diff options
| author | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
|---|---|---|
| committer | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
| commit | fcc9d2e5a6c89d22b8b773a64fb4ad21ac318446 (patch) | |
| tree | a57612d1888735a2ec7972891b68c1ac5ec8faea /drivers/net/e1000e/lib.c | |
| parent | 8dea78da5cee153b8af9c07a2745f6c55057fe12 (diff) | |
Diffstat (limited to 'drivers/net/e1000e/lib.c')
| -rw-r--r-- | drivers/net/e1000e/lib.c | 2693 |
1 files changed, 2693 insertions, 0 deletions
diff --git a/drivers/net/e1000e/lib.c b/drivers/net/e1000e/lib.c new file mode 100644 index 00000000000..0893ab107ad --- /dev/null +++ b/drivers/net/e1000e/lib.c | |||
| @@ -0,0 +1,2693 @@ | |||
| 1 | /******************************************************************************* | ||
| 2 | |||
| 3 | Intel PRO/1000 Linux driver | ||
| 4 | Copyright(c) 1999 - 2011 Intel Corporation. | ||
| 5 | |||
| 6 | This program is free software; you can redistribute it and/or modify it | ||
| 7 | under the terms and conditions of the GNU General Public License, | ||
| 8 | version 2, as published by the Free Software Foundation. | ||
| 9 | |||
| 10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
| 12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
| 13 | more details. | ||
| 14 | |||
| 15 | You should have received a copy of the GNU General Public License along with | ||
| 16 | this program; if not, write to the Free Software Foundation, Inc., | ||
| 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
| 18 | |||
| 19 | The full GNU General Public License is included in this distribution in | ||
| 20 | the file called "COPYING". | ||
| 21 | |||
| 22 | Contact Information: | ||
| 23 | Linux NICS <linux.nics@intel.com> | ||
| 24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
| 25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
| 26 | |||
| 27 | *******************************************************************************/ | ||
| 28 | |||
| 29 | #include "e1000.h" | ||
| 30 | |||
| 31 | enum e1000_mng_mode { | ||
| 32 | e1000_mng_mode_none = 0, | ||
| 33 | e1000_mng_mode_asf, | ||
| 34 | e1000_mng_mode_pt, | ||
| 35 | e1000_mng_mode_ipmi, | ||
| 36 | e1000_mng_mode_host_if_only | ||
| 37 | }; | ||
| 38 | |||
| 39 | #define E1000_FACTPS_MNGCG 0x20000000 | ||
| 40 | |||
| 41 | /* Intel(R) Active Management Technology signature */ | ||
| 42 | #define E1000_IAMT_SIGNATURE 0x544D4149 | ||
| 43 | |||
| 44 | /** | ||
| 45 | * e1000e_get_bus_info_pcie - Get PCIe bus information | ||
| 46 | * @hw: pointer to the HW structure | ||
| 47 | * | ||
| 48 | * Determines and stores the system bus information for a particular | ||
| 49 | * network interface. The following bus information is determined and stored: | ||
| 50 | * bus speed, bus width, type (PCIe), and PCIe function. | ||
| 51 | **/ | ||
| 52 | s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw) | ||
| 53 | { | ||
| 54 | struct e1000_mac_info *mac = &hw->mac; | ||
| 55 | struct e1000_bus_info *bus = &hw->bus; | ||
| 56 | struct e1000_adapter *adapter = hw->adapter; | ||
| 57 | u16 pcie_link_status, cap_offset; | ||
| 58 | |||
| 59 | cap_offset = adapter->pdev->pcie_cap; | ||
| 60 | if (!cap_offset) { | ||
| 61 | bus->width = e1000_bus_width_unknown; | ||
| 62 | } else { | ||
| 63 | pci_read_config_word(adapter->pdev, | ||
| 64 | cap_offset + PCIE_LINK_STATUS, | ||
| 65 | &pcie_link_status); | ||
| 66 | bus->width = (enum e1000_bus_width)((pcie_link_status & | ||
| 67 | PCIE_LINK_WIDTH_MASK) >> | ||
| 68 | PCIE_LINK_WIDTH_SHIFT); | ||
| 69 | } | ||
| 70 | |||
| 71 | mac->ops.set_lan_id(hw); | ||
| 72 | |||
| 73 | return 0; | ||
| 74 | } | ||
| 75 | |||
| 76 | /** | ||
