
224 u8 multiframe_mode;
225
226 /* Statistics */
227 u16 pden; /* Pulse Density violation count */
228 u16 los; /* Loss of Signal count */
229 u16 losr; /* Loss of Signal recovery count */
230 u16 lfa; /* Loss of frame alignment count */
231 u16 farec; /* Frame Alignment Recovery count */
232 u16 lmfa; /* Loss of multiframe alignment count */
233 u16 ais; /* Remote Alarm indication Signal count */
234 u16 sec; /* One-second timer */
235 u16 es; /* Errored second */
236 u16 rai; /* remote alarm received */
237 u16 bec;
238 u16 fec;
239 u16 cvc;
240 u16 cec;
241 u16 ebc;
242
243 /* Status */
244 u8 red_alarm;
245 u8 blue_alarm;
246 u8 loss_fa;
247 u8 yellow_alarm;
248 u8 loss_mfa;
249 u8 prbs;
250} falc_t;
251
252typedef struct falc_status {
253 u8 sync; /* If true FALC is synchronized */
254 u8 red_alarm;
255 u8 blue_alarm;
256 u8 loss_fa;
257 u8 yellow_alarm;
258 u8 loss_mfa;
259 u8 prbs;
260} falc_status_t;
261
262typedef struct rsv_x21_status {
263 u8 dcd;
264 u8 dsr;
265 u8 cts;
266 u8 rts;
267 u8 dtr;
268} rsv_x21_status_t;
269
270typedef struct pc300stats {
271 int hw_type;
272 u32 line_on;
273 u32 line_off;
274 struct net_device_stats gen_stats;
275 falc_t te_stats;
276} pc300stats_t;
277
278typedef struct pc300status {
279 int hw_type;
280 rsv_x21_status_t gen_status;
281 falc_status_t te_status;
282} pc300status_t;
283
284typedef struct pc300loopback {
285 char loop_type;
286 char loop_on;
287} pc300loopback_t;
288
289typedef struct pc300patterntst {
290 char patrntst_on; /* 0 - off; 1 - on; 2 - read num_errors */
291 u16 num_errors;
292} pc300patterntst_t;
293
294typedef struct pc300dev {
295 struct pc300ch *chan;
296 u8 trace_on;
297 u32 line_on; /* DCD(X.21, RSV) / sync(TE) change counters */
298 u32 line_off;
299 char name[16];
300 struct net_device *dev;
301#ifdef CONFIG_PC300_MLPPP
302 void *cpc_tty; /* information to PC300 TTY driver */
303#endif
304}pc300dev_t;
305
306typedef struct pc300hw {
307 int type; /* RSV, X21, etc. */
308 int bus; /* Bus (PCI, PMC, etc.) */
309 int nchan; /* number of channels */
310 int irq; /* interrupt request level */
311 u32 clock; /* Board clock */
312 u8 cpld_id; /* CPLD ID (TE only) */
313 u16 cpld_reg1; /* CPLD reg 1 (TE only) */
314 u16 cpld_reg2; /* CPLD reg 2 (TE only) */
315 u16 gpioc_reg; /* PLX GPIOC reg */
316 u16 intctl_reg; /* PLX Int Ctrl/Status reg */
317 u32 iophys; /* PLX registers I/O base */
318 u32 iosize; /* PLX registers I/O size */
319 u32 plxphys; /* PLX registers MMIO base (physical) */
320 void __iomem * plxbase; /* PLX registers MMIO base (virtual) */
321 u32 plxsize; /* PLX registers MMIO size */
322 u32 scaphys; /* SCA registers MMIO base (physical) */
323 void __iomem * scabase; /* SCA registers MMIO base (virtual) */
324 u32 scasize; /* SCA registers MMIO size */
325 u32 ramphys; /* On-board RAM MMIO base (physical) */
326 void __iomem * rambase; /* On-board RAM MMIO base (virtual) */
327 u32 alloc_ramsize; /* RAM MMIO size allocated by the PCI bridge */
328 u32 ramsize; /* On-board RAM MMIO size */
329 u32 falcphys; /* FALC registers MMIO base (physical) */
330 void __iomem * falcbase;/* FALC registers MMIO base (virtual) */
331 u32 falcsize; /* FALC registers MMIO size */
332} pc300hw_t;
333
334typedef struct pc300chconf {
335 sync_serial_settings phys_settings; /* Clock type/rate (in bps),
336 loopback mode */
337 raw_hdlc_proto proto_settings; /* Encoding, parity (CRC) */
338 u32 media; /* HW media (RS232, V.35, etc.) */
339 u32 proto; /* Protocol (PPP, X.25, etc.) */
340
341 /* TE-specific parameters */
342 u8 lcode; /* Line Code (AMI, B8ZS, etc.) */
343 u8 fr_mode; /* Frame Mode (ESF, D4, etc.) */
344 u8 lbo; /* Line Build Out */
345 u8 rx_sens; /* Rx Sensitivity (long- or short-haul) */
346 u32 tslot_bitmap; /* bit[i]=1 => timeslot _i_ is active */
347} pc300chconf_t;
348
349typedef struct pc300ch {
350 struct pc300 *card;
351 int channel;
352 pc300dev_t d;
353 pc300chconf_t conf;
354 u8 tx_first_bd; /* First TX DMA block descr. w/ data */
355 u8 tx_next_bd; /* Next free TX DMA block descriptor */
356 u8 rx_first_bd; /* First free RX DMA block descriptor */
357 u8 rx_last_bd; /* Last free RX DMA block descriptor */
358 u8 nfree_tx_bd; /* Number of free TX DMA block descriptors */
359 falc_t falc; /* FALC structure (TE only) */
360} pc300ch_t;
361
362typedef struct pc300 {
363 pc300hw_t hw; /* hardware config. */
364 pc300ch_t chan[PC300_MAXCHAN];
365 spinlock_t card_lock;
366} pc300_t;
367
368typedef struct pc300conf {
369 pc300hw_t hw;
370 pc300chconf_t conf;
371} pc300conf_t;
372
373/* DEV ioctl() commands */
374#define N_SPPP_IOCTLS 2
375
376enum pc300_ioctl_cmds {
377 SIOCCPCRESERVED = (SIOCDEVPRIVATE + N_SPPP_IOCTLS),
378 SIOCGPC300CONF,
379 SIOCSPC300CONF,
380 SIOCGPC300STATUS,
381 SIOCGPC300FALCSTATUS,
382 SIOCGPC300UTILSTATS,
383 SIOCGPC300UTILSTATUS,
384 SIOCSPC300TRACE,
385 SIOCSPC300LOOPBACK,
386 SIOCSPC300PATTERNTEST,
387};
388
389/* Loopback types - PC300/TE boards */
390enum pc300_loopback_cmds {
391 PC300LOCLOOP = 1,
392 PC300REMLOOP,
393 PC300PAYLOADLOOP,
394 PC300GENLOOPUP,
395 PC300GENLOOPDOWN,
396};
397
398/* Control Constant Definitions */
399#define PC300_RSV 0x01
400#define PC300_X21 0x02
401#define PC300_TE 0x03
402
403#define PC300_PCI 0x00
404#define PC300_PMC 0x01
405
406#define PC300_LC_AMI 0x01
407#define PC300_LC_B8ZS 0x02
408#define PC300_LC_NRZ 0x03
409#define PC300_LC_HDB3 0x04
410
411/* Framing (T1) */
412#define PC300_FR_ESF 0x01
413#define PC300_FR_D4 0x02
414#define PC300_FR_ESF_JAPAN 0x03
415
416/* Framing (E1) */
417#define PC300_FR_MF_CRC4 0x04
418#define PC300_FR_MF_NON_CRC4 0x05
419#define PC300_FR_UNFRAMED 0x06
420
421#define PC300_LBO_0_DB 0x00
422#define PC300_LBO_7_5_DB 0x01
423#define PC300_LBO_15_DB 0x02
424#define PC300_LBO_22_5_DB 0x03
425
426#define PC300_RX_SENS_SH 0x01
427#define PC300_RX_SENS_LH 0x02
428
429#define PC300_TX_TIMEOUT (2*HZ)
430#define PC300_TX_QUEUE_LEN 100
431#define PC300_DEF_MTU 1600
432
433/* Function Prototypes */
434int cpc_open(struct net_device *dev);
435
436#endif /* _PC300_H */
diff --git a/drivers/net/wan/pc300_drv.c b/drivers/net/wan/pc300_drv.c
new file mode 100644
index 00000000000..1eeedd6a10b
--- /dev/null
+++ b/drivers/net/wan/pc300_drv.c
@@ -0,0 +1,3679 @@
1#define USE_PCI_CLOCK
2static const char rcsid[] =
3"Revision: 3.4.5 Date: 2002/03/07 ";
4
5/*
6 * pc300.c Cyclades-PC300(tm) Driver.
7 *
8 * Author: Ivan Passos <ivan@cyclades.com>
9 * Maintainer: PC300 Maintainer <pc300@cyclades.com>
10 *
11 * Copyright: (c) 1999-2003 Cyclades Corp.
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 *
18 * Using tabstop = 4.
19 *
20 * $Log: pc300_drv.c,v $
21 * Revision 3.23 2002/03/20 13:58:40 henrique
22 * Fixed ortographic mistakes
23 *
24 * Revision 3.22 2002/03/13 16:56:56 henrique
25 * Take out the debug messages
26 *
27 * Revision 3.21 2002/03/07 14:17:09 henrique
28 * License data fixed
29 *
30 * Revision 3.20 2002/01/17 17:58:52 ivan
31 * Support for PC300-TE/M (PMC).
32 *
33 * Revision 3.19 2002/01/03 17:08:47 daniela
34 * Enables DMA reception when the SCA-II disables it improperly.
35 *
36 * Revision 3.18 2001/12/03 18:47:50 daniela
37 * Esthetic changes.
38 *
39 * Revision 3.17 2001/10/19 16:50:13 henrique
40 * Patch to kernel 2.4.12 and new generic hdlc.
41 *
42 * Revision 3.16 2001/10/16 15:12:31 regina
43 * clear statistics
44 *
45 * Revision 3.11 to 3.15 2001/10/11 20:26:04 daniela
46 * More DMA fixes for noisy lines.
47 * Return the size of bad frames in dma_get_rx_frame_size, so that the Rx buffer
48 * descriptors can be cleaned by dma_buf_read (called in cpc_net_rx).
49 * Renamed dma_start routine to rx_dma_start. Improved Rx statistics.
50 * Fixed BOF interrupt treatment. Created dma_start routine.
51 * Changed min and max to cpc_min and cpc_max.
52 *
53 * Revision 3.10 2001/08/06 12:01:51 regina
54 * Fixed problem in DSR_DE bit.
55 *
56 * Revision 3.9 2001/07/18 19:27:26 daniela
57 * Added some history comments.
58 *
59 * Revision 3.8 2001/07/12 13:11:19 regina
60 * bug fix - DCD-OFF in pc300 tty driver
61 *
62 * Revision 3.3 to 3.7 2001/07/06 15:00:20 daniela
63 * Removing kernel 2.4.3 and previous support.
64 * DMA transmission bug fix.
65 * MTU check in cpc_net_rx fixed.
66 * Boot messages reviewed.
67 * New configuration parameters (line code, CRC calculation and clock).
68 *
69 * Revision 3.2 2001/06/22 13:13:02 regina
70 * MLPPP implementation. Changed the header of message trace to include
71 * the device name. New format : "hdlcX[R/T]: ".
72 * Default configuration changed.
73 *
74 * Revision 3.1 2001/06/15 regina
75 * in cpc_queue_xmit, netif_stop_queue is called if don't have free descriptor
76 * upping major version number
77 *
78 * Revision 1.1.1.1 2001/06/13 20:25:04 daniela
79 * PC300 initial CVS version (3.4.0-pre1)
80 *
81 * Revision 3.0.1.2 2001/06/08 daniela
82 * Did some changes in the DMA programming implementation to avoid the
83 * occurrence of a SCA-II bug when CDA is accessed during a DMA transfer.
84 *
85 * Revision 3.0.1.1 2001/05/02 daniela
86 * Added kernel 2.4.3 support.
87 *
88 * Revision 3.0.1.0 2001/03/13 daniela, henrique
89 * Added Frame Relay Support.
90 * Driver now uses HDLC generic driver to provide protocol support.
91 *
92 * Revision 3.0.0.8 2001/03/02 daniela
93 * Fixed ram size detection.
94 * Changed SIOCGPC300CONF ioctl, to give hw information to pc300util.
95 *
96 * Revision 3.0.0.7 2001/02/23 daniela
97 * netif_stop_queue called before the SCA-II transmition commands in
98 * cpc_queue_xmit, and with interrupts disabled to avoid race conditions with
99 * transmition interrupts.
100 * Fixed falc_check_status for Unframed E1.
101 *
102 * Revision 3.0.0.6 2000/12/13 daniela
103 * Implemented pc300util support: trace, statistics, status and loopback
104 * tests for the PC300 TE boards.
105 *
106 * Revision 3.0.0.5 2000/12/12 ivan
107 * Added support for Unframed E1.
108 * Implemented monitor mode.
109 * Fixed DCD sensitivity on the second channel.
110 * Driver now complies with new PCI kernel architecture.
111 *
112 * Revision 3.0.0.4 2000/09/28 ivan
113 * Implemented DCD sensitivity.
114 * Moved hardware-specific open to the end of cpc_open, to avoid race
115 * conditions with early reception interrupts.
116 * Included code for [request|release]_mem_region().
117 * Changed location of pc300.h .
118 * Minor code revision (contrib. of Jeff Garzik).
119 *
120 * Revision 3.0.0.3 2000/07/03 ivan
121 * Previous bugfix for the framing errors with external clock made X21
122 * boards stop working. This version fixes it.
123 *
124 * Revision 3.0.0.2 2000/06/23 ivan
125 * Revisited cpc_queue_xmit to prevent race conditions on Tx DMA buffer
126 * handling when Tx timeouts occur.
127 * Revisited Rx statistics.
128 * Fixed a bug in the SCA-II programming that would cause framing errors
129 * when external clock was configured.
130 *
131 * Revision 3.0.0.1 2000/05/26 ivan
132 * Added logic in the SCA interrupt handler so that no board can monopolize
133 * the driver.
134 * Request PLX I/O region, although driver doesn't use it, to avoid
135 * problems with other drivers accessing it.
136 *
137 * Revision 3.0.0.0 2000/05/15 ivan
138 * Did some changes in the DMA programming implementation to avoid the
139 * occurrence of a SCA-II bug in the second channel.
140 * Implemented workaround for PLX9050 bug that would cause a system lockup
141 * in certain systems, depending on the MMIO addresses allocated to the
142 * board.
143 * Fixed the FALC chip programming to avoid synchronization problems in the
144 * second channel (TE only).
145 * Implemented a cleaner and faster Tx DMA descriptor cleanup procedure in
146 * cpc_queue_xmit().
147 * Changed the built-in driver implementation so that the driver can use the
148 * general 'hdlcN' naming convention instead of proprietary device names.
149 * Driver load messages are now device-centric, instead of board-centric.
150 * Dynamic allocation of net_device structures.
151 * Code is now compliant with the new module interface (module_[init|exit]).
152 * Make use of the PCI helper functions to access PCI resources.
153 *
154 * Revision 2.0.0.0 2000/04/15 ivan
155 * Added support for the PC300/TE boards (T1/FT1/E1/FE1).
156 *
157 * Revision 1.1.0.0 2000/02/28 ivan
158 * Major changes in the driver architecture.
159 * Softnet compliancy implemented.
160 * Driver now reports physical instead of virtual memory addresses.
161 * Added cpc_change_mtu function.
162 *
163 * Revision 1.0.0.0 1999/12/16 ivan
164 * First official release.
165 * Support for 1- and 2-channel boards (which use distinct PCI Device ID's).
166 * Support for monolythic installation (i.e., drv built into the kernel).
167 * X.25 additional checking when lapb_[dis]connect_request returns an error.
168 * SCA programming now covers X.21 as well.
169 *
170 * Revision 0.3.1.0 1999/11/18 ivan
171 * Made X.25 support configuration-dependent (as it depends on external
172 * modules to work).
173 * Changed X.25-specific function names to comply with adopted convention.
174 * Fixed typos in X.25 functions that would cause compile errors (Daniela).
175 * Fixed bug in ch_config that would disable interrupts on a previously
176 * enabled channel if the other channel on the same board was enabled later.
177 *
178 * Revision 0.3.0.0 1999/11/16 daniela
179 * X.25 support.
180 *
181 * Revision 0.2.3.0 1999/11/15 ivan
182 * Function cpc_ch_status now provides more detailed information.
183 * Added support for X.21 clock configuration.
184 * Changed TNR1 setting in order to prevent Tx FIFO overaccesses by the SCA.
185 * Now using PCI clock instead of internal oscillator clock for the SCA.
186 *
187 * Revision 0.2.2.0 1999/11/10 ivan
188 * Changed the *_dma_buf_check functions so that they would print only
189 * the useful info instead of the whole buffer descriptor bank.
190 * Fixed bug in cpc_queue_xmit that would eventually crash the system
191 * in case of a packet drop.
192 * Implemented TX underrun handling.
193 * Improved SCA fine tuning to boost up its performance.
194 *
195 * Revision 0.2.1.0 1999/11/03 ivan
196 * Added functions *dma_buf_pt_init to allow independent initialization
197 * of the next-descr. and DMA buffer pointers on the DMA descriptors.
198 * Kernel buffer release and tbusy clearing is now done in the interrupt
199 * handler.
200 * Fixed bug in cpc_open that would cause an interface reopen to fail.
201 * Added a protocol-specific code section in cpc_net_rx.
202 * Removed printk level defs (they might be added back after the beta phase).
203 *
204 * Revision 0.2.0.0 1999/10/28 ivan
205 * Revisited the code so that new protocols can be easily added / supported.
206 *
207 * Revision 0.1.0.1 1999/10/20 ivan
208 * Mostly "esthetic" changes.
209 *
210 * Revision 0.1.0.0 1999/10/11 ivan
211 * Initial version.
212 *
213 */
214
215#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
216
217#include <linux/module.h>
218#include <linux/kernel.h>
219#include <linux/mm.h>
220#include <linux/ioport.h>
221#include <linux/pci.h>
222#include <linux/errno.h>
223#include <linux/string.h>
224#include <linux/init.h>
225#include <linux/delay.h>
226#include <linux/net.h>
227#include <linux/skbuff.h>
228#include <linux/if_arp.h>
229#include <linux/netdevice.h>
230#include <linux/etherdevice.h>
231#include <linux/spinlock.h>
232#include <linux/if.h>
233#include <linux/slab.h>
234#include <net/arp.h>
235
236#include <asm/io.h>
237#include <asm/uaccess.h>
238
239#include "pc300.h"
240
241#define CPC_LOCK(card,flags) \
242 do { \
243 spin_lock_irqsave(&card->card_lock, flags); \
244 } while (0)
245
246#define CPC_UNLOCK(card,flags) \
247 do { \
248 spin_unlock_irqrestore(&card->card_lock, flags); \
249 } while (0)
250
251#undef PC300_DEBUG_PCI
252#undef PC300_DEBUG_INTR
253#undef PC300_DEBUG_TX
254#undef PC300_DEBUG_RX
255#undef PC300_DEBUG_OTHER
256
257static DEFINE_PCI_DEVICE_TABLE(cpc_pci_dev_id) = {
258 /* PC300/RSV or PC300/X21, 2 chan */
259 {0x120e, 0x300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x300},
260 /* PC300/RSV or PC300/X21, 1 chan */
261 {0x120e, 0x301, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x301},
262 /* PC300/TE, 2 chan */
263 {0x120e, 0x310, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x310},
264 /* PC300/TE, 1 chan */
265 {0x120e, 0x311, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x311},
266 /* PC300/TE-M, 2 chan */
267 {0x120e, 0x320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x320},
268 /* PC300/TE-M, 1 chan */
269 {0x120e, 0x321, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x321},
270 /* End of table */
271 {0,},
272};
273MODULE_DEVICE_TABLE(pci, cpc_pci_dev_id);
274
275#ifndef cpc_min
276#define cpc_min(a,b) (((a)<(b))?(a):(b))
277#endif
278#ifndef cpc_max
279#define cpc_max(a,b) (((a)>(b))?(a):(b))
280#endif
281
282/* prototypes */
283static void tx_dma_buf_pt_init(pc300_t *, int);
284static void tx_dma_buf_init(pc300_t *, int);
285static void rx_dma_buf_pt_init(pc300_t *, int);
286static void rx_dma_buf_init(pc300_t *, int);
287static void tx_dma_buf_check(pc300_t *, int);
288static void rx_dma_buf_check(pc300_t *, int);
289static irqreturn_t cpc_intr(int, void *);
290static int clock_rate_calc(u32, u32, int *);
291static u32 detect_ram(pc300_t *);
292static void plx_init(pc300_t *);
293static void cpc_trace(struct net_device *, struct sk_buff *, char);
294static int cpc_attach(struct net_device *, unsigned short, unsigned short);
295static int cpc_close(struct net_device *dev);
296
297#ifdef CONFIG_PC300_MLPPP
298void cpc_tty_init(pc300dev_t * dev);
299void cpc_tty_unregister_service(pc300dev_t * pc300dev);
300void cpc_tty_receive(pc300dev_t * pc300dev);
301void cpc_tty_trigger_poll(pc300dev_t * pc300dev);
302void cpc_tty_reset_var(void);
303#endif
304
305/************************/
306/*** DMA Routines ***/
307/************************/
308static void tx_dma_buf_pt_init(pc300_t * card, int ch)
309{
310 int i;
311 int ch_factor = ch * N_DMA_TX_BUF;
312 volatile pcsca_bd_t __iomem *ptdescr = (card->hw.rambase
313 + DMA_TX_BD_BASE + ch_factor * sizeof(pcsca_bd_t));
314
315 for (i = 0; i < N_DMA_TX_BUF; i++, ptdescr++) {
316 cpc_writel(&ptdescr->next, (u32)(DMA_TX_BD_BASE +
317 (ch_factor + ((i + 1) & (N_DMA_TX_BUF - 1))) * sizeof(pcsca_bd_t)));
318 cpc_writel(&ptdescr->ptbuf,
319 (u32)(DMA_TX_BASE + (ch_factor + i) * BD_DEF_LEN));
320 }
321}
322
323static void tx_dma_buf_init(pc300_t * card, int ch)
324{
325 int i;
326 int ch_factor = ch * N_DMA_TX_BUF;
327 volatile pcsca_bd_t __iomem *ptdescr = (card->hw.rambase
328 + DMA_TX_BD_BASE + ch_factor * sizeof(pcsca_bd_t));
329
330 for (i = 0; i < N_DMA_TX_BUF; i++, ptdescr++) {
331 memset_io(ptdescr, 0, sizeof(pcsca_bd_t));
332 cpc_writew(&ptdescr->len, 0);
333 cpc_writeb(&ptdescr->status, DST_OSB);
334 }
335 tx_dma_buf_pt_init(card, ch);
336}
337
338static void rx_dma_buf_pt_init(pc300_t * card, int ch)
339{
340 int i;
341 int ch_factor = ch * N_DMA_RX_BUF;
342 volatile pcsca_bd_t __iomem *ptdescr = (card->hw.rambase
343 + DMA_RX_BD_BASE + ch_factor * sizeof(pcsca_bd_t));
344
345 for (i = 0; i < N_DMA_RX_BUF; i++, ptdescr++) {
346 cpc_writel(&ptdescr->next, (u32)(DMA_RX_BD_BASE +
347 (ch_factor + ((i + 1) & (N_DMA_RX_BUF - 1))) * sizeof(pcsca_bd_t)));
348 cpc_writel(&ptdescr->ptbuf,
349 (u32)(DMA_RX_BASE + (ch_factor + i) * BD_DEF_LEN));
350 }
351}
352
353static void rx_dma_buf_init(pc300_t * card, int ch)
354{
355 int i;
356 int ch_factor = ch * N_DMA_RX_BUF;
357 volatile pcsca_bd_t __iomem *ptdescr = (card->hw.rambase
358 + DMA_RX_BD_BASE + ch_factor * sizeof(pcsca_bd_t));
359
360 for (i = 0; i < N_DMA_RX_BUF; i++, ptdescr++) {
361 memset_io(ptdescr, 0, sizeof(pcsca_bd_t));
362 cpc_writew(&ptdescr->len, 0);
363 cpc_writeb(&ptdescr->status, 0);
364 }
365 rx_dma_buf_pt_init(card, ch);
366}
367
368static void tx_dma_buf_check(pc300_t * card, int ch)
369{
370 volatile pcsca_bd_t __iomem *ptdescr;
371 int i;
372 u16 first_bd = card->chan[ch].tx_first_bd;
373 u16 next_bd = card->chan[ch].tx_next_bd;
374
375 printk("#CH%d: f_bd = %d(0x%08zx), n_bd = %d(0x%08zx)\n", ch,
376 first_bd, TX_BD_ADDR(ch, first_bd),
377 next_bd, TX_BD_ADDR(ch, next_bd));
378 for (i = first_bd,
379 ptdescr = (card->hw.rambase + TX_BD_ADDR(ch, first_bd));
380 i != ((next_bd + 1) & (N_DMA_TX_BUF - 1));
381 i = (i + 1) & (N_DMA_TX_BUF - 1),
382 ptdescr = (card->hw.rambase + TX_BD_ADDR(ch, i))) {
383 printk("\n CH%d TX%d: next=0x%x, ptbuf=0x%x, ST=0x%x, len=%d",
384 ch, i, cpc_readl(&ptdescr->next),
385 cpc_readl(&ptdescr->ptbuf),
386 cpc_readb(&ptdescr->status), cpc_readw(&ptdescr->len));
387 }
388 printk("\n");
389}
390
391#ifdef PC300_DEBUG_OTHER
392/* Show all TX buffer descriptors */
393static void tx1_dma_buf_check(pc300_t * card, int ch)
394{
395 volatile pcsca_bd_t __iomem *ptdescr;
396 int i;
397 u16 first_bd = card->chan[ch].tx_first_bd;
398 u16 next_bd = card->chan[ch].tx_next_bd;
399 u32 scabase = card->hw.scabase;
400
401 printk ("\nnfree_tx_bd = %d\n", card->chan[ch].nfree_tx_bd);
402 printk("#CH%d: f_bd = %d(0x%08x), n_bd = %d(0x%08x)\n", ch,
403 first_bd, TX_BD_ADDR(ch, first_bd),
404 next_bd, TX_BD_ADDR(ch, next_bd));
405 printk("TX_CDA=0x%08x, TX_EDA=0x%08x\n",
406 cpc_readl(scabase + DTX_REG(CDAL, ch)),
407 cpc_readl(scabase + DTX_REG(EDAL, ch)));
408 for (i = 0; i < N_DMA_TX_BUF; i++) {
409 ptdescr = (card->hw.rambase + TX_BD_ADDR(ch, i));
410 printk("\n CH%d TX%d: next=0x%x, ptbuf=0x%x, ST=0x%x, len=%d",
411 ch, i, cpc_readl(&ptdescr->next),
412 cpc_readl(&ptdescr->ptbuf),
413 cpc_readb(&ptdescr->status), cpc_readw(&ptdescr->len));
414 }
415 printk("\n");
416}
417#endif
418
419static void rx_dma_buf_check(pc300_t * card, int ch)
420{
421 volatile pcsca_bd_t __iomem *ptdescr;
422 int i;
423 u16 first_bd = card->chan[ch].rx_first_bd;
424 u16 last_bd = card->chan[ch].rx_last_bd;
425 int ch_factor;
426
427 ch_factor = ch * N_DMA_RX_BUF;
428 printk("#CH%d: f_bd = %d, l_bd = %d\n", ch, first_bd, last_bd);
429 for (i = 0, ptdescr = (card->hw.rambase +
430 DMA_RX_BD_BASE + ch_factor * sizeof(pcsca_bd_t));
431 i < N_DMA_RX_BUF; i++, ptdescr++) {
432 if (cpc_readb(&ptdescr->status) & DST_OSB)
433 printk ("\n CH%d RX%d: next=0x%x, ptbuf=0x%x, ST=0x%x, len=%d",
434 ch, i, cpc_readl(&ptdescr->next),
435 cpc_readl(&ptdescr->ptbuf),
436 cpc_readb(&ptdescr->status),
437 cpc_readw(&ptdescr->len));
438 }
439 printk("\n");
440}
441
442static int dma_get_rx_frame_size(pc300_t * card, int ch)
443{
444 volatile pcsca_bd_t __iomem *ptdescr;
445 u16 first_bd = card->chan[ch].rx_first_bd;
446 int rcvd = 0;
447 volatile u8 status;
448
449 ptdescr = (card->hw.rambase + RX_BD_ADDR(ch, first_bd));
450 while ((status = cpc_readb(&ptdescr->status)) & DST_OSB) {
451 rcvd += cpc_readw(&ptdescr->len);
452 first_bd = (first_bd + 1) & (N_DMA_RX_BUF - 1);
453 if ((status & DST_EOM) || (first_bd == card->chan[ch].rx_last_bd)) {
454 /* Return the size of a good frame or incomplete bad frame
455 * (dma_buf_read will clean the buffer descriptors in this case). */
456 return rcvd;
457 }
458 ptdescr = (card->hw.rambase + cpc_readl(&ptdescr->next));
459 }
460 return -1;
461}
462
463/*
464 * dma_buf_write: writes a frame to the Tx DMA buffers
465 * NOTE: this function writes one frame at a time.
