diff options
| author | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
|---|---|---|
| committer | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
| commit | fcc9d2e5a6c89d22b8b773a64fb4ad21ac318446 (patch) | |
| tree | a57612d1888735a2ec7972891b68c1ac5ec8faea /drivers/net/sfc/nic.c | |
| parent | 8dea78da5cee153b8af9c07a2745f6c55057fe12 (diff) | |
Diffstat (limited to 'drivers/net/sfc/nic.c')
| -rw-r--r-- | drivers/net/sfc/nic.c | 1962 |
1 files changed, 1962 insertions, 0 deletions
diff --git a/drivers/net/sfc/nic.c b/drivers/net/sfc/nic.c new file mode 100644 index 00000000000..3edfbaf5f02 --- /dev/null +++ b/drivers/net/sfc/nic.c | |||
| @@ -0,0 +1,1962 @@ | |||
| 1 | /**************************************************************************** | ||
| 2 | * Driver for Solarflare Solarstorm network controllers and boards | ||
| 3 | * Copyright 2005-2006 Fen Systems Ltd. | ||
| 4 | * Copyright 2006-2011 Solarflare Communications Inc. | ||
| 5 | * | ||
| 6 | * This program is free software; you can redistribute it and/or modify it | ||
| 7 | * under the terms of the GNU General Public License version 2 as published | ||
| 8 | * by the Free Software Foundation, incorporated herein by reference. | ||
| 9 | */ | ||
| 10 | |||
| 11 | #include <linux/bitops.h> | ||
| 12 | #include <linux/delay.h> | ||
| 13 | #include <linux/interrupt.h> | ||
| 14 | #include <linux/pci.h> | ||
| 15 | #include <linux/module.h> | ||
| 16 | #include <linux/seq_file.h> | ||
| 17 | #include "net_driver.h" | ||
| 18 | #include "bitfield.h" | ||
| 19 | #include "efx.h" | ||
| 20 | #include "nic.h" | ||
| 21 | #include "regs.h" | ||
| 22 | #include "io.h" | ||
| 23 | #include "workarounds.h" | ||
| 24 | |||
| 25 | /************************************************************************** | ||
| 26 | * | ||
| 27 | * Configurable values | ||
| 28 | * | ||
| 29 | ************************************************************************** | ||
| 30 | */ | ||
| 31 | |||
| 32 | /* This is set to 16 for a good reason. In summary, if larger than | ||
| 33 | * 16, the descriptor cache holds more than a default socket | ||
| 34 | * buffer's worth of packets (for UDP we can only have at most one | ||
| 35 | * socket buffer's worth outstanding). This combined with the fact | ||
| 36 | * that we only get 1 TX event per descriptor cache means the NIC | ||
| 37 | * goes idle. | ||
| 38 | */ | ||
| 39 | #define TX_DC_ENTRIES 16 | ||
| 40 | #define TX_DC_ENTRIES_ORDER 1 | ||
| 41 | |||
| 42 | #define RX_DC_ENTRIES 64 | ||
| 43 | #define RX_DC_ENTRIES_ORDER 3 | ||
| 44 | |||
| 45 | /* If EFX_MAX_INT_ERRORS internal errors occur within | ||
| 46 | * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and | ||
| 47 | * disable it. | ||
| 48 | */ | ||
| 49 | #define EFX_INT_ERROR_EXPIRE 3600 | ||
| 50 | #define EFX_MAX_INT_ERRORS 5 | ||
| 51 | |||
| 52 | /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times | ||
| 53 | */ | ||
| 54 | #define EFX_FLUSH_INTERVAL 10 | ||
| 55 | #define EFX_FLUSH_POLL_COUNT 100 | ||
| 56 | |||
| 57 | /* Size and alignment of special buffers (4KB) */ | ||
| 58 | #define EFX_BUF_SIZE 4096 | ||
| 59 | |||
| 60 | /* Depth of RX flush request fifo */ | ||
| 61 | #define EFX_RX_FLUSH_COUNT 4 | ||
| 62 | |||
| 63 | /* Generated event code for efx_generate_test_event() */ | ||
| 64 | #define EFX_CHANNEL_MAGIC_TEST(_channel) \ | ||
| 65 | (0x00010100 + (_channel)->channel) | ||
| 66 | |||
| 67 | /* Generated event code for efx_generate_fill_event() */ | ||
| 68 | #define EFX_CHANNEL_MAGIC_FILL(_channel) \ | ||
| 69 | (0x00010200 + (_channel)->channel) | ||
| 70 | |||
| 71 | /************************************************************************** | ||
| 72 | * | ||
| 73 | * Solarstorm hardware access | ||
| 74 | * | ||
| 75 | **************************************************************************/ | ||
| 76 | |||
| 77 | static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value, | ||
| 78 | unsigned int index) | ||
| 79 | { | ||
| 80 | efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base, | ||
| 81 | value, index); | ||
| 82 | } | ||
| 83 | |||
| 84 | /* Read the current event from the event queue */ | ||
| 85 | static inline efx_qword_t *efx_event(struct efx_channel *channel, | ||
| 86 | unsigned int index) | ||
| 87 | { | ||
| 88 | return ((efx_qword_t *) (channel->eventq.addr)) + | ||
| 89 | (index & channel->eventq_mask); | ||
| 90 | } | ||
| 91 | |||
| 92 | /* See if an event is present | ||
| 93 | * | ||
| 94 | * We check both the high and low dword of the event for all ones. We | ||
| 95 | * wrote all ones when we cleared the event, and no valid event can | ||
| 96 | * have all ones in either its high or low dwords. This approach is | ||
| 97 | * robust against reordering. | ||
| 98 | * | ||
| 99 | * Note that using a single 64-bit comparison is incorrect; even | ||
| 100 | * though the CPU read will be atomic, the DMA write may not be. | ||
| 101 | */ | ||
| 102 | static inline int efx_event_present(efx_qword_t *event) | ||
| 103 | { | ||
| 104 | return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) | | ||
| 105 | EFX_DWORD_IS_ALL_ONES(event->dword[1])); | ||
| 106 | } | ||
| 107 | |||
| 108 | static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b, | ||
| 109 | const efx_oword_t *mask) | ||
| 110 | { | ||
| 111 | return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) || | ||
| 112 | ((a->u64[1] ^ b->u64[1]) & mask->u64[1]); | ||
| 113 | } | ||
| 114 | |||
| 115 | int efx_nic_test_registers(struct efx_nic *efx, | ||
| 116 | const struct efx_nic_register_test *regs, | ||
| 117 | size_t n_regs) | ||
| 118 | { | ||
| 119 | unsigned address = 0, i, j; | ||
| 120 | efx_oword_t mask, imask, original, reg, buf; | ||
| 121 | |||
| 122 | /* Falcon should be in loopback to isolate the XMAC from the PHY */ | ||
| 123 | WARN_ON(!LOOPBACK_INTERNAL(efx)); | ||
| 124 | |||
| 125 | for (i = 0; i < n_regs; ++i) { | ||
| 126 | address = regs[i].address; | ||
| 127 | mask = imask = regs[i].mask; | ||
| 128 | EFX_INVERT_OWORD(imask); | ||
| 129 | |||
| 130 | efx_reado(efx, &original, address); | ||
| 131 | |||
| 132 | /* bit sweep on and off */ | ||
| 133 | for (j = 0; j < 128; j++) { | ||
| 134 | if (!EFX_EXTRACT_OWORD32(mask, j, j)) | ||
| 135 | continue; | ||
| 136 | |||
| 137 | /* Test this testable bit can be set in isolation */ | ||
| 138 | EFX_AND_OWORD(reg, original, mask); | ||
| 139 | EFX_SET_OWORD32(reg, j, j, 1); | ||
| 140 | |||
| 141 | efx_writeo(efx, ®, address); | ||
| 142 | efx_reado(efx, &buf, address); | ||
| 143 | |||
| 144 | if (efx_masked_compare_oword(®, &buf, &mask)) | ||
| 145 | goto fail; | ||
| 146 | |||
| 147 | /* Test this testable bit can be cleared in isolation */ | ||
| 148 | EFX_OR_OWORD(reg, original, mask); | ||
| 149 | EFX_SET_OWORD32(reg, j, j, 0); | ||
| 150 | |||
| 151 | efx_writeo(efx, ®, address); | ||
| 152 | efx_reado(efx, &buf, address); | ||
| 153 | |||
| 154 | if (efx_masked_compare_oword(®, &buf, &mask)) | ||
| 155 | goto fail; | ||
| 156 | } | ||
| 157 | |||
| 158 | efx_writeo(efx, &original, address); | ||
| 159 | } | ||
| 160 | |||
| 161 | return 0; | ||
| 162 | |||
| 163 | fail: | ||
| 164 | netif_err(efx, hw, efx->net_dev, | ||
| 165 | "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT | ||
| 166 | " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg), | ||
| 167 | EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask)); | ||
| 168 | return -EIO; | ||
| 169 | } | ||
| 170 | |||
| 171 | /************************************************************************** | ||
| 172 | * | ||
| 173 | * Special buffer handling | ||
| 174 | * Special buffers are used for event queues and the TX and RX | ||
| 175 | * descriptor rings. | ||
| 176 | * | ||
| 177 | *************************************************************************/ | ||
| 178 | |||
| 179 | /* | ||
| 180 | * Initialise a special buffer | ||
| 181 | * | ||
| 182 | * This will define a buffer (previously allocated via | ||
| 183 | * efx_alloc_special_buffer()) in the buffer table, allowing | ||
| 184 | * it to be used for event queues, descriptor rings etc. | ||
| 185 | */ | ||
| 186 | static void | ||
| 187 | efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) | ||
| 188 | { | ||
| 189 | efx_qword_t buf_desc; | ||
| 190 | int index; | ||
| 191 | dma_addr_t dma_addr; | ||
| 192 | int i; | ||
| 193 | |||
| 194 | EFX_BUG_ON_PARANOID(!buffer->addr); | ||
| 195 | |||
| 196 | /* Write buffer descriptors to NIC */ | ||
| 197 | for (i = 0; i < buffer->entries; i++) { | ||
| 198 | index = buffer->index + i; | ||
| 199 | dma_addr = buffer->dma_addr + (i * 4096); | ||
| 200 | netif_dbg(efx, probe, efx->net_dev, | ||
| 201 | "mapping special buffer %d at %llx\n", | ||
| 202 | index, (unsigned long long)dma_addr); | ||
| 203 | EFX_POPULATE_QWORD_3(buf_desc, | ||
| 204 | FRF_AZ_BUF_ADR_REGION, 0, | ||
| 205 | FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12, | ||
| 206 | FRF_AZ_BUF_OWNER_ID_FBUF, 0); | ||
| 207 | efx_write_buf_tbl(efx, &buf_desc, index); | ||
| 208 | } | ||
| 209 | } | ||
| 210 | |||
| 211 | /* Unmaps a buffer and clears the buffer table entries */ | ||
| 212 | static void | ||
| 213 | efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) | ||
| 214 | { | ||
| 215 | efx_oword_t buf_tbl_upd; | ||
| 216 | unsigned int start = buffer->index; | ||
| 217 | unsigned int end = (buffer->index + buffer->entries - 1); | ||
| 218 | |||
| 219 | if (!buffer->entries) | ||
| 220 | return; | ||
| 221 | |||
| 222 | netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n", | ||
| 223 | buffer->index, buffer->index + buffer->entries - 1); | ||
| 224 | |||
| 225 | EFX_POPULATE_OWORD_4(buf_tbl_upd, | ||
| 226 | FRF_AZ_BUF_UPD_CMD, 0, | ||
| 227 | FRF_AZ_BUF_CLR_CMD, 1, | ||
| 228 | FRF_AZ_BUF_CLR_END_ID, end, | ||
| 229 | FRF_AZ_BUF_CLR_START_ID, start); | ||
| 230 | efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD); | ||
| 231 | } | ||
| 232 | |||
| 233 | /* | ||
| 234 | * Allocate a new special buffer | ||
| 235 | * | ||
| 236 | * This allocates memory for a new buffer, clears it and allocates a | ||
| 237 | * new buffer ID range. It does not write into the buffer table. | ||
| 238 | * | ||
| 239 | * This call will allocate 4KB buffers, since 8KB buffers can't be | ||
| 240 | * used for event queues and descriptor rings. | ||
| 241 | */ | ||