| 77 | * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices | ||
| 78 | * | ||
| 79 | * @hw: pointer to the HW structure | ||
| 80 | * | ||
| 81 | * Determines the LAN function id by reading memory-mapped registers | ||
| 82 | * and swaps the port value if requested. | ||
| 83 | **/ | ||
| 84 | void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) | ||
| 85 | { | ||
| 86 | struct e1000_bus_info *bus = &hw->bus; | ||
| 87 | u32 reg; | ||
| 88 | |||
| 89 | /* | ||
| 90 | * The status register reports the correct function number | ||
| 91 | * for the device regardless of function swap state. | ||
| 92 | */ | ||
| 93 | reg = er32(STATUS); | ||
| 94 | bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; | ||
| 95 | } | ||
| 96 | |||
| 97 | /** | ||
| 98 | * e1000_set_lan_id_single_port - Set LAN id for a single port device | ||
| 99 | * @hw: pointer to the HW structure | ||
| 100 | * | ||
| 101 | * Sets the LAN function id to zero for a single port device. | ||
| 102 | **/ | ||
| 103 | void e1000_set_lan_id_single_port(struct e1000_hw *hw) | ||
| 104 | { | ||
| 105 | struct e1000_bus_info *bus = &hw->bus; | ||
| 106 | |||
| 107 | bus->func = 0; | ||
| 108 | } | ||
| 109 | |||
| 110 | /** | ||
| 111 | * e1000_clear_vfta_generic - Clear VLAN filter table | ||
| 112 | * @hw: pointer to the HW structure | ||
| 113 | * | ||
| 114 | * Clears the register array which contains the VLAN filter table by | ||
| 115 | * setting all the values to 0. | ||
| 116 | **/ | ||
| 117 | void e1000_clear_vfta_generic(struct e1000_hw *hw) | ||
| 118 | { | ||
| 119 | u32 offset; | ||
| 120 | |||
| 121 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | ||
| 122 | E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); | ||
| 123 | e1e_flush(); | ||
| 124 | } | ||
| 125 | } | ||
| 126 | |||
| 127 | /** | ||
| 128 | * e1000_write_vfta_generic - Write value to VLAN filter table | ||
| 129 | * @hw: pointer to the HW structure | ||
| 130 | * @offset: register offset in VLAN filter table | ||
| 131 | * @value: register value written to VLAN filter table | ||
| 132 | * | ||
| 133 | * Writes value at the given offset in the register array which stores | ||
| 134 | * the VLAN filter table. | ||
| 135 | **/ | ||
| 136 | void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) | ||
| 137 | { | ||
| 138 | E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); | ||
| 139 | e1e_flush(); | ||
| 140 | } | ||
| 141 | |||
| 142 | /** | ||
| 143 | * e1000e_init_rx_addrs - Initialize receive address's | ||
| 144 | * @hw: pointer to the HW structure | ||
| 145 | * @rar_count: receive address registers | ||
| 146 | * | ||
| 147 | * Setup the receive address registers by setting the base receive address | ||
| 148 | * register to the devices MAC address and clearing all the other receive | ||
| 149 | * address registers to 0. | ||
| 150 | **/ | ||
| 151 | void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) | ||
| 152 | { | ||
| 153 | u32 i; | ||
| 154 | u8 mac_addr[ETH_ALEN] = {0}; | ||
| 155 | |||
| 156 | /* Setup the receive address */ | ||
| 157 | e_dbg("Programming MAC Address into RAR[0]\n"); | ||
| 158 | |||
| 159 | e1000e_rar_set(hw, hw->mac.addr, 0); | ||
| 160 | |||
| 161 | /* Zero out the other (rar_entry_count - 1) receive addresses */ | ||
| 162 | e_dbg("Clearing RAR[1-%u]\n", rar_count-1); | ||
| 163 | for (i = 1; i < rar_count; i++) | ||
| 164 | e1000e_rar_set(hw, mac_addr, i); | ||
| 165 | } | ||
| 166 | |||
| 167 | /** | ||
| 168 | * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr | ||
| 169 | * @hw: pointer to the HW structure | ||
| 170 | * | ||
| 171 | * Checks the nvm for an alternate MAC address. An alternate MAC address | ||
