diff options
author | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
---|---|---|
committer | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
commit | fcc9d2e5a6c89d22b8b773a64fb4ad21ac318446 (patch) | |
tree | a57612d1888735a2ec7972891b68c1ac5ec8faea /drivers/net/sfc/nic.c | |
parent | 8dea78da5cee153b8af9c07a2745f6c55057fe12 (diff) |
Diffstat (limited to 'drivers/net/sfc/nic.c')
-rw-r--r-- | drivers/net/sfc/nic.c | 1962 |
1 files changed, 1962 insertions, 0 deletions
diff --git a/drivers/net/sfc/nic.c b/drivers/net/sfc/nic.c new file mode 100644 index 00000000000..3edfbaf5f02 --- /dev/null +++ b/drivers/net/sfc/nic.c | |||
@@ -0,0 +1,1962 @@ | |||
1 | /**************************************************************************** | ||
2 | * Driver for Solarflare Solarstorm network controllers and boards | ||
3 | * Copyright 2005-2006 Fen Systems Ltd. | ||
4 | * Copyright 2006-2011 Solarflare Communications Inc. | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify it | ||
7 | * under the terms of the GNU General Public License version 2 as published | ||
8 | * by the Free Software Foundation, incorporated herein by reference. | ||
9 | */ | ||
10 | |||
11 | #include <linux/bitops.h> | ||
12 | #include <linux/delay.h> | ||
13 | #include <linux/interrupt.h> | ||
14 | #include <linux/pci.h> | ||
15 | #include <linux/module.h> | ||
16 | #include <linux/seq_file.h> | ||
17 | #include "net_driver.h" | ||
18 | #include "bitfield.h" | ||
19 | #include "efx.h" | ||
20 | #include "nic.h" | ||
21 | #include "regs.h" | ||
22 | #include "io.h" | ||
23 | #include "workarounds.h" | ||
24 | |||
25 | /************************************************************************** | ||
26 | * | ||
27 | * Configurable values | ||
28 | * | ||
29 | ************************************************************************** | ||
30 | */ | ||
31 | |||
32 | /* This is set to 16 for a good reason. In summary, if larger than | ||
33 | * 16, the descriptor cache holds more than a default socket | ||
34 | * buffer's worth of packets (for UDP we can only have at most one | ||
35 | * socket buffer's worth outstanding). This combined with the fact | ||
36 | * that we only get 1 TX event per descriptor cache means the NIC | ||
37 | * goes idle. | ||
38 | */ | ||
39 | #define TX_DC_ENTRIES 16 | ||
40 | #define TX_DC_ENTRIES_ORDER 1 | ||
41 | |||
42 | #define RX_DC_ENTRIES 64 | ||
43 | #define RX_DC_ENTRIES_ORDER 3 | ||
44 | |||
45 | /* If EFX_MAX_INT_ERRORS internal errors occur within | ||
46 | * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and | ||
47 | * disable it. | ||
48 | */ | ||
49 | #define EFX_INT_ERROR_EXPIRE 3600 | ||
50 | #define EFX_MAX_INT_ERRORS 5 | ||
51 | |||
52 | /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times | ||
53 | */ | ||
54 | #define EFX_FLUSH_INTERVAL 10 | ||
55 | #define EFX_FLUSH_POLL_COUNT 100 | ||
56 | |||
57 | /* Size and alignment of special buffers (4KB) */ | ||
58 | #define EFX_BUF_SIZE 4096 | ||
59 | |||
60 | /* Depth of RX flush request fifo */ | ||
61 | #define EFX_RX_FLUSH_COUNT 4 | ||
62 | |||
63 | /* Generated event code for efx_generate_test_event() */ | ||
64 | #define EFX_CHANNEL_MAGIC_TEST(_channel) \ | ||
65 | (0x00010100 + (_channel)->channel) | ||
66 | |||
67 | /* Generated event code for efx_generate_fill_event() */ | ||
68 | #define EFX_CHANNEL_MAGIC_FILL(_channel) \ | ||
69 | (0x00010200 + (_channel)->channel) | ||
70 | |||
71 | /************************************************************************** | ||
72 | * | ||
73 | * Solarstorm hardware access | ||
74 | * | ||
75 | **************************************************************************/ | ||
76 | |||
77 | static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value, | ||
78 | unsigned int index) | ||
79 | { | ||
80 | efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base, | ||
81 | value, index); | ||
82 | } | ||
83 | |||
84 | /* Read the current event from the event queue */ | ||
85 | static inline efx_qword_t *efx_event(struct efx_channel *channel, | ||
86 | unsigned int index) | ||
87 | { | ||
88 | return ((efx_qword_t *) (channel->eventq.addr)) + | ||
89 | (index & channel->eventq_mask); | ||
90 | } | ||
91 | |||
92 | /* See if an event is present | ||
93 | * | ||
94 | * We check both the high and low dword of the event for all ones. We | ||
95 | * wrote all ones when we cleared the event, and no valid event can | ||
96 | * have all ones in either its high or low dwords. This approach is | ||
97 | * robust against reordering. | ||
98 | * | ||
99 | * Note that using a single 64-bit comparison is incorrect; even | ||
100 | * though the CPU read will be atomic, the DMA write may not be. | ||
101 | */ | ||
102 | static inline int efx_event_present(efx_qword_t *event) | ||
103 | { | ||
104 | return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) | | ||
105 | EFX_DWORD_IS_ALL_ONES(event->dword[1])); | ||
106 | } | ||
107 | |||
108 | static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b, | ||
109 | const efx_oword_t *mask) | ||
110 | { | ||
111 | return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) || | ||
112 | ((a->u64[1] ^ b->u64[1]) & mask->u64[1]); | ||
113 | } | ||
114 | |||
115 | int efx_nic_test_registers(struct efx_nic *efx, | ||
116 | const struct efx_nic_register_test *regs, | ||
117 | size_t n_regs) | ||
118 | { | ||
119 | unsigned address = 0, i, j; | ||
120 | efx_oword_t mask, imask, original, reg, buf; | ||
121 | |||
122 | /* Falcon should be in loopback to isolate the XMAC from the PHY */ | ||
123 | WARN_ON(!LOOPBACK_INTERNAL(efx)); | ||
124 | |||
125 | for (i = 0; i < n_regs; ++i) { | ||
126 | address = regs[i].address; | ||
127 | mask = imask = regs[i].mask; | ||
128 | EFX_INVERT_OWORD(imask); | ||
129 | |||
130 | efx_reado(efx, &original, address); | ||
131 | |||
132 | /* bit sweep on and off */ | ||
133 | for (j = 0; j < 128; j++) { | ||
134 | if (!EFX_EXTRACT_OWORD32(mask, j, j)) | ||
135 | continue; | ||
136 | |||
137 | /* Test this testable bit can be set in isolation */ | ||
138 | EFX_AND_OWORD(reg, original, mask); | ||
139 | EFX_SET_OWORD32(reg, j, j, 1); | ||
140 | |||
141 | efx_writeo(efx, ®, address); | ||
142 | efx_reado(efx, &buf, address); | ||
143 | |||
144 | if (efx_masked_compare_oword(®, &buf, &mask)) | ||
145 | goto fail; | ||
146 | |||
147 | /* Test this testable bit can be cleared in isolation */ | ||
148 | EFX_OR_OWORD(reg, original, mask); | ||
149 | EFX_SET_OWORD32(reg, j, j, 0); | ||
150 | |||
151 | efx_writeo(efx, ®, address); | ||
152 | efx_reado(efx, &buf, address); | ||
153 | |||
154 | if (efx_masked_compare_oword(®, &buf, &mask)) | ||
155 | goto fail; | ||
156 | } | ||
157 | |||
158 | efx_writeo(efx, &original, address); | ||
159 | } | ||
160 | |||
161 | return 0; | ||
162 | |||
163 | fail: | ||
164 | netif_err(efx, hw, efx->net_dev, | ||
165 | "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT | ||
166 | " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg), | ||
167 | EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask)); | ||
168 | return -EIO; | ||
169 | } | ||
170 | |||
171 | /************************************************************************** | ||
172 | * | ||
173 | * Special buffer handling | ||
174 | * Special buffers are used for event queues and the TX and RX | ||
175 | * descriptor rings. | ||
176 | * | ||
177 | *************************************************************************/ | ||
178 | |||
179 | /* | ||
180 | * Initialise a special buffer | ||
181 | * | ||
182 | * This will define a buffer (previously allocated via | ||
183 | * efx_alloc_special_buffer()) in the buffer table, allowing | ||
184 | * it to be used for event queues, descriptor rings etc. | ||
185 | */ | ||
186 | static void | ||
187 | efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) | ||
188 | { | ||
189 | efx_qword_t buf_desc; | ||
190 | int index; | ||
191 | dma_addr_t dma_addr; | ||
192 | int i; | ||
193 | |||
194 | EFX_BUG_ON_PARANOID(!buffer->addr); | ||
195 | |||
196 | /* Write buffer descriptors to NIC */ | ||
197 | for (i = 0; i < buffer->entries; i++) { | ||
198 | index = buffer->index + i; | ||
199 | dma_addr = buffer->dma_addr + (i * 4096); | ||
200 | netif_dbg(efx, probe, efx->net_dev, | ||
201 | "mapping special buffer %d at %llx\n", | ||
202 | index, (unsigned long long)dma_addr); | ||
203 | EFX_POPULATE_QWORD_3(buf_desc, | ||
204 | FRF_AZ_BUF_ADR_REGION, 0, | ||
205 | FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12, | ||
206 | FRF_AZ_BUF_OWNER_ID_FBUF, 0); | ||
207 | efx_write_buf_tbl(efx, &buf_desc, index); | ||
208 | } | ||
209 | } | ||
210 | |||
211 | /* Unmaps a buffer and clears the buffer table entries */ | ||
212 | static void | ||
213 | efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) | ||
214 | { | ||
215 | efx_oword_t buf_tbl_upd; | ||
216 | unsigned int start = buffer->index; | ||
217 | unsigned int end = (buffer->index + buffer->entries - 1); | ||
218 | |||
219 | if (!buffer->entries) | ||
220 | return; | ||
221 | |||
222 | netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n", | ||
223 | buffer->index, buffer->index + buffer->entries - 1); | ||
224 | |||
225 | EFX_POPULATE_OWORD_4(buf_tbl_upd, | ||
226 | FRF_AZ_BUF_UPD_CMD, 0, | ||
227 | FRF_AZ_BUF_CLR_CMD, 1, | ||
228 | FRF_AZ_BUF_CLR_END_ID, end, | ||
229 | FRF_AZ_BUF_CLR_START_ID, start); | ||
230 | efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD); | ||
231 | } | ||
232 | |||
233 | /* | ||
234 | * Allocate a new special buffer | ||
235 | * | ||
236 | * This allocates memory for a new buffer, clears it and allocates a | ||
237 | * new buffer ID range. It does not write into the buffer table. | ||
238 | * | ||
239 | * This call will allocate 4KB buffers, since 8KB buffers can't be | ||
240 | * used for event queues and descriptor rings. | ||
241 | */ | ||
242 | static int efx_alloc_special_buffer(struct efx_nic *efx, | ||