466 */
467static int dma_buf_write(pc300_t *card, int ch, u8 *ptdata, int len)
468{
469 int i, nchar;
470 volatile pcsca_bd_t __iomem *ptdescr;
471 int tosend = len;
472 u8 nbuf = ((len - 1) / BD_DEF_LEN) + 1;
473
474 if (nbuf >= card->chan[ch].nfree_tx_bd) {
475 return -ENOMEM;
476 }
477
478 for (i = 0; i < nbuf; i++) {
479 ptdescr = (card->hw.rambase +
480 TX_BD_ADDR(ch, card->chan[ch].tx_next_bd));
481 nchar = cpc_min(BD_DEF_LEN, tosend);
482 if (cpc_readb(&ptdescr->status) & DST_OSB) {
483 memcpy_toio((card->hw.rambase + cpc_readl(&ptdescr->ptbuf)),
484 &ptdata[len - tosend], nchar);
485 cpc_writew(&ptdescr->len, nchar);
486 card->chan[ch].nfree_tx_bd--;
487 if ((i + 1) == nbuf) {
488 /* This must be the last BD to be used */
489 cpc_writeb(&ptdescr->status, DST_EOM);
490 } else {
491 cpc_writeb(&ptdescr->status, 0);
492 }
493 } else {
494 return -ENOMEM;
495 }
496 tosend -= nchar;
497 card->chan[ch].tx_next_bd =
498 (card->chan[ch].tx_next_bd + 1) & (N_DMA_TX_BUF - 1);
499 }
500 /* If it gets to here, it means we have sent the whole frame */
501 return 0;
502}
503
504/*
505 * dma_buf_read: reads a frame from the Rx DMA buffers
506 * NOTE: this function reads one frame at a time.
507 */
508static int dma_buf_read(pc300_t * card, int ch, struct sk_buff *skb)
509{
510 int nchar;
511 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
512 volatile pcsca_bd_t __iomem *ptdescr;
513 int rcvd = 0;
514 volatile u8 status;
515
516 ptdescr = (card->hw.rambase +
517 RX_BD_ADDR(ch, chan->rx_first_bd));
518 while ((status = cpc_readb(&ptdescr->status)) & DST_OSB) {
519 nchar = cpc_readw(&ptdescr->len);
520 if ((status & (DST_OVR | DST_CRC | DST_RBIT | DST_SHRT | DST_ABT)) ||
521 (nchar > BD_DEF_LEN)) {
522
523 if (nchar > BD_DEF_LEN)
524 status |= DST_RBIT;
525 rcvd = -status;
526 /* Discard remaining descriptors used by the bad frame */
527 while (chan->rx_first_bd != chan->rx_last_bd) {
528 cpc_writeb(&ptdescr->status, 0);
529 chan->rx_first_bd = (chan->rx_first_bd+1) & (N_DMA_RX_BUF-1);
530 if (status & DST_EOM)
531 break;
532 ptdescr = (card->hw.rambase +
533 cpc_readl(&ptdescr->next));
534 status = cpc_readb(&ptdescr->status);
535 }
536 break;
537 }
538 if (nchar != 0) {
539 if (skb) {
540 memcpy_fromio(skb_put(skb, nchar),
541 (card->hw.rambase+cpc_readl(&ptdescr->ptbuf)),nchar);
542 }
543 rcvd += nchar;
544 }
545 cpc_writeb(&ptdescr->status, 0);
546 cpc_writeb(&ptdescr->len, 0);
547 chan->rx_first_bd = (chan->rx_first_bd + 1) & (N_DMA_RX_BUF - 1);
548
549 if (status & DST_EOM)
550 break;
551
552 ptdescr = (card->hw.rambase + cpc_readl(&ptdescr->next));
553 }
554
555 if (rcvd != 0) {
556 /* Update pointer */
557 chan->rx_last_bd = (chan->rx_first_bd - 1) & (N_DMA_RX_BUF - 1);
558 /* Update EDA */
559 cpc_writel(card->hw.scabase + DRX_REG(EDAL, ch),
560 RX_BD_ADDR(ch, chan->rx_last_bd));
561 }
562 return rcvd;
563}
564
565static void tx_dma_stop(pc300_t * card, int ch)
566{
567 void __iomem *scabase = card->hw.scabase;
568 u8 drr_ena_bit = 1 << (5 + 2 * ch);
569 u8 drr_rst_bit = 1 << (1 + 2 * ch);
570
571 /* Disable DMA */
572 cpc_writeb(scabase + DRR, drr_ena_bit);
573 cpc_writeb(scabase + DRR, drr_rst_bit & ~drr_ena_bit);
574}
575
576static void rx_dma_stop(pc300_t * card, int ch)
577{
578 void __iomem *scabase = card->hw.scabase;
579 u8 drr_ena_bit = 1 << (4 + 2 * ch);
580 u8 drr_rst_bit = 1 << (2 * ch);
581
582 /* Disable DMA */
583 cpc_writeb(scabase + DRR, drr_ena_bit);
584 cpc_writeb(scabase + DRR, drr_rst_bit & ~drr_ena_bit);
585}
586
587static void rx_dma_start(pc300_t * card, int ch)
588{
589 void __iomem *scabase = card->hw.scabase;
590 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
591
592 /* Start DMA */
593 cpc_writel(scabase + DRX_REG(CDAL, ch),
594 RX_BD_ADDR(ch, chan->rx_first_bd));
595 if (cpc_readl(scabase + DRX_REG(CDAL,ch)) !=
596 RX_BD_ADDR(ch, chan->rx_first_bd)) {
597 cpc_writel(scabase + DRX_REG(CDAL, ch),
598 RX_BD_ADDR(ch, chan->rx_first_bd));
599 }
600 cpc_writel(scabase + DRX_REG(EDAL, ch),
601 RX_BD_ADDR(ch, chan->rx_last_bd));
602 cpc_writew(scabase + DRX_REG(BFLL, ch), BD_DEF_LEN);
603 cpc_writeb(scabase + DSR_RX(ch), DSR_DE);
604 if (!(cpc_readb(scabase + DSR_RX(ch)) & DSR_DE)) {
605 cpc_writeb(scabase + DSR_RX(ch), DSR_DE);
606 }
607}
608
609/*************************/
610/*** FALC Routines ***/
611/*************************/
612static void falc_issue_cmd(pc300_t *card, int ch, u8 cmd)
613{
614 void __iomem *falcbase = card->hw.falcbase;
615 unsigned long i = 0;
616
617 while (cpc_readb(falcbase + F_REG(SIS, ch)) & SIS_CEC) {
618 if (i++ >= PC300_FALC_MAXLOOP) {
619 printk("%s: FALC command locked(cmd=0x%x).\n",
620 card->chan[ch].d.name, cmd);
621 break;
622 }
623 }
624 cpc_writeb(falcbase + F_REG(CMDR, ch), cmd);
625}
626
627static void falc_intr_enable(pc300_t * card, int ch)
628{
629 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
630 pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
631 falc_t *pfalc = (falc_t *) & chan->falc;
632 void __iomem *falcbase = card->hw.falcbase;
633
634 /* Interrupt pins are open-drain */
635 cpc_writeb(falcbase + F_REG(IPC, ch),
636 cpc_readb(falcbase + F_REG(IPC, ch)) & ~IPC_IC0);
637 /* Conters updated each second */
638 cpc_writeb(falcbase + F_REG(FMR1, ch),
639 cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_ECM);
640 /* Enable SEC and ES interrupts */
641 cpc_writeb(falcbase + F_REG(IMR3, ch),
642 cpc_readb(falcbase + F_REG(IMR3, ch)) & ~(IMR3_SEC | IMR3_ES));
643 if (conf->fr_mode == PC300_FR_UNFRAMED) {
644 cpc_writeb(falcbase + F_REG(IMR4, ch),
645 cpc_readb(falcbase + F_REG(IMR4, ch)) & ~(IMR4_LOS));
646 } else {
647 cpc_writeb(falcbase + F_REG(IMR4, ch),
648 cpc_readb(falcbase + F_REG(IMR4, ch)) &
649 ~(IMR4_LFA | IMR4_AIS | IMR4_LOS | IMR4_SLIP));
650 }
651 if (conf->media == IF_IFACE_T1) {
652 cpc_writeb(falcbase + F_REG(IMR3, ch),
653 cpc_readb(falcbase + F_REG(IMR3, ch)) & ~IMR3_LLBSC);
654 } else {
655 cpc_writeb(falcbase + F_REG(IPC, ch),
656 cpc_readb(falcbase + F_REG(IPC, ch)) | IPC_SCI);
657 if (conf->fr_mode == PC300_FR_UNFRAMED) {
658 cpc_writeb(falcbase + F_REG(IMR2, ch),
659 cpc_readb(falcbase + F_REG(IMR2, ch)) & ~(IMR2_LOS));
660 } else {
661 cpc_writeb(falcbase + F_REG(IMR2, ch),
662 cpc_readb(falcbase + F_REG(IMR2, ch)) &
663 ~(IMR2_FAR | IMR2_LFA | IMR2_AIS | IMR2_LOS));
664 if (pfalc->multiframe_mode) {
665 cpc_writeb(falcbase + F_REG(IMR2, ch),
666 cpc_readb(falcbase + F_REG(IMR2, ch)) &
667 ~(IMR2_T400MS | IMR2_MFAR));
668 } else {
669 cpc_writeb(falcbase + F_REG(IMR2, ch),
670 cpc_readb(falcbase + F_REG(IMR2, ch)) |
671 IMR2_T400MS | IMR2_MFAR);
672 }
673 }
674 }
675}
676
677static void falc_open_timeslot(pc300_t * card, int ch, int timeslot)
678{
679 void __iomem *falcbase = card->hw.falcbase;
680 u8 tshf = card->chan[ch].falc.offset;
681
682 cpc_writeb(falcbase + F_REG((ICB1 + (timeslot - tshf) / 8), ch),
683 cpc_readb(falcbase + F_REG((ICB1 + (timeslot - tshf) / 8), ch)) &
684 ~(0x80 >> ((timeslot - tshf) & 0x07)));
685 cpc_writeb(falcbase + F_REG((TTR1 + timeslot / 8), ch),
686 cpc_readb(falcbase + F_REG((TTR1 + timeslot / 8), ch)) |
687 (0x80 >> (timeslot & 0x07)));
688 cpc_writeb(falcbase + F_REG((RTR1 + timeslot / 8), ch),
689 cpc_readb(falcbase + F_REG((RTR1 + timeslot / 8), ch)) |
690 (0x80 >> (timeslot & 0x07)));
691}
692
693static void falc_close_timeslot(pc300_t * card, int ch, int timeslot)
694{
695 void __iomem *falcbase = card->hw.falcbase;
696 u8 tshf = card->chan[ch].falc.offset;
697
698 cpc_writeb(falcbase + F_REG((ICB1 + (timeslot - tshf) / 8), ch),
699 cpc_readb(falcbase + F_REG((ICB1 + (timeslot - tshf) / 8), ch)) |
700 (0x80 >> ((timeslot - tshf) & 0x07)));
701 cpc_writeb(falcbase + F_REG((TTR1 + timeslot / 8), ch),
702 cpc_readb(falcbase + F_REG((TTR1 + timeslot / 8), ch)) &
703 ~(0x80 >> (timeslot & 0x07)));
704 cpc_writeb(falcbase + F_REG((RTR1 + timeslot / 8), ch),
705 cpc_readb(falcbase + F_REG((RTR1 + timeslot / 8), ch)) &
706 ~(0x80 >> (timeslot & 0x07)));
707}
708
709static void falc_close_all_timeslots(pc300_t * card, int ch)
710{
711 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
712 pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
713 void __iomem *falcbase = card->hw.falcbase;
714
715 cpc_writeb(falcbase + F_REG(ICB1, ch), 0xff);
716 cpc_writeb(falcbase + F_REG(TTR1, ch), 0);
717 cpc_writeb(falcbase + F_REG(RTR1, ch), 0);
718 cpc_writeb(falcbase + F_REG(ICB2, ch), 0xff);
719 cpc_writeb(falcbase + F_REG(TTR2, ch), 0);
720 cpc_writeb(falcbase + F_REG(RTR2, ch), 0);
721 cpc_writeb(falcbase + F_REG(ICB3, ch), 0xff);
722 cpc_writeb(falcbase + F_REG(TTR3, ch), 0);
723 cpc_writeb(falcbase + F_REG(RTR3, ch), 0);
724 if (conf->media == IF_IFACE_E1) {
725 cpc_writeb(falcbase + F_REG(ICB4, ch), 0xff);
726 cpc_writeb(falcbase + F_REG(TTR4, ch), 0);
727 cpc_writeb(falcbase + F_REG(RTR4, ch), 0);
728 }
729}
730
731static void falc_open_all_timeslots(pc300_t * card, int ch)
732{
733 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
734 pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
735 void __iomem *falcbase = card->hw.falcbase;
736
737 cpc_writeb(falcbase + F_REG(ICB1, ch), 0);
738 if (conf->fr_mode == PC300_FR_UNFRAMED) {
739 cpc_writeb(falcbase + F_REG(TTR1, ch), 0xff);
740 cpc_writeb(falcbase + F_REG(RTR1, ch), 0xff);
741 } else {
742 /* Timeslot 0 is never enabled */
743 cpc_writeb(falcbase + F_REG(TTR1, ch), 0x7f);
744 cpc_writeb(falcbase + F_REG(RTR1, ch), 0x7f);
745 }
746 cpc_writeb(falcbase + F_REG(ICB2, ch), 0);
747 cpc_writeb(falcbase + F_REG(TTR2, ch), 0xff);
748 cpc_writeb(falcbase + F_REG(RTR2, ch), 0xff);
749 cpc_writeb(falcbase + F_REG(ICB3, ch), 0);
750 cpc_writeb(falcbase + F_REG(TTR3, ch), 0xff);
751 cpc_writeb(falcbase + F_REG(RTR3, ch), 0xff);
752 if (conf->media == IF_IFACE_E1) {
753 cpc_writeb(falcbase + F_REG(ICB4, ch), 0);
754 cpc_writeb(falcbase + F_REG(TTR4, ch), 0xff);
755 cpc_writeb(falcbase + F_REG(RTR4, ch), 0xff);
756 } else {
757 cpc_writeb(falcbase + F_REG(ICB4, ch), 0xff);
758 cpc_writeb(falcbase + F_REG(TTR4, ch), 0x80);
759 cpc_writeb(falcbase + F_REG(RTR4, ch), 0x80);
760 }
761}
762
763static void falc_init_timeslot(pc300_t * card, int ch)
764{
765 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
766 pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
767 falc_t *pfalc = (falc_t *) & chan->falc;
768 int tslot;
769
770 for (tslot = 0; tslot < pfalc->num_channels; tslot++) {
771 if (conf->tslot_bitmap & (1 << tslot)) {
772 // Channel enabled
773 falc_open_timeslot(card, ch, tslot + 1);
774 } else {
775 // Channel disabled
776 falc_close_timeslot(card, ch, tslot + 1);
777 }
778 }
779}
780
781static void falc_enable_comm(pc300_t * card, int ch)
782{
783 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
784 falc_t *pfalc = (falc_t *) & chan->falc;
785
786 if (pfalc->full_bandwidth) {
787 falc_open_all_timeslots(card, ch);
788 } else {
789 falc_init_timeslot(card, ch);
790 }
791 // CTS/DCD ON
792 cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
793 cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) &
794 ~((CPLD_REG1_FALC_DCD | CPLD_REG1_FALC_CTS) << (2 * ch)));
795}
796
797static void falc_disable_comm(pc300_t * card, int ch)
798{
799 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
800 falc_t *pfalc = (falc_t *) & chan->falc;
801
802 if (pfalc->loop_active != 2) {
803 falc_close_all_timeslots(card, ch);
804 }
805 // CTS/DCD OFF
806 cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
807 cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) |
808 ((CPLD_REG1_FALC_DCD | CPLD_REG1_FALC_CTS) << (2 * ch)));
809}
810
811static void falc_init_t1(pc300_t * card, int ch)
812{
813 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
814 pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
815 falc_t *pfalc = (falc_t *) & chan->falc;
816 void __iomem *falcbase = card->hw.falcbase;
817 u8 dja = (ch ? (LIM2_DJA2 | LIM2_DJA1) : 0);
818
819 /* Switch to T1 mode (PCM 24) */
820 cpc_writeb(falcbase + F_REG(FMR1, ch), FMR1_PMOD);
821
822 /* Wait 20 us for setup */
823 udelay(20);
824
825 /* Transmit Buffer Size (1 frame) */
826 cpc_writeb(falcbase + F_REG(SIC1, ch), SIC1_XBS0);
827
828 /* Clock mode */
829 if (conf->phys_settings.clock_type == CLOCK_INT) { /* Master mode */
830 cpc_writeb(falcbase + F_REG(LIM0, ch),
831 cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_MAS);
832 } else { /* Slave mode */
833 cpc_writeb(falcbase + F_REG(LIM0, ch),
834 cpc_readb(falcbase + F_REG(LIM0, ch)) & ~LIM0_MAS);
835 cpc_writeb(falcbase + F_REG(LOOP, ch),
836 cpc_readb(falcbase + F_REG(LOOP, ch)) & ~LOOP_RTM);
837 }
838
839 cpc_writeb(falcbase + F_REG(IPC, ch), IPC_SCI);
840 cpc_writeb(falcbase + F_REG(FMR0, ch),
841 cpc_readb(falcbase + F_REG(FMR0, ch)) &
842 ~(FMR0_XC0 | FMR0_XC1 | FMR0_RC0 | FMR0_RC1));
843
844 switch (conf->lcode) {
845 case PC300_LC_AMI:
846 cpc_writeb(falcbase + F_REG(FMR0, ch),
847 cpc_readb(falcbase + F_REG(FMR0, ch)) |
848 FMR0_XC1 | FMR0_RC1);
849 /* Clear Channel register to ON for all channels */
850 cpc_writeb(falcbase + F_REG(CCB1, ch), 0xff);
851 cpc_writeb(falcbase + F_REG(CCB2, ch), 0xff);
852 cpc_writeb(falcbase + F_REG(CCB3, ch), 0xff);
853 break;
854
855 case PC300_LC_B8ZS:
856 cpc_writeb(falcbase + F_REG(FMR0, ch),
857 cpc_readb(falcbase + F_REG(FMR0, ch)) |
858 FMR0_XC0 | FMR0_XC1 | FMR0_RC0 | FMR0_RC1);
859 break;
860
861 case PC300_LC_NRZ:
862 cpc_writeb(falcbase + F_REG(FMR0, ch),
863 cpc_readb(falcbase + F_REG(FMR0, ch)) | 0x00);
864 break;
865 }
866
867 cpc_writeb(falcbase + F_REG(LIM0, ch),
868 cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_ELOS);
869 cpc_writeb(falcbase + F_REG(LIM0, ch),
870 cpc_readb(falcbase + F_REG(LIM0, ch)) & ~(LIM0_SCL1 | LIM0_SCL0));
871 /* Set interface mode to 2 MBPS */
872 cpc_writeb(falcbase + F_REG(FMR1, ch),
873 cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_IMOD);
874
875 switch (conf->fr_mode) {
876 case PC300_FR_ESF:
877 pfalc->multiframe_mode = 0;
878 cpc_writeb(falcbase + F_REG(FMR4, ch),
879 cpc_readb(falcbase + F_REG(FMR4, ch)) | FMR4_FM1);
880 cpc_writeb(falcbase + F_REG(FMR1, ch),
881 cpc_readb(falcbase + F_REG(FMR1, ch)) |
882 FMR1_CRC | FMR1_EDL);
883 cpc_writeb(falcbase + F_REG(XDL1, ch), 0);
884 cpc_writeb(falcbase + F_REG(XDL2, ch), 0);
885 cpc_writeb(falcbase + F_REG(XDL3, ch), 0);
886 cpc_writeb(falcbase + F_REG(FMR0, ch),
887 cpc_readb(falcbase + F_REG(FMR0, ch)) & ~FMR0_SRAF);
888 cpc_writeb(falcbase + F_REG(FMR2, ch),
889 cpc_readb(falcbase + F_REG(FMR2,ch)) | FMR2_MCSP | FMR2_SSP);
890 break;
891
892 case PC300_FR_D4:
893 pfalc->multiframe_mode = 1;
894 cpc_writeb(falcbase + F_REG(FMR4, ch),
895 cpc_readb(falcbase + F_REG(FMR4, ch)) &
896 ~(FMR4_FM1 | FMR4_FM0));
897 cpc_writeb(falcbase + F_REG(FMR0, ch),
898 cpc_readb(falcbase + F_REG(FMR0, ch)) | FMR0_SRAF);
899 cpc_writeb(falcbase + F_REG(FMR2, ch),
900 cpc_readb(falcbase + F_REG(FMR2, ch)) & ~FMR2_SSP);
901 break;
902 }
903
904 /* Enable Automatic Resynchronization */
905 cpc_writeb(falcbase + F_REG(FMR4, ch),
906 cpc_readb(falcbase + F_REG(FMR4, ch)) | FMR4_AUTO);
907
908 /* Transmit Automatic Remote Alarm */
909 cpc_writeb(falcbase + F_REG(FMR2, ch),
910 cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_AXRA);
911
912 /* Channel translation mode 1 : one to one */
913 cpc_writeb(falcbase + F_REG(FMR1, ch),
914 cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_CTM);
915
916 /* No signaling */
917 cpc_writeb(falcbase + F_REG(FMR1, ch),
918 cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_SIGM);
919 cpc_writeb(falcbase + F_REG(FMR5, ch),
920 cpc_readb(falcbase + F_REG(FMR5, ch)) &
921 ~(FMR5_EIBR | FMR5_SRS));
922 cpc_writeb(falcbase + F_REG(CCR1, ch), 0);
923
924 cpc_writeb(falcbase + F_REG(LIM1, ch),
925 cpc_readb(falcbase + F_REG(LIM1, ch)) | LIM1_RIL0 | LIM1_RIL1);
926
927 switch (conf->lbo) {
928 /* Provides proper Line Build Out */
929 case PC300_LBO_0_DB:
930 cpc_writeb(falcbase + F_REG(LIM2, ch), (LIM2_LOS1 | dja));
931 cpc_writeb(falcbase + F_REG(XPM0, ch), 0x5a);
932 cpc_writeb(falcbase + F_REG(XPM1, ch), 0x8f);
933 cpc_writeb(falcbase + F_REG(XPM2, ch), 0x20);
934 break;
935 case PC300_LBO_7_5_DB:
936 cpc_writeb(falcbase + F_REG(LIM2, ch), (0x40 | LIM2_LOS1 | dja));
937 cpc_writeb(falcbase + F_REG(XPM0, ch), 0x11);
938 cpc_writeb(falcbase + F_REG(XPM1, ch), 0x02);
939 cpc_writeb(falcbase + F_REG(XPM2, ch), 0x20);
940 break;
941 case PC300_LBO_15_DB:
942 cpc_writeb(falcbase + F_REG(LIM2, ch), (0x80 | LIM2_LOS1 | dja));
943 cpc_writeb(falcbase + F_REG(XPM0, ch), 0x8e);
944 cpc_writeb(falcbase + F_REG(XPM1, ch), 0x01);
945 cpc_writeb(falcbase + F_REG(XPM2, ch), 0x20);
946 break;
947 case PC300_LBO_22_5_DB:
948 cpc_writeb(falcbase + F_REG(LIM2, ch), (0xc0 | LIM2_LOS1 | dja));
949 cpc_writeb(falcbase + F_REG(XPM0, ch), 0x09);
950 cpc_writeb(falcbase + F_REG(XPM1, ch), 0x01);
951 cpc_writeb(falcbase + F_REG(XPM2, ch), 0x20);
952 break;
953 }
954
955 /* Transmit Clock-Slot Offset */
956 cpc_writeb(falcbase + F_REG(XC0, ch),
957 cpc_readb(falcbase + F_REG(XC0, ch)) | 0x01);
958 /* Transmit Time-slot Offset */
959 cpc_writeb(falcbase + F_REG(XC1, ch), 0x3e);
960 /* Receive Clock-Slot offset */
961 cpc_writeb(falcbase + F_REG(RC0, ch), 0x05);
962 /* Receive Time-slot offset */
963 cpc_writeb(falcbase + F_REG(RC1, ch), 0x00);
964
965 /* LOS Detection after 176 consecutive 0s */
966 cpc_writeb(falcbase + F_REG(PCDR, ch), 0x0a);
967 /* LOS Recovery after 22 ones in the time window of PCD */
968 cpc_writeb(falcbase + F_REG(PCRR, ch), 0x15);
969
970 cpc_writeb(falcbase + F_REG(IDLE, ch), 0x7f);
971
972 if (conf->fr_mode == PC300_FR_ESF_JAPAN) {
973 cpc_writeb(falcbase + F_REG(RC1, ch),
974 cpc_readb(falcbase + F_REG(RC1, ch)) | 0x80);
975 }
976
977 falc_close_all_timeslots(card, ch);
978}
979
980static void falc_init_e1(pc300_t * card, int ch)
981{
982 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
983 pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
984 falc_t *pfalc = (falc_t *) & chan->falc;
985 void __iomem *falcbase = card->hw.falcbase;
986 u8 dja = (ch ? (LIM2_DJA2 | LIM2_DJA1) : 0);
987
988 /* Switch to E1 mode (PCM 30) */
989 cpc_writeb(falcbase + F_REG(FMR1, ch),
990 cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_PMOD);
991
992 /* Clock mode */
993 if (conf->phys_settings.clock_type == CLOCK_INT) { /* Master mode */
994 cpc_writeb(falcbase + F_REG(LIM0, ch),
995 cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_MAS);
