diff options
author | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
---|---|---|
committer | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
commit | fcc9d2e5a6c89d22b8b773a64fb4ad21ac318446 (patch) | |
tree | a57612d1888735a2ec7972891b68c1ac5ec8faea /drivers/net/sfc/rx.c | |
parent | 8dea78da5cee153b8af9c07a2745f6c55057fe12 (diff) |
Diffstat (limited to 'drivers/net/sfc/rx.c')
-rw-r--r-- | drivers/net/sfc/rx.c | 749 |
1 files changed, 749 insertions, 0 deletions
diff --git a/drivers/net/sfc/rx.c b/drivers/net/sfc/rx.c new file mode 100644 index 00000000000..62e43649466 --- /dev/null +++ b/drivers/net/sfc/rx.c | |||
@@ -0,0 +1,749 @@ | |||
1 | /**************************************************************************** | ||
2 | * Driver for Solarflare Solarstorm network controllers and boards | ||
3 | * Copyright 2005-2006 Fen Systems Ltd. | ||
4 | * Copyright 2005-2011 Solarflare Communications Inc. | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify it | ||
7 | * under the terms of the GNU General Public License version 2 as published | ||
8 | * by the Free Software Foundation, incorporated herein by reference. | ||
9 | */ | ||
10 | |||
11 | #include <linux/socket.h> | ||
12 | #include <linux/in.h> | ||
13 | #include <linux/slab.h> | ||
14 | #include <linux/ip.h> | ||
15 | #include <linux/tcp.h> | ||
16 | #include <linux/udp.h> | ||
17 | #include <linux/prefetch.h> | ||
18 | #include <net/ip.h> | ||
19 | #include <net/checksum.h> | ||
20 | #include "net_driver.h" | ||
21 | #include "efx.h" | ||
22 | #include "nic.h" | ||
23 | #include "selftest.h" | ||
24 | #include "workarounds.h" | ||
25 | |||
26 | /* Number of RX descriptors pushed at once. */ | ||
27 | #define EFX_RX_BATCH 8 | ||
28 | |||
29 | /* Maximum size of a buffer sharing a page */ | ||
30 | #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state)) | ||
31 | |||
32 | /* Size of buffer allocated for skb header area. */ | ||
33 | #define EFX_SKB_HEADERS 64u | ||
34 | |||
35 | /* | ||
36 | * rx_alloc_method - RX buffer allocation method | ||
37 | * | ||
38 | * This driver supports two methods for allocating and using RX buffers: | ||
39 | * each RX buffer may be backed by an skb or by an order-n page. | ||
40 | * | ||
41 | * When GRO is in use then the second method has a lower overhead, | ||
42 | * since we don't have to allocate then free skbs on reassembled frames. | ||
43 | * | ||
44 | * Values: | ||
45 | * - RX_ALLOC_METHOD_AUTO = 0 | ||
46 | * - RX_ALLOC_METHOD_SKB = 1 | ||
47 | * - RX_ALLOC_METHOD_PAGE = 2 | ||
48 | * | ||
49 | * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count | ||
50 | * controlled by the parameters below. | ||
51 | * | ||
52 | * - Since pushing and popping descriptors are separated by the rx_queue | ||
53 | * size, so the watermarks should be ~rxd_size. | ||
54 | * - The performance win by using page-based allocation for GRO is less | ||
55 | * than the performance hit of using page-based allocation of non-GRO, | ||
56 | * so the watermarks should reflect this. | ||
57 | * | ||
58 | * Per channel we maintain a single variable, updated by each channel: | ||
59 | * | ||
60 | * rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO : | ||
61 | * RX_ALLOC_FACTOR_SKB) | ||
62 | * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which | ||
63 | * limits the hysteresis), and update the allocation strategy: | ||
64 | * | ||
65 | * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ? | ||
66 | * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB) | ||
67 | */ | ||
68 | static int rx_alloc_method = RX_ALLOC_METHOD_AUTO; | ||
69 | |||
70 | #define RX_ALLOC_LEVEL_GRO 0x2000 | ||
71 | #define RX_ALLOC_LEVEL_MAX 0x3000 | ||