243 | struct efx_special_buffer *buffer, | ||
244 | unsigned int len) | ||
245 | { | ||
246 | len = ALIGN(len, EFX_BUF_SIZE); | ||
247 | |||
248 | buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len, | ||
249 | &buffer->dma_addr, GFP_KERNEL); | ||
250 | if (!buffer->addr) | ||
251 | return -ENOMEM; | ||
252 | buffer->len = len; | ||
253 | buffer->entries = len / EFX_BUF_SIZE; | ||
254 | BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1)); | ||
255 | |||
256 | /* All zeros is a potentially valid event so memset to 0xff */ | ||
257 | memset(buffer->addr, 0xff, len); | ||
258 | |||
259 | /* Select new buffer ID */ | ||
260 | buffer->index = efx->next_buffer_table; | ||
261 | efx->next_buffer_table += buffer->entries; | ||
262 | |||
263 | netif_dbg(efx, probe, efx->net_dev, | ||
264 | "allocating special buffers %d-%d at %llx+%x " | ||
265 | "(virt %p phys %llx)\n", buffer->index, | ||
266 | buffer->index + buffer->entries - 1, | ||
267 | (u64)buffer->dma_addr, len, | ||
268 | buffer->addr, (u64)virt_to_phys(buffer->addr)); | ||
269 | |||
270 | return 0; | ||
271 | } | ||
272 | |||
273 | static void | ||
274 | efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) | ||
275 | { | ||
276 | if (!buffer->addr) | ||
277 | return; | ||
278 | |||
279 | netif_dbg(efx, hw, efx->net_dev, | ||
280 | "deallocating special buffers %d-%d at %llx+%x " | ||
281 | "(virt %p phys %llx)\n", buffer->index, | ||
282 | buffer->index + buffer->entries - 1, | ||
283 | (u64)buffer->dma_addr, buffer->len, | ||
284 | buffer->addr, (u64)virt_to_phys(buffer->addr)); | ||
285 | |||
286 | dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr, | ||
287 | buffer->dma_addr); | ||
288 | buffer->addr = NULL; | ||
289 | buffer->entries = 0; | ||
290 | } | ||
291 | |||
292 | /************************************************************************** | ||
293 | * | ||
294 | * Generic buffer handling | ||
295 | * These buffers are used for interrupt status and MAC stats | ||
296 | * | ||
297 | **************************************************************************/ | ||
298 | |||
299 | int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer, | ||
300 | unsigned int len) | ||
301 | { | ||
302 | buffer->addr = pci_alloc_consistent(efx->pci_dev, len, | ||
303 | &buffer->dma_addr); | ||
304 | if (!buffer->addr) | ||
305 | return -ENOMEM; | ||
306 | buffer->len = len; | ||
307 | memset(buffer->addr, 0, len); | ||
308 | return 0; | ||
309 | } | ||
310 | |||
311 | void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer) | ||
312 | { | ||
313 | if (buffer->addr) { | ||
314 | pci_free_consistent(efx->pci_dev, buffer->len, | ||
315 | buffer->addr, buffer->dma_addr); | ||
316 | buffer->addr = NULL; | ||
317 | } | ||
318 | } | ||
319 | |||
320 | /************************************************************************** | ||
321 | * | ||
322 | * TX path | ||
323 | * | ||
324 | **************************************************************************/ | ||
325 | |||
326 | /* Returns a pointer to the specified transmit descriptor in the TX | ||
327 | * descriptor queue belonging to the specified channel. | ||
328 | */ | ||
329 | static inline efx_qword_t * | ||
330 | efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index) | ||
331 | { | ||
332 | return ((efx_qword_t *) (tx_queue->txd.addr)) + index; | ||
333 | } | ||
334 | |||
335 | /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ | ||
336 | static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue) | ||
337 | { | ||
338 | unsigned write_ptr; | ||
339 | efx_dword_t reg; | ||
340 | |||
341 | write_ptr = tx_queue->write_count & tx_queue->ptr_mask; | ||
342 | EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr); | ||
343 | efx_writed_page(tx_queue->efx, ®, | ||
344 | FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue); | ||
345 | } | ||
346 | |||
347 | /* Write pointer and first descriptor for TX descriptor ring */ | ||
348 | static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue, | ||
349 | const efx_qword_t *txd) | ||
350 | { | ||
351 | unsigned write_ptr; | ||
352 | efx_oword_t reg; | ||
353 | |||
354 | BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0); | ||
355 | BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0); | ||
356 | |||
357 | write_ptr = tx_queue->write_count & tx_queue->ptr_mask; | ||
358 | EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true, | ||
359 | FRF_AZ_TX_DESC_WPTR, write_ptr); | ||
360 | reg.qword[0] = *txd; | ||
361 | efx_writeo_page(tx_queue->efx, ®, | ||
362 | FR_BZ_TX_DESC_UPD_P0, tx_queue->queue); | ||
363 | } | ||
364 | |||
365 | static inline bool | ||
366 | efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count) | ||
367 | { | ||
368 | unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count); | ||
369 | |||
370 | if (empty_read_count == 0) | ||
371 | return false; | ||
372 | |||
373 | tx_queue->empty_read_count = 0; | ||
374 | return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0; | ||
375 | } | ||
376 | |||
377 | /* For each entry inserted into the software descriptor ring, create a | ||
378 | * descriptor in the hardware TX descriptor ring (in host memory), and | ||
379 | * write a doorbell. | ||
380 | */ | ||
381 | void efx_nic_push_buffers(struct efx_tx_queue *tx_queue) | ||
382 | { | ||
383 | |||
384 | struct efx_tx_buffer *buffer; | ||
385 | efx_qword_t *txd; | ||
386 | unsigned write_ptr; | ||
387 | unsigned old_write_count = tx_queue->write_count; | ||
388 | |||
389 | BUG_ON(tx_queue->write_count == tx_queue->insert_count); | ||
390 | |||
391 | do { | ||
392 | write_ptr = tx_queue->write_count & tx_queue->ptr_mask; | ||
393 | buffer = &tx_queue->buffer[write_ptr]; | ||
394 | txd = efx_tx_desc(tx_queue, write_ptr); | ||
395 | ++tx_queue->write_count; | ||
396 | |||
397 | /* Create TX descriptor ring entry */ | ||
398 | EFX_POPULATE_QWORD_4(*txd, | ||
399 | FSF_AZ_TX_KER_CONT, buffer->continuation, | ||
400 | FSF_AZ_TX_KER_BYTE_COUNT, buffer->len, | ||
401 | FSF_AZ_TX_KER_BUF_REGION, 0, | ||
402 | FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr); | ||
403 | } while (tx_queue->write_count != tx_queue->insert_count); | ||
404 | |||
405 | wmb(); /* Ensure descriptors are written before they are fetched */ | ||
406 | |||
407 | if (efx_may_push_tx_desc(tx_queue, old_write_count)) { | ||
408 | txd = efx_tx_desc(tx_queue, | ||
409 | old_write_count & tx_queue->ptr_mask); | ||
410 | efx_push_tx_desc(tx_queue, txd); | ||
411 | ++tx_queue->pushes; | ||
412 | } else { | ||
413 | efx_notify_tx_desc(tx_queue); | ||
414 | } | ||
415 | } | ||
416 | |||
417 | /* Allocate hardware resources for a TX queue */ | ||
418 | int efx_nic_probe_tx(struct efx_tx_queue *tx_queue) | ||
419 | { | ||
420 | struct efx_nic *efx = tx_queue->efx; | ||
421 | unsigned entries; | ||
422 | |||
423 | entries = tx_queue->ptr_mask + 1; | ||
424 | return efx_alloc_special_buffer(efx, &tx_queue->txd, | ||
425 | entries * sizeof(efx_qword_t)); | ||
426 | } | ||
427 | |||
428 | void efx_nic_init_tx(struct efx_tx_queue *tx_queue) | ||
429 | { | ||
430 | struct efx_nic *efx = tx_queue->efx; | ||
431 | efx_oword_t reg; | ||
432 | |||
433 | tx_queue->flushed = FLUSH_NONE; | ||
434 | |||
435 | /* Pin TX descriptor ring */ | ||
436 | efx_init_special_buffer(efx, &tx_queue->txd); | ||
437 | |||
438 | /* Push TX descriptor ring to card */ | ||
439 | EFX_POPULATE_OWORD_10(reg, | ||
440 | FRF_AZ_TX_DESCQ_EN, 1, | ||
441 | FRF_AZ_TX_ISCSI_DDIG_EN, 0, | ||
442 | FRF_AZ_TX_ISCSI_HDIG_EN, 0, | ||
443 | FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index, | ||
444 | FRF_AZ_TX_DESCQ_EVQ_ID, | ||
445 | tx_queue->channel->channel, | ||
446 | FRF_AZ_TX_DESCQ_OWNER_ID, 0, | ||
447 | FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue, | ||
448 | FRF_AZ_TX_DESCQ_SIZE, | ||
449 | __ffs(tx_queue->txd.entries), | ||
450 | FRF_AZ_TX_DESCQ_TYPE, 0, | ||
451 | FRF_BZ_TX_NON_IP_DROP_DIS, 1); | ||
452 | |||
453 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { | ||
454 | int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD; | ||
455 | EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum); | ||
456 | EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, | ||
457 | !csum); | ||
458 | } | ||
459 | |||
460 | efx_writeo_table(efx, ®, efx->type->txd_ptr_tbl_base, | ||
461 | tx_queue->queue); | ||
462 | |||
463 | if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) { | ||
464 | /* Only 128 bits in this register */ | ||
465 | BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128); | ||
466 | |||
467 | efx_reado(efx, ®, FR_AA_TX_CHKSM_CFG); | ||
468 | if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) | ||
469 | clear_bit_le(tx_queue->queue, (void *)®); | ||
470 | else | ||
471 | set_bit_le(tx_queue->queue, (void *)®); | ||
472 | efx_writeo(efx, ®, FR_AA_TX_CHKSM_CFG); | ||
473 | } | ||
474 | |||
475 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { | ||
476 | EFX_POPULATE_OWORD_1(reg, | ||
477 | FRF_BZ_TX_PACE, | ||
478 | (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? | ||
479 | FFE_BZ_TX_PACE_OFF : | ||
480 | FFE_BZ_TX_PACE_RESERVED); | ||
481 | efx_writeo_table(efx, ®, FR_BZ_TX_PACE_TBL, | ||
482 | tx_queue->queue); | ||
483 | } | ||
484 | } | ||
485 | |||
486 | static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue) | ||
487 | { | ||
488 | struct efx_nic *efx = tx_queue->efx; | ||
489 | efx_oword_t tx_flush_descq; | ||
490 | |||
491 | tx_queue->flushed = FLUSH_PENDING; | ||
492 | |||
493 | /* Post a flush command */ | ||
494 | EFX_POPULATE_OWORD_2(tx_flush_descq, | ||
495 | FRF_AZ_TX_FLUSH_DESCQ_CMD, 1, | ||
496 | FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue); | ||
497 | efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ); | ||
498 | } | ||
499 | |||
500 | void efx_nic_fini_tx(struct efx_tx_queue *tx_queue) | ||
501 | { | ||
