diff options
| author | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
|---|---|---|
| committer | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
| commit | fcc9d2e5a6c89d22b8b773a64fb4ad21ac318446 (patch) | |
| tree | a57612d1888735a2ec7972891b68c1ac5ec8faea /drivers/net/ixgbe/ixgbe_common.c | |
| parent | 8dea78da5cee153b8af9c07a2745f6c55057fe12 (diff) | |
Diffstat (limited to 'drivers/net/ixgbe/ixgbe_common.c')
| -rw-r--r-- | drivers/net/ixgbe/ixgbe_common.c | 3510 |
1 files changed, 3510 insertions, 0 deletions
diff --git a/drivers/net/ixgbe/ixgbe_common.c b/drivers/net/ixgbe/ixgbe_common.c new file mode 100644 index 00000000000..fc1375f26fe --- /dev/null +++ b/drivers/net/ixgbe/ixgbe_common.c | |||
| @@ -0,0 +1,3510 @@ | |||
| 1 | /******************************************************************************* | ||
| 2 | |||
| 3 | Intel 10 Gigabit PCI Express Linux driver | ||
| 4 | Copyright(c) 1999 - 2011 Intel Corporation. | ||
| 5 | |||
| 6 | This program is free software; you can redistribute it and/or modify it | ||
| 7 | under the terms and conditions of the GNU General Public License, | ||
| 8 | version 2, as published by the Free Software Foundation. | ||
| 9 | |||
| 10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
| 12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
| 13 | more details. | ||
| 14 | |||
| 15 | You should have received a copy of the GNU General Public License along with | ||
| 16 | this program; if not, write to the Free Software Foundation, Inc., | ||
| 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
| 18 | |||
| 19 | The full GNU General Public License is included in this distribution in | ||
| 20 | the file called "COPYING". | ||
| 21 | |||
| 22 | Contact Information: | ||
| 23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
| 24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
| 25 | |||
| 26 | *******************************************************************************/ | ||
| 27 | |||
| 28 | #include <linux/pci.h> | ||
| 29 | #include <linux/delay.h> | ||
| 30 | #include <linux/sched.h> | ||
| 31 | #include <linux/netdevice.h> | ||
| 32 | |||
| 33 | #include "ixgbe.h" | ||
| 34 | #include "ixgbe_common.h" | ||
| 35 | #include "ixgbe_phy.h" | ||
| 36 | |||
| 37 | static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw); | ||
| 38 | static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw); | ||
| 39 | static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw); | ||
| 40 | static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw); | ||
| 41 | static void ixgbe_standby_eeprom(struct ixgbe_hw *hw); | ||
| 42 | static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, | ||
| 43 | u16 count); | ||
| 44 | static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count); | ||
| 45 | static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); | ||
| 46 | static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); | ||
| 47 | static void ixgbe_release_eeprom(struct ixgbe_hw *hw); | ||
| 48 | |||
| 49 | static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr); | ||
| 50 | static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw); | ||
| 51 | static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw); | ||
| 52 | static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw); | ||
| 53 | static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw); | ||
| 54 | static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg, | ||
| 55 | u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm); | ||
| 56 | static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num); | ||
| 57 | static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg); | ||
| 58 | static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, | ||
| 59 | u16 words, u16 *data); | ||
| 60 | static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, | ||
| 61 | u16 words, u16 *data); | ||
| 62 | static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw, | ||
| 63 | u16 offset); | ||
| 64 | |||
| 65 | /** | ||
| 66 | * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx | ||
| 67 | * @hw: pointer to hardware structure | ||
| 68 | * | ||
| 69 | * Starts the hardware by filling the bus info structure and media type, clears | ||
| 70 | * all on chip counters, initializes receive address registers, multicast | ||
| 71 | * table, VLAN filter table, calls routine to set up link and flow control | ||
| 72 | * settings, and leaves transmit and receive units disabled and uninitialized | ||
| 73 | **/ | ||
| 74 | s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw) | ||
| 75 | { | ||
| 76 | u32 ctrl_ext; | ||
| 77 | |||
| 78 | /* Set the media type */ | ||
| 79 | hw->phy.media_type = hw->mac.ops.get_media_type(hw); | ||
| 80 | |||
| 81 | /* Identify the PHY */ | ||
| 82 | hw->phy.ops.identify(hw); | ||
| 83 | |||
| 84 | /* Clear the VLAN filter table */ | ||
| 85 | hw->mac.ops.clear_vfta(hw); | ||
| 86 | |||
| 87 | /* Clear statistics registers */ | ||
| 88 | hw->mac.ops.clear_hw_cntrs(hw); | ||
| 89 | |||
| 90 | /* Set No Snoop Disable */ | ||
| 91 | ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT); | ||
| 92 | ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS; | ||
| 93 | IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext); | ||
| 94 | IXGBE_WRITE_FLUSH(hw); | ||
| 95 | |||
| 96 | /* Setup flow control */ | ||
| 97 | ixgbe_setup_fc(hw, 0); | ||
| 98 | |||
| 99 | /* Clear adapter stopped flag */ | ||
| 100 | hw->adapter_stopped = false; | ||
| 101 | |||
| 102 | return 0; | ||
| 103 | } | ||
| 104 | |||
| 105 | /** | ||
| 106 | * ixgbe_start_hw_gen2 - Init sequence for common device family | ||
| 107 | * @hw: pointer to hw structure | ||
| 108 | * | ||
| 109 | * Performs the init sequence common to the second generation | ||
| 110 | * of 10 GbE devices. | ||
| 111 | * Devices in the second generation: | ||
| 112 | * 82599 | ||
| 113 | * X540 | ||
| 114 | **/ | ||
| 115 | s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw) | ||
| 116 | { | ||
| 117 | u32 i; | ||
| 118 | u32 regval; | ||
| 119 | |||
| 120 | /* Clear the rate limiters */ | ||
| 121 | for (i = 0; i < hw->mac.max_tx_queues; i++) { | ||
| 122 | IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i); | ||
| 123 | IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0); | ||
| 124 | } | ||
| 125 | IXGBE_WRITE_FLUSH(hw); | ||
| 126 | |||
| 127 | /* Disable relaxed ordering */ | ||
| 128 | for (i = 0; i < hw->mac.max_tx_queues; i++) { | ||
| 129 | regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i)); | ||
| 130 | regval &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN; | ||
| 131 | IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval); | ||
| 132 | } | ||
| 133 | |||
| 134 | for (i = 0; i < hw->mac.max_rx_queues; i++) { | ||
| 135 | regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i)); | ||
| 136 | regval &= ~(IXGBE_DCA_RXCTRL_DESC_WRO_EN | | ||
| 137 | IXGBE_DCA_RXCTRL_DESC_HSRO_EN); | ||
| 138 | IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval); | ||
| 139 | } | ||
| 140 | |||
| 141 | return 0; | ||
| 142 | } | ||
| 143 | |||
| 144 | /** | ||
| 145 | * ixgbe_init_hw_generic - Generic hardware initialization | ||
| 146 | * @hw: pointer to hardware structure | ||
| 147 | * | ||
| 148 | * Initialize the hardware by resetting the hardware, filling the bus info | ||
| 149 | * structure and media type, clears all on chip counters, initializes receive | ||
| 150 | * address registers, multicast table, VLAN filter table, calls routine to set | ||
| 151 | * up link and flow control settings, and leaves transmit and receive units | ||
| 152 | * disabled and uninitialized | ||
| 153 | **/ | ||
| 154 | s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw) | ||
| 155 | { | ||
| 156 | s32 status; | ||
| 157 | |||
| 158 | /* Reset the hardware */ | ||
| 159 | status = hw->mac.ops.reset_hw(hw); | ||
| 160 | |||
| 161 | if (status == 0) { | ||
| 162 | /* Start the HW */ | ||
| 163 | status = hw->mac.ops.start_hw(hw); | ||
| 164 | } | ||
| 165 | |||
| 166 | return status; | ||
| 167 | } | ||
| 168 | |||
| 169 | /** | ||
| 170 | * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters | ||
| 171 | * @hw: pointer to hardware structure | ||
| 172 | * | ||
| 173 | * Clears all hardware statistics counters by reading them from the hardware | ||
| 174 | * Statistics counters are clear on read. | ||
| 175 | **/ | ||
| 176 | s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw) | ||
| 177 | { | ||
| 178 | u16 i = 0; | ||
| 179 | |||
| 180 | IXGBE_READ_REG(hw, IXGBE_CRCERRS); | ||
| 181 | IXGBE_READ_REG(hw, IXGBE_ILLERRC); | ||
| 182 | IXGBE_READ_REG(hw, IXGBE_ERRBC); | ||
| 183 | IXGBE_READ_REG(hw, IXGBE_MSPDC); | ||
| 184 | for (i = 0; i < 8; i++) | ||
| 185 | IXGBE_READ_REG(hw, IXGBE_MPC(i)); | ||
| 186 | |||
| 187 | IXGBE_READ_REG(hw, IXGBE_MLFC); | ||
| 188 | IXGBE_READ_REG(hw, IXGBE_MRFC); | ||
| 189 | IXGBE_READ_REG(hw, IXGBE_RLEC); | ||
| 190 | IXGBE_READ_REG(hw, IXGBE_LXONTXC); | ||
| 191 | IXGBE_READ_REG(hw, IXGBE_LXOFFTXC); | ||
| 192 | if (hw->mac.type >= ixgbe_mac_82599EB) { | ||
| 193 | IXGBE_READ_REG(hw, IXGBE_LXONRXCNT); | ||
| 194 | IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT); | ||
| 195 | } else { | ||
| 196 | IXGBE_READ_REG(hw, IXGBE_LXONRXC); | ||
| 197 | IXGBE_READ_REG(hw, IXGBE_LXOFFRXC); | ||
| 198 | } | ||
| 199 | |||
| 200 | for (i = 0; i < 8; i++) { | ||
| 201 | IXGBE_READ_REG(hw, IXGBE_PXONTXC(i)); | ||
| 202 | IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i)); | ||
| 203 | if (hw->mac.type >= ixgbe_mac_82599EB) { | ||
| 204 | IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i)); | ||
| 205 | IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i)); | ||
| 206 | } else { | ||
| 207 | IXGBE_READ_REG(hw, IXGBE_PXONRXC(i)); | ||
| 208 | IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i)); | ||
| 209 | } | ||
| 210 | } | ||
| 211 | if (hw->mac.type >= ixgbe_mac_82599EB) | ||
| 212 | for (i = 0; i < 8; i++) | ||
| 213 | IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i)); | ||
| 214 | IXGBE_READ_REG(hw, IXGBE_PRC64); | ||
| 215 | IXGBE_READ_REG(hw, IXGBE_PRC127); | ||
| 216 | IXGBE_READ_REG(hw, IXGBE_PRC255); | ||
| 217 | IXGBE_READ_REG(hw, IXGBE_PRC511); | ||
| 218 | IXGBE_READ_REG(hw, IXGBE_PRC1023); | ||
| 219 | IXGBE_READ_REG(hw, IXGBE_PRC1522); | ||
| 220 | IXGBE_READ_REG(hw, IXGBE_GPRC); | ||
| 221 | IXGBE_READ_REG(hw, IXGBE_BPRC); | ||
| 222 | IXGBE_READ_REG(hw, IXGBE_MPRC); | ||
| 223 | IXGBE_READ_REG(hw, IXGBE_GPTC); | ||
| 224 | IXGBE_READ_REG(hw, IXGBE_GORCL); | ||
| 225 | IXGBE_READ_REG(hw, IXGBE_GORCH); | ||
| 226 | IXGBE_READ_REG(hw, IXGBE_GOTCL); | ||
| 227 | IXGBE_READ_REG(hw, IXGBE_GOTCH); | ||
| 228 | for (i = 0; i < 8; i++) | ||
| 229 | IXGBE_READ_REG(hw, IXGBE_RNBC(i)); | ||
| 230 | IXGBE_READ_REG(hw, IXGBE_RUC); | ||
| 231 | IXGBE_READ_REG(hw, IXGBE_RFC); | ||
| 232 | IXGBE_READ_REG(hw, IXGBE_ROC); | ||
| 233 | IXGBE_READ_REG(hw, IXGBE_RJC); | ||
| 234 | IXGBE_READ_REG(hw, IXGBE_MNGPRC); | ||
| 235 | IXGBE_READ_REG(hw, IXGBE_MNGPDC); | ||
| 236 | IXGBE_READ_REG(hw, IXGBE_MNGPTC); | ||
| 237 | IXGBE_READ_REG(hw, IXGBE_TORL); | ||
| 238 | IXGBE_READ_REG(hw, IXGBE_TORH); | ||
| 239 | IXGBE_READ_REG(hw, IXGBE_TPR); | ||
| 240 | IXGBE_READ_REG(hw, IXGBE_TPT); | ||
| 241 | IXGBE_READ_REG(hw, IXGBE_PTC64); | ||
| 242 | IXGBE_READ_REG(hw, IXGBE_PTC127); | ||
| 243 | IXGBE_READ_REG(hw, IXGBE_PTC255); | ||
| 244 | IXGBE_READ_REG(hw, IXGBE_PTC511); | ||
| 245 | IXGBE_READ_REG(hw, IXGBE_PTC1023); | ||
| 246 | IXGBE_READ_REG(hw, IXGBE_PTC1522); | ||
| 247 | IXGBE_READ_REG(hw, IXGBE_MPTC); | ||
| 248 | IXGBE_READ_REG(hw, IXGBE_BPTC); | ||
| 249 | for (i = 0; i < 16; i++) { | ||
| 250 | IXGBE_READ_REG(hw, IXGBE_QPRC(i)); | ||
| 251 | IXGBE_READ_REG(hw, IXGBE_QPTC(i)); | ||
| 252 | if (hw->mac.type >= ixgbe_mac_82599EB) { | ||
| 253 | IXGBE_READ_REG(hw, IXGBE_QBRC_L(i)); | ||
| 254 | IXGBE_READ_REG(hw, IXGBE_QBRC_H(i)); | ||
| 255 | IXGBE_READ_REG(hw, IXGBE_QBTC_L(i)); | ||
| 256 | IXGBE_READ_REG(hw, IXGBE_QBTC_H(i)); | ||
| 257 | IXGBE_READ_REG(hw, IXGBE_QPRDC(i)); | ||
| 258 | } else { | ||
| 259 | IXGBE_READ_REG(hw, IXGBE_QBRC(i)); | ||
| 260 | IXGBE_READ_REG(hw, IXGBE_QBTC(i)); | ||
| 261 | } | ||
| 262 | } | ||
| 263 | |||
| 264 | if (hw->mac.type == ixgbe_mac_X540) { | ||
| 265 | if (hw->phy.id == 0) | ||
| 266 | hw->phy.ops.identify(hw); | ||
| 267 | hw->phy.ops.read_reg(hw, 0x3, IXGBE_PCRC8ECL, &i); | ||
| 268 | hw->phy.ops.read_reg(hw, 0x3, IXGBE_PCRC8ECH, &i); | ||
| 269 | hw->phy.ops.read_reg(hw, 0x3, IXGBE_LDPCECL, &i); | ||
| 270 | hw->phy.ops.read_reg(hw, 0x3, IXGBE_LDPCECH, &i); | ||
| 271 | } | ||
| 272 | |||
| 273 | return 0; | ||
| 274 | } | ||
| 275 | |||
| 276 | /** | ||
| 277 | * ixgbe_read_pba_string_generic - Reads part number string from EEPROM | ||
| 278 | * @hw: pointer to hardware structure | ||
| 279 | * @pba_num: stores the part number string from the EEPROM | ||
| 280 | * @pba_num_size: part number string buffer length | ||
| 281 | * | ||
| 282 | * Reads the part number string from the EEPROM. | ||
| 283 | **/ | ||
| 284 | s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num, | ||
| 285 | u32 pba_num_size) | ||
| 286 | { | ||
| 287 | s32 ret_val; | ||
| 288 | u16 data; | ||
| 289 | u16 pba_ptr; | ||
| 290 | u16 offset; | ||
| 291 | u16 length; | ||
| 292 | |||
| 293 | if (pba_num == NULL) { | ||
| 294 | hw_dbg(hw, "PBA string buffer was null\n"); | ||
| 295 | return IXGBE_ERR_INVALID_ARGUMENT; | ||
| 296 | } | ||
| 297 | |||
| 298 | ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data); | ||
| 299 | if (ret_val) { | ||
| 300 | hw_dbg(hw, "NVM Read Error\n"); | ||
| 301 | return ret_val; | ||
| 302 | } | ||
| 303 | |||
| 304 | ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr); | ||
| 305 | if (ret_val) { | ||
| 306 | hw_dbg(hw, "NVM Read Error\n"); | ||
| 307 | return ret_val; | ||
| 308 | } | ||
| 309 | |||
| 310 | /* | ||
| 311 | * if data is not ptr guard the PBA must be in legacy format which | ||
| 312 | * means pba_ptr is actually our second data word for the PBA number | ||
| 313 | * and we can decode it into an ascii string | ||
| 314 | */ | ||
| 315 | if (data != IXGBE_PBANUM_PTR_GUARD) { | ||
| 316 | hw_dbg(hw, "NVM PBA number is not stored as string\n"); | ||
| 317 | |||
| 318 | /* we will need 11 characters to store the PBA */ | ||
| 319 | if (pba_num_size < 11) { | ||
| 320 | hw_dbg(hw, "PBA string buffer too small\n"); | ||
| 321 | return IXGBE_ERR_NO_SPACE; | ||
| 322 | } | ||
| 323 | |||
| 324 | /* extract hex string from data and pba_ptr */ | ||
| 325 | pba_num[0] = (data >> 12) & 0xF; | ||
| 326 | pba_num[1] = (data >> 8) & 0xF; | ||
| 327 | pba_num[2] = (data >> 4) & 0xF; | ||
| 328 | pba_num[3] = data & 0xF; | ||
| 329 | pba_num[4] = (pba_ptr >> 12) & 0xF; | ||
| 330 | pba_num[5] = (pba_ptr >> 8) & 0xF; | ||
| 331 | pba_num[6] = '-'; | ||
| 332 | pba_num[7] = 0; | ||
| 333 | pba_num[8] = (pba_ptr >> 4) & 0xF; | ||
| 334 | pba_num[9] = pba_ptr & 0xF; | ||
| 335 | |||
| 336 | /* put a null character on the end of our string */ | ||
| 337 | pba_num[10] = '\0'; | ||
| 338 | |||
| 339 | /* switch all the data but the '-' to hex char */ | ||
| 340 | for (offset = 0; offset < 10; offset++) { | ||
| 341 | if (pba_num[offset] < 0xA) | ||
| 342 | pba_num[offset] += '0'; | ||
| 343 | else if (pba_num[offset] < 0x10) | ||
| 344 | pba_num[offset] += 'A' - 0xA; | ||
| 345 | } | ||
| 346 | |||
| 347 | return 0; | ||
| 348 | } | ||
| 349 | |||
| 350 | ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length); | ||
| 351 | if (ret_val) { | ||
| 352 | hw_dbg(hw, "NVM Read Error\n"); | ||
| 353 | return ret_val; | ||
| 354 | } | ||
| 355 | |||
| 356 | if (length == 0xFFFF || length == 0) { | ||
| 357 | hw_dbg(hw, "NVM PBA number section invalid length\n"); | ||
| 358 | return IXGBE_ERR_PBA_SECTION; | ||
| 359 | } | ||
| 360 | |||
| 361 | /* check if pba_num buffer is big enough */ | ||
| 362 | if (pba_num_size < (((u32)length * 2) - 1)) { | ||
| 363 | hw_dbg(hw, "PBA string buffer too small\n"); | ||
| 364 | return IXGBE_ERR_NO_SPACE; | ||
| 365 | } | ||
| 366 | |||
| 367 | /* trim pba length from start of string */ | ||
| 368 | pba_ptr++; | ||
| 369 | length--; | ||
| 370 | |||
| 371 | for (offset = 0; offset < length; offset++) { | ||
| 372 | ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data); | ||
| 373 | if (ret_val) { | ||
| 374 | hw_dbg(hw, "NVM Read Error\n"); | ||
| 375 | return ret_val; | ||
| 376 | } | ||
| 377 | pba_num[offset * 2] = (u8)(data >> 8); | ||
| 378 | pba_num[(offset * 2) + 1] = (u8)(data & 0xFF); | ||
| 379 | } | ||
| 380 | pba_num[offset * 2] = '\0'; | ||
| 381 | |||
| 382 | return 0; | ||
| 383 | } | ||
| 384 | |||
| 385 | /** | ||
| 386 | * ixgbe_get_mac_addr_generic - Generic get MAC address | ||
| 387 | * @hw: pointer to hardware structure | ||
| 388 | * @mac_addr: Adapter MAC address | ||
| 389 | * | ||
| 390 | * Reads the adapter's MAC address from first Receive Address Register (RAR0) | ||
| 391 | * A reset of the adapter must be performed prior to calling this function | ||
| 392 | * in order for the MAC address to have been loaded from the EEPROM into RAR0 | ||
| 393 | **/ | ||
| 394 | s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr) | ||
| 395 | { | ||
| 396 | u32 rar_high; | ||
| 397 | u32 rar_low; | ||
| 398 | u16 i; | ||
| 399 | |||
| 400 | rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0)); | ||
| 401 | rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0)); | ||
| 402 | |||
| 403 | for (i = 0; i < 4; i++) | ||
| 404 | mac_addr[i] = (u8)(rar_low >> (i*8)); | ||