| 172 | * can be setup by pre-boot software and must be treated like a permanent | ||
| 173 | * address and must override the actual permanent MAC address. If an | ||
| 174 | * alternate MAC address is found it is programmed into RAR0, replacing | ||
| 175 | * the permanent address that was installed into RAR0 by the Si on reset. | ||
| 176 | * This function will return SUCCESS unless it encounters an error while | ||
| 177 | * reading the EEPROM. | ||
| 178 | **/ | ||
| 179 | s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) | ||
| 180 | { | ||
| 181 | u32 i; | ||
| 182 | s32 ret_val = 0; | ||
| 183 | u16 offset, nvm_alt_mac_addr_offset, nvm_data; | ||
| 184 | u8 alt_mac_addr[ETH_ALEN]; | ||
| 185 | |||
| 186 | ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data); | ||
| 187 | if (ret_val) | ||
| 188 | goto out; | ||
| 189 | |||
| 190 | /* Check for LOM (vs. NIC) or one of two valid mezzanine cards */ | ||
| 191 | if (!((nvm_data & NVM_COMPAT_LOM) || | ||
| 192 | (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_DUAL) || | ||
| 193 | (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD) || | ||
| 194 | (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES))) | ||
| 195 | goto out; | ||
| 196 | |||
| 197 | ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, | ||
| 198 | &nvm_alt_mac_addr_offset); | ||
| 199 | if (ret_val) { | ||
| 200 | e_dbg("NVM Read Error\n"); | ||
| 201 | goto out; | ||
| 202 | } | ||
| 203 | |||
| 204 | if ((nvm_alt_mac_addr_offset == 0xFFFF) || | ||
| 205 | (nvm_alt_mac_addr_offset == 0x0000)) | ||
| 206 | /* There is no Alternate MAC Address */ | ||
| 207 | goto out; | ||
| 208 | |||
| 209 | if (hw->bus.func == E1000_FUNC_1) | ||
| 210 | nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; | ||
| 211 | for (i = 0; i < ETH_ALEN; i += 2) { | ||
| 212 | offset = nvm_alt_mac_addr_offset + (i >> 1); | ||
| 213 | ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data); | ||
| 214 | if (ret_val) { | ||
| 215 | e_dbg("NVM Read Error\n"); | ||
| 216 | goto out; | ||
| 217 | } | ||
| 218 | |||
| 219 | alt_mac_addr[i] = (u8)(nvm_data & 0xFF); | ||
| 220 | alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); | ||
| 221 | } | ||
| 222 | |||
| 223 | /* if multicast bit is set, the alternate address will not be used */ | ||
| 224 | if (is_multicast_ether_addr(alt_mac_addr)) { | ||
| 225 | e_dbg("Ignoring Alternate Mac Address with MC bit set\n"); | ||
| 226 | goto out; | ||
| 227 | } | ||
| 228 | |||
| 229 | /* | ||
| 230 | * We have a valid alternate MAC address, and we want to treat it the | ||
| 231 | * same as the normal permanent MAC address stored by the HW into the | ||
| 232 | * RAR. Do this by mapping this address into RAR0. | ||
| 233 | */ | ||
| 234 | e1000e_rar_set(hw, alt_mac_addr, 0); | ||
| 235 | |||
| 236 | out: | ||
| 237 | return ret_val; | ||
| 238 | } | ||
| 239 | |||
| 240 | /** | ||
| 241 | * e1000e_rar_set - Set receive address register | ||
| 242 | * @hw: pointer to the HW structure | ||
| 243 | * @addr: pointer to the receive address | ||
| 244 | * @index: receive address array register | ||
| 245 | * | ||
| 246 | * Sets the receive address array register at index to the address passed | ||
| 247 | * in by addr. | ||
| 248 | **/ | ||
| 249 | void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) | ||
| 250 | { | ||
| 251 | u32 rar_low, rar_high; | ||
| 252 | |||
| 253 | /* | ||
| 254 | * HW expects these in little endian so we reverse the byte order | ||
| 255 | * from network order (big endian) to little endian | ||
| 256 | */ | ||
| 257 | rar_low = ((u32) addr[0] | | ||
| 258 | ((u32) addr[1] << 8) | | ||
| 259 | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); | ||