502 | struct efx_nic *efx = tx_queue->efx; | ||
503 | efx_oword_t tx_desc_ptr; | ||
504 | |||
505 | /* The queue should have been flushed */ | ||
506 | WARN_ON(tx_queue->flushed != FLUSH_DONE); | ||
507 | |||
508 | /* Remove TX descriptor ring from card */ | ||
509 | EFX_ZERO_OWORD(tx_desc_ptr); | ||
510 | efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, | ||
511 | tx_queue->queue); | ||
512 | |||
513 | /* Unpin TX descriptor ring */ | ||
514 | efx_fini_special_buffer(efx, &tx_queue->txd); | ||
515 | } | ||
516 | |||
517 | /* Free buffers backing TX queue */ | ||
518 | void efx_nic_remove_tx(struct efx_tx_queue *tx_queue) | ||
519 | { | ||
520 | efx_free_special_buffer(tx_queue->efx, &tx_queue->txd); | ||
521 | } | ||
522 | |||
523 | /************************************************************************** | ||
524 | * | ||
525 | * RX path | ||
526 | * | ||
527 | **************************************************************************/ | ||
528 | |||
529 | /* Returns a pointer to the specified descriptor in the RX descriptor queue */ | ||
530 | static inline efx_qword_t * | ||
531 | efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index) | ||
532 | { | ||
533 | return ((efx_qword_t *) (rx_queue->rxd.addr)) + index; | ||
534 | } | ||
535 | |||
536 | /* This creates an entry in the RX descriptor queue */ | ||
537 | static inline void | ||
538 | efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index) | ||
539 | { | ||
540 | struct efx_rx_buffer *rx_buf; | ||
541 | efx_qword_t *rxd; | ||
542 | |||
543 | rxd = efx_rx_desc(rx_queue, index); | ||
544 | rx_buf = efx_rx_buffer(rx_queue, index); | ||
545 | EFX_POPULATE_QWORD_3(*rxd, | ||
546 | FSF_AZ_RX_KER_BUF_SIZE, | ||
547 | rx_buf->len - | ||
548 | rx_queue->efx->type->rx_buffer_padding, | ||
549 | FSF_AZ_RX_KER_BUF_REGION, 0, | ||
550 | FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); | ||
551 | } | ||
552 | |||
553 | /* This writes to the RX_DESC_WPTR register for the specified receive | ||
554 | * descriptor ring. | ||
555 | */ | ||
556 | void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue) | ||
557 | { | ||
558 | struct efx_nic *efx = rx_queue->efx; | ||
559 | efx_dword_t reg; | ||
560 | unsigned write_ptr; | ||
561 | |||
562 | while (rx_queue->notified_count != rx_queue->added_count) { | ||
563 | efx_build_rx_desc( | ||
564 | rx_queue, | ||
565 | rx_queue->notified_count & rx_queue->ptr_mask); | ||
566 | ++rx_queue->notified_count; | ||
567 | } | ||
568 | |||
569 | wmb(); | ||
570 | write_ptr = rx_queue->added_count & rx_queue->ptr_mask; | ||
571 | EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr); | ||
572 | efx_writed_page(efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0, | ||
573 | efx_rx_queue_index(rx_queue)); | ||
574 | } | ||
575 | |||
576 | int efx_nic_probe_rx(struct efx_rx_queue *rx_queue) | ||
577 | { | ||
578 | struct efx_nic *efx = rx_queue->efx; | ||
579 | unsigned entries; | ||
580 | |||
581 | entries = rx_queue->ptr_mask + 1; | ||
582 | return efx_alloc_special_buffer(efx, &rx_queue->rxd, | ||
583 | entries * sizeof(efx_qword_t)); | ||
584 | } | ||
585 | |||
586 | void efx_nic_init_rx(struct efx_rx_queue *rx_queue) | ||
587 | { | ||
588 | efx_oword_t rx_desc_ptr; | ||
589 | struct efx_nic *efx = rx_queue->efx; | ||
590 | bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0; | ||
591 | bool iscsi_digest_en = is_b0; | ||
592 | |||
593 | netif_dbg(efx, hw, efx->net_dev, | ||
594 | "RX queue %d ring in special buffers %d-%d\n", | ||
595 | efx_rx_queue_index(rx_queue), rx_queue->rxd.index, | ||
596 | rx_queue->rxd.index + rx_queue->rxd.entries - 1); | ||
597 | |||
598 | rx_queue->flushed = FLUSH_NONE; | ||
599 | |||
600 | /* Pin RX descriptor ring */ | ||
601 | efx_init_special_buffer(efx, &rx_queue->rxd); | ||
602 | |||
603 | /* Push RX descriptor ring to card */ | ||
604 | EFX_POPULATE_OWORD_10(rx_desc_ptr, | ||
605 | FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en, | ||
606 | FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en, | ||
607 | FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index, | ||
608 | FRF_AZ_RX_DESCQ_EVQ_ID, | ||
609 | efx_rx_queue_channel(rx_queue)->channel, | ||
610 | FRF_AZ_RX_DESCQ_OWNER_ID, 0, | ||
611 | FRF_AZ_RX_DESCQ_LABEL, | ||
612 | efx_rx_queue_index(rx_queue), | ||
613 | FRF_AZ_RX_DESCQ_SIZE, | ||
614 | __ffs(rx_queue->rxd.entries), | ||
615 | FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ , | ||
616 | /* For >=B0 this is scatter so disable */ | ||
617 | FRF_AZ_RX_DESCQ_JUMBO, !is_b0, | ||
618 | FRF_AZ_RX_DESCQ_EN, 1); | ||
619 | efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, | ||
620 | efx_rx_queue_index(rx_queue)); | ||
621 | } | ||
622 | |||
623 | static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue) | ||
624 | { | ||
625 | struct efx_nic *efx = rx_queue->efx; | ||
626 | efx_oword_t rx_flush_descq; | ||
627 | |||
628 | rx_queue->flushed = FLUSH_PENDING; | ||
629 | |||
630 | /* Post a flush command */ | ||
631 | EFX_POPULATE_OWORD_2(rx_flush_descq, | ||
632 | FRF_AZ_RX_FLUSH_DESCQ_CMD, 1, | ||
633 | FRF_AZ_RX_FLUSH_DESCQ, | ||
634 | efx_rx_queue_index(rx_queue)); | ||
635 | efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ); | ||
636 | } | ||
637 | |||
638 | void efx_nic_fini_rx(struct efx_rx_queue *rx_queue) | ||
639 | { | ||
640 | efx_oword_t rx_desc_ptr; | ||
641 | struct efx_nic *efx = rx_queue->efx; | ||
642 | |||
643 | /* The queue should already have been flushed */ | ||
644 | WARN_ON(rx_queue->flushed != FLUSH_DONE); | ||
645 | |||
646 | /* Remove RX descriptor ring from card */ | ||
647 | EFX_ZERO_OWORD(rx_desc_ptr); | ||
648 | efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, | ||
649 | efx_rx_queue_index(rx_queue)); | ||
650 | |||
651 | /* Unpin RX descriptor ring */ | ||
652 | efx_fini_special_buffer(efx, &rx_queue->rxd); | ||
653 | } | ||
654 | |||
655 | /* Free buffers backing RX queue */ | ||
656 | void efx_nic_remove_rx(struct efx_rx_queue *rx_queue) | ||
657 | { | ||
658 | efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd); | ||
659 | } | ||
660 | |||
661 | /************************************************************************** | ||
662 | * | ||
663 | * Event queue processing | ||
664 | * Event queues are processed by per-channel tasklets. | ||
665 | * | ||
666 | **************************************************************************/ | ||
667 | |||
668 | /* Update a channel's event queue's read pointer (RPTR) register | ||
669 | * | ||
670 | * This writes the EVQ_RPTR_REG register for the specified channel's | ||
671 | * event queue. | ||
672 | */ | ||
673 | void efx_nic_eventq_read_ack(struct efx_channel *channel) | ||
674 | { | ||
675 | efx_dword_t reg; | ||
676 | struct efx_nic *efx = channel->efx; | ||
677 | |||
678 | EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, | ||
679 | channel->eventq_read_ptr & channel->eventq_mask); | ||
680 | efx_writed_table(efx, ®, efx->type->evq_rptr_tbl_base, | ||
681 | channel->channel); | ||
682 | } | ||
683 | |||
684 | /* Use HW to insert a SW defined event */ | ||
685 | static void efx_generate_event(struct efx_channel *channel, efx_qword_t *event) | ||
686 | { | ||
687 | efx_oword_t drv_ev_reg; | ||
688 | |||
689 | BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 || | ||
690 | FRF_AZ_DRV_EV_DATA_WIDTH != 64); | ||
691 | drv_ev_reg.u32[0] = event->u32[0]; | ||
692 | drv_ev_reg.u32[1] = event->u32[1]; | ||
693 | drv_ev_reg.u32[2] = 0; | ||
694 | drv_ev_reg.u32[3] = 0; | ||
695 | EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel); | ||
696 | efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV); | ||
697 | } | ||
698 | |||
699 | /* Handle a transmit completion event | ||
700 | * | ||
701 | * The NIC batches TX completion events; the message we receive is of | ||
702 | * the form "complete all TX events up to this index". | ||
703 | */ | ||
704 | static int | ||
705 | efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event) | ||
706 | { | ||
707 | unsigned int tx_ev_desc_ptr; | ||
708 | unsigned int tx_ev_q_label; | ||
709 | struct efx_tx_queue *tx_queue; | ||
710 | struct efx_nic *efx = channel->efx; | ||
711 | int tx_packets = 0; | ||
712 | |||
713 | if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) { | ||
714 | /* Transmit completion */ | ||
715 | tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR); | ||
716 | tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); | ||
717 | tx_queue = efx_channel_get_tx_queue( | ||
718 | channel, tx_ev_q_label % EFX_TXQ_TYPES); | ||
719 | tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) & | ||
720 | tx_queue->ptr_mask); | ||
721 | channel->irq_mod_score += tx_packets; | ||
722 | efx_xmit_done(tx_queue, tx_ev_desc_ptr); | ||
723 | } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) { | ||
724 | /* Rewrite the FIFO write pointer */ | ||
725 | tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); | ||
726 | tx_queue = efx_channel_get_tx_queue( | ||
727 | channel, tx_ev_q_label % EFX_TXQ_TYPES); | ||
728 | |||
729 | if (efx_dev_registered(efx)) | ||
730 | netif_tx_lock(efx->net_dev); | ||
731 | efx_notify_tx_desc(tx_queue); | ||
732 | if (efx_dev_registered(efx)) | ||
733 | netif_tx_unlock(efx->net_dev); | ||
734 | } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) && | ||
735 | EFX_WORKAROUND_10727(efx)) { | ||
736 | efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); | ||
737 | } else { | ||
738 | netif_err(efx, tx_err, efx->net_dev, | ||
739 | "channel %d unexpected TX event " | ||
740 | EFX_QWORD_FMT"\n", channel->channel, | ||
741 | EFX_QWORD_VAL(*event)); | ||
742 | } | ||
743 | |||
744 | return tx_packets; | ||
745 | } | ||
746 | |||
747 | /* Detect errors included in the rx_evt_pkt_ok bit. */ | ||
748 | static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue, | ||
749 | const efx_qword_t *event, | ||
750 | bool *rx_ev_pkt_ok, | ||