| 405 | |||
| 406 | for (i = 0; i < 2; i++) | ||
| 407 | mac_addr[i+4] = (u8)(rar_high >> (i*8)); | ||
| 408 | |||
| 409 | return 0; | ||
| 410 | } | ||
| 411 | |||
| 412 | /** | ||
| 413 | * ixgbe_get_bus_info_generic - Generic set PCI bus info | ||
| 414 | * @hw: pointer to hardware structure | ||
| 415 | * | ||
| 416 | * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure | ||
| 417 | **/ | ||
| 418 | s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw) | ||
| 419 | { | ||
| 420 | struct ixgbe_adapter *adapter = hw->back; | ||
| 421 | struct ixgbe_mac_info *mac = &hw->mac; | ||
| 422 | u16 link_status; | ||
| 423 | |||
| 424 | hw->bus.type = ixgbe_bus_type_pci_express; | ||
| 425 | |||
| 426 | /* Get the negotiated link width and speed from PCI config space */ | ||
| 427 | pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS, | ||
| 428 | &link_status); | ||
| 429 | |||
| 430 | switch (link_status & IXGBE_PCI_LINK_WIDTH) { | ||
| 431 | case IXGBE_PCI_LINK_WIDTH_1: | ||
| 432 | hw->bus.width = ixgbe_bus_width_pcie_x1; | ||
| 433 | break; | ||
| 434 | case IXGBE_PCI_LINK_WIDTH_2: | ||
| 435 | hw->bus.width = ixgbe_bus_width_pcie_x2; | ||
| 436 | break; | ||
| 437 | case IXGBE_PCI_LINK_WIDTH_4: | ||
| 438 | hw->bus.width = ixgbe_bus_width_pcie_x4; | ||
| 439 | break; | ||
| 440 | case IXGBE_PCI_LINK_WIDTH_8: | ||
| 441 | hw->bus.width = ixgbe_bus_width_pcie_x8; | ||
| 442 | break; | ||
| 443 | default: | ||
| 444 | hw->bus.width = ixgbe_bus_width_unknown; | ||
| 445 | break; | ||
| 446 | } | ||
| 447 | |||
| 448 | switch (link_status & IXGBE_PCI_LINK_SPEED) { | ||
| 449 | case IXGBE_PCI_LINK_SPEED_2500: | ||
| 450 | hw->bus.speed = ixgbe_bus_speed_2500; | ||
| 451 | break; | ||
| 452 | case IXGBE_PCI_LINK_SPEED_5000: | ||
| 453 | hw->bus.speed = ixgbe_bus_speed_5000; | ||
| 454 | break; | ||
| 455 | default: | ||
| 456 | hw->bus.speed = ixgbe_bus_speed_unknown; | ||
| 457 | break; | ||
| 458 | } | ||
| 459 | |||
| 460 | mac->ops.set_lan_id(hw); | ||
| 461 | |||
| 462 | return 0; | ||
| 463 | } | ||
| 464 | |||
| 465 | /** | ||
| 466 | * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices | ||
| 467 | * @hw: pointer to the HW structure | ||
| 468 | * | ||
| 469 | * Determines the LAN function id by reading memory-mapped registers | ||
| 470 | * and swaps the port value if requested. | ||
| 471 | **/ | ||
| 472 | void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw) | ||
| 473 | { | ||
| 474 | struct ixgbe_bus_info *bus = &hw->bus; | ||
| 475 | u32 reg; | ||
| 476 | |||
| 477 | reg = IXGBE_READ_REG(hw, IXGBE_STATUS); | ||
| 478 | bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT; | ||
| 479 | bus->lan_id = bus->func; | ||
| 480 | |||
| 481 | /* check for a port swap */ | ||
| 482 | reg = IXGBE_READ_REG(hw, IXGBE_FACTPS); | ||
| 483 | if (reg & IXGBE_FACTPS_LFS) | ||
| 484 | bus->func ^= 0x1; | ||
| 485 | } | ||
| 486 | |||
| 487 | /** | ||
| 488 | * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units | ||
| 489 | * @hw: pointer to hardware structure | ||
| 490 | * | ||
| 491 | * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts, | ||
| 492 | * disables transmit and receive units. The adapter_stopped flag is used by | ||
| 493 | * the shared code and drivers to determine if the adapter is in a stopped | ||
| 494 | * state and should not touch the hardware. | ||
| 495 | **/ | ||
| 496 | s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw) | ||
| 497 | { | ||
| 498 | u32 number_of_queues; | ||
| 499 | u32 reg_val; | ||
| 500 | u16 i; | ||
| 501 | |||
| 502 | /* | ||
| 503 | * Set the adapter_stopped flag so other driver functions stop touching | ||
| 504 | * the hardware | ||
| 505 | */ | ||
| 506 | hw->adapter_stopped = true; | ||
| 507 | |||
| 508 | /* Disable the receive unit */ | ||
| 509 | reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL); | ||
| 510 | reg_val &= ~(IXGBE_RXCTRL_RXEN); | ||
| 511 | IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val); | ||
| 512 | IXGBE_WRITE_FLUSH(hw); | ||
| 513 | usleep_range(2000, 4000); | ||
| 514 | |||
| 515 | /* Clear interrupt mask to stop from interrupts being generated */ | ||
| 516 | IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK); | ||
| 517 | |||
| 518 | /* Clear any pending interrupts */ | ||
| 519 | IXGBE_READ_REG(hw, IXGBE_EICR); | ||
| 520 | |||
| 521 | /* Disable the transmit unit. Each queue must be disabled. */ | ||
| 522 | number_of_queues = hw->mac.max_tx_queues; | ||
| 523 | for (i = 0; i < number_of_queues; i++) { | ||
| 524 | reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i)); | ||
| 525 | if (reg_val & IXGBE_TXDCTL_ENABLE) { | ||
| 526 | reg_val &= ~IXGBE_TXDCTL_ENABLE; | ||
| 527 | IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val); | ||
| 528 | } | ||
| 529 | } | ||
| 530 | |||
| 531 | /* | ||
| 532 | * Prevent the PCI-E bus from from hanging by disabling PCI-E master | ||
| 533 | * access and verify no pending requests | ||
| 534 | */ | ||
| 535 | ixgbe_disable_pcie_master(hw); | ||
| 536 | |||
| 537 | return 0; | ||
| 538 | } | ||
| 539 | |||
| 540 | /** | ||
| 541 | * ixgbe_led_on_generic - Turns on the software controllable LEDs. | ||
| 542 | * @hw: pointer to hardware structure | ||
| 543 | * @index: led number to turn on | ||
| 544 | **/ | ||
| 545 | s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index) | ||
| 546 | { | ||
| 547 | u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); | ||
| 548 | |||
| 549 | /* To turn on the LED, set mode to ON. */ | ||
| 550 | led_reg &= ~IXGBE_LED_MODE_MASK(index); | ||
| 551 | led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index); | ||
| 552 | IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); | ||
| 553 | IXGBE_WRITE_FLUSH(hw); | ||
| 554 | |||
| 555 | return 0; | ||
| 556 | } | ||
| 557 | |||
| 558 | /** | ||
| 559 | * ixgbe_led_off_generic - Turns off the software controllable LEDs. | ||
| 560 | * @hw: pointer to hardware structure | ||
| 561 | * @index: led number to turn off | ||
| 562 | **/ | ||
| 563 | s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index) | ||
| 564 | { | ||
| 565 | u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); | ||
| 566 | |||
| 567 | /* To turn off the LED, set mode to OFF. */ | ||
| 568 | led_reg &= ~IXGBE_LED_MODE_MASK(index); | ||
| 569 | led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index); | ||
| 570 | IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); | ||
| 571 | IXGBE_WRITE_FLUSH(hw); | ||
| 572 | |||
| 573 | return 0; | ||
| 574 | } | ||
| 575 | |||
| 576 | /** | ||
| 577 | * ixgbe_init_eeprom_params_generic - Initialize EEPROM params | ||
| 578 | * @hw: pointer to hardware structure | ||
| 579 | * | ||
| 580 | * Initializes the EEPROM parameters ixgbe_eeprom_info within the | ||
| 581 | * ixgbe_hw struct in order to set up EEPROM access. | ||
| 582 | **/ | ||
| 583 | s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw) | ||
| 584 | { | ||
| 585 | struct ixgbe_eeprom_info *eeprom = &hw->eeprom; | ||
| 586 | u32 eec; | ||
| 587 | u16 eeprom_size; | ||
| 588 | |||
| 589 | if (eeprom->type == ixgbe_eeprom_uninitialized) { | ||
| 590 | eeprom->type = ixgbe_eeprom_none; | ||
| 591 | /* Set default semaphore delay to 10ms which is a well | ||
| 592 | * tested value */ | ||
| 593 | eeprom->semaphore_delay = 10; | ||
| 594 | /* Clear EEPROM page size, it will be initialized as needed */ | ||
| 595 | eeprom->word_page_size = 0; | ||
| 596 | |||
| 597 | /* | ||
| 598 | * Check for EEPROM present first. | ||
| 599 | * If not present leave as none | ||
| 600 | */ | ||
| 601 | eec = IXGBE_READ_REG(hw, IXGBE_EEC); | ||
| 602 | if (eec & IXGBE_EEC_PRES) { | ||
| 603 | eeprom->type = ixgbe_eeprom_spi; | ||
| 604 | |||
| 605 | /* | ||
| 606 | * SPI EEPROM is assumed here. This code would need to | ||
| 607 | * change if a future EEPROM is not SPI. | ||
| 608 | */ | ||
| 609 | eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >> | ||
| 610 | IXGBE_EEC_SIZE_SHIFT); | ||
| 611 | eeprom->word_size = 1 << (eeprom_size + | ||
| 612 | IXGBE_EEPROM_WORD_SIZE_SHIFT); | ||
| 613 | } | ||
| 614 | |||
| 615 | if (eec & IXGBE_EEC_ADDR_SIZE) | ||
| 616 | eeprom->address_bits = 16; | ||
| 617 | else | ||
| 618 | eeprom->address_bits = 8; | ||
| 619 | hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: " | ||
| 620 | "%d\n", eeprom->type, eeprom->word_size, | ||
| 621 | eeprom->address_bits); | ||
| 622 | } | ||
| 623 | |||
| 624 | return 0; | ||
| 625 | } | ||
| 626 | |||
| 627 | /** | ||
| 628 | * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang | ||
| 629 | * @hw: pointer to hardware structure | ||
| 630 | * @offset: offset within the EEPROM to write | ||
| 631 | * @words: number of words | ||
| 632 | * @data: 16 bit word(s) to write to EEPROM | ||
| 633 | * | ||
| 634 | * Reads 16 bit word(s) from EEPROM through bit-bang method | ||
| 635 | **/ | ||
| 636 | s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, | ||
| 637 | u16 words, u16 *data) | ||
| 638 | { | ||
| 639 | s32 status = 0; | ||
| 640 | u16 i, count; | ||
| 641 | |||
| 642 | hw->eeprom.ops.init_params(hw); | ||
| 643 | |||
| 644 | if (words == 0) { | ||
| 645 | status = IXGBE_ERR_INVALID_ARGUMENT; | ||
| 646 | goto out; | ||
| 647 | } | ||
| 648 | |||
| 649 | if (offset + words > hw->eeprom.word_size) { | ||
| 650 | status = IXGBE_ERR_EEPROM; | ||
| 651 | goto out; | ||
| 652 | } | ||
| 653 | |||
| 654 | /* | ||
| 655 | * The EEPROM page size cannot be queried from the chip. We do lazy | ||
| 656 | * initialization. It is worth to do that when we write large buffer. | ||
| 657 | */ | ||
| 658 | if ((hw->eeprom.word_page_size == 0) && | ||
| 659 | (words > IXGBE_EEPROM_PAGE_SIZE_MAX)) | ||
| 660 | ixgbe_detect_eeprom_page_size_generic(hw, offset); | ||
| 661 | |||
| 662 | /* | ||
| 663 | * We cannot hold synchronization semaphores for too long | ||
| 664 | * to avoid other entity starvation. However it is more efficient | ||
| 665 | * to read in bursts than synchronizing access for each word. | ||
| 666 | */ | ||
| 667 | for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) { | ||
| 668 | count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ? | ||
| 669 | IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i); | ||
| 670 | status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i, | ||
| 671 | count, &data[i]); | ||
| 672 | |||
| 673 | if (status != 0) | ||
| 674 | break; | ||
| 675 | } | ||
| 676 | |||
| 677 | out: | ||
| 678 | return status; | ||
| 679 | } | ||
| 680 | |||
| 681 | /** | ||
| 682 | * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM | ||
| 683 | * @hw: pointer to hardware structure | ||
| 684 | * @offset: offset within the EEPROM to be written to | ||
| 685 | * @words: number of word(s) | ||
| 686 | * @data: 16 bit word(s) to be written to the EEPROM | ||
| 687 | * | ||
| 688 | * If ixgbe_eeprom_update_checksum is not called after this function, the | ||
| 689 | * EEPROM will most likely contain an invalid checksum. | ||
| 690 | **/ | ||
| 691 | static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, | ||
| 692 | u16 words, u16 *data) | ||
| 693 | { | ||
| 694 | s32 status; | ||
| 695 | u16 word; | ||
| 696 | u16 page_size; | ||
| 697 | u16 i; | ||
| 698 | u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI; | ||
| 699 | |||
| 700 | /* Prepare the EEPROM for writing */ | ||
| 701 | status = ixgbe_acquire_eeprom(hw); | ||
| 702 | |||
| 703 | if (status == 0) { | ||
| 704 | if (ixgbe_ready_eeprom(hw) != 0) { | ||
| 705 | ixgbe_release_eeprom(hw); | ||
| 706 | status = IXGBE_ERR_EEPROM; | ||
| 707 | } | ||
| 708 | } | ||
| 709 | |||
| 710 | if (status == 0) { | ||
| 711 | for (i = 0; i < words; i++) { | ||
| 712 | ixgbe_standby_eeprom(hw); | ||
| 713 | |||
| 714 | /* Send the WRITE ENABLE command (8 bit opcode ) */ | ||
| 715 | ixgbe_shift_out_eeprom_bits(hw, | ||
| 716 | IXGBE_EEPROM_WREN_OPCODE_SPI, | ||
| 717 | IXGBE_EEPROM_OPCODE_BITS); | ||
| 718 | |||
| 719 | ixgbe_standby_eeprom(hw); | ||
| 720 | |||
| 721 | /* | ||
| 722 | * Some SPI eeproms use the 8th address bit embedded | ||
| 723 | * in the opcode | ||
| 724 | */ | ||
| 725 | if ((hw->eeprom.address_bits == 8) && | ||
| 726 | ((offset + i) >= 128)) | ||
| 727 | write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; | ||
| 728 | |||
| 729 | /* Send the Write command (8-bit opcode + addr) */ | ||
| 730 | ixgbe_shift_out_eeprom_bits(hw, write_opcode, | ||
| 731 | IXGBE_EEPROM_OPCODE_BITS); | ||
| 732 | ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2), | ||
| 733 | hw->eeprom.address_bits); | ||
| 734 | |||
| 735 | page_size = hw->eeprom.word_page_size; | ||
| 736 | |||
| 737 | /* Send the data in burst via SPI*/ | ||
| 738 | do { | ||
| 739 | word = data[i]; | ||
| 740 | word = (word >> 8) | (word << 8); | ||
| 741 | ixgbe_shift_out_eeprom_bits(hw, word, 16); | ||
| 742 | |||
| 743 | if (page_size == 0) | ||
| 744 | break; | ||
| 745 | |||
| 746 | /* do not wrap around page */ | ||
| 747 | if (((offset + i) & (page_size - 1)) == | ||
| 748 | (page_size - 1)) | ||
| 749 | break; | ||
| 750 | } while (++i < words); | ||
| 751 | |||
| 752 | ixgbe_standby_eeprom(hw); | ||
| 753 | usleep_range(10000, 20000); | ||
| 754 | } | ||
| 755 | /* Done with writing - release the EEPROM */ | ||
| 756 | ixgbe_release_eeprom(hw); | ||
| 757 | } | ||
| 758 | |||
| 759 | return status; | ||
| 760 | } | ||
| 761 | |||
| 762 | /** | ||
| 763 | * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM | ||
| 764 | * @hw: pointer to hardware structure | ||
| 765 | * @offset: offset within the EEPROM to be written to | ||
| 766 | * @data: 16 bit word to be written to the EEPROM | ||
| 767 | * | ||
| 768 | * If ixgbe_eeprom_update_checksum is not called after this function, the | ||
| 769 | * EEPROM will most likely contain an invalid checksum. | ||
| 770 | **/ | ||
| 771 | s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data) | ||
| 772 | { | ||
| 773 | s32 status; | ||
| 774 | |||
| 775 | hw->eeprom.ops.init_params(hw); | ||
| 776 | |||
| 777 | if (offset >= hw->eeprom.word_size) { | ||
| 778 | status = IXGBE_ERR_EEPROM; | ||
| 779 | goto out; | ||
| 780 | } | ||
| 781 | |||
| 782 | status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data); | ||
| 783 | |||
| 784 | out: | ||
| 785 | return status; | ||
| 786 | } | ||
| 787 | |||
| 788 | /** | ||
| 789 | * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang | ||
| 790 | * @hw: pointer to hardware structure | ||
| 791 | * @offset: offset within the EEPROM to be read | ||
| 792 | * @words: number of word(s) | ||
| 793 | * @data: read 16 bit words(s) from EEPROM | ||
| 794 | * | ||
| 795 | * Reads 16 bit word(s) from EEPROM through bit-bang method | ||
| 796 | **/ | ||
| 797 | s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, | ||
| 798 | u16 words, u16 *data) | ||
| 799 | { | ||
| 800 | s32 status = 0; | ||
| 801 | u16 i, count; | ||
| 802 | |||
| 803 | hw->eeprom.ops.init_params(hw); | ||
| 804 | |||
| 805 | if (words == 0) { | ||
| 806 | status = IXGBE_ERR_INVALID_ARGUMENT; | ||
| 807 | goto out; | ||
| 808 | } | ||
| 809 | |||
| 810 | if (offset + words > hw->eeprom.word_size) { | ||
| 811 | status = IXGBE_ERR_EEPROM; | ||
| 812 | goto out; | ||
| 813 | } | ||
| 814 | |||
| 815 | /* | ||
| 816 | * We cannot hold synchronization semaphores for too long | ||
| 817 | * to avoid other entity starvation. However it is more efficient | ||
| 818 | * to read in bursts than synchronizing access for each word. | ||
| 819 | */ | ||
| 820 | for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) { | ||
| 821 | count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ? | ||
| 822 | IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i); | ||
| 823 | |||
| 824 | status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i, | ||
| 825 | count, &data[i]); | ||
| 826 | |||
| 827 | if (status != 0) | ||
| 828 | break; | ||
| 829 | } | ||
| 830 | |||
| 831 | out: | ||
| 832 | return status; | ||
| 833 | } | ||
| 834 | |||
| 835 | /** | ||
| 836 | * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang | ||
| 837 | * @hw: pointer to hardware structure | ||
| 838 | * @offset: offset within the EEPROM to be read | ||
| 839 | * @words: number of word(s) | ||
| 840 | * @data: read 16 bit word(s) from EEPROM | ||
| 841 | * | ||
| 842 | * Reads 16 bit word(s) from EEPROM through bit-bang method | ||
| 843 | **/ | ||
| 844 | static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, | ||
| 845 | u16 words, u16 *data) | ||
| 846 | { | ||
| 847 | s32 status; | ||
| 848 | u16 word_in; | ||
| 849 | u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI; | ||
| 850 | u16 i; | ||
| 851 | |||
| 852 | /* Prepare the EEPROM for reading */ | ||
| 853 | status = ixgbe_acquire_eeprom(hw); | ||
| 854 | |||
| 855 | if (status == 0) { | ||
| 856 | if (ixgbe_ready_eeprom(hw) != 0) { | ||
| 857 | ixgbe_release_eeprom(hw); | ||
| 858 | status = IXGBE_ERR_EEPROM; | ||
| 859 | } | ||
| 860 | } | ||
| 861 | |||
| 862 | if (status == 0) { | ||
| 863 | for (i = 0; i < words; i++) { | ||
| 864 | ixgbe_standby_eeprom(hw); | ||
| 865 | /* | ||
| 866 | * Some SPI eeproms use the 8th address bit embedded | ||
| 867 | * in the opcode | ||
| 868 | */ | ||
| 869 | if ((hw->eeprom.address_bits == 8) && | ||
| 870 | ((offset + i) >= 128)) | ||
| 871 | read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; | ||
| 872 | |||
| 873 | /* Send the READ command (opcode + addr) */ | ||
| 874 | ixgbe_shift_out_eeprom_bits(hw, read_opcode, | ||
| 875 | IXGBE_EEPROM_OPCODE_BITS); | ||
| 876 | ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2), | ||
| 877 | hw->eeprom.address_bits); | ||