72 | #define RX_ALLOC_FACTOR_GRO 1 | ||
73 | #define RX_ALLOC_FACTOR_SKB (-2) | ||
74 | |||
75 | /* This is the percentage fill level below which new RX descriptors | ||
76 | * will be added to the RX descriptor ring. | ||
77 | */ | ||
78 | static unsigned int rx_refill_threshold = 90; | ||
79 | |||
80 | /* This is the percentage fill level to which an RX queue will be refilled | ||
81 | * when the "RX refill threshold" is reached. | ||
82 | */ | ||
83 | static unsigned int rx_refill_limit = 95; | ||
84 | |||
85 | /* | ||
86 | * RX maximum head room required. | ||
87 | * | ||
88 | * This must be at least 1 to prevent overflow and at least 2 to allow | ||
89 | * pipelined receives. | ||
90 | */ | ||
91 | #define EFX_RXD_HEAD_ROOM 2 | ||
92 | |||
93 | /* Offset of ethernet header within page */ | ||
94 | static inline unsigned int efx_rx_buf_offset(struct efx_nic *efx, | ||
95 | struct efx_rx_buffer *buf) | ||
96 | { | ||
97 | /* Offset is always within one page, so we don't need to consider | ||
98 | * the page order. | ||
99 | */ | ||
100 | return (((__force unsigned long) buf->dma_addr & (PAGE_SIZE - 1)) + | ||
101 | efx->type->rx_buffer_hash_size); | ||
102 | } | ||
103 | static inline unsigned int efx_rx_buf_size(struct efx_nic *efx) | ||
104 | { | ||
105 | return PAGE_SIZE << efx->rx_buffer_order; | ||
106 | } | ||
107 | |||
108 | static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf) | ||
109 | { | ||
110 | if (buf->is_page) | ||
111 | return page_address(buf->u.page) + efx_rx_buf_offset(efx, buf); | ||
112 | else | ||
113 | return ((u8 *)buf->u.skb->data + | ||
114 | efx->type->rx_buffer_hash_size); | ||
115 | } | ||
116 | |||
117 | static inline u32 efx_rx_buf_hash(const u8 *eh) | ||
118 | { | ||
119 | /* The ethernet header is always directly after any hash. */ | ||
120 | #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0 | ||
121 | return __le32_to_cpup((const __le32 *)(eh - 4)); | ||
122 | #else | ||
123 | const u8 *data = eh - 4; | ||
124 | return ((u32)data[0] | | ||
125 | (u32)data[1] << 8 | | ||
126 | (u32)data[2] << 16 | | ||
127 | (u32)data[3] << 24); | ||
128 | #endif | ||
129 | } | ||
130 | |||
131 | /** | ||
132 | * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers | ||
133 | * | ||
134 | * @rx_queue: Efx RX queue | ||
135 | * | ||
136 | * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a | ||
137 | * struct efx_rx_buffer for each one. Return a negative error code or 0 | ||
138 | * on success. May fail having only inserted fewer than EFX_RX_BATCH | ||
139 | * buffers. | ||
140 | */ | ||
141 | static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue) | ||
142 | { | ||
143 | struct efx_nic *efx = rx_queue->efx; | ||
144 | struct net_device *net_dev = efx->net_dev; | ||
145 | struct efx_rx_buffer *rx_buf; | ||
146 | struct sk_buff *skb; | ||
147 | int skb_len = efx->rx_buffer_len; | ||
148 | unsigned index, count; | ||
149 | |||
150 | for (count = 0; count < EFX_RX_BATCH; ++count) { | ||
151 | index = rx_queue->added_count & rx_queue->ptr_mask; | ||
152 | rx_buf = efx_rx_buffer(rx_queue, index); | ||
153 | |||
154 | rx_buf->u.skb = skb = netdev_alloc_skb(net_dev, skb_len); | ||
155 | if (unlikely(!skb)) | ||
156 | return -ENOMEM; | ||
157 | |||
158 | /* Adjust the SKB for padding and checksum */ | ||
159 | skb_reserve(skb, NET_IP_ALIGN); | ||
160 | rx_buf->len = skb_len - NET_IP_ALIGN; | ||
161 | rx_buf->is_page = false; | ||
162 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
163 | |||
164 | rx_buf->dma_addr = pci_map_single(efx->pci_dev, | ||
165 | skb->data, rx_buf->len, | ||
166 | PCI_DMA_FROMDEVICE); | ||
167 | if (unlikely(pci_dma_mapping_error(efx->pci_dev, | ||