751 | bool *discard) | ||
752 | { | ||
753 | struct efx_channel *channel = efx_rx_queue_channel(rx_queue); | ||
754 | struct efx_nic *efx = rx_queue->efx; | ||
755 | bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err; | ||
756 | bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err; | ||
757 | bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc; | ||
758 | bool rx_ev_other_err, rx_ev_pause_frm; | ||
759 | bool rx_ev_hdr_type, rx_ev_mcast_pkt; | ||
760 | unsigned rx_ev_pkt_type; | ||
761 | |||
762 | rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); | ||
763 | rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); | ||
764 | rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC); | ||
765 | rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE); | ||
766 | rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event, | ||
767 | FSF_AZ_RX_EV_BUF_OWNER_ID_ERR); | ||
768 | rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event, | ||
769 | FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR); | ||
770 | rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event, | ||
771 | FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR); | ||
772 | rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR); | ||
773 | rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC); | ||
774 | rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ? | ||
775 | 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB)); | ||
776 | rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR); | ||
777 | |||
778 | /* Every error apart from tobe_disc and pause_frm */ | ||
779 | rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err | | ||
780 | rx_ev_buf_owner_id_err | rx_ev_eth_crc_err | | ||
781 | rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err); | ||
782 | |||
783 | /* Count errors that are not in MAC stats. Ignore expected | ||
784 | * checksum errors during self-test. */ | ||
785 | if (rx_ev_frm_trunc) | ||
786 | ++channel->n_rx_frm_trunc; | ||
787 | else if (rx_ev_tobe_disc) | ||
788 | ++channel->n_rx_tobe_disc; | ||
789 | else if (!efx->loopback_selftest) { | ||
790 | if (rx_ev_ip_hdr_chksum_err) | ||
791 | ++channel->n_rx_ip_hdr_chksum_err; | ||
792 | else if (rx_ev_tcp_udp_chksum_err) | ||
793 | ++channel->n_rx_tcp_udp_chksum_err; | ||
794 | } | ||
795 | |||
796 | /* The frame must be discarded if any of these are true. */ | ||
797 | *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib | | ||
798 | rx_ev_tobe_disc | rx_ev_pause_frm); | ||
799 | |||
800 | /* TOBE_DISC is expected on unicast mismatches; don't print out an | ||
801 | * error message. FRM_TRUNC indicates RXDP dropped the packet due | ||
802 | * to a FIFO overflow. | ||
803 | */ | ||
804 | #ifdef EFX_ENABLE_DEBUG | ||
805 | if (rx_ev_other_err && net_ratelimit()) { | ||
806 | netif_dbg(efx, rx_err, efx->net_dev, | ||
807 | " RX queue %d unexpected RX event " | ||
808 | EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n", | ||
809 | efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event), | ||
810 | rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "", | ||
811 | rx_ev_ip_hdr_chksum_err ? | ||
812 | " [IP_HDR_CHKSUM_ERR]" : "", | ||
813 | rx_ev_tcp_udp_chksum_err ? | ||
814 | " [TCP_UDP_CHKSUM_ERR]" : "", | ||
815 | rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "", | ||
816 | rx_ev_frm_trunc ? " [FRM_TRUNC]" : "", | ||
817 | rx_ev_drib_nib ? " [DRIB_NIB]" : "", | ||
818 | rx_ev_tobe_disc ? " [TOBE_DISC]" : "", | ||
819 | rx_ev_pause_frm ? " [PAUSE]" : ""); | ||
820 | } | ||
821 | #endif | ||
822 | } | ||
823 | |||
824 | /* Handle receive events that are not in-order. */ | ||
825 | static void | ||
826 | efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index) | ||
827 | { | ||
828 | struct efx_nic *efx = rx_queue->efx; | ||
829 | unsigned expected, dropped; | ||
830 | |||
831 | expected = rx_queue->removed_count & rx_queue->ptr_mask; | ||
832 | dropped = (index - expected) & rx_queue->ptr_mask; | ||
833 | netif_info(efx, rx_err, efx->net_dev, | ||
834 | "dropped %d events (index=%d expected=%d)\n", | ||
835 | dropped, index, expected); | ||
836 | |||
837 | efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ? | ||
838 | RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); | ||
839 | } | ||
840 | |||
841 | /* Handle a packet received event | ||
842 | * | ||
843 | * The NIC gives a "discard" flag if it's a unicast packet with the | ||
844 | * wrong destination address | ||
845 | * Also "is multicast" and "matches multicast filter" flags can be used to | ||
846 | * discard non-matching multicast packets. | ||
847 | */ | ||
848 | static void | ||
849 | efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event) | ||
850 | { | ||
851 | unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt; | ||
852 | unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt; | ||
853 | unsigned expected_ptr; | ||
854 | bool rx_ev_pkt_ok, discard = false, checksummed; | ||
855 | struct efx_rx_queue *rx_queue; | ||
856 | |||
857 | /* Basic packet information */ | ||
858 | rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT); | ||
859 | rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK); | ||
860 | rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); | ||
861 | WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT)); | ||
862 | WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1); | ||
863 | WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) != | ||
864 | channel->channel); | ||
865 | |||
866 | rx_queue = efx_channel_get_rx_queue(channel); | ||
867 | |||
868 | rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR); | ||
869 | expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask; | ||
870 | if (unlikely(rx_ev_desc_ptr != expected_ptr)) | ||
871 | efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr); | ||
872 | |||
873 | if (likely(rx_ev_pkt_ok)) { | ||
874 | /* If packet is marked as OK and packet type is TCP/IP or | ||
875 | * UDP/IP, then we can rely on the hardware checksum. | ||
876 | */ | ||
877 | checksummed = | ||
878 | rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP || | ||
879 | rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP; | ||
880 | } else { | ||
881 | efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard); | ||
882 | checksummed = false; | ||
883 | } | ||
884 | |||
885 | /* Detect multicast packets that didn't match the filter */ | ||
886 | rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); | ||
887 | if (rx_ev_mcast_pkt) { | ||
888 | unsigned int rx_ev_mcast_hash_match = | ||
889 | EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH); | ||
890 | |||
891 | if (unlikely(!rx_ev_mcast_hash_match)) { | ||
892 | ++channel->n_rx_mcast_mismatch; | ||
893 | discard = true; | ||
894 | } | ||
895 | } | ||
896 | |||
897 | channel->irq_mod_score += 2; | ||
898 | |||
899 | /* Handle received packet */ | ||
900 | efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, | ||
901 | checksummed, discard); | ||
902 | } | ||
903 | |||
904 | static void | ||
905 | efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event) | ||
906 | { | ||
907 | struct efx_nic *efx = channel->efx; | ||
908 | unsigned code; | ||
909 | |||
910 | code = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC); | ||
911 | if (code == EFX_CHANNEL_MAGIC_TEST(channel)) | ||
912 | ; /* ignore */ | ||
913 | else if (code == EFX_CHANNEL_MAGIC_FILL(channel)) | ||
914 | /* The queue must be empty, so we won't receive any rx | ||
915 | * events, so efx_process_channel() won't refill the | ||
916 | * queue. Refill it here */ | ||
917 | efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel)); | ||
918 | else | ||
919 | netif_dbg(efx, hw, efx->net_dev, "channel %d received " | ||
920 | "generated event "EFX_QWORD_FMT"\n", | ||
921 | channel->channel, EFX_QWORD_VAL(*event)); | ||
922 | } | ||
923 | |||
924 | static void | ||
925 | efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event) | ||
926 | { | ||
927 | struct efx_nic *efx = channel->efx; | ||
928 | unsigned int ev_sub_code; | ||
929 | unsigned int ev_sub_data; | ||
930 | |||
931 | ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE); | ||
932 | ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); | ||
933 | |||
934 | switch (ev_sub_code) { | ||
935 | case FSE_AZ_TX_DESCQ_FLS_DONE_EV: | ||
936 | netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n", | ||
937 | channel->channel, ev_sub_data); | ||
938 | break; | ||
939 | case FSE_AZ_RX_DESCQ_FLS_DONE_EV: | ||
940 | netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n", | ||
941 | channel->channel, ev_sub_data); | ||
942 | break; | ||
943 | case FSE_AZ_EVQ_INIT_DONE_EV: | ||
944 | netif_dbg(efx, hw, efx->net_dev, | ||
945 | "channel %d EVQ %d initialised\n", | ||
946 | channel->channel, ev_sub_data); | ||
947 | break; | ||
948 | case FSE_AZ_SRM_UPD_DONE_EV: | ||
949 | netif_vdbg(efx, hw, efx->net_dev, | ||
950 | "channel %d SRAM update done\n", channel->channel); | ||
951 | break; | ||
952 | case FSE_AZ_WAKE_UP_EV: | ||
953 | netif_vdbg(efx, hw, efx->net_dev, | ||
954 | "channel %d RXQ %d wakeup event\n", | ||
955 | channel->channel, ev_sub_data); | ||
956 | break; | ||
957 | case FSE_AZ_TIMER_EV: | ||
958 | netif_vdbg(efx, hw, efx->net_dev, | ||
959 | "channel %d RX queue %d timer expired\n", | ||
960 | channel->channel, ev_sub_data); | ||
961 | break; | ||
962 | case FSE_AA_RX_RECOVER_EV: | ||
963 | netif_err(efx, rx_err, efx->net_dev, | ||
964 | "channel %d seen DRIVER RX_RESET event. " | ||
965 | "Resetting.\n", channel->channel); | ||
966 | atomic_inc(&efx->rx_reset); | ||
967 | efx_schedule_reset(efx, | ||
968 | EFX_WORKAROUND_6555(efx) ? | ||
969 | RESET_TYPE_RX_RECOVERY : | ||
970 | RESET_TYPE_DISABLE); | ||
971 | break; | ||
972 | case FSE_BZ_RX_DSC_ERROR_EV: | ||
973 | netif_err(efx, rx_err, efx->net_dev, | ||