| 878 | |||
| 879 | /* Read the data. */ | ||
| 880 | word_in = ixgbe_shift_in_eeprom_bits(hw, 16); | ||
| 881 | data[i] = (word_in >> 8) | (word_in << 8); | ||
| 882 | } | ||
| 883 | |||
| 884 | /* End this read operation */ | ||
| 885 | ixgbe_release_eeprom(hw); | ||
| 886 | } | ||
| 887 | |||
| 888 | return status; | ||
| 889 | } | ||
| 890 | |||
| 891 | /** | ||
| 892 | * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang | ||
| 893 | * @hw: pointer to hardware structure | ||
| 894 | * @offset: offset within the EEPROM to be read | ||
| 895 | * @data: read 16 bit value from EEPROM | ||
| 896 | * | ||
| 897 | * Reads 16 bit value from EEPROM through bit-bang method | ||
| 898 | **/ | ||
| 899 | s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, | ||
| 900 | u16 *data) | ||
| 901 | { | ||
| 902 | s32 status; | ||
| 903 | |||
| 904 | hw->eeprom.ops.init_params(hw); | ||
| 905 | |||
| 906 | if (offset >= hw->eeprom.word_size) { | ||
| 907 | status = IXGBE_ERR_EEPROM; | ||
| 908 | goto out; | ||
| 909 | } | ||
| 910 | |||
| 911 | status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data); | ||
| 912 | |||
| 913 | out: | ||
| 914 | return status; | ||
| 915 | } | ||
| 916 | |||
| 917 | /** | ||
| 918 | * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD | ||
| 919 | * @hw: pointer to hardware structure | ||
| 920 | * @offset: offset of word in the EEPROM to read | ||
| 921 | * @words: number of word(s) | ||
| 922 | * @data: 16 bit word(s) from the EEPROM | ||
| 923 | * | ||
| 924 | * Reads a 16 bit word(s) from the EEPROM using the EERD register. | ||
| 925 | **/ | ||
| 926 | s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset, | ||
| 927 | u16 words, u16 *data) | ||
| 928 | { | ||
| 929 | u32 eerd; | ||
| 930 | s32 status = 0; | ||
| 931 | u32 i; | ||
| 932 | |||
| 933 | hw->eeprom.ops.init_params(hw); | ||
| 934 | |||
| 935 | if (words == 0) { | ||
| 936 | status = IXGBE_ERR_INVALID_ARGUMENT; | ||
| 937 | goto out; | ||
| 938 | } | ||
| 939 | |||
| 940 | if (offset >= hw->eeprom.word_size) { | ||
| 941 | status = IXGBE_ERR_EEPROM; | ||
| 942 | goto out; | ||
| 943 | } | ||
| 944 | |||
| 945 | for (i = 0; i < words; i++) { | ||
| 946 | eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) + | ||
| 947 | IXGBE_EEPROM_RW_REG_START; | ||
| 948 | |||
| 949 | IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd); | ||
| 950 | status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ); | ||
| 951 | |||
| 952 | if (status == 0) { | ||
| 953 | data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >> | ||
| 954 | IXGBE_EEPROM_RW_REG_DATA); | ||
| 955 | } else { | ||
| 956 | hw_dbg(hw, "Eeprom read timed out\n"); | ||
| 957 | goto out; | ||
| 958 | } | ||
| 959 | } | ||
| 960 | out: | ||
| 961 | return status; | ||
| 962 | } | ||
| 963 | |||
| 964 | /** | ||
| 965 | * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size | ||
| 966 | * @hw: pointer to hardware structure | ||
| 967 | * @offset: offset within the EEPROM to be used as a scratch pad | ||
| 968 | * | ||
| 969 | * Discover EEPROM page size by writing marching data at given offset. | ||
| 970 | * This function is called only when we are writing a new large buffer | ||
| 971 | * at given offset so the data would be overwritten anyway. | ||
| 972 | **/ | ||
| 973 | static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw, | ||
| 974 | u16 offset) | ||
| 975 | { | ||
| 976 | u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX]; | ||
| 977 | s32 status = 0; | ||
| 978 | u16 i; | ||
| 979 | |||
| 980 | for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++) | ||
| 981 | data[i] = i; | ||
| 982 | |||
| 983 | hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX; | ||
| 984 | status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, | ||
| 985 | IXGBE_EEPROM_PAGE_SIZE_MAX, data); | ||
| 986 | hw->eeprom.word_page_size = 0; | ||
| 987 | if (status != 0) | ||
| 988 | goto out; | ||
| 989 | |||
| 990 | status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data); | ||
| 991 | if (status != 0) | ||
| 992 | goto out; | ||
| 993 | |||
| 994 | /* | ||
| 995 | * When writing in burst more than the actual page size | ||
| 996 | * EEPROM address wraps around current page. | ||
| 997 | */ | ||
| 998 | hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0]; | ||
| 999 | |||
| 1000 | hw_dbg(hw, "Detected EEPROM page size = %d words.", | ||
| 1001 | hw->eeprom.word_page_size); | ||
| 1002 | out: | ||
| 1003 | return status; | ||
| 1004 | } | ||
| 1005 | |||
| 1006 | /** | ||
| 1007 | * ixgbe_read_eerd_generic - Read EEPROM word using EERD | ||
| 1008 | * @hw: pointer to hardware structure | ||
| 1009 | * @offset: offset of word in the EEPROM to read | ||
| 1010 | * @data: word read from the EEPROM | ||
| 1011 | * | ||
| 1012 | * Reads a 16 bit word from the EEPROM using the EERD register. | ||
| 1013 | **/ | ||
| 1014 | s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data) | ||
| 1015 | { | ||
| 1016 | return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data); | ||
| 1017 | } | ||
| 1018 | |||
| 1019 | /** | ||
| 1020 | * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR | ||
| 1021 | * @hw: pointer to hardware structure | ||
| 1022 | * @offset: offset of word in the EEPROM to write | ||
| 1023 | * @words: number of words | ||
| 1024 | * @data: word(s) write to the EEPROM | ||
| 1025 | * | ||
| 1026 | * Write a 16 bit word(s) to the EEPROM using the EEWR register. | ||
| 1027 | **/ | ||
| 1028 | s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset, | ||
| 1029 | u16 words, u16 *data) | ||
| 1030 | { | ||
| 1031 | u32 eewr; | ||
| 1032 | s32 status = 0; | ||
| 1033 | u16 i; | ||
| 1034 | |||
| 1035 | hw->eeprom.ops.init_params(hw); | ||
| 1036 | |||
| 1037 | if (words == 0) { | ||
| 1038 | status = IXGBE_ERR_INVALID_ARGUMENT; | ||
| 1039 | goto out; | ||
| 1040 | } | ||
| 1041 | |||
| 1042 | if (offset >= hw->eeprom.word_size) { | ||
| 1043 | status = IXGBE_ERR_EEPROM; | ||
| 1044 | goto out; | ||
| 1045 | } | ||
| 1046 | |||
| 1047 | for (i = 0; i < words; i++) { | ||
| 1048 | eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) | | ||
| 1049 | (data[i] << IXGBE_EEPROM_RW_REG_DATA) | | ||
| 1050 | IXGBE_EEPROM_RW_REG_START; | ||
| 1051 | |||
| 1052 | status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE); | ||
| 1053 | if (status != 0) { | ||
| 1054 | hw_dbg(hw, "Eeprom write EEWR timed out\n"); | ||
| 1055 | goto out; | ||
| 1056 | } | ||
| 1057 | |||
| 1058 | IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr); | ||
| 1059 | |||
| 1060 | status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE); | ||
| 1061 | if (status != 0) { | ||
| 1062 | hw_dbg(hw, "Eeprom write EEWR timed out\n"); | ||
| 1063 | goto out; | ||
| 1064 | } | ||
| 1065 | } | ||
| 1066 | |||
| 1067 | out: | ||
| 1068 | return status; | ||
| 1069 | } | ||
| 1070 | |||
| 1071 | /** | ||
| 1072 | * ixgbe_write_eewr_generic - Write EEPROM word using EEWR | ||
| 1073 | * @hw: pointer to hardware structure | ||
| 1074 | * @offset: offset of word in the EEPROM to write | ||
| 1075 | * @data: word write to the EEPROM | ||
| 1076 | * | ||
| 1077 | * Write a 16 bit word to the EEPROM using the EEWR register. | ||
| 1078 | **/ | ||
| 1079 | s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data) | ||
| 1080 | { | ||
| 1081 | return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data); | ||
| 1082 | } | ||
| 1083 | |||
| 1084 | /** | ||
| 1085 | * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status | ||
| 1086 | * @hw: pointer to hardware structure | ||
| 1087 | * @ee_reg: EEPROM flag for polling | ||
| 1088 | * | ||
| 1089 | * Polls the status bit (bit 1) of the EERD or EEWR to determine when the | ||
| 1090 | * read or write is done respectively. | ||
| 1091 | **/ | ||
| 1092 | static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg) | ||
| 1093 | { | ||
| 1094 | u32 i; | ||
| 1095 | u32 reg; | ||
| 1096 | s32 status = IXGBE_ERR_EEPROM; | ||
| 1097 | |||
| 1098 | for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) { | ||
| 1099 | if (ee_reg == IXGBE_NVM_POLL_READ) | ||
| 1100 | reg = IXGBE_READ_REG(hw, IXGBE_EERD); | ||
| 1101 | else | ||
| 1102 | reg = IXGBE_READ_REG(hw, IXGBE_EEWR); | ||
| 1103 | |||
| 1104 | if (reg & IXGBE_EEPROM_RW_REG_DONE) { | ||
| 1105 | status = 0; | ||
| 1106 | break; | ||
| 1107 | } | ||
| 1108 | udelay(5); | ||
| 1109 | } | ||
| 1110 | return status; | ||
| 1111 | } | ||
| 1112 | |||
| 1113 | /** | ||
| 1114 | * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang | ||
| 1115 | * @hw: pointer to hardware structure | ||
| 1116 | * | ||
| 1117 | * Prepares EEPROM for access using bit-bang method. This function should | ||
| 1118 | * be called before issuing a command to the EEPROM. | ||
| 1119 | **/ | ||
| 1120 | static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw) | ||
| 1121 | { | ||
| 1122 | s32 status = 0; | ||
| 1123 | u32 eec; | ||
| 1124 | u32 i; | ||
| 1125 | |||
| 1126 | if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0) | ||
| 1127 | status = IXGBE_ERR_SWFW_SYNC; | ||
| 1128 | |||
| 1129 | if (status == 0) { | ||
| 1130 | eec = IXGBE_READ_REG(hw, IXGBE_EEC); | ||
| 1131 | |||
| 1132 | /* Request EEPROM Access */ | ||
| 1133 | eec |= IXGBE_EEC_REQ; | ||
| 1134 | IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); | ||
| 1135 | |||
| 1136 | for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) { | ||
| 1137 | eec = IXGBE_READ_REG(hw, IXGBE_EEC); | ||
| 1138 | if (eec & IXGBE_EEC_GNT) | ||
| 1139 | break; | ||
| 1140 | udelay(5); | ||
| 1141 | } | ||
| 1142 | |||
| 1143 | /* Release if grant not acquired */ | ||
| 1144 | if (!(eec & IXGBE_EEC_GNT)) { | ||
| 1145 | eec &= ~IXGBE_EEC_REQ; | ||
| 1146 | IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); | ||
| 1147 | hw_dbg(hw, "Could not acquire EEPROM grant\n"); | ||
| 1148 | |||
| 1149 | hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); | ||
| 1150 | status = IXGBE_ERR_EEPROM; | ||
| 1151 | } | ||
| 1152 | |||
| 1153 | /* Setup EEPROM for Read/Write */ | ||
| 1154 | if (status == 0) { | ||
| 1155 | /* Clear CS and SK */ | ||
| 1156 | eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK); | ||
| 1157 | IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); | ||
| 1158 | IXGBE_WRITE_FLUSH(hw); | ||
| 1159 | udelay(1); | ||
| 1160 | } | ||
| 1161 | } | ||
| 1162 | return status; | ||
| 1163 | } | ||
| 1164 | |||
| 1165 | /** | ||
| 1166 | * ixgbe_get_eeprom_semaphore - Get hardware semaphore | ||
| 1167 | * @hw: pointer to hardware structure | ||
| 1168 | * | ||
| 1169 | * Sets the hardware semaphores so EEPROM access can occur for bit-bang method | ||
| 1170 | **/ | ||
| 1171 | static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw) | ||
| 1172 | { | ||
| 1173 | s32 status = IXGBE_ERR_EEPROM; | ||
| 1174 | u32 timeout = 2000; | ||
| 1175 | u32 i; | ||
| 1176 | u32 swsm; | ||
| 1177 | |||
| 1178 | /* Get SMBI software semaphore between device drivers first */ | ||
| 1179 | for (i = 0; i < timeout; i++) { | ||
| 1180 | /* | ||
| 1181 | * If the SMBI bit is 0 when we read it, then the bit will be | ||
| 1182 | * set and we have the semaphore | ||
| 1183 | */ | ||
| 1184 | swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); | ||
| 1185 | if (!(swsm & IXGBE_SWSM_SMBI)) { | ||
| 1186 | status = 0; | ||
| 1187 | break; | ||
| 1188 | } | ||
| 1189 | udelay(50); | ||
| 1190 | } | ||
| 1191 | |||
| 1192 | if (i == timeout) { | ||
| 1193 | hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore " | ||
| 1194 | "not granted.\n"); | ||
| 1195 | /* | ||
| 1196 | * this release is particularly important because our attempts | ||
| 1197 | * above to get the semaphore may have succeeded, and if there | ||
| 1198 | * was a timeout, we should unconditionally clear the semaphore | ||
| 1199 | * bits to free the driver to make progress | ||
| 1200 | */ | ||
| 1201 | ixgbe_release_eeprom_semaphore(hw); | ||
| 1202 | |||
| 1203 | udelay(50); | ||
| 1204 | /* | ||
| 1205 | * one last try | ||
| 1206 | * If the SMBI bit is 0 when we read it, then the bit will be | ||
| 1207 | * set and we have the semaphore | ||
| 1208 | */ | ||
| 1209 | swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); | ||
| 1210 | if (!(swsm & IXGBE_SWSM_SMBI)) | ||
| 1211 | status = 0; | ||
| 1212 | } | ||
| 1213 | |||
| 1214 | /* Now get the semaphore between SW/FW through the SWESMBI bit */ | ||
| 1215 | if (status == 0) { | ||
| 1216 | for (i = 0; i < timeout; i++) { | ||
| 1217 | swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); | ||
| 1218 | |||
| 1219 | /* Set the SW EEPROM semaphore bit to request access */ | ||
| 1220 | swsm |= IXGBE_SWSM_SWESMBI; | ||
| 1221 | IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm); | ||
| 1222 | |||
| 1223 | /* | ||
| 1224 | * If we set the bit successfully then we got the | ||
| 1225 | * semaphore. | ||
| 1226 | */ | ||
| 1227 | swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); | ||
| 1228 | if (swsm & IXGBE_SWSM_SWESMBI) | ||
| 1229 | break; | ||
| 1230 | |||
| 1231 | udelay(50); | ||
| 1232 | } | ||
| 1233 | |||
| 1234 | /* | ||
| 1235 | * Release semaphores and return error if SW EEPROM semaphore | ||
| 1236 | * was not granted because we don't have access to the EEPROM | ||
| 1237 | */ | ||
| 1238 | if (i >= timeout) { | ||
| 1239 | hw_dbg(hw, "SWESMBI Software EEPROM semaphore " | ||
| 1240 | "not granted.\n"); | ||
| 1241 | ixgbe_release_eeprom_semaphore(hw); | ||
| 1242 | status = IXGBE_ERR_EEPROM; | ||
| 1243 | } | ||
| 1244 | } else { | ||
| 1245 | hw_dbg(hw, "Software semaphore SMBI between device drivers " | ||
| 1246 | "not granted.\n"); | ||
| 1247 | } | ||
| 1248 | |||
| 1249 | return status; | ||
| 1250 | } | ||
| 1251 | |||
| 1252 | /** | ||
| 1253 | * ixgbe_release_eeprom_semaphore - Release hardware semaphore | ||
| 1254 | * @hw: pointer to hardware structure | ||
| 1255 | * | ||
| 1256 | * This function clears hardware semaphore bits. | ||
| 1257 | **/ | ||
| 1258 | static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw) | ||
| 1259 | { | ||
| 1260 | u32 swsm; | ||
| 1261 | |||
| 1262 | swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); | ||
| 1263 | |||
| 1264 | /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */ | ||
| 1265 | swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI); | ||
| 1266 | IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm); | ||
| 1267 | IXGBE_WRITE_FLUSH(hw); | ||
| 1268 | } | ||
| 1269 | |||
| 1270 | /** | ||
| 1271 | * ixgbe_ready_eeprom - Polls for EEPROM ready | ||
| 1272 | * @hw: pointer to hardware structure | ||
| 1273 | **/ | ||
| 1274 | static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw) | ||
| 1275 | { | ||
| 1276 | s32 status = 0; | ||
| 1277 | u16 i; | ||
| 1278 | u8 spi_stat_reg; | ||
| 1279 | |||
| 1280 | /* | ||
| 1281 | * Read "Status Register" repeatedly until the LSB is cleared. The | ||
| 1282 | * EEPROM will signal that the command has been completed by clearing | ||
| 1283 | * bit 0 of the internal status register. If it's not cleared within | ||
| 1284 | * 5 milliseconds, then error out. | ||
| 1285 | */ | ||
| 1286 | for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) { | ||
| 1287 | ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI, | ||
| 1288 | IXGBE_EEPROM_OPCODE_BITS); | ||
| 1289 | spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8); | ||
| 1290 | if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI)) | ||
| 1291 | break; | ||
| 1292 | |||
| 1293 | udelay(5); | ||
| 1294 | ixgbe_standby_eeprom(hw); | ||
| 1295 | } | ||
| 1296 | |||
| 1297 | /* | ||
| 1298 | * On some parts, SPI write time could vary from 0-20mSec on 3.3V | ||
| 1299 | * devices (and only 0-5mSec on 5V devices) | ||
| 1300 | */ | ||
| 1301 | if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) { | ||
| 1302 | hw_dbg(hw, "SPI EEPROM Status error\n"); | ||
| 1303 | status = IXGBE_ERR_EEPROM; | ||
| 1304 | } | ||
| 1305 | |||
| 1306 | return status; | ||
| 1307 | } | ||
| 1308 | |||
| 1309 | /** | ||
| 1310 | * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state | ||
| 1311 | * @hw: pointer to hardware structure | ||
| 1312 | **/ | ||
| 1313 | static void ixgbe_standby_eeprom(struct ixgbe_hw *hw) | ||
| 1314 | { | ||
| 1315 | u32 eec; | ||
| 1316 | |||
| 1317 | eec = IXGBE_READ_REG(hw, IXGBE_EEC); | ||
| 1318 | |||
| 1319 | /* Toggle CS to flush commands */ | ||
| 1320 | eec |= IXGBE_EEC_CS; | ||
| 1321 | IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); | ||
| 1322 | IXGBE_WRITE_FLUSH(hw); | ||
| 1323 | udelay(1); | ||
| 1324 | eec &= ~IXGBE_EEC_CS; | ||
| 1325 | IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); | ||
| 1326 | IXGBE_WRITE_FLUSH(hw); | ||
| 1327 | udelay(1); | ||
| 1328 | } | ||
| 1329 | |||
| 1330 | /** | ||
| 1331 | * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM. | ||
| 1332 | * @hw: pointer to hardware structure | ||
| 1333 | * @data: data to send to the EEPROM | ||
| 1334 | * @count: number of bits to shift out | ||
| 1335 | **/ | ||
| 1336 | static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, | ||
| 1337 | u16 count) | ||
| 1338 | { | ||
| 1339 | u32 eec; | ||
| 1340 | u32 mask; | ||
| 1341 | u32 i; | ||
| 1342 | |||
| 1343 | eec = IXGBE_READ_REG(hw, IXGBE_EEC); | ||
| 1344 | |||
| 1345 | /* | ||
| 1346 | * Mask is used to shift "count" bits of "data" out to the EEPROM | ||
| 1347 | * one bit at a time. Determine the starting bit based on count | ||
| 1348 | */ | ||
| 1349 | mask = 0x01 << (count - 1); | ||
| 1350 | |||
| 1351 | for (i = 0; i < count; i++) { | ||