168 | rx_buf->dma_addr))) { | ||
169 | dev_kfree_skb_any(skb); | ||
170 | rx_buf->u.skb = NULL; | ||
171 | return -EIO; | ||
172 | } | ||
173 | |||
174 | ++rx_queue->added_count; | ||
175 | ++rx_queue->alloc_skb_count; | ||
176 | } | ||
177 | |||
178 | return 0; | ||
179 | } | ||
180 | |||
181 | /** | ||
182 | * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers | ||
183 | * | ||
184 | * @rx_queue: Efx RX queue | ||
185 | * | ||
186 | * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA, | ||
187 | * and populates struct efx_rx_buffers for each one. Return a negative error | ||
188 | * code or 0 on success. If a single page can be split between two buffers, | ||
189 | * then the page will either be inserted fully, or not at at all. | ||
190 | */ | ||
191 | static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue) | ||
192 | { | ||
193 | struct efx_nic *efx = rx_queue->efx; | ||
194 | struct efx_rx_buffer *rx_buf; | ||
195 | struct page *page; | ||
196 | void *page_addr; | ||
197 | struct efx_rx_page_state *state; | ||
198 | dma_addr_t dma_addr; | ||
199 | unsigned index, count; | ||
200 | |||
201 | /* We can split a page between two buffers */ | ||
202 | BUILD_BUG_ON(EFX_RX_BATCH & 1); | ||
203 | |||
204 | for (count = 0; count < EFX_RX_BATCH; ++count) { | ||
205 | page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC, | ||
206 | efx->rx_buffer_order); | ||
207 | if (unlikely(page == NULL)) | ||
208 | return -ENOMEM; | ||
209 | dma_addr = pci_map_page(efx->pci_dev, page, 0, | ||
210 | efx_rx_buf_size(efx), | ||
211 | PCI_DMA_FROMDEVICE); | ||
212 | if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) { | ||
213 | __free_pages(page, efx->rx_buffer_order); | ||
214 | return -EIO; | ||
215 | } | ||
216 | page_addr = page_address(page); | ||
217 | state = page_addr; | ||
218 | state->refcnt = 0; | ||
219 | state->dma_addr = dma_addr; | ||
220 | |||
221 | page_addr += sizeof(struct efx_rx_page_state); | ||
222 | dma_addr += sizeof(struct efx_rx_page_state); | ||
223 | |||
224 | split: | ||
225 | index = rx_queue->added_count & rx_queue->ptr_mask; | ||
226 | rx_buf = efx_rx_buffer(rx_queue, index); | ||
227 | rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN; | ||
228 | rx_buf->u.page = page; | ||
229 | rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN; | ||
230 | rx_buf->is_page = true; | ||
231 | ++rx_queue->added_count; | ||
232 | ++rx_queue->alloc_page_count; | ||
233 | ++state->refcnt; | ||
234 | |||
235 | if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) { | ||
236 | /* Use the second half of the page */ | ||
237 | get_page(page); | ||
238 | dma_addr += (PAGE_SIZE >> 1); | ||
239 | page_addr += (PAGE_SIZE >> 1); | ||
240 | ++count; | ||
241 | goto split; | ||
242 | } | ||
243 | } | ||
244 | |||
245 | return 0; | ||
246 | } | ||
247 | |||
248 | static void efx_unmap_rx_buffer(struct efx_nic *efx, | ||
249 | struct efx_rx_buffer *rx_buf) | ||
250 | { | ||
251 | if (rx_buf->is_page && rx_buf->u.page) { | ||
252 | struct efx_rx_page_state *state; | ||
253 | |||
254 | state = page_address(rx_buf->u.page); | ||
255 | if (--state->refcnt == 0) { | ||
256 | pci_unmap_page(efx->pci_dev, | ||
257 | state->dma_addr, | ||
258 | efx_rx_buf_size(efx), | ||
259 | PCI_DMA_FROMDEVICE); | ||
260 | } | ||
261 | } else if (!rx_buf->is_page && rx_buf->u.skb) { | ||
262 | pci_unmap_single(efx->pci_dev, rx_buf->dma_addr, | ||
263 | rx_buf->len, PCI_DMA_FROMDEVICE); | ||
264 | } | ||
265 | } | ||
266 | |||
267 | static void efx_free_rx_buffer(struct efx_nic *efx, | ||
268 | struct efx_rx_buffer *rx_buf) | ||
269 | { | ||
270 | if (rx_buf->is_page && rx_buf->u.page) { | ||
271 | __free_pages(rx_buf->u.page, efx->rx_buffer_order); | ||