996 } else { /* Slave mode */
997 cpc_writeb(falcbase + F_REG(LIM0, ch),
998 cpc_readb(falcbase + F_REG(LIM0, ch)) & ~LIM0_MAS);
999 }
1000 cpc_writeb(falcbase + F_REG(LOOP, ch),
1001 cpc_readb(falcbase + F_REG(LOOP, ch)) & ~LOOP_SFM);
1002
1003 cpc_writeb(falcbase + F_REG(IPC, ch), IPC_SCI);
1004 cpc_writeb(falcbase + F_REG(FMR0, ch),
1005 cpc_readb(falcbase + F_REG(FMR0, ch)) &
1006 ~(FMR0_XC0 | FMR0_XC1 | FMR0_RC0 | FMR0_RC1));
1007
1008 switch (conf->lcode) {
1009 case PC300_LC_AMI:
1010 cpc_writeb(falcbase + F_REG(FMR0, ch),
1011 cpc_readb(falcbase + F_REG(FMR0, ch)) |
1012 FMR0_XC1 | FMR0_RC1);
1013 break;
1014
1015 case PC300_LC_HDB3:
1016 cpc_writeb(falcbase + F_REG(FMR0, ch),
1017 cpc_readb(falcbase + F_REG(FMR0, ch)) |
1018 FMR0_XC0 | FMR0_XC1 | FMR0_RC0 | FMR0_RC1);
1019 break;
1020
1021 case PC300_LC_NRZ:
1022 break;
1023 }
1024
1025 cpc_writeb(falcbase + F_REG(LIM0, ch),
1026 cpc_readb(falcbase + F_REG(LIM0, ch)) & ~(LIM0_SCL1 | LIM0_SCL0));
1027 /* Set interface mode to 2 MBPS */
1028 cpc_writeb(falcbase + F_REG(FMR1, ch),
1029 cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_IMOD);
1030
1031 cpc_writeb(falcbase + F_REG(XPM0, ch), 0x18);
1032 cpc_writeb(falcbase + F_REG(XPM1, ch), 0x03);
1033 cpc_writeb(falcbase + F_REG(XPM2, ch), 0x00);
1034
1035 switch (conf->fr_mode) {
1036 case PC300_FR_MF_CRC4:
1037 pfalc->multiframe_mode = 1;
1038 cpc_writeb(falcbase + F_REG(FMR1, ch),
1039 cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_XFS);
1040 cpc_writeb(falcbase + F_REG(FMR2, ch),
1041 cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_RFS1);
1042 cpc_writeb(falcbase + F_REG(FMR2, ch),
1043 cpc_readb(falcbase + F_REG(FMR2, ch)) & ~FMR2_RFS0);
1044 cpc_writeb(falcbase + F_REG(FMR3, ch),
1045 cpc_readb(falcbase + F_REG(FMR3, ch)) & ~FMR3_EXTIW);
1046
1047 /* MultiFrame Resynchronization */
1048 cpc_writeb(falcbase + F_REG(FMR1, ch),
1049 cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_MFCS);
1050
1051 /* Automatic Loss of Multiframe > 914 CRC errors */
1052 cpc_writeb(falcbase + F_REG(FMR2, ch),
1053 cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_ALMF);
1054
1055 /* S1 and SI1/SI2 spare Bits set to 1 */
1056 cpc_writeb(falcbase + F_REG(XSP, ch),
1057 cpc_readb(falcbase + F_REG(XSP, ch)) & ~XSP_AXS);
1058 cpc_writeb(falcbase + F_REG(XSP, ch),
1059 cpc_readb(falcbase + F_REG(XSP, ch)) | XSP_EBP);
1060 cpc_writeb(falcbase + F_REG(XSP, ch),
1061 cpc_readb(falcbase + F_REG(XSP, ch)) | XSP_XS13 | XSP_XS15);
1062
1063 /* Automatic Force Resynchronization */
1064 cpc_writeb(falcbase + F_REG(FMR1, ch),
1065 cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_AFR);
1066
1067 /* Transmit Automatic Remote Alarm */
1068 cpc_writeb(falcbase + F_REG(FMR2, ch),
1069 cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_AXRA);
1070
1071 /* Transmit Spare Bits for National Use (Y, Sn, Sa) */
1072 cpc_writeb(falcbase + F_REG(XSW, ch),
1073 cpc_readb(falcbase + F_REG(XSW, ch)) |
1074 XSW_XY0 | XSW_XY1 | XSW_XY2 | XSW_XY3 | XSW_XY4);
1075 break;
1076
1077 case PC300_FR_MF_NON_CRC4:
1078 case PC300_FR_D4:
1079 pfalc->multiframe_mode = 0;
1080 cpc_writeb(falcbase + F_REG(FMR1, ch),
1081 cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_XFS);
1082 cpc_writeb(falcbase + F_REG(FMR2, ch),
1083 cpc_readb(falcbase + F_REG(FMR2, ch)) &
1084 ~(FMR2_RFS1 | FMR2_RFS0));
1085 cpc_writeb(falcbase + F_REG(XSW, ch),
1086 cpc_readb(falcbase + F_REG(XSW, ch)) | XSW_XSIS);
1087 cpc_writeb(falcbase + F_REG(XSP, ch),
1088 cpc_readb(falcbase + F_REG(XSP, ch)) | XSP_XSIF);
1089
1090 /* Automatic Force Resynchronization */
1091 cpc_writeb(falcbase + F_REG(FMR1, ch),
1092 cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_AFR);
1093
1094 /* Transmit Automatic Remote Alarm */
1095 cpc_writeb(falcbase + F_REG(FMR2, ch),
1096 cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_AXRA);
1097
1098 /* Transmit Spare Bits for National Use (Y, Sn, Sa) */
1099 cpc_writeb(falcbase + F_REG(XSW, ch),
1100 cpc_readb(falcbase + F_REG(XSW, ch)) |
1101 XSW_XY0 | XSW_XY1 | XSW_XY2 | XSW_XY3 | XSW_XY4);
1102 break;
1103
1104 case PC300_FR_UNFRAMED:
1105 pfalc->multiframe_mode = 0;
1106 cpc_writeb(falcbase + F_REG(FMR1, ch),
1107 cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_XFS);
1108 cpc_writeb(falcbase + F_REG(FMR2, ch),
1109 cpc_readb(falcbase + F_REG(FMR2, ch)) &
1110 ~(FMR2_RFS1 | FMR2_RFS0));
1111 cpc_writeb(falcbase + F_REG(XSP, ch),
1112 cpc_readb(falcbase + F_REG(XSP, ch)) | XSP_TT0);
1113 cpc_writeb(falcbase + F_REG(XSW, ch),
1114 cpc_readb(falcbase + F_REG(XSW, ch)) &
1115 ~(XSW_XTM|XSW_XY0|XSW_XY1|XSW_XY2|XSW_XY3|XSW_XY4));
1116 cpc_writeb(falcbase + F_REG(TSWM, ch), 0xff);
1117 cpc_writeb(falcbase + F_REG(FMR2, ch),
1118 cpc_readb(falcbase + F_REG(FMR2, ch)) |
1119 (FMR2_RTM | FMR2_DAIS));
1120 cpc_writeb(falcbase + F_REG(FMR2, ch),
1121 cpc_readb(falcbase + F_REG(FMR2, ch)) & ~FMR2_AXRA);
1122 cpc_writeb(falcbase + F_REG(FMR1, ch),
1123 cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_AFR);
1124 pfalc->sync = 1;
1125 cpc_writeb(falcbase + card->hw.cpld_reg2,
1126 cpc_readb(falcbase + card->hw.cpld_reg2) |
1127 (CPLD_REG2_FALC_LED2 << (2 * ch)));
1128 break;
1129 }
1130
1131 /* No signaling */
1132 cpc_writeb(falcbase + F_REG(XSP, ch),
1133 cpc_readb(falcbase + F_REG(XSP, ch)) & ~XSP_CASEN);
1134 cpc_writeb(falcbase + F_REG(CCR1, ch), 0);
1135
1136 cpc_writeb(falcbase + F_REG(LIM1, ch),
1137 cpc_readb(falcbase + F_REG(LIM1, ch)) | LIM1_RIL0 | LIM1_RIL1);
1138 cpc_writeb(falcbase + F_REG(LIM2, ch), (LIM2_LOS1 | dja));
1139
1140 /* Transmit Clock-Slot Offset */
1141 cpc_writeb(falcbase + F_REG(XC0, ch),
1142 cpc_readb(falcbase + F_REG(XC0, ch)) | 0x01);
1143 /* Transmit Time-slot Offset */
1144 cpc_writeb(falcbase + F_REG(XC1, ch), 0x3e);
1145 /* Receive Clock-Slot offset */
1146 cpc_writeb(falcbase + F_REG(RC0, ch), 0x05);
1147 /* Receive Time-slot offset */
1148 cpc_writeb(falcbase + F_REG(RC1, ch), 0x00);
1149
1150 /* LOS Detection after 176 consecutive 0s */
1151 cpc_writeb(falcbase + F_REG(PCDR, ch), 0x0a);
1152 /* LOS Recovery after 22 ones in the time window of PCD */
1153 cpc_writeb(falcbase + F_REG(PCRR, ch), 0x15);
1154
1155 cpc_writeb(falcbase + F_REG(IDLE, ch), 0x7f);
1156
1157 falc_close_all_timeslots(card, ch);
1158}
1159
1160static void falc_init_hdlc(pc300_t * card, int ch)
1161{
1162 void __iomem *falcbase = card->hw.falcbase;
1163 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
1164 pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
1165
1166 /* Enable transparent data transfer */
1167 if (conf->fr_mode == PC300_FR_UNFRAMED) {
1168 cpc_writeb(falcbase + F_REG(MODE, ch), 0);
1169 } else {
1170 cpc_writeb(falcbase + F_REG(MODE, ch),
1171 cpc_readb(falcbase + F_REG(MODE, ch)) |
1172 (MODE_HRAC | MODE_MDS2));
1173 cpc_writeb(falcbase + F_REG(RAH2, ch), 0xff);
1174 cpc_writeb(falcbase + F_REG(RAH1, ch), 0xff);
1175 cpc_writeb(falcbase + F_REG(RAL2, ch), 0xff);
1176 cpc_writeb(falcbase + F_REG(RAL1, ch), 0xff);
1177 }
1178
1179 /* Tx/Rx reset */
1180 falc_issue_cmd(card, ch, CMDR_RRES | CMDR_XRES | CMDR_SRES);
1181
1182 /* Enable interrupt sources */
1183 falc_intr_enable(card, ch);
1184}
1185
1186static void te_config(pc300_t * card, int ch)
1187{
1188 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
1189 pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
1190 falc_t *pfalc = (falc_t *) & chan->falc;
1191 void __iomem *falcbase = card->hw.falcbase;
1192 u8 dummy;
1193 unsigned long flags;
1194
1195 memset(pfalc, 0, sizeof(falc_t));
1196 switch (conf->media) {
1197 case IF_IFACE_T1:
1198 pfalc->num_channels = NUM_OF_T1_CHANNELS;
1199 pfalc->offset = 1;
1200 break;
1201 case IF_IFACE_E1:
1202 pfalc->num_channels = NUM_OF_E1_CHANNELS;
1203 pfalc->offset = 0;
1204 break;
1205 }
1206 if (conf->tslot_bitmap == 0xffffffffUL)
1207 pfalc->full_bandwidth = 1;
1208 else
1209 pfalc->full_bandwidth = 0;
1210
1211 CPC_LOCK(card, flags);
1212 /* Reset the FALC chip */
1213 cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
1214 cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) |
1215 (CPLD_REG1_FALC_RESET << (2 * ch)));
1216 udelay(10000);
1217 cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
1218 cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) &
1219 ~(CPLD_REG1_FALC_RESET << (2 * ch)));
1220
1221 if (conf->media == IF_IFACE_T1) {
1222 falc_init_t1(card, ch);
1223 } else {
1224 falc_init_e1(card, ch);
1225 }
1226 falc_init_hdlc(card, ch);
1227 if (conf->rx_sens == PC300_RX_SENS_SH) {
1228 cpc_writeb(falcbase + F_REG(LIM0, ch),
1229 cpc_readb(falcbase + F_REG(LIM0, ch)) & ~LIM0_EQON);
1230 } else {
1231 cpc_writeb(falcbase + F_REG(LIM0, ch),
1232 cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_EQON);
1233 }
1234 cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
1235 cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) |
1236 ((CPLD_REG2_FALC_TX_CLK | CPLD_REG2_FALC_RX_CLK) << (2 * ch)));
1237
1238 /* Clear all interrupt registers */
1239 dummy = cpc_readb(falcbase + F_REG(FISR0, ch)) +
1240 cpc_readb(falcbase + F_REG(FISR1, ch)) +
1241 cpc_readb(falcbase + F_REG(FISR2, ch)) +
1242 cpc_readb(falcbase + F_REG(FISR3, ch));
1243 CPC_UNLOCK(card, flags);
1244}
1245
1246static void falc_check_status(pc300_t * card, int ch, unsigned char frs0)
1247{
1248 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
1249 pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
1250 falc_t *pfalc = (falc_t *) & chan->falc;
1251 void __iomem *falcbase = card->hw.falcbase;
1252
1253 /* Verify LOS */
1254 if (frs0 & FRS0_LOS) {
1255 if (!pfalc->red_alarm) {
1256 pfalc->red_alarm = 1;
1257 pfalc->los++;
1258 if (!pfalc->blue_alarm) {
1259 // EVENT_FALC_ABNORMAL
1260 if (conf->media == IF_IFACE_T1) {
1261 /* Disable this interrupt as it may otherwise interfere
1262 * with other working boards. */
1263 cpc_writeb(falcbase + F_REG(IMR0, ch),
1264 cpc_readb(falcbase + F_REG(IMR0, ch))
1265 | IMR0_PDEN);
1266 }
1267 falc_disable_comm(card, ch);
1268 // EVENT_FALC_ABNORMAL
1269 }
1270 }
1271 } else {
1272 if (pfalc->red_alarm) {
1273 pfalc->red_alarm = 0;
1274 pfalc->losr++;
1275 }
1276 }
1277
1278 if (conf->fr_mode != PC300_FR_UNFRAMED) {
1279 /* Verify AIS alarm */
1280 if (frs0 & FRS0_AIS) {
1281 if (!pfalc->blue_alarm) {
1282 pfalc->blue_alarm = 1;
1283 pfalc->ais++;
1284 // EVENT_AIS
1285 if (conf->media == IF_IFACE_T1) {
1286 /* Disable this interrupt as it may otherwise interfere with other working boards. */
1287 cpc_writeb(falcbase + F_REG(IMR0, ch),
1288 cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN);
1289 }
1290 falc_disable_comm(card, ch);
1291 // EVENT_AIS
1292 }
1293 } else {
1294 pfalc->blue_alarm = 0;
1295 }
1296
1297 /* Verify LFA */
1298 if (frs0 & FRS0_LFA) {
1299 if (!pfalc->loss_fa) {
1300 pfalc->loss_fa = 1;
1301 pfalc->lfa++;
1302 if (!pfalc->blue_alarm && !pfalc->red_alarm) {
1303 // EVENT_FALC_ABNORMAL
1304 if (conf->media == IF_IFACE_T1) {
1305 /* Disable this interrupt as it may otherwise
1306 * interfere with other working boards. */
1307 cpc_writeb(falcbase + F_REG(IMR0, ch),
1308 cpc_readb(falcbase + F_REG(IMR0, ch))
1309 | IMR0_PDEN);
1310 }
1311 falc_disable_comm(card, ch);
1312 // EVENT_FALC_ABNORMAL
1313 }
1314 }
1315 } else {
1316 if (pfalc->loss_fa) {
1317 pfalc->loss_fa = 0;
1318 pfalc->farec++;
1319 }
1320 }
1321
1322 /* Verify LMFA */
1323 if (pfalc->multiframe_mode && (frs0 & FRS0_LMFA)) {
1324 /* D4 or CRC4 frame mode */
1325 if (!pfalc->loss_mfa) {
1326 pfalc->loss_mfa = 1;
1327 pfalc->lmfa++;
1328 if (!pfalc->blue_alarm && !pfalc->red_alarm &&
1329 !pfalc->loss_fa) {
1330 // EVENT_FALC_ABNORMAL
1331 if (conf->media == IF_IFACE_T1) {
1332 /* Disable this interrupt as it may otherwise
1333 * interfere with other working boards. */
1334 cpc_writeb(falcbase + F_REG(IMR0, ch),
1335 cpc_readb(falcbase + F_REG(IMR0, ch))
1336 | IMR0_PDEN);
1337 }
1338 falc_disable_comm(card, ch);
1339 // EVENT_FALC_ABNORMAL
1340 }
1341 }
1342 } else {
1343 pfalc->loss_mfa = 0;
1344 }
1345
1346 /* Verify Remote Alarm */
1347 if (frs0 & FRS0_RRA) {
1348 if (!pfalc->yellow_alarm) {
1349 pfalc->yellow_alarm = 1;
1350 pfalc->rai++;
1351 if (pfalc->sync) {
1352 // EVENT_RAI
1353 falc_disable_comm(card, ch);
1354 // EVENT_RAI
1355 }
1356 }
1357 } else {
1358 pfalc->yellow_alarm = 0;
1359 }
1360 } /* if !PC300_UNFRAMED */
1361
1362 if (pfalc->red_alarm || pfalc->loss_fa ||
1363 pfalc->loss_mfa || pfalc->blue_alarm) {
1364 if (pfalc->sync) {
1365 pfalc->sync = 0;
1366 chan->d.line_off++;
1367 cpc_writeb(falcbase + card->hw.cpld_reg2,
1368 cpc_readb(falcbase + card->hw.cpld_reg2) &
1369 ~(CPLD_REG2_FALC_LED2 << (2 * ch)));
1370 }
1371 } else {
1372 if (!pfalc->sync) {
1373 pfalc->sync = 1;
1374 chan->d.line_on++;
1375 cpc_writeb(falcbase + card->hw.cpld_reg2,
1376 cpc_readb(falcbase + card->hw.cpld_reg2) |
1377 (CPLD_REG2_FALC_LED2 << (2 * ch)));
1378 }
1379 }
1380
1381 if (pfalc->sync && !pfalc->yellow_alarm) {
1382 if (!pfalc->active) {
1383 // EVENT_FALC_NORMAL
1384 if (pfalc->loop_active) {
1385 return;
1386 }
1387 if (conf->media == IF_IFACE_T1) {
1388 cpc_writeb(falcbase + F_REG(IMR0, ch),
1389 cpc_readb(falcbase + F_REG(IMR0, ch)) & ~IMR0_PDEN);
1390 }
1391 falc_enable_comm(card, ch);
1392 // EVENT_FALC_NORMAL
1393 pfalc->active = 1;
1394 }
1395 } else {
1396 if (pfalc->active) {
1397 pfalc->active = 0;
1398 }
1399 }
1400}
1401
1402static void falc_update_stats(pc300_t * card, int ch)
1403{
1404 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
1405 pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
1406 falc_t *pfalc = (falc_t *) & chan->falc;
1407 void __iomem *falcbase = card->hw.falcbase;
1408 u16 counter;
1409
1410 counter = cpc_readb(falcbase + F_REG(FECL, ch));
1411 counter |= cpc_readb(falcbase + F_REG(FECH, ch)) << 8;
1412 pfalc->fec += counter;
1413
1414 counter = cpc_readb(falcbase + F_REG(CVCL, ch));
1415 counter |= cpc_readb(falcbase + F_REG(CVCH, ch)) << 8;
1416 pfalc->cvc += counter;
1417
1418 counter = cpc_readb(falcbase + F_REG(CECL, ch));
1419 counter |= cpc_readb(falcbase + F_REG(CECH, ch)) << 8;
1420 pfalc->cec += counter;
1421
1422 counter = cpc_readb(falcbase + F_REG(EBCL, ch));
1423 counter |= cpc_readb(falcbase + F_REG(EBCH, ch)) << 8;
1424 pfalc->ebc += counter;
1425
1426 if (cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_EPRM) {
1427 mdelay(10);
1428 counter = cpc_readb(falcbase + F_REG(BECL, ch));
1429 counter |= cpc_readb(falcbase + F_REG(BECH, ch)) << 8;
1430 pfalc->bec += counter;
1431
1432 if (((conf->media == IF_IFACE_T1) &&
1433 (cpc_readb(falcbase + F_REG(FRS1, ch)) & FRS1_LLBAD) &&
1434 (!(cpc_readb(falcbase + F_REG(FRS1, ch)) & FRS1_PDEN))) ||
1435 ((conf->media == IF_IFACE_E1) &&
1436 (cpc_readb(falcbase + F_REG(RSP, ch)) & RSP_LLBAD))) {
1437 pfalc->prbs = 2;
1438 } else {
1439 pfalc->prbs = 1;
1440 }
1441 }
1442}
1443
1444/*----------------------------------------------------------------------------
1445 * falc_remote_loop
1446 *----------------------------------------------------------------------------
1447 * Description: In the remote loopback mode the clock and data recovered
1448 * from the line inputs RL1/2 or RDIP/RDIN are routed back
1449 * to the line outputs XL1/2 or XDOP/XDON via the analog
1450 * transmitter. As in normal mode they are processed by
1451 * the synchronizer and then sent to the system interface.
1452 *----------------------------------------------------------------------------
1453 */
1454static void falc_remote_loop(pc300_t * card, int ch, int loop_on)
1455{
1456 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
1457 pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
1458 falc_t *pfalc = (falc_t *) & chan->falc;
1459 void __iomem *falcbase = card->hw.falcbase;
1460
1461 if (loop_on) {
1462 // EVENT_FALC_ABNORMAL
1463 if (conf->media == IF_IFACE_T1) {
1464 /* Disable this interrupt as it may otherwise interfere with
1465 * other working boards. */
1466 cpc_writeb(falcbase + F_REG(IMR0, ch),
1467 cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN);
1468 }
1469 falc_disable_comm(card, ch);
1470 // EVENT_FALC_ABNORMAL
1471 cpc_writeb(falcbase + F_REG(LIM1, ch),
1472 cpc_readb(falcbase + F_REG(LIM1, ch)) | LIM1_RL);
1473 pfalc->loop_active = 1;
1474 } else {
1475 cpc_writeb(falcbase + F_REG(LIM1, ch),
1476 cpc_readb(falcbase + F_REG(LIM1, ch)) & ~LIM1_RL);
1477 pfalc->sync = 0;
1478 cpc_writeb(falcbase + card->hw.cpld_reg2,
1479 cpc_readb(falcbase + card->hw.cpld_reg2) &
1480 ~(CPLD_REG2_FALC_LED2 << (2 * ch)));
1481 pfalc->active = 0;
1482 falc_issue_cmd(card, ch, CMDR_XRES);
1483 pfalc->loop_active = 0;
1484 }
1485}
1486
1487/*----------------------------------------------------------------------------
1488 * falc_local_loop
1489 *----------------------------------------------------------------------------
1490 * Description: The local loopback mode disconnects the receive lines
1491 * RL1/RL2 resp. RDIP/RDIN from the receiver. Instead of the
1492 * signals coming from the line the data provided by system
1493 * interface are routed through the analog receiver back to
1494 * the system interface. The unipolar bit stream will be
1495 * undisturbed transmitted on the line. Receiver and transmitter
1496 * coding must be identical.
1497 *----------------------------------------------------------------------------
1498 */
1499static void falc_local_loop(pc300_t * card, int ch, int loop_on)
1500{
1501 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
1502 falc_t *pfalc = (falc_t *) & chan->falc;
1503 void __iomem *falcbase = card->hw.falcbase;
1504
1505 if (loop_on) {
1506 cpc_writeb(falcbase + F_REG(LIM0, ch),
1507 cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_LL);
1508 pfalc->loop_active = 1;
1509 } else {
1510 cpc_writeb(falcbase + F_REG(LIM0, ch),
1511 cpc_readb(falcbase + F_REG(LIM0, ch)) & ~LIM0_LL);
1512 pfalc->loop_active = 0;
1513 }
1514}
1515
1516/*----------------------------------------------------------------------------
1517 * falc_payload_loop
1518 *----------------------------------------------------------------------------
1519 * Description: This routine allows to enable/disable payload loopback.
1520 * When the payload loop is activated, the received 192 bits
1521 * of payload data will be looped back to the transmit
1522 * direction. The framing bits, CRC6 and DL bits are not
1523 * looped. They are originated by the FALC-LH transmitter.