| 1352 | /* | ||
| 1353 | * A "1" is shifted out to the EEPROM by setting bit "DI" to a | ||
| 1354 | * "1", and then raising and then lowering the clock (the SK | ||
| 1355 | * bit controls the clock input to the EEPROM). A "0" is | ||
| 1356 | * shifted out to the EEPROM by setting "DI" to "0" and then | ||
| 1357 | * raising and then lowering the clock. | ||
| 1358 | */ | ||
| 1359 | if (data & mask) | ||
| 1360 | eec |= IXGBE_EEC_DI; | ||
| 1361 | else | ||
| 1362 | eec &= ~IXGBE_EEC_DI; | ||
| 1363 | |||
| 1364 | IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); | ||
| 1365 | IXGBE_WRITE_FLUSH(hw); | ||
| 1366 | |||
| 1367 | udelay(1); | ||
| 1368 | |||
| 1369 | ixgbe_raise_eeprom_clk(hw, &eec); | ||
| 1370 | ixgbe_lower_eeprom_clk(hw, &eec); | ||
| 1371 | |||
| 1372 | /* | ||
| 1373 | * Shift mask to signify next bit of data to shift in to the | ||
| 1374 | * EEPROM | ||
| 1375 | */ | ||
| 1376 | mask = mask >> 1; | ||
| 1377 | } | ||
| 1378 | |||
| 1379 | /* We leave the "DI" bit set to "0" when we leave this routine. */ | ||
| 1380 | eec &= ~IXGBE_EEC_DI; | ||
| 1381 | IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); | ||
| 1382 | IXGBE_WRITE_FLUSH(hw); | ||
| 1383 | } | ||
| 1384 | |||
| 1385 | /** | ||
| 1386 | * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM | ||
| 1387 | * @hw: pointer to hardware structure | ||
| 1388 | **/ | ||
| 1389 | static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count) | ||
| 1390 | { | ||
| 1391 | u32 eec; | ||
| 1392 | u32 i; | ||
| 1393 | u16 data = 0; | ||
| 1394 | |||
| 1395 | /* | ||
| 1396 | * In order to read a register from the EEPROM, we need to shift | ||
| 1397 | * 'count' bits in from the EEPROM. Bits are "shifted in" by raising | ||
| 1398 | * the clock input to the EEPROM (setting the SK bit), and then reading | ||
| 1399 | * the value of the "DO" bit. During this "shifting in" process the | ||
| 1400 | * "DI" bit should always be clear. | ||
| 1401 | */ | ||
| 1402 | eec = IXGBE_READ_REG(hw, IXGBE_EEC); | ||
| 1403 | |||
| 1404 | eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI); | ||
| 1405 | |||
| 1406 | for (i = 0; i < count; i++) { | ||
| 1407 | data = data << 1; | ||
| 1408 | ixgbe_raise_eeprom_clk(hw, &eec); | ||
| 1409 | |||
| 1410 | eec = IXGBE_READ_REG(hw, IXGBE_EEC); | ||
| 1411 | |||
| 1412 | eec &= ~(IXGBE_EEC_DI); | ||
| 1413 | if (eec & IXGBE_EEC_DO) | ||
| 1414 | data |= 1; | ||
| 1415 | |||
| 1416 | ixgbe_lower_eeprom_clk(hw, &eec); | ||
| 1417 | } | ||
| 1418 | |||
| 1419 | return data; | ||
| 1420 | } | ||
| 1421 | |||
| 1422 | /** | ||
| 1423 | * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input. | ||
| 1424 | * @hw: pointer to hardware structure | ||
| 1425 | * @eec: EEC register's current value | ||
| 1426 | **/ | ||
| 1427 | static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) | ||
| 1428 | { | ||
| 1429 | /* | ||
| 1430 | * Raise the clock input to the EEPROM | ||
| 1431 | * (setting the SK bit), then delay | ||
| 1432 | */ | ||
| 1433 | *eec = *eec | IXGBE_EEC_SK; | ||
| 1434 | IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec); | ||
| 1435 | IXGBE_WRITE_FLUSH(hw); | ||
| 1436 | udelay(1); | ||
| 1437 | } | ||
| 1438 | |||
| 1439 | /** | ||
| 1440 | * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input. | ||
| 1441 | * @hw: pointer to hardware structure | ||
| 1442 | * @eecd: EECD's current value | ||
| 1443 | **/ | ||
| 1444 | static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) | ||
| 1445 | { | ||
| 1446 | /* | ||
| 1447 | * Lower the clock input to the EEPROM (clearing the SK bit), then | ||
| 1448 | * delay | ||
| 1449 | */ | ||
| 1450 | *eec = *eec & ~IXGBE_EEC_SK; | ||
| 1451 | IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec); | ||
| 1452 | IXGBE_WRITE_FLUSH(hw); | ||
| 1453 | udelay(1); | ||
| 1454 | } | ||
| 1455 | |||
| 1456 | /** | ||
| 1457 | * ixgbe_release_eeprom - Release EEPROM, release semaphores | ||
| 1458 | * @hw: pointer to hardware structure | ||
| 1459 | **/ | ||
| 1460 | static void ixgbe_release_eeprom(struct ixgbe_hw *hw) | ||
| 1461 | { | ||
| 1462 | u32 eec; | ||
| 1463 | |||
| 1464 | eec = IXGBE_READ_REG(hw, IXGBE_EEC); | ||
| 1465 | |||
| 1466 | eec |= IXGBE_EEC_CS; /* Pull CS high */ | ||
| 1467 | eec &= ~IXGBE_EEC_SK; /* Lower SCK */ | ||
| 1468 | |||
| 1469 | IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); | ||
| 1470 | IXGBE_WRITE_FLUSH(hw); | ||
| 1471 | |||
| 1472 | udelay(1); | ||
| 1473 | |||
| 1474 | /* Stop requesting EEPROM access */ | ||
| 1475 | eec &= ~IXGBE_EEC_REQ; | ||
| 1476 | IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); | ||
| 1477 | |||
| 1478 | hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); | ||
| 1479 | |||
| 1480 | /* | ||
| 1481 | * Delay before attempt to obtain semaphore again to allow FW | ||
| 1482 | * access. semaphore_delay is in ms we need us for usleep_range | ||
| 1483 | */ | ||
| 1484 | usleep_range(hw->eeprom.semaphore_delay * 1000, | ||
| 1485 | hw->eeprom.semaphore_delay * 2000); | ||
| 1486 | } | ||
| 1487 | |||
| 1488 | /** | ||
| 1489 | * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum | ||
| 1490 | * @hw: pointer to hardware structure | ||
| 1491 | **/ | ||
| 1492 | u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw) | ||
| 1493 | { | ||
| 1494 | u16 i; | ||
| 1495 | u16 j; | ||
| 1496 | u16 checksum = 0; | ||
| 1497 | u16 length = 0; | ||
| 1498 | u16 pointer = 0; | ||
| 1499 | u16 word = 0; | ||
| 1500 | |||
| 1501 | /* Include 0x0-0x3F in the checksum */ | ||
| 1502 | for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) { | ||
| 1503 | if (hw->eeprom.ops.read(hw, i, &word) != 0) { | ||
| 1504 | hw_dbg(hw, "EEPROM read failed\n"); | ||
| 1505 | break; | ||
| 1506 | } | ||
| 1507 | checksum += word; | ||
| 1508 | } | ||
| 1509 | |||
| 1510 | /* Include all data from pointers except for the fw pointer */ | ||
| 1511 | for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) { | ||
| 1512 | hw->eeprom.ops.read(hw, i, &pointer); | ||
| 1513 | |||
| 1514 | /* Make sure the pointer seems valid */ | ||
| 1515 | if (pointer != 0xFFFF && pointer != 0) { | ||
| 1516 | hw->eeprom.ops.read(hw, pointer, &length); | ||
| 1517 | |||
| 1518 | if (length != 0xFFFF && length != 0) { | ||
| 1519 | for (j = pointer+1; j <= pointer+length; j++) { | ||
| 1520 | hw->eeprom.ops.read(hw, j, &word); | ||
| 1521 | checksum += word; | ||
| 1522 | } | ||
| 1523 | } | ||
| 1524 | } | ||
| 1525 | } | ||
| 1526 | |||
| 1527 | checksum = (u16)IXGBE_EEPROM_SUM - checksum; | ||
| 1528 | |||
| 1529 | return checksum; | ||
| 1530 | } | ||
| 1531 | |||
| 1532 | /** | ||
| 1533 | * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum | ||
| 1534 | * @hw: pointer to hardware structure | ||
| 1535 | * @checksum_val: calculated checksum | ||
| 1536 | * | ||
| 1537 | * Performs checksum calculation and validates the EEPROM checksum. If the | ||
| 1538 | * caller does not need checksum_val, the value can be NULL. | ||
| 1539 | **/ | ||
| 1540 | s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw, | ||
| 1541 | u16 *checksum_val) | ||
| 1542 | { | ||
| 1543 | s32 status; | ||
| 1544 | u16 checksum; | ||
| 1545 | u16 read_checksum = 0; | ||
| 1546 | |||
| 1547 | /* | ||
| 1548 | * Read the first word from the EEPROM. If this times out or fails, do | ||
| 1549 | * not continue or we could be in for a very long wait while every | ||
| 1550 | * EEPROM read fails | ||
| 1551 | */ | ||
| 1552 | status = hw->eeprom.ops.read(hw, 0, &checksum); | ||
| 1553 | |||
| 1554 | if (status == 0) { | ||
| 1555 | checksum = hw->eeprom.ops.calc_checksum(hw); | ||
| 1556 | |||
| 1557 | hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum); | ||
| 1558 | |||
| 1559 | /* | ||
| 1560 | * Verify read checksum from EEPROM is the same as | ||
| 1561 | * calculated checksum | ||
| 1562 | */ | ||
| 1563 | if (read_checksum != checksum) | ||
| 1564 | status = IXGBE_ERR_EEPROM_CHECKSUM; | ||
| 1565 | |||
| 1566 | /* If the user cares, return the calculated checksum */ | ||
| 1567 | if (checksum_val) | ||
| 1568 | *checksum_val = checksum; | ||
| 1569 | } else { | ||
| 1570 | hw_dbg(hw, "EEPROM read failed\n"); | ||
| 1571 | } | ||
| 1572 | |||
| 1573 | return status; | ||
| 1574 | } | ||
| 1575 | |||
| 1576 | /** | ||
| 1577 | * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum | ||
| 1578 | * @hw: pointer to hardware structure | ||
| 1579 | **/ | ||
| 1580 | s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw) | ||
| 1581 | { | ||
| 1582 | s32 status; | ||
| 1583 | u16 checksum; | ||
| 1584 | |||
| 1585 | /* | ||
| 1586 | * Read the first word from the EEPROM. If this times out or fails, do | ||
| 1587 | * not continue or we could be in for a very long wait while every | ||
| 1588 | * EEPROM read fails | ||
| 1589 | */ | ||
| 1590 | status = hw->eeprom.ops.read(hw, 0, &checksum); | ||
| 1591 | |||
| 1592 | if (status == 0) { | ||
| 1593 | checksum = hw->eeprom.ops.calc_checksum(hw); | ||
| 1594 | status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, | ||
| 1595 | checksum); | ||
| 1596 | } else { | ||
| 1597 | hw_dbg(hw, "EEPROM read failed\n"); | ||
| 1598 | } | ||
| 1599 | |||
| 1600 | return status; | ||
| 1601 | } | ||
| 1602 | |||
| 1603 | /** | ||
| 1604 | * ixgbe_validate_mac_addr - Validate MAC address | ||
| 1605 | * @mac_addr: pointer to MAC address. | ||
| 1606 | * | ||
| 1607 | * Tests a MAC address to ensure it is a valid Individual Address | ||
| 1608 | **/ | ||
| 1609 | s32 ixgbe_validate_mac_addr(u8 *mac_addr) | ||
| 1610 | { | ||
| 1611 | s32 status = 0; | ||
| 1612 | |||
| 1613 | /* Make sure it is not a multicast address */ | ||
| 1614 | if (IXGBE_IS_MULTICAST(mac_addr)) | ||
| 1615 | status = IXGBE_ERR_INVALID_MAC_ADDR; | ||
| 1616 | /* Not a broadcast address */ | ||
| 1617 | else if (IXGBE_IS_BROADCAST(mac_addr)) | ||
| 1618 | status = IXGBE_ERR_INVALID_MAC_ADDR; | ||
| 1619 | /* Reject the zero address */ | ||
| 1620 | else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 && | ||
| 1621 | mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) | ||
| 1622 | status = IXGBE_ERR_INVALID_MAC_ADDR; | ||
| 1623 | |||
| 1624 | return status; | ||
| 1625 | } | ||
| 1626 | |||
| 1627 | /** | ||
| 1628 | * ixgbe_set_rar_generic - Set Rx address register | ||
| 1629 | * @hw: pointer to hardware structure | ||
| 1630 | * @index: Receive address register to write | ||
| 1631 | * @addr: Address to put into receive address register | ||
| 1632 | * @vmdq: VMDq "set" or "pool" index | ||
| 1633 | * @enable_addr: set flag that address is active | ||
| 1634 | * | ||
| 1635 | * Puts an ethernet address into a receive address register. | ||
| 1636 | **/ | ||
| 1637 | s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq, | ||
| 1638 | u32 enable_addr) | ||
| 1639 | { | ||
| 1640 | u32 rar_low, rar_high; | ||
| 1641 | u32 rar_entries = hw->mac.num_rar_entries; | ||
| 1642 | |||
| 1643 | /* Make sure we are using a valid rar index range */ | ||
| 1644 | if (index >= rar_entries) { | ||
| 1645 | hw_dbg(hw, "RAR index %d is out of range.\n", index); | ||
| 1646 | return IXGBE_ERR_INVALID_ARGUMENT; | ||
| 1647 | } | ||
| 1648 | |||
| 1649 | /* setup VMDq pool selection before this RAR gets enabled */ | ||
| 1650 | hw->mac.ops.set_vmdq(hw, index, vmdq); | ||
| 1651 | |||
| 1652 | /* | ||
| 1653 | * HW expects these in little endian so we reverse the byte | ||
| 1654 | * order from network order (big endian) to little endian | ||
| 1655 | */ | ||
| 1656 | rar_low = ((u32)addr[0] | | ||
| 1657 | ((u32)addr[1] << 8) | | ||
| 1658 | ((u32)addr[2] << 16) | | ||
| 1659 | ((u32)addr[3] << 24)); | ||
| 1660 | /* | ||
| 1661 | * Some parts put the VMDq setting in the extra RAH bits, | ||
| 1662 | * so save everything except the lower 16 bits that hold part | ||
| 1663 | * of the address and the address valid bit. | ||
| 1664 | */ | ||
| 1665 | rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); | ||
| 1666 | rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); | ||
| 1667 | rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8)); | ||
| 1668 | |||
| 1669 | if (enable_addr != 0) | ||
| 1670 | rar_high |= IXGBE_RAH_AV; | ||
| 1671 | |||
| 1672 | IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low); | ||
| 1673 | IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); | ||
| 1674 | |||
| 1675 | return 0; | ||
| 1676 | } | ||
| 1677 | |||
| 1678 | /** | ||
| 1679 | * ixgbe_clear_rar_generic - Remove Rx address register | ||
| 1680 | * @hw: pointer to hardware structure | ||
| 1681 | * @index: Receive address register to write | ||
| 1682 | * | ||
| 1683 | * Clears an ethernet address from a receive address register. | ||
| 1684 | **/ | ||
| 1685 | s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index) | ||
| 1686 | { | ||
| 1687 | u32 rar_high; | ||
| 1688 | u32 rar_entries = hw->mac.num_rar_entries; | ||
| 1689 | |||
| 1690 | /* Make sure we are using a valid rar index range */ | ||
| 1691 | if (index >= rar_entries) { | ||
| 1692 | hw_dbg(hw, "RAR index %d is out of range.\n", index); | ||
| 1693 | return IXGBE_ERR_INVALID_ARGUMENT; | ||
| 1694 | } | ||
| 1695 | |||
| 1696 | /* | ||
| 1697 | * Some parts put the VMDq setting in the extra RAH bits, | ||
| 1698 | * so save everything except the lower 16 bits that hold part | ||
| 1699 | * of the address and the address valid bit. | ||
| 1700 | */ | ||
| 1701 | rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); | ||
| 1702 | rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); | ||
| 1703 | |||
| 1704 | IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0); | ||
| 1705 | IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); | ||
| 1706 | |||
| 1707 | /* clear VMDq pool/queue selection for this RAR */ | ||
| 1708 | hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL); | ||
| 1709 | |||
| 1710 | return 0; | ||
| 1711 | } | ||
| 1712 | |||
| 1713 | /** | ||
| 1714 | * ixgbe_init_rx_addrs_generic - Initializes receive address filters. | ||
| 1715 | * @hw: pointer to hardware structure | ||
| 1716 | * | ||
| 1717 | * Places the MAC address in receive address register 0 and clears the rest | ||
| 1718 | * of the receive address registers. Clears the multicast table. Assumes | ||
| 1719 | * the receiver is in reset when the routine is called. | ||
| 1720 | **/ | ||
| 1721 | s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw) | ||
| 1722 | { | ||
| 1723 | u32 i; | ||
| 1724 | u32 rar_entries = hw->mac.num_rar_entries; | ||
| 1725 | |||
| 1726 | /* | ||
| 1727 | * If the current mac address is valid, assume it is a software override | ||
| 1728 | * to the permanent address. | ||
| 1729 | * Otherwise, use the permanent address from the eeprom. | ||
| 1730 | */ | ||
| 1731 | if (ixgbe_validate_mac_addr(hw->mac.addr) == | ||
| 1732 | IXGBE_ERR_INVALID_MAC_ADDR) { | ||
| 1733 | /* Get the MAC address from the RAR0 for later reference */ | ||
| 1734 | hw->mac.ops.get_mac_addr(hw, hw->mac.addr); | ||
| 1735 | |||
| 1736 | hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr); | ||
| 1737 | } else { | ||
| 1738 | /* Setup the receive address. */ | ||
| 1739 | hw_dbg(hw, "Overriding MAC Address in RAR[0]\n"); | ||
| 1740 | hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr); | ||
| 1741 | |||
| 1742 | hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV); | ||
| 1743 | |||
| 1744 | /* clear VMDq pool/queue selection for RAR 0 */ | ||
| 1745 | hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL); | ||
| 1746 | } | ||
| 1747 | hw->addr_ctrl.overflow_promisc = 0; | ||
| 1748 | |||
| 1749 | hw->addr_ctrl.rar_used_count = 1; | ||
| 1750 | |||
| 1751 | /* Zero out the other receive addresses. */ | ||
| 1752 | hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1); | ||
| 1753 | for (i = 1; i < rar_entries; i++) { | ||
| 1754 | IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0); | ||
| 1755 | IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0); | ||
| 1756 | } | ||
| 1757 | |||
| 1758 | /* Clear the MTA */ | ||
| 1759 | hw->addr_ctrl.mta_in_use = 0; | ||
| 1760 | IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); | ||
| 1761 | |||
| 1762 | hw_dbg(hw, " Clearing MTA\n"); | ||
| 1763 | for (i = 0; i < hw->mac.mcft_size; i++) | ||
| 1764 | IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0); | ||
| 1765 | |||
| 1766 | if (hw->mac.ops.init_uta_tables) | ||
| 1767 | hw->mac.ops.init_uta_tables(hw); | ||
| 1768 | |||
| 1769 | return 0; | ||
| 1770 | } | ||
| 1771 | |||
| 1772 | /** | ||
| 1773 | * ixgbe_mta_vector - Determines bit-vector in multicast table to set | ||
| 1774 | * @hw: pointer to hardware structure | ||
| 1775 | * @mc_addr: the multicast address | ||
| 1776 | * | ||
| 1777 | * Extracts the 12 bits, from a multicast address, to determine which | ||
| 1778 | * bit-vector to set in the multicast table. The hardware uses 12 bits, from | ||
| 1779 | * incoming rx multicast addresses, to determine the bit-vector to check in | ||
| 1780 | * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set | ||
| 1781 | * by the MO field of the MCSTCTRL. The MO field is set during initialization | ||
| 1782 | * to mc_filter_type. | ||
| 1783 | **/ | ||
| 1784 | static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr) | ||
| 1785 | { | ||
| 1786 | u32 vector = 0; | ||
| 1787 | |||
| 1788 | switch (hw->mac.mc_filter_type) { | ||
| 1789 | case 0: /* use bits [47:36] of the address */ | ||
| 1790 | vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); | ||
| 1791 | break; | ||
| 1792 | case 1: /* use bits [46:35] of the address */ | ||
| 1793 | vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); | ||