272 | rx_buf->u.page = NULL; | ||
273 | } else if (!rx_buf->is_page && rx_buf->u.skb) { | ||
274 | dev_kfree_skb_any(rx_buf->u.skb); | ||
275 | rx_buf->u.skb = NULL; | ||
276 | } | ||
277 | } | ||
278 | |||
279 | static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, | ||
280 | struct efx_rx_buffer *rx_buf) | ||
281 | { | ||
282 | efx_unmap_rx_buffer(rx_queue->efx, rx_buf); | ||
283 | efx_free_rx_buffer(rx_queue->efx, rx_buf); | ||
284 | } | ||
285 | |||
286 | /* Attempt to resurrect the other receive buffer that used to share this page, | ||
287 | * which had previously been passed up to the kernel and freed. */ | ||
288 | static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue, | ||
289 | struct efx_rx_buffer *rx_buf) | ||
290 | { | ||
291 | struct efx_rx_page_state *state = page_address(rx_buf->u.page); | ||
292 | struct efx_rx_buffer *new_buf; | ||
293 | unsigned fill_level, index; | ||
294 | |||
295 | /* +1 because efx_rx_packet() incremented removed_count. +1 because | ||
296 | * we'd like to insert an additional descriptor whilst leaving | ||
297 | * EFX_RXD_HEAD_ROOM for the non-recycle path */ | ||
298 | fill_level = (rx_queue->added_count - rx_queue->removed_count + 2); | ||
299 | if (unlikely(fill_level > rx_queue->max_fill)) { | ||
300 | /* We could place "state" on a list, and drain the list in | ||
301 | * efx_fast_push_rx_descriptors(). For now, this will do. */ | ||
302 | return; | ||
303 | } | ||
304 | |||
305 | ++state->refcnt; | ||
306 | get_page(rx_buf->u.page); | ||
307 | |||
308 | index = rx_queue->added_count & rx_queue->ptr_mask; | ||
309 | new_buf = efx_rx_buffer(rx_queue, index); | ||
310 | new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1); | ||
311 | new_buf->u.page = rx_buf->u.page; | ||
312 | new_buf->len = rx_buf->len; | ||
313 | new_buf->is_page = true; | ||
314 | ++rx_queue->added_count; | ||
315 | } | ||
316 | |||
317 | /* Recycle the given rx buffer directly back into the rx_queue. There is | ||
318 | * always room to add this buffer, because we've just popped a buffer. */ | ||
319 | static void efx_recycle_rx_buffer(struct efx_channel *channel, | ||
320 | struct efx_rx_buffer *rx_buf) | ||
321 | { | ||
322 | struct efx_nic *efx = channel->efx; | ||
323 | struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); | ||
324 | struct efx_rx_buffer *new_buf; | ||
325 | unsigned index; | ||
326 | |||
327 | if (rx_buf->is_page && efx->rx_buffer_len <= EFX_RX_HALF_PAGE && | ||
328 | page_count(rx_buf->u.page) == 1) | ||
329 | efx_resurrect_rx_buffer(rx_queue, rx_buf); | ||
330 | |||
331 | index = rx_queue->added_count & rx_queue->ptr_mask; | ||
332 | new_buf = efx_rx_buffer(rx_queue, index); | ||
333 | |||
334 | memcpy(new_buf, rx_buf, sizeof(*new_buf)); | ||
335 | rx_buf->u.page = NULL; | ||
336 | ++rx_queue->added_count; | ||
337 | } | ||
338 | |||
339 | /** | ||
340 | * efx_fast_push_rx_descriptors - push new RX descriptors quickly | ||
341 | * @rx_queue: RX descriptor queue | ||
342 | * This will aim to fill the RX descriptor queue up to | ||
343 | * @rx_queue->@fast_fill_limit. If there is insufficient atomic | ||
344 | * memory to do so, a slow fill will be scheduled. | ||
345 | * | ||
346 | * The caller must provide serialisation (none is used here). In practise, | ||
347 | * this means this function must run from the NAPI handler, or be called | ||
348 | * when NAPI is disabled. | ||
349 | */ | ||
350 | void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue) | ||
351 | { | ||
352 | struct efx_channel *channel = efx_rx_queue_channel(rx_queue); | ||
353 | unsigned fill_level; | ||
354 | int space, rc = 0; | ||
355 | |||