1524 *----------------------------------------------------------------------------
1525 */
1526static void falc_payload_loop(pc300_t * card, int ch, int loop_on)
1527{
1528 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
1529 pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
1530 falc_t *pfalc = (falc_t *) & chan->falc;
1531 void __iomem *falcbase = card->hw.falcbase;
1532
1533 if (loop_on) {
1534 // EVENT_FALC_ABNORMAL
1535 if (conf->media == IF_IFACE_T1) {
1536 /* Disable this interrupt as it may otherwise interfere with
1537 * other working boards. */
1538 cpc_writeb(falcbase + F_REG(IMR0, ch),
1539 cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN);
1540 }
1541 falc_disable_comm(card, ch);
1542 // EVENT_FALC_ABNORMAL
1543 cpc_writeb(falcbase + F_REG(FMR2, ch),
1544 cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_PLB);
1545 if (conf->media == IF_IFACE_T1) {
1546 cpc_writeb(falcbase + F_REG(FMR4, ch),
1547 cpc_readb(falcbase + F_REG(FMR4, ch)) | FMR4_TM);
1548 } else {
1549 cpc_writeb(falcbase + F_REG(FMR5, ch),
1550 cpc_readb(falcbase + F_REG(FMR5, ch)) | XSP_TT0);
1551 }
1552 falc_open_all_timeslots(card, ch);
1553 pfalc->loop_active = 2;
1554 } else {
1555 cpc_writeb(falcbase + F_REG(FMR2, ch),
1556 cpc_readb(falcbase + F_REG(FMR2, ch)) & ~FMR2_PLB);
1557 if (conf->media == IF_IFACE_T1) {
1558 cpc_writeb(falcbase + F_REG(FMR4, ch),
1559 cpc_readb(falcbase + F_REG(FMR4, ch)) & ~FMR4_TM);
1560 } else {
1561 cpc_writeb(falcbase + F_REG(FMR5, ch),
1562 cpc_readb(falcbase + F_REG(FMR5, ch)) & ~XSP_TT0);
1563 }
1564 pfalc->sync = 0;
1565 cpc_writeb(falcbase + card->hw.cpld_reg2,
1566 cpc_readb(falcbase + card->hw.cpld_reg2) &
1567 ~(CPLD_REG2_FALC_LED2 << (2 * ch)));
1568 pfalc->active = 0;
1569 falc_issue_cmd(card, ch, CMDR_XRES);
1570 pfalc->loop_active = 0;
1571 }
1572}
1573
1574/*----------------------------------------------------------------------------
1575 * turn_off_xlu
1576 *----------------------------------------------------------------------------
1577 * Description: Turns XLU bit off in the proper register
1578 *----------------------------------------------------------------------------
1579 */
1580static void turn_off_xlu(pc300_t * card, int ch)
1581{
1582 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
1583 pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
1584 void __iomem *falcbase = card->hw.falcbase;
1585
1586 if (conf->media == IF_IFACE_T1) {
1587 cpc_writeb(falcbase + F_REG(FMR5, ch),
1588 cpc_readb(falcbase + F_REG(FMR5, ch)) & ~FMR5_XLU);
1589 } else {
1590 cpc_writeb(falcbase + F_REG(FMR3, ch),
1591 cpc_readb(falcbase + F_REG(FMR3, ch)) & ~FMR3_XLU);
1592 }
1593}
1594
1595/*----------------------------------------------------------------------------
1596 * turn_off_xld
1597 *----------------------------------------------------------------------------
1598 * Description: Turns XLD bit off in the proper register
1599 *----------------------------------------------------------------------------
1600 */
1601static void turn_off_xld(pc300_t * card, int ch)
1602{
1603 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
1604 pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
1605 void __iomem *falcbase = card->hw.falcbase;
1606
1607 if (conf->media == IF_IFACE_T1) {
1608 cpc_writeb(falcbase + F_REG(FMR5, ch),
1609 cpc_readb(falcbase + F_REG(FMR5, ch)) & ~FMR5_XLD);
1610 } else {
1611 cpc_writeb(falcbase + F_REG(FMR3, ch),
1612 cpc_readb(falcbase + F_REG(FMR3, ch)) & ~FMR3_XLD);
1613 }
1614}
1615
1616/*----------------------------------------------------------------------------
1617 * falc_generate_loop_up_code
1618 *----------------------------------------------------------------------------
1619 * Description: This routine writes the proper FALC chip register in order
1620 * to generate a LOOP activation code over a T1/E1 line.
1621 *----------------------------------------------------------------------------
1622 */
1623static void falc_generate_loop_up_code(pc300_t * card, int ch)
1624{
1625 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
1626 pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
1627 falc_t *pfalc = (falc_t *) & chan->falc;
1628 void __iomem *falcbase = card->hw.falcbase;
1629
1630 if (conf->media == IF_IFACE_T1) {
1631 cpc_writeb(falcbase + F_REG(FMR5, ch),
1632 cpc_readb(falcbase + F_REG(FMR5, ch)) | FMR5_XLU);
1633 } else {
1634 cpc_writeb(falcbase + F_REG(FMR3, ch),
1635 cpc_readb(falcbase + F_REG(FMR3, ch)) | FMR3_XLU);
1636 }
1637 // EVENT_FALC_ABNORMAL
1638 if (conf->media == IF_IFACE_T1) {
1639 /* Disable this interrupt as it may otherwise interfere with
1640 * other working boards. */
1641 cpc_writeb(falcbase + F_REG(IMR0, ch),
1642 cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN);
1643 }
1644 falc_disable_comm(card, ch);
1645 // EVENT_FALC_ABNORMAL
1646 pfalc->loop_gen = 1;
1647}
1648
1649/*----------------------------------------------------------------------------
1650 * falc_generate_loop_down_code
1651 *----------------------------------------------------------------------------
1652 * Description: This routine writes the proper FALC chip register in order
1653 * to generate a LOOP deactivation code over a T1/E1 line.
1654 *----------------------------------------------------------------------------
1655 */
1656static void falc_generate_loop_down_code(pc300_t * card, int ch)
1657{
1658 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
1659 pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
1660 falc_t *pfalc = (falc_t *) & chan->falc;
1661 void __iomem *falcbase = card->hw.falcbase;
1662
1663 if (conf->media == IF_IFACE_T1) {
1664 cpc_writeb(falcbase + F_REG(FMR5, ch),
1665 cpc_readb(falcbase + F_REG(FMR5, ch)) | FMR5_XLD);
1666 } else {
1667 cpc_writeb(falcbase + F_REG(FMR3, ch),
1668 cpc_readb(falcbase + F_REG(FMR3, ch)) | FMR3_XLD);
1669 }
1670 pfalc->sync = 0;
1671 cpc_writeb(falcbase + card->hw.cpld_reg2,
1672 cpc_readb(falcbase + card->hw.cpld_reg2) &
1673 ~(CPLD_REG2_FALC_LED2 << (2 * ch)));
1674 pfalc->active = 0;
1675//? falc_issue_cmd(card, ch, CMDR_XRES);
1676 pfalc->loop_gen = 0;
1677}
1678
1679/*----------------------------------------------------------------------------
1680 * falc_pattern_test
1681 *----------------------------------------------------------------------------
1682 * Description: This routine generates a pattern code and checks
1683 * it on the reception side.
1684 *----------------------------------------------------------------------------
1685 */
1686static void falc_pattern_test(pc300_t * card, int ch, unsigned int activate)
1687{
1688 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
1689 pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
1690 falc_t *pfalc = (falc_t *) & chan->falc;
1691 void __iomem *falcbase = card->hw.falcbase;
1692
1693 if (activate) {
1694 pfalc->prbs = 1;
1695 pfalc->bec = 0;
1696 if (conf->media == IF_IFACE_T1) {
1697 /* Disable local loop activation/deactivation detect */
1698 cpc_writeb(falcbase + F_REG(IMR3, ch),
1699 cpc_readb(falcbase + F_REG(IMR3, ch)) | IMR3_LLBSC);
1700 } else {
1701 /* Disable local loop activation/deactivation detect */
1702 cpc_writeb(falcbase + F_REG(IMR1, ch),
1703 cpc_readb(falcbase + F_REG(IMR1, ch)) | IMR1_LLBSC);
1704 }
1705 /* Activates generation and monitoring of PRBS
1706 * (Pseudo Random Bit Sequence) */
1707 cpc_writeb(falcbase + F_REG(LCR1, ch),
1708 cpc_readb(falcbase + F_REG(LCR1, ch)) | LCR1_EPRM | LCR1_XPRBS);
1709 } else {
1710 pfalc->prbs = 0;
1711 /* Deactivates generation and monitoring of PRBS
1712 * (Pseudo Random Bit Sequence) */
1713 cpc_writeb(falcbase + F_REG(LCR1, ch),
1714 cpc_readb(falcbase+F_REG(LCR1,ch)) & ~(LCR1_EPRM | LCR1_XPRBS));
1715 if (conf->media == IF_IFACE_T1) {
1716 /* Enable local loop activation/deactivation detect */
1717 cpc_writeb(falcbase + F_REG(IMR3, ch),
1718 cpc_readb(falcbase + F_REG(IMR3, ch)) & ~IMR3_LLBSC);
1719 } else {
1720 /* Enable local loop activation/deactivation detect */
1721 cpc_writeb(falcbase + F_REG(IMR1, ch),
1722 cpc_readb(falcbase + F_REG(IMR1, ch)) & ~IMR1_LLBSC);
1723 }
1724 }
1725}
1726
1727/*----------------------------------------------------------------------------
1728 * falc_pattern_test_error
1729 *----------------------------------------------------------------------------
1730 * Description: This routine returns the bit error counter value
1731 *----------------------------------------------------------------------------
1732 */
1733static u16 falc_pattern_test_error(pc300_t * card, int ch)
1734{
1735 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
1736 falc_t *pfalc = (falc_t *) & chan->falc;
1737
1738 return pfalc->bec;
1739}
1740
1741/**********************************/
1742/*** Net Interface Routines ***/
1743/**********************************/
1744
1745static void
1746cpc_trace(struct net_device *dev, struct sk_buff *skb_main, char rx_tx)
1747{
1748 struct sk_buff *skb;
1749
1750 if ((skb = dev_alloc_skb(10 + skb_main->len)) == NULL) {
1751 printk("%s: out of memory\n", dev->name);
1752 return;
1753 }
1754 skb_put(skb, 10 + skb_main->len);
1755
1756 skb->dev = dev;
1757 skb->protocol = htons(ETH_P_CUST);
1758 skb_reset_mac_header(skb);
1759 skb->pkt_type = PACKET_HOST;
1760 skb->len = 10 + skb_main->len;
1761
1762 skb_copy_to_linear_data(skb, dev->name, 5);
1763 skb->data[5] = '[';
1764 skb->data[6] = rx_tx;
1765 skb->data[7] = ']';
1766 skb->data[8] = ':';
1767 skb->data[9] = ' ';
1768 skb_copy_from_linear_data(skb_main, &skb->data[10], skb_main->len);
1769
1770 netif_rx(skb);
1771}
1772
1773static void cpc_tx_timeout(struct net_device *dev)
1774{
1775 pc300dev_t *d = (pc300dev_t *) dev_to_hdlc(dev)->priv;
1776 pc300ch_t *chan = (pc300ch_t *) d->chan;
1777 pc300_t *card = (pc300_t *) chan->card;
1778 int ch = chan->channel;
1779 unsigned long flags;
1780 u8 ilar;
1781
1782 dev->stats.tx_errors++;
1783 dev->stats.tx_aborted_errors++;
1784 CPC_LOCK(card, flags);
1785 if ((ilar = cpc_readb(card->hw.scabase + ILAR)) != 0) {
1786 printk("%s: ILAR=0x%x\n", dev->name, ilar);
1787 cpc_writeb(card->hw.scabase + ILAR, ilar);
1788 cpc_writeb(card->hw.scabase + DMER, 0x80);
1789 }
1790 if (card->hw.type == PC300_TE) {
1791 cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
1792 cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) &
1793 ~(CPLD_REG2_FALC_LED1 << (2 * ch)));
1794 }
1795 dev->trans_start = jiffies; /* prevent tx timeout */
1796 CPC_UNLOCK(card, flags);
1797 netif_wake_queue(dev);
1798}
1799
1800static int cpc_queue_xmit(struct sk_buff *skb, struct net_device *dev)
1801{
1802 pc300dev_t *d = (pc300dev_t *) dev_to_hdlc(dev)->priv;
1803 pc300ch_t *chan = (pc300ch_t *) d->chan;
1804 pc300_t *card = (pc300_t *) chan->card;
1805 int ch = chan->channel;
1806 unsigned long flags;
1807#ifdef PC300_DEBUG_TX
1808 int i;
1809#endif
1810
1811 if (!netif_carrier_ok(dev)) {
1812 /* DCD must be OFF: drop packet */
1813 dev_kfree_skb(skb);
1814 dev->stats.tx_errors++;
1815 dev->stats.tx_carrier_errors++;
1816 return 0;
1817 } else if (cpc_readb(card->hw.scabase + M_REG(ST3, ch)) & ST3_DCD) {
1818 printk("%s: DCD is OFF. Going administrative down.\n", dev->name);
1819 dev->stats.tx_errors++;
1820 dev->stats.tx_carrier_errors++;
1821 dev_kfree_skb(skb);
1822 netif_carrier_off(dev);
1823 CPC_LOCK(card, flags);
1824 cpc_writeb(card->hw.scabase + M_REG(CMD, ch), CMD_TX_BUF_CLR);
1825 if (card->hw.type == PC300_TE) {
1826 cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
1827 cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) &
1828 ~(CPLD_REG2_FALC_LED1 << (2 * ch)));
1829 }
1830 CPC_UNLOCK(card, flags);
1831 netif_wake_queue(dev);
1832 return 0;
1833 }
1834
1835 /* Write buffer to DMA buffers */
1836 if (dma_buf_write(card, ch, (u8 *)skb->data, skb->len) != 0) {
1837// printk("%s: write error. Dropping TX packet.\n", dev->name);
1838 netif_stop_queue(dev);
1839 dev_kfree_skb(skb);
1840 dev->stats.tx_errors++;
1841 dev->stats.tx_dropped++;
1842 return 0;
1843 }
1844#ifdef PC300_DEBUG_TX
1845 printk("%s T:", dev->name);
1846 for (i = 0; i < skb->len; i++)
1847 printk(" %02x", *(skb->data + i));
1848 printk("\n");
1849#endif
1850
1851 if (d->trace_on) {
1852 cpc_trace(dev, skb, 'T');
1853 }
1854
1855 /* Start transmission */
1856 CPC_LOCK(card, flags);
1857 /* verify if it has more than one free descriptor */
1858 if (card->chan[ch].nfree_tx_bd <= 1) {
1859 /* don't have so stop the queue */
1860 netif_stop_queue(dev);
1861 }
1862 cpc_writel(card->hw.scabase + DTX_REG(EDAL, ch),
1863 TX_BD_ADDR(ch, chan->tx_next_bd));
1864 cpc_writeb(card->hw.scabase + M_REG(CMD, ch), CMD_TX_ENA);
1865 cpc_writeb(card->hw.scabase + DSR_TX(ch), DSR_DE);
1866 if (card->hw.type == PC300_TE) {
1867 cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
1868 cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) |
1869 (CPLD_REG2_FALC_LED1 << (2 * ch)));
1870 }
1871 CPC_UNLOCK(card, flags);
1872 dev_kfree_skb(skb);
1873
1874 return 0;
1875}
1876
1877static void cpc_net_rx(struct net_device *dev)
1878{
1879 pc300dev_t *d = (pc300dev_t *) dev_to_hdlc(dev)->priv;
1880 pc300ch_t *chan = (pc300ch_t *) d->chan;
1881 pc300_t *card = (pc300_t *) chan->card;
1882 int ch = chan->channel;
1883#ifdef PC300_DEBUG_RX
1884 int i;
1885#endif
1886 int rxb;
1887 struct sk_buff *skb;
1888
1889 while (1) {
1890 if ((rxb = dma_get_rx_frame_size(card, ch)) == -1)
1891 return;
1892
1893 if (!netif_carrier_ok(dev)) {
1894 /* DCD must be OFF: drop packet */
1895 printk("%s : DCD is OFF - drop %d rx bytes\n", dev->name, rxb);
1896 skb = NULL;
1897 } else {
1898 if (rxb > (dev->mtu + 40)) { /* add headers */
1899 printk("%s : MTU exceeded %d\n", dev->name, rxb);
1900 skb = NULL;
1901 } else {
1902 skb = dev_alloc_skb(rxb);
1903 if (skb == NULL) {
1904 printk("%s: Memory squeeze!!\n", dev->name);
1905 return;
1906 }
1907 skb->dev = dev;
1908 }
1909 }
1910
1911 if (((rxb = dma_buf_read(card, ch, skb)) <= 0) || (skb == NULL)) {
1912#ifdef PC300_DEBUG_RX
1913 printk("%s: rxb = %x\n", dev->name, rxb);
1914#endif
1915 if ((skb == NULL) && (rxb > 0)) {
1916 /* rxb > dev->mtu */
1917 dev->stats.rx_errors++;
1918 dev->stats.rx_length_errors++;
1919 continue;
1920 }
1921
1922 if (rxb < 0) { /* Invalid frame */
1923 rxb = -rxb;
1924 if (rxb & DST_OVR) {
1925 dev->stats.rx_errors++;
1926 dev->stats.rx_fifo_errors++;
1927 }
1928 if (rxb & DST_CRC) {
1929 dev->stats.rx_errors++;
1930 dev->stats.rx_crc_errors++;
1931 }
1932 if (rxb & (DST_RBIT | DST_SHRT | DST_ABT)) {
1933 dev->stats.rx_errors++;
1934 dev->stats.rx_frame_errors++;
1935 }
1936 }
1937 if (skb) {
1938 dev_kfree_skb_irq(skb);
1939 }
1940 continue;
1941 }
1942
1943 dev->stats.rx_bytes += rxb;
1944
1945#ifdef PC300_DEBUG_RX
1946 printk("%s R:", dev->name);
1947 for (i = 0; i < skb->len; i++)
1948 printk(" %02x", *(skb->data + i));
1949 printk("\n");
1950#endif
1951 if (d->trace_on) {
1952 cpc_trace(dev, skb, 'R');
1953 }
1954 dev->stats.rx_packets++;
1955 skb->protocol = hdlc_type_trans(skb, dev);
1956 netif_rx(skb);
1957 }
1958}
1959
1960/************************************/
1961/*** PC300 Interrupt Routines ***/
1962/************************************/
1963static void sca_tx_intr(pc300dev_t *dev)
1964{
1965 pc300ch_t *chan = (pc300ch_t *)dev->chan;
1966 pc300_t *card = (pc300_t *)chan->card;
1967 int ch = chan->channel;
1968 volatile pcsca_bd_t __iomem * ptdescr;
1969
1970 /* Clean up descriptors from previous transmission */
1971 ptdescr = (card->hw.rambase +
1972 TX_BD_ADDR(ch,chan->tx_first_bd));
1973 while ((cpc_readl(card->hw.scabase + DTX_REG(CDAL,ch)) !=
1974 TX_BD_ADDR(ch,chan->tx_first_bd)) &&
1975 (cpc_readb(&ptdescr->status) & DST_OSB)) {
1976 dev->dev->stats.tx_packets++;
1977 dev->dev->stats.tx_bytes += cpc_readw(&ptdescr->len);
1978 cpc_writeb(&ptdescr->status, DST_OSB);
1979 cpc_writew(&ptdescr->len, 0);
1980 chan->nfree_tx_bd++;
1981 chan->tx_first_bd = (chan->tx_first_bd + 1) & (N_DMA_TX_BUF - 1);
1982 ptdescr = (card->hw.rambase + TX_BD_ADDR(ch,chan->tx_first_bd));
1983 }
1984
1985#ifdef CONFIG_PC300_MLPPP
1986 if (chan->conf.proto == PC300_PROTO_MLPPP) {
1987 cpc_tty_trigger_poll(dev);
1988 } else {
1989#endif
1990 /* Tell the upper layer we are ready to transmit more packets */
1991 netif_wake_queue(dev->dev);
1992#ifdef CONFIG_PC300_MLPPP
1993 }
1994#endif
1995}
1996
1997static void sca_intr(pc300_t * card)
1998{
1999 void __iomem *scabase = card->hw.scabase;
2000 volatile u32 status;
2001 int ch;
2002 int intr_count = 0;
2003 unsigned char dsr_rx;
2004
2005 while ((status = cpc_readl(scabase + ISR0)) != 0) {
2006 for (ch = 0; ch < card->hw.nchan; ch++) {
2007 pc300ch_t *chan = &card->chan[ch];
2008 pc300dev_t *d = &chan->d;
2009 struct net_device *dev = d->dev;
2010
2011 spin_lock(&card->card_lock);
2012
2013 /**** Reception ****/
2014 if (status & IR0_DRX((IR0_DMIA | IR0_DMIB), ch)) {
2015 u8 drx_stat = cpc_readb(scabase + DSR_RX(ch));
2016
2017 /* Clear RX interrupts */
2018 cpc_writeb(scabase + DSR_RX(ch), drx_stat | DSR_DWE);
2019
2020#ifdef PC300_DEBUG_INTR
2021 printk ("sca_intr: RX intr chan[%d] (st=0x%08lx, dsr=0x%02x)\n",
2022 ch, status, drx_stat);
2023#endif
2024 if (status & IR0_DRX(IR0_DMIA, ch)) {
2025 if (drx_stat & DSR_BOF) {
2026#ifdef CONFIG_PC300_MLPPP
2027 if (chan->conf.proto == PC300_PROTO_MLPPP) {
2028 /* verify if driver is TTY */
2029 if ((cpc_readb(scabase + DSR_RX(ch)) & DSR_DE)) {
2030 rx_dma_stop(card, ch);
2031 }
2032 cpc_tty_receive(d);
2033 rx_dma_start(card, ch);
2034 } else
2035#endif
2036 {
2037 if ((cpc_readb(scabase + DSR_RX(ch)) & DSR_DE)) {
2038 rx_dma_stop(card, ch);
2039 }
2040 cpc_net_rx(dev);
2041 /* Discard invalid frames */
2042 dev->stats.rx_errors++;
2043 dev->stats.rx_over_errors++;
2044 chan->rx_first_bd = 0;
2045 chan->rx_last_bd = N_DMA_RX_BUF - 1;
2046 rx_dma_start(card, ch);
2047 }
2048 }
2049 }
2050 if (status & IR0_DRX(IR0_DMIB, ch)) {
2051 if (drx_stat & DSR_EOM) {
2052 if (card->hw.type == PC300_TE) {
2053 cpc_writeb(card->hw.falcbase +
2054 card->hw.cpld_reg2,
2055 cpc_readb (card->hw.falcbase +
2056 card->hw.cpld_reg2) |
2057 (CPLD_REG2_FALC_LED1 << (2 * ch)));
2058 }
2059#ifdef CONFIG_PC300_MLPPP
2060 if (chan->conf.proto == PC300_PROTO_MLPPP) {
2061 /* verify if driver is TTY */
2062 cpc_tty_receive(d);
2063 } else {
2064 cpc_net_rx(dev);
2065 }
2066#else
2067 cpc_net_rx(dev);
2068#endif
2069 if (card->hw.type == PC300_TE) {
2070 cpc_writeb(card->hw.falcbase +
2071 card->hw.cpld_reg2,
2072 cpc_readb (card->hw.falcbase +
2073 card->hw.cpld_reg2) &
2074 ~ (CPLD_REG2_FALC_LED1 << (2 * ch)));
2075 }
2076 }
2077 }
2078 if (!(dsr_rx = cpc_readb(scabase + DSR_RX(ch)) & DSR_DE)) {
2079#ifdef PC300_DEBUG_INTR
2080 printk("%s: RX intr chan[%d] (st=0x%08lx, dsr=0x%02x, dsr2=0x%02x)\n",
2081 dev->name, ch, status, drx_stat, dsr_rx);
2082#endif
2083 cpc_writeb(scabase + DSR_RX(ch), (dsr_rx | DSR_DE) & 0xfe);
2084 }
2085 }
2086
2087 /**** Transmission ****/
2088 if (status & IR0_DTX((IR0_EFT | IR0_DMIA | IR0_DMIB), ch)) {
2089 u8 dtx_stat = cpc_readb(scabase + DSR_TX(ch));
2090
2091 /* Clear TX interrupts */
2092 cpc_writeb(scabase + DSR_TX(ch), dtx_stat | DSR_DWE);
2093
2094#ifdef PC300_DEBUG_INTR
2095 printk ("sca_intr: TX intr chan[%d] (st=0x%08lx, dsr=0x%02x)\n",
2096 ch, status, dtx_stat);
2097#endif
2098 if (status & IR0_DTX(IR0_EFT, ch)) {
2099 if (dtx_stat & DSR_UDRF) {
2100 if (cpc_readb (scabase + M_REG(TBN, ch)) != 0) {
2101 cpc_writeb(scabase + M_REG(CMD,ch), CMD_TX_BUF_CLR);
2102 }
2103 if (card->hw.type == PC300_TE) {
2104 cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
2105 cpc_readb (card->hw.falcbase +
2106 card->hw.cpld_reg2) &
2107 ~ (CPLD_REG2_FALC_LED1 << (2 * ch)));
2108 }
2109 dev->stats.tx_errors++;
2110 dev->stats.tx_fifo_errors++;
2111 sca_tx_intr(d);
2112 }
2113 }
2114 if (status & IR0_DTX(IR0_DMIA, ch)) {
2115 if (dtx_stat & DSR_BOF) {
2116 }
2117 }
2118 if (status & IR0_DTX(IR0_DMIB, ch)) {
2119 if (dtx_stat & DSR_EOM) {
2120 if (card->hw.type == PC300_TE) {
2121 cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