| 242 | static int efx_alloc_special_buffer(struct efx_nic *efx, | ||
| 243 | struct efx_special_buffer *buffer, | ||
| 244 | unsigned int len) | ||
| 245 | { | ||
| 246 | len = ALIGN(len, EFX_BUF_SIZE); | ||
| 247 | |||
| 248 | buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len, | ||
| 249 | &buffer->dma_addr, GFP_KERNEL); | ||
| 250 | if (!buffer->addr) | ||
| 251 | return -ENOMEM; | ||
| 252 | buffer->len = len; | ||
| 253 | buffer->entries = len / EFX_BUF_SIZE; | ||
| 254 | BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1)); | ||
| 255 | |||
| 256 | /* All zeros is a potentially valid event so memset to 0xff */ | ||
| 257 | memset(buffer->addr, 0xff, len); | ||
| 258 | |||
| 259 | /* Select new buffer ID */ | ||
| 260 | buffer->index = efx->next_buffer_table; | ||
| 261 | efx->next_buffer_table += buffer->entries; | ||
| 262 | |||
| 263 | netif_dbg(efx, probe, efx->net_dev, | ||
| 264 | "allocating special buffers %d-%d at %llx+%x " | ||
| 265 | "(virt %p phys %llx)\n", buffer->index, | ||
| 266 | buffer->index + buffer->entries - 1, | ||
| 267 | (u64)buffer->dma_addr, len, | ||
| 268 | buffer->addr, (u64)virt_to_phys(buffer->addr)); | ||
| 269 | |||
| 270 | return 0; | ||
| 271 | } | ||
| 272 | |||
| 273 | static void | ||
| 274 | efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) | ||
| 275 | { | ||
| 276 | if (!buffer->addr) | ||
| 277 | return; | ||
| 278 | |||
| 279 | netif_dbg(efx, hw, efx->net_dev, | ||
| 280 | "deallocating special buffers %d-%d at %llx+%x " | ||
| 281 | "(virt %p phys %llx)\n", buffer->index, | ||
| 282 | buffer->index + buffer->entries - 1, | ||
| 283 | (u64)buffer->dma_addr, buffer->len, | ||
| 284 | buffer->addr, (u64)virt_to_phys(buffer->addr)); | ||
| 285 | |||
| 286 | dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr, | ||
| 287 | buffer->dma_addr); | ||
| 288 | buffer->addr = NULL; | ||
| 289 | buffer->entries = 0; | ||
| 290 | } | ||
| 291 | |||
| 292 | /************************************************************************** | ||
| 293 | * | ||
| 294 | * Generic buffer handling | ||
| 295 | * These buffers are used for interrupt status and MAC stats | ||
| 296 | * | ||
| 297 | **************************************************************************/ | ||
| 298 | |||
| 299 | int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer, | ||
| 300 | unsigned int len) | ||
| 301 | { | ||
| 302 | buffer->addr = pci_alloc_consistent(efx->pci_dev, len, | ||
| 303 | &buffer->dma_addr); | ||
| 304 | if (!buffer->addr) | ||
| 305 | return -ENOMEM; | ||
| 306 | buffer->len = len; | ||
| 307 | memset(buffer->addr, 0, len); | ||
| 308 | return 0; | ||
| 309 | } | ||
| 310 | |||
| 311 | void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer) | ||
| 312 | { | ||
| 313 | if (buffer->addr) { | ||
| 314 | pci_free_consistent(efx->pci_dev, buffer->len, | ||
| 315 | buffer->addr, buffer->dma_addr); | ||
| 316 | buffer->addr = NULL; | ||
| 317 | } | ||
| 318 | } | ||
| 319 | |||
| 320 | /************************************************************************** | ||
| 321 | * | ||
| 322 | * TX path | ||
| 323 | * | ||
| 324 | **************************************************************************/ | ||
| 325 | |||
| 326 | /* Returns a pointer to the specified transmit descriptor in the TX | ||
| 327 | * descriptor queue belonging to the specified channel. | ||
| 328 | */ | ||
| 329 | static inline efx_qword_t * | ||
| 330 | efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index) | ||
| 331 | { | ||
| 332 | return ((efx_qword_t *) (tx_queue->txd.addr)) + index; | ||
| 333 | } | ||
| 334 | |||
| 335 | /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ | ||
| 336 | static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue) | ||
| 337 | { | ||
| 338 | unsigned write_ptr; | ||
| 339 | efx_dword_t reg; | ||
| 340 | |||
| 341 | write_ptr = tx_queue->write_count & tx_queue->ptr_mask; | ||
| 342 | EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr); | ||
| 343 | efx_writed_page(tx_queue->efx, ®, | ||
| 344 | FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue); | ||
| 345 | } | ||
| 346 | |||
| 347 | /* Write pointer and first descriptor for TX descriptor ring */ | ||
| 348 | static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue, | ||
| 349 | const efx_qword_t *txd) | ||
| 350 | { | ||
| 351 | unsigned write_ptr; | ||
| 352 | efx_oword_t reg; | ||
| 353 | |||
| 354 | BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0); | ||
| 355 | BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0); | ||
| 356 | |||
| 357 | write_ptr = tx_queue->write_count & tx_queue->ptr_mask; | ||
| 358 | EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true, | ||
| 359 | FRF_AZ_TX_DESC_WPTR, write_ptr); | ||
| 360 | reg.qword[0] = *txd; | ||
| 361 | efx_writeo_page(tx_queue->efx, ®, | ||
| 362 | FR_BZ_TX_DESC_UPD_P0, tx_queue->queue); | ||
| 363 | } | ||
| 364 | |||
| 365 | static inline bool | ||
| 366 | efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count) | ||
| 367 | { | ||
| 368 | unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count); | ||
| 369 | |||
| 370 | if (empty_read_count == 0) | ||
| 371 | return false; | ||
| 372 | |||
| 373 | tx_queue->empty_read_count = 0; | ||
| 374 | return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0; | ||
| 375 | } | ||
| 376 | |||
| 377 | /* For each entry inserted into the software descriptor ring, create a | ||
| 378 | * descriptor in the hardware TX descriptor ring (in host memory), and | ||
| 379 | * write a doorbell. | ||
| 380 | */ | ||
| 381 | void efx_nic_push_buffers(struct efx_tx_queue *tx_queue) | ||
| 382 | { | ||
| 383 | |||
| 384 | struct efx_tx_buffer *buffer; | ||
| 385 | efx_qword_t *txd; | ||
| 386 | unsigned write_ptr; | ||
| 387 | unsigned old_write_count = tx_queue->write_count; | ||
| 388 | |||
| 389 | BUG_ON(tx_queue->write_count == tx_queue->insert_count); | ||
| 390 | |||
| 391 | do { | ||
| 392 | write_ptr = tx_queue->write_count & tx_queue->ptr_mask; | ||
| 393 | buffer = &tx_queue->buffer[write_ptr]; | ||
| 394 | txd = efx_tx_desc(tx_queue, write_ptr); | ||
| 395 | ++tx_queue->write_count; | ||
| 396 | |||
| 397 | /* Create TX descriptor ring entry */ | ||
| 398 | EFX_POPULATE_QWORD_4(*txd, | ||
| 399 | FSF_AZ_TX_KER_CONT, buffer->continuation, | ||
| 400 | FSF_AZ_TX_KER_BYTE_COUNT, buffer->len, | ||
| 401 | FSF_AZ_TX_KER_BUF_REGION, 0, | ||
| 402 | FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr); | ||
| 403 | } while (tx_queue->write_count != tx_queue->insert_count); | ||
| 404 | |||
| 405 | wmb(); /* Ensure descriptors are written before they are fetched */ | ||
| 406 | |||
| 407 | if (efx_may_push_tx_desc(tx_queue, old_write_count)) { | ||
| 408 | txd = efx_tx_desc(tx_queue, | ||
| 409 | old_write_count & tx_queue->ptr_mask); | ||
| 410 | efx_push_tx_desc(tx_queue, txd); | ||
| 411 | ++tx_queue->pushes; | ||
| 412 | } else { | ||
| 413 | efx_notify_tx_desc(tx_queue); | ||
| 414 | } | ||
| 415 | } | ||
| 416 | |||
| 417 | /* Allocate hardware resources for a TX queue */ | ||
| 418 | int efx_nic_probe_tx(struct efx_tx_queue *tx_queue) | ||
| 419 | { | ||
| 420 | struct efx_nic *efx = tx_queue->efx; | ||
| 421 | unsigned entries; | ||
| 422 | |||
| 423 | entries = tx_queue->ptr_mask + 1; | ||
| 424 | return efx_alloc_special_buffer(efx, &tx_queue->txd, | ||
| 425 | entries * sizeof(efx_qword_t)); | ||
| 426 | } | ||
| 427 | |||
| 428 | void efx_nic_init_tx(struct efx_tx_queue *tx_queue) | ||
| 429 | { | ||
| 430 | struct efx_nic *efx = tx_queue->efx; | ||
| 431 | efx_oword_t reg; | ||
| 432 | |||
| 433 | tx_queue->flushed = FLUSH_NONE; | ||
| 434 | |||
| 435 | /* Pin TX descriptor ring */ | ||
| 436 | efx_init_special_buffer(efx, &tx_queue->txd); | ||
| 437 | |||
| 438 | /* Push TX descriptor ring to card */ | ||
| 439 | EFX_POPULATE_OWORD_10(reg, | ||
| 440 | FRF_AZ_TX_DESCQ_EN, 1, | ||
| 441 | FRF_AZ_TX_ISCSI_DDIG_EN, 0, | ||
| 442 | FRF_AZ_TX_ISCSI_HDIG_EN, 0, | ||
| 443 | FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index, | ||
| 444 | FRF_AZ_TX_DESCQ_EVQ_ID, | ||
| 445 | tx_queue->channel->channel, | ||
| 446 | FRF_AZ_TX_DESCQ_OWNER_ID, 0, | ||
| 447 | FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue, | ||
| 448 | FRF_AZ_TX_DESCQ_SIZE, | ||
| 449 | __ffs(tx_queue->txd.entries), | ||
| 450 | FRF_AZ_TX_DESCQ_TYPE, 0, | ||
| 451 | FRF_BZ_TX_NON_IP_DROP_DIS, 1); | ||
| 452 | |||
| 453 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { | ||
| 454 | int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD; | ||
| 455 | EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum); | ||
| 456 | EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, | ||
| 457 | !csum); | ||
| 458 | } | ||
| 459 | |||
| 460 | efx_writeo_table(efx, ®, efx->type->txd_ptr_tbl_base, | ||
| 461 | tx_queue->queue); | ||
| 462 | |||
| 463 | if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) { | ||
| 464 | /* Only 128 bits in this register */ | ||
| 465 | BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128); | ||
| 466 | |||
| 467 | efx_reado(efx, ®, FR_AA_TX_CHKSM_CFG); | ||
| 468 | if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) | ||
| 469 | clear_bit_le(tx_queue->queue, (void *)®); | ||
| 470 | else | ||
| 471 | set_bit_le(tx_queue->queue, (void *)®); | ||
| 472 | efx_writeo(efx, ®, FR_AA_TX_CHKSM_CFG); | ||
| 473 | } | ||
| 474 | |||
| 475 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { | ||
| 476 | EFX_POPULATE_OWORD_1(reg, | ||
| 477 | FRF_BZ_TX_PACE, | ||
| 478 | (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? | ||
| 479 | FFE_BZ_TX_PACE_OFF : | ||
| 480 | FFE_BZ_TX_PACE_RESERVED); | ||
| 481 | efx_writeo_table(efx, ®, FR_BZ_TX_PACE_TBL, | ||
| 482 | tx_queue->queue); | ||
| 483 | } | ||
| 484 | } | ||
| 485 | |||
| 486 | static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue) | ||
| 487 | { | ||
| 488 | struct efx_nic *efx = tx_queue->efx; | ||
| 489 | efx_oword_t tx_flush_descq; | ||
| 490 | |||
| 491 | tx_queue->flushed = FLUSH_PENDING; | ||
| 492 | |||
| 493 | /* Post a flush command */ | ||
| 494 | EFX_POPULATE_OWORD_2(tx_flush_descq, | ||
| 495 | FRF_AZ_TX_FLUSH_DESCQ_CMD, 1, | ||
| 496 | FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue); | ||
| 497 | efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ); | ||
| 498 | } | ||
| 499 | |||
| 500 | void efx_nic_fini_tx(struct efx_tx_queue *tx_queue) | ||