356 | /* Calculate current fill level, and exit if we don't need to fill */ | ||
357 | fill_level = (rx_queue->added_count - rx_queue->removed_count); | ||
358 | EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries); | ||
359 | if (fill_level >= rx_queue->fast_fill_trigger) | ||
360 | goto out; | ||
361 | |||
362 | /* Record minimum fill level */ | ||
363 | if (unlikely(fill_level < rx_queue->min_fill)) { | ||
364 | if (fill_level) | ||
365 | rx_queue->min_fill = fill_level; | ||
366 | } | ||
367 | |||
368 | space = rx_queue->fast_fill_limit - fill_level; | ||
369 | if (space < EFX_RX_BATCH) | ||
370 | goto out; | ||
371 | |||
372 | netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, | ||
373 | "RX queue %d fast-filling descriptor ring from" | ||
374 | " level %d to level %d using %s allocation\n", | ||
375 | efx_rx_queue_index(rx_queue), fill_level, | ||
376 | rx_queue->fast_fill_limit, | ||
377 | channel->rx_alloc_push_pages ? "page" : "skb"); | ||
378 | |||
379 | do { | ||
380 | if (channel->rx_alloc_push_pages) | ||
381 | rc = efx_init_rx_buffers_page(rx_queue); | ||
382 | else | ||
383 | rc = efx_init_rx_buffers_skb(rx_queue); | ||
384 | if (unlikely(rc)) { | ||
385 | /* Ensure that we don't leave the rx queue empty */ | ||
386 | if (rx_queue->added_count == rx_queue->removed_count) | ||
387 | efx_schedule_slow_fill(rx_queue); | ||
388 | goto out; | ||
389 | } | ||
390 | } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH); | ||
391 | |||
392 | netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, | ||
393 | "RX queue %d fast-filled descriptor ring " | ||
394 | "to level %d\n", efx_rx_queue_index(rx_queue), | ||
395 | rx_queue->added_count - rx_queue->removed_count); | ||
396 | |||
397 | out: | ||
398 | if (rx_queue->notified_count != rx_queue->added_count) | ||
399 | efx_nic_notify_rx_desc(rx_queue); | ||
400 | } | ||
401 | |||
402 | void efx_rx_slow_fill(unsigned long context) | ||
403 | { | ||
404 | struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context; | ||
405 | struct efx_channel *channel = efx_rx_queue_channel(rx_queue); | ||
406 | |||
407 | /* Post an event to cause NAPI to run and refill the queue */ | ||
408 | efx_nic_generate_fill_event(channel); | ||
409 | ++rx_queue->slow_fill_count; | ||
410 | } | ||
411 | |||
412 | static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue, | ||
413 | struct efx_rx_buffer *rx_buf, | ||
414 | int len, bool *discard, | ||
415 | bool *leak_packet) | ||
416 | { | ||
417 | struct efx_nic *efx = rx_queue->efx; | ||
418 | unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; | ||
419 | |||
420 | if (likely(len <= max_len)) | ||
421 | return; | ||
422 | |||
423 | /* The packet must be discarded, but this is only a fatal error | ||
424 | * if the caller indicated it was | ||
425 | */ | ||
426 | *discard = true; | ||
427 | |||
428 | if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) { | ||
429 | if (net_ratelimit()) | ||
430 | netif_err(efx, rx_err, efx->net_dev, | ||
431 | " RX queue %d seriously overlength " | ||
432 | "RX event (0x%x > 0x%x+0x%x). Leaking\n", | ||
433 | efx_rx_queue_index(rx_queue), len, max_len, | ||
434 | efx->type->rx_buffer_padding); | ||
435 | /* If this buffer was skb-allocated, then the meta | ||
436 | * data at the end of the skb will be trashed. So | ||
437 | * we have no choice but to leak the fragment. | ||
438 | */ | ||
439 | *leak_packet = !rx_buf->is_page; | ||
440 | efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY); | ||
441 | } else { | ||
442 | if (net_ratelimit()) | ||
443 | netif_err(efx, rx_err, efx->net_dev, | ||
444 | " RX queue %d overlength RX event " | ||
445 | "(0x%x > 0x%x)\n", | ||
446 | efx_rx_queue_index(rx_queue), len, max_len); | ||