| 1794 | break; | ||
| 1795 | case 2: /* use bits [45:34] of the address */ | ||
| 1796 | vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); | ||
| 1797 | break; | ||
| 1798 | case 3: /* use bits [43:32] of the address */ | ||
| 1799 | vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); | ||
| 1800 | break; | ||
| 1801 | default: /* Invalid mc_filter_type */ | ||
| 1802 | hw_dbg(hw, "MC filter type param set incorrectly\n"); | ||
| 1803 | break; | ||
| 1804 | } | ||
| 1805 | |||
| 1806 | /* vector can only be 12-bits or boundary will be exceeded */ | ||
| 1807 | vector &= 0xFFF; | ||
| 1808 | return vector; | ||
| 1809 | } | ||
| 1810 | |||
| 1811 | /** | ||
| 1812 | * ixgbe_set_mta - Set bit-vector in multicast table | ||
| 1813 | * @hw: pointer to hardware structure | ||
| 1814 | * @hash_value: Multicast address hash value | ||
| 1815 | * | ||
| 1816 | * Sets the bit-vector in the multicast table. | ||
| 1817 | **/ | ||
| 1818 | static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr) | ||
| 1819 | { | ||
| 1820 | u32 vector; | ||
| 1821 | u32 vector_bit; | ||
| 1822 | u32 vector_reg; | ||
| 1823 | |||
| 1824 | hw->addr_ctrl.mta_in_use++; | ||
| 1825 | |||
| 1826 | vector = ixgbe_mta_vector(hw, mc_addr); | ||
| 1827 | hw_dbg(hw, " bit-vector = 0x%03X\n", vector); | ||
| 1828 | |||
| 1829 | /* | ||
| 1830 | * The MTA is a register array of 128 32-bit registers. It is treated | ||
| 1831 | * like an array of 4096 bits. We want to set bit | ||
| 1832 | * BitArray[vector_value]. So we figure out what register the bit is | ||
| 1833 | * in, read it, OR in the new bit, then write back the new value. The | ||
| 1834 | * register is determined by the upper 7 bits of the vector value and | ||
| 1835 | * the bit within that register are determined by the lower 5 bits of | ||
| 1836 | * the value. | ||
| 1837 | */ | ||
| 1838 | vector_reg = (vector >> 5) & 0x7F; | ||
| 1839 | vector_bit = vector & 0x1F; | ||
| 1840 | hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit); | ||
| 1841 | } | ||
| 1842 | |||
| 1843 | /** | ||
| 1844 | * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses | ||
| 1845 | * @hw: pointer to hardware structure | ||
| 1846 | * @netdev: pointer to net device structure | ||
| 1847 | * | ||
| 1848 | * The given list replaces any existing list. Clears the MC addrs from receive | ||
| 1849 | * address registers and the multicast table. Uses unused receive address | ||
| 1850 | * registers for the first multicast addresses, and hashes the rest into the | ||
| 1851 | * multicast table. | ||
| 1852 | **/ | ||
| 1853 | s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, | ||
| 1854 | struct net_device *netdev) | ||
| 1855 | { | ||
| 1856 | struct netdev_hw_addr *ha; | ||
| 1857 | u32 i; | ||
| 1858 | |||
| 1859 | /* | ||
| 1860 | * Set the new number of MC addresses that we are being requested to | ||
| 1861 | * use. | ||
| 1862 | */ | ||
| 1863 | hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev); | ||
| 1864 | hw->addr_ctrl.mta_in_use = 0; | ||
| 1865 | |||
| 1866 | /* Clear mta_shadow */ | ||
| 1867 | hw_dbg(hw, " Clearing MTA\n"); | ||
| 1868 | memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); | ||
| 1869 | |||
| 1870 | /* Update mta shadow */ | ||
| 1871 | netdev_for_each_mc_addr(ha, netdev) { | ||
| 1872 | hw_dbg(hw, " Adding the multicast addresses:\n"); | ||
| 1873 | ixgbe_set_mta(hw, ha->addr); | ||
| 1874 | } | ||
| 1875 | |||
| 1876 | /* Enable mta */ | ||
| 1877 | for (i = 0; i < hw->mac.mcft_size; i++) | ||
| 1878 | IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i, | ||
| 1879 | hw->mac.mta_shadow[i]); | ||
| 1880 | |||
| 1881 | if (hw->addr_ctrl.mta_in_use > 0) | ||
| 1882 | IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, | ||
| 1883 | IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type); | ||
| 1884 | |||
| 1885 | hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n"); | ||
| 1886 | return 0; | ||
| 1887 | } | ||
| 1888 | |||
| 1889 | /** | ||
| 1890 | * ixgbe_enable_mc_generic - Enable multicast address in RAR | ||
| 1891 | * @hw: pointer to hardware structure | ||
| 1892 | * | ||
| 1893 | * Enables multicast address in RAR and the use of the multicast hash table. | ||
| 1894 | **/ | ||
| 1895 | s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw) | ||
| 1896 | { | ||
| 1897 | struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; | ||
| 1898 | |||
| 1899 | if (a->mta_in_use > 0) | ||
| 1900 | IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE | | ||
| 1901 | hw->mac.mc_filter_type); | ||
| 1902 | |||
| 1903 | return 0; | ||
| 1904 | } | ||
| 1905 | |||
| 1906 | /** | ||
| 1907 | * ixgbe_disable_mc_generic - Disable multicast address in RAR | ||
| 1908 | * @hw: pointer to hardware structure | ||
| 1909 | * | ||
| 1910 | * Disables multicast address in RAR and the use of the multicast hash table. | ||
| 1911 | **/ | ||
| 1912 | s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw) | ||
| 1913 | { | ||
| 1914 | struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; | ||
| 1915 | |||
| 1916 | if (a->mta_in_use > 0) | ||
| 1917 | IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); | ||
| 1918 | |||
| 1919 | return 0; | ||
| 1920 | } | ||
| 1921 | |||
| 1922 | /** | ||
| 1923 | * ixgbe_fc_enable_generic - Enable flow control | ||
| 1924 | * @hw: pointer to hardware structure | ||
| 1925 | * @packetbuf_num: packet buffer number (0-7) | ||
| 1926 | * | ||
| 1927 | * Enable flow control according to the current settings. | ||
| 1928 | **/ | ||
| 1929 | s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num) | ||
| 1930 | { | ||
| 1931 | s32 ret_val = 0; | ||
| 1932 | u32 mflcn_reg, fccfg_reg; | ||
| 1933 | u32 reg; | ||
| 1934 | u32 rx_pba_size; | ||
| 1935 | u32 fcrtl, fcrth; | ||
| 1936 | |||
| 1937 | #ifdef CONFIG_DCB | ||
| 1938 | if (hw->fc.requested_mode == ixgbe_fc_pfc) | ||
| 1939 | goto out; | ||
| 1940 | |||
| 1941 | #endif /* CONFIG_DCB */ | ||
| 1942 | /* Negotiate the fc mode to use */ | ||
| 1943 | ret_val = ixgbe_fc_autoneg(hw); | ||
| 1944 | if (ret_val == IXGBE_ERR_FLOW_CONTROL) | ||
| 1945 | goto out; | ||
| 1946 | |||
| 1947 | /* Disable any previous flow control settings */ | ||
| 1948 | mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN); | ||
| 1949 | mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE); | ||
| 1950 | |||
| 1951 | fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG); | ||
| 1952 | fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY); | ||
| 1953 | |||
| 1954 | /* | ||
| 1955 | * The possible values of fc.current_mode are: | ||
| 1956 | * 0: Flow control is completely disabled | ||
| 1957 | * 1: Rx flow control is enabled (we can receive pause frames, | ||
| 1958 | * but not send pause frames). | ||
| 1959 | * 2: Tx flow control is enabled (we can send pause frames but | ||
| 1960 | * we do not support receiving pause frames). | ||
| 1961 | * 3: Both Rx and Tx flow control (symmetric) are enabled. | ||
| 1962 | #ifdef CONFIG_DCB | ||
| 1963 | * 4: Priority Flow Control is enabled. | ||
| 1964 | #endif | ||
| 1965 | * other: Invalid. | ||
| 1966 | */ | ||
| 1967 | switch (hw->fc.current_mode) { | ||
| 1968 | case ixgbe_fc_none: | ||
| 1969 | /* | ||
| 1970 | * Flow control is disabled by software override or autoneg. | ||
| 1971 | * The code below will actually disable it in the HW. | ||
| 1972 | */ | ||
| 1973 | break; | ||
| 1974 | case ixgbe_fc_rx_pause: | ||
| 1975 | /* | ||
| 1976 | * Rx Flow control is enabled and Tx Flow control is | ||
| 1977 | * disabled by software override. Since there really | ||
| 1978 | * isn't a way to advertise that we are capable of RX | ||
| 1979 | * Pause ONLY, we will advertise that we support both | ||
| 1980 | * symmetric and asymmetric Rx PAUSE. Later, we will | ||
| 1981 | * disable the adapter's ability to send PAUSE frames. | ||
| 1982 | */ | ||
| 1983 | mflcn_reg |= IXGBE_MFLCN_RFCE; | ||
| 1984 | break; | ||
| 1985 | case ixgbe_fc_tx_pause: | ||
| 1986 | /* | ||
| 1987 | * Tx Flow control is enabled, and Rx Flow control is | ||
| 1988 | * disabled by software override. | ||
| 1989 | */ | ||
| 1990 | fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; | ||
| 1991 | break; | ||
| 1992 | case ixgbe_fc_full: | ||
| 1993 | /* Flow control (both Rx and Tx) is enabled by SW override. */ | ||
| 1994 | mflcn_reg |= IXGBE_MFLCN_RFCE; | ||
| 1995 | fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; | ||
| 1996 | break; | ||
| 1997 | #ifdef CONFIG_DCB | ||
| 1998 | case ixgbe_fc_pfc: | ||
| 1999 | goto out; | ||
| 2000 | break; | ||
| 2001 | #endif /* CONFIG_DCB */ | ||
| 2002 | default: | ||
| 2003 | hw_dbg(hw, "Flow control param set incorrectly\n"); | ||
| 2004 | ret_val = IXGBE_ERR_CONFIG; | ||
| 2005 | goto out; | ||
| 2006 | break; | ||
| 2007 | } | ||
| 2008 | |||
| 2009 | /* Set 802.3x based flow control settings. */ | ||
| 2010 | mflcn_reg |= IXGBE_MFLCN_DPF; | ||
| 2011 | IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg); | ||
| 2012 | IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg); | ||
| 2013 | |||
| 2014 | rx_pba_size = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num)); | ||
| 2015 | rx_pba_size >>= IXGBE_RXPBSIZE_SHIFT; | ||
| 2016 | |||
| 2017 | fcrth = (rx_pba_size - hw->fc.high_water) << 10; | ||
| 2018 | fcrtl = (rx_pba_size - hw->fc.low_water) << 10; | ||
| 2019 | |||
| 2020 | if (hw->fc.current_mode & ixgbe_fc_tx_pause) { | ||
| 2021 | fcrth |= IXGBE_FCRTH_FCEN; | ||
| 2022 | if (hw->fc.send_xon) | ||
| 2023 | fcrtl |= IXGBE_FCRTL_XONE; | ||
| 2024 | } | ||
| 2025 | |||
| 2026 | IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), fcrth); | ||
| 2027 | IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), fcrtl); | ||
| 2028 | |||
| 2029 | /* Configure pause time (2 TCs per register) */ | ||
| 2030 | reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2)); | ||
| 2031 | if ((packetbuf_num & 1) == 0) | ||
| 2032 | reg = (reg & 0xFFFF0000) | hw->fc.pause_time; | ||
| 2033 | else | ||
| 2034 | reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16); | ||
| 2035 | IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg); | ||
| 2036 | |||
| 2037 | IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1)); | ||
| 2038 | |||
| 2039 | out: | ||
| 2040 | return ret_val; | ||
| 2041 | } | ||
| 2042 | |||
| 2043 | /** | ||
| 2044 | * ixgbe_fc_autoneg - Configure flow control | ||
| 2045 | * @hw: pointer to hardware structure | ||
| 2046 | * | ||
| 2047 | * Compares our advertised flow control capabilities to those advertised by | ||
| 2048 | * our link partner, and determines the proper flow control mode to use. | ||
| 2049 | **/ | ||
| 2050 | s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw) | ||
| 2051 | { | ||
| 2052 | s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; | ||
| 2053 | ixgbe_link_speed speed; | ||
| 2054 | bool link_up; | ||
| 2055 | |||
| 2056 | if (hw->fc.disable_fc_autoneg) | ||
| 2057 | goto out; | ||
| 2058 | |||
| 2059 | /* | ||
| 2060 | * AN should have completed when the cable was plugged in. | ||
| 2061 | * Look for reasons to bail out. Bail out if: | ||
| 2062 | * - FC autoneg is disabled, or if | ||
| 2063 | * - link is not up. | ||
| 2064 | * | ||
| 2065 | * Since we're being called from an LSC, link is already known to be up. | ||
| 2066 | * So use link_up_wait_to_complete=false. | ||
| 2067 | */ | ||
| 2068 | hw->mac.ops.check_link(hw, &speed, &link_up, false); | ||
| 2069 | if (!link_up) { | ||
| 2070 | ret_val = IXGBE_ERR_FLOW_CONTROL; | ||
| 2071 | goto out; | ||
| 2072 | } | ||
| 2073 | |||
| 2074 | switch (hw->phy.media_type) { | ||
| 2075 | /* Autoneg flow control on fiber adapters */ | ||
| 2076 | case ixgbe_media_type_fiber: | ||
| 2077 | if (speed == IXGBE_LINK_SPEED_1GB_FULL) | ||
| 2078 | ret_val = ixgbe_fc_autoneg_fiber(hw); | ||
| 2079 | break; | ||
| 2080 | |||
| 2081 | /* Autoneg flow control on backplane adapters */ | ||
| 2082 | case ixgbe_media_type_backplane: | ||
| 2083 | ret_val = ixgbe_fc_autoneg_backplane(hw); | ||
| 2084 | break; | ||
| 2085 | |||
| 2086 | /* Autoneg flow control on copper adapters */ | ||
| 2087 | case ixgbe_media_type_copper: | ||
| 2088 | if (ixgbe_device_supports_autoneg_fc(hw) == 0) | ||
| 2089 | ret_val = ixgbe_fc_autoneg_copper(hw); | ||
| 2090 | break; | ||
| 2091 | |||
| 2092 | default: | ||
| 2093 | break; | ||
| 2094 | } | ||
| 2095 | |||
| 2096 | out: | ||
| 2097 | if (ret_val == 0) { | ||
| 2098 | hw->fc.fc_was_autonegged = true; | ||
| 2099 | } else { | ||
| 2100 | hw->fc.fc_was_autonegged = false; | ||
| 2101 | hw->fc.current_mode = hw->fc.requested_mode; | ||
| 2102 | } | ||
| 2103 | return ret_val; | ||
| 2104 | } | ||
| 2105 | |||
| 2106 | /** | ||
| 2107 | * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber | ||
| 2108 | * @hw: pointer to hardware structure | ||
| 2109 | * | ||
| 2110 | * Enable flow control according on 1 gig fiber. | ||
| 2111 | **/ | ||
| 2112 | static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw) | ||
| 2113 | { | ||
| 2114 | u32 pcs_anadv_reg, pcs_lpab_reg, linkstat; | ||
| 2115 | s32 ret_val; | ||
| 2116 | |||
| 2117 | /* | ||
| 2118 | * On multispeed fiber at 1g, bail out if | ||
| 2119 | * - link is up but AN did not complete, or if | ||
| 2120 | * - link is up and AN completed but timed out | ||
| 2121 | */ | ||
| 2122 | |||
| 2123 | linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA); | ||
| 2124 | if (((linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) || | ||
| 2125 | ((linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) { | ||
| 2126 | ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; | ||
| 2127 | goto out; | ||
| 2128 | } | ||
| 2129 | |||
| 2130 | pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); | ||
| 2131 | pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP); | ||
| 2132 | |||
| 2133 | ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg, | ||
| 2134 | pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE, | ||
| 2135 | IXGBE_PCS1GANA_ASM_PAUSE, | ||
| 2136 | IXGBE_PCS1GANA_SYM_PAUSE, | ||
| 2137 | IXGBE_PCS1GANA_ASM_PAUSE); | ||
| 2138 | |||
| 2139 | out: | ||
| 2140 | return ret_val; | ||
| 2141 | } | ||
| 2142 | |||
| 2143 | /** | ||
| 2144 | * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37 | ||
| 2145 | * @hw: pointer to hardware structure | ||
| 2146 | * | ||
| 2147 | * Enable flow control according to IEEE clause 37. | ||
| 2148 | **/ | ||
| 2149 | static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw) | ||
| 2150 | { | ||
| 2151 | u32 links2, anlp1_reg, autoc_reg, links; | ||
| 2152 | s32 ret_val; | ||
| 2153 | |||
| 2154 | /* | ||
| 2155 | * On backplane, bail out if | ||
| 2156 | * - backplane autoneg was not completed, or if | ||
| 2157 | * - we are 82599 and link partner is not AN enabled | ||
| 2158 | */ | ||
| 2159 | links = IXGBE_READ_REG(hw, IXGBE_LINKS); | ||
| 2160 | if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) { | ||
| 2161 | hw->fc.fc_was_autonegged = false; | ||
| 2162 | hw->fc.current_mode = hw->fc.requested_mode; | ||
| 2163 | ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; | ||
| 2164 | goto out; | ||
| 2165 | } | ||
| 2166 | |||
| 2167 | if (hw->mac.type == ixgbe_mac_82599EB) { | ||
| 2168 | links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2); | ||
| 2169 | if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) { | ||
| 2170 | hw->fc.fc_was_autonegged = false; | ||
| 2171 | hw->fc.current_mode = hw->fc.requested_mode; | ||
| 2172 | ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; | ||
| 2173 | goto out; | ||
| 2174 | } | ||
| 2175 | } | ||
| 2176 | /* | ||
| 2177 | * Read the 10g AN autoc and LP ability registers and resolve | ||
| 2178 | * local flow control settings accordingly | ||
| 2179 | */ | ||
| 2180 | autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); | ||
| 2181 | anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1); | ||
| 2182 | |||
| 2183 | ret_val = ixgbe_negotiate_fc(hw, autoc_reg, | ||
| 2184 | anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE, | ||
| 2185 | IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE); | ||
| 2186 | |||
| 2187 | out: | ||
| 2188 | return ret_val; | ||
| 2189 | } | ||
| 2190 | |||
| 2191 | /** | ||
| 2192 | * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37 | ||
| 2193 | * @hw: pointer to hardware structure | ||
| 2194 | * | ||
| 2195 | * Enable flow control according to IEEE clause 37. | ||
| 2196 | **/ | ||
| 2197 | static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw) | ||
| 2198 | { | ||
| 2199 | u16 technology_ability_reg = 0; | ||
| 2200 | u16 lp_technology_ability_reg = 0; | ||
| 2201 | |||
| 2202 | hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, | ||
| 2203 | MDIO_MMD_AN, | ||
| 2204 | &technology_ability_reg); | ||
| 2205 | hw->phy.ops.read_reg(hw, MDIO_AN_LPA, | ||
| 2206 | MDIO_MMD_AN, | ||
| 2207 | &lp_technology_ability_reg); | ||
| 2208 | |||
| 2209 | return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg, | ||
| 2210 | (u32)lp_technology_ability_reg, | ||
| 2211 | IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE, | ||
| 2212 | IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE); | ||
| 2213 | } | ||
| 2214 | |||
| 2215 | /** | ||
| 2216 | * ixgbe_negotiate_fc - Negotiate flow control | ||
| 2217 | * @hw: pointer to hardware structure | ||
| 2218 | * @adv_reg: flow control advertised settings | ||
| 2219 | * @lp_reg: link partner's flow control settings | ||
| 2220 | * @adv_sym: symmetric pause bit in advertisement | ||
| 2221 | * @adv_asm: asymmetric pause bit in advertisement | ||