2122 cpc_readb (card->hw.falcbase +
2123 card->hw.cpld_reg2) &
2124 ~ (CPLD_REG2_FALC_LED1 << (2 * ch)));
2125 }
2126 sca_tx_intr(d);
2127 }
2128 }
2129 }
2130
2131 /**** MSCI ****/
2132 if (status & IR0_M(IR0_RXINTA, ch)) {
2133 u8 st1 = cpc_readb(scabase + M_REG(ST1, ch));
2134
2135 /* Clear MSCI interrupts */
2136 cpc_writeb(scabase + M_REG(ST1, ch), st1);
2137
2138#ifdef PC300_DEBUG_INTR
2139 printk("sca_intr: MSCI intr chan[%d] (st=0x%08lx, st1=0x%02x)\n",
2140 ch, status, st1);
2141#endif
2142 if (st1 & ST1_CDCD) { /* DCD changed */
2143 if (cpc_readb(scabase + M_REG(ST3, ch)) & ST3_DCD) {
2144 printk ("%s: DCD is OFF. Going administrative down.\n",
2145 dev->name);
2146#ifdef CONFIG_PC300_MLPPP
2147 if (chan->conf.proto != PC300_PROTO_MLPPP) {
2148 netif_carrier_off(dev);
2149 }
2150#else
2151 netif_carrier_off(dev);
2152
2153#endif
2154 card->chan[ch].d.line_off++;
2155 } else { /* DCD = 1 */
2156 printk ("%s: DCD is ON. Going administrative up.\n",
2157 dev->name);
2158#ifdef CONFIG_PC300_MLPPP
2159 if (chan->conf.proto != PC300_PROTO_MLPPP)
2160 /* verify if driver is not TTY */
2161#endif
2162 netif_carrier_on(dev);
2163 card->chan[ch].d.line_on++;
2164 }
2165 }
2166 }
2167 spin_unlock(&card->card_lock);
2168 }
2169 if (++intr_count == 10)
2170 /* Too much work at this board. Force exit */
2171 break;
2172 }
2173}
2174
2175static void falc_t1_loop_detection(pc300_t *card, int ch, u8 frs1)
2176{
2177 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
2178 falc_t *pfalc = (falc_t *) & chan->falc;
2179 void __iomem *falcbase = card->hw.falcbase;
2180
2181 if (((cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_XPRBS) == 0) &&
2182 !pfalc->loop_gen) {
2183 if (frs1 & FRS1_LLBDD) {
2184 // A Line Loop Back Deactivation signal detected
2185 if (pfalc->loop_active) {
2186 falc_remote_loop(card, ch, 0);
2187 }
2188 } else {
2189 if ((frs1 & FRS1_LLBAD) &&
2190 ((cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_EPRM) == 0)) {
2191 // A Line Loop Back Activation signal detected
2192 if (!pfalc->loop_active) {
2193 falc_remote_loop(card, ch, 1);
2194 }
2195 }
2196 }
2197 }
2198}
2199
2200static void falc_e1_loop_detection(pc300_t *card, int ch, u8 rsp)
2201{
2202 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
2203 falc_t *pfalc = (falc_t *) & chan->falc;
2204 void __iomem *falcbase = card->hw.falcbase;
2205
2206 if (((cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_XPRBS) == 0) &&
2207 !pfalc->loop_gen) {
2208 if (rsp & RSP_LLBDD) {
2209 // A Line Loop Back Deactivation signal detected
2210 if (pfalc->loop_active) {
2211 falc_remote_loop(card, ch, 0);
2212 }
2213 } else {
2214 if ((rsp & RSP_LLBAD) &&
2215 ((cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_EPRM) == 0)) {
2216 // A Line Loop Back Activation signal detected
2217 if (!pfalc->loop_active) {
2218 falc_remote_loop(card, ch, 1);
2219 }
2220 }
2221 }
2222 }
2223}
2224
2225static void falc_t1_intr(pc300_t * card, int ch)
2226{
2227 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
2228 falc_t *pfalc = (falc_t *) & chan->falc;
2229 void __iomem *falcbase = card->hw.falcbase;
2230 u8 isr0, isr3, gis;
2231 u8 dummy;
2232
2233 while ((gis = cpc_readb(falcbase + F_REG(GIS, ch))) != 0) {
2234 if (gis & GIS_ISR0) {
2235 isr0 = cpc_readb(falcbase + F_REG(FISR0, ch));
2236 if (isr0 & FISR0_PDEN) {
2237 /* Read the bit to clear the situation */
2238 if (cpc_readb(falcbase + F_REG(FRS1, ch)) &
2239 FRS1_PDEN) {
2240 pfalc->pden++;
2241 }
2242 }
2243 }
2244
2245 if (gis & GIS_ISR1) {
2246 dummy = cpc_readb(falcbase + F_REG(FISR1, ch));
2247 }
2248
2249 if (gis & GIS_ISR2) {
2250 dummy = cpc_readb(falcbase + F_REG(FISR2, ch));
2251 }
2252
2253 if (gis & GIS_ISR3) {
2254 isr3 = cpc_readb(falcbase + F_REG(FISR3, ch));
2255 if (isr3 & FISR3_SEC) {
2256 pfalc->sec++;
2257 falc_update_stats(card, ch);
2258 falc_check_status(card, ch,
2259 cpc_readb(falcbase + F_REG(FRS0, ch)));
2260 }
2261 if (isr3 & FISR3_ES) {
2262 pfalc->es++;
2263 }
2264 if (isr3 & FISR3_LLBSC) {
2265 falc_t1_loop_detection(card, ch,
2266 cpc_readb(falcbase + F_REG(FRS1, ch)));
2267 }
2268 }
2269 }
2270}
2271
2272static void falc_e1_intr(pc300_t * card, int ch)
2273{
2274 pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
2275 falc_t *pfalc = (falc_t *) & chan->falc;
2276 void __iomem *falcbase = card->hw.falcbase;
2277 u8 isr1, isr2, isr3, gis, rsp;
2278 u8 dummy;
2279
2280 while ((gis = cpc_readb(falcbase + F_REG(GIS, ch))) != 0) {
2281 rsp = cpc_readb(falcbase + F_REG(RSP, ch));
2282
2283 if (gis & GIS_ISR0) {
2284 dummy = cpc_readb(falcbase + F_REG(FISR0, ch));
2285 }
2286 if (gis & GIS_ISR1) {
2287 isr1 = cpc_readb(falcbase + F_REG(FISR1, ch));
2288 if (isr1 & FISR1_XMB) {
2289 if ((pfalc->xmb_cause & 2) &&
2290 pfalc->multiframe_mode) {
2291 if (cpc_readb (falcbase + F_REG(FRS0, ch)) &
2292 (FRS0_LOS | FRS0_AIS | FRS0_LFA)) {
2293 cpc_writeb(falcbase + F_REG(XSP, ch),
2294 cpc_readb(falcbase + F_REG(XSP, ch))
2295 & ~XSP_AXS);
2296 } else {
2297 cpc_writeb(falcbase + F_REG(XSP, ch),
2298 cpc_readb(falcbase + F_REG(XSP, ch))
2299 | XSP_AXS);
2300 }
2301 }
2302 pfalc->xmb_cause = 0;
2303 cpc_writeb(falcbase + F_REG(IMR1, ch),
2304 cpc_readb(falcbase + F_REG(IMR1, ch)) | IMR1_XMB);
2305 }
2306 if (isr1 & FISR1_LLBSC) {
2307 falc_e1_loop_detection(card, ch, rsp);
2308 }
2309 }
2310 if (gis & GIS_ISR2) {
2311 isr2 = cpc_readb(falcbase + F_REG(FISR2, ch));
2312 if (isr2 & FISR2_T400MS) {
2313 cpc_writeb(falcbase + F_REG(XSW, ch),
2314 cpc_readb(falcbase + F_REG(XSW, ch)) | XSW_XRA);
2315 }
2316 if (isr2 & FISR2_MFAR) {
2317 cpc_writeb(falcbase + F_REG(XSW, ch),
2318 cpc_readb(falcbase + F_REG(XSW, ch)) & ~XSW_XRA);
2319 }
2320 if (isr2 & (FISR2_FAR | FISR2_LFA | FISR2_AIS | FISR2_LOS)) {
2321 pfalc->xmb_cause |= 2;
2322 cpc_writeb(falcbase + F_REG(IMR1, ch),
2323 cpc_readb(falcbase + F_REG(IMR1, ch)) & ~IMR1_XMB);
2324 }
2325 }
2326 if (gis & GIS_ISR3) {
2327 isr3 = cpc_readb(falcbase + F_REG(FISR3, ch));
2328 if (isr3 & FISR3_SEC) {
2329 pfalc->sec++;
2330 falc_update_stats(card, ch);
2331 falc_check_status(card, ch,
2332 cpc_readb(falcbase + F_REG(FRS0, ch)));
2333 }
2334 if (isr3 & FISR3_ES) {
2335 pfalc->es++;
2336 }
2337 }
2338 }
2339}
2340
2341static void falc_intr(pc300_t * card)
2342{
2343 int ch;
2344
2345 for (ch = 0; ch < card->hw.nchan; ch++) {
2346 pc300ch_t *chan = &card->chan[ch];
2347 pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
2348
2349 if (conf->media == IF_IFACE_T1) {
2350 falc_t1_intr(card, ch);
2351 } else {
2352 falc_e1_intr(card, ch);
2353 }
2354 }
2355}
2356
2357static irqreturn_t cpc_intr(int irq, void *dev_id)
2358{
2359 pc300_t *card = dev_id;
2360 volatile u8 plx_status;
2361
2362 if (!card) {
2363#ifdef PC300_DEBUG_INTR
2364 printk("cpc_intr: spurious intr %d\n", irq);
2365#endif
2366 return IRQ_NONE; /* spurious intr */
2367 }
2368
2369 if (!card->hw.rambase) {
2370#ifdef PC300_DEBUG_INTR
2371 printk("cpc_intr: spurious intr2 %d\n", irq);
2372#endif
2373 return IRQ_NONE; /* spurious intr */
2374 }
2375
2376 switch (card->hw.type) {
2377 case PC300_RSV:
2378 case PC300_X21:
2379 sca_intr(card);
2380 break;
2381
2382 case PC300_TE:
2383 while ( (plx_status = (cpc_readb(card->hw.plxbase + card->hw.intctl_reg) &
2384 (PLX_9050_LINT1_STATUS | PLX_9050_LINT2_STATUS))) != 0) {
2385 if (plx_status & PLX_9050_LINT1_STATUS) { /* SCA Interrupt */
2386 sca_intr(card);
2387 }
2388 if (plx_status & PLX_9050_LINT2_STATUS) { /* FALC Interrupt */
2389 falc_intr(card);
2390 }
2391 }
2392 break;
2393 }
2394 return IRQ_HANDLED;
2395}
2396
2397static void cpc_sca_status(pc300_t * card, int ch)
2398{
2399 u8 ilar;
2400 void __iomem *scabase = card->hw.scabase;
2401 unsigned long flags;
2402
2403 tx_dma_buf_check(card, ch);
2404 rx_dma_buf_check(card, ch);
2405 ilar = cpc_readb(scabase + ILAR);
2406 printk ("ILAR=0x%02x, WCRL=0x%02x, PCR=0x%02x, BTCR=0x%02x, BOLR=0x%02x\n",
2407 ilar, cpc_readb(scabase + WCRL), cpc_readb(scabase + PCR),
2408 cpc_readb(scabase + BTCR), cpc_readb(scabase + BOLR));
2409 printk("TX_CDA=0x%08x, TX_EDA=0x%08x\n",
2410 cpc_readl(scabase + DTX_REG(CDAL, ch)),
2411 cpc_readl(scabase + DTX_REG(EDAL, ch)));
2412 printk("RX_CDA=0x%08x, RX_EDA=0x%08x, BFL=0x%04x\n",
2413 cpc_readl(scabase + DRX_REG(CDAL, ch)),
2414 cpc_readl(scabase + DRX_REG(EDAL, ch)),
2415 cpc_readw(scabase + DRX_REG(BFLL, ch)));
2416 printk("DMER=0x%02x, DSR_TX=0x%02x, DSR_RX=0x%02x\n",
2417 cpc_readb(scabase + DMER), cpc_readb(scabase + DSR_TX(ch)),
2418 cpc_readb(scabase + DSR_RX(ch)));
2419 printk("DMR_TX=0x%02x, DMR_RX=0x%02x, DIR_TX=0x%02x, DIR_RX=0x%02x\n",
2420 cpc_readb(scabase + DMR_TX(ch)), cpc_readb(scabase + DMR_RX(ch)),
2421 cpc_readb(scabase + DIR_TX(ch)),
2422 cpc_readb(scabase + DIR_RX(ch)));
2423 printk("DCR_TX=0x%02x, DCR_RX=0x%02x, FCT_TX=0x%02x, FCT_RX=0x%02x\n",
2424 cpc_readb(scabase + DCR_TX(ch)), cpc_readb(scabase + DCR_RX(ch)),
2425 cpc_readb(scabase + FCT_TX(ch)),
2426 cpc_readb(scabase + FCT_RX(ch)));
2427 printk("MD0=0x%02x, MD1=0x%02x, MD2=0x%02x, MD3=0x%02x, IDL=0x%02x\n",
2428 cpc_readb(scabase + M_REG(MD0, ch)),
2429 cpc_readb(scabase + M_REG(MD1, ch)),
2430 cpc_readb(scabase + M_REG(MD2, ch)),
2431 cpc_readb(scabase + M_REG(MD3, ch)),
2432 cpc_readb(scabase + M_REG(IDL, ch)));
2433 printk("CMD=0x%02x, SA0=0x%02x, SA1=0x%02x, TFN=0x%02x, CTL=0x%02x\n",
2434 cpc_readb(scabase + M_REG(CMD, ch)),
2435 cpc_readb(scabase + M_REG(SA0, ch)),
2436 cpc_readb(scabase + M_REG(SA1, ch)),
2437 cpc_readb(scabase + M_REG(TFN, ch)),
2438 cpc_readb(scabase + M_REG(CTL, ch)));
2439 printk("ST0=0x%02x, ST1=0x%02x, ST2=0x%02x, ST3=0x%02x, ST4=0x%02x\n",
2440 cpc_readb(scabase + M_REG(ST0, ch)),
2441 cpc_readb(scabase + M_REG(ST1, ch)),
2442 cpc_readb(scabase + M_REG(ST2, ch)),
2443 cpc_readb(scabase + M_REG(ST3, ch)),
2444 cpc_readb(scabase + M_REG(ST4, ch)));
2445 printk ("CST0=0x%02x, CST1=0x%02x, CST2=0x%02x, CST3=0x%02x, FST=0x%02x\n",
2446 cpc_readb(scabase + M_REG(CST0, ch)),
2447 cpc_readb(scabase + M_REG(CST1, ch)),
2448 cpc_readb(scabase + M_REG(CST2, ch)),
2449 cpc_readb(scabase + M_REG(CST3, ch)),
2450 cpc_readb(scabase + M_REG(FST, ch)));
2451 printk("TRC0=0x%02x, TRC1=0x%02x, RRC=0x%02x, TBN=0x%02x, RBN=0x%02x\n",
2452 cpc_readb(scabase + M_REG(TRC0, ch)),
2453 cpc_readb(scabase + M_REG(TRC1, ch)),
2454 cpc_readb(scabase + M_REG(RRC, ch)),
2455 cpc_readb(scabase + M_REG(TBN, ch)),
2456 cpc_readb(scabase + M_REG(RBN, ch)));
2457 printk("TFS=0x%02x, TNR0=0x%02x, TNR1=0x%02x, RNR=0x%02x\n",
2458 cpc_readb(scabase + M_REG(TFS, ch)),
2459 cpc_readb(scabase + M_REG(TNR0, ch)),
2460 cpc_readb(scabase + M_REG(TNR1, ch)),
2461 cpc_readb(scabase + M_REG(RNR, ch)));
2462 printk("TCR=0x%02x, RCR=0x%02x, TNR1=0x%02x, RNR=0x%02x\n",
2463 cpc_readb(scabase + M_REG(TCR, ch)),
2464 cpc_readb(scabase + M_REG(RCR, ch)),
2465 cpc_readb(scabase + M_REG(TNR1, ch)),
2466 cpc_readb(scabase + M_REG(RNR, ch)));
2467 printk("TXS=0x%02x, RXS=0x%02x, EXS=0x%02x, TMCT=0x%02x, TMCR=0x%02x\n",
2468 cpc_readb(scabase + M_REG(TXS, ch)),
2469 cpc_readb(scabase + M_REG(RXS, ch)),
2470 cpc_readb(scabase + M_REG(EXS, ch)),
2471 cpc_readb(scabase + M_REG(TMCT, ch)),
2472 cpc_readb(scabase + M_REG(TMCR, ch)));
2473 printk("IE0=0x%02x, IE1=0x%02x, IE2=0x%02x, IE4=0x%02x, FIE=0x%02x\n",
2474 cpc_readb(scabase + M_REG(IE0, ch)),
2475 cpc_readb(scabase + M_REG(IE1, ch)),
2476 cpc_readb(scabase + M_REG(IE2, ch)),
2477 cpc_readb(scabase + M_REG(IE4, ch)),
2478 cpc_readb(scabase + M_REG(FIE, ch)));
2479 printk("IER0=0x%08x\n", cpc_readl(scabase + IER0));
2480
2481 if (ilar != 0) {
2482 CPC_LOCK(card, flags);
2483 cpc_writeb(scabase + ILAR, ilar);
2484 cpc_writeb(scabase + DMER, 0x80);
2485 CPC_UNLOCK(card, flags);
2486 }
2487}
2488
2489static void cpc_falc_status(pc300_t * card, int ch)
2490{
2491 pc300ch_t *chan = &card->chan[ch];
2492 falc_t *pfalc = (falc_t *) & chan->falc;
2493 unsigned long flags;
2494
2495 CPC_LOCK(card, flags);
2496 printk("CH%d: %s %s %d channels\n",
2497 ch, (pfalc->sync ? "SYNC" : ""), (pfalc->active ? "ACTIVE" : ""),
2498 pfalc->num_channels);
2499
2500 printk(" pden=%d, los=%d, losr=%d, lfa=%d, farec=%d\n",
2501 pfalc->pden, pfalc->los, pfalc->losr, pfalc->lfa, pfalc->farec);
2502 printk(" lmfa=%d, ais=%d, sec=%d, es=%d, rai=%d\n",
2503 pfalc->lmfa, pfalc->ais, pfalc->sec, pfalc->es, pfalc->rai);
2504 printk(" bec=%d, fec=%d, cvc=%d, cec=%d, ebc=%d\n",
2505 pfalc->bec, pfalc->fec, pfalc->cvc, pfalc->cec, pfalc->ebc);
2506
2507 printk("\n");
2508 printk(" STATUS: %s %s %s %s %s %s\n",
2509 (pfalc->red_alarm ? "RED" : ""),
2510 (pfalc->blue_alarm ? "BLU" : ""),
2511 (pfalc->yellow_alarm ? "YEL" : ""),
2512 (pfalc->loss_fa ? "LFA" : ""),
2513 (pfalc->loss_mfa ? "LMF" : ""), (pfalc->prbs ? "PRB" : ""));
2514 CPC_UNLOCK(card, flags);
2515}
2516
2517static int cpc_change_mtu(struct net_device *dev, int new_mtu)
2518{
2519 if ((new_mtu < 128) || (new_mtu > PC300_DEF_MTU))
2520 return -EINVAL;
2521 dev->mtu = new_mtu;
2522 return 0;
2523}
2524
2525static int cpc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2526{
2527 pc300dev_t *d = (pc300dev_t *) dev_to_hdlc(dev)->priv;
2528 pc300ch_t *chan = (pc300ch_t *) d->chan;
2529 pc300_t *card = (pc300_t *) chan->card;
2530 pc300conf_t conf_aux;
2531 pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
2532 int ch = chan->channel;
2533 void __user *arg = ifr->ifr_data;
2534 struct if_settings *settings = &ifr->ifr_settings;
2535 void __iomem *scabase = card->hw.scabase;
2536
2537 if (!capable(CAP_NET_ADMIN))
2538 return -EPERM;
2539
2540 switch (cmd) {
2541 case SIOCGPC300CONF:
2542#ifdef CONFIG_PC300_MLPPP
2543 if (conf->proto != PC300_PROTO_MLPPP) {
2544 conf->proto = /* FIXME hdlc->proto.id */ 0;
2545 }
2546#else
2547 conf->proto = /* FIXME hdlc->proto.id */ 0;
2548#endif
2549 memcpy(&conf_aux.conf, conf, sizeof(pc300chconf_t));
2550 memcpy(&conf_aux.hw, &card->hw, sizeof(pc300hw_t));
2551 if (!arg ||
2552 copy_to_user(arg, &conf_aux, sizeof(pc300conf_t)))
2553 return -EINVAL;
2554 return 0;
2555 case SIOCSPC300CONF:
2556 if (!capable(CAP_NET_ADMIN))
2557 return -EPERM;
2558 if (!arg ||
2559 copy_from_user(&conf_aux.conf, arg, sizeof(pc300chconf_t)))
2560 return -EINVAL;
2561 if (card->hw.cpld_id < 0x02 &&
2562 conf_aux.conf.fr_mode == PC300_FR_UNFRAMED) {
2563 /* CPLD_ID < 0x02 doesn't support Unframed E1 */
2564 return -EINVAL;
2565 }
2566#ifdef CONFIG_PC300_MLPPP
2567 if (conf_aux.conf.proto == PC300_PROTO_MLPPP) {
2568 if (conf->proto != PC300_PROTO_MLPPP) {
2569 memcpy(conf, &conf_aux.conf, sizeof(pc300chconf_t));
2570 cpc_tty_init(d); /* init TTY driver */
2571 }
2572 } else {
2573 if (conf_aux.conf.proto == 0xffff) {
2574 if (conf->proto == PC300_PROTO_MLPPP){
2575 /* ifdown interface */
2576 cpc_close(dev);
2577 }
2578 } else {
2579 memcpy(conf, &conf_aux.conf, sizeof(pc300chconf_t));
2580 /* FIXME hdlc->proto.id = conf->proto; */
2581 }
2582 }
2583#else
2584 memcpy(conf, &conf_aux.conf, sizeof(pc300chconf_t));
2585 /* FIXME hdlc->proto.id = conf->proto; */
2586#endif
2587 return 0;
2588 case SIOCGPC300STATUS:
2589 cpc_sca_status(card, ch);
2590 return 0;
2591 case SIOCGPC300FALCSTATUS:
2592 cpc_falc_status(card, ch);
2593 return 0;
2594
2595 case SIOCGPC300UTILSTATS:
2596 {
2597 if (!arg) { /* clear statistics */
2598 memset(&dev->stats, 0, sizeof(dev->stats));
2599 if (card->hw.type == PC300_TE) {
2600 memset(&chan->falc, 0, sizeof(falc_t));
2601 }
2602 } else {
2603 pc300stats_t pc300stats;
2604
2605 memset(&pc300stats, 0, sizeof(pc300stats_t));
2606 pc300stats.hw_type = card->hw.type;
2607 pc300stats.line_on = card->chan[ch].d.line_on;
2608 pc300stats.line_off = card->chan[ch].d.line_off;
2609 memcpy(&pc300stats.gen_stats, &dev->stats,
2610 sizeof(dev->stats));
2611 if (card->hw.type == PC300_TE)
2612 memcpy(&pc300stats.te_stats,&chan->falc,sizeof(falc_t));
2613 if (copy_to_user(arg, &pc300stats, sizeof(pc300stats_t)))
2614 return -EFAULT;
2615 }
2616 return 0;
2617 }
2618
2619 case SIOCGPC300UTILSTATUS:
2620 {
2621 struct pc300status pc300status;
2622
2623 pc300status.hw_type = card->hw.type;
2624 if (card->hw.type == PC300_TE) {
2625 pc300status.te_status.sync = chan->falc.sync;
2626 pc300status.te_status.red_alarm = chan->falc.red_alarm;
2627 pc300status.te_status.blue_alarm = chan->falc.blue_alarm;
2628 pc300status.te_status.loss_fa = chan->falc.loss_fa;
2629 pc300status.te_status.yellow_alarm =chan->falc.yellow_alarm;
2630 pc300status.te_status.loss_mfa = chan->falc.loss_mfa;
2631 pc300status.te_status.prbs = chan->falc.prbs;
2632 } else {
2633 pc300status.gen_status.dcd =
2634 !(cpc_readb (scabase + M_REG(ST3, ch)) & ST3_DCD);
2635 pc300status.gen_status.cts =
2636 !(cpc_readb (scabase + M_REG(ST3, ch)) & ST3_CTS);
2637 pc300status.gen_status.rts =
2638 !(cpc_readb (scabase + M_REG(CTL, ch)) & CTL_RTS);
2639 pc300status.gen_status.dtr =
2640 !(cpc_readb (scabase + M_REG(CTL, ch)) & CTL_DTR);
2641 /* There is no DSR in HD64572 */
2642 }
2643 if (!arg ||
2644 copy_to_user(arg, &pc300status, sizeof(pc300status_t)))
2645 return -EINVAL;
2646 return 0;
2647 }
2648
2649 case SIOCSPC300TRACE:
2650 /* Sets/resets a trace_flag for the respective device */
2651 if (!arg || copy_from_user(&d->trace_on, arg,sizeof(unsigned char)))
2652 return -EINVAL;
2653 return 0;
2654
2655 case SIOCSPC300LOOPBACK:
2656 {
2657 struct pc300loopback pc300loop;
2658
2659 /* TE boards only */
2660 if (card->hw.type != PC300_TE)
2661 return -EINVAL;
2662
2663 if (!arg ||
2664 copy_from_user(&pc300loop, arg, sizeof(pc300loopback_t)))
2665 return -EINVAL;
2666 switch (pc300loop.loop_type) {
2667 case PC300LOCLOOP: /* Turn the local loop on/off */
2668 falc_local_loop(card, ch, pc300loop.loop_on);
2669 return 0;
2670
2671 case PC300REMLOOP: /* Turn the remote loop on/off */
2672 falc_remote_loop(card, ch, pc300loop.loop_on);
2673 return 0;
2674
2675 case PC300PAYLOADLOOP: /* Turn the payload loop on/off */
2676 falc_payload_loop(card, ch, pc300loop.loop_on);
2677 return 0;
2678
2679 case PC300GENLOOPUP: /* Generate loop UP */
2680 if (pc300loop.loop_on) {
2681 falc_generate_loop_up_code (card, ch);
2682 } else {
2683 turn_off_xlu(card, ch);
2684 }
2685 return 0;
2686
2687 case PC300GENLOOPDOWN: /* Generate loop DOWN */
2688 if (pc300loop.loop_on) {
2689 falc_generate_loop_down_code (card, ch);
2690 } else {
2691 turn_off_xld(card, ch);
2692 }
2693 return 0;
2694
2695 default:
2696 return -EINVAL;
2697 }
2698 }
2699
2700 case SIOCSPC300PATTERNTEST:
2701 /* Turn the pattern test on/off and show the errors counter */
2702 {
2703 struct pc300patterntst pc300patrntst;
2704
2705 /* TE boards only */
2706 if (card->hw.type != PC300_TE)
2707 return -EINVAL;
2708
2709 if (card->hw.cpld_id < 0x02) {
2710 /* CPLD_ID < 0x02 doesn't support pattern test */
2711 return -EINVAL;
2712 }
2713
2714 if (!arg ||
2715 copy_from_user(&pc300patrntst,arg,sizeof(pc300patterntst_t)))
2716 return -EINVAL;
2717 if (pc300patrntst.patrntst_on == 2) {
2718 if (chan->falc.prbs == 0) {
2719 falc_pattern_test(card, ch, 1);
2720 }
2721 pc300patrntst.num_errors =
2722 falc_pattern_test_error(card, ch);
2723 if (copy_to_user(arg, &pc300patrntst,
2724 sizeof(pc300patterntst_t)))
2725 return -EINVAL;
2726 } else {
2727 falc_pattern_test(card, ch, pc300patrntst.patrntst_on);
2728 }
2729 return 0;
2730 }
2731
2732 case SIOCWANDEV:
2733 switch (ifr->ifr_settings.type) {
2734 case IF_GET_IFACE:
2735 {
2736 const size_t size = sizeof(sync_serial_settings);
2737 ifr->ifr_settings.type = conf->media;
2738 if (ifr->ifr_settings.size < size) {
2739 /* data size wanted */
2740 ifr->ifr_settings.size = size;
2741 return -ENOBUFS;
2742 }
2743
2744 if (copy_to_user(settings->ifs_ifsu.sync,
2745 &conf->phys_settings, size)) {
2746 return -EFAULT;
2747 }
2748 return 0;
2749 }
2750
2751 case IF_IFACE_V35:
2752 case IF_IFACE_V24:
2753 case IF_IFACE_X21:
2754 {
2755 const size_t size = sizeof(sync_serial_settings);
2756
2757 if (!capable(CAP_NET_ADMIN)) {
2758 return -EPERM;
2759 }
2760 /* incorrect data len? */
2761 if (ifr->ifr_settings.size != size) {
2762 return -ENOBUFS;
2763 }
2764