447 | } | ||
448 | |||
449 | efx_rx_queue_channel(rx_queue)->n_rx_overlength++; | ||
450 | } | ||
451 | |||
452 | /* Pass a received packet up through the generic GRO stack | ||
453 | * | ||
454 | * Handles driverlink veto, and passes the fragment up via | ||
455 | * the appropriate GRO method | ||
456 | */ | ||
457 | static void efx_rx_packet_gro(struct efx_channel *channel, | ||
458 | struct efx_rx_buffer *rx_buf, | ||
459 | const u8 *eh, bool checksummed) | ||
460 | { | ||
461 | struct napi_struct *napi = &channel->napi_str; | ||
462 | gro_result_t gro_result; | ||
463 | |||
464 | /* Pass the skb/page into the GRO engine */ | ||
465 | if (rx_buf->is_page) { | ||
466 | struct efx_nic *efx = channel->efx; | ||
467 | struct page *page = rx_buf->u.page; | ||
468 | struct sk_buff *skb; | ||
469 | |||
470 | rx_buf->u.page = NULL; | ||
471 | |||
472 | skb = napi_get_frags(napi); | ||
473 | if (!skb) { | ||
474 | put_page(page); | ||
475 | return; | ||
476 | } | ||
477 | |||
478 | if (efx->net_dev->features & NETIF_F_RXHASH) | ||
479 | skb->rxhash = efx_rx_buf_hash(eh); | ||
480 | |||
481 | skb_shinfo(skb)->frags[0].page = page; | ||
482 | skb_shinfo(skb)->frags[0].page_offset = | ||
483 | efx_rx_buf_offset(efx, rx_buf); | ||
484 | skb_shinfo(skb)->frags[0].size = rx_buf->len; | ||
485 | skb_shinfo(skb)->nr_frags = 1; | ||
486 | |||
487 | skb->len = rx_buf->len; | ||
488 | skb->data_len = rx_buf->len; | ||
489 | skb->truesize += rx_buf->len; | ||
490 | skb->ip_summed = | ||
491 | checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE; | ||
492 | |||
493 | skb_record_rx_queue(skb, channel->channel); | ||
494 | |||
495 | gro_result = napi_gro_frags(napi); | ||
496 | } else { | ||
497 | struct sk_buff *skb = rx_buf->u.skb; | ||
498 | |||
499 | EFX_BUG_ON_PARANOID(!checksummed); | ||
500 | rx_buf->u.skb = NULL; | ||
501 | |||
502 | gro_result = napi_gro_receive(napi, skb); | ||
503 | } | ||
504 | |||
505 | if (gro_result == GRO_NORMAL) { | ||
506 | channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB; | ||
507 | } else if (gro_result != GRO_DROP) { | ||
508 | channel->rx_alloc_level += RX_ALLOC_FACTOR_GRO; | ||
509 | channel->irq_mod_score += 2; | ||
510 | } | ||
511 | } | ||
512 | |||
513 | void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, | ||
514 | unsigned int len, bool checksummed, bool discard) | ||
515 | { | ||
516 | struct efx_nic *efx = rx_queue->efx; | ||
517 | struct efx_channel *channel = efx_rx_queue_channel(rx_queue); | ||
518 | struct efx_rx_buffer *rx_buf; | ||
519 | bool leak_packet = false; | ||
520 | |||
521 | rx_buf = efx_rx_buffer(rx_queue, index); | ||
522 | |||
523 | /* This allows the refill path to post another buffer. | ||
524 | * EFX_RXD_HEAD_ROOM ensures that the slot we are using | ||
525 | * isn't overwritten yet. | ||
526 | */ | ||
527 | rx_queue->removed_count++; | ||
528 | |||
529 | /* Validate the length encoded in the event vs the descriptor pushed */ | ||
530 | efx_rx_packet__check_len(rx_queue, rx_buf, len, | ||
531 | &discard, &leak_packet); | ||
532 | |||
533 | netif_vdbg(efx, rx_status, efx->net_dev, | ||
534 | "RX queue %d received id %x at %llx+%x %s%s\n", | ||
535 | efx_rx_queue_index(rx_queue), index, | ||
536 | (unsigned long long)rx_buf->dma_addr, len, | ||
537 | (checksummed ? " [SUMMED]" : ""), | ||
538 | (discard ? " [DISCARD]" : "")); | ||
539 | |||
540 | /* Discard packet, if instructed to do so */ | ||
541 | if (unlikely(discard)) { | ||
542 | if (unlikely(leak_packet)) | ||
543 | channel->n_skbuff_leaks++; | ||
544 | else | ||
545 | efx_recycle_rx_buffer(channel, rx_buf); | ||
546 | |||
547 | /* Don't hold off the previous receive */ | ||