| 501 | { | ||
| 502 | struct efx_nic *efx = tx_queue->efx; | ||
| 503 | efx_oword_t tx_desc_ptr; | ||
| 504 | |||
| 505 | /* The queue should have been flushed */ | ||
| 506 | WARN_ON(tx_queue->flushed != FLUSH_DONE); | ||
| 507 | |||
| 508 | /* Remove TX descriptor ring from card */ | ||
| 509 | EFX_ZERO_OWORD(tx_desc_ptr); | ||
| 510 | efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, | ||
| 511 | tx_queue->queue); | ||
| 512 | |||
| 513 | /* Unpin TX descriptor ring */ | ||
| 514 | efx_fini_special_buffer(efx, &tx_queue->txd); | ||
| 515 | } | ||
| 516 | |||
| 517 | /* Free buffers backing TX queue */ | ||
| 518 | void efx_nic_remove_tx(struct efx_tx_queue *tx_queue) | ||
| 519 | { | ||
| 520 | efx_free_special_buffer(tx_queue->efx, &tx_queue->txd); | ||
| 521 | } | ||
| 522 | |||
| 523 | /************************************************************************** | ||
| 524 | * | ||
| 525 | * RX path | ||
| 526 | * | ||
| 527 | **************************************************************************/ | ||
| 528 | |||
| 529 | /* Returns a pointer to the specified descriptor in the RX descriptor queue */ | ||
| 530 | static inline efx_qword_t * | ||
| 531 | efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index) | ||
| 532 | { | ||
| 533 | return ((efx_qword_t *) (rx_queue->rxd.addr)) + index; | ||
| 534 | } | ||
| 535 | |||
| 536 | /* This creates an entry in the RX descriptor queue */ | ||
| 537 | static inline void | ||
| 538 | efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index) | ||
| 539 | { | ||
| 540 | struct efx_rx_buffer *rx_buf; | ||
| 541 | efx_qword_t *rxd; | ||
| 542 | |||
| 543 | rxd = efx_rx_desc(rx_queue, index); | ||
| 544 | rx_buf = efx_rx_buffer(rx_queue, index); | ||
| 545 | EFX_POPULATE_QWORD_3(*rxd, | ||
| 546 | FSF_AZ_RX_KER_BUF_SIZE, | ||
| 547 | rx_buf->len - | ||
| 548 | rx_queue->efx->type->rx_buffer_padding, | ||
| 549 | FSF_AZ_RX_KER_BUF_REGION, 0, | ||
| 550 | FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); | ||
| 551 | } | ||
| 552 | |||
| 553 | /* This writes to the RX_DESC_WPTR register for the specified receive | ||
| 554 | * descriptor ring. | ||
| 555 | */ | ||
| 556 | void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue) | ||
| 557 | { | ||
| 558 | struct efx_nic *efx = rx_queue->efx; | ||
| 559 | efx_dword_t reg; | ||
| 560 | unsigned write_ptr; | ||
| 561 | |||
| 562 | while (rx_queue->notified_count != rx_queue->added_count) { | ||
| 563 | efx_build_rx_desc( | ||
| 564 | rx_queue, | ||
| 565 | rx_queue->notified_count & rx_queue->ptr_mask); | ||
| 566 | ++rx_queue->notified_count; | ||
| 567 | } | ||
| 568 | |||
| 569 | wmb(); | ||
| 570 | write_ptr = rx_queue->added_count & rx_queue->ptr_mask; | ||
| 571 | EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr); | ||
| 572 | efx_writed_page(efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0, | ||
| 573 | efx_rx_queue_index(rx_queue)); | ||
| 574 | } | ||
| 575 | |||
| 576 | int efx_nic_probe_rx(struct efx_rx_queue *rx_queue) | ||
| 577 | { | ||
| 578 | struct efx_nic *efx = rx_queue->efx; | ||
| 579 | unsigned entries; | ||
| 580 | |||
| 581 | entries = rx_queue->ptr_mask + 1; | ||
| 582 | return efx_alloc_special_buffer(efx, &rx_queue->rxd, | ||
| 583 | entries * sizeof(efx_qword_t)); | ||
| 584 | } | ||
| 585 | |||
| 586 | void efx_nic_init_rx(struct efx_rx_queue *rx_queue) | ||
| 587 | { | ||
| 588 | efx_oword_t rx_desc_ptr; | ||
| 589 | struct efx_nic *efx = rx_queue->efx; | ||
| 590 | bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0; | ||
| 591 | bool iscsi_digest_en = is_b0; | ||
| 592 | |||
| 593 | netif_dbg(efx, hw, efx->net_dev, | ||
| 594 | "RX queue %d ring in special buffers %d-%d\n", | ||
| 595 | efx_rx_queue_index(rx_queue), rx_queue->rxd.index, | ||
| 596 | rx_queue->rxd.index + rx_queue->rxd.entries - 1); | ||
| 597 | |||
| 598 | rx_queue->flushed = FLUSH_NONE; | ||
| 599 | |||
| 600 | /* Pin RX descriptor ring */ | ||
| 601 | efx_init_special_buffer(efx, &rx_queue->rxd); | ||
| 602 | |||
| 603 | /* Push RX descriptor ring to card */ | ||
| 604 | EFX_POPULATE_OWORD_10(rx_desc_ptr, | ||
| 605 | FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en, | ||
| 606 | FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en, | ||
| 607 | FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index, | ||
| 608 | FRF_AZ_RX_DESCQ_EVQ_ID, | ||
| 609 | efx_rx_queue_channel(rx_queue)->channel, | ||
| 610 | FRF_AZ_RX_DESCQ_OWNER_ID, 0, | ||
| 611 | FRF_AZ_RX_DESCQ_LABEL, | ||
| 612 | efx_rx_queue_index(rx_queue), | ||
| 613 | FRF_AZ_RX_DESCQ_SIZE, | ||
| 614 | __ffs(rx_queue->rxd.entries), | ||
| 615 | FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ , | ||
| 616 | /* For >=B0 this is scatter so disable */ | ||
| 617 | FRF_AZ_RX_DESCQ_JUMBO, !is_b0, | ||
| 618 | FRF_AZ_RX_DESCQ_EN, 1); | ||
| 619 | efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, | ||
| 620 | efx_rx_queue_index(rx_queue)); | ||
| 621 | } | ||
| 622 | |||
| 623 | static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue) | ||
| 624 | { | ||
| 625 | struct efx_nic *efx = rx_queue->efx; | ||
| 626 | efx_oword_t rx_flush_descq; | ||
| 627 | |||
| 628 | rx_queue->flushed = FLUSH_PENDING; | ||
| 629 | |||
| 630 | /* Post a flush command */ | ||
| 631 | EFX_POPULATE_OWORD_2(rx_flush_descq, | ||
| 632 | FRF_AZ_RX_FLUSH_DESCQ_CMD, 1, | ||
| 633 | FRF_AZ_RX_FLUSH_DESCQ, | ||
| 634 | efx_rx_queue_index(rx_queue)); | ||
| 635 | efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ); | ||
| 636 | } | ||
| 637 | |||
| 638 | void efx_nic_fini_rx(struct efx_rx_queue *rx_queue) | ||
| 639 | { | ||
| 640 | efx_oword_t rx_desc_ptr; | ||
| 641 | struct efx_nic *efx = rx_queue->efx; | ||
| 642 | |||
| 643 | /* The queue should already have been flushed */ | ||
| 644 | WARN_ON(rx_queue->flushed != FLUSH_DONE); | ||
| 645 | |||
| 646 | /* Remove RX descriptor ring from card */ | ||
| 647 | EFX_ZERO_OWORD(rx_desc_ptr); | ||
| 648 | efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, | ||
| 649 | efx_rx_queue_index(rx_queue)); | ||
| 650 | |||
| 651 | /* Unpin RX descriptor ring */ | ||
| 652 | efx_fini_special_buffer(efx, &rx_queue->rxd); | ||
| 653 | } | ||
| 654 | |||
| 655 | /* Free buffers backing RX queue */ | ||
| 656 | void efx_nic_remove_rx(struct efx_rx_queue *rx_queue) | ||
| 657 | { | ||
| 658 | efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd); | ||
| 659 | } | ||
| 660 | |||
| 661 | /************************************************************************** | ||
| 662 | * | ||
| 663 | * Event queue processing | ||
| 664 | * Event queues are processed by per-channel tasklets. | ||
| 665 | * | ||
| 666 | **************************************************************************/ | ||
| 667 | |||
| 668 | /* Update a channel's event queue's read pointer (RPTR) register | ||
| 669 | * | ||
| 670 | * This writes the EVQ_RPTR_REG register for the specified channel's | ||
| 671 | * event queue. | ||
| 672 | */ | ||
| 673 | void efx_nic_eventq_read_ack(struct efx_channel *channel) | ||
| 674 | { | ||
| 675 | efx_dword_t reg; | ||
| 676 | struct efx_nic *efx = channel->efx; | ||
| 677 | |||
| 678 | EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, | ||
| 679 | channel->eventq_read_ptr & channel->eventq_mask); | ||
| 680 | efx_writed_table(efx, ®, efx->type->evq_rptr_tbl_base, | ||
| 681 | channel->channel); | ||
| 682 | } | ||
| 683 | |||
| 684 | /* Use HW to insert a SW defined event */ | ||
| 685 | static void efx_generate_event(struct efx_channel *channel, efx_qword_t *event) | ||
| 686 | { | ||
| 687 | efx_oword_t drv_ev_reg; | ||
| 688 | |||
| 689 | BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 || | ||
| 690 | FRF_AZ_DRV_EV_DATA_WIDTH != 64); | ||
| 691 | drv_ev_reg.u32[0] = event->u32[0]; | ||
| 692 | drv_ev_reg.u32[1] = event->u32[1]; | ||
| 693 | drv_ev_reg.u32[2] = 0; | ||
| 694 | drv_ev_reg.u32[3] = 0; | ||
| 695 | EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel); | ||
| 696 | efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV); | ||
| 697 | } | ||
| 698 | |||
| 699 | /* Handle a transmit completion event | ||
| 700 | * | ||
| 701 | * The NIC batches TX completion events; the message we receive is of | ||
| 702 | * the form "complete all TX events up to this index". | ||
| 703 | */ | ||
| 704 | static int | ||
| 705 | efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event) | ||
| 706 | { | ||
| 707 | unsigned int tx_ev_desc_ptr; | ||
| 708 | unsigned int tx_ev_q_label; | ||
| 709 | struct efx_tx_queue *tx_queue; | ||
| 710 | struct efx_nic *efx = channel->efx; | ||
| 711 | int tx_packets = 0; | ||
| 712 | |||
| 713 | if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) { | ||
| 714 | /* Transmit completion */ | ||
| 715 | tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR); | ||
| 716 | tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); | ||
| 717 | tx_queue = efx_channel_get_tx_queue( | ||
| 718 | channel, tx_ev_q_label % EFX_TXQ_TYPES); | ||
| 719 | tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) & | ||
| 720 | tx_queue->ptr_mask); | ||
| 721 | channel->irq_mod_score += tx_packets; | ||
| 722 | efx_xmit_done(tx_queue, tx_ev_desc_ptr); | ||
| 723 | } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) { | ||
| 724 | /* Rewrite the FIFO write pointer */ | ||
| 725 | tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); | ||
| 726 | tx_queue = efx_channel_get_tx_queue( | ||
| 727 | channel, tx_ev_q_label % EFX_TXQ_TYPES); | ||
| 728 | |||
| 729 | if (efx_dev_registered(efx)) | ||
| 730 | netif_tx_lock(efx->net_dev); | ||
| 731 | efx_notify_tx_desc(tx_queue); | ||
| 732 | if (efx_dev_registered(efx)) | ||
| 733 | netif_tx_unlock(efx->net_dev); | ||
| 734 | } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) && | ||
| 735 | EFX_WORKAROUND_10727(efx)) { | ||
| 736 | efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); | ||
| 737 | } else { | ||
| 738 | netif_err(efx, tx_err, efx->net_dev, | ||
| 739 | "channel %d unexpected TX event " | ||
| 740 | EFX_QWORD_FMT"\n", channel->channel, | ||
| 741 | EFX_QWORD_VAL(*event)); | ||
| 742 | } | ||
| 743 | |||
| 744 | return tx_packets; | ||
| 745 | } | ||
| 746 | |||
| 747 | /* Detect errors included in the rx_evt_pkt_ok bit. */ | ||
| 748 | static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue, | ||