| 260 | |||
| 261 | rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); | ||
| 262 | |||
| 263 | /* If MAC address zero, no need to set the AV bit */ | ||
| 264 | if (rar_low || rar_high) | ||
| 265 | rar_high |= E1000_RAH_AV; | ||
| 266 | |||
| 267 | /* | ||
| 268 | * Some bridges will combine consecutive 32-bit writes into | ||
| 269 | * a single burst write, which will malfunction on some parts. | ||
| 270 | * The flushes avoid this. | ||
| 271 | */ | ||
| 272 | ew32(RAL(index), rar_low); | ||
| 273 | e1e_flush(); | ||
| 274 | ew32(RAH(index), rar_high); | ||
| 275 | e1e_flush(); | ||
| 276 | } | ||
| 277 | |||
| 278 | /** | ||
| 279 | * e1000_hash_mc_addr - Generate a multicast hash value | ||
| 280 | * @hw: pointer to the HW structure | ||
| 281 | * @mc_addr: pointer to a multicast address | ||
| 282 | * | ||
| 283 | * Generates a multicast address hash value which is used to determine | ||
| 284 | * the multicast filter table array address and new table value. See | ||
| 285 | * e1000_mta_set_generic() | ||
| 286 | **/ | ||
| 287 | static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) | ||
| 288 | { | ||
| 289 | u32 hash_value, hash_mask; | ||
| 290 | u8 bit_shift = 0; | ||
| 291 | |||
| 292 | /* Register count multiplied by bits per register */ | ||
| 293 | hash_mask = (hw->mac.mta_reg_count * 32) - 1; | ||
| 294 | |||
| 295 | /* | ||
| 296 | * For a mc_filter_type of 0, bit_shift is the number of left-shifts | ||
| 297 | * where 0xFF would still fall within the hash mask. | ||
| 298 | */ | ||
| 299 | while (hash_mask >> bit_shift != 0xFF) | ||
| 300 | bit_shift++; | ||
| 301 | |||
| 302 | /* | ||
| 303 | * The portion of the address that is used for the hash table | ||
| 304 | * is determined by the mc_filter_type setting. | ||
| 305 | * The algorithm is such that there is a total of 8 bits of shifting. | ||
| 306 | * The bit_shift for a mc_filter_type of 0 represents the number of | ||
| 307 | * left-shifts where the MSB of mc_addr[5] would still fall within | ||
| 308 | * the hash_mask. Case 0 does this exactly. Since there are a total | ||
| 309 | * of 8 bits of shifting, then mc_addr[4] will shift right the | ||
| 310 | * remaining number of bits. Thus 8 - bit_shift. The rest of the | ||
| 311 | * cases are a variation of this algorithm...essentially raising the | ||
| 312 | * number of bits to shift mc_addr[5] left, while still keeping the | ||
| 313 | * 8-bit shifting total. | ||
| 314 | * | ||
| 315 | * For example, given the following Destination MAC Address and an | ||
| 316 | * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), | ||
| 317 | * we can see that the bit_shift for case 0 is 4. These are the hash | ||
| 318 | * values resulting from each mc_filter_type... | ||
| 319 | * [0] [1] [2] [3] [4] [5] | ||
| 320 | * 01 AA 00 12 34 56 | ||
| 321 | * LSB MSB | ||
| 322 | * | ||
| 323 | * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 | ||
| 324 | * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 | ||
| 325 | * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 | ||
| 326 | * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 | ||
| 327 | */ | ||
| 328 | switch (hw->mac.mc_filter_type) { | ||
| 329 | default: | ||
| 330 | case 0: | ||
| 331 | break; | ||
| 332 | case 1: | ||
| 333 | bit_shift += 1; | ||
| 334 | break; | ||
| 335 | case 2: | ||
| 336 | bit_shift += 2; | ||
| 337 | break; | ||
| 338 | case 3: | ||
| 339 | bit_shift += 4; | ||
| 340 | break; | ||
| 341 | } | ||
| 342 | |||
| 343 | hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | | ||
| 344 | (((u16) mc_addr[5]) << bit_shift))); | ||
| 345 | |||
| 346 | return hash_value; | ||
| 347 | } | ||
| 348 | |||
| 349 | /** | ||