548 | rx_buf = NULL; | ||
549 | goto out; | ||
550 | } | ||
551 | |||
552 | /* Release card resources - assumes all RX buffers consumed in-order | ||
553 | * per RX queue | ||
554 | */ | ||
555 | efx_unmap_rx_buffer(efx, rx_buf); | ||
556 | |||
557 | /* Prefetch nice and early so data will (hopefully) be in cache by | ||
558 | * the time we look at it. | ||
559 | */ | ||
560 | prefetch(efx_rx_buf_eh(efx, rx_buf)); | ||
561 | |||
562 | /* Pipeline receives so that we give time for packet headers to be | ||
563 | * prefetched into cache. | ||
564 | */ | ||
565 | rx_buf->len = len - efx->type->rx_buffer_hash_size; | ||
566 | out: | ||
567 | if (channel->rx_pkt) | ||
568 | __efx_rx_packet(channel, | ||
569 | channel->rx_pkt, channel->rx_pkt_csummed); | ||
570 | channel->rx_pkt = rx_buf; | ||
571 | channel->rx_pkt_csummed = checksummed; | ||
572 | } | ||
573 | |||
574 | /* Handle a received packet. Second half: Touches packet payload. */ | ||
575 | void __efx_rx_packet(struct efx_channel *channel, | ||
576 | struct efx_rx_buffer *rx_buf, bool checksummed) | ||
577 | { | ||
578 | struct efx_nic *efx = channel->efx; | ||
579 | struct sk_buff *skb; | ||
580 | u8 *eh = efx_rx_buf_eh(efx, rx_buf); | ||
581 | |||
582 | /* If we're in loopback test, then pass the packet directly to the | ||
583 | * loopback layer, and free the rx_buf here | ||
584 | */ | ||
585 | if (unlikely(efx->loopback_selftest)) { | ||
586 | efx_loopback_rx_packet(efx, eh, rx_buf->len); | ||
587 | efx_free_rx_buffer(efx, rx_buf); | ||
588 | return; | ||
589 | } | ||
590 | |||
591 | if (!rx_buf->is_page) { | ||
592 | skb = rx_buf->u.skb; | ||
593 | |||
594 | prefetch(skb_shinfo(skb)); | ||
595 | |||
596 | skb_reserve(skb, efx->type->rx_buffer_hash_size); | ||
597 | skb_put(skb, rx_buf->len); | ||
598 | |||
599 | if (efx->net_dev->features & NETIF_F_RXHASH) | ||
600 | skb->rxhash = efx_rx_buf_hash(eh); | ||
601 | |||
602 | /* Move past the ethernet header. rx_buf->data still points | ||
603 | * at the ethernet header */ | ||
604 | skb->protocol = eth_type_trans(skb, efx->net_dev); | ||
605 | |||
606 | skb_record_rx_queue(skb, channel->channel); | ||
607 | } | ||
608 | |||
609 | if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM))) | ||
610 | checksummed = false; | ||
611 | |||
612 | if (likely(checksummed || rx_buf->is_page)) { | ||
613 | efx_rx_packet_gro(channel, rx_buf, eh, checksummed); | ||
614 | return; | ||
615 | } | ||
616 | |||
617 | /* We now own the SKB */ | ||
618 | skb = rx_buf->u.skb; | ||
619 | rx_buf->u.skb = NULL; | ||
620 | |||
621 | /* Set the SKB flags */ | ||
622 | skb_checksum_none_assert(skb); | ||
623 | |||
624 | /* Pass the packet up */ | ||
625 | netif_receive_skb(skb); | ||
626 | |||
627 | /* Update allocation strategy method */ | ||
628 | channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB; | ||
629 | } | ||
630 | |||
631 | void efx_rx_strategy(struct efx_channel *channel) | ||
632 | { | ||
633 | enum efx_rx_alloc_method method = rx_alloc_method; | ||
634 | |||
635 | /* Only makes sense to use page based allocation if GRO is enabled */ | ||
636 | if (!(channel->efx->net_dev->features & NETIF_F_GRO)) { | ||
637 | method = RX_ALLOC_METHOD_SKB; | ||
638 | } else if (method == RX_ALLOC_METHOD_AUTO) { | ||
639 | /* Constrain the rx_alloc_level */ | ||
640 | if (channel->rx_alloc_level < 0) | ||
641 | channel->rx_alloc_level = 0; | ||
642 | else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX) | ||
643 | channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX; | ||
644 | |||
645 | /* Decide on the allocation method */ | ||
646 | method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_GRO) ? | ||