| 749 | const efx_qword_t *event, | ||
| 750 | bool *rx_ev_pkt_ok, | ||
| 751 | bool *discard) | ||
| 752 | { | ||
| 753 | struct efx_channel *channel = efx_rx_queue_channel(rx_queue); | ||
| 754 | struct efx_nic *efx = rx_queue->efx; | ||
| 755 | bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err; | ||
| 756 | bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err; | ||
| 757 | bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc; | ||
| 758 | bool rx_ev_other_err, rx_ev_pause_frm; | ||
| 759 | bool rx_ev_hdr_type, rx_ev_mcast_pkt; | ||
| 760 | unsigned rx_ev_pkt_type; | ||
| 761 | |||
| 762 | rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); | ||
| 763 | rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); | ||
| 764 | rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC); | ||
| 765 | rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE); | ||
| 766 | rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event, | ||
| 767 | FSF_AZ_RX_EV_BUF_OWNER_ID_ERR); | ||
| 768 | rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event, | ||
| 769 | FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR); | ||
| 770 | rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event, | ||
| 771 | FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR); | ||
| 772 | rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR); | ||
| 773 | rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC); | ||
| 774 | rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ? | ||
| 775 | 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB)); | ||
| 776 | rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR); | ||
| 777 | |||
| 778 | /* Every error apart from tobe_disc and pause_frm */ | ||
| 779 | rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err | | ||
| 780 | rx_ev_buf_owner_id_err | rx_ev_eth_crc_err | | ||
| 781 | rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err); | ||
| 782 | |||
| 783 | /* Count errors that are not in MAC stats. Ignore expected | ||
| 784 | * checksum errors during self-test. */ | ||
| 785 | if (rx_ev_frm_trunc) | ||
| 786 | ++channel->n_rx_frm_trunc; | ||
| 787 | else if (rx_ev_tobe_disc) | ||
| 788 | ++channel->n_rx_tobe_disc; | ||
| 789 | else if (!efx->loopback_selftest) { | ||
| 790 | if (rx_ev_ip_hdr_chksum_err) | ||
| 791 | ++channel->n_rx_ip_hdr_chksum_err; | ||
| 792 | else if (rx_ev_tcp_udp_chksum_err) | ||
| 793 | ++channel->n_rx_tcp_udp_chksum_err; | ||
| 794 | } | ||
| 795 | |||
| 796 | /* The frame must be discarded if any of these are true. */ | ||
| 797 | *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib | | ||
| 798 | rx_ev_tobe_disc | rx_ev_pause_frm); | ||
| 799 | |||
| 800 | /* TOBE_DISC is expected on unicast mismatches; don't print out an | ||
| 801 | * error message. FRM_TRUNC indicates RXDP dropped the packet due | ||
| 802 | * to a FIFO overflow. | ||
| 803 | */ | ||
| 804 | #ifdef EFX_ENABLE_DEBUG | ||
| 805 | if (rx_ev_other_err && net_ratelimit()) { | ||
| 806 | netif_dbg(efx, rx_err, efx->net_dev, | ||
| 807 | " RX queue %d unexpected RX event " | ||
| 808 | EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n", | ||
| 809 | efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event), | ||
| 810 | rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "", | ||
| 811 | rx_ev_ip_hdr_chksum_err ? | ||
| 812 | " [IP_HDR_CHKSUM_ERR]" : "", | ||
| 813 | rx_ev_tcp_udp_chksum_err ? | ||
| 814 | " [TCP_UDP_CHKSUM_ERR]" : "", | ||
| 815 | rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "", | ||
| 816 | rx_ev_frm_trunc ? " [FRM_TRUNC]" : "", | ||
| 817 | rx_ev_drib_nib ? " [DRIB_NIB]" : "", | ||
| 818 | rx_ev_tobe_disc ? " [TOBE_DISC]" : "", | ||
| 819 | rx_ev_pause_frm ? " [PAUSE]" : ""); | ||
| 820 | } | ||
| 821 | #endif | ||
| 822 | } | ||
| 823 | |||
| 824 | /* Handle receive events that are not in-order. */ | ||
| 825 | static void | ||
| 826 | efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index) | ||
| 827 | { | ||
| 828 | struct efx_nic *efx = rx_queue->efx; | ||
| 829 | unsigned expected, dropped; | ||
| 830 | |||
| 831 | expected = rx_queue->removed_count & rx_queue->ptr_mask; | ||
| 832 | dropped = (index - expected) & rx_queue->ptr_mask; | ||
| 833 | netif_info(efx, rx_err, efx->net_dev, | ||
| 834 | "dropped %d events (index=%d expected=%d)\n", | ||
| 835 | dropped, index, expected); | ||
| 836 | |||
| 837 | efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ? | ||
| 838 | RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); | ||
| 839 | } | ||
| 840 | |||
| 841 | /* Handle a packet received event | ||
| 842 | * | ||
| 843 | * The NIC gives a "discard" flag if it's a unicast packet with the | ||
| 844 | * wrong destination address | ||
| 845 | * Also "is multicast" and "matches multicast filter" flags can be used to | ||
| 846 | * discard non-matching multicast packets. | ||
| 847 | */ | ||
| 848 | static void | ||
| 849 | efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event) | ||
| 850 | { | ||
| 851 | unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt; | ||
| 852 | unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt; | ||
| 853 | unsigned expected_ptr; | ||
| 854 | bool rx_ev_pkt_ok, discard = false, checksummed; | ||
| 855 | struct efx_rx_queue *rx_queue; | ||
| 856 | |||
| 857 | /* Basic packet information */ | ||
| 858 | rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT); | ||
| 859 | rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK); | ||
| 860 | rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); | ||
| 861 | WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT)); | ||
| 862 | WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1); | ||
| 863 | WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) != | ||
| 864 | channel->channel); | ||
| 865 | |||
| 866 | rx_queue = efx_channel_get_rx_queue(channel); | ||
| 867 | |||
| 868 | rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR); | ||
| 869 | expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask; | ||
| 870 | if (unlikely(rx_ev_desc_ptr != expected_ptr)) | ||
| 871 | efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr); | ||
| 872 | |||
| 873 | if (likely(rx_ev_pkt_ok)) { | ||
| 874 | /* If packet is marked as OK and packet type is TCP/IP or | ||
| 875 | * UDP/IP, then we can rely on the hardware checksum. | ||
| 876 | */ | ||
| 877 | checksummed = | ||
| 878 | rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP || | ||
| 879 | rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP; | ||
| 880 | } else { | ||
| 881 | efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard); | ||
| 882 | checksummed = false; | ||
| 883 | } | ||
| 884 | |||
| 885 | /* Detect multicast packets that didn't match the filter */ | ||
| 886 | rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); | ||
| 887 | if (rx_ev_mcast_pkt) { | ||
| 888 | unsigned int rx_ev_mcast_hash_match = | ||
| 889 | EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH); | ||
| 890 | |||
| 891 | if (unlikely(!rx_ev_mcast_hash_match)) { | ||
| 892 | ++channel->n_rx_mcast_mismatch; | ||
| 893 | discard = true; | ||
| 894 | } | ||
| 895 | } | ||
| 896 | |||
| 897 | channel->irq_mod_score += 2; | ||
| 898 | |||
| 899 | /* Handle received packet */ | ||
| 900 | efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, | ||
| 901 | checksummed, discard); | ||
| 902 | } | ||
| 903 | |||
| 904 | static void | ||
| 905 | efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event) | ||
| 906 | { | ||
| 907 | struct efx_nic *efx = channel->efx; | ||
| 908 | unsigned code; | ||
| 909 | |||
| 910 | code = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC); | ||
| 911 | if (code == EFX_CHANNEL_MAGIC_TEST(channel)) | ||
| 912 | ; /* ignore */ | ||
| 913 | else if (code == EFX_CHANNEL_MAGIC_FILL(channel)) | ||
| 914 | /* The queue must be empty, so we won't receive any rx | ||
| 915 | * events, so efx_process_channel() won't refill the | ||
| 916 | * queue. Refill it here */ | ||
| 917 | efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel)); | ||
| 918 | else | ||
| 919 | netif_dbg(efx, hw, efx->net_dev, "channel %d received " | ||
| 920 | "generated event "EFX_QWORD_FMT"\n", | ||
| 921 | channel->channel, EFX_QWORD_VAL(*event)); | ||
| 922 | } | ||
| 923 | |||
| 924 | static void | ||
| 925 | efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event) | ||
| 926 | { | ||
| 927 | struct efx_nic *efx = channel->efx; | ||
| 928 | unsigned int ev_sub_code; | ||
| 929 | unsigned int ev_sub_data; | ||
| 930 | |||
| 931 | ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE); | ||
| 932 | ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); | ||
| 933 | |||
| 934 | switch (ev_sub_code) { | ||
| 935 | case FSE_AZ_TX_DESCQ_FLS_DONE_EV: | ||
| 936 | netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n", | ||
| 937 | channel->channel, ev_sub_data); | ||
| 938 | break; | ||
| 939 | case FSE_AZ_RX_DESCQ_FLS_DONE_EV: | ||
| 940 | netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n", | ||
| 941 | channel->channel, ev_sub_data); | ||
| 942 | break; | ||
| 943 | case FSE_AZ_EVQ_INIT_DONE_EV: | ||
| 944 | netif_dbg(efx, hw, efx->net_dev, | ||
| 945 | "channel %d EVQ %d initialised\n", | ||
| 946 | channel->channel, ev_sub_data); | ||
| 947 | break; | ||
| 948 | case FSE_AZ_SRM_UPD_DONE_EV: | ||
| 949 | netif_vdbg(efx, hw, efx->net_dev, | ||
| 950 | "channel %d SRAM update done\n", channel->channel); | ||
| 951 | break; | ||
| 952 | case FSE_AZ_WAKE_UP_EV: | ||
| 953 | netif_vdbg(efx, hw, efx->net_dev, | ||
| 954 | "channel %d RXQ %d wakeup event\n", | ||
| 955 | channel->channel, ev_sub_data); | ||
| 956 | break; | ||
| 957 | case FSE_AZ_TIMER_EV: | ||
| 958 | netif_vdbg(efx, hw, efx->net_dev, | ||
| 959 | "channel %d RX queue %d timer expired\n", | ||
| 960 | channel->channel, ev_sub_data); | ||
| 961 | break; | ||
| 962 | case FSE_AA_RX_RECOVER_EV: | ||
| 963 | netif_err(efx, rx_err, efx->net_dev, | ||
| 964 | "channel %d seen DRIVER RX_RESET event. " | ||
| 965 | "Resetting.\n", channel->channel); | ||
| 966 | atomic_inc(&efx->rx_reset); | ||
| 967 | efx_schedule_reset(efx, | ||
| 968 | EFX_WORKAROUND_6555(efx) ? | ||
| 969 | RESET_TYPE_RX_RECOVERY : | ||
| 970 | RESET_TYPE_DISABLE); | ||
| 971 | break; | ||
| 972 | case FSE_BZ_RX_DSC_ERROR_EV: | ||
| 973 | netif_err(efx, rx_err, efx->net_dev, | ||