2765 if (copy_from_user(&conf->phys_settings,
2766 settings->ifs_ifsu.sync, size)) {
2767 return -EFAULT;
2768 }
2769
2770 if (conf->phys_settings.loopback) {
2771 cpc_writeb(card->hw.scabase + M_REG(MD2, ch),
2772 cpc_readb(card->hw.scabase + M_REG(MD2, ch)) |
2773 MD2_LOOP_MIR);
2774 }
2775 conf->media = ifr->ifr_settings.type;
2776 return 0;
2777 }
2778
2779 case IF_IFACE_T1:
2780 case IF_IFACE_E1:
2781 {
2782 const size_t te_size = sizeof(te1_settings);
2783 const size_t size = sizeof(sync_serial_settings);
2784
2785 if (!capable(CAP_NET_ADMIN)) {
2786 return -EPERM;
2787 }
2788
2789 /* incorrect data len? */
2790 if (ifr->ifr_settings.size != te_size) {
2791 return -ENOBUFS;
2792 }
2793
2794 if (copy_from_user(&conf->phys_settings,
2795 settings->ifs_ifsu.te1, size)) {
2796 return -EFAULT;
2797 }/* Ignoring HDLC slot_map for a while */
2798
2799 if (conf->phys_settings.loopback) {
2800 cpc_writeb(card->hw.scabase + M_REG(MD2, ch),
2801 cpc_readb(card->hw.scabase + M_REG(MD2, ch)) |
2802 MD2_LOOP_MIR);
2803 }
2804 conf->media = ifr->ifr_settings.type;
2805 return 0;
2806 }
2807 default:
2808 return hdlc_ioctl(dev, ifr, cmd);
2809 }
2810
2811 default:
2812 return hdlc_ioctl(dev, ifr, cmd);
2813 }
2814}
2815
2816static int clock_rate_calc(u32 rate, u32 clock, int *br_io)
2817{
2818 int br, tc;
2819 int br_pwr, error;
2820
2821 *br_io = 0;
2822
2823 if (rate == 0)
2824 return 0;
2825
2826 for (br = 0, br_pwr = 1; br <= 9; br++, br_pwr <<= 1) {
2827 if ((tc = clock / br_pwr / rate) <= 0xff) {
2828 *br_io = br;
2829 break;
2830 }
2831 }
2832
2833 if (tc <= 0xff) {
2834 error = ((rate - (clock / br_pwr / rate)) / rate) * 1000;
2835 /* Errors bigger than +/- 1% won't be tolerated */
2836 if (error < -10 || error > 10)
2837 return -1;
2838 else
2839 return tc;
2840 } else {
2841 return -1;
2842 }
2843}
2844
2845static int ch_config(pc300dev_t * d)
2846{
2847 pc300ch_t *chan = (pc300ch_t *) d->chan;
2848 pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
2849 pc300_t *card = (pc300_t *) chan->card;
2850 void __iomem *scabase = card->hw.scabase;
2851 void __iomem *plxbase = card->hw.plxbase;
2852 int ch = chan->channel;
2853 u32 clkrate = chan->conf.phys_settings.clock_rate;
2854 u32 clktype = chan->conf.phys_settings.clock_type;
2855 u16 encoding = chan->conf.proto_settings.encoding;
2856 u16 parity = chan->conf.proto_settings.parity;
2857 u8 md0, md2;
2858
2859 /* Reset the channel */
2860 cpc_writeb(scabase + M_REG(CMD, ch), CMD_CH_RST);
2861
2862 /* Configure the SCA registers */
2863 switch (parity) {
2864 case PARITY_NONE:
2865 md0 = MD0_BIT_SYNC;
2866 break;
2867 case PARITY_CRC16_PR0:
2868 md0 = MD0_CRC16_0|MD0_CRCC0|MD0_BIT_SYNC;
2869 break;
2870 case PARITY_CRC16_PR1:
2871 md0 = MD0_CRC16_1|MD0_CRCC0|MD0_BIT_SYNC;
2872 break;
2873 case PARITY_CRC32_PR1_CCITT:
2874 md0 = MD0_CRC32|MD0_CRCC0|MD0_BIT_SYNC;
2875 break;
2876 case PARITY_CRC16_PR1_CCITT:
2877 default:
2878 md0 = MD0_CRC_CCITT|MD0_CRCC0|MD0_BIT_SYNC;
2879 break;
2880 }
2881 switch (encoding) {
2882 case ENCODING_NRZI:
2883 md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_NRZI;
2884 break;
2885 case ENCODING_FM_MARK: /* FM1 */
2886 md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_FM|MD2_FM1;
2887 break;
2888 case ENCODING_FM_SPACE: /* FM0 */
2889 md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_FM|MD2_FM0;
2890 break;
2891 case ENCODING_MANCHESTER: /* It's not working... */
2892 md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_FM|MD2_MANCH;
2893 break;
2894 case ENCODING_NRZ:
2895 default:
2896 md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_NRZ;
2897 break;
2898 }
2899 cpc_writeb(scabase + M_REG(MD0, ch), md0);
2900 cpc_writeb(scabase + M_REG(MD1, ch), 0);
2901 cpc_writeb(scabase + M_REG(MD2, ch), md2);
2902 cpc_writeb(scabase + M_REG(IDL, ch), 0x7e);
2903 cpc_writeb(scabase + M_REG(CTL, ch), CTL_URSKP | CTL_IDLC);
2904
2905 /* Configure HW media */
2906 switch (card->hw.type) {
2907 case PC300_RSV:
2908 if (conf->media == IF_IFACE_V35) {
2909 cpc_writel((plxbase + card->hw.gpioc_reg),
2910 cpc_readl(plxbase + card->hw.gpioc_reg) | PC300_CHMEDIA_MASK(ch));
2911 } else {
2912 cpc_writel((plxbase + card->hw.gpioc_reg),
2913 cpc_readl(plxbase + card->hw.gpioc_reg) & ~PC300_CHMEDIA_MASK(ch));
2914 }
2915 break;
2916
2917 case PC300_X21:
2918 break;
2919
2920 case PC300_TE:
2921 te_config(card, ch);
2922 break;
2923 }
2924
2925 switch (card->hw.type) {
2926 case PC300_RSV:
2927 case PC300_X21:
2928 if (clktype == CLOCK_INT || clktype == CLOCK_TXINT) {
2929 int tmc, br;
2930
2931 /* Calculate the clkrate parameters */
2932 tmc = clock_rate_calc(clkrate, card->hw.clock, &br);
2933 if (tmc < 0)
2934 return -EIO;
2935 cpc_writeb(scabase + M_REG(TMCT, ch), tmc);
2936 cpc_writeb(scabase + M_REG(TXS, ch),
2937 (TXS_DTRXC | TXS_IBRG | br));
2938 if (clktype == CLOCK_INT) {
2939 cpc_writeb(scabase + M_REG(TMCR, ch), tmc);
2940 cpc_writeb(scabase + M_REG(RXS, ch),
2941 (RXS_IBRG | br));
2942 } else {
2943 cpc_writeb(scabase + M_REG(TMCR, ch), 1);
2944 cpc_writeb(scabase + M_REG(RXS, ch), 0);
2945 }
2946 if (card->hw.type == PC300_X21) {
2947 cpc_writeb(scabase + M_REG(GPO, ch), 1);
2948 cpc_writeb(scabase + M_REG(EXS, ch), EXS_TES1 | EXS_RES1);
2949 } else {
2950 cpc_writeb(scabase + M_REG(EXS, ch), EXS_TES1);
2951 }
2952 } else {
2953 cpc_writeb(scabase + M_REG(TMCT, ch), 1);
2954 if (clktype == CLOCK_EXT) {
2955 cpc_writeb(scabase + M_REG(TXS, ch),
2956 TXS_DTRXC);
2957 } else {
2958 cpc_writeb(scabase + M_REG(TXS, ch),
2959 TXS_DTRXC|TXS_RCLK);
2960 }
2961 cpc_writeb(scabase + M_REG(TMCR, ch), 1);
2962 cpc_writeb(scabase + M_REG(RXS, ch), 0);
2963 if (card->hw.type == PC300_X21) {
2964 cpc_writeb(scabase + M_REG(GPO, ch), 0);
2965 cpc_writeb(scabase + M_REG(EXS, ch), EXS_TES1 | EXS_RES1);
2966 } else {
2967 cpc_writeb(scabase + M_REG(EXS, ch), EXS_TES1);
2968 }
2969 }
2970 break;
2971
2972 case PC300_TE:
2973 /* SCA always receives clock from the FALC chip */
2974 cpc_writeb(scabase + M_REG(TMCT, ch), 1);
2975 cpc_writeb(scabase + M_REG(TXS, ch), 0);
2976 cpc_writeb(scabase + M_REG(TMCR, ch), 1);
2977 cpc_writeb(scabase + M_REG(RXS, ch), 0);
2978 cpc_writeb(scabase + M_REG(EXS, ch), 0);
2979 break;
2980 }
2981
2982 /* Enable Interrupts */
2983 cpc_writel(scabase + IER0,
2984 cpc_readl(scabase + IER0) |
2985 IR0_M(IR0_RXINTA, ch) |
2986 IR0_DRX(IR0_EFT | IR0_DMIA | IR0_DMIB, ch) |
2987 IR0_DTX(IR0_EFT | IR0_DMIA | IR0_DMIB, ch));
2988 cpc_writeb(scabase + M_REG(IE0, ch),
2989 cpc_readl(scabase + M_REG(IE0, ch)) | IE0_RXINTA);
2990 cpc_writeb(scabase + M_REG(IE1, ch),
2991 cpc_readl(scabase + M_REG(IE1, ch)) | IE1_CDCD);
2992
2993 return 0;
2994}
2995
2996static int rx_config(pc300dev_t * d)
2997{
2998 pc300ch_t *chan = (pc300ch_t *) d->chan;
2999 pc300_t *card = (pc300_t *) chan->card;
3000 void __iomem *scabase = card->hw.scabase;
3001 int ch = chan->channel;
3002
3003 cpc_writeb(scabase + DSR_RX(ch), 0);
3004
3005 /* General RX settings */
3006 cpc_writeb(scabase + M_REG(RRC, ch), 0);
3007 cpc_writeb(scabase + M_REG(RNR, ch), 16);
3008
3009 /* Enable reception */
3010 cpc_writeb(scabase + M_REG(CMD, ch), CMD_RX_CRC_INIT);
3011 cpc_writeb(scabase + M_REG(CMD, ch), CMD_RX_ENA);
3012
3013 /* Initialize DMA stuff */
3014 chan->rx_first_bd = 0;
3015 chan->rx_last_bd = N_DMA_RX_BUF - 1;
3016 rx_dma_buf_init(card, ch);
3017 cpc_writeb(scabase + DCR_RX(ch), DCR_FCT_CLR);
3018 cpc_writeb(scabase + DMR_RX(ch), (DMR_TMOD | DMR_NF));
3019 cpc_writeb(scabase + DIR_RX(ch), (DIR_EOM | DIR_BOF));
3020
3021 /* Start DMA */
3022 rx_dma_start(card, ch);
3023
3024 return 0;
3025}
3026
3027static int tx_config(pc300dev_t * d)
3028{
3029 pc300ch_t *chan = (pc300ch_t *) d->chan;
3030 pc300_t *card = (pc300_t *) chan->card;
3031 void __iomem *scabase = card->hw.scabase;
3032 int ch = chan->channel;
3033
3034 cpc_writeb(scabase + DSR_TX(ch), 0);
3035
3036 /* General TX settings */
3037 cpc_writeb(scabase + M_REG(TRC0, ch), 0);
3038 cpc_writeb(scabase + M_REG(TFS, ch), 32);
3039 cpc_writeb(scabase + M_REG(TNR0, ch), 20);
3040 cpc_writeb(scabase + M_REG(TNR1, ch), 48);
3041 cpc_writeb(scabase + M_REG(TCR, ch), 8);
3042
3043 /* Enable transmission */
3044 cpc_writeb(scabase + M_REG(CMD, ch), CMD_TX_CRC_INIT);
3045
3046 /* Initialize DMA stuff */
3047 chan->tx_first_bd = 0;
3048 chan->tx_next_bd = 0;
3049 tx_dma_buf_init(card, ch);
3050 cpc_writeb(scabase + DCR_TX(ch), DCR_FCT_CLR);
3051 cpc_writeb(scabase + DMR_TX(ch), (DMR_TMOD | DMR_NF));
3052 cpc_writeb(scabase + DIR_TX(ch), (DIR_EOM | DIR_BOF | DIR_UDRF));
3053 cpc_writel(scabase + DTX_REG(CDAL, ch), TX_BD_ADDR(ch, chan->tx_first_bd));
3054 cpc_writel(scabase + DTX_REG(EDAL, ch), TX_BD_ADDR(ch, chan->tx_next_bd));
3055
3056 return 0;
3057}
3058
3059static int cpc_attach(struct net_device *dev, unsigned short encoding,
3060 unsigned short parity)
3061{
3062 pc300dev_t *d = (pc300dev_t *)dev_to_hdlc(dev)->priv;
3063 pc300ch_t *chan = (pc300ch_t *)d->chan;
3064 pc300_t *card = (pc300_t *)chan->card;
3065 pc300chconf_t *conf = (pc300chconf_t *)&chan->conf;
3066
3067 if (card->hw.type == PC300_TE) {
3068 if (encoding != ENCODING_NRZ && encoding != ENCODING_NRZI) {
3069 return -EINVAL;
3070 }
3071 } else {
3072 if (encoding != ENCODING_NRZ && encoding != ENCODING_NRZI &&
3073 encoding != ENCODING_FM_MARK && encoding != ENCODING_FM_SPACE) {
3074 /* Driver doesn't support ENCODING_MANCHESTER yet */
3075 return -EINVAL;
3076 }
3077 }
3078
3079 if (parity != PARITY_NONE && parity != PARITY_CRC16_PR0 &&
3080 parity != PARITY_CRC16_PR1 && parity != PARITY_CRC32_PR1_CCITT &&
3081 parity != PARITY_CRC16_PR1_CCITT) {
3082 return -EINVAL;
3083 }
3084
3085 conf->proto_settings.encoding = encoding;
3086 conf->proto_settings.parity = parity;
3087 return 0;
3088}
3089
3090static int cpc_opench(pc300dev_t * d)
3091{
3092 pc300ch_t *chan = (pc300ch_t *) d->chan;
3093 pc300_t *card = (pc300_t *) chan->card;
3094 int ch = chan->channel, rc;
3095 void __iomem *scabase = card->hw.scabase;
3096
3097 rc = ch_config(d);
3098 if (rc)
3099 return rc;
3100
3101 rx_config(d);
3102
3103 tx_config(d);
3104
3105 /* Assert RTS and DTR */
3106 cpc_writeb(scabase + M_REG(CTL, ch),
3107 cpc_readb(scabase + M_REG(CTL, ch)) & ~(CTL_RTS | CTL_DTR));
3108
3109 return 0;
3110}
3111
3112static void cpc_closech(pc300dev_t * d)
3113{
3114 pc300ch_t *chan = (pc300ch_t *) d->chan;
3115 pc300_t *card = (pc300_t *) chan->card;
3116 falc_t *pfalc = (falc_t *) & chan->falc;
3117 int ch = chan->channel;
3118
3119 cpc_writeb(card->hw.scabase + M_REG(CMD, ch), CMD_CH_RST);
3120 rx_dma_stop(card, ch);
3121 tx_dma_stop(card, ch);
3122
3123 if (card->hw.type == PC300_TE) {
3124 memset(pfalc, 0, sizeof(falc_t));
3125 cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
3126 cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) &
3127 ~((CPLD_REG2_FALC_TX_CLK | CPLD_REG2_FALC_RX_CLK |
3128 CPLD_REG2_FALC_LED2) << (2 * ch)));
3129 /* Reset the FALC chip */
3130 cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
3131 cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) |
3132 (CPLD_REG1_FALC_RESET << (2 * ch)));
3133 udelay(10000);
3134 cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
3135 cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) &
3136 ~(CPLD_REG1_FALC_RESET << (2 * ch)));
3137 }
3138}
3139
3140int cpc_open(struct net_device *dev)
3141{
3142 pc300dev_t *d = (pc300dev_t *) dev_to_hdlc(dev)->priv;
3143 struct ifreq ifr;
3144 int result;
3145
3146#ifdef PC300_DEBUG_OTHER
3147 printk("pc300: cpc_open");
3148#endif
3149
3150 result = hdlc_open(dev);
3151
3152 if (result)
3153 return result;
3154
3155 sprintf(ifr.ifr_name, "%s", dev->name);
3156 result = cpc_opench(d);
3157 if (result)
3158 goto err_out;
3159
3160 netif_start_queue(dev);
3161 return 0;
3162
3163err_out:
3164 hdlc_close(dev);
3165 return result;
3166}
3167
3168static int cpc_close(struct net_device *dev)
3169{
3170 pc300dev_t *d = (pc300dev_t *) dev_to_hdlc(dev)->priv;
3171 pc300ch_t *chan = (pc300ch_t *) d->chan;
3172 pc300_t *card = (pc300_t *) chan->card;
3173 unsigned long flags;
3174
3175#ifdef PC300_DEBUG_OTHER
3176 printk("pc300: cpc_close");
3177#endif
3178
3179 netif_stop_queue(dev);
3180
3181 CPC_LOCK(card, flags);
3182 cpc_closech(d);
3183 CPC_UNLOCK(card, flags);
3184
3185 hdlc_close(dev);
3186
3187#ifdef CONFIG_PC300_MLPPP
3188 if (chan->conf.proto == PC300_PROTO_MLPPP) {
3189 cpc_tty_unregister_service(d);
3190 chan->conf.proto = 0xffff;
3191 }
3192#endif
3193
3194 return 0;
3195}
3196
3197static u32 detect_ram(pc300_t * card)
3198{
3199 u32 i;
3200 u8 data;
3201 void __iomem *rambase = card->hw.rambase;
3202
3203 card->hw.ramsize = PC300_RAMSIZE;
3204 /* Let's find out how much RAM is present on this board */
3205 for (i = 0; i < card->hw.ramsize; i++) {
3206 data = (u8)(i & 0xff);
3207 cpc_writeb(rambase + i, data);
3208 if (cpc_readb(rambase + i) != data) {
3209 break;
3210 }
3211 }
3212 return i;
3213}
3214
3215static void plx_init(pc300_t * card)
3216{
3217 struct RUNTIME_9050 __iomem *plx_ctl = card->hw.plxbase;
3218
3219 /* Reset PLX */
3220 cpc_writel(&plx_ctl->init_ctrl,
3221 cpc_readl(&plx_ctl->init_ctrl) | 0x40000000);
3222 udelay(10000L);
3223 cpc_writel(&plx_ctl->init_ctrl,
3224 cpc_readl(&plx_ctl->init_ctrl) & ~0x40000000);
3225
3226 /* Reload Config. Registers from EEPROM */
3227 cpc_writel(&plx_ctl->init_ctrl,
3228 cpc_readl(&plx_ctl->init_ctrl) | 0x20000000);
3229 udelay(10000L);
3230 cpc_writel(&plx_ctl->init_ctrl,
3231 cpc_readl(&plx_ctl->init_ctrl) & ~0x20000000);
3232
3233}
3234
3235static inline void show_version(void)
3236{
3237 char *rcsvers, *rcsdate, *tmp;
3238
3239 rcsvers = strchr(rcsid, ' ');
3240 rcsvers++;
3241 tmp = strchr(rcsvers, ' ');
3242 *tmp++ = '\0';
3243 rcsdate = strchr(tmp, ' ');
3244 rcsdate++;
3245 tmp = strrchr(rcsdate, ' ');
3246 *tmp = '\0';
3247 pr_info("Cyclades-PC300 driver %s %s\n", rcsvers, rcsdate);
3248} /* show_version */
3249
3250static const struct net_device_ops cpc_netdev_ops = {
3251 .ndo_open = cpc_open,
3252 .ndo_stop = cpc_close,
3253 .ndo_tx_timeout = cpc_tx_timeout,
3254 .ndo_set_mac_address = NULL,
3255 .ndo_change_mtu = cpc_change_mtu,
3256 .ndo_do_ioctl = cpc_ioctl,
3257 .ndo_validate_addr = eth_validate_addr,
3258};
3259
3260static void cpc_init_card(pc300_t * card)
3261{
3262 int i, devcount = 0;
3263 static int board_nbr = 1;
3264
3265 /* Enable interrupts on the PCI bridge */
3266 plx_init(card);
3267 cpc_writew(card->hw.plxbase + card->hw.intctl_reg,
3268 cpc_readw(card->hw.plxbase + card->hw.intctl_reg) | 0x0040);
3269
3270#ifdef USE_PCI_CLOCK
3271 /* Set board clock to PCI clock */
3272 cpc_writel(card->hw.plxbase + card->hw.gpioc_reg,
3273 cpc_readl(card->hw.plxbase + card->hw.gpioc_reg) | 0x00000004UL);
3274 card->hw.clock = PC300_PCI_CLOCK;
3275#else
3276 /* Set board clock to internal oscillator clock */
3277 cpc_writel(card->hw.plxbase + card->hw.gpioc_reg,
3278 cpc_readl(card->hw.plxbase + card->hw.gpioc_reg) & ~0x00000004UL);
3279 card->hw.clock = PC300_OSC_CLOCK;
3280#endif
3281
3282 /* Detect actual on-board RAM size */
3283 card->hw.ramsize = detect_ram(card);
3284
3285 /* Set Global SCA-II registers */
3286 cpc_writeb(card->hw.scabase + PCR, PCR_PR2);
3287 cpc_writeb(card->hw.scabase + BTCR, 0x10);
3288 cpc_writeb(card->hw.scabase + WCRL, 0);
3289 cpc_writeb(card->hw.scabase + DMER, 0x80);
3290
3291 if (card->hw.type == PC300_TE) {
3292 u8 reg1;
3293
3294 /* Check CPLD version */
3295 reg1 = cpc_readb(card->hw.falcbase + CPLD_REG1);
3296 cpc_writeb(card->hw.falcbase + CPLD_REG1, (reg1 + 0x5a));
3297 if (cpc_readb(card->hw.falcbase + CPLD_REG1) == reg1) {
3298 /* New CPLD */
3299 card->hw.cpld_id = cpc_readb(card->hw.falcbase + CPLD_ID_REG);
3300 card->hw.cpld_reg1 = CPLD_V2_REG1;
3301 card->hw.cpld_reg2 = CPLD_V2_REG2;
3302 } else {
3303 /* old CPLD */
3304 card->hw.cpld_id = 0;
3305 card->hw.cpld_reg1 = CPLD_REG1;
3306 card->hw.cpld_reg2 = CPLD_REG2;
3307 cpc_writeb(card->hw.falcbase + CPLD_REG1, reg1);
3308 }
3309
3310 /* Enable the board's global clock */
3311 cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
3312 cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) |
3313 CPLD_REG1_GLOBAL_CLK);
3314
3315 }
3316
3317 for (i = 0; i < card->hw.nchan; i++) {
3318 pc300ch_t *chan = &card->chan[i];
3319 pc300dev_t *d = &chan->d;
3320 hdlc_device *hdlc;
3321 struct net_device *dev;
3322
3323 chan->card = card;
3324 chan->channel = i;
3325 chan->conf.phys_settings.clock_rate = 0;
3326 chan->conf.phys_settings.clock_type = CLOCK_EXT;
3327 chan->conf.proto_settings.encoding = ENCODING_NRZ;
3328 chan->conf.proto_settings.parity = PARITY_CRC16_PR1_CCITT;
3329 switch (card->hw.type) {
3330 case PC300_TE:
3331 chan->conf.media = IF_IFACE_T1;
3332 chan->conf.lcode = PC300_LC_B8ZS;
3333 chan->conf.fr_mode = PC300_FR_ESF;
3334 chan->conf.lbo = PC300_LBO_0_DB;
3335 chan->conf.rx_sens = PC300_RX_SENS_SH;
3336 chan->conf.tslot_bitmap = 0xffffffffUL;
3337 break;
3338
3339 case PC300_X21:
3340 chan->conf.media = IF_IFACE_X21;
3341 break;
3342
3343 case PC300_RSV:
3344 default:
3345 chan->conf.media = IF_IFACE_V35;
3346 break;
3347 }
3348 chan->conf.proto = IF_PROTO_PPP;
3349 chan->tx_first_bd = 0;
3350 chan->tx_next_bd = 0;
3351 chan->rx_first_bd = 0;
3352 chan->rx_last_bd = N_DMA_RX_BUF - 1;
3353 chan->nfree_tx_bd = N_DMA_TX_BUF;
3354
3355 d->chan = chan;
3356 d->trace_on = 0;
3357 d->line_on = 0;
3358 d->line_off = 0;
3359
3360 dev = alloc_hdlcdev(d);
3361 if (dev == NULL)
3362 continue;
3363
3364 hdlc = dev_to_hdlc(dev);
3365 hdlc->xmit = cpc_queue_xmit;
3366 hdlc->attach = cpc_attach;
3367 d->dev = dev;
3368 dev->mem_start = card->hw.ramphys;
3369 dev->mem_end = card->hw.ramphys + card->hw.ramsize - 1;
3370 dev->irq = card->hw.irq;
3371 dev->tx_queue_len = PC300_TX_QUEUE_LEN;
3372 dev->mtu = PC300_DEF_MTU;
3373
3374 dev->netdev_ops = &cpc_netdev_ops;
3375 dev->watchdog_timeo = PC300_TX_TIMEOUT;
3376
3377 if (register_hdlc_device(dev) == 0) {
3378 printk("%s: Cyclades-PC300/", dev->name);
3379 switch (card->hw.type) {
3380 case PC300_TE:
3381 if (card->hw.bus == PC300_PMC) {
3382 printk("TE-M");
3383 } else {
3384 printk("TE ");
3385 }
3386 break;
3387
3388 case PC300_X21:
3389 printk("X21 ");
3390 break;
3391
3392 case PC300_RSV:
3393 default:
3394 printk("RSV ");
3395 break;
3396 }
3397 printk (" #%d, %dKB of RAM at 0x%08x, IRQ%d, channel %d.\n",
3398 board_nbr, card->hw.ramsize / 1024,
3399 card->hw.ramphys, card->hw.irq, i + 1);
3400 devcount++;
3401 } else {
3402 printk ("Dev%d on card(0x%08x): unable to allocate i/f name.\n",
3403 i + 1, card->hw.ramphys);
3404 free_netdev(dev);
3405 continue;
3406 }
3407 }
3408 spin_lock_init(&card->card_lock);
3409
3410 board_nbr++;
3411}
3412
3413static int __devinit
3414cpc_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
3415{
3416 static int first_time = 1;
3417 int err, eeprom_outdated = 0;
3418 u16 device_id;
3419 pc300_t *card;
3420
3421 if (first_time) {
3422 first_time = 0;
3423 show_version();
3424#ifdef CONFIG_PC300_MLPPP
3425 cpc_tty_reset_var();
3426#endif
3427 }
3428
3429 if ((err = pci_enable_device(pdev)) < 0)
3430 return err;
3431
3432 card = kzalloc(sizeof(pc300_t), GFP_KERNEL);
3433 if (card == NULL) {
3434 printk("PC300 found at RAM 0x%016llx, "
3435 "but could not allocate card structure.\n",
3436 (unsigned long long)pci_resource_start(pdev, 3));
3437 err = -ENOMEM;
3438 goto err_disable_dev;
3439 }
3440
3441 err = -ENODEV;
3442
3443 /* read PCI configuration area */
3444 device_id = ent->device;
3445 card->hw.irq = pdev->irq;
3446 card->hw.iophys = pci_resource_start(pdev, 1);
3447 card->hw.iosize = pci_resource_len(pdev, 1);
3448 card->hw.scaphys = pci_resource_start(pdev, 2);
3449 card->hw.scasize = pci_resource_len(pdev, 2);
3450 card->hw.ramphys = pci_resource_start(pdev, 3);
3451 card->hw.alloc_ramsize = pci_resource_len(pdev, 3);
3452 card->hw.falcphys = pci_resource_start(pdev, 4);
3453 card->hw.falcsize = pci_resource_len(pdev, 4);
3454 card->hw.plxphys = pci_resource_start(pdev, 5);
3455 card->hw.plxsize = pci_resource_len(pdev, 5);