647 | RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB); | ||
648 | } | ||
649 | |||
650 | /* Push the option */ | ||
651 | channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE); | ||
652 | } | ||
653 | |||
654 | int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) | ||
655 | { | ||
656 | struct efx_nic *efx = rx_queue->efx; | ||
657 | unsigned int entries; | ||
658 | int rc; | ||
659 | |||
660 | /* Create the smallest power-of-two aligned ring */ | ||
661 | entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); | ||
662 | EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); | ||
663 | rx_queue->ptr_mask = entries - 1; | ||
664 | |||
665 | netif_dbg(efx, probe, efx->net_dev, | ||
666 | "creating RX queue %d size %#x mask %#x\n", | ||
667 | efx_rx_queue_index(rx_queue), efx->rxq_entries, | ||
668 | rx_queue->ptr_mask); | ||
669 | |||
670 | /* Allocate RX buffers */ | ||
671 | rx_queue->buffer = kzalloc(entries * sizeof(*rx_queue->buffer), | ||
672 | GFP_KERNEL); | ||
673 | if (!rx_queue->buffer) | ||
674 | return -ENOMEM; | ||
675 | |||
676 | rc = efx_nic_probe_rx(rx_queue); | ||
677 | if (rc) { | ||
678 | kfree(rx_queue->buffer); | ||
679 | rx_queue->buffer = NULL; | ||
680 | } | ||
681 | return rc; | ||
682 | } | ||
683 | |||
684 | void efx_init_rx_queue(struct efx_rx_queue *rx_queue) | ||
685 | { | ||
686 | struct efx_nic *efx = rx_queue->efx; | ||
687 | unsigned int max_fill, trigger, limit; | ||
688 | |||
689 | netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, | ||
690 | "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); | ||
691 | |||
692 | /* Initialise ptr fields */ | ||
693 | rx_queue->added_count = 0; | ||
694 | rx_queue->notified_count = 0; | ||
695 | rx_queue->removed_count = 0; | ||
696 | rx_queue->min_fill = -1U; | ||
697 | |||
698 | /* Initialise limit fields */ | ||
699 | max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; | ||
700 | trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; | ||
701 | limit = max_fill * min(rx_refill_limit, 100U) / 100U; | ||
702 | |||
703 | rx_queue->max_fill = max_fill; | ||
704 | rx_queue->fast_fill_trigger = trigger; | ||
705 | rx_queue->fast_fill_limit = limit; | ||
706 | |||
707 | /* Set up RX descriptor ring */ | ||
708 | efx_nic_init_rx(rx_queue); | ||
709 | } | ||
710 | |||
711 | void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) | ||
712 | { | ||
713 | int i; | ||
714 | struct efx_rx_buffer *rx_buf; | ||
715 | |||
716 | netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, | ||
717 | "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); | ||
718 | |||
719 | del_timer_sync(&rx_queue->slow_fill); | ||
720 | efx_nic_fini_rx(rx_queue); | ||
721 | |||
722 | /* Release RX buffers NB start at index 0 not current HW ptr */ | ||
723 | if (rx_queue->buffer) { | ||
724 | for (i = 0; i <= rx_queue->ptr_mask; i++) { | ||
725 | rx_buf = efx_rx_buffer(rx_queue, i); | ||
726 | efx_fini_rx_buffer(rx_queue, rx_buf); | ||
727 | } | ||
728 | } | ||
729 | } | ||
730 | |||
731 | void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) | ||
732 | { | ||
733 | netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, | ||
734 | "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); | ||
735 | |||
736 | efx_nic_remove_rx(rx_queue); | ||
737 | |||
738 | kfree(rx_queue->buffer); | ||
739 | rx_queue->buffer = NULL; | ||
740 | } | ||
741 | |||
742 | |||
743 | module_param(rx_alloc_method, int, 0644); | ||
744 | MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers"); | ||
745 | |||
746 | module_param(rx_refill_threshold, uint, 0444); | ||
747 | MODULE_PARM_DESC(rx_refill_threshold, | ||
748 | "RX descriptor ring fast/slow fill threshold (%)"); | ||
749 | |||