| 350 | * e1000e_update_mc_addr_list_generic - Update Multicast addresses | ||
| 351 | * @hw: pointer to the HW structure | ||
| 352 | * @mc_addr_list: array of multicast addresses to program | ||
| 353 | * @mc_addr_count: number of multicast addresses to program | ||
| 354 | * | ||
| 355 | * Updates entire Multicast Table Array. | ||
| 356 | * The caller must have a packed mc_addr_list of multicast addresses. | ||
| 357 | **/ | ||
| 358 | void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw, | ||
| 359 | u8 *mc_addr_list, u32 mc_addr_count) | ||
| 360 | { | ||
| 361 | u32 hash_value, hash_bit, hash_reg; | ||
| 362 | int i; | ||
| 363 | |||
| 364 | /* clear mta_shadow */ | ||
| 365 | memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); | ||
| 366 | |||
| 367 | /* update mta_shadow from mc_addr_list */ | ||
| 368 | for (i = 0; (u32) i < mc_addr_count; i++) { | ||
| 369 | hash_value = e1000_hash_mc_addr(hw, mc_addr_list); | ||
| 370 | |||
| 371 | hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); | ||
| 372 | hash_bit = hash_value & 0x1F; | ||
| 373 | |||
| 374 | hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); | ||
| 375 | mc_addr_list += (ETH_ALEN); | ||
| 376 | } | ||
| 377 | |||
| 378 | /* replace the entire MTA table */ | ||
| 379 | for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) | ||
| 380 | E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); | ||
| 381 | e1e_flush(); | ||
| 382 | } | ||
| 383 | |||
| 384 | /** | ||
| 385 | * e1000e_clear_hw_cntrs_base - Clear base hardware counters | ||
| 386 | * @hw: pointer to the HW structure | ||
| 387 | * | ||
| 388 | * Clears the base hardware counters by reading the counter registers. | ||
| 389 | **/ | ||
| 390 | void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw) | ||
| 391 | { | ||
| 392 | er32(CRCERRS); | ||
| 393 | er32(SYMERRS); | ||
| 394 | er32(MPC); | ||
| 395 | er32(SCC); | ||
| 396 | er32(ECOL); | ||
| 397 | er32(MCC); | ||
| 398 | er32(LATECOL); | ||
| 399 | er32(COLC); | ||
| 400 | er32(DC); | ||
| 401 | er32(SEC); | ||
| 402 | er32(RLEC); | ||
| 403 | er32(XONRXC); | ||
| 404 | er32(XONTXC); | ||
| 405 | er32(XOFFRXC); | ||
| 406 | er32(XOFFTXC); | ||
| 407 | er32(FCRUC); | ||
| 408 | er32(GPRC); | ||
| 409 | er32(BPRC); | ||
| 410 | er32(MPRC); | ||
| 411 | er32(GPTC); | ||
| 412 | er32(GORCL); | ||
| 413 | er32(GORCH); | ||
| 414 | er32(GOTCL); | ||
| 415 | er32(GOTCH); | ||
| 416 | er32(RNBC); | ||
| 417 | er32(RUC); | ||
| 418 | er32(RFC); | ||
| 419 | er32(ROC); | ||
| 420 | er32(RJC); | ||
| 421 | er32(TORL); | ||
| 422 | er32(TORH); | ||
| 423 | er32(TOTL); | ||
| 424 | er32(TOTH); | ||
| 425 | er32(TPR); | ||
| 426 | er32(TPT); | ||
| 427 | er32(MPTC); | ||
| 428 | er32(BPTC); | ||
| 429 | } | ||
| 430 | |||
| 431 | /** | ||
| 432 | * e1000e_check_for_copper_link - Check for link (Copper) | ||
| 433 | * @hw: pointer to the HW structure | ||
| 434 | * | ||
| 435 | * Checks to see of the link status of the hardware has changed. If a | ||
| 436 | * change in link status has been detected, then we read the PHY registers | ||
| 437 | * to get the current speed/duplex if link exists. | ||
| 438 | **/ | ||
| 439 | s32 e1000e_check_for_copper_link(struct e1000_hw *hw) | ||
| 440 | { | ||
| 441 | struct e1000_mac_info *mac = &hw->mac; | ||
| 442 | s32 ret_val; | ||
| 443 | bool link; | ||
| 444 | |||
| 445 | /* | ||
| 446 | * We only want to go out to the PHY registers to see if Auto-Neg | ||
| 447 | * has completed and/or if our link status has changed. The | ||
| 448 | * get_link_status flag is set upon receiving a Link Status | ||
| 449 | * Change or Rx Sequence Error interrupt. | ||
| 450 | */ | ||
| 451 | if (!mac->get_link_status) | ||