| 974 | "RX DMA Q %d reports descriptor fetch error." | ||
| 975 | " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data); | ||
| 976 | efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH); | ||
| 977 | break; | ||
| 978 | case FSE_BZ_TX_DSC_ERROR_EV: | ||
| 979 | netif_err(efx, tx_err, efx->net_dev, | ||
| 980 | "TX DMA Q %d reports descriptor fetch error." | ||
| 981 | " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data); | ||
| 982 | efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); | ||
| 983 | break; | ||
| 984 | default: | ||
| 985 | netif_vdbg(efx, hw, efx->net_dev, | ||
| 986 | "channel %d unknown driver event code %d " | ||
| 987 | "data %04x\n", channel->channel, ev_sub_code, | ||
| 988 | ev_sub_data); | ||
| 989 | break; | ||
| 990 | } | ||
| 991 | } | ||
| 992 | |||
| 993 | int efx_nic_process_eventq(struct efx_channel *channel, int budget) | ||
| 994 | { | ||
| 995 | struct efx_nic *efx = channel->efx; | ||
| 996 | unsigned int read_ptr; | ||
| 997 | efx_qword_t event, *p_event; | ||
| 998 | int ev_code; | ||
| 999 | int tx_packets = 0; | ||
| 1000 | int spent = 0; | ||
| 1001 | |||
| 1002 | read_ptr = channel->eventq_read_ptr; | ||
| 1003 | |||
| 1004 | for (;;) { | ||
| 1005 | p_event = efx_event(channel, read_ptr); | ||
| 1006 | event = *p_event; | ||
| 1007 | |||
| 1008 | if (!efx_event_present(&event)) | ||
| 1009 | /* End of events */ | ||
| 1010 | break; | ||
| 1011 | |||
| 1012 | netif_vdbg(channel->efx, intr, channel->efx->net_dev, | ||
| 1013 | "channel %d event is "EFX_QWORD_FMT"\n", | ||
| 1014 | channel->channel, EFX_QWORD_VAL(event)); | ||
| 1015 | |||
| 1016 | /* Clear this event by marking it all ones */ | ||
| 1017 | EFX_SET_QWORD(*p_event); | ||
| 1018 | |||
| 1019 | ++read_ptr; | ||
| 1020 | |||
| 1021 | ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE); | ||
| 1022 | |||
| 1023 | switch (ev_code) { | ||
| 1024 | case FSE_AZ_EV_CODE_RX_EV: | ||
| 1025 | efx_handle_rx_event(channel, &event); | ||
| 1026 | if (++spent == budget) | ||
| 1027 | goto out; | ||
| 1028 | break; | ||
| 1029 | case FSE_AZ_EV_CODE_TX_EV: | ||
| 1030 | tx_packets += efx_handle_tx_event(channel, &event); | ||
| 1031 | if (tx_packets > efx->txq_entries) { | ||
| 1032 | spent = budget; | ||
| 1033 | goto out; | ||
| 1034 | } | ||
| 1035 | break; | ||
| 1036 | case FSE_AZ_EV_CODE_DRV_GEN_EV: | ||
| 1037 | efx_handle_generated_event(channel, &event); | ||
| 1038 | break; | ||
| 1039 | case FSE_AZ_EV_CODE_DRIVER_EV: | ||
| 1040 | efx_handle_driver_event(channel, &event); | ||
| 1041 | break; | ||
| 1042 | case FSE_CZ_EV_CODE_MCDI_EV: | ||
| 1043 | efx_mcdi_process_event(channel, &event); | ||
| 1044 | break; | ||
| 1045 | case FSE_AZ_EV_CODE_GLOBAL_EV: | ||
| 1046 | if (efx->type->handle_global_event && | ||
| 1047 | efx->type->handle_global_event(channel, &event)) | ||
| 1048 | break; | ||
| 1049 | /* else fall through */ | ||
| 1050 | default: | ||
| 1051 | netif_err(channel->efx, hw, channel->efx->net_dev, | ||
| 1052 | "channel %d unknown event type %d (data " | ||
| 1053 | EFX_QWORD_FMT ")\n", channel->channel, | ||
| 1054 | ev_code, EFX_QWORD_VAL(event)); | ||
| 1055 | } | ||
| 1056 | } | ||
| 1057 | |||
| 1058 | out: | ||
| 1059 | channel->eventq_read_ptr = read_ptr; | ||
| 1060 | return spent; | ||
| 1061 | } | ||
| 1062 | |||
| 1063 | /* Check whether an event is present in the eventq at the current | ||
| 1064 | * read pointer. Only useful for self-test. | ||
| 1065 | */ | ||
| 1066 | bool efx_nic_event_present(struct efx_channel *channel) | ||
| 1067 | { | ||
| 1068 | return efx_event_present(efx_event(channel, channel->eventq_read_ptr)); | ||
| 1069 | } | ||
| 1070 | |||
| 1071 | /* Allocate buffer table entries for event queue */ | ||
| 1072 | int efx_nic_probe_eventq(struct efx_channel *channel) | ||
| 1073 | { | ||
| 1074 | struct efx_nic *efx = channel->efx; | ||
| 1075 | unsigned entries; | ||
| 1076 | |||
| 1077 | entries = channel->eventq_mask + 1; | ||
| 1078 | return efx_alloc_special_buffer(efx, &channel->eventq, | ||
| 1079 | entries * sizeof(efx_qword_t)); | ||
| 1080 | } | ||
| 1081 | |||
| 1082 | void efx_nic_init_eventq(struct efx_channel *channel) | ||
| 1083 | { | ||
| 1084 | efx_oword_t reg; | ||
| 1085 | struct efx_nic *efx = channel->efx; | ||
| 1086 | |||
| 1087 | netif_dbg(efx, hw, efx->net_dev, | ||
| 1088 | "channel %d event queue in special buffers %d-%d\n", | ||
| 1089 | channel->channel, channel->eventq.index, | ||
| 1090 | channel->eventq.index + channel->eventq.entries - 1); | ||
| 1091 | |||
| 1092 | if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) { | ||
| 1093 | EFX_POPULATE_OWORD_3(reg, | ||
| 1094 | FRF_CZ_TIMER_Q_EN, 1, | ||
| 1095 | FRF_CZ_HOST_NOTIFY_MODE, 0, | ||
| 1096 | FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS); | ||
| 1097 | efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); | ||
| 1098 | } | ||
| 1099 | |||
| 1100 | /* Pin event queue buffer */ | ||
| 1101 | efx_init_special_buffer(efx, &channel->eventq); | ||
| 1102 | |||
| 1103 | /* Fill event queue with all ones (i.e. empty events) */ | ||
| 1104 | memset(channel->eventq.addr, 0xff, channel->eventq.len); | ||
| 1105 | |||
| 1106 | /* Push event queue to card */ | ||
| 1107 | EFX_POPULATE_OWORD_3(reg, | ||
| 1108 | FRF_AZ_EVQ_EN, 1, | ||
| 1109 | FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries), | ||
| 1110 | FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index); | ||
| 1111 | efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, | ||
| 1112 | channel->channel); | ||
| 1113 | |||
| 1114 | efx->type->push_irq_moderation(channel); | ||
| 1115 | } | ||
| 1116 | |||
| 1117 | void efx_nic_fini_eventq(struct efx_channel *channel) | ||
| 1118 | { | ||
| 1119 | efx_oword_t reg; | ||
| 1120 | struct efx_nic *efx = channel->efx; | ||
| 1121 | |||
| 1122 | /* Remove event queue from card */ | ||
| 1123 | EFX_ZERO_OWORD(reg); | ||
| 1124 | efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, | ||
| 1125 | channel->channel); | ||
| 1126 | if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) | ||
| 1127 | efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); | ||
| 1128 | |||
| 1129 | /* Unpin event queue */ | ||
| 1130 | efx_fini_special_buffer(efx, &channel->eventq); | ||
| 1131 | } | ||
| 1132 | |||
| 1133 | /* Free buffers backing event queue */ | ||
| 1134 | void efx_nic_remove_eventq(struct efx_channel *channel) | ||
| 1135 | { | ||
| 1136 | efx_free_special_buffer(channel->efx, &channel->eventq); | ||
| 1137 | } | ||
| 1138 | |||
| 1139 | |||
| 1140 | void efx_nic_generate_test_event(struct efx_channel *channel) | ||
| 1141 | { | ||
| 1142 | unsigned int magic = EFX_CHANNEL_MAGIC_TEST(channel); | ||
| 1143 | efx_qword_t test_event; | ||
| 1144 | |||
| 1145 | EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE, | ||
| 1146 | FSE_AZ_EV_CODE_DRV_GEN_EV, | ||
| 1147 | FSF_AZ_DRV_GEN_EV_MAGIC, magic); | ||
| 1148 | efx_generate_event(channel, &test_event); | ||
| 1149 | } | ||
| 1150 | |||
| 1151 | void efx_nic_generate_fill_event(struct efx_channel *channel) | ||
| 1152 | { | ||
| 1153 | unsigned int magic = EFX_CHANNEL_MAGIC_FILL(channel); | ||
| 1154 | efx_qword_t test_event; | ||
| 1155 | |||
| 1156 | EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE, | ||
| 1157 | FSE_AZ_EV_CODE_DRV_GEN_EV, | ||
| 1158 | FSF_AZ_DRV_GEN_EV_MAGIC, magic); | ||
| 1159 | efx_generate_event(channel, &test_event); | ||
| 1160 | } | ||
| 1161 | |||
| 1162 | /************************************************************************** | ||
| 1163 | * | ||
| 1164 | * Flush handling | ||
| 1165 | * | ||
| 1166 | **************************************************************************/ | ||
| 1167 | |||
| 1168 | |||
| 1169 | static void efx_poll_flush_events(struct efx_nic *efx) | ||
| 1170 | { | ||
| 1171 | struct efx_channel *channel = efx_get_channel(efx, 0); | ||
| 1172 | struct efx_tx_queue *tx_queue; | ||
| 1173 | struct efx_rx_queue *rx_queue; | ||
| 1174 | unsigned int read_ptr = channel->eventq_read_ptr; | ||
| 1175 | unsigned int end_ptr = read_ptr + channel->eventq_mask - 1; | ||
| 1176 | |||
| 1177 | do { | ||
| 1178 | efx_qword_t *event = efx_event(channel, read_ptr); | ||
| 1179 | int ev_code, ev_sub_code, ev_queue; | ||
| 1180 | bool ev_failed; | ||
| 1181 | |||
| 1182 | if (!efx_event_present(event)) | ||
| 1183 | break; | ||
| 1184 | |||
| 1185 | ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE); | ||
| 1186 | ev_sub_code = EFX_QWORD_FIELD(*event, | ||
| 1187 | FSF_AZ_DRIVER_EV_SUBCODE); | ||
| 1188 | if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV && | ||
| 1189 | ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) { | ||
| 1190 | ev_queue = EFX_QWORD_FIELD(*event, | ||
| 1191 | FSF_AZ_DRIVER_EV_SUBDATA); | ||
| 1192 | if (ev_queue < EFX_TXQ_TYPES * efx->n_tx_channels) { | ||
| 1193 | tx_queue = efx_get_tx_queue( | ||
| 1194 | efx, ev_queue / EFX_TXQ_TYPES, | ||
| 1195 | ev_queue % EFX_TXQ_TYPES); | ||
| 1196 | tx_queue->flushed = FLUSH_DONE; | ||
| 1197 | } | ||
| 1198 | } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV && | ||
| 1199 | ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) { | ||
| 1200 | ev_queue = EFX_QWORD_FIELD( | ||
| 1201 | *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID); | ||
| 1202 | ev_failed = EFX_QWORD_FIELD( | ||
| 1203 | *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL); | ||
| 1204 | if (ev_queue < efx->n_rx_channels) { | ||
| 1205 | rx_queue = efx_get_rx_queue(efx, ev_queue); | ||
| 1206 | rx_queue->flushed = | ||
| 1207 | ev_failed ? FLUSH_FAILED : FLUSH_DONE; | ||
| 1208 | } | ||
| 1209 | } | ||
| 1210 | |||
| 1211 | /* We're about to destroy the queue anyway, so | ||
| 1212 | * it's ok to throw away every non-flush event */ | ||
| 1213 | EFX_SET_QWORD(*event); | ||
| 1214 | |||
| 1215 | ++read_ptr; | ||
| 1216 | } while (read_ptr != end_ptr); | ||
| 1217 | |||
| 1218 | channel->eventq_read_ptr = read_ptr; | ||
| 1219 | } | ||
| 1220 | |||
| 1221 | /* Handle tx and rx flushes at the same time, since they run in | ||
| 1222 | * parallel in the hardware and there's no reason for us to | ||
| 1223 | * serialise them */ | ||
| 1224 | int efx_nic_flush_queues(struct efx_nic *efx) | ||
| 1225 | { | ||
| 1226 | struct efx_channel *channel; | ||
| 1227 | struct efx_rx_queue *rx_queue; | ||
| 1228 | struct efx_tx_queue *tx_queue; | ||