| 2222 | * @lp_sym: symmetric pause bit in link partner advertisement | ||
| 2223 | * @lp_asm: asymmetric pause bit in link partner advertisement | ||
| 2224 | * | ||
| 2225 | * Find the intersection between advertised settings and link partner's | ||
| 2226 | * advertised settings | ||
| 2227 | **/ | ||
| 2228 | static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg, | ||
| 2229 | u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm) | ||
| 2230 | { | ||
| 2231 | if ((!(adv_reg)) || (!(lp_reg))) | ||
| 2232 | return IXGBE_ERR_FC_NOT_NEGOTIATED; | ||
| 2233 | |||
| 2234 | if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) { | ||
| 2235 | /* | ||
| 2236 | * Now we need to check if the user selected Rx ONLY | ||
| 2237 | * of pause frames. In this case, we had to advertise | ||
| 2238 | * FULL flow control because we could not advertise RX | ||
| 2239 | * ONLY. Hence, we must now check to see if we need to | ||
| 2240 | * turn OFF the TRANSMISSION of PAUSE frames. | ||
| 2241 | */ | ||
| 2242 | if (hw->fc.requested_mode == ixgbe_fc_full) { | ||
| 2243 | hw->fc.current_mode = ixgbe_fc_full; | ||
| 2244 | hw_dbg(hw, "Flow Control = FULL.\n"); | ||
| 2245 | } else { | ||
| 2246 | hw->fc.current_mode = ixgbe_fc_rx_pause; | ||
| 2247 | hw_dbg(hw, "Flow Control=RX PAUSE frames only\n"); | ||
| 2248 | } | ||
| 2249 | } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) && | ||
| 2250 | (lp_reg & lp_sym) && (lp_reg & lp_asm)) { | ||
| 2251 | hw->fc.current_mode = ixgbe_fc_tx_pause; | ||
| 2252 | hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n"); | ||
| 2253 | } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) && | ||
| 2254 | !(lp_reg & lp_sym) && (lp_reg & lp_asm)) { | ||
| 2255 | hw->fc.current_mode = ixgbe_fc_rx_pause; | ||
| 2256 | hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n"); | ||
| 2257 | } else { | ||
| 2258 | hw->fc.current_mode = ixgbe_fc_none; | ||
| 2259 | hw_dbg(hw, "Flow Control = NONE.\n"); | ||
| 2260 | } | ||
| 2261 | return 0; | ||
| 2262 | } | ||
| 2263 | |||
| 2264 | /** | ||
| 2265 | * ixgbe_setup_fc - Set up flow control | ||
| 2266 | * @hw: pointer to hardware structure | ||
| 2267 | * | ||
| 2268 | * Called at init time to set up flow control. | ||
| 2269 | **/ | ||
| 2270 | static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num) | ||
| 2271 | { | ||
| 2272 | s32 ret_val = 0; | ||
| 2273 | u32 reg = 0, reg_bp = 0; | ||
| 2274 | u16 reg_cu = 0; | ||
| 2275 | |||
| 2276 | #ifdef CONFIG_DCB | ||
| 2277 | if (hw->fc.requested_mode == ixgbe_fc_pfc) { | ||
| 2278 | hw->fc.current_mode = hw->fc.requested_mode; | ||
| 2279 | goto out; | ||
| 2280 | } | ||
| 2281 | |||
| 2282 | #endif /* CONFIG_DCB */ | ||
| 2283 | /* Validate the packetbuf configuration */ | ||
| 2284 | if (packetbuf_num < 0 || packetbuf_num > 7) { | ||
| 2285 | hw_dbg(hw, "Invalid packet buffer number [%d], expected range " | ||
| 2286 | "is 0-7\n", packetbuf_num); | ||
| 2287 | ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; | ||
| 2288 | goto out; | ||
| 2289 | } | ||
| 2290 | |||
| 2291 | /* | ||
| 2292 | * Validate the water mark configuration. Zero water marks are invalid | ||
| 2293 | * because it causes the controller to just blast out fc packets. | ||
| 2294 | */ | ||
| 2295 | if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) { | ||
| 2296 | hw_dbg(hw, "Invalid water mark configuration\n"); | ||
| 2297 | ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; | ||
| 2298 | goto out; | ||
| 2299 | } | ||
| 2300 | |||
| 2301 | /* | ||
| 2302 | * Validate the requested mode. Strict IEEE mode does not allow | ||
| 2303 | * ixgbe_fc_rx_pause because it will cause us to fail at UNH. | ||
| 2304 | */ | ||
| 2305 | if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) { | ||
| 2306 | hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict " | ||
| 2307 | "IEEE mode\n"); | ||
| 2308 | ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; | ||
| 2309 | goto out; | ||
| 2310 | } | ||
| 2311 | |||
| 2312 | /* | ||
| 2313 | * 10gig parts do not have a word in the EEPROM to determine the | ||
| 2314 | * default flow control setting, so we explicitly set it to full. | ||
| 2315 | */ | ||
| 2316 | if (hw->fc.requested_mode == ixgbe_fc_default) | ||
| 2317 | hw->fc.requested_mode = ixgbe_fc_full; | ||
| 2318 | |||
| 2319 | /* | ||
| 2320 | * Set up the 1G and 10G flow control advertisement registers so the | ||
| 2321 | * HW will be able to do fc autoneg once the cable is plugged in. If | ||
| 2322 | * we link at 10G, the 1G advertisement is harmless and vice versa. | ||
| 2323 | */ | ||
| 2324 | |||
| 2325 | switch (hw->phy.media_type) { | ||
| 2326 | case ixgbe_media_type_fiber: | ||
| 2327 | case ixgbe_media_type_backplane: | ||
| 2328 | reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); | ||
| 2329 | reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC); | ||
| 2330 | break; | ||
| 2331 | |||
| 2332 | case ixgbe_media_type_copper: | ||
| 2333 | hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, | ||
| 2334 | MDIO_MMD_AN, ®_cu); | ||
| 2335 | break; | ||
| 2336 | |||
| 2337 | default: | ||
| 2338 | ; | ||
| 2339 | } | ||
| 2340 | |||
| 2341 | /* | ||
| 2342 | * The possible values of fc.requested_mode are: | ||
| 2343 | * 0: Flow control is completely disabled | ||
| 2344 | * 1: Rx flow control is enabled (we can receive pause frames, | ||
| 2345 | * but not send pause frames). | ||
| 2346 | * 2: Tx flow control is enabled (we can send pause frames but | ||
| 2347 | * we do not support receiving pause frames). | ||
| 2348 | * 3: Both Rx and Tx flow control (symmetric) are enabled. | ||
| 2349 | #ifdef CONFIG_DCB | ||
| 2350 | * 4: Priority Flow Control is enabled. | ||
| 2351 | #endif | ||
| 2352 | * other: Invalid. | ||
| 2353 | */ | ||
| 2354 | switch (hw->fc.requested_mode) { | ||
| 2355 | case ixgbe_fc_none: | ||
| 2356 | /* Flow control completely disabled by software override. */ | ||
| 2357 | reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE); | ||
| 2358 | if (hw->phy.media_type == ixgbe_media_type_backplane) | ||
| 2359 | reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE | | ||
| 2360 | IXGBE_AUTOC_ASM_PAUSE); | ||
| 2361 | else if (hw->phy.media_type == ixgbe_media_type_copper) | ||
| 2362 | reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE); | ||
| 2363 | break; | ||
| 2364 | case ixgbe_fc_rx_pause: | ||
| 2365 | /* | ||
| 2366 | * Rx Flow control is enabled and Tx Flow control is | ||
| 2367 | * disabled by software override. Since there really | ||
| 2368 | * isn't a way to advertise that we are capable of RX | ||
| 2369 | * Pause ONLY, we will advertise that we support both | ||
| 2370 | * symmetric and asymmetric Rx PAUSE. Later, we will | ||
| 2371 | * disable the adapter's ability to send PAUSE frames. | ||
| 2372 | */ | ||
| 2373 | reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE); | ||
| 2374 | if (hw->phy.media_type == ixgbe_media_type_backplane) | ||
| 2375 | reg_bp |= (IXGBE_AUTOC_SYM_PAUSE | | ||
| 2376 | IXGBE_AUTOC_ASM_PAUSE); | ||
| 2377 | else if (hw->phy.media_type == ixgbe_media_type_copper) | ||
| 2378 | reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE); | ||
| 2379 | break; | ||
| 2380 | case ixgbe_fc_tx_pause: | ||
| 2381 | /* | ||
| 2382 | * Tx Flow control is enabled, and Rx Flow control is | ||
| 2383 | * disabled by software override. | ||
| 2384 | */ | ||
| 2385 | reg |= (IXGBE_PCS1GANA_ASM_PAUSE); | ||
| 2386 | reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE); | ||
| 2387 | if (hw->phy.media_type == ixgbe_media_type_backplane) { | ||
| 2388 | reg_bp |= (IXGBE_AUTOC_ASM_PAUSE); | ||
| 2389 | reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE); | ||
| 2390 | } else if (hw->phy.media_type == ixgbe_media_type_copper) { | ||
| 2391 | reg_cu |= (IXGBE_TAF_ASM_PAUSE); | ||
| 2392 | reg_cu &= ~(IXGBE_TAF_SYM_PAUSE); | ||
| 2393 | } | ||
| 2394 | break; | ||
| 2395 | case ixgbe_fc_full: | ||
| 2396 | /* Flow control (both Rx and Tx) is enabled by SW override. */ | ||
| 2397 | reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE); | ||
| 2398 | if (hw->phy.media_type == ixgbe_media_type_backplane) | ||
| 2399 | reg_bp |= (IXGBE_AUTOC_SYM_PAUSE | | ||
| 2400 | IXGBE_AUTOC_ASM_PAUSE); | ||
| 2401 | else if (hw->phy.media_type == ixgbe_media_type_copper) | ||
| 2402 | reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE); | ||
| 2403 | break; | ||
| 2404 | #ifdef CONFIG_DCB | ||
| 2405 | case ixgbe_fc_pfc: | ||
| 2406 | goto out; | ||
| 2407 | break; | ||
| 2408 | #endif /* CONFIG_DCB */ | ||
| 2409 | default: | ||
| 2410 | hw_dbg(hw, "Flow control param set incorrectly\n"); | ||
| 2411 | ret_val = IXGBE_ERR_CONFIG; | ||
| 2412 | goto out; | ||
| 2413 | break; | ||
| 2414 | } | ||
| 2415 | |||
| 2416 | if (hw->mac.type != ixgbe_mac_X540) { | ||
| 2417 | /* | ||
| 2418 | * Enable auto-negotiation between the MAC & PHY; | ||
| 2419 | * the MAC will advertise clause 37 flow control. | ||
| 2420 | */ | ||
| 2421 | IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg); | ||
| 2422 | reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL); | ||
| 2423 | |||
| 2424 | /* Disable AN timeout */ | ||
| 2425 | if (hw->fc.strict_ieee) | ||
| 2426 | reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN; | ||
| 2427 | |||
| 2428 | IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg); | ||
| 2429 | hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg); | ||
| 2430 | } | ||
| 2431 | |||
| 2432 | /* | ||
| 2433 | * AUTOC restart handles negotiation of 1G and 10G on backplane | ||
| 2434 | * and copper. There is no need to set the PCS1GCTL register. | ||
| 2435 | * | ||
| 2436 | */ | ||
| 2437 | if (hw->phy.media_type == ixgbe_media_type_backplane) { | ||
| 2438 | reg_bp |= IXGBE_AUTOC_AN_RESTART; | ||
| 2439 | IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp); | ||
| 2440 | } else if ((hw->phy.media_type == ixgbe_media_type_copper) && | ||
| 2441 | (ixgbe_device_supports_autoneg_fc(hw) == 0)) { | ||
| 2442 | hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, | ||
| 2443 | MDIO_MMD_AN, reg_cu); | ||
| 2444 | } | ||
| 2445 | |||
| 2446 | hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg); | ||
| 2447 | out: | ||
| 2448 | return ret_val; | ||
| 2449 | } | ||
| 2450 | |||
| 2451 | /** | ||
| 2452 | * ixgbe_disable_pcie_master - Disable PCI-express master access | ||
| 2453 | * @hw: pointer to hardware structure | ||
| 2454 | * | ||
| 2455 | * Disables PCI-Express master access and verifies there are no pending | ||
| 2456 | * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable | ||
| 2457 | * bit hasn't caused the master requests to be disabled, else 0 | ||
| 2458 | * is returned signifying master requests disabled. | ||
| 2459 | **/ | ||
| 2460 | s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw) | ||
| 2461 | { | ||
| 2462 | struct ixgbe_adapter *adapter = hw->back; | ||
| 2463 | u32 i; | ||
| 2464 | u32 reg_val; | ||
| 2465 | u32 number_of_queues; | ||
| 2466 | s32 status = 0; | ||
| 2467 | u16 dev_status = 0; | ||
| 2468 | |||
| 2469 | /* Just jump out if bus mastering is already disabled */ | ||
| 2470 | if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) | ||
| 2471 | goto out; | ||
| 2472 | |||
| 2473 | /* Disable the receive unit by stopping each queue */ | ||
| 2474 | number_of_queues = hw->mac.max_rx_queues; | ||
| 2475 | for (i = 0; i < number_of_queues; i++) { | ||
| 2476 | reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i)); | ||
| 2477 | if (reg_val & IXGBE_RXDCTL_ENABLE) { | ||
| 2478 | reg_val &= ~IXGBE_RXDCTL_ENABLE; | ||
| 2479 | IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val); | ||
| 2480 | } | ||
| 2481 | } | ||
| 2482 | |||
| 2483 | reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL); | ||
| 2484 | reg_val |= IXGBE_CTRL_GIO_DIS; | ||
| 2485 | IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val); | ||
| 2486 | |||
| 2487 | for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) { | ||
| 2488 | if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) | ||
| 2489 | goto check_device_status; | ||
| 2490 | udelay(100); | ||
| 2491 | } | ||
| 2492 | |||
| 2493 | hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n"); | ||
| 2494 | status = IXGBE_ERR_MASTER_REQUESTS_PENDING; | ||
| 2495 | |||
| 2496 | /* | ||
| 2497 | * Before proceeding, make sure that the PCIe block does not have | ||
| 2498 | * transactions pending. | ||
| 2499 | */ | ||
| 2500 | check_device_status: | ||
| 2501 | for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) { | ||
| 2502 | pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS, | ||
| 2503 | &dev_status); | ||
| 2504 | if (!(dev_status & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING)) | ||
| 2505 | break; | ||
| 2506 | udelay(100); | ||
| 2507 | } | ||
| 2508 | |||
| 2509 | if (i == IXGBE_PCI_MASTER_DISABLE_TIMEOUT) | ||
| 2510 | hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n"); | ||
| 2511 | else | ||
| 2512 | goto out; | ||
| 2513 | |||
| 2514 | /* | ||
| 2515 | * Two consecutive resets are required via CTRL.RST per datasheet | ||
| 2516 | * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine | ||
| 2517 | * of this need. The first reset prevents new master requests from | ||
| 2518 | * being issued by our device. We then must wait 1usec for any | ||
| 2519 | * remaining completions from the PCIe bus to trickle in, and then reset | ||
| 2520 | * again to clear out any effects they may have had on our device. | ||
| 2521 | */ | ||
| 2522 | hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED; | ||
| 2523 | |||
| 2524 | out: | ||
| 2525 | return status; | ||
| 2526 | } | ||
| 2527 | |||
| 2528 | |||
| 2529 | /** | ||
| 2530 | * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore | ||
| 2531 | * @hw: pointer to hardware structure | ||
| 2532 | * @mask: Mask to specify which semaphore to acquire | ||
| 2533 | * | ||
| 2534 | * Acquires the SWFW semaphore through the GSSR register for the specified | ||
| 2535 | * function (CSR, PHY0, PHY1, EEPROM, Flash) | ||
| 2536 | **/ | ||
| 2537 | s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask) | ||
| 2538 | { | ||
| 2539 | u32 gssr; | ||
| 2540 | u32 swmask = mask; | ||
| 2541 | u32 fwmask = mask << 5; | ||
| 2542 | s32 timeout = 200; | ||
| 2543 | |||
| 2544 | while (timeout) { | ||
| 2545 | /* | ||
| 2546 | * SW EEPROM semaphore bit is used for access to all | ||
| 2547 | * SW_FW_SYNC/GSSR bits (not just EEPROM) | ||
| 2548 | */ | ||
| 2549 | if (ixgbe_get_eeprom_semaphore(hw)) | ||
| 2550 | return IXGBE_ERR_SWFW_SYNC; | ||
| 2551 | |||
| 2552 | gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); | ||
| 2553 | if (!(gssr & (fwmask | swmask))) | ||
| 2554 | break; | ||
| 2555 | |||
| 2556 | /* | ||
| 2557 | * Firmware currently using resource (fwmask) or other software | ||
| 2558 | * thread currently using resource (swmask) | ||
| 2559 | */ | ||
| 2560 | ixgbe_release_eeprom_semaphore(hw); | ||
| 2561 | usleep_range(5000, 10000); | ||
| 2562 | timeout--; | ||
| 2563 | } | ||
| 2564 | |||
| 2565 | if (!timeout) { | ||
| 2566 | hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n"); | ||
| 2567 | return IXGBE_ERR_SWFW_SYNC; | ||
| 2568 | } | ||
| 2569 | |||
| 2570 | gssr |= swmask; | ||
| 2571 | IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); | ||
| 2572 | |||
| 2573 | ixgbe_release_eeprom_semaphore(hw); | ||
| 2574 | return 0; | ||
| 2575 | } | ||
| 2576 | |||
| 2577 | /** | ||
| 2578 | * ixgbe_release_swfw_sync - Release SWFW semaphore | ||
| 2579 | * @hw: pointer to hardware structure | ||
| 2580 | * @mask: Mask to specify which semaphore to release | ||
| 2581 | * | ||
| 2582 | * Releases the SWFW semaphore through the GSSR register for the specified | ||
| 2583 | * function (CSR, PHY0, PHY1, EEPROM, Flash) | ||
| 2584 | **/ | ||
| 2585 | void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask) | ||
| 2586 | { | ||
| 2587 | u32 gssr; | ||
| 2588 | u32 swmask = mask; | ||
| 2589 | |||
| 2590 | ixgbe_get_eeprom_semaphore(hw); | ||
| 2591 | |||
| 2592 | gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); | ||
| 2593 | gssr &= ~swmask; | ||
| 2594 | IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); | ||
| 2595 | |||
| 2596 | ixgbe_release_eeprom_semaphore(hw); | ||
| 2597 | } | ||
| 2598 | |||
| 2599 | /** | ||
| 2600 | * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit | ||
| 2601 | * @hw: pointer to hardware structure | ||
| 2602 | * @regval: register value to write to RXCTRL | ||
| 2603 | * | ||
| 2604 | * Enables the Rx DMA unit | ||
| 2605 | **/ | ||
| 2606 | s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval) | ||
| 2607 | { | ||
| 2608 | IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval); | ||
| 2609 | |||
| 2610 | return 0; | ||
| 2611 | } | ||
| 2612 | |||
| 2613 | /** | ||
| 2614 | * ixgbe_blink_led_start_generic - Blink LED based on index. | ||
| 2615 | * @hw: pointer to hardware structure | ||
| 2616 | * @index: led number to blink | ||
| 2617 | **/ | ||
| 2618 | s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index) | ||
| 2619 | { | ||
| 2620 | ixgbe_link_speed speed = 0; | ||
| 2621 | bool link_up = 0; | ||
| 2622 | u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); | ||
| 2623 | u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); | ||
| 2624 | |||
| 2625 | /* | ||
| 2626 | * Link must be up to auto-blink the LEDs; | ||
| 2627 | * Force it if link is down. | ||
| 2628 | */ | ||
| 2629 | hw->mac.ops.check_link(hw, &speed, &link_up, false); | ||
| 2630 | |||
| 2631 | if (!link_up) { | ||