974 | "RX DMA Q %d reports descriptor fetch error." | ||
975 | " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data); | ||
976 | efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH); | ||
977 | break; | ||
978 | case FSE_BZ_TX_DSC_ERROR_EV: | ||
979 | netif_err(efx, tx_err, efx->net_dev, | ||
980 | "TX DMA Q %d reports descriptor fetch error." | ||
981 | " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data); | ||
982 | efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); | ||
983 | break; | ||
984 | default: | ||
985 | netif_vdbg(efx, hw, efx->net_dev, | ||
986 | "channel %d unknown driver event code %d " | ||
987 | "data %04x\n", channel->channel, ev_sub_code, | ||
988 | ev_sub_data); | ||
989 | break; | ||
990 | } | ||
991 | } | ||
992 | |||
993 | int efx_nic_process_eventq(struct efx_channel *channel, int budget) | ||
994 | { | ||
995 | struct efx_nic *efx = channel->efx; | ||
996 | unsigned int read_ptr; | ||
997 | efx_qword_t event, *p_event; | ||
998 | int ev_code; | ||
999 | int tx_packets = 0; | ||
1000 | int spent = 0; | ||
1001 | |||
1002 | read_ptr = channel->eventq_read_ptr; | ||
1003 | |||
1004 | for (;;) { | ||
1005 | p_event = efx_event(channel, read_ptr); | ||
1006 | event = *p_event; | ||
1007 | |||
1008 | if (!efx_event_present(&event)) | ||
1009 | /* End of events */ | ||
1010 | break; | ||
1011 | |||
1012 | netif_vdbg(channel->efx, intr, channel->efx->net_dev, | ||
1013 | "channel %d event is "EFX_QWORD_FMT"\n", | ||
1014 | channel->channel, EFX_QWORD_VAL(event)); | ||
1015 | |||
1016 | /* Clear this event by marking it all ones */ | ||
1017 | EFX_SET_QWORD(*p_event); | ||
1018 | |||
1019 | ++read_ptr; | ||
1020 | |||
1021 | ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE); | ||
1022 | |||
1023 | switch (ev_code) { | ||
1024 | case FSE_AZ_EV_CODE_RX_EV: | ||
1025 | efx_handle_rx_event(channel, &event); | ||
1026 | if (++spent == budget) | ||
1027 | goto out; | ||
1028 | break; | ||
1029 | case FSE_AZ_EV_CODE_TX_EV: | ||
1030 | tx_packets += efx_handle_tx_event(channel, &event); | ||
1031 | if (tx_packets > efx->txq_entries) { | ||
1032 | spent = budget; | ||
1033 | goto out; | ||
1034 | } | ||
1035 | break; | ||
1036 | case FSE_AZ_EV_CODE_DRV_GEN_EV: | ||
1037 | efx_handle_generated_event(channel, &event); | ||
1038 | break; | ||
1039 | case FSE_AZ_EV_CODE_DRIVER_EV: | ||
1040 | efx_handle_driver_event(channel, &event); | ||
1041 | break; | ||
1042 | case FSE_CZ_EV_CODE_MCDI_EV: | ||
1043 | efx_mcdi_process_event(channel, &event); | ||
1044 | break; | ||
1045 | case FSE_AZ_EV_CODE_GLOBAL_EV: | ||
1046 | if (efx->type->handle_global_event && | ||
1047 | efx->type->handle_global_event(channel, &event)) | ||
1048 | break; | ||
1049 | /* else fall through */ | ||
1050 | default: | ||
1051 | netif_err(channel->efx, hw, channel->efx->net_dev, | ||
1052 | "channel %d unknown event type %d (data " | ||
1053 | EFX_QWORD_FMT ")\n", channel->channel, | ||
1054 | ev_code, EFX_QWORD_VAL(event)); | ||
1055 | } | ||
1056 | } | ||
1057 | |||
1058 | out: | ||
1059 | channel->eventq_read_ptr = read_ptr; | ||
1060 | return spent; | ||
1061 | } | ||
1062 | |||
1063 | /* Check whether an event is present in the eventq at the current | ||
1064 | * read pointer. Only useful for self-test. | ||
1065 | */ | ||
1066 | bool efx_nic_event_present(struct efx_channel *channel) | ||
1067 | { | ||
1068 | return efx_event_present(efx_event(channel, channel->eventq_read_ptr)); | ||
1069 | } | ||
1070 | |||
1071 | /* Allocate buffer table entries for event queue */ | ||
1072 | int efx_nic_probe_eventq(struct efx_channel *channel) | ||
1073 | { | ||
1074 | struct efx_nic *efx = channel->efx; | ||
1075 | unsigned entries; | ||
1076 | |||
1077 | entries = channel->eventq_mask + 1; | ||
1078 | return efx_alloc_special_buffer(efx, &channel->eventq, | ||
1079 | entries * sizeof(efx_qword_t)); | ||
1080 | } | ||
1081 | |||
1082 | void efx_nic_init_eventq(struct efx_channel *channel) | ||
1083 | { | ||
1084 | efx_oword_t reg; | ||
1085 | struct efx_nic *efx = channel->efx; | ||
1086 | |||
1087 | netif_dbg(efx, hw, efx->net_dev, | ||
1088 | "channel %d event queue in special buffers %d-%d\n", | ||
1089 | channel->channel, channel->eventq.index, | ||
1090 | channel->eventq.index + channel->eventq.entries - 1); | ||
1091 | |||
1092 | if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) { | ||
1093 | EFX_POPULATE_OWORD_3(reg, | ||
1094 | FRF_CZ_TIMER_Q_EN, 1, | ||
1095 | FRF_CZ_HOST_NOTIFY_MODE, 0, | ||
1096 | FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS); | ||
1097 | efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); | ||
1098 | } | ||
1099 | |||
1100 | /* Pin event queue buffer */ | ||
1101 | efx_init_special_buffer(efx, &channel->eventq); | ||
1102 | |||
1103 | /* Fill event queue with all ones (i.e. empty events) */ | ||
1104 | memset(channel->eventq.addr, 0xff, channel->eventq.len); | ||
1105 | |||
1106 | /* Push event queue to card */ | ||
1107 | EFX_POPULATE_OWORD_3(reg, | ||
1108 | FRF_AZ_EVQ_EN, 1, | ||
1109 | FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries), | ||
1110 | FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index); | ||
1111 | efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, | ||
1112 | channel->channel); | ||
1113 | |||
1114 | efx->type->push_irq_moderation(channel); | ||
1115 | } | ||
1116 | |||
1117 | void efx_nic_fini_eventq(struct efx_channel *channel) | ||
1118 | { | ||
1119 | efx_oword_t reg; | ||
1120 | struct efx_nic *efx = channel->efx; | ||
1121 | |||
1122 | /* Remove event queue from card */ | ||
1123 | EFX_ZERO_OWORD(reg); | ||
1124 | efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, | ||
1125 | channel->channel); | ||
1126 | if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) | ||
1127 | efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); | ||
1128 | |||
1129 | /* Unpin event queue */ | ||
1130 | efx_fini_special_buffer(efx, &channel->eventq); | ||
1131 | } | ||
1132 | |||
1133 | /* Free buffers backing event queue */ | ||
1134 | void efx_nic_remove_eventq(struct efx_channel *channel) | ||
1135 | { | ||
1136 | efx_free_special_buffer(channel->efx, &channel->eventq); | ||
1137 | } | ||
1138 | |||
1139 | |||
1140 | void efx_nic_generate_test_event(struct efx_channel *channel) | ||
1141 | { | ||
1142 | unsigned int magic = EFX_CHANNEL_MAGIC_TEST(channel); | ||
1143 | efx_qword_t test_event; | ||
1144 | |||
1145 | EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE, | ||
1146 | FSE_AZ_EV_CODE_DRV_GEN_EV, | ||
1147 | FSF_AZ_DRV_GEN_EV_MAGIC, magic); | ||
1148 | efx_generate_event(channel, &test_event); | ||
1149 | } | ||
1150 | |||
1151 | void efx_nic_generate_fill_event(struct efx_channel *channel) | ||
1152 | { | ||
1153 | unsigned int magic = EFX_CHANNEL_MAGIC_FILL(channel); | ||
1154 | efx_qword_t test_event; | ||
1155 | |||
1156 | EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE, | ||
1157 | FSE_AZ_EV_CODE_DRV_GEN_EV, | ||
1158 | FSF_AZ_DRV_GEN_EV_MAGIC, magic); | ||
1159 | efx_generate_event(channel, &test_event); | ||
1160 | } | ||
1161 | |||
1162 | /************************************************************************** | ||
1163 | * | ||
1164 | * Flush handling | ||
1165 | * | ||
1166 | **************************************************************************/ | ||
1167 | |||
1168 | |||
1169 | static void efx_poll_flush_events(struct efx_nic *efx) | ||
1170 | { | ||
1171 | struct efx_channel *channel = efx_get_channel(efx, 0); | ||
1172 | struct efx_tx_queue *tx_queue; | ||
1173 | struct efx_rx_queue *rx_queue; | ||
1174 | unsigned int read_ptr = channel->eventq_read_ptr; | ||
1175 | unsigned int end_ptr = read_ptr + channel->eventq_mask - 1; | ||
1176 | |||
1177 | do { | ||
1178 | efx_qword_t *event = efx_event(channel, read_ptr); | ||
1179 | int ev_code, ev_sub_code, ev_queue; | ||
1180 | bool ev_failed; | ||
1181 | |||
1182 | if (!efx_event_present(event)) | ||
1183 | break; | ||
1184 | |||
1185 | ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE); | ||
1186 | ev_sub_code = EFX_QWORD_FIELD(*event, | ||
1187 | FSF_AZ_DRIVER_EV_SUBCODE); | ||
1188 | if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV && | ||
1189 | ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) { | ||
1190 | ev_queue = EFX_QWORD_FIELD(*event, | ||
1191 | FSF_AZ_DRIVER_EV_SUBDATA); | ||
1192 | if (ev_queue < EFX_TXQ_TYPES * efx->n_tx_channels) { | ||
1193 | tx_queue = efx_get_tx_queue( | ||
1194 | efx, ev_queue / EFX_TXQ_TYPES, | ||
1195 | ev_queue % EFX_TXQ_TYPES); | ||
1196 | tx_queue->flushed = FLUSH_DONE; | ||
1197 | } | ||
1198 | } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV && | ||
1199 | ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) { | ||
1200 | ev_queue = EFX_QWORD_FIELD( | ||
1201 | *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID); | ||
1202 | ev_failed = EFX_QWORD_FIELD( | ||
1203 | *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL); | ||
1204 | if (ev_queue < efx->n_rx_channels) { | ||
1205 | rx_queue = efx_get_rx_queue(efx, ev_queue); | ||
1206 | rx_queue->flushed = | ||
1207 | ev_failed ? FLUSH_FAILED : FLUSH_DONE; | ||
1208 | } | ||
1209 | } | ||
1210 | |||
1211 | /* We're about to destroy the queue anyway, so | ||
1212 | * it's ok to throw away every non-flush event */ | ||
1213 | EFX_SET_QWORD(*event); | ||
1214 | |||
1215 | ++read_ptr; | ||
1216 | } while (read_ptr != end_ptr); | ||
1217 | |||
1218 | channel->eventq_read_ptr = read_ptr; | ||
1219 | } | ||
1220 | |||
1221 | /* Handle tx and rx flushes at the same time, since they run in | ||
1222 | * parallel in the hardware and there's no reason for us to | ||
1223 | * serialise them */ | ||
1224 | int efx_nic_flush_queues(struct efx_nic *efx) | ||
1225 | { | ||
1226 | struct efx_channel *channel; | ||
1227 | struct efx_rx_queue *rx_queue; | ||
1228 | struct efx_tx_queue *tx_queue; | ||