| 452 | return 0; | ||
| 453 | |||
| 454 | /* | ||
| 455 | * First we want to see if the MII Status Register reports | ||
| 456 | * link. If so, then we want to get the current speed/duplex | ||
| 457 | * of the PHY. | ||
| 458 | */ | ||
| 459 | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); | ||
| 460 | if (ret_val) | ||
| 461 | return ret_val; | ||
| 462 | |||
| 463 | if (!link) | ||
| 464 | return ret_val; /* No link detected */ | ||
| 465 | |||
| 466 | mac->get_link_status = false; | ||
| 467 | |||
| 468 | /* | ||
| 469 | * Check if there was DownShift, must be checked | ||
| 470 | * immediately after link-up | ||
| 471 | */ | ||
| 472 | e1000e_check_downshift(hw); | ||
| 473 | |||
| 474 | /* | ||
| 475 | * If we are forcing speed/duplex, then we simply return since | ||
| 476 | * we have already determined whether we have link or not. | ||
| 477 | */ | ||
| 478 | if (!mac->autoneg) { | ||
| 479 | ret_val = -E1000_ERR_CONFIG; | ||
| 480 | return ret_val; | ||
| 481 | } | ||
| 482 | |||
| 483 | /* | ||
| 484 | * Auto-Neg is enabled. Auto Speed Detection takes care | ||
| 485 | * of MAC speed/duplex configuration. So we only need to | ||
| 486 | * configure Collision Distance in the MAC. | ||
| 487 | */ | ||
| 488 | e1000e_config_collision_dist(hw); | ||
| 489 | |||
| 490 | /* | ||
| 491 | * Configure Flow Control now that Auto-Neg has completed. | ||
| 492 | * First, we need to restore the desired flow control | ||
| 493 | * settings because we may have had to re-autoneg with a | ||
| 494 | * different link partner. | ||
| 495 | */ | ||
| 496 | ret_val = e1000e_config_fc_after_link_up(hw); | ||
| 497 | if (ret_val) | ||
| 498 | e_dbg("Error configuring flow control\n"); | ||
| 499 | |||
| 500 | return ret_val; | ||
| 501 | } | ||
| 502 | |||
| 503 | /** | ||
| 504 | * e1000e_check_for_fiber_link - Check for link (Fiber) | ||
| 505 | * @hw: pointer to the HW structure | ||
| 506 | * | ||
| 507 | * Checks for link up on the hardware. If link is not up and we have | ||
| 508 | * a signal, then we need to force link up. | ||
| 509 | **/ | ||
| 510 | s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) | ||
| 511 | { | ||
| 512 | struct e1000_mac_info *mac = &hw->mac; | ||
| 513 | u32 rxcw; | ||
| 514 | u32 ctrl; | ||
| 515 | u32 status; | ||
| 516 | s32 ret_val; | ||
| 517 | |||
| 518 | ctrl = er32(CTRL); | ||
| 519 | status = er32(STATUS); | ||
| 520 | rxcw = er32(RXCW); | ||
| 521 | |||
| 522 | /* | ||
| 523 | * If we don't have link (auto-negotiation failed or link partner | ||
| 524 | * cannot auto-negotiate), the cable is plugged in (we have signal), | ||
| 525 | * and our link partner is not trying to auto-negotiate with us (we | ||
| 526 | * are receiving idles or data), we need to force link up. We also | ||
| 527 | * need to give auto-negotiation time to complete, in case the cable | ||
| 528 | * was just plugged in. The autoneg_failed flag does this. | ||
| 529 | */ | ||
| 530 | /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ | ||
| 531 | if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) && | ||
| 532 | (!(rxcw & E1000_RXCW_C))) { | ||
| 533 | if (mac->autoneg_failed == 0) { | ||
| 534 | mac->autoneg_failed = 1; | ||
| 535 | return 0; | ||
| 536 | } | ||
| 537 | e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); | ||
| 538 | |||
| 539 | /* Disable auto-negotiation in the TXCW register */ | ||
| 540 | ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); | ||
| 541 | |||
| 542 | /* Force link-up and also force full-duplex. */ | ||
| 543 | ctrl = er32(CTRL); | ||
| 544 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | ||
| 545 | ew32(CTRL, ctrl); | ||
| 546 | |||