| 2632 | autoc_reg |= IXGBE_AUTOC_AN_RESTART; | ||
| 2633 | autoc_reg |= IXGBE_AUTOC_FLU; | ||
| 2634 | IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg); | ||
| 2635 | IXGBE_WRITE_FLUSH(hw); | ||
| 2636 | usleep_range(10000, 20000); | ||
| 2637 | } | ||
| 2638 | |||
| 2639 | led_reg &= ~IXGBE_LED_MODE_MASK(index); | ||
| 2640 | led_reg |= IXGBE_LED_BLINK(index); | ||
| 2641 | IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); | ||
| 2642 | IXGBE_WRITE_FLUSH(hw); | ||
| 2643 | |||
| 2644 | return 0; | ||
| 2645 | } | ||
| 2646 | |||
| 2647 | /** | ||
| 2648 | * ixgbe_blink_led_stop_generic - Stop blinking LED based on index. | ||
| 2649 | * @hw: pointer to hardware structure | ||
| 2650 | * @index: led number to stop blinking | ||
| 2651 | **/ | ||
| 2652 | s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index) | ||
| 2653 | { | ||
| 2654 | u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); | ||
| 2655 | u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); | ||
| 2656 | |||
| 2657 | autoc_reg &= ~IXGBE_AUTOC_FLU; | ||
| 2658 | autoc_reg |= IXGBE_AUTOC_AN_RESTART; | ||
| 2659 | IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg); | ||
| 2660 | |||
| 2661 | led_reg &= ~IXGBE_LED_MODE_MASK(index); | ||
| 2662 | led_reg &= ~IXGBE_LED_BLINK(index); | ||
| 2663 | led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index); | ||
| 2664 | IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); | ||
| 2665 | IXGBE_WRITE_FLUSH(hw); | ||
| 2666 | |||
| 2667 | return 0; | ||
| 2668 | } | ||
| 2669 | |||
| 2670 | /** | ||
| 2671 | * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM | ||
| 2672 | * @hw: pointer to hardware structure | ||
| 2673 | * @san_mac_offset: SAN MAC address offset | ||
| 2674 | * | ||
| 2675 | * This function will read the EEPROM location for the SAN MAC address | ||
| 2676 | * pointer, and returns the value at that location. This is used in both | ||
| 2677 | * get and set mac_addr routines. | ||
| 2678 | **/ | ||
| 2679 | static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw, | ||
| 2680 | u16 *san_mac_offset) | ||
| 2681 | { | ||
| 2682 | /* | ||
| 2683 | * First read the EEPROM pointer to see if the MAC addresses are | ||
| 2684 | * available. | ||
| 2685 | */ | ||
| 2686 | hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset); | ||
| 2687 | |||
| 2688 | return 0; | ||
| 2689 | } | ||
| 2690 | |||
| 2691 | /** | ||
| 2692 | * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM | ||
| 2693 | * @hw: pointer to hardware structure | ||
| 2694 | * @san_mac_addr: SAN MAC address | ||
| 2695 | * | ||
| 2696 | * Reads the SAN MAC address from the EEPROM, if it's available. This is | ||
| 2697 | * per-port, so set_lan_id() must be called before reading the addresses. | ||
| 2698 | * set_lan_id() is called by identify_sfp(), but this cannot be relied | ||
| 2699 | * upon for non-SFP connections, so we must call it here. | ||
| 2700 | **/ | ||
| 2701 | s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr) | ||
| 2702 | { | ||
| 2703 | u16 san_mac_data, san_mac_offset; | ||
| 2704 | u8 i; | ||
| 2705 | |||
| 2706 | /* | ||
| 2707 | * First read the EEPROM pointer to see if the MAC addresses are | ||
| 2708 | * available. If they're not, no point in calling set_lan_id() here. | ||
| 2709 | */ | ||
| 2710 | ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset); | ||
| 2711 | |||
| 2712 | if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) { | ||
| 2713 | /* | ||
| 2714 | * No addresses available in this EEPROM. It's not an | ||
| 2715 | * error though, so just wipe the local address and return. | ||
| 2716 | */ | ||
| 2717 | for (i = 0; i < 6; i++) | ||
| 2718 | san_mac_addr[i] = 0xFF; | ||
| 2719 | |||
| 2720 | goto san_mac_addr_out; | ||
| 2721 | } | ||
| 2722 | |||
| 2723 | /* make sure we know which port we need to program */ | ||
| 2724 | hw->mac.ops.set_lan_id(hw); | ||
| 2725 | /* apply the port offset to the address offset */ | ||
| 2726 | (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) : | ||
| 2727 | (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET); | ||
| 2728 | for (i = 0; i < 3; i++) { | ||
| 2729 | hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data); | ||
| 2730 | san_mac_addr[i * 2] = (u8)(san_mac_data); | ||
| 2731 | san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8); | ||
| 2732 | san_mac_offset++; | ||
| 2733 | } | ||
| 2734 | |||
| 2735 | san_mac_addr_out: | ||
| 2736 | return 0; | ||
| 2737 | } | ||
| 2738 | |||
| 2739 | /** | ||
| 2740 | * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count | ||
| 2741 | * @hw: pointer to hardware structure | ||
| 2742 | * | ||
| 2743 | * Read PCIe configuration space, and get the MSI-X vector count from | ||
| 2744 | * the capabilities table. | ||
| 2745 | **/ | ||
| 2746 | u32 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw) | ||
| 2747 | { | ||
| 2748 | struct ixgbe_adapter *adapter = hw->back; | ||
| 2749 | u16 msix_count; | ||
| 2750 | pci_read_config_word(adapter->pdev, IXGBE_PCIE_MSIX_82599_CAPS, | ||
| 2751 | &msix_count); | ||
| 2752 | msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK; | ||
| 2753 | |||
| 2754 | /* MSI-X count is zero-based in HW, so increment to give proper value */ | ||
| 2755 | msix_count++; | ||
| 2756 | |||
| 2757 | return msix_count; | ||
| 2758 | } | ||
| 2759 | |||
| 2760 | /** | ||
| 2761 | * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address | ||
| 2762 | * @hw: pointer to hardware struct | ||
| 2763 | * @rar: receive address register index to disassociate | ||
| 2764 | * @vmdq: VMDq pool index to remove from the rar | ||
| 2765 | **/ | ||
| 2766 | s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq) | ||
| 2767 | { | ||
| 2768 | u32 mpsar_lo, mpsar_hi; | ||
| 2769 | u32 rar_entries = hw->mac.num_rar_entries; | ||
| 2770 | |||
| 2771 | /* Make sure we are using a valid rar index range */ | ||
| 2772 | if (rar >= rar_entries) { | ||
| 2773 | hw_dbg(hw, "RAR index %d is out of range.\n", rar); | ||
| 2774 | return IXGBE_ERR_INVALID_ARGUMENT; | ||
| 2775 | } | ||
| 2776 | |||
| 2777 | mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); | ||
| 2778 | mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); | ||
| 2779 | |||
| 2780 | if (!mpsar_lo && !mpsar_hi) | ||
| 2781 | goto done; | ||
| 2782 | |||
| 2783 | if (vmdq == IXGBE_CLEAR_VMDQ_ALL) { | ||
| 2784 | if (mpsar_lo) { | ||
| 2785 | IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0); | ||
| 2786 | mpsar_lo = 0; | ||
| 2787 | } | ||
| 2788 | if (mpsar_hi) { | ||
| 2789 | IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0); | ||
| 2790 | mpsar_hi = 0; | ||
| 2791 | } | ||
| 2792 | } else if (vmdq < 32) { | ||
| 2793 | mpsar_lo &= ~(1 << vmdq); | ||
| 2794 | IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo); | ||
| 2795 | } else { | ||
| 2796 | mpsar_hi &= ~(1 << (vmdq - 32)); | ||
| 2797 | IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi); | ||
| 2798 | } | ||
| 2799 | |||
| 2800 | /* was that the last pool using this rar? */ | ||
| 2801 | if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0) | ||
| 2802 | hw->mac.ops.clear_rar(hw, rar); | ||
| 2803 | done: | ||
| 2804 | return 0; | ||
| 2805 | } | ||
| 2806 | |||
| 2807 | /** | ||
| 2808 | * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address | ||
| 2809 | * @hw: pointer to hardware struct | ||
| 2810 | * @rar: receive address register index to associate with a VMDq index | ||
| 2811 | * @vmdq: VMDq pool index | ||
| 2812 | **/ | ||
| 2813 | s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq) | ||
| 2814 | { | ||
| 2815 | u32 mpsar; | ||
| 2816 | u32 rar_entries = hw->mac.num_rar_entries; | ||
| 2817 | |||
| 2818 | /* Make sure we are using a valid rar index range */ | ||
| 2819 | if (rar >= rar_entries) { | ||
| 2820 | hw_dbg(hw, "RAR index %d is out of range.\n", rar); | ||
| 2821 | return IXGBE_ERR_INVALID_ARGUMENT; | ||
| 2822 | } | ||
| 2823 | |||
| 2824 | if (vmdq < 32) { | ||
| 2825 | mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); | ||
| 2826 | mpsar |= 1 << vmdq; | ||
| 2827 | IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar); | ||
| 2828 | } else { | ||
| 2829 | mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); | ||
| 2830 | mpsar |= 1 << (vmdq - 32); | ||
| 2831 | IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar); | ||
| 2832 | } | ||
| 2833 | return 0; | ||
| 2834 | } | ||
| 2835 | |||
| 2836 | /** | ||
| 2837 | * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array | ||
| 2838 | * @hw: pointer to hardware structure | ||
| 2839 | **/ | ||
| 2840 | s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw) | ||
| 2841 | { | ||
| 2842 | int i; | ||
| 2843 | |||
| 2844 | for (i = 0; i < 128; i++) | ||
| 2845 | IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0); | ||
| 2846 | |||
| 2847 | return 0; | ||
| 2848 | } | ||
| 2849 | |||
| 2850 | /** | ||
| 2851 | * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot | ||
| 2852 | * @hw: pointer to hardware structure | ||
| 2853 | * @vlan: VLAN id to write to VLAN filter | ||
| 2854 | * | ||
| 2855 | * return the VLVF index where this VLAN id should be placed | ||
| 2856 | * | ||
| 2857 | **/ | ||
| 2858 | static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan) | ||
| 2859 | { | ||
| 2860 | u32 bits = 0; | ||
| 2861 | u32 first_empty_slot = 0; | ||
| 2862 | s32 regindex; | ||
| 2863 | |||
| 2864 | /* short cut the special case */ | ||
| 2865 | if (vlan == 0) | ||
| 2866 | return 0; | ||
| 2867 | |||
| 2868 | /* | ||
| 2869 | * Search for the vlan id in the VLVF entries. Save off the first empty | ||
| 2870 | * slot found along the way | ||
| 2871 | */ | ||
| 2872 | for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) { | ||
| 2873 | bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex)); | ||
| 2874 | if (!bits && !(first_empty_slot)) | ||
| 2875 | first_empty_slot = regindex; | ||
| 2876 | else if ((bits & 0x0FFF) == vlan) | ||
| 2877 | break; | ||
| 2878 | } | ||
| 2879 | |||
| 2880 | /* | ||
| 2881 | * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan | ||
| 2882 | * in the VLVF. Else use the first empty VLVF register for this | ||
| 2883 | * vlan id. | ||
| 2884 | */ | ||
| 2885 | if (regindex >= IXGBE_VLVF_ENTRIES) { | ||
| 2886 | if (first_empty_slot) | ||
| 2887 | regindex = first_empty_slot; | ||
| 2888 | else { | ||
| 2889 | hw_dbg(hw, "No space in VLVF.\n"); | ||
| 2890 | regindex = IXGBE_ERR_NO_SPACE; | ||
| 2891 | } | ||
| 2892 | } | ||
| 2893 | |||
| 2894 | return regindex; | ||
| 2895 | } | ||
| 2896 | |||
| 2897 | /** | ||
| 2898 | * ixgbe_set_vfta_generic - Set VLAN filter table | ||
| 2899 | * @hw: pointer to hardware structure | ||
| 2900 | * @vlan: VLAN id to write to VLAN filter | ||
| 2901 | * @vind: VMDq output index that maps queue to VLAN id in VFVFB | ||
| 2902 | * @vlan_on: boolean flag to turn on/off VLAN in VFVF | ||
| 2903 | * | ||
| 2904 | * Turn on/off specified VLAN in the VLAN filter table. | ||
| 2905 | **/ | ||
| 2906 | s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind, | ||
| 2907 | bool vlan_on) | ||
| 2908 | { | ||
| 2909 | s32 regindex; | ||
| 2910 | u32 bitindex; | ||
| 2911 | u32 vfta; | ||
| 2912 | u32 bits; | ||
| 2913 | u32 vt; | ||
| 2914 | u32 targetbit; | ||
| 2915 | bool vfta_changed = false; | ||
| 2916 | |||
| 2917 | if (vlan > 4095) | ||
| 2918 | return IXGBE_ERR_PARAM; | ||
| 2919 | |||
| 2920 | /* | ||
| 2921 | * this is a 2 part operation - first the VFTA, then the | ||
| 2922 | * VLVF and VLVFB if VT Mode is set | ||
| 2923 | * We don't write the VFTA until we know the VLVF part succeeded. | ||
| 2924 | */ | ||
| 2925 | |||
| 2926 | /* Part 1 | ||
| 2927 | * The VFTA is a bitstring made up of 128 32-bit registers | ||
| 2928 | * that enable the particular VLAN id, much like the MTA: | ||
| 2929 | * bits[11-5]: which register | ||
| 2930 | * bits[4-0]: which bit in the register | ||
| 2931 | */ | ||
| 2932 | regindex = (vlan >> 5) & 0x7F; | ||
| 2933 | bitindex = vlan & 0x1F; | ||
| 2934 | targetbit = (1 << bitindex); | ||
| 2935 | vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex)); | ||
| 2936 | |||
| 2937 | if (vlan_on) { | ||
| 2938 | if (!(vfta & targetbit)) { | ||
| 2939 | vfta |= targetbit; | ||
| 2940 | vfta_changed = true; | ||
| 2941 | } | ||
| 2942 | } else { | ||
| 2943 | if ((vfta & targetbit)) { | ||
| 2944 | vfta &= ~targetbit; | ||
| 2945 | vfta_changed = true; | ||
| 2946 | } | ||
| 2947 | } | ||
| 2948 | |||
| 2949 | /* Part 2 | ||
| 2950 | * If VT Mode is set | ||
| 2951 | * Either vlan_on | ||
| 2952 | * make sure the vlan is in VLVF | ||
| 2953 | * set the vind bit in the matching VLVFB | ||
| 2954 | * Or !vlan_on | ||
| 2955 | * clear the pool bit and possibly the vind | ||
| 2956 | */ | ||
| 2957 | vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL); | ||
| 2958 | if (vt & IXGBE_VT_CTL_VT_ENABLE) { | ||
| 2959 | s32 vlvf_index; | ||
| 2960 | |||
| 2961 | vlvf_index = ixgbe_find_vlvf_slot(hw, vlan); | ||
| 2962 | if (vlvf_index < 0) | ||
| 2963 | return vlvf_index; | ||
| 2964 | |||
| 2965 | if (vlan_on) { | ||
| 2966 | /* set the pool bit */ | ||
| 2967 | if (vind < 32) { | ||
| 2968 | bits = IXGBE_READ_REG(hw, | ||
| 2969 | IXGBE_VLVFB(vlvf_index*2)); | ||
| 2970 | bits |= (1 << vind); | ||
| 2971 | IXGBE_WRITE_REG(hw, | ||
| 2972 | IXGBE_VLVFB(vlvf_index*2), | ||
| 2973 | bits); | ||
| 2974 | } else { | ||
| 2975 | bits = IXGBE_READ_REG(hw, | ||
| 2976 | IXGBE_VLVFB((vlvf_index*2)+1)); | ||
| 2977 | bits |= (1 << (vind-32)); | ||
| 2978 | IXGBE_WRITE_REG(hw, | ||
| 2979 | IXGBE_VLVFB((vlvf_index*2)+1), | ||
| 2980 | bits); | ||
| 2981 | } | ||
| 2982 | } else { | ||
| 2983 | /* clear the pool bit */ | ||
| 2984 | if (vind < 32) { | ||
| 2985 | bits = IXGBE_READ_REG(hw, | ||
| 2986 | IXGBE_VLVFB(vlvf_index*2)); | ||
| 2987 | bits &= ~(1 << vind); | ||
| 2988 | IXGBE_WRITE_REG(hw, | ||
| 2989 | IXGBE_VLVFB(vlvf_index*2), | ||
| 2990 | bits); | ||
| 2991 | bits |= IXGBE_READ_REG(hw, | ||
| 2992 | IXGBE_VLVFB((vlvf_index*2)+1)); | ||
| 2993 | } else { | ||
| 2994 | bits = IXGBE_READ_REG(hw, | ||
| 2995 | IXGBE_VLVFB((vlvf_index*2)+1)); | ||
| 2996 | bits &= ~(1 << (vind-32)); | ||
| 2997 | IXGBE_WRITE_REG(hw, | ||
| 2998 | IXGBE_VLVFB((vlvf_index*2)+1), | ||
| 2999 | bits); | ||
| 3000 | bits |= IXGBE_READ_REG(hw, | ||
| 3001 | IXGBE_VLVFB(vlvf_index*2)); | ||
| 3002 | } | ||
| 3003 | } | ||
| 3004 | |||
| 3005 | /* | ||
| 3006 | * If there are still bits set in the VLVFB registers | ||
| 3007 | * for the VLAN ID indicated we need to see if the | ||
| 3008 | * caller is requesting that we clear the VFTA entry bit. | ||
| 3009 | * If the caller has requested that we clear the VFTA | ||
| 3010 | * entry bit but there are still pools/VFs using this VLAN | ||
| 3011 | * ID entry then ignore the request. We're not worried | ||
| 3012 | * about the case where we're turning the VFTA VLAN ID | ||
| 3013 | * entry bit on, only when requested to turn it off as | ||
| 3014 | * there may be multiple pools and/or VFs using the | ||
| 3015 | * VLAN ID entry. In that case we cannot clear the | ||
| 3016 | * VFTA bit until all pools/VFs using that VLAN ID have also | ||
| 3017 | * been cleared. This will be indicated by "bits" being | ||
| 3018 | * zero. | ||
| 3019 | */ | ||
| 3020 | if (bits) { | ||
| 3021 | IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), | ||
| 3022 | (IXGBE_VLVF_VIEN | vlan)); | ||
| 3023 | if (!vlan_on) { | ||
| 3024 | /* someone wants to clear the vfta entry | ||
| 3025 | * but some pools/VFs are still using it. | ||
| 3026 | * Ignore it. */ | ||
| 3027 | vfta_changed = false; | ||
| 3028 | } | ||
| 3029 | } | ||
| 3030 | else | ||
| 3031 | IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0); | ||
| 3032 | } | ||
| 3033 | |||
| 3034 | if (vfta_changed) | ||
| 3035 | IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta); | ||
| 3036 | |||
| 3037 | return 0; | ||
| 3038 | } | ||
| 3039 | |||
| 3040 | /** | ||
| 3041 | * ixgbe_clear_vfta_generic - Clear VLAN filter table | ||
| 3042 | * @hw: pointer to hardware structure | ||
| 3043 | * | ||
| 3044 | * Clears the VLAN filer table, and the VMDq index associated with the filter | ||
| 3045 | **/ | ||
| 3046 | s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw) | ||
| 3047 | { | ||
| 3048 | u32 offset; | ||
| 3049 | |||
| 3050 | for (offset = 0; offset < hw->mac.vft_size; offset++) | ||
| 3051 | IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0); | ||
| 3052 | |||
| 3053 | for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) { | ||
| 3054 | IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0); | ||
| 3055 | IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0); | ||
| 3056 | IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0); | ||
| 3057 | } | ||
| 3058 | |||
| 3059 | return 0; | ||
| 3060 | } | ||
| 3061 | |||
| 3062 | /** | ||
| 3063 | * ixgbe_check_mac_link_generic - Determine link and speed status | ||
| 3064 | * @hw: pointer to hardware structure | ||
| 3065 | * @speed: pointer to link speed | ||
| 3066 | * @link_up: true when link is up | ||
| 3067 | * @link_up_wait_to_complete: bool used to wait for link up or not | ||
| 3068 | * | ||
| 3069 | * Reads the links register to determine if link is up and the current speed | ||
| 3070 | **/ | ||
| 3071 | s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed, | ||
| 3072 | bool *link_up, bool link_up_wait_to_complete) | ||
| 3073 | { | ||
| 3074 | u32 links_reg, links_orig; | ||
| 3075 | u32 i; | ||
| 3076 | |||
| 3077 | /* clear the old state */ | ||