| 1229 | int i, tx_pending, rx_pending; | ||
| 1230 | |||
| 1231 | /* If necessary prepare the hardware for flushing */ | ||
| 1232 | efx->type->prepare_flush(efx); | ||
| 1233 | |||
| 1234 | /* Flush all tx queues in parallel */ | ||
| 1235 | efx_for_each_channel(channel, efx) { | ||
| 1236 | efx_for_each_possible_channel_tx_queue(tx_queue, channel) { | ||
| 1237 | if (tx_queue->initialised) | ||
| 1238 | efx_flush_tx_queue(tx_queue); | ||
| 1239 | } | ||
| 1240 | } | ||
| 1241 | |||
| 1242 | /* The hardware supports four concurrent rx flushes, each of which may | ||
| 1243 | * need to be retried if there is an outstanding descriptor fetch */ | ||
| 1244 | for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) { | ||
| 1245 | rx_pending = tx_pending = 0; | ||
| 1246 | efx_for_each_channel(channel, efx) { | ||
| 1247 | efx_for_each_channel_rx_queue(rx_queue, channel) { | ||
| 1248 | if (rx_queue->flushed == FLUSH_PENDING) | ||
| 1249 | ++rx_pending; | ||
| 1250 | } | ||
| 1251 | } | ||
| 1252 | efx_for_each_channel(channel, efx) { | ||
| 1253 | efx_for_each_channel_rx_queue(rx_queue, channel) { | ||
| 1254 | if (rx_pending == EFX_RX_FLUSH_COUNT) | ||
| 1255 | break; | ||
| 1256 | if (rx_queue->flushed == FLUSH_FAILED || | ||
| 1257 | rx_queue->flushed == FLUSH_NONE) { | ||
| 1258 | efx_flush_rx_queue(rx_queue); | ||
| 1259 | ++rx_pending; | ||
| 1260 | } | ||
| 1261 | } | ||
| 1262 | efx_for_each_possible_channel_tx_queue(tx_queue, channel) { | ||
| 1263 | if (tx_queue->initialised && | ||
| 1264 | tx_queue->flushed != FLUSH_DONE) | ||
| 1265 | ++tx_pending; | ||
| 1266 | } | ||
| 1267 | } | ||
| 1268 | |||
| 1269 | if (rx_pending == 0 && tx_pending == 0) | ||
| 1270 | return 0; | ||
| 1271 | |||
| 1272 | msleep(EFX_FLUSH_INTERVAL); | ||
| 1273 | efx_poll_flush_events(efx); | ||
| 1274 | } | ||
| 1275 | |||
| 1276 | /* Mark the queues as all flushed. We're going to return failure | ||
| 1277 | * leading to a reset, or fake up success anyway */ | ||
| 1278 | efx_for_each_channel(channel, efx) { | ||
| 1279 | efx_for_each_possible_channel_tx_queue(tx_queue, channel) { | ||
| 1280 | if (tx_queue->initialised && | ||
| 1281 | tx_queue->flushed != FLUSH_DONE) | ||
| 1282 | netif_err(efx, hw, efx->net_dev, | ||
| 1283 | "tx queue %d flush command timed out\n", | ||
| 1284 | tx_queue->queue); | ||
| 1285 | tx_queue->flushed = FLUSH_DONE; | ||
| 1286 | } | ||
| 1287 | efx_for_each_channel_rx_queue(rx_queue, channel) { | ||
| 1288 | if (rx_queue->flushed != FLUSH_DONE) | ||
| 1289 | netif_err(efx, hw, efx->net_dev, | ||
| 1290 | "rx queue %d flush command timed out\n", | ||
| 1291 | efx_rx_queue_index(rx_queue)); | ||
| 1292 | rx_queue->flushed = FLUSH_DONE; | ||
| 1293 | } | ||
| 1294 | } | ||
| 1295 | |||
| 1296 | return -ETIMEDOUT; | ||
| 1297 | } | ||
| 1298 | |||
| 1299 | /************************************************************************** | ||
| 1300 | * | ||
| 1301 | * Hardware interrupts | ||
| 1302 | * The hardware interrupt handler does very little work; all the event | ||
| 1303 | * queue processing is carried out by per-channel tasklets. | ||
| 1304 | * | ||
| 1305 | **************************************************************************/ | ||
| 1306 | |||
| 1307 | /* Enable/disable/generate interrupts */ | ||
| 1308 | static inline void efx_nic_interrupts(struct efx_nic *efx, | ||
| 1309 | bool enabled, bool force) | ||
| 1310 | { | ||
| 1311 | efx_oword_t int_en_reg_ker; | ||
| 1312 | |||
| 1313 | EFX_POPULATE_OWORD_3(int_en_reg_ker, | ||
| 1314 | FRF_AZ_KER_INT_LEVE_SEL, efx->fatal_irq_level, | ||
| 1315 | FRF_AZ_KER_INT_KER, force, | ||
| 1316 | FRF_AZ_DRV_INT_EN_KER, enabled); | ||
| 1317 | efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER); | ||
| 1318 | } | ||
| 1319 | |||
| 1320 | void efx_nic_enable_interrupts(struct efx_nic *efx) | ||
| 1321 | { | ||
| 1322 | struct efx_channel *channel; | ||
| 1323 | |||
| 1324 | EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr)); | ||
| 1325 | wmb(); /* Ensure interrupt vector is clear before interrupts enabled */ | ||
| 1326 | |||
| 1327 | /* Enable interrupts */ | ||
| 1328 | efx_nic_interrupts(efx, true, false); | ||
| 1329 | |||
| 1330 | /* Force processing of all the channels to get the EVQ RPTRs up to | ||
| 1331 | date */ | ||
| 1332 | efx_for_each_channel(channel, efx) | ||
| 1333 | efx_schedule_channel(channel); | ||
| 1334 | } | ||
| 1335 | |||
| 1336 | void efx_nic_disable_interrupts(struct efx_nic *efx) | ||
| 1337 | { | ||
| 1338 | /* Disable interrupts */ | ||
| 1339 | efx_nic_interrupts(efx, false, false); | ||
| 1340 | } | ||
| 1341 | |||
| 1342 | /* Generate a test interrupt | ||
| 1343 | * Interrupt must already have been enabled, otherwise nasty things | ||
| 1344 | * may happen. | ||
| 1345 | */ | ||
| 1346 | void efx_nic_generate_interrupt(struct efx_nic *efx) | ||
| 1347 | { | ||
| 1348 | efx_nic_interrupts(efx, true, true); | ||
| 1349 | } | ||
| 1350 | |||
| 1351 | /* Process a fatal interrupt | ||
| 1352 | * Disable bus mastering ASAP and schedule a reset | ||
| 1353 | */ | ||
| 1354 | irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx) | ||
| 1355 | { | ||
| 1356 | struct falcon_nic_data *nic_data = efx->nic_data; | ||
| 1357 | efx_oword_t *int_ker = efx->irq_status.addr; | ||
| 1358 | efx_oword_t fatal_intr; | ||
| 1359 | int error, mem_perr; | ||
| 1360 | |||
| 1361 | efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER); | ||
| 1362 | error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR); | ||
| 1363 | |||
| 1364 | netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status " | ||
| 1365 | EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker), | ||
| 1366 | EFX_OWORD_VAL(fatal_intr), | ||
| 1367 | error ? "disabling bus mastering" : "no recognised error"); | ||
| 1368 | |||
| 1369 | /* If this is a memory parity error dump which blocks are offending */ | ||
| 1370 | mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) || | ||
| 1371 | EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER)); | ||
| 1372 | if (mem_perr) { | ||
| 1373 | efx_oword_t reg; | ||
| 1374 | efx_reado(efx, ®, FR_AZ_MEM_STAT); | ||
| 1375 | netif_err(efx, hw, efx->net_dev, | ||
| 1376 | "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n", | ||
| 1377 | EFX_OWORD_VAL(reg)); | ||
| 1378 | } | ||
| 1379 | |||
| 1380 | /* Disable both devices */ | ||
| 1381 | pci_clear_master(efx->pci_dev); | ||
| 1382 | if (efx_nic_is_dual_func(efx)) | ||
| 1383 | pci_clear_master(nic_data->pci_dev2); | ||
| 1384 | efx_nic_disable_interrupts(efx); | ||
| 1385 | |||
| 1386 | /* Count errors and reset or disable the NIC accordingly */ | ||
| 1387 | if (efx->int_error_count == 0 || | ||
| 1388 | time_after(jiffies, efx->int_error_expire)) { | ||
| 1389 | efx->int_error_count = 0; | ||
| 1390 | efx->int_error_expire = | ||
| 1391 | jiffies + EFX_INT_ERROR_EXPIRE * HZ; | ||
| 1392 | } | ||
| 1393 | if (++efx->int_error_count < EFX_MAX_INT_ERRORS) { | ||
| 1394 | netif_err(efx, hw, efx->net_dev, | ||
| 1395 | "SYSTEM ERROR - reset scheduled\n"); | ||
| 1396 | efx_schedule_reset(efx, RESET_TYPE_INT_ERROR); | ||
| 1397 | } else { | ||
| 1398 | netif_err(efx, hw, efx->net_dev, | ||
| 1399 | "SYSTEM ERROR - max number of errors seen." | ||
| 1400 | "NIC will be disabled\n"); | ||
| 1401 | efx_schedule_reset(efx, RESET_TYPE_DISABLE); | ||
| 1402 | } | ||
| 1403 | |||
| 1404 | return IRQ_HANDLED; | ||
| 1405 | } | ||
| 1406 | |||
| 1407 | /* Handle a legacy interrupt | ||
| 1408 | * Acknowledges the interrupt and schedule event queue processing. | ||
| 1409 | */ | ||
| 1410 | static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id) | ||
| 1411 | { | ||
| 1412 | struct efx_nic *efx = dev_id; | ||
| 1413 | efx_oword_t *int_ker = efx->irq_status.addr; | ||
| 1414 | irqreturn_t result = IRQ_NONE; | ||
| 1415 | struct efx_channel *channel; | ||
| 1416 | efx_dword_t reg; | ||
| 1417 | u32 queues; | ||
| 1418 | int syserr; | ||
| 1419 | |||
| 1420 | /* Could this be ours? If interrupts are disabled then the | ||
| 1421 | * channel state may not be valid. | ||
| 1422 | */ | ||
| 1423 | if (!efx->legacy_irq_enabled) | ||
| 1424 | return result; | ||
| 1425 | |||
| 1426 | /* Read the ISR which also ACKs the interrupts */ | ||
| 1427 | efx_readd(efx, ®, FR_BZ_INT_ISR0); | ||
| 1428 | queues = EFX_EXTRACT_DWORD(reg, 0, 31); | ||
| 1429 | |||
| 1430 | /* Check to see if we have a serious error condition */ | ||
| 1431 | if (queues & (1U << efx->fatal_irq_level)) { | ||
| 1432 | syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); | ||
| 1433 | if (unlikely(syserr)) | ||
| 1434 | return efx_nic_fatal_interrupt(efx); | ||
| 1435 | } | ||
| 1436 | |||
| 1437 | if (queues != 0) { | ||
| 1438 | if (EFX_WORKAROUND_15783(efx)) | ||
| 1439 | efx->irq_zero_count = 0; | ||
| 1440 | |||
| 1441 | /* Schedule processing of any interrupting queues */ | ||
| 1442 | efx_for_each_channel(channel, efx) { | ||
| 1443 | if (queues & 1) | ||
| 1444 | efx_schedule_channel(channel); | ||
| 1445 | queues >>= 1; | ||
| 1446 | } | ||
| 1447 | result = IRQ_HANDLED; | ||
| 1448 | |||
| 1449 | } else if (EFX_WORKAROUND_15783(efx)) { | ||
| 1450 | efx_qword_t *event; | ||
| 1451 | |||
| 1452 | /* We can't return IRQ_HANDLED more than once on seeing ISR=0 | ||
| 1453 | * because this might be a shared interrupt. */ | ||
| 1454 | if (efx->irq_zero_count++ == 0) | ||
| 1455 | result = IRQ_HANDLED; | ||
| 1456 | |||
| 1457 | /* Ensure we schedule or rearm all event queues */ | ||
| 1458 | efx_for_each_channel(channel, efx) { | ||
| 1459 | event = efx_event(channel, channel->eventq_read_ptr); | ||
| 1460 | if (efx_event_present(event)) | ||
| 1461 | efx_schedule_channel(channel); | ||
| 1462 | else | ||
| 1463 | efx_nic_eventq_read_ack(channel); | ||
| 1464 | } | ||
| 1465 | } | ||
| 1466 | |||
| 1467 | if (result == IRQ_HANDLED) { | ||
| 1468 | efx->last_irq_cpu = raw_smp_processor_id(); | ||
| 1469 | netif_vdbg(efx, intr, efx->net_dev, | ||
| 1470 | "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", | ||
| 1471 | irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); | ||
| 1472 | } | ||
| 1473 | |||
| 1474 | return result; | ||
| 1475 | } | ||
| 1476 | |||
| 1477 | /* Handle an MSI interrupt | ||
| 1478 | * | ||
| 1479 | * Handle an MSI hardware interrupt. This routine schedules event | ||