3456
3457 switch (device_id) {
3458 case PCI_DEVICE_ID_PC300_RX_1:
3459 case PCI_DEVICE_ID_PC300_TE_1:
3460 case PCI_DEVICE_ID_PC300_TE_M_1:
3461 card->hw.nchan = 1;
3462 break;
3463
3464 case PCI_DEVICE_ID_PC300_RX_2:
3465 case PCI_DEVICE_ID_PC300_TE_2:
3466 case PCI_DEVICE_ID_PC300_TE_M_2:
3467 default:
3468 card->hw.nchan = PC300_MAXCHAN;
3469 break;
3470 }
3471#ifdef PC300_DEBUG_PCI
3472 printk("cpc (bus=0x0%x,pci_id=0x%x,", pdev->bus->number, pdev->devfn);
3473 printk("rev_id=%d) IRQ%d\n", pdev->revision, card->hw.irq);
3474 printk("cpc:found ramaddr=0x%08lx plxaddr=0x%08lx "
3475 "ctladdr=0x%08lx falcaddr=0x%08lx\n",
3476 card->hw.ramphys, card->hw.plxphys, card->hw.scaphys,
3477 card->hw.falcphys);
3478#endif
3479 /* Although we don't use this I/O region, we should
3480 * request it from the kernel anyway, to avoid problems
3481 * with other drivers accessing it. */
3482 if (!request_region(card->hw.iophys, card->hw.iosize, "PLX Registers")) {
3483 /* In case we can't allocate it, warn user */
3484 printk("WARNING: couldn't allocate I/O region for PC300 board "
3485 "at 0x%08x!\n", card->hw.ramphys);
3486 }
3487
3488 if (card->hw.plxphys) {
3489 pci_write_config_dword(pdev, PCI_BASE_ADDRESS_0, card->hw.plxphys);
3490 } else {
3491 eeprom_outdated = 1;
3492 card->hw.plxphys = pci_resource_start(pdev, 0);
3493 card->hw.plxsize = pci_resource_len(pdev, 0);
3494 }
3495
3496 if (!request_mem_region(card->hw.plxphys, card->hw.plxsize,
3497 "PLX Registers")) {
3498 printk("PC300 found at RAM 0x%08x, "
3499 "but could not allocate PLX mem region.\n",
3500 card->hw.ramphys);
3501 goto err_release_io;
3502 }
3503 if (!request_mem_region(card->hw.ramphys, card->hw.alloc_ramsize,
3504 "On-board RAM")) {
3505 printk("PC300 found at RAM 0x%08x, "
3506 "but could not allocate RAM mem region.\n",
3507 card->hw.ramphys);
3508 goto err_release_plx;
3509 }
3510 if (!request_mem_region(card->hw.scaphys, card->hw.scasize,
3511 "SCA-II Registers")) {
3512 printk("PC300 found at RAM 0x%08x, "
3513 "but could not allocate SCA mem region.\n",
3514 card->hw.ramphys);
3515 goto err_release_ram;
3516 }
3517
3518 card->hw.plxbase = ioremap(card->hw.plxphys, card->hw.plxsize);
3519 card->hw.rambase = ioremap(card->hw.ramphys, card->hw.alloc_ramsize);
3520 card->hw.scabase = ioremap(card->hw.scaphys, card->hw.scasize);
3521 switch (device_id) {
3522 case PCI_DEVICE_ID_PC300_TE_1:
3523 case PCI_DEVICE_ID_PC300_TE_2:
3524 case PCI_DEVICE_ID_PC300_TE_M_1:
3525 case PCI_DEVICE_ID_PC300_TE_M_2:
3526 request_mem_region(card->hw.falcphys, card->hw.falcsize,
3527 "FALC Registers");
3528 card->hw.falcbase = ioremap(card->hw.falcphys, card->hw.falcsize);
3529 break;
3530
3531 case PCI_DEVICE_ID_PC300_RX_1:
3532 case PCI_DEVICE_ID_PC300_RX_2:
3533 default:
3534 card->hw.falcbase = NULL;
3535 break;
3536 }
3537
3538#ifdef PC300_DEBUG_PCI
3539 printk("cpc: relocate ramaddr=0x%08lx plxaddr=0x%08lx "
3540 "ctladdr=0x%08lx falcaddr=0x%08lx\n",
3541 card->hw.rambase, card->hw.plxbase, card->hw.scabase,
3542 card->hw.falcbase);
3543#endif
3544
3545 /* Set PCI drv pointer to the card structure */
3546 pci_set_drvdata(pdev, card);
3547
3548 /* Set board type */
3549 switch (device_id) {
3550 case PCI_DEVICE_ID_PC300_TE_1:
3551 case PCI_DEVICE_ID_PC300_TE_2:
3552 case PCI_DEVICE_ID_PC300_TE_M_1:
3553 case PCI_DEVICE_ID_PC300_TE_M_2:
3554 card->hw.type = PC300_TE;
3555
3556 if ((device_id == PCI_DEVICE_ID_PC300_TE_M_1) ||
3557 (device_id == PCI_DEVICE_ID_PC300_TE_M_2)) {
3558 card->hw.bus = PC300_PMC;
3559 /* Set PLX register offsets */
3560 card->hw.gpioc_reg = 0x54;
3561 card->hw.intctl_reg = 0x4c;
3562 } else {
3563 card->hw.bus = PC300_PCI;
3564 /* Set PLX register offsets */
3565 card->hw.gpioc_reg = 0x50;
3566 card->hw.intctl_reg = 0x4c;
3567 }
3568 break;
3569
3570 case PCI_DEVICE_ID_PC300_RX_1:
3571 case PCI_DEVICE_ID_PC300_RX_2:
3572 default:
3573 card->hw.bus = PC300_PCI;
3574 /* Set PLX register offsets */
3575 card->hw.gpioc_reg = 0x50;
3576 card->hw.intctl_reg = 0x4c;
3577
3578 if ((cpc_readl(card->hw.plxbase + card->hw.gpioc_reg) & PC300_CTYPE_MASK)) {
3579 card->hw.type = PC300_X21;
3580 } else {
3581 card->hw.type = PC300_RSV;
3582 }
3583 break;
3584 }
3585
3586 /* Allocate IRQ */
3587 if (request_irq(card->hw.irq, cpc_intr, IRQF_SHARED, "Cyclades-PC300", card)) {
3588 printk ("PC300 found at RAM 0x%08x, but could not allocate IRQ%d.\n",
3589 card->hw.ramphys, card->hw.irq);
3590 goto err_io_unmap;
3591 }
3592
3593 cpc_init_card(card);
3594
3595 if (eeprom_outdated)
3596 printk("WARNING: PC300 with outdated EEPROM.\n");
3597 return 0;
3598
3599err_io_unmap:
3600 iounmap(card->hw.plxbase);
3601 iounmap(card->hw.scabase);
3602 iounmap(card->hw.rambase);
3603 if (card->hw.type == PC300_TE) {
3604 iounmap(card->hw.falcbase);
3605 release_mem_region(card->hw.falcphys, card->hw.falcsize);
3606 }
3607 release_mem_region(card->hw.scaphys, card->hw.scasize);
3608err_release_ram:
3609 release_mem_region(card->hw.ramphys, card->hw.alloc_ramsize);
3610err_release_plx:
3611 release_mem_region(card->hw.plxphys, card->hw.plxsize);
3612err_release_io:
3613 release_region(card->hw.iophys, card->hw.iosize);
3614 kfree(card);
3615err_disable_dev:
3616 pci_disable_device(pdev);
3617 return err;
3618}
3619
3620static void __devexit cpc_remove_one(struct pci_dev *pdev)
3621{
3622 pc300_t *card = pci_get_drvdata(pdev);
3623
3624 if (card->hw.rambase) {
3625 int i;
3626
3627 /* Disable interrupts on the PCI bridge */
3628 cpc_writew(card->hw.plxbase + card->hw.intctl_reg,
3629 cpc_readw(card->hw.plxbase + card->hw.intctl_reg) & ~(0x0040));
3630
3631 for (i = 0; i < card->hw.nchan; i++) {
3632 unregister_hdlc_device(card->chan[i].d.dev);
3633 }
3634 iounmap(card->hw.plxbase);
3635 iounmap(card->hw.scabase);
3636 iounmap(card->hw.rambase);
3637 release_mem_region(card->hw.plxphys, card->hw.plxsize);
3638 release_mem_region(card->hw.ramphys, card->hw.alloc_ramsize);
3639 release_mem_region(card->hw.scaphys, card->hw.scasize);
3640 release_region(card->hw.iophys, card->hw.iosize);
3641 if (card->hw.type == PC300_TE) {
3642 iounmap(card->hw.falcbase);
3643 release_mem_region(card->hw.falcphys, card->hw.falcsize);
3644 }
3645 for (i = 0; i < card->hw.nchan; i++)
3646 if (card->chan[i].d.dev)
3647 free_netdev(card->chan[i].d.dev);
3648 if (card->hw.irq)
3649 free_irq(card->hw.irq, card);
3650 kfree(card);
3651 pci_disable_device(pdev);
3652 }
3653}
3654
3655static struct pci_driver cpc_driver = {
3656 .name = "pc300",
3657 .id_table = cpc_pci_dev_id,
3658 .probe = cpc_init_one,
3659 .remove = __devexit_p(cpc_remove_one),
3660};
3661
3662static int __init cpc_init(void)
3663{
3664 return pci_register_driver(&cpc_driver);
3665}
3666
3667static void __exit cpc_cleanup_module(void)
3668{
3669 pci_unregister_driver(&cpc_driver);
3670}
3671
3672module_init(cpc_init);
3673module_exit(cpc_cleanup_module);
3674
3675MODULE_DESCRIPTION("Cyclades-PC300 cards driver");
3676MODULE_AUTHOR( "Author: Ivan Passos <ivan@cyclades.com>\r\n"
3677 "Maintainer: PC300 Maintainer <pc300@cyclades.com");
3678MODULE_LICENSE("GPL");
3679
diff --git a/drivers/net/wan/pc300_tty.c b/drivers/net/wan/pc300_tty.c
new file mode 100644
index 00000000000..d47d2cd1047
--- /dev/null
+++ b/drivers/net/wan/pc300_tty.c
@@ -0,0 +1,1097 @@
1/*
2 * pc300_tty.c Cyclades-PC300(tm) TTY Driver.
3 *
4 * Author: Regina Kodato <reginak@cyclades.com>
5 *
6 * Copyright: (c) 1999-2002 Cyclades Corp.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * $Log: pc300_tty.c,v $
14 * Revision 3.7 2002/03/07 14:17:09 henrique
15 * License data fixed
16 *
17 * Revision 3.6 2001/12/10 12:29:42 regina
18 * Fix the MLPPP bug
19 *
20 * Revision 3.5 2001/10/31 11:20:05 regina
21 * automatic pppd starts
22 *
23 * Revision 3.4 2001/08/06 12:01:51 regina
24 * problem in DSR_DE bit
25 *
26 * Revision 3.3 2001/07/26 22:58:41 regina
27 * update EDA value
28 *
29 * Revision 3.2 2001/07/12 13:11:20 regina
30 * bug fix - DCD-OFF in pc300 tty driver
31 *
32 * DMA transmission bug fix
33 *
34 * Revision 3.1 2001/06/22 13:13:02 regina
35 * MLPPP implementation
36 *
37 */
38
39#include <linux/module.h>
40#include <linux/kernel.h>
41#include <linux/errno.h>
42#include <linux/string.h>
43#include <linux/init.h>
44#include <linux/netdevice.h>
45#include <linux/spinlock.h>
46#include <linux/slab.h>
47#include <linux/if.h>
48#include <linux/skbuff.h>
49/* TTY includes */
50#include <linux/tty.h>
51#include <linux/tty_flip.h>
52#include <linux/serial.h>
53
54#include <asm/io.h>
55#include <asm/uaccess.h>
56
57#include "pc300.h"
58
59/* defines and macros */
60/* TTY Global definitions */
61#define CPC_TTY_NPORTS 8 /* maximum number of the sync tty connections */
62#define CPC_TTY_MAJOR CYCLADES_MAJOR
63#define CPC_TTY_MINOR_START 240 /* minor of the first PC300 interface */
64
65#define CPC_TTY_MAX_MTU 2000
66
67/* tty interface state */
68#define CPC_TTY_ST_IDLE 0
69#define CPC_TTY_ST_INIT 1 /* configured with MLPPP and up */
70#define CPC_TTY_ST_OPEN 2 /* opened by application */
71
72#define CPC_TTY_LOCK(card,flags)\
73 do {\
74 spin_lock_irqsave(&card->card_lock, flags); \
75 } while (0)
76
77#define CPC_TTY_UNLOCK(card,flags) \
78 do {\
79 spin_unlock_irqrestore(&card->card_lock, flags); \
80 } while (0)
81
82//#define CPC_TTY_DBG(format,a...) printk(format,##a)
83#define CPC_TTY_DBG(format,a...)
84
85/* data structures */
86typedef struct _st_cpc_rx_buf {
87 struct _st_cpc_rx_buf *next;
88 int size;
89 unsigned char data[1];
90} st_cpc_rx_buf;
91
92struct st_cpc_rx_list {
93 st_cpc_rx_buf *first;
94 st_cpc_rx_buf *last;
95};
96
97typedef struct _st_cpc_tty_area {
98 int state; /* state of the TTY interface */
99 int num_open;
100 unsigned int tty_minor; /* minor this interface */
101 volatile struct st_cpc_rx_list buf_rx; /* ptr. to reception buffer */
102 unsigned char* buf_tx; /* ptr. to transmission buffer */
103 pc300dev_t* pc300dev; /* ptr. to info struct in PC300 driver */
104 unsigned char name[20]; /* interf. name + "-tty" */
105 struct tty_struct *tty;
106 struct work_struct tty_tx_work; /* tx work - tx interrupt */
107 struct work_struct tty_rx_work; /* rx work - rx interrupt */
108 } st_cpc_tty_area;
109
110/* TTY data structures */
111static struct tty_driver serial_drv;
112
113/* local variables */
114static st_cpc_tty_area cpc_tty_area[CPC_TTY_NPORTS];
115
116static int cpc_tty_cnt = 0; /* number of intrfaces configured with MLPPP */
117static int cpc_tty_unreg_flag = 0;
118
119/* TTY functions prototype */
120static int cpc_tty_open(struct tty_struct *tty, struct file *flip);
121static void cpc_tty_close(struct tty_struct *tty, struct file *flip);
122static int cpc_tty_write(struct tty_struct *tty, const unsigned char *buf, int count);
123static int cpc_tty_write_room(struct tty_struct *tty);
124static int cpc_tty_chars_in_buffer(struct tty_struct *tty);
125static void cpc_tty_flush_buffer(struct tty_struct *tty);
126static void cpc_tty_hangup(struct tty_struct *tty);
127static void cpc_tty_rx_work(struct work_struct *work);
128static void cpc_tty_tx_work(struct work_struct *work);
129static int cpc_tty_send_to_card(pc300dev_t *dev,void *buf, int len);
130static void cpc_tty_trace(pc300dev_t *dev, char* buf, int len, char rxtx);
131static void cpc_tty_signal_off(pc300dev_t *pc300dev, unsigned char);
132static void cpc_tty_signal_on(pc300dev_t *pc300dev, unsigned char);
133
134static int pc300_tiocmset(struct tty_struct *, unsigned int, unsigned int);
135static int pc300_tiocmget(struct tty_struct *);
136
137/* functions called by PC300 driver */
138void cpc_tty_init(pc300dev_t *dev);
139void cpc_tty_unregister_service(pc300dev_t *pc300dev);
140void cpc_tty_receive(pc300dev_t *pc300dev);
141void cpc_tty_trigger_poll(pc300dev_t *pc300dev);
142void cpc_tty_reset_var(void);
143
144/*
145 * PC300 TTY clear "signal"
146 */
147static void cpc_tty_signal_off(pc300dev_t *pc300dev, unsigned char signal)
148{
149 pc300ch_t *pc300chan = (pc300ch_t *)pc300dev->chan;
150 pc300_t *card = (pc300_t *) pc300chan->card;
151 int ch = pc300chan->channel;
152 unsigned long flags;
153
154 CPC_TTY_DBG("%s-tty: Clear signal %x\n",
155 pc300dev->dev->name, signal);
156 CPC_TTY_LOCK(card, flags);
157 cpc_writeb(card->hw.scabase + M_REG(CTL,ch),
158 cpc_readb(card->hw.scabase+M_REG(CTL,ch))& signal);
159 CPC_TTY_UNLOCK(card,flags);
160}
161
162/*
163 * PC300 TTY set "signal" to ON
164 */
165static void cpc_tty_signal_on(pc300dev_t *pc300dev, unsigned char signal)
166{
167 pc300ch_t *pc300chan = (pc300ch_t *)pc300dev->chan;
168 pc300_t *card = (pc300_t *) pc300chan->card;
169 int ch = pc300chan->channel;
170 unsigned long flags;
171
172 CPC_TTY_DBG("%s-tty: Set signal %x\n",
173 pc300dev->dev->name, signal);
174 CPC_TTY_LOCK(card, flags);
175 cpc_writeb(card->hw.scabase + M_REG(CTL,ch),
176 cpc_readb(card->hw.scabase+M_REG(CTL,ch))& ~signal);
177 CPC_TTY_UNLOCK(card,flags);
178}
179
180
181static const struct tty_operations pc300_ops = {
182 .open = cpc_tty_open,
183 .close = cpc_tty_close,
184 .write = cpc_tty_write,
185 .write_room = cpc_tty_write_room,
186 .chars_in_buffer = cpc_tty_chars_in_buffer,
187 .tiocmset = pc300_tiocmset,
188 .tiocmget = pc300_tiocmget,
189 .flush_buffer = cpc_tty_flush_buffer,
190 .hangup = cpc_tty_hangup,
191};
192
193
194/*
195 * PC300 TTY initialization routine
196 *
197 * This routine is called by the PC300 driver during board configuration
198 * (ioctl=SIOCSP300CONF). At this point the adapter is completely
199 * initialized.
200 * o verify kernel version (only 2.4.x)
201 * o register TTY driver
202 * o init cpc_tty_area struct
203 */
204void cpc_tty_init(pc300dev_t *pc300dev)
205{
206 unsigned long port;
207 int aux;
208 st_cpc_tty_area * cpc_tty;
209
210 /* hdlcX - X=interface number */
211 port = pc300dev->dev->name[4] - '0';
212 if (port >= CPC_TTY_NPORTS) {
213 printk("%s-tty: invalid interface selected (0-%i): %li",
214 pc300dev->dev->name,
215 CPC_TTY_NPORTS-1,port);
216 return;
217 }
218
219 if (cpc_tty_cnt == 0) { /* first TTY connection -> register driver */
220 CPC_TTY_DBG("%s-tty: driver init, major:%i, minor range:%i=%i\n",
221 pc300dev->dev->name,
222 CPC_TTY_MAJOR, CPC_TTY_MINOR_START,
223 CPC_TTY_MINOR_START+CPC_TTY_NPORTS);
224 /* initialize tty driver struct */
225 memset(&serial_drv,0,sizeof(struct tty_driver));
226 serial_drv.magic = TTY_DRIVER_MAGIC;
227 serial_drv.owner = THIS_MODULE;
228 serial_drv.driver_name = "pc300_tty";
229 serial_drv.name = "ttyCP";
230 serial_drv.major = CPC_TTY_MAJOR;
231 serial_drv.minor_start = CPC_TTY_MINOR_START;
232 serial_drv.num = CPC_TTY_NPORTS;
233 serial_drv.type = TTY_DRIVER_TYPE_SERIAL;
234 serial_drv.subtype = SERIAL_TYPE_NORMAL;
235
236 serial_drv.init_termios = tty_std_termios;
237 serial_drv.init_termios.c_cflag = B9600|CS8|CREAD|HUPCL|CLOCAL;
238 serial_drv.flags = TTY_DRIVER_REAL_RAW;
239
240 /* interface routines from the upper tty layer to the tty driver */
241 tty_set_operations(&serial_drv, &pc300_ops);
242
243 /* register the TTY driver */
244 if (tty_register_driver(&serial_drv)) {
245 printk("%s-tty: Failed to register serial driver! ",
246 pc300dev->dev->name);
247 return;
248 }
249
250 memset((void *)cpc_tty_area, 0,
251 sizeof(st_cpc_tty_area) * CPC_TTY_NPORTS);
252 }
253
254 cpc_tty = &cpc_tty_area[port];
255
256 if (cpc_tty->state != CPC_TTY_ST_IDLE) {
257 CPC_TTY_DBG("%s-tty: TTY port %i, already in use.\n",
258 pc300dev->dev->name, port);
259 return;
260 }
261
262 cpc_tty_cnt++;
263 cpc_tty->state = CPC_TTY_ST_INIT;
264 cpc_tty->num_open= 0;
265 cpc_tty->tty_minor = port + CPC_TTY_MINOR_START;
266 cpc_tty->pc300dev = pc300dev;
267
268 INIT_WORK(&cpc_tty->tty_tx_work, cpc_tty_tx_work);
269 INIT_WORK(&cpc_tty->tty_rx_work, cpc_tty_rx_work);
270
271 cpc_tty->buf_rx.first = cpc_tty->buf_rx.last = NULL;
272
273 pc300dev->cpc_tty = (void *)cpc_tty;
274
275 aux = strlen(pc300dev->dev->name);
276 memcpy(cpc_tty->name, pc300dev->dev->name, aux);
277 memcpy(&cpc_tty->name[aux], "-tty", 5);
278
279 cpc_open(pc300dev->dev);
280 cpc_tty_signal_off(pc300dev, CTL_DTR);
281
282 CPC_TTY_DBG("%s: Initializing TTY Sync Driver, tty major#%d minor#%i\n",
283 cpc_tty->name,CPC_TTY_MAJOR,cpc_tty->tty_minor);
284 return;
285}
286
287/*
288 * PC300 TTY OPEN routine
289 *
290 * This routine is called by the tty driver to open the interface
291 * o verify minor
292 * o allocate buffer to Rx and Tx
293 */
294static int cpc_tty_open(struct tty_struct *tty, struct file *flip)
295{
296 int port ;
297 st_cpc_tty_area *cpc_tty;
298
299 if (!tty) {
300 return -ENODEV;
301 }
302
303 port = tty->index;
304
305 if ((port < 0) || (port >= CPC_TTY_NPORTS)){
306 CPC_TTY_DBG("pc300_tty: open invalid port %d\n", port);
307 return -ENODEV;
308 }
309
310 cpc_tty = &cpc_tty_area[port];
311
312 if (cpc_tty->state == CPC_TTY_ST_IDLE){
313 CPC_TTY_DBG("%s: open - invalid interface, port=%d\n",
314 cpc_tty->name, tty->index);
315 return -ENODEV;
316 }
317
318 if (cpc_tty->num_open == 0) { /* first open of this tty */
319 if (!cpc_tty_area[port].buf_tx){
320 cpc_tty_area[port].buf_tx = kmalloc(CPC_TTY_MAX_MTU,GFP_KERNEL);
321 if (!cpc_tty_area[port].buf_tx) {
322 CPC_TTY_DBG("%s: error in memory allocation\n",cpc_tty->name);
323 return -ENOMEM;
324 }
325 }
326
327 if (cpc_tty_area[port].buf_rx.first) {
328 unsigned char * aux;
329 while (cpc_tty_area[port].buf_rx.first) {
330 aux = (unsigned char *)cpc_tty_area[port].buf_rx.first;
331 cpc_tty_area[port].buf_rx.first = cpc_tty_area[port].buf_rx.first->next;
332 kfree(aux);
333 }
334 cpc_tty_area[port].buf_rx.first = NULL;
335 cpc_tty_area[port].buf_rx.last = NULL;
336 }
337
338 cpc_tty_area[port].state = CPC_TTY_ST_OPEN;
339 cpc_tty_area[port].tty = tty;
340 tty->driver_data = &cpc_tty_area[port];
341
342 cpc_tty_signal_on(cpc_tty->pc300dev, CTL_DTR);
343 }
344
345 cpc_tty->num_open++;
346
347 CPC_TTY_DBG("%s: opening TTY driver\n", cpc_tty->name);
348
349 /* avisar driver PC300 */
350 return 0;
351}
352
353/*
354 * PC300 TTY CLOSE routine
355 *
356 * This routine is called by the tty driver to close the interface
357 * o call close channel in PC300 driver (cpc_closech)
358 * o free Rx and Tx buffers
359 */
360
361static void cpc_tty_close(struct tty_struct *tty, struct file *flip)
362{
363 st_cpc_tty_area *cpc_tty;
364 unsigned long flags;
365 int res;
366
367 if (!tty || !tty->driver_data ) {
368 CPC_TTY_DBG("hdlx-tty: no TTY in close\n");
369 return;
370 }
371
372 cpc_tty = (st_cpc_tty_area *) tty->driver_data;
373
374 if ((cpc_tty->tty != tty)|| (cpc_tty->state != CPC_TTY_ST_OPEN)) {
375 CPC_TTY_DBG("%s: TTY is not opened\n",cpc_tty->name);
376 return;
377 }
378
379 if (!cpc_tty->num_open) {
380 CPC_TTY_DBG("%s: TTY is closed\n",cpc_tty->name);
381 return;
382 }
383
384 if (--cpc_tty->num_open > 0) {
385 CPC_TTY_DBG("%s: TTY closed\n",cpc_tty->name);
386 return;
387 }
388
389 cpc_tty_signal_off(cpc_tty->pc300dev, CTL_DTR);
390
391 CPC_TTY_LOCK(cpc_tty->pc300dev->chan->card, flags); /* lock irq */
392 cpc_tty->tty = NULL;
393 cpc_tty->state = CPC_TTY_ST_INIT;
394 CPC_TTY_UNLOCK(cpc_tty->pc300dev->chan->card, flags); /* unlock irq */
395
396 if (cpc_tty->buf_rx.first) {
397 unsigned char * aux;
398 while (cpc_tty->buf_rx.first) {
399 aux = (unsigned char *)cpc_tty->buf_rx.first;
400 cpc_tty->buf_rx.first = cpc_tty->buf_rx.first->next;
401 kfree(aux);
402 }
403 cpc_tty->buf_rx.first = NULL;
404 cpc_tty->buf_rx.last = NULL;
405 }
406
407 kfree(cpc_tty->buf_tx);
408 cpc_tty->buf_tx = NULL;
409
410 CPC_TTY_DBG("%s: TTY closed\n",cpc_tty->name);
411
412 if (!serial_drv.refcount && cpc_tty_unreg_flag) {
413 cpc_tty_unreg_flag = 0;
414 CPC_TTY_DBG("%s: unregister the tty driver\n", cpc_tty->name);
415 if ((res=tty_unregister_driver(&serial_drv))) {
416 CPC_TTY_DBG("%s: ERROR ->unregister the tty driver error=%d\n",
417 cpc_tty->name,res);
418 }
419 }
420 return;
421}
422
423/*
424 * PC300 TTY WRITE routine
425 *
426 * This routine is called by the tty driver to write a series of characters
427 * to the tty device. The characters may come from user or kernel space.