| 3078 | links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS); | ||
| 3079 | |||
| 3080 | links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); | ||
| 3081 | |||
| 3082 | if (links_orig != links_reg) { | ||
| 3083 | hw_dbg(hw, "LINKS changed from %08X to %08X\n", | ||
| 3084 | links_orig, links_reg); | ||
| 3085 | } | ||
| 3086 | |||
| 3087 | if (link_up_wait_to_complete) { | ||
| 3088 | for (i = 0; i < IXGBE_LINK_UP_TIME; i++) { | ||
| 3089 | if (links_reg & IXGBE_LINKS_UP) { | ||
| 3090 | *link_up = true; | ||
| 3091 | break; | ||
| 3092 | } else { | ||
| 3093 | *link_up = false; | ||
| 3094 | } | ||
| 3095 | msleep(100); | ||
| 3096 | links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); | ||
| 3097 | } | ||
| 3098 | } else { | ||
| 3099 | if (links_reg & IXGBE_LINKS_UP) | ||
| 3100 | *link_up = true; | ||
| 3101 | else | ||
| 3102 | *link_up = false; | ||
| 3103 | } | ||
| 3104 | |||
| 3105 | if ((links_reg & IXGBE_LINKS_SPEED_82599) == | ||
| 3106 | IXGBE_LINKS_SPEED_10G_82599) | ||
| 3107 | *speed = IXGBE_LINK_SPEED_10GB_FULL; | ||
| 3108 | else if ((links_reg & IXGBE_LINKS_SPEED_82599) == | ||
| 3109 | IXGBE_LINKS_SPEED_1G_82599) | ||
| 3110 | *speed = IXGBE_LINK_SPEED_1GB_FULL; | ||
| 3111 | else if ((links_reg & IXGBE_LINKS_SPEED_82599) == | ||
| 3112 | IXGBE_LINKS_SPEED_100_82599) | ||
| 3113 | *speed = IXGBE_LINK_SPEED_100_FULL; | ||
| 3114 | else | ||
| 3115 | *speed = IXGBE_LINK_SPEED_UNKNOWN; | ||
| 3116 | |||
| 3117 | /* if link is down, zero out the current_mode */ | ||
| 3118 | if (*link_up == false) { | ||
| 3119 | hw->fc.current_mode = ixgbe_fc_none; | ||
| 3120 | hw->fc.fc_was_autonegged = false; | ||
| 3121 | } | ||
| 3122 | |||
| 3123 | return 0; | ||
| 3124 | } | ||
| 3125 | |||
| 3126 | /** | ||
| 3127 | * ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from | ||
| 3128 | * the EEPROM | ||
| 3129 | * @hw: pointer to hardware structure | ||
| 3130 | * @wwnn_prefix: the alternative WWNN prefix | ||
| 3131 | * @wwpn_prefix: the alternative WWPN prefix | ||
| 3132 | * | ||
| 3133 | * This function will read the EEPROM from the alternative SAN MAC address | ||
| 3134 | * block to check the support for the alternative WWNN/WWPN prefix support. | ||
| 3135 | **/ | ||
| 3136 | s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix, | ||
| 3137 | u16 *wwpn_prefix) | ||
| 3138 | { | ||
| 3139 | u16 offset, caps; | ||
| 3140 | u16 alt_san_mac_blk_offset; | ||
| 3141 | |||
| 3142 | /* clear output first */ | ||
| 3143 | *wwnn_prefix = 0xFFFF; | ||
| 3144 | *wwpn_prefix = 0xFFFF; | ||
| 3145 | |||
| 3146 | /* check if alternative SAN MAC is supported */ | ||
| 3147 | hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR, | ||
| 3148 | &alt_san_mac_blk_offset); | ||
| 3149 | |||
| 3150 | if ((alt_san_mac_blk_offset == 0) || | ||
| 3151 | (alt_san_mac_blk_offset == 0xFFFF)) | ||
| 3152 | goto wwn_prefix_out; | ||
| 3153 | |||
| 3154 | /* check capability in alternative san mac address block */ | ||
| 3155 | offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET; | ||
| 3156 | hw->eeprom.ops.read(hw, offset, &caps); | ||
| 3157 | if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN)) | ||
| 3158 | goto wwn_prefix_out; | ||
| 3159 | |||
| 3160 | /* get the corresponding prefix for WWNN/WWPN */ | ||
| 3161 | offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET; | ||
| 3162 | hw->eeprom.ops.read(hw, offset, wwnn_prefix); | ||
| 3163 | |||
| 3164 | offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET; | ||
| 3165 | hw->eeprom.ops.read(hw, offset, wwpn_prefix); | ||
| 3166 | |||
| 3167 | wwn_prefix_out: | ||
| 3168 | return 0; | ||
| 3169 | } | ||
| 3170 | |||
| 3171 | /** | ||
| 3172 | * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow | ||
| 3173 | * control | ||
| 3174 | * @hw: pointer to hardware structure | ||
| 3175 | * | ||
| 3176 | * There are several phys that do not support autoneg flow control. This | ||
| 3177 | * function check the device id to see if the associated phy supports | ||
| 3178 | * autoneg flow control. | ||
| 3179 | **/ | ||
| 3180 | static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw) | ||
| 3181 | { | ||
| 3182 | |||
| 3183 | switch (hw->device_id) { | ||
| 3184 | case IXGBE_DEV_ID_X540T: | ||
| 3185 | return 0; | ||
| 3186 | case IXGBE_DEV_ID_82599_T3_LOM: | ||
| 3187 | return 0; | ||
| 3188 | default: | ||
| 3189 | return IXGBE_ERR_FC_NOT_SUPPORTED; | ||
| 3190 | } | ||
| 3191 | } | ||
| 3192 | |||
| 3193 | /** | ||
| 3194 | * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing | ||
| 3195 | * @hw: pointer to hardware structure | ||
| 3196 | * @enable: enable or disable switch for anti-spoofing | ||
| 3197 | * @pf: Physical Function pool - do not enable anti-spoofing for the PF | ||
| 3198 | * | ||
| 3199 | **/ | ||
| 3200 | void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf) | ||
| 3201 | { | ||
| 3202 | int j; | ||
| 3203 | int pf_target_reg = pf >> 3; | ||
| 3204 | int pf_target_shift = pf % 8; | ||
| 3205 | u32 pfvfspoof = 0; | ||
| 3206 | |||
| 3207 | if (hw->mac.type == ixgbe_mac_82598EB) | ||
| 3208 | return; | ||
| 3209 | |||
| 3210 | if (enable) | ||
| 3211 | pfvfspoof = IXGBE_SPOOF_MACAS_MASK; | ||
| 3212 | |||
| 3213 | /* | ||
| 3214 | * PFVFSPOOF register array is size 8 with 8 bits assigned to | ||
| 3215 | * MAC anti-spoof enables in each register array element. | ||
| 3216 | */ | ||
| 3217 | for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++) | ||
| 3218 | IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof); | ||
| 3219 | |||
| 3220 | /* If not enabling anti-spoofing then done */ | ||
| 3221 | if (!enable) | ||
| 3222 | return; | ||
| 3223 | |||
| 3224 | /* | ||
| 3225 | * The PF should be allowed to spoof so that it can support | ||
| 3226 | * emulation mode NICs. Reset the bit assigned to the PF | ||
| 3227 | */ | ||
| 3228 | pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg)); | ||
| 3229 | pfvfspoof ^= (1 << pf_target_shift); | ||
| 3230 | IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof); | ||
| 3231 | } | ||
| 3232 | |||
| 3233 | /** | ||
| 3234 | * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing | ||
| 3235 | * @hw: pointer to hardware structure | ||
| 3236 | * @enable: enable or disable switch for VLAN anti-spoofing | ||
| 3237 | * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing | ||
| 3238 | * | ||
| 3239 | **/ | ||
| 3240 | void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf) | ||
| 3241 | { | ||
| 3242 | int vf_target_reg = vf >> 3; | ||
| 3243 | int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT; | ||
| 3244 | u32 pfvfspoof; | ||
| 3245 | |||
| 3246 | if (hw->mac.type == ixgbe_mac_82598EB) | ||
| 3247 | return; | ||
| 3248 | |||
| 3249 | pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg)); | ||
| 3250 | if (enable) | ||
| 3251 | pfvfspoof |= (1 << vf_target_shift); | ||
| 3252 | else | ||
| 3253 | pfvfspoof &= ~(1 << vf_target_shift); | ||
| 3254 | IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof); | ||
| 3255 | } | ||
| 3256 | |||
| 3257 | /** | ||
| 3258 | * ixgbe_get_device_caps_generic - Get additional device capabilities | ||
| 3259 | * @hw: pointer to hardware structure | ||
| 3260 | * @device_caps: the EEPROM word with the extra device capabilities | ||
| 3261 | * | ||
| 3262 | * This function will read the EEPROM location for the device capabilities, | ||
| 3263 | * and return the word through device_caps. | ||
| 3264 | **/ | ||
| 3265 | s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps) | ||
| 3266 | { | ||
| 3267 | hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps); | ||
| 3268 | |||
| 3269 | return 0; | ||
| 3270 | } | ||
| 3271 | |||
| 3272 | /** | ||
| 3273 | * ixgbe_set_rxpba_generic - Initialize RX packet buffer | ||
| 3274 | * @hw: pointer to hardware structure | ||
| 3275 | * @num_pb: number of packet buffers to allocate | ||
| 3276 | * @headroom: reserve n KB of headroom | ||
| 3277 | * @strategy: packet buffer allocation strategy | ||
| 3278 | **/ | ||
| 3279 | void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, | ||
| 3280 | int num_pb, | ||
| 3281 | u32 headroom, | ||
| 3282 | int strategy) | ||
| 3283 | { | ||
| 3284 | u32 pbsize = hw->mac.rx_pb_size; | ||
| 3285 | int i = 0; | ||
| 3286 | u32 rxpktsize, txpktsize, txpbthresh; | ||
| 3287 | |||
| 3288 | /* Reserve headroom */ | ||
| 3289 | pbsize -= headroom; | ||
| 3290 | |||
| 3291 | if (!num_pb) | ||
| 3292 | num_pb = 1; | ||
| 3293 | |||
| 3294 | /* Divide remaining packet buffer space amongst the number | ||
| 3295 | * of packet buffers requested using supplied strategy. | ||
| 3296 | */ | ||
| 3297 | switch (strategy) { | ||
| 3298 | case (PBA_STRATEGY_WEIGHTED): | ||
| 3299 | /* pba_80_48 strategy weight first half of packet buffer with | ||
| 3300 | * 5/8 of the packet buffer space. | ||
| 3301 | */ | ||
| 3302 | rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8)); | ||
| 3303 | pbsize -= rxpktsize * (num_pb / 2); | ||
| 3304 | rxpktsize <<= IXGBE_RXPBSIZE_SHIFT; | ||
| 3305 | for (; i < (num_pb / 2); i++) | ||
| 3306 | IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize); | ||
| 3307 | /* Fall through to configure remaining packet buffers */ | ||
| 3308 | case (PBA_STRATEGY_EQUAL): | ||
| 3309 | /* Divide the remaining Rx packet buffer evenly among the TCs */ | ||
| 3310 | rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT; | ||
| 3311 | for (; i < num_pb; i++) | ||
| 3312 | IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize); | ||
| 3313 | break; | ||
| 3314 | default: | ||
| 3315 | break; | ||
| 3316 | } | ||
| 3317 | |||
| 3318 | /* | ||
| 3319 | * Setup Tx packet buffer and threshold equally for all TCs | ||
| 3320 | * TXPBTHRESH register is set in K so divide by 1024 and subtract | ||
| 3321 | * 10 since the largest packet we support is just over 9K. | ||
| 3322 | */ | ||
| 3323 | txpktsize = IXGBE_TXPBSIZE_MAX / num_pb; | ||
| 3324 | txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX; | ||
| 3325 | for (i = 0; i < num_pb; i++) { | ||
| 3326 | IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize); | ||
| 3327 | IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh); | ||
| 3328 | } | ||
| 3329 | |||
| 3330 | /* Clear unused TCs, if any, to zero buffer size*/ | ||
| 3331 | for (; i < IXGBE_MAX_PB; i++) { | ||
| 3332 | IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0); | ||
| 3333 | IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0); | ||
| 3334 | IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0); | ||
| 3335 | } | ||
| 3336 | } | ||
| 3337 | |||
| 3338 | /** | ||
| 3339 | * ixgbe_calculate_checksum - Calculate checksum for buffer | ||
| 3340 | * @buffer: pointer to EEPROM | ||
| 3341 | * @length: size of EEPROM to calculate a checksum for | ||
| 3342 | * Calculates the checksum for some buffer on a specified length. The | ||
| 3343 | * checksum calculated is returned. | ||
| 3344 | **/ | ||
| 3345 | static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length) | ||
| 3346 | { | ||
| 3347 | u32 i; | ||
| 3348 | u8 sum = 0; | ||
| 3349 | |||
| 3350 | if (!buffer) | ||
| 3351 | return 0; | ||
| 3352 | |||
| 3353 | for (i = 0; i < length; i++) | ||
| 3354 | sum += buffer[i]; | ||
| 3355 | |||
| 3356 | return (u8) (0 - sum); | ||
| 3357 | } | ||
| 3358 | |||
| 3359 | /** | ||
| 3360 | * ixgbe_host_interface_command - Issue command to manageability block | ||
| 3361 | * @hw: pointer to the HW structure | ||
| 3362 | * @buffer: contains the command to write and where the return status will | ||
| 3363 | * be placed | ||
| 3364 | * @lenght: lenght of buffer, must be multiple of 4 bytes | ||
| 3365 | * | ||
| 3366 | * Communicates with the manageability block. On success return 0 | ||
| 3367 | * else return IXGBE_ERR_HOST_INTERFACE_COMMAND. | ||
| 3368 | **/ | ||
| 3369 | static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u8 *buffer, | ||
| 3370 | u32 length) | ||
| 3371 | { | ||
| 3372 | u32 hicr, i; | ||
| 3373 | u32 hdr_size = sizeof(struct ixgbe_hic_hdr); | ||
| 3374 | u8 buf_len, dword_len; | ||
| 3375 | |||
| 3376 | s32 ret_val = 0; | ||
| 3377 | |||
| 3378 | if (length == 0 || length & 0x3 || | ||
| 3379 | length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) { | ||
| 3380 | hw_dbg(hw, "Buffer length failure.\n"); | ||
| 3381 | ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; | ||
| 3382 | goto out; | ||
| 3383 | } | ||
| 3384 | |||
| 3385 | /* Check that the host interface is enabled. */ | ||
| 3386 | hicr = IXGBE_READ_REG(hw, IXGBE_HICR); | ||
| 3387 | if ((hicr & IXGBE_HICR_EN) == 0) { | ||
| 3388 | hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n"); | ||
| 3389 | ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; | ||
| 3390 | goto out; | ||
| 3391 | } | ||
| 3392 | |||
| 3393 | /* Calculate length in DWORDs */ | ||
| 3394 | dword_len = length >> 2; | ||
| 3395 | |||
| 3396 | /* | ||
| 3397 | * The device driver writes the relevant command block | ||
| 3398 | * into the ram area. | ||
| 3399 | */ | ||
| 3400 | for (i = 0; i < dword_len; i++) | ||
| 3401 | IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG, | ||
| 3402 | i, *((u32 *)buffer + i)); | ||
| 3403 | |||
| 3404 | /* Setting this bit tells the ARC that a new command is pending. */ | ||
| 3405 | IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C); | ||
| 3406 | |||
| 3407 | for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) { | ||
| 3408 | hicr = IXGBE_READ_REG(hw, IXGBE_HICR); | ||
| 3409 | if (!(hicr & IXGBE_HICR_C)) | ||
| 3410 | break; | ||
| 3411 | usleep_range(1000, 2000); | ||
| 3412 | } | ||
| 3413 | |||
| 3414 | /* Check command successful completion. */ | ||
| 3415 | if (i == IXGBE_HI_COMMAND_TIMEOUT || | ||
| 3416 | (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) { | ||
| 3417 | hw_dbg(hw, "Command has failed with no status valid.\n"); | ||
| 3418 | ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; | ||
| 3419 | goto out; | ||
| 3420 | } | ||
| 3421 | |||
| 3422 | /* Calculate length in DWORDs */ | ||
| 3423 | dword_len = hdr_size >> 2; | ||
| 3424 | |||
| 3425 | /* first pull in the header so we know the buffer length */ | ||
| 3426 | for (i = 0; i < dword_len; i++) | ||
| 3427 | *((u32 *)buffer + i) = | ||
| 3428 | IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, i); | ||
| 3429 | |||
| 3430 | /* If there is any thing in data position pull it in */ | ||
| 3431 | buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len; | ||
| 3432 | if (buf_len == 0) | ||
| 3433 | goto out; | ||
| 3434 | |||
| 3435 | if (length < (buf_len + hdr_size)) { | ||
| 3436 | hw_dbg(hw, "Buffer not large enough for reply message.\n"); | ||
| 3437 | ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; | ||
| 3438 | goto out; | ||
| 3439 | } | ||
| 3440 | |||
| 3441 | /* Calculate length in DWORDs, add one for odd lengths */ | ||
| 3442 | dword_len = (buf_len + 1) >> 2; | ||
| 3443 | |||
| 3444 | /* Pull in the rest of the buffer (i is where we left off)*/ | ||
| 3445 | for (; i < buf_len; i++) | ||
| 3446 | *((u32 *)buffer + i) = | ||
| 3447 | IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, i); | ||
| 3448 | |||
| 3449 | out: | ||
| 3450 | return ret_val; | ||
| 3451 | } | ||
| 3452 | |||
| 3453 | /** | ||
| 3454 | * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware | ||
| 3455 | * @hw: pointer to the HW structure | ||
| 3456 | * @maj: driver version major number | ||
| 3457 | * @min: driver version minor number | ||
| 3458 | * @build: driver version build number | ||
| 3459 | * @sub: driver version sub build number | ||
| 3460 | * | ||
| 3461 | * Sends driver version number to firmware through the manageability | ||
| 3462 | * block. On success return 0 | ||
| 3463 | * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring | ||
| 3464 | * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails. | ||
| 3465 | **/ | ||
| 3466 | s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min, | ||
| 3467 | u8 build, u8 sub) | ||
| 3468 | { | ||
| 3469 | struct ixgbe_hic_drv_info fw_cmd; | ||
| 3470 | int i; | ||
| 3471 | s32 ret_val = 0; | ||
| 3472 | |||
| 3473 | if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) { | ||
| 3474 | ret_val = IXGBE_ERR_SWFW_SYNC; | ||
| 3475 | goto out; | ||
| 3476 | } | ||
| 3477 | |||
| 3478 | fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO; | ||
| 3479 | fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN; | ||
| 3480 | fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED; | ||
| 3481 | fw_cmd.port_num = (u8)hw->bus.func; | ||
| 3482 | fw_cmd.ver_maj = maj; | ||
| 3483 | fw_cmd.ver_min = min; | ||
| 3484 | fw_cmd.ver_build = build; | ||
| 3485 | fw_cmd.ver_sub = sub; | ||
| 3486 | fw_cmd.hdr.checksum = 0; | ||
| 3487 | fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd, | ||
| 3488 | (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len)); | ||
| 3489 | fw_cmd.pad = 0; | ||
| 3490 | fw_cmd.pad2 = 0; | ||
| 3491 | |||
| 3492 | for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) { | ||
| 3493 | ret_val = ixgbe_host_interface_command(hw, (u8 *)&fw_cmd, | ||
| 3494 | sizeof(fw_cmd)); | ||
| 3495 | if (ret_val != 0) | ||
| 3496 | continue; | ||
| 3497 | |||
| 3498 | if (fw_cmd.hdr.cmd_or_resp.ret_status == | ||
| 3499 | FW_CEM_RESP_STATUS_SUCCESS) | ||
| 3500 | ret_val = 0; | ||
| 3501 | else | ||
| 3502 | ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; | ||
| 3503 | |||
| 3504 | break; | ||
| 3505 | } | ||
| 3506 | |||
| 3507 | hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM); | ||
| 3508 | out: | ||
| 3509 | return ret_val; | ||
| 3510 | } | ||