| 547 | /* Configure Flow Control after forcing link up. */ | ||
| 548 | ret_val = e1000e_config_fc_after_link_up(hw); | ||
| 549 | if (ret_val) { | ||
| 550 | e_dbg("Error configuring flow control\n"); | ||
| 551 | return ret_val; | ||
| 552 | } | ||
| 553 | } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | ||
| 554 | /* | ||
| 555 | * If we are forcing link and we are receiving /C/ ordered | ||
| 556 | * sets, re-enable auto-negotiation in the TXCW register | ||
| 557 | * and disable forced link in the Device Control register | ||
| 558 | * in an attempt to auto-negotiate with our link partner. | ||
| 559 | */ | ||
| 560 | e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); | ||
| 561 | ew32(TXCW, mac->txcw); | ||
| 562 | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | ||
| 563 | |||
| 564 | mac->serdes_has_link = true; | ||
| 565 | } | ||
| 566 | |||
| 567 | return 0; | ||
| 568 | } | ||
| 569 | |||
| 570 | /** | ||
| 571 | * e1000e_check_for_serdes_link - Check for link (Serdes) | ||
| 572 | * @hw: pointer to the HW structure | ||
| 573 | * | ||
| 574 | * Checks for link up on the hardware. If link is not up and we have | ||
| 575 | * a signal, then we need to force link up. | ||
| 576 | **/ | ||
| 577 | s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) | ||
| 578 | { | ||
| 579 | struct e1000_mac_info *mac = &hw->mac; | ||
| 580 | u32 rxcw; | ||
| 581 | u32 ctrl; | ||
| 582 | u32 status; | ||
| 583 | s32 ret_val; | ||
| 584 | |||
| 585 | ctrl = er32(CTRL); | ||
| 586 | status = er32(STATUS); | ||
| 587 | rxcw = er32(RXCW); | ||
| 588 | |||
| 589 | /* | ||
| 590 | * If we don't have link (auto-negotiation failed or link partner | ||
| 591 | * cannot auto-negotiate), and our link partner is not trying to | ||
| 592 | * auto-negotiate with us (we are receiving idles or data), | ||
| 593 | * we need to force link up. We also need to give auto-negotiation | ||
| 594 | * time to complete. | ||
| 595 | */ | ||
| 596 | /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ | ||
| 597 | if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { | ||
| 598 | if (mac->autoneg_failed == 0) { | ||
| 599 | mac->autoneg_failed = 1; | ||
| 600 | return 0; | ||
| 601 | } | ||
| 602 | e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); | ||
| 603 | |||
| 604 | /* Disable auto-negotiation in the TXCW register */ | ||
| 605 | ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); | ||
| 606 | |||
| 607 | /* Force link-up and also force full-duplex. */ | ||
| 608 | ctrl = er32(CTRL); | ||
| 609 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | ||
| 610 | ew32(CTRL, ctrl); | ||
| 611 | |||
| 612 | /* Configure Flow Control after forcing link up. */ | ||
| 613 | ret_val = e1000e_config_fc_after_link_up(hw); | ||
| 614 | if (ret_val) { | ||
| 615 | e_dbg("Error configuring flow control\n"); | ||
| 616 | return ret_val; | ||
| 617 | } | ||
| 618 | } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | ||
| 619 | /* | ||
| 620 | * If we are forcing link and we are receiving /C/ ordered | ||
| 621 | * sets, re-enable auto-negotiation in the TXCW register | ||
| 622 | * and disable forced link in the Device Control register | ||
| 623 | * in an attempt to auto-negotiate with our link partner. | ||
| 624 | */ | ||
| 625 | e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); | ||
| 626 | ew32(TXCW, mac->txcw); | ||
| 627 | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | ||
| 628 | |||
| 629 | mac->serdes_has_link = true; | ||
| 630 | } else if (!(E1000_TXCW_ANE & er32(TXCW))) { | ||
| 631 | /* | ||
| 632 | * If we force link for non-auto-negotiation switch, check | ||
| 633 | * link status based on MAC synchronization for internal | ||