428 * o verify the DCD signal
429 * o send characters to board and start the transmission
430 */
431static int cpc_tty_write(struct tty_struct *tty, const unsigned char *buf, int count)
432{
433 st_cpc_tty_area *cpc_tty;
434 pc300ch_t *pc300chan;
435 pc300_t *card;
436 int ch;
437 unsigned long flags;
438 struct net_device_stats *stats;
439
440 if (!tty || !tty->driver_data ) {
441 CPC_TTY_DBG("hdlcX-tty: no TTY in write\n");
442 return -ENODEV;
443 }
444
445 cpc_tty = (st_cpc_tty_area *) tty->driver_data;
446
447 if ((cpc_tty->tty != tty) || (cpc_tty->state != CPC_TTY_ST_OPEN)) {
448 CPC_TTY_DBG("%s: TTY is not opened\n", cpc_tty->name);
449 return -ENODEV;
450 }
451
452 if (count > CPC_TTY_MAX_MTU) {
453 CPC_TTY_DBG("%s: count is invalid\n",cpc_tty->name);
454 return -EINVAL; /* frame too big */
455 }
456
457 CPC_TTY_DBG("%s: cpc_tty_write data len=%i\n",cpc_tty->name,count);
458
459 pc300chan = (pc300ch_t *)((pc300dev_t*)cpc_tty->pc300dev)->chan;
460 stats = &cpc_tty->pc300dev->dev->stats;
461 card = (pc300_t *) pc300chan->card;
462 ch = pc300chan->channel;
463
464 /* verify DCD signal*/
465 if (cpc_readb(card->hw.scabase + M_REG(ST3,ch)) & ST3_DCD) {
466 /* DCD is OFF */
467 CPC_TTY_DBG("%s : DCD is OFF\n", cpc_tty->name);
468 stats->tx_errors++;
469 stats->tx_carrier_errors++;
470 CPC_TTY_LOCK(card, flags);
471 cpc_writeb(card->hw.scabase + M_REG(CMD, ch), CMD_TX_BUF_CLR);
472
473 if (card->hw.type == PC300_TE) {
474 cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
475 cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) &
476 ~(CPLD_REG2_FALC_LED1 << (2 *ch)));
477 }
478
479 CPC_TTY_UNLOCK(card, flags);
480
481 return -EINVAL;
482 }
483
484 if (cpc_tty_send_to_card(cpc_tty->pc300dev, (void*)buf, count)) {
485 /* failed to send */
486 CPC_TTY_DBG("%s: trasmition error\n", cpc_tty->name);
487 return 0;
488 }
489 return count;
490}
491
492/*
493 * PC300 TTY Write Room routine
494 *
495 * This routine returns the numbers of characteres the tty driver will accept
496 * for queuing to be written.
497 * o return MTU
498 */
499static int cpc_tty_write_room(struct tty_struct *tty)
500{
501 st_cpc_tty_area *cpc_tty;
502
503 if (!tty || !tty->driver_data ) {
504 CPC_TTY_DBG("hdlcX-tty: no TTY to write room\n");
505 return -ENODEV;
506 }
507
508 cpc_tty = (st_cpc_tty_area *) tty->driver_data;
509
510 if ((cpc_tty->tty != tty) || (cpc_tty->state != CPC_TTY_ST_OPEN)) {
511 CPC_TTY_DBG("%s: TTY is not opened\n",cpc_tty->name);
512 return -ENODEV;
513 }
514
515 CPC_TTY_DBG("%s: write room\n",cpc_tty->name);
516
517 return CPC_TTY_MAX_MTU;
518}
519
520/*
521 * PC300 TTY chars in buffer routine
522 *
523 * This routine returns the chars number in the transmission buffer
524 * o returns 0
525 */
526static int cpc_tty_chars_in_buffer(struct tty_struct *tty)
527{
528 st_cpc_tty_area *cpc_tty;
529
530 if (!tty || !tty->driver_data ) {
531 CPC_TTY_DBG("hdlcX-tty: no TTY to chars in buffer\n");
532 return -ENODEV;
533 }
534
535 cpc_tty = (st_cpc_tty_area *) tty->driver_data;
536
537 if ((cpc_tty->tty != tty) || (cpc_tty->state != CPC_TTY_ST_OPEN)) {
538 CPC_TTY_DBG("%s: TTY is not opened\n",cpc_tty->name);
539 return -ENODEV;
540 }
541
542 return 0;
543}
544
545static int pc300_tiocmset(struct tty_struct *tty,
546 unsigned int set, unsigned int clear)
547{
548 st_cpc_tty_area *cpc_tty;
549
550 CPC_TTY_DBG("%s: set:%x clear:%x\n", __func__, set, clear);
551
552 if (!tty || !tty->driver_data ) {
553 CPC_TTY_DBG("hdlcX-tty: no TTY to chars in buffer\n");
554 return -ENODEV;
555 }
556
557 cpc_tty = (st_cpc_tty_area *) tty->driver_data;
558
559 if (set & TIOCM_RTS)
560 cpc_tty_signal_on(cpc_tty->pc300dev, CTL_RTS);
561 if (set & TIOCM_DTR)
562 cpc_tty_signal_on(cpc_tty->pc300dev, CTL_DTR);
563
564 if (clear & TIOCM_RTS)
565 cpc_tty_signal_off(cpc_tty->pc300dev, CTL_RTS);
566 if (clear & TIOCM_DTR)
567 cpc_tty_signal_off(cpc_tty->pc300dev, CTL_DTR);
568
569 return 0;
570}
571
572static int pc300_tiocmget(struct tty_struct *tty)
573{
574 unsigned int result;
575 unsigned char status;
576 unsigned long flags;
577 st_cpc_tty_area *cpc_tty = (st_cpc_tty_area *) tty->driver_data;
578 pc300dev_t *pc300dev = cpc_tty->pc300dev;
579 pc300ch_t *pc300chan = (pc300ch_t *)pc300dev->chan;
580 pc300_t *card = (pc300_t *) pc300chan->card;
581 int ch = pc300chan->channel;
582
583 cpc_tty = (st_cpc_tty_area *) tty->driver_data;
584
585 CPC_TTY_DBG("%s-tty: tiocmget\n",
586 ((struct net_device*)(pc300dev->hdlc))->name);
587
588 CPC_TTY_LOCK(card, flags);
589 status = cpc_readb(card->hw.scabase+M_REG(CTL,ch));
590 CPC_TTY_UNLOCK(card,flags);
591
592 result = ((status & CTL_DTR) ? TIOCM_DTR : 0) |
593 ((status & CTL_RTS) ? TIOCM_RTS : 0);
594
595 return result;
596}
597
598/*
599 * PC300 TTY Flush Buffer routine
600 *
601 * This routine resets the transmission buffer
602 */
603static void cpc_tty_flush_buffer(struct tty_struct *tty)
604{
605 st_cpc_tty_area *cpc_tty;
606
607 if (!tty || !tty->driver_data ) {
608 CPC_TTY_DBG("hdlcX-tty: no TTY to flush buffer\n");
609 return;
610 }
611
612 cpc_tty = (st_cpc_tty_area *) tty->driver_data;
613
614 if ((cpc_tty->tty != tty) || (cpc_tty->state != CPC_TTY_ST_OPEN)) {
615 CPC_TTY_DBG("%s: TTY is not opened\n",cpc_tty->name);
616 return;
617 }
618
619 CPC_TTY_DBG("%s: call wake_up_interruptible\n",cpc_tty->name);
620
621 tty_wakeup(tty);
622 return;
623}
624
625/*
626 * PC300 TTY Hangup routine
627 *
628 * This routine is called by the tty driver to hangup the interface
629 * o clear DTR signal
630 */
631
632static void cpc_tty_hangup(struct tty_struct *tty)
633{
634 st_cpc_tty_area *cpc_tty;
635 int res;
636
637 if (!tty || !tty->driver_data ) {
638 CPC_TTY_DBG("hdlcX-tty: no TTY to hangup\n");
639 return ;
640 }
641
642 cpc_tty = (st_cpc_tty_area *) tty->driver_data;
643
644 if ((cpc_tty->tty != tty) || (cpc_tty->state != CPC_TTY_ST_OPEN)) {
645 CPC_TTY_DBG("%s: TTY is not opened\n",cpc_tty->name);
646 return ;
647 }
648 if (!serial_drv.refcount && cpc_tty_unreg_flag) {
649 cpc_tty_unreg_flag = 0;
650 CPC_TTY_DBG("%s: unregister the tty driver\n", cpc_tty->name);
651 if ((res=tty_unregister_driver(&serial_drv))) {
652 CPC_TTY_DBG("%s: ERROR ->unregister the tty driver error=%d\n",
653 cpc_tty->name,res);
654 }
655 }
656 cpc_tty_signal_off(cpc_tty->pc300dev, CTL_DTR);
657}
658
659/*
660 * PC300 TTY RX work routine
661 * This routine treats RX work
662 * o verify read buffer
663 * o call the line disc. read
664 * o free memory
665 */
666static void cpc_tty_rx_work(struct work_struct *work)
667{
668 st_cpc_tty_area *cpc_tty;
669 unsigned long port;
670 int i, j;
671 volatile st_cpc_rx_buf *buf;
672 char flags=0,flg_rx=1;
673 struct tty_ldisc *ld;
674
675 if (cpc_tty_cnt == 0) return;
676
677 for (i=0; (i < 4) && flg_rx ; i++) {
678 flg_rx = 0;
679
680 cpc_tty = container_of(work, st_cpc_tty_area, tty_rx_work);
681 port = cpc_tty - cpc_tty_area;
682
683 for (j=0; j < CPC_TTY_NPORTS; j++) {
684 cpc_tty = &cpc_tty_area[port];
685
686 if ((buf=cpc_tty->buf_rx.first) != NULL) {
687 if (cpc_tty->tty) {
688 ld = tty_ldisc_ref(cpc_tty->tty);
689 if (ld) {
690 if (ld->ops->receive_buf) {
691 CPC_TTY_DBG("%s: call line disc. receive_buf\n",cpc_tty->name);
692 ld->ops->receive_buf(cpc_tty->tty, (char *)(buf->data), &flags, buf->size);
693 }
694 tty_ldisc_deref(ld);
695 }
696 }
697 cpc_tty->buf_rx.first = cpc_tty->buf_rx.first->next;
698 kfree((void *)buf);
699 buf = cpc_tty->buf_rx.first;
700 flg_rx = 1;
701 }
702 if (++port == CPC_TTY_NPORTS) port = 0;
703 }
704 }
705}
706
707/*
708 * PC300 TTY RX work routine
709 *
710 * This routine treats RX interrupt.
711 * o read all frames in card
712 * o verify the frame size
713 * o read the frame in rx buffer
714 */
715static void cpc_tty_rx_disc_frame(pc300ch_t *pc300chan)
716{
717 volatile pcsca_bd_t __iomem * ptdescr;
718 volatile unsigned char status;
719 pc300_t *card = (pc300_t *)pc300chan->card;
720 int ch = pc300chan->channel;
721
722 /* dma buf read */
723 ptdescr = (pcsca_bd_t __iomem *)(card->hw.rambase +
724 RX_BD_ADDR(ch, pc300chan->rx_first_bd));
725 while (pc300chan->rx_first_bd != pc300chan->rx_last_bd) {
726 status = cpc_readb(&ptdescr->status);
727 cpc_writeb(&ptdescr->status, 0);
728 cpc_writeb(&ptdescr->len, 0);
729 pc300chan->rx_first_bd = (pc300chan->rx_first_bd + 1) &
730 (N_DMA_RX_BUF - 1);
731 if (status & DST_EOM) {
732 break; /* end of message */
733 }
734 ptdescr = (pcsca_bd_t __iomem *)(card->hw.rambase + cpc_readl(&ptdescr->next));
735 }
736}
737
738void cpc_tty_receive(pc300dev_t *pc300dev)
739{
740 st_cpc_tty_area *cpc_tty;
741 pc300ch_t *pc300chan = (pc300ch_t *)pc300dev->chan;
742 pc300_t *card = (pc300_t *)pc300chan->card;
743 int ch = pc300chan->channel;
744 volatile pcsca_bd_t __iomem * ptdescr;
745 struct net_device_stats *stats = &pc300dev->dev->stats;
746 int rx_len, rx_aux;
747 volatile unsigned char status;
748 unsigned short first_bd = pc300chan->rx_first_bd;
749 st_cpc_rx_buf *new = NULL;
750 unsigned char dsr_rx;
751
752 if (pc300dev->cpc_tty == NULL) {
753 return;
754 }
755
756 dsr_rx = cpc_readb(card->hw.scabase + DSR_RX(ch));
757
758 cpc_tty = pc300dev->cpc_tty;
759
760 while (1) {
761 rx_len = 0;
762 ptdescr = (pcsca_bd_t __iomem *)(card->hw.rambase + RX_BD_ADDR(ch, first_bd));
763 while ((status = cpc_readb(&ptdescr->status)) & DST_OSB) {
764 rx_len += cpc_readw(&ptdescr->len);
765 first_bd = (first_bd + 1) & (N_DMA_RX_BUF - 1);
766 if (status & DST_EOM) {
767 break;
768 }
769 ptdescr = (pcsca_bd_t __iomem *)(card->hw.rambase+cpc_readl(&ptdescr->next));
770 }
771
772 if (!rx_len) {
773 if (dsr_rx & DSR_BOF) {
774 /* update EDA */
775 cpc_writel(card->hw.scabase + DRX_REG(EDAL, ch),
776 RX_BD_ADDR(ch, pc300chan->rx_last_bd));
777 }
778 kfree(new);
779 return;
780 }
781
782 if (rx_len > CPC_TTY_MAX_MTU) {
783 /* Free RX descriptors */
784 CPC_TTY_DBG("%s: frame size is invalid.\n",cpc_tty->name);
785 stats->rx_errors++;
786 stats->rx_frame_errors++;
787 cpc_tty_rx_disc_frame(pc300chan);
788 continue;
789 }
790
791 new = kmalloc(rx_len + sizeof(st_cpc_rx_buf), GFP_ATOMIC);
792 if (!new) {
793 cpc_tty_rx_disc_frame(pc300chan);
794 continue;
795 }
796
797 /* dma buf read */
798 ptdescr = (pcsca_bd_t __iomem *)(card->hw.rambase +
799 RX_BD_ADDR(ch, pc300chan->rx_first_bd));
800
801 rx_len = 0; /* counter frame size */
802
803 while ((status = cpc_readb(&ptdescr->status)) & DST_OSB) {
804 rx_aux = cpc_readw(&ptdescr->len);
805 if ((status & (DST_OVR | DST_CRC | DST_RBIT | DST_SHRT | DST_ABT))
806 || (rx_aux > BD_DEF_LEN)) {
807 CPC_TTY_DBG("%s: reception error\n", cpc_tty->name);
808 stats->rx_errors++;
809 if (status & DST_OVR) {
810 stats->rx_fifo_errors++;
811 }
812 if (status & DST_CRC) {
813 stats->rx_crc_errors++;
814 }
815 if ((status & (DST_RBIT | DST_SHRT | DST_ABT)) ||
816 (rx_aux > BD_DEF_LEN)) {
817 stats->rx_frame_errors++;
818 }
819 /* discard remainig descriptors used by the bad frame */
820 CPC_TTY_DBG("%s: reception error - discard descriptors",
821 cpc_tty->name);
822 cpc_tty_rx_disc_frame(pc300chan);
823 rx_len = 0;
824 kfree(new);
825 new = NULL;
826 break; /* read next frame - while(1) */
827 }
828
829 if (cpc_tty->state != CPC_TTY_ST_OPEN) {
830 /* Free RX descriptors */
831 cpc_tty_rx_disc_frame(pc300chan);
832 stats->rx_dropped++;
833 rx_len = 0;
834 kfree(new);
835 new = NULL;
836 break; /* read next frame - while(1) */
837 }
838
839 /* read the segment of the frame */
840 if (rx_aux != 0) {
841 memcpy_fromio((new->data + rx_len),
842 (void __iomem *)(card->hw.rambase +
843 cpc_readl(&ptdescr->ptbuf)), rx_aux);
844 rx_len += rx_aux;
845 }
846 cpc_writeb(&ptdescr->status,0);
847 cpc_writeb(&ptdescr->len, 0);
848 pc300chan->rx_first_bd = (pc300chan->rx_first_bd + 1) &
849 (N_DMA_RX_BUF -1);
850 if (status & DST_EOM)break;
851
852 ptdescr = (pcsca_bd_t __iomem *) (card->hw.rambase +
853 cpc_readl(&ptdescr->next));
854 }
855 /* update pointer */
856 pc300chan->rx_last_bd = (pc300chan->rx_first_bd - 1) &
857 (N_DMA_RX_BUF - 1) ;
858 if (!(dsr_rx & DSR_BOF)) {
859 /* update EDA */
860 cpc_writel(card->hw.scabase + DRX_REG(EDAL, ch),
861 RX_BD_ADDR(ch, pc300chan->rx_last_bd));
862 }
863 if (rx_len != 0) {
864 stats->rx_bytes += rx_len;
865
866 if (pc300dev->trace_on) {
867 cpc_tty_trace(pc300dev, new->data,rx_len, 'R');
868 }
869 new->size = rx_len;
870 new->next = NULL;
871 if (cpc_tty->buf_rx.first == NULL) {
872 cpc_tty->buf_rx.first = new;
873 cpc_tty->buf_rx.last = new;
874 } else {
875 cpc_tty->buf_rx.last->next = new;
876 cpc_tty->buf_rx.last = new;
877 }
878 schedule_work(&(cpc_tty->tty_rx_work));
879 stats->rx_packets++;
880 }
881 }
882}
883
884/*
885 * PC300 TTY TX work routine
886 *
887 * This routine treats TX interrupt.
888 * o if need call line discipline wakeup
889 * o call wake_up_interruptible
890 */
891static void cpc_tty_tx_work(struct work_struct *work)
892{
893 st_cpc_tty_area *cpc_tty =
894 container_of(work, st_cpc_tty_area, tty_tx_work);
895 struct tty_struct *tty;
896
897 CPC_TTY_DBG("%s: cpc_tty_tx_work init\n",cpc_tty->name);
898
899 if ((tty = cpc_tty->tty) == NULL) {
900 CPC_TTY_DBG("%s: the interface is not opened\n",cpc_tty->name);
901 return;
902 }
903 tty_wakeup(tty);
904}
905
906/*
907 * PC300 TTY send to card routine
908 *
909 * This routine send data to card.
910 * o clear descriptors
911 * o write data to DMA buffers
912 * o start the transmission
913 */
914static int cpc_tty_send_to_card(pc300dev_t *dev,void* buf, int len)
915{
916 pc300ch_t *chan = (pc300ch_t *)dev->chan;
917 pc300_t *card = (pc300_t *)chan->card;
918 int ch = chan->channel;
919 struct net_device_stats *stats = &dev->dev->stats;
920 unsigned long flags;
921 volatile pcsca_bd_t __iomem *ptdescr;
922 int i, nchar;
923 int tosend = len;
924 int nbuf = ((len - 1)/BD_DEF_LEN) + 1;
925 unsigned char *pdata=buf;
926
927 CPC_TTY_DBG("%s:cpc_tty_send_to_cars len=%i",
928 (st_cpc_tty_area *)dev->cpc_tty->name,len);
929
930 if (nbuf >= card->chan[ch].nfree_tx_bd) {
931 return 1;
932 }
933
934 /* write buffer to DMA buffers */
935 CPC_TTY_DBG("%s: call dma_buf_write\n",
936 (st_cpc_tty_area *)dev->cpc_tty->name);
937 for (i = 0 ; i < nbuf ; i++) {
938 ptdescr = (pcsca_bd_t __iomem *)(card->hw.rambase +
939 TX_BD_ADDR(ch, card->chan[ch].tx_next_bd));
940 nchar = (BD_DEF_LEN > tosend) ? tosend : BD_DEF_LEN;
941 if (cpc_readb(&ptdescr->status) & DST_OSB) {
942 memcpy_toio((void __iomem *)(card->hw.rambase +
943 cpc_readl(&ptdescr->ptbuf)),
944 &pdata[len - tosend],
945 nchar);
946 card->chan[ch].nfree_tx_bd--;
947 if ((i + 1) == nbuf) {
948 /* This must be the last BD to be used */
949 cpc_writeb(&ptdescr->status, DST_EOM);
950 } else {
951 cpc_writeb(&ptdescr->status, 0);
952 }
953 cpc_writew(&ptdescr->len, nchar);
954 } else {
955 CPC_TTY_DBG("%s: error in dma_buf_write\n",
956 (st_cpc_tty_area *)dev->cpc_tty->name);
957 stats->tx_dropped++;
958 return 1;
959 }
960 tosend -= nchar;
961 card->chan[ch].tx_next_bd =
962 (card->chan[ch].tx_next_bd + 1) & (N_DMA_TX_BUF - 1);
963 }
964
965 if (dev->trace_on) {
966 cpc_tty_trace(dev, buf, len,'T');
967 }
968
969 /* start transmission */
970 CPC_TTY_DBG("%s: start transmission\n",
971 (st_cpc_tty_area *)dev->cpc_tty->name);
972
973 CPC_TTY_LOCK(card, flags);
974 cpc_writeb(card->hw.scabase + DTX_REG(EDAL, ch),
975 TX_BD_ADDR(ch, chan->tx_next_bd));
976 cpc_writeb(card->hw.scabase + M_REG(CMD, ch), CMD_TX_ENA);
977 cpc_writeb(card->hw.scabase + DSR_TX(ch), DSR_DE);
978
979 if (card->hw.type == PC300_TE) {
980 cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
981 cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) |
982 (CPLD_REG2_FALC_LED1 << (2 * ch)));
983 }
984 CPC_TTY_UNLOCK(card, flags);
985 return 0;
986}
987
988/*
989 * PC300 TTY trace routine
990 *
991 * This routine send trace of connection to application.
992 * o clear descriptors
993 * o write data to DMA buffers
994 * o start the transmission
995 */
996
997static void cpc_tty_trace(pc300dev_t *dev, char* buf, int len, char rxtx)
998{
999 struct sk_buff *skb;
1000
1001 if ((skb = dev_alloc_skb(10 + len)) == NULL) {
1002 /* out of memory */
1003 CPC_TTY_DBG("%s: tty_trace - out of memory\n", dev->dev->name);
1004 return;
1005 }
1006
1007 skb_put (skb, 10 + len);
1008 skb->dev = dev->dev;
1009 skb->protocol = htons(ETH_P_CUST);
1010 skb_reset_mac_header(skb);
1011 skb->pkt_type = PACKET_HOST;
1012 skb->len = 10 + len;
1013
1014 skb_copy_to_linear_data(skb, dev->dev->name, 5);
1015 skb->data[5] = '[';
1016 skb->data[6] = rxtx;
1017 skb->data[7] = ']';
1018 skb->data[8] = ':';
1019 skb->data[9] = ' ';
1020 skb_copy_to_linear_data_offset(skb, 10, buf, len);
1021 netif_rx(skb);
1022}
1023
1024/*
1025 * PC300 TTY unregister service routine
1026 *
1027 * This routine unregister one interface.
1028 */
1029void cpc_tty_unregister_service(pc300dev_t *pc300dev)
1030{
1031 st_cpc_tty_area *cpc_tty;
1032 ulong flags;
1033 int res;
1034
1035 if ((cpc_tty= (st_cpc_tty_area *) pc300dev->cpc_tty) == NULL) {
1036 CPC_TTY_DBG("%s: interface is not TTY\n", pc300dev->dev->name);
1037 return;
1038 }
1039 CPC_TTY_DBG("%s: cpc_tty_unregister_service", cpc_tty->name);
1040
1041 if (cpc_tty->pc300dev != pc300dev) {
1042 CPC_TTY_DBG("%s: invalid tty ptr=%s\n",
1043 pc300dev->dev->name, cpc_tty->name);
1044 return;
1045 }
1046
1047 if (--cpc_tty_cnt == 0) {
1048 if (serial_drv.refcount) {
1049 CPC_TTY_DBG("%s: unregister is not possible, refcount=%d",
1050 cpc_tty->name, serial_drv.refcount);
1051 cpc_tty_cnt++;
1052 cpc_tty_unreg_flag = 1;
1053 return;
1054 } else {
1055 CPC_TTY_DBG("%s: unregister the tty driver\n", cpc_tty->name);
1056 if ((res=tty_unregister_driver(&serial_drv))) {
1057 CPC_TTY_DBG("%s: ERROR ->unregister the tty driver error=%d\n",
1058 cpc_tty->name,res);
1059 }
1060 }
1061 }
1062 CPC_TTY_LOCK(pc300dev->chan->card,flags);
1063 cpc_tty->tty = NULL;
1064 CPC_TTY_UNLOCK(pc300dev->chan->card, flags);
1065 cpc_tty->tty_minor = 0;
1066 cpc_tty->state = CPC_TTY_ST_IDLE;
1067}
1068
1069/*
1070 * PC300 TTY trigger poll routine
1071 * This routine is called by pc300driver to treats Tx interrupt.
1072 */
1073void cpc_tty_trigger_poll(pc300dev_t *pc300dev)
1074{
1075 st_cpc_tty_area *cpc_tty = (st_cpc_tty_area *)pc300dev->cpc_tty;
1076 if (!cpc_tty) {
1077 return;
1078 }
1079 schedule_work(&(cpc_tty->tty_tx_work));
1080}
1081
1082/*
1083 * PC300 TTY reset var routine
1084 * This routine is called by pc300driver to init the TTY area.
1085 */
1086
1087void cpc_tty_reset_var(void)
1088{
1089 int i ;
1090
1091 CPC_TTY_DBG("hdlcX-tty: reset variables\n");
1092 /* reset the tty_driver structure - serial_drv */
1093 memset(&serial_drv, 0, sizeof(struct tty_driver));
1094 for (i=0; i < CPC_TTY_NPORTS; i++){
1095 memset(&cpc_tty_area[i],0, sizeof(st_cpc_tty_area));
1096 }
1097}