| 1480 | * queue processing. No interrupt acknowledgement cycle is necessary. | ||
| 1481 | * Also, we never need to check that the interrupt is for us, since | ||
| 1482 | * MSI interrupts cannot be shared. | ||
| 1483 | */ | ||
| 1484 | static irqreturn_t efx_msi_interrupt(int irq, void *dev_id) | ||
| 1485 | { | ||
| 1486 | struct efx_channel *channel = *(struct efx_channel **)dev_id; | ||
| 1487 | struct efx_nic *efx = channel->efx; | ||
| 1488 | efx_oword_t *int_ker = efx->irq_status.addr; | ||
| 1489 | int syserr; | ||
| 1490 | |||
| 1491 | efx->last_irq_cpu = raw_smp_processor_id(); | ||
| 1492 | netif_vdbg(efx, intr, efx->net_dev, | ||
| 1493 | "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", | ||
| 1494 | irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); | ||
| 1495 | |||
| 1496 | /* Check to see if we have a serious error condition */ | ||
| 1497 | if (channel->channel == efx->fatal_irq_level) { | ||
| 1498 | syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); | ||
| 1499 | if (unlikely(syserr)) | ||
| 1500 | return efx_nic_fatal_interrupt(efx); | ||
| 1501 | } | ||
| 1502 | |||
| 1503 | /* Schedule processing of the channel */ | ||
| 1504 | efx_schedule_channel(channel); | ||
| 1505 | |||
| 1506 | return IRQ_HANDLED; | ||
| 1507 | } | ||
| 1508 | |||
| 1509 | |||
| 1510 | /* Setup RSS indirection table. | ||
| 1511 | * This maps from the hash value of the packet to RXQ | ||
| 1512 | */ | ||
| 1513 | void efx_nic_push_rx_indir_table(struct efx_nic *efx) | ||
| 1514 | { | ||
| 1515 | size_t i = 0; | ||
| 1516 | efx_dword_t dword; | ||
| 1517 | |||
| 1518 | if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) | ||
| 1519 | return; | ||
| 1520 | |||
| 1521 | BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) != | ||
| 1522 | FR_BZ_RX_INDIRECTION_TBL_ROWS); | ||
| 1523 | |||
| 1524 | for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) { | ||
| 1525 | EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE, | ||
| 1526 | efx->rx_indir_table[i]); | ||
| 1527 | efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i); | ||
| 1528 | } | ||
| 1529 | } | ||
| 1530 | |||
| 1531 | /* Hook interrupt handler(s) | ||
| 1532 | * Try MSI and then legacy interrupts. | ||
| 1533 | */ | ||
| 1534 | int efx_nic_init_interrupt(struct efx_nic *efx) | ||
| 1535 | { | ||
| 1536 | struct efx_channel *channel; | ||
| 1537 | int rc; | ||
| 1538 | |||
| 1539 | if (!EFX_INT_MODE_USE_MSI(efx)) { | ||
| 1540 | irq_handler_t handler; | ||
| 1541 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) | ||
| 1542 | handler = efx_legacy_interrupt; | ||
| 1543 | else | ||
| 1544 | handler = falcon_legacy_interrupt_a1; | ||
| 1545 | |||
| 1546 | rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED, | ||
| 1547 | efx->name, efx); | ||
| 1548 | if (rc) { | ||
| 1549 | netif_err(efx, drv, efx->net_dev, | ||
| 1550 | "failed to hook legacy IRQ %d\n", | ||
| 1551 | efx->pci_dev->irq); | ||
| 1552 | goto fail1; | ||
| 1553 | } | ||
| 1554 | return 0; | ||
| 1555 | } | ||
| 1556 | |||
| 1557 | /* Hook MSI or MSI-X interrupt */ | ||
| 1558 | efx_for_each_channel(channel, efx) { | ||
| 1559 | rc = request_irq(channel->irq, efx_msi_interrupt, | ||
| 1560 | IRQF_PROBE_SHARED, /* Not shared */ | ||
| 1561 | efx->channel_name[channel->channel], | ||
| 1562 | &efx->channel[channel->channel]); | ||
| 1563 | if (rc) { | ||
| 1564 | netif_err(efx, drv, efx->net_dev, | ||
| 1565 | "failed to hook IRQ %d\n", channel->irq); | ||
| 1566 | goto fail2; | ||
| 1567 | } | ||
| 1568 | } | ||
| 1569 | |||
| 1570 | return 0; | ||
| 1571 | |||
| 1572 | fail2: | ||
| 1573 | efx_for_each_channel(channel, efx) | ||
| 1574 | free_irq(channel->irq, &efx->channel[channel->channel]); | ||
| 1575 | fail1: | ||
| 1576 | return rc; | ||
| 1577 | } | ||
| 1578 | |||
| 1579 | void efx_nic_fini_interrupt(struct efx_nic *efx) | ||
| 1580 | { | ||
| 1581 | struct efx_channel *channel; | ||
| 1582 | efx_oword_t reg; | ||
| 1583 | |||
| 1584 | /* Disable MSI/MSI-X interrupts */ | ||
| 1585 | efx_for_each_channel(channel, efx) { | ||
| 1586 | if (channel->irq) | ||
| 1587 | free_irq(channel->irq, &efx->channel[channel->channel]); | ||
| 1588 | } | ||
| 1589 | |||
| 1590 | /* ACK legacy interrupt */ | ||
| 1591 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) | ||
| 1592 | efx_reado(efx, ®, FR_BZ_INT_ISR0); | ||
| 1593 | else | ||
| 1594 | falcon_irq_ack_a1(efx); | ||
| 1595 | |||
| 1596 | /* Disable legacy interrupt */ | ||
| 1597 | if (efx->legacy_irq) | ||
| 1598 | free_irq(efx->legacy_irq, efx); | ||
| 1599 | } | ||
| 1600 | |||
| 1601 | u32 efx_nic_fpga_ver(struct efx_nic *efx) | ||
| 1602 | { | ||
| 1603 | efx_oword_t altera_build; | ||
| 1604 | efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD); | ||
| 1605 | return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER); | ||
| 1606 | } | ||
| 1607 | |||
| 1608 | void efx_nic_init_common(struct efx_nic *efx) | ||
| 1609 | { | ||
| 1610 | efx_oword_t temp; | ||
| 1611 | |||
| 1612 | /* Set positions of descriptor caches in SRAM. */ | ||
| 1613 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, | ||
| 1614 | efx->type->tx_dc_base / 8); | ||
| 1615 | efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG); | ||
| 1616 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, | ||
| 1617 | efx->type->rx_dc_base / 8); | ||
| 1618 | efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG); | ||
| 1619 | |||
| 1620 | /* Set TX descriptor cache size. */ | ||
| 1621 | BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER)); | ||
| 1622 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER); | ||
| 1623 | efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG); | ||
| 1624 | |||
| 1625 | /* Set RX descriptor cache size. Set low watermark to size-8, as | ||
| 1626 | * this allows most efficient prefetching. | ||
| 1627 | */ | ||
| 1628 | BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER)); | ||
| 1629 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER); | ||
| 1630 | efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG); | ||
| 1631 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8); | ||
| 1632 | efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM); | ||
| 1633 | |||
| 1634 | /* Program INT_KER address */ | ||
| 1635 | EFX_POPULATE_OWORD_2(temp, | ||
| 1636 | FRF_AZ_NORM_INT_VEC_DIS_KER, | ||
| 1637 | EFX_INT_MODE_USE_MSI(efx), | ||
| 1638 | FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr); | ||
| 1639 | efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER); | ||
| 1640 | |||
| 1641 | if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx)) | ||
| 1642 | /* Use an interrupt level unused by event queues */ | ||
| 1643 | efx->fatal_irq_level = 0x1f; | ||
| 1644 | else | ||
| 1645 | /* Use a valid MSI-X vector */ | ||
| 1646 | efx->fatal_irq_level = 0; | ||
| 1647 | |||
| 1648 | /* Enable all the genuinely fatal interrupts. (They are still | ||
| 1649 | * masked by the overall interrupt mask, controlled by | ||
| 1650 | * falcon_interrupts()). | ||
| 1651 | * | ||
| 1652 | * Note: All other fatal interrupts are enabled | ||
| 1653 | */ | ||
| 1654 | EFX_POPULATE_OWORD_3(temp, | ||
| 1655 | FRF_AZ_ILL_ADR_INT_KER_EN, 1, | ||
| 1656 | FRF_AZ_RBUF_OWN_INT_KER_EN, 1, | ||
| 1657 | FRF_AZ_TBUF_OWN_INT_KER_EN, 1); | ||
| 1658 | if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) | ||
| 1659 | EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1); | ||
| 1660 | EFX_INVERT_OWORD(temp); | ||
| 1661 | efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER); | ||
| 1662 | |||
| 1663 | efx_nic_push_rx_indir_table(efx); | ||
| 1664 | |||
| 1665 | /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be | ||
| 1666 | * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q. | ||
| 1667 | */ | ||
| 1668 | efx_reado(efx, &temp, FR_AZ_TX_RESERVED); | ||
| 1669 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe); | ||
| 1670 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1); | ||
| 1671 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1); | ||
| 1672 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1); | ||
| 1673 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1); | ||
| 1674 | /* Enable SW_EV to inherit in char driver - assume harmless here */ | ||
| 1675 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1); | ||
| 1676 | /* Prefetch threshold 2 => fetch when descriptor cache half empty */ | ||
| 1677 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2); | ||
| 1678 | /* Disable hardware watchdog which can misfire */ | ||
| 1679 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff); | ||
| 1680 | /* Squash TX of packets of 16 bytes or less */ | ||
| 1681 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) | ||
| 1682 | EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1); | ||
| 1683 | efx_writeo(efx, &temp, FR_AZ_TX_RESERVED); | ||
| 1684 | |||
| 1685 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { | ||
| 1686 | EFX_POPULATE_OWORD_4(temp, | ||
| 1687 | /* Default values */ | ||
| 1688 | FRF_BZ_TX_PACE_SB_NOT_AF, 0x15, | ||
| 1689 | FRF_BZ_TX_PACE_SB_AF, 0xb, | ||
| 1690 | FRF_BZ_TX_PACE_FB_BASE, 0, | ||
| 1691 | /* Allow large pace values in the | ||
| 1692 | * fast bin. */ | ||
| 1693 | FRF_BZ_TX_PACE_BIN_TH, | ||
| 1694 | FFE_BZ_TX_PACE_RESERVED); | ||
| 1695 | efx_writeo(efx, &temp, FR_BZ_TX_PACE); | ||
| 1696 | } | ||
| 1697 | } | ||
| 1698 | |||
| 1699 | /* Register dump */ | ||
| 1700 | |||
| 1701 | #define REGISTER_REVISION_A 1 | ||
| 1702 | #define REGISTER_REVISION_B 2 | ||
| 1703 | #define REGISTER_REVISION_C 3 | ||
| 1704 | #define REGISTER_REVISION_Z 3 /* latest revision */ | ||
| 1705 | |||
| 1706 | struct efx_nic_reg { | ||
| 1707 | u32 offset:24; | ||
| 1708 | u32 min_revision:2, max_revision:2; | ||
| 1709 | }; | ||
| 1710 | |||
| 1711 | #define REGISTER(name, min_rev, max_rev) { \ | ||
| 1712 | FR_ ## min_rev ## max_rev ## _ ## name, \ | ||
| 1713 | REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \ | ||
| 1714 | } | ||
| 1715 | #define REGISTER_AA(name) REGISTER(name, A, A) | ||
| 1716 | #define REGISTER_AB(name) REGISTER(name, A, B) | ||
| 1717 | #define REGISTER_AZ(name) REGISTER(name, A, Z) | ||
| 1718 | #define REGISTER_BB(name) REGISTER(name, B, B) | ||
| 1719 | #define REGISTER_BZ(name) REGISTER(name, B, Z) | ||
| 1720 | #define REGISTER_CZ(name) REGISTER(name, C, Z) | ||