1229 | int i, tx_pending, rx_pending; | ||
1230 | |||
1231 | /* If necessary prepare the hardware for flushing */ | ||
1232 | efx->type->prepare_flush(efx); | ||
1233 | |||
1234 | /* Flush all tx queues in parallel */ | ||
1235 | efx_for_each_channel(channel, efx) { | ||
1236 | efx_for_each_possible_channel_tx_queue(tx_queue, channel) { | ||
1237 | if (tx_queue->initialised) | ||
1238 | efx_flush_tx_queue(tx_queue); | ||
1239 | } | ||
1240 | } | ||
1241 | |||
1242 | /* The hardware supports four concurrent rx flushes, each of which may | ||
1243 | * need to be retried if there is an outstanding descriptor fetch */ | ||
1244 | for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) { | ||
1245 | rx_pending = tx_pending = 0; | ||
1246 | efx_for_each_channel(channel, efx) { | ||
1247 | efx_for_each_channel_rx_queue(rx_queue, channel) { | ||
1248 | if (rx_queue->flushed == FLUSH_PENDING) | ||
1249 | ++rx_pending; | ||
1250 | } | ||
1251 | } | ||
1252 | efx_for_each_channel(channel, efx) { | ||
1253 | efx_for_each_channel_rx_queue(rx_queue, channel) { | ||
1254 | if (rx_pending == EFX_RX_FLUSH_COUNT) | ||
1255 | break; | ||
1256 | if (rx_queue->flushed == FLUSH_FAILED || | ||
1257 | rx_queue->flushed == FLUSH_NONE) { | ||
1258 | efx_flush_rx_queue(rx_queue); | ||
1259 | ++rx_pending; | ||
1260 | } | ||
1261 | } | ||
1262 | efx_for_each_possible_channel_tx_queue(tx_queue, channel) { | ||
1263 | if (tx_queue->initialised && | ||
1264 | tx_queue->flushed != FLUSH_DONE) | ||
1265 | ++tx_pending; | ||
1266 | } | ||
1267 | } | ||
1268 | |||
1269 | if (rx_pending == 0 && tx_pending == 0) | ||
1270 | return 0; | ||
1271 | |||
1272 | msleep(EFX_FLUSH_INTERVAL); | ||
1273 | efx_poll_flush_events(efx); | ||
1274 | } | ||
1275 | |||
1276 | /* Mark the queues as all flushed. We're going to return failure | ||
1277 | * leading to a reset, or fake up success anyway */ | ||
1278 | efx_for_each_channel(channel, efx) { | ||
1279 | efx_for_each_possible_channel_tx_queue(tx_queue, channel) { | ||
1280 | if (tx_queue->initialised && | ||
1281 | tx_queue->flushed != FLUSH_DONE) | ||
1282 | netif_err(efx, hw, efx->net_dev, | ||
1283 | "tx queue %d flush command timed out\n", | ||
1284 | tx_queue->queue); | ||
1285 | tx_queue->flushed = FLUSH_DONE; | ||
1286 | } | ||
1287 | efx_for_each_channel_rx_queue(rx_queue, channel) { | ||
1288 | if (rx_queue->flushed != FLUSH_DONE) | ||
1289 | netif_err(efx, hw, efx->net_dev, | ||
1290 | "rx queue %d flush command timed out\n", | ||
1291 | efx_rx_queue_index(rx_queue)); | ||
1292 | rx_queue->flushed = FLUSH_DONE; | ||
1293 | } | ||
1294 | } | ||
1295 | |||
1296 | return -ETIMEDOUT; | ||
1297 | } | ||
1298 | |||
1299 | /************************************************************************** | ||
1300 | * | ||
1301 | * Hardware interrupts | ||
1302 | * The hardware interrupt handler does very little work; all the event | ||
1303 | * queue processing is carried out by per-channel tasklets. | ||
1304 | * | ||
1305 | **************************************************************************/ | ||
1306 | |||
1307 | /* Enable/disable/generate interrupts */ | ||
1308 | static inline void efx_nic_interrupts(struct efx_nic *efx, | ||
1309 | bool enabled, bool force) | ||
1310 | { | ||
1311 | efx_oword_t int_en_reg_ker; | ||
1312 | |||
1313 | EFX_POPULATE_OWORD_3(int_en_reg_ker, | ||
1314 | FRF_AZ_KER_INT_LEVE_SEL, efx->fatal_irq_level, | ||
1315 | FRF_AZ_KER_INT_KER, force, | ||
1316 | FRF_AZ_DRV_INT_EN_KER, enabled); | ||
1317 | efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER); | ||
1318 | } | ||
1319 | |||
1320 | void efx_nic_enable_interrupts(struct efx_nic *efx) | ||
1321 | { | ||
1322 | struct efx_channel *channel; | ||
1323 | |||
1324 | EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr)); | ||
1325 | wmb(); /* Ensure interrupt vector is clear before interrupts enabled */ | ||
1326 | |||
1327 | /* Enable interrupts */ | ||
1328 | efx_nic_interrupts(efx, true, false); | ||
1329 | |||
1330 | /* Force processing of all the channels to get the EVQ RPTRs up to | ||
1331 | date */ | ||
1332 | efx_for_each_channel(channel, efx) | ||
1333 | efx_schedule_channel(channel); | ||
1334 | } | ||
1335 | |||
1336 | void efx_nic_disable_interrupts(struct efx_nic *efx) | ||
1337 | { | ||
1338 | /* Disable interrupts */ | ||
1339 | efx_nic_interrupts(efx, false, false); | ||
1340 | } | ||
1341 | |||
1342 | /* Generate a test interrupt | ||
1343 | * Interrupt must already have been enabled, otherwise nasty things | ||
1344 | * may happen. | ||
1345 | */ | ||
1346 | void efx_nic_generate_interrupt(struct efx_nic *efx) | ||
1347 | { | ||
1348 | efx_nic_interrupts(efx, true, true); | ||
1349 | } | ||
1350 | |||
1351 | /* Process a fatal interrupt | ||
1352 | * Disable bus mastering ASAP and schedule a reset | ||
1353 | */ | ||
1354 | irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx) | ||
1355 | { | ||
1356 | struct falcon_nic_data *nic_data = efx->nic_data; | ||
1357 | efx_oword_t *int_ker = efx->irq_status.addr; | ||
1358 | efx_oword_t fatal_intr; | ||
1359 | int error, mem_perr; | ||
1360 | |||
1361 | efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER); | ||
1362 | error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR); | ||
1363 | |||
1364 | netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status " | ||
1365 | EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker), | ||
1366 | EFX_OWORD_VAL(fatal_intr), | ||
1367 | error ? "disabling bus mastering" : "no recognised error"); | ||
1368 | |||
1369 | /* If this is a memory parity error dump which blocks are offending */ | ||
1370 | mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) || | ||
1371 | EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER)); | ||
1372 | if (mem_perr) { | ||
1373 | efx_oword_t reg; | ||
1374 | efx_reado(efx, ®, FR_AZ_MEM_STAT); | ||
1375 | netif_err(efx, hw, efx->net_dev, | ||
1376 | "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n", | ||
1377 | EFX_OWORD_VAL(reg)); | ||
1378 | } | ||
1379 | |||
1380 | /* Disable both devices */ | ||
1381 | pci_clear_master(efx->pci_dev); | ||
1382 | if (efx_nic_is_dual_func(efx)) | ||
1383 | pci_clear_master(nic_data->pci_dev2); | ||
1384 | efx_nic_disable_interrupts(efx); | ||
1385 | |||
1386 | /* Count errors and reset or disable the NIC accordingly */ | ||
1387 | if (efx->int_error_count == 0 || | ||
1388 | time_after(jiffies, efx->int_error_expire)) { | ||
1389 | efx->int_error_count = 0; | ||
1390 | efx->int_error_expire = | ||
1391 | jiffies + EFX_INT_ERROR_EXPIRE * HZ; | ||
1392 | } | ||
1393 | if (++efx->int_error_count < EFX_MAX_INT_ERRORS) { | ||
1394 | netif_err(efx, hw, efx->net_dev, | ||
1395 | "SYSTEM ERROR - reset scheduled\n"); | ||
1396 | efx_schedule_reset(efx, RESET_TYPE_INT_ERROR); | ||
1397 | } else { | ||
1398 | netif_err(efx, hw, efx->net_dev, | ||
1399 | "SYSTEM ERROR - max number of errors seen." | ||
1400 | "NIC will be disabled\n"); | ||
1401 | efx_schedule_reset(efx, RESET_TYPE_DISABLE); | ||
1402 | } | ||
1403 | |||
1404 | return IRQ_HANDLED; | ||
1405 | } | ||
1406 | |||
1407 | /* Handle a legacy interrupt | ||
1408 | * Acknowledges the interrupt and schedule event queue processing. | ||
1409 | */ | ||
1410 | static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id) | ||
1411 | { | ||
1412 | struct efx_nic *efx = dev_id; | ||
1413 | efx_oword_t *int_ker = efx->irq_status.addr; | ||
1414 | irqreturn_t result = IRQ_NONE; | ||
1415 | struct efx_channel *channel; | ||
1416 | efx_dword_t reg; | ||
1417 | u32 queues; | ||
1418 | int syserr; | ||
1419 | |||
1420 | /* Could this be ours? If interrupts are disabled then the | ||
1421 | * channel state may not be valid. | ||
1422 | */ | ||
1423 | if (!efx->legacy_irq_enabled) | ||
1424 | return result; | ||
1425 | |||
1426 | /* Read the ISR which also ACKs the interrupts */ | ||
1427 | efx_readd(efx, ®, FR_BZ_INT_ISR0); | ||
1428 | queues = EFX_EXTRACT_DWORD(reg, 0, 31); | ||
1429 | |||
1430 | /* Check to see if we have a serious error condition */ | ||
1431 | if (queues & (1U << efx->fatal_irq_level)) { | ||
1432 | syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); | ||
1433 | if (unlikely(syserr)) | ||
1434 | return efx_nic_fatal_interrupt(efx); | ||
1435 | } | ||
1436 | |||
1437 | if (queues != 0) { | ||
1438 | if (EFX_WORKAROUND_15783(efx)) | ||
1439 | efx->irq_zero_count = 0; | ||
1440 | |||
1441 | /* Schedule processing of any interrupting queues */ | ||
1442 | efx_for_each_channel(channel, efx) { | ||
1443 | if (queues & 1) | ||
1444 | efx_schedule_channel(channel); | ||
1445 | queues >>= 1; | ||
1446 | } | ||
1447 | result = IRQ_HANDLED; | ||
1448 | |||
1449 | } else if (EFX_WORKAROUND_15783(efx)) { | ||
1450 | efx_qword_t *event; | ||
1451 | |||
1452 | /* We can't return IRQ_HANDLED more than once on seeing ISR=0 | ||
1453 | * because this might be a shared interrupt. */ | ||
1454 | if (efx->irq_zero_count++ == 0) | ||
1455 | result = IRQ_HANDLED; | ||
1456 | |||
1457 | /* Ensure we schedule or rearm all event queues */ | ||
1458 | efx_for_each_channel(channel, efx) { | ||
1459 | event = efx_event(channel, channel->eventq_read_ptr); | ||
1460 | if (efx_event_present(event)) | ||
1461 | efx_schedule_channel(channel); | ||
1462 | else | ||
1463 | efx_nic_eventq_read_ack(channel); | ||
1464 | } | ||
1465 | } | ||
1466 | |||
1467 | if (result == IRQ_HANDLED) { | ||
1468 | efx->last_irq_cpu = raw_smp_processor_id(); | ||
1469 | netif_vdbg(efx, intr, efx->net_dev, | ||
1470 | "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", | ||
1471 | irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); | ||
1472 | } | ||
1473 | |||
1474 | return result; | ||
1475 | } | ||
1476 | |||
1477 | /* Handle an MSI interrupt | ||
1478 | * | ||
1479 | * Handle an MSI hardware interrupt. This routine schedules event | ||
1480 | * queue processing. No interrupt acknowledgement cycle is necessary. | ||