| 1721 | |||
| 1722 | static const struct efx_nic_reg efx_nic_regs[] = { | ||
| 1723 | REGISTER_AZ(ADR_REGION), | ||
| 1724 | REGISTER_AZ(INT_EN_KER), | ||
| 1725 | REGISTER_BZ(INT_EN_CHAR), | ||
| 1726 | REGISTER_AZ(INT_ADR_KER), | ||
| 1727 | REGISTER_BZ(INT_ADR_CHAR), | ||
| 1728 | /* INT_ACK_KER is WO */ | ||
| 1729 | /* INT_ISR0 is RC */ | ||
| 1730 | REGISTER_AZ(HW_INIT), | ||
| 1731 | REGISTER_CZ(USR_EV_CFG), | ||
| 1732 | REGISTER_AB(EE_SPI_HCMD), | ||
| 1733 | REGISTER_AB(EE_SPI_HADR), | ||
| 1734 | REGISTER_AB(EE_SPI_HDATA), | ||
| 1735 | REGISTER_AB(EE_BASE_PAGE), | ||
| 1736 | REGISTER_AB(EE_VPD_CFG0), | ||
| 1737 | /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */ | ||
| 1738 | /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */ | ||
| 1739 | /* PCIE_CORE_INDIRECT is indirect */ | ||
| 1740 | REGISTER_AB(NIC_STAT), | ||
| 1741 | REGISTER_AB(GPIO_CTL), | ||
| 1742 | REGISTER_AB(GLB_CTL), | ||
| 1743 | /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */ | ||
| 1744 | REGISTER_BZ(DP_CTRL), | ||
| 1745 | REGISTER_AZ(MEM_STAT), | ||
| 1746 | REGISTER_AZ(CS_DEBUG), | ||
| 1747 | REGISTER_AZ(ALTERA_BUILD), | ||
| 1748 | REGISTER_AZ(CSR_SPARE), | ||
| 1749 | REGISTER_AB(PCIE_SD_CTL0123), | ||
| 1750 | REGISTER_AB(PCIE_SD_CTL45), | ||
| 1751 | REGISTER_AB(PCIE_PCS_CTL_STAT), | ||
| 1752 | /* DEBUG_DATA_OUT is not used */ | ||
| 1753 | /* DRV_EV is WO */ | ||
| 1754 | REGISTER_AZ(EVQ_CTL), | ||
| 1755 | REGISTER_AZ(EVQ_CNT1), | ||
| 1756 | REGISTER_AZ(EVQ_CNT2), | ||
| 1757 | REGISTER_AZ(BUF_TBL_CFG), | ||
| 1758 | REGISTER_AZ(SRM_RX_DC_CFG), | ||
| 1759 | REGISTER_AZ(SRM_TX_DC_CFG), | ||
| 1760 | REGISTER_AZ(SRM_CFG), | ||
| 1761 | /* BUF_TBL_UPD is WO */ | ||
| 1762 | REGISTER_AZ(SRM_UPD_EVQ), | ||
| 1763 | REGISTER_AZ(SRAM_PARITY), | ||
| 1764 | REGISTER_AZ(RX_CFG), | ||
| 1765 | REGISTER_BZ(RX_FILTER_CTL), | ||
| 1766 | /* RX_FLUSH_DESCQ is WO */ | ||
| 1767 | REGISTER_AZ(RX_DC_CFG), | ||
| 1768 | REGISTER_AZ(RX_DC_PF_WM), | ||
| 1769 | REGISTER_BZ(RX_RSS_TKEY), | ||
| 1770 | /* RX_NODESC_DROP is RC */ | ||
| 1771 | REGISTER_AA(RX_SELF_RST), | ||
| 1772 | /* RX_DEBUG, RX_PUSH_DROP are not used */ | ||
| 1773 | REGISTER_CZ(RX_RSS_IPV6_REG1), | ||
| 1774 | REGISTER_CZ(RX_RSS_IPV6_REG2), | ||
| 1775 | REGISTER_CZ(RX_RSS_IPV6_REG3), | ||
| 1776 | /* TX_FLUSH_DESCQ is WO */ | ||
| 1777 | REGISTER_AZ(TX_DC_CFG), | ||
| 1778 | REGISTER_AA(TX_CHKSM_CFG), | ||
| 1779 | REGISTER_AZ(TX_CFG), | ||
| 1780 | /* TX_PUSH_DROP is not used */ | ||
| 1781 | REGISTER_AZ(TX_RESERVED), | ||
| 1782 | REGISTER_BZ(TX_PACE), | ||
| 1783 | /* TX_PACE_DROP_QID is RC */ | ||
| 1784 | REGISTER_BB(TX_VLAN), | ||
| 1785 | REGISTER_BZ(TX_IPFIL_PORTEN), | ||
| 1786 | REGISTER_AB(MD_TXD), | ||
| 1787 | REGISTER_AB(MD_RXD), | ||
| 1788 | REGISTER_AB(MD_CS), | ||
| 1789 | REGISTER_AB(MD_PHY_ADR), | ||
| 1790 | REGISTER_AB(MD_ID), | ||
| 1791 | /* MD_STAT is RC */ | ||
| 1792 | REGISTER_AB(MAC_STAT_DMA), | ||
| 1793 | REGISTER_AB(MAC_CTRL), | ||
| 1794 | REGISTER_BB(GEN_MODE), | ||
| 1795 | REGISTER_AB(MAC_MC_HASH_REG0), | ||
| 1796 | REGISTER_AB(MAC_MC_HASH_REG1), | ||
| 1797 | REGISTER_AB(GM_CFG1), | ||
| 1798 | REGISTER_AB(GM_CFG2), | ||
| 1799 | /* GM_IPG and GM_HD are not used */ | ||
| 1800 | REGISTER_AB(GM_MAX_FLEN), | ||
| 1801 | /* GM_TEST is not used */ | ||
| 1802 | REGISTER_AB(GM_ADR1), | ||
| 1803 | REGISTER_AB(GM_ADR2), | ||
| 1804 | REGISTER_AB(GMF_CFG0), | ||
| 1805 | REGISTER_AB(GMF_CFG1), | ||
| 1806 | REGISTER_AB(GMF_CFG2), | ||
| 1807 | REGISTER_AB(GMF_CFG3), | ||
| 1808 | REGISTER_AB(GMF_CFG4), | ||
| 1809 | REGISTER_AB(GMF_CFG5), | ||
| 1810 | REGISTER_BB(TX_SRC_MAC_CTL), | ||
| 1811 | REGISTER_AB(XM_ADR_LO), | ||
| 1812 | REGISTER_AB(XM_ADR_HI), | ||
| 1813 | REGISTER_AB(XM_GLB_CFG), | ||
| 1814 | REGISTER_AB(XM_TX_CFG), | ||
| 1815 | REGISTER_AB(XM_RX_CFG), | ||
| 1816 | REGISTER_AB(XM_MGT_INT_MASK), | ||
| 1817 | REGISTER_AB(XM_FC), | ||
| 1818 | REGISTER_AB(XM_PAUSE_TIME), | ||
| 1819 | REGISTER_AB(XM_TX_PARAM), | ||
| 1820 | REGISTER_AB(XM_RX_PARAM), | ||
| 1821 | /* XM_MGT_INT_MSK (note no 'A') is RC */ | ||
| 1822 | REGISTER_AB(XX_PWR_RST), | ||
| 1823 | REGISTER_AB(XX_SD_CTL), | ||
| 1824 | REGISTER_AB(XX_TXDRV_CTL), | ||
| 1825 | /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */ | ||
| 1826 | /* XX_CORE_STAT is partly RC */ | ||
| 1827 | }; | ||
| 1828 | |||
| 1829 | struct efx_nic_reg_table { | ||
| 1830 | u32 offset:24; | ||
| 1831 | u32 min_revision:2, max_revision:2; | ||
| 1832 | u32 step:6, rows:21; | ||
| 1833 | }; | ||
| 1834 | |||
| 1835 | #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \ | ||
| 1836 | offset, \ | ||
| 1837 | REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \ | ||
| 1838 | step, rows \ | ||
| 1839 | } | ||
| 1840 | #define REGISTER_TABLE(name, min_rev, max_rev) \ | ||
| 1841 | REGISTER_TABLE_DIMENSIONS( \ | ||
| 1842 | name, FR_ ## min_rev ## max_rev ## _ ## name, \ | ||
| 1843 | min_rev, max_rev, \ | ||
| 1844 | FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \ | ||
| 1845 | FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS) | ||
| 1846 | #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A) | ||
| 1847 | #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z) | ||
| 1848 | #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B) | ||
| 1849 | #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z) | ||
| 1850 | #define REGISTER_TABLE_BB_CZ(name) \ | ||
| 1851 | REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \ | ||
| 1852 | FR_BZ_ ## name ## _STEP, \ | ||
| 1853 | FR_BB_ ## name ## _ROWS), \ | ||
| 1854 | REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \ | ||
| 1855 | FR_BZ_ ## name ## _STEP, \ | ||
| 1856 | FR_CZ_ ## name ## _ROWS) | ||
| 1857 | #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z) | ||
| 1858 | |||
| 1859 | static const struct efx_nic_reg_table efx_nic_reg_tables[] = { | ||
| 1860 | /* DRIVER is not used */ | ||
| 1861 | /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */ | ||
| 1862 | REGISTER_TABLE_BB(TX_IPFIL_TBL), | ||
| 1863 | REGISTER_TABLE_BB(TX_SRC_MAC_TBL), | ||
| 1864 | REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER), | ||
| 1865 | REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL), | ||
| 1866 | REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER), | ||
| 1867 | REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL), | ||
| 1868 | REGISTER_TABLE_AA(EVQ_PTR_TBL_KER), | ||
| 1869 | REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL), | ||
| 1870 | /* We can't reasonably read all of the buffer table (up to 8MB!). | ||
| 1871 | * However this driver will only use a few entries. Reading | ||
| 1872 | * 1K entries allows for some expansion of queue count and | ||
| 1873 | * size before we need to change the version. */ | ||
| 1874 | REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER, | ||
| 1875 | A, A, 8, 1024), | ||
| 1876 | REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL, | ||
| 1877 | B, Z, 8, 1024), | ||
| 1878 | REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0), | ||
| 1879 | REGISTER_TABLE_BB_CZ(TIMER_TBL), | ||
| 1880 | REGISTER_TABLE_BB_CZ(TX_PACE_TBL), | ||
| 1881 | REGISTER_TABLE_BZ(RX_INDIRECTION_TBL), | ||
| 1882 | /* TX_FILTER_TBL0 is huge and not used by this driver */ | ||
| 1883 | REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0), | ||
| 1884 | REGISTER_TABLE_CZ(MC_TREG_SMEM), | ||
| 1885 | /* MSIX_PBA_TABLE is not mapped */ | ||
| 1886 | /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */ | ||
| 1887 | REGISTER_TABLE_BZ(RX_FILTER_TBL0), | ||
| 1888 | }; | ||
| 1889 | |||
| 1890 | size_t efx_nic_get_regs_len(struct efx_nic *efx) | ||
| 1891 | { | ||
| 1892 | const struct efx_nic_reg *reg; | ||
| 1893 | const struct efx_nic_reg_table *table; | ||
| 1894 | size_t len = 0; | ||
| 1895 | |||
| 1896 | for (reg = efx_nic_regs; | ||
| 1897 | reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); | ||
| 1898 | reg++) | ||
| 1899 | if (efx->type->revision >= reg->min_revision && | ||
| 1900 | efx->type->revision <= reg->max_revision) | ||
| 1901 | len += sizeof(efx_oword_t); | ||
| 1902 | |||
| 1903 | for (table = efx_nic_reg_tables; | ||
| 1904 | table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); | ||
| 1905 | table++) | ||
| 1906 | if (efx->type->revision >= table->min_revision && | ||
| 1907 | efx->type->revision <= table->max_revision) | ||
| 1908 | len += table->rows * min_t(size_t, table->step, 16); | ||
| 1909 | |||
| 1910 | return len; | ||
| 1911 | } | ||
| 1912 | |||
| 1913 | void efx_nic_get_regs(struct efx_nic *efx, void *buf) | ||
| 1914 | { | ||
| 1915 | const struct efx_nic_reg *reg; | ||
| 1916 | const struct efx_nic_reg_table *table; | ||
| 1917 | |||
| 1918 | for (reg = efx_nic_regs; | ||
| 1919 | reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); | ||
| 1920 | reg++) { | ||
| 1921 | if (efx->type->revision >= reg->min_revision && | ||
| 1922 | efx->type->revision <= reg->max_revision) { | ||
| 1923 | efx_reado(efx, (efx_oword_t *)buf, reg->offset); | ||
| 1924 | buf += sizeof(efx_oword_t); | ||
| 1925 | } | ||
| 1926 | } | ||
| 1927 | |||
| 1928 | for (table = efx_nic_reg_tables; | ||
| 1929 | table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); | ||
| 1930 | table++) { | ||
| 1931 | size_t size, i; | ||
| 1932 | |||
| 1933 | if (!(efx->type->revision >= table->min_revision && | ||
| 1934 | efx->type->revision <= table->max_revision)) | ||
| 1935 | continue; | ||
| 1936 | |||
| 1937 | size = min_t(size_t, table->step, 16); | ||
| 1938 | |||
| 1939 | for (i = 0; i < table->rows; i++) { | ||
| 1940 | switch (table->step) { | ||
| 1941 | case 4: /* 32-bit register or SRAM */ | ||
| 1942 | efx_readd_table(efx, buf, table->offset, i); | ||
| 1943 | break; | ||
| 1944 | case 8: /* 64-bit SRAM */ | ||
| 1945 | efx_sram_readq(efx, | ||
| 1946 | efx->membase + table->offset, | ||
| 1947 | buf, i); | ||
| 1948 | break; | ||
| 1949 | case 16: /* 128-bit register */ | ||
| 1950 | efx_reado_table(efx, buf, table->offset, i); | ||
| 1951 | break; | ||
| 1952 | case 32: /* 128-bit register, interleaved */ | ||
| 1953 | efx_reado_table(efx, buf, table->offset, 2 * i); | ||
| 1954 | break; | ||
| 1955 | default: | ||
| 1956 | WARN_ON(1); | ||
| 1957 | return; | ||
| 1958 | } | ||
| 1959 | buf += size; | ||
| 1960 | } | ||
| 1961 | } | ||
| 1962 | } | ||