1481 | * Also, we never need to check that the interrupt is for us, since | ||
1482 | * MSI interrupts cannot be shared. | ||
1483 | */ | ||
1484 | static irqreturn_t efx_msi_interrupt(int irq, void *dev_id) | ||
1485 | { | ||
1486 | struct efx_channel *channel = *(struct efx_channel **)dev_id; | ||
1487 | struct efx_nic *efx = channel->efx; | ||
1488 | efx_oword_t *int_ker = efx->irq_status.addr; | ||
1489 | int syserr; | ||
1490 | |||
1491 | efx->last_irq_cpu = raw_smp_processor_id(); | ||
1492 | netif_vdbg(efx, intr, efx->net_dev, | ||
1493 | "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", | ||
1494 | irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); | ||
1495 | |||
1496 | /* Check to see if we have a serious error condition */ | ||
1497 | if (channel->channel == efx->fatal_irq_level) { | ||
1498 | syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); | ||
1499 | if (unlikely(syserr)) | ||
1500 | return efx_nic_fatal_interrupt(efx); | ||
1501 | } | ||
1502 | |||
1503 | /* Schedule processing of the channel */ | ||
1504 | efx_schedule_channel(channel); | ||
1505 | |||
1506 | return IRQ_HANDLED; | ||
1507 | } | ||
1508 | |||
1509 | |||
1510 | /* Setup RSS indirection table. | ||
1511 | * This maps from the hash value of the packet to RXQ | ||
1512 | */ | ||
1513 | void efx_nic_push_rx_indir_table(struct efx_nic *efx) | ||
1514 | { | ||
1515 | size_t i = 0; | ||
1516 | efx_dword_t dword; | ||
1517 | |||
1518 | if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) | ||
1519 | return; | ||
1520 | |||
1521 | BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) != | ||
1522 | FR_BZ_RX_INDIRECTION_TBL_ROWS); | ||
1523 | |||
1524 | for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) { | ||
1525 | EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE, | ||
1526 | efx->rx_indir_table[i]); | ||
1527 | efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i); | ||
1528 | } | ||
1529 | } | ||
1530 | |||
1531 | /* Hook interrupt handler(s) | ||
1532 | * Try MSI and then legacy interrupts. | ||
1533 | */ | ||
1534 | int efx_nic_init_interrupt(struct efx_nic *efx) | ||
1535 | { | ||
1536 | struct efx_channel *channel; | ||
1537 | int rc; | ||
1538 | |||
1539 | if (!EFX_INT_MODE_USE_MSI(efx)) { | ||
1540 | irq_handler_t handler; | ||
1541 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) | ||
1542 | handler = efx_legacy_interrupt; | ||
1543 | else | ||
1544 | handler = falcon_legacy_interrupt_a1; | ||
1545 | |||
1546 | rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED, | ||
1547 | efx->name, efx); | ||
1548 | if (rc) { | ||
1549 | netif_err(efx, drv, efx->net_dev, | ||
1550 | "failed to hook legacy IRQ %d\n", | ||
1551 | efx->pci_dev->irq); | ||
1552 | goto fail1; | ||
1553 | } | ||
1554 | return 0; | ||
1555 | } | ||
1556 | |||
1557 | /* Hook MSI or MSI-X interrupt */ | ||
1558 | efx_for_each_channel(channel, efx) { | ||
1559 | rc = request_irq(channel->irq, efx_msi_interrupt, | ||
1560 | IRQF_PROBE_SHARED, /* Not shared */ | ||
1561 | efx->channel_name[channel->channel], | ||
1562 | &efx->channel[channel->channel]); | ||
1563 | if (rc) { | ||
1564 | netif_err(efx, drv, efx->net_dev, | ||
1565 | "failed to hook IRQ %d\n", channel->irq); | ||
1566 | goto fail2; | ||
1567 | } | ||
1568 | } | ||
1569 | |||
1570 | return 0; | ||
1571 | |||
1572 | fail2: | ||
1573 | efx_for_each_channel(channel, efx) | ||
1574 | free_irq(channel->irq, &efx->channel[channel->channel]); | ||
1575 | fail1: | ||
1576 | return rc; | ||
1577 | } | ||
1578 | |||
1579 | void efx_nic_fini_interrupt(struct efx_nic *efx) | ||
1580 | { | ||
1581 | struct efx_channel *channel; | ||
1582 | efx_oword_t reg; | ||
1583 | |||
1584 | /* Disable MSI/MSI-X interrupts */ | ||
1585 | efx_for_each_channel(channel, efx) { | ||
1586 | if (channel->irq) | ||
1587 | free_irq(channel->irq, &efx->channel[channel->channel]); | ||
1588 | } | ||
1589 | |||
1590 | /* ACK legacy interrupt */ | ||
1591 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) | ||
1592 | efx_reado(efx, ®, FR_BZ_INT_ISR0); | ||
1593 | else | ||
1594 | falcon_irq_ack_a1(efx); | ||
1595 | |||
1596 | /* Disable legacy interrupt */ | ||
1597 | if (efx->legacy_irq) | ||
1598 | free_irq(efx->legacy_irq, efx); | ||
1599 | } | ||
1600 | |||
1601 | u32 efx_nic_fpga_ver(struct efx_nic *efx) | ||
1602 | { | ||
1603 | efx_oword_t altera_build; | ||
1604 | efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD); | ||
1605 | return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER); | ||
1606 | } | ||
1607 | |||
1608 | void efx_nic_init_common(struct efx_nic *efx) | ||
1609 | { | ||
1610 | efx_oword_t temp; | ||
1611 | |||
1612 | /* Set positions of descriptor caches in SRAM. */ | ||
1613 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, | ||
1614 | efx->type->tx_dc_base / 8); | ||
1615 | efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG); | ||
1616 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, | ||
1617 | efx->type->rx_dc_base / 8); | ||
1618 | efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG); | ||
1619 | |||
1620 | /* Set TX descriptor cache size. */ | ||
1621 | BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER)); | ||
1622 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER); | ||
1623 | efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG); | ||
1624 | |||
1625 | /* Set RX descriptor cache size. Set low watermark to size-8, as | ||
1626 | * this allows most efficient prefetching. | ||
1627 | */ | ||
1628 | BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER)); | ||
1629 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER); | ||
1630 | efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG); | ||
1631 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8); | ||
1632 | efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM); | ||
1633 | |||
1634 | /* Program INT_KER address */ | ||
1635 | EFX_POPULATE_OWORD_2(temp, | ||
1636 | FRF_AZ_NORM_INT_VEC_DIS_KER, | ||
1637 | EFX_INT_MODE_USE_MSI(efx), | ||
1638 | FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr); | ||
1639 | efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER); | ||
1640 | |||
1641 | if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx)) | ||
1642 | /* Use an interrupt level unused by event queues */ | ||
1643 | efx->fatal_irq_level = 0x1f; | ||
1644 | else | ||
1645 | /* Use a valid MSI-X vector */ | ||
1646 | efx->fatal_irq_level = 0; | ||
1647 | |||
1648 | /* Enable all the genuinely fatal interrupts. (They are still | ||
1649 | * masked by the overall interrupt mask, controlled by | ||
1650 | * falcon_interrupts()). | ||
1651 | * | ||
1652 | * Note: All other fatal interrupts are enabled | ||
1653 | */ | ||
1654 | EFX_POPULATE_OWORD_3(temp, | ||
1655 | FRF_AZ_ILL_ADR_INT_KER_EN, 1, | ||
1656 | FRF_AZ_RBUF_OWN_INT_KER_EN, 1, | ||
1657 | FRF_AZ_TBUF_OWN_INT_KER_EN, 1); | ||
1658 | if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) | ||
1659 | EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1); | ||
1660 | EFX_INVERT_OWORD(temp); | ||
1661 | efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER); | ||
1662 | |||
1663 | efx_nic_push_rx_indir_table(efx); | ||
1664 | |||
1665 | /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be | ||
1666 | * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q. | ||
1667 | */ | ||
1668 | efx_reado(efx, &temp, FR_AZ_TX_RESERVED); | ||
1669 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe); | ||
1670 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1); | ||
1671 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1); | ||
1672 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1); | ||
1673 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1); | ||
1674 | /* Enable SW_EV to inherit in char driver - assume harmless here */ | ||
1675 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1); | ||
1676 | /* Prefetch threshold 2 => fetch when descriptor cache half empty */ | ||
1677 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2); | ||
1678 | /* Disable hardware watchdog which can misfire */ | ||
1679 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff); | ||
1680 | /* Squash TX of packets of 16 bytes or less */ | ||
1681 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) | ||
1682 | EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1); | ||
1683 | efx_writeo(efx, &temp, FR_AZ_TX_RESERVED); | ||
1684 | |||
1685 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { | ||
1686 | EFX_POPULATE_OWORD_4(temp, | ||
1687 | /* Default values */ | ||
1688 | FRF_BZ_TX_PACE_SB_NOT_AF, 0x15, | ||
1689 | FRF_BZ_TX_PACE_SB_AF, 0xb, | ||
1690 | FRF_BZ_TX_PACE_FB_BASE, 0, | ||
1691 | /* Allow large pace values in the | ||
1692 | * fast bin. */ | ||
1693 | FRF_BZ_TX_PACE_BIN_TH, | ||
1694 | FFE_BZ_TX_PACE_RESERVED); | ||
1695 | efx_writeo(efx, &temp, FR_BZ_TX_PACE); | ||
1696 | } | ||
1697 | } | ||
1698 | |||
1699 | /* Register dump */ | ||
1700 | |||
1701 | #define REGISTER_REVISION_A 1 | ||
1702 | #define REGISTER_REVISION_B 2 | ||
1703 | #define REGISTER_REVISION_C 3 | ||
1704 | #define REGISTER_REVISION_Z 3 /* latest revision */ | ||
1705 | |||
1706 | struct efx_nic_reg { | ||
1707 | u32 offset:24; | ||
1708 | u32 min_revision:2, max_revision:2; | ||
1709 | }; | ||
1710 | |||
1711 | #define REGISTER(name, min_rev, max_rev) { \ | ||
1712 | FR_ ## min_rev ## max_rev ## _ ## name, \ | ||
1713 | REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \ | ||
1714 | } | ||
1715 | #define REGISTER_AA(name) REGISTER(name, A, A) | ||
1716 | #define REGISTER_AB(name) REGISTER(name, A, B) | ||
1717 | #define REGISTER_AZ(name) REGISTER(name, A, Z) | ||
1718 | #define REGISTER_BB(name) REGISTER(name, B, B) | ||
1719 | #define REGISTER_BZ(name) REGISTER(name, B, Z) | ||
1720 | #define REGISTER_CZ(name) REGISTER(name, C, Z) | ||
1721 | |||
1722 | static const struct efx_nic_reg efx_nic_regs[] = { | ||
1723 | REGISTER_AZ(ADR_REGION), | ||
1724 | REGISTER_AZ(INT_EN_KER), | ||
1725 | REGISTER_BZ(INT_EN_CHAR), | ||
1726 | REGISTER_AZ(INT_ADR_KER), | ||
1727 | REGISTER_BZ(INT_ADR_CHAR), | ||
1728 | /* INT_ACK_KER is WO */ | ||
1729 | /* INT_ISR0 is RC */ | ||
1730 | REGISTER_AZ(HW_INIT), | ||
1731 | REGISTER_CZ(USR_EV_CFG), | ||
1732 | REGISTER_AB(EE_SPI_HCMD), | ||
1733 | REGISTER_AB(EE_SPI_HADR), | ||
1734 | REGISTER_AB(EE_SPI_HDATA), | ||
1735 | REGISTER_AB(EE_BASE_PAGE), | ||
1736 | REGISTER_AB(EE_VPD_CFG0), | ||
1737 | /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */ | ||
1738 | /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */ | ||
1739 | /* PCIE_CORE_INDIRECT is indirect */ | ||
1740 | REGISTER_AB(NIC_STAT), | ||
1741 | REGISTER_AB(GPIO_CTL), | ||
1742 | REGISTER_AB(GLB_CTL), | ||
1743 | /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */ | ||
1744 | REGISTER_BZ(DP_CTRL), | ||
1745 | REGISTER_AZ(MEM_STAT), | ||
1746 | REGISTER_AZ(CS_DEBUG), | ||
1747 | REGISTER_AZ(ALTERA_BUILD), | ||
1748 | REGISTER_AZ(CSR_SPARE), | ||
1749 | REGISTER_AB(PCIE_SD_CTL0123), | ||
1750 | REGISTER_AB(PCIE_SD_CTL45), | ||
1751 | REGISTER_AB(PCIE_PCS_CTL_STAT), | ||
1752 | /* DEBUG_DATA_OUT is not used */ | ||
1753 | /* DRV_EV is WO */ | ||
1754 | REGISTER_AZ(EVQ_CTL), | ||
1755 | REGISTER_AZ(EVQ_CNT1), | ||
1756 | REGISTER_AZ(EVQ_CNT2), | ||
1757 | REGISTER_AZ(BUF_TBL_CFG), | ||
1758 | REGISTER_AZ(SRM_RX_DC_CFG), | ||
1759 | REGISTER_AZ(SRM_TX_DC_CFG), | ||
1760 | REGISTER_AZ(SRM_CFG), | ||
1761 | /* BUF_TBL_UPD is WO */ | ||
1762 | REGISTER_AZ(SRM_UPD_EVQ), | ||
1763 | REGISTER_AZ(SRAM_PARITY), | ||
1764 | REGISTER_AZ(RX_CFG), | ||
1765 | REGISTER_BZ(RX_FILTER_CTL), | ||
1766 | /* RX_FLUSH_DESCQ is WO */ | ||
1767 | REGISTER_AZ(RX_DC_CFG), | ||
1768 | REGISTER_AZ(RX_DC_PF_WM), | ||
1769 | REGISTER_BZ(RX_RSS_TKEY), | ||
1770 | /* RX_NODESC_DROP is RC */ | ||
1771 | REGISTER_AA(RX_SELF_RST), | ||
1772 | /* RX_DEBUG, RX_PUSH_DROP are not used */ | ||
1773 | REGISTER_CZ(RX_RSS_IPV6_REG1), | ||
1774 | REGISTER_CZ(RX_RSS_IPV6_REG2), | ||
1775 | REGISTER_CZ(RX_RSS_IPV6_REG3), | ||
1776 | /* TX_FLUSH_DESCQ is WO */ | ||
1777 | REGISTER_AZ(TX_DC_CFG), | ||
1778 | REGISTER_AA(TX_CHKSM_CFG), | ||
1779 | REGISTER_AZ(TX_CFG), | ||
1780 | /* TX_PUSH_DROP is not used */ | ||
1781 | REGISTER_AZ(TX_RESERVED), | ||
1782 | REGISTER_BZ(TX_PACE), | ||
1783 | /* TX_PACE_DROP_QID is RC */ | ||
1784 | REGISTER_BB(TX_VLAN), | ||
1785 | REGISTER_BZ(TX_IPFIL_PORTEN), | ||
1786 | REGISTER_AB(MD_TXD), | ||
1787 | REGISTER_AB(MD_RXD), | ||
1788 | REGISTER_AB(MD_CS), | ||
1789 | REGISTER_AB(MD_PHY_ADR), | ||
1790 | REGISTER_AB(MD_ID), | ||
1791 | /* MD_STAT is RC */ | ||
1792 | REGISTER_AB(MAC_STAT_DMA), | ||
1793 | REGISTER_AB(MAC_CTRL), | ||
1794 | REGISTER_BB(GEN_MODE), | ||
1795 | REGISTER_AB(MAC_MC_HASH_REG0), | ||
1796 | REGISTER_AB(MAC_MC_HASH_REG1), | ||
1797 | REGISTER_AB(GM_CFG1), | ||
1798 | REGISTER_AB(GM_CFG2), | ||
1799 | /* GM_IPG and GM_HD are not used */ | ||
1800 | REGISTER_AB(GM_MAX_FLEN), | ||
1801 | /* GM_TEST is not used */ | ||
1802 | REGISTER_AB(GM_ADR1), | ||
1803 | REGISTER_AB(GM_ADR2), | ||
1804 | REGISTER_AB(GMF_CFG0), | ||
1805 | REGISTER_AB(GMF_CFG1), | ||
1806 | REGISTER_AB(GMF_CFG2), | ||
1807 | REGISTER_AB(GMF_CFG3), | ||
1808 | REGISTER_AB(GMF_CFG4), | ||
1809 | REGISTER_AB(GMF_CFG5), | ||
1810 | REGISTER_BB(TX_SRC_MAC_CTL), | ||
1811 | REGISTER_AB(XM_ADR_LO), | ||
1812 | REGISTER_AB(XM_ADR_HI), | ||
1813 | REGISTER_AB(XM_GLB_CFG), | ||
1814 | REGISTER_AB(XM_TX_CFG), | ||
1815 | REGISTER_AB(XM_RX_CFG), | ||
1816 | REGISTER_AB(XM_MGT_INT_MASK), | ||
1817 | REGISTER_AB(XM_FC), | ||
1818 | REGISTER_AB(XM_PAUSE_TIME), | ||
1819 | REGISTER_AB(XM_TX_PARAM), | ||
1820 | REGISTER_AB(XM_RX_PARAM), | ||
1821 | /* XM_MGT_INT_MSK (note no 'A') is RC */ | ||
1822 | REGISTER_AB(XX_PWR_RST), | ||
1823 | REGISTER_AB(XX_SD_CTL), | ||
1824 | REGISTER_AB(XX_TXDRV_CTL), | ||
1825 | /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */ | ||
1826 | /* XX_CORE_STAT is partly RC */ | ||
1827 | }; | ||
1828 | |||
1829 | struct efx_nic_reg_table { | ||
1830 | u32 offset:24; | ||
1831 | u32 min_revision:2, max_revision:2; | ||
1832 | u32 step:6, rows:21; | ||
1833 | }; | ||
1834 | |||
1835 | #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \ | ||
1836 | offset, \ | ||
1837 | REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \ | ||
1838 | step, rows \ | ||
1839 | } | ||
1840 | #define REGISTER_TABLE(name, min_rev, max_rev) \ | ||
1841 | REGISTER_TABLE_DIMENSIONS( \ | ||
1842 | name, FR_ ## min_rev ## max_rev ## _ ## name, \ | ||
1843 | min_rev, max_rev, \ | ||
1844 | FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \ | ||
1845 | FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS) | ||
1846 | #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A) | ||
1847 | #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z) | ||
1848 | #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B) | ||
1849 | #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z) | ||
1850 | #define REGISTER_TABLE_BB_CZ(name) \ | ||
1851 | REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \ | ||
1852 | FR_BZ_ ## name ## _STEP, \ | ||
1853 | FR_BB_ ## name ## _ROWS), \ | ||
1854 | REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \ | ||
1855 | FR_BZ_ ## name ## _STEP, \ | ||
1856 | FR_CZ_ ## name ## _ROWS) | ||
1857 | #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z) | ||
1858 | |||
1859 | static const struct efx_nic_reg_table efx_nic_reg_tables[] = { | ||
1860 | /* DRIVER is not used */ | ||
1861 | /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */ | ||
1862 | REGISTER_TABLE_BB(TX_IPFIL_TBL), | ||
1863 | REGISTER_TABLE_BB(TX_SRC_MAC_TBL), | ||
1864 | REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER), | ||
1865 | REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL), | ||
1866 | REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER), | ||
1867 | REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL), | ||
1868 | REGISTER_TABLE_AA(EVQ_PTR_TBL_KER), | ||
1869 | REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL), | ||
1870 | /* We can't reasonably read all of the buffer table (up to 8MB!). | ||
1871 | * However this driver will only use a few entries. Reading | ||
1872 | * 1K entries allows for some expansion of queue count and | ||
1873 | * size before we need to change the version. */ | ||
1874 | REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER, | ||
1875 | A, A, 8, 1024), | ||
1876 | REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL, | ||
1877 | B, Z, 8, 1024), | ||
1878 | REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0), | ||
1879 | REGISTER_TABLE_BB_CZ(TIMER_TBL), | ||
1880 | REGISTER_TABLE_BB_CZ(TX_PACE_TBL), | ||
1881 | REGISTER_TABLE_BZ(RX_INDIRECTION_TBL), | ||
1882 | /* TX_FILTER_TBL0 is huge and not used by this driver */ | ||
1883 | REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0), | ||
1884 | REGISTER_TABLE_CZ(MC_TREG_SMEM), | ||
1885 | /* MSIX_PBA_TABLE is not mapped */ | ||
1886 | /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */ | ||
1887 | REGISTER_TABLE_BZ(RX_FILTER_TBL0), | ||
1888 | }; | ||
1889 | |||
1890 | size_t efx_nic_get_regs_len(struct efx_nic *efx) | ||
1891 | { | ||
1892 | const struct efx_nic_reg *reg; | ||
1893 | const struct efx_nic_reg_table *table; | ||
1894 | size_t len = 0; | ||
1895 | |||
1896 | for (reg = efx_nic_regs; | ||
1897 | reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); | ||
1898 | reg++) | ||
1899 | if (efx->type->revision >= reg->min_revision && | ||
1900 | efx->type->revision <= reg->max_revision) | ||
1901 | len += sizeof(efx_oword_t); | ||
1902 | |||
1903 | for (table = efx_nic_reg_tables; | ||
1904 | table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); | ||
1905 | table++) | ||
1906 | if (efx->type->revision >= table->min_revision && | ||
1907 | efx->type->revision <= table->max_revision) | ||
1908 | len += table->rows * min_t(size_t, table->step, 16); | ||
1909 | |||
1910 | return len; | ||
1911 | } | ||
1912 | |||
1913 | void efx_nic_get_regs(struct efx_nic *efx, void *buf) | ||
1914 | { | ||
1915 | const struct efx_nic_reg *reg; | ||
1916 | const struct efx_nic_reg_table *table; | ||
1917 | |||
1918 | for (reg = efx_nic_regs; | ||
1919 | reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); | ||
1920 | reg++) { | ||
1921 | if (efx->type->revision >= reg->min_revision && | ||
1922 | efx->type->revision <= reg->max_revision) { | ||
1923 | efx_reado(efx, (efx_oword_t *)buf, reg->offset); | ||
1924 | buf += sizeof(efx_oword_t); | ||
1925 | } | ||
1926 | } | ||
1927 | |||
1928 | for (table = efx_nic_reg_tables; | ||
1929 | table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); | ||
1930 | table++) { | ||
1931 | size_t size, i; | ||
1932 | |||
1933 | if (!(efx->type->revision >= table->min_revision && | ||
1934 | efx->type->revision <= table->max_revision)) | ||
1935 | continue; | ||
1936 | |||
1937 | size = min_t(size_t, table->step, 16); | ||
1938 | |||
1939 | for (i = 0; i < table->rows; i++) { | ||
1940 | switch (table->step) { | ||
1941 | case 4: /* 32-bit register or SRAM */ | ||
1942 | efx_readd_table(efx, buf, table->offset, i); | ||
1943 | break; | ||
1944 | case 8: /* 64-bit SRAM */ | ||
1945 | efx_sram_readq(efx, | ||
1946 | efx->membase + table->offset, | ||
1947 | buf, i); | ||
1948 | break; | ||
1949 | case 16: /* 128-bit register */ | ||
1950 | efx_reado_table(efx, buf, table->offset, i); | ||
1951 | break; | ||
1952 | case 32: /* 128-bit register, interleaved */ | ||
1953 | efx_reado_table(efx, buf, table->offset, 2 * i); | ||
1954 | break; | ||
1955 | default: | ||
1956 | WARN_ON(1); | ||
1957 | return; | ||
1958 | } | ||
1959 | buf += size; | ||
1960 | } | ||
1961 | } | ||
1962 | } | ||