| 634 | * serdes media type. | ||
| 635 | */ | ||
| 636 | /* SYNCH bit and IV bit are sticky. */ | ||
| 637 | udelay(10); | ||
| 638 | rxcw = er32(RXCW); | ||
| 639 | if (rxcw & E1000_RXCW_SYNCH) { | ||
| 640 | if (!(rxcw & E1000_RXCW_IV)) { | ||
| 641 | mac->serdes_has_link = true; | ||
| 642 | e_dbg("SERDES: Link up - forced.\n"); | ||
| 643 | } | ||
| 644 | } else { | ||
| 645 | mac->serdes_has_link = false; | ||
| 646 | e_dbg("SERDES: Link down - force failed.\n"); | ||
| 647 | } | ||
| 648 | } | ||
| 649 | |||
| 650 | if (E1000_TXCW_ANE & er32(TXCW)) { | ||
| 651 | status = er32(STATUS); | ||
| 652 | if (status & E1000_STATUS_LU) { | ||
| 653 | /* SYNCH bit and IV bit are sticky, so reread rxcw. */ | ||
| 654 | udelay(10); | ||
| 655 | rxcw = er32(RXCW); | ||
| 656 | if (rxcw & E1000_RXCW_SYNCH) { | ||
| 657 | if (!(rxcw & E1000_RXCW_IV)) { | ||
| 658 | mac->serdes_has_link = true; | ||
| 659 | e_dbg("SERDES: Link up - autoneg " | ||
| 660 | "completed successfully.\n"); | ||
| 661 | } else { | ||
| 662 | mac->serdes_has_link = false; | ||
| 663 | e_dbg("SERDES: Link down - invalid" | ||
| 664 | "codewords detected in autoneg.\n"); | ||
| 665 | } | ||
| 666 | } else { | ||
| 667 | mac->serdes_has_link = false; | ||
| 668 | e_dbg("SERDES: Link down - no sync.\n"); | ||
| 669 | } | ||
| 670 | } else { | ||
| 671 | mac->serdes_has_link = false; | ||
| 672 | e_dbg("SERDES: Link down - autoneg failed\n"); | ||
| 673 | } | ||
| 674 | } | ||
| 675 | |||
| 676 | return 0; | ||
| 677 | } | ||
| 678 | |||
| 679 | /** | ||
| 680 | * e1000_set_default_fc_generic - Set flow control default values | ||
| 681 | * @hw: pointer to the HW structure | ||
| 682 | * | ||
| 683 | * Read the EEPROM for the default values for flow control and store the | ||
| 684 | * values. | ||
| 685 | **/ | ||
| 686 | static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) | ||
| 687 | { | ||
| 688 | s32 ret_val; | ||
| 689 | u16 nvm_data; | ||
| 690 | |||
| 691 | /* | ||
| 692 | * Read and store word 0x0F of the EEPROM. This word contains bits | ||
| 693 | * that determine the hardware's default PAUSE (flow control) mode, | ||
| 694 | * a bit that determines whether the HW defaults to enabling or | ||
| 695 | * disabling auto-negotiation, and the direction of the | ||
| 696 | * SW defined pins. If there is no SW over-ride of the flow | ||
| 697 | * control setting, then the variable hw->fc will | ||
| 698 | * be initialized based on a value in the EEPROM. | ||
| 699 | */ | ||
| 700 | ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); | ||
| 701 | |||
| 702 | if (ret_val) { | ||
| 703 | e_dbg("NVM Read Error\n"); | ||
| 704 | return ret_val; | ||
| 705 | } | ||
| 706 | |||
| 707 | if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) | ||
| 708 | hw->fc.requested_mode = e1000_fc_none; | ||
| 709 | else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == | ||
| 710 | NVM_WORD0F_ASM_DIR) | ||
| 711 | hw->fc.requested_mode = e1000_fc_tx_pause; | ||
| 712 | else | ||
| 713 | hw->fc.requested_mode = e1000_fc_full; | ||
| 714 | |||
| 715 | return 0; | ||
| 716 | } | ||
| 717 | |||
| 718 | /** | ||
| 719 | * e1000e_setup_link - Setup flow control and link settings | ||
| 720 | * @hw: pointer to the HW structure | ||
| 721 | * | ||
| 722 | * Determines which flow control settings to use, then configures flow | ||
| 723 | * control. Calls the appropriate media-specific link configuration | ||
| 724 | * function. Assuming the adapter has a valid link partner, a valid link | ||
| 725 | * should be established. Assumes the hardware has previously been reset | ||
| 726 | * and the transmitter and receiver are not enabled. | ||
| 727 | **/ | ||
| 728 | s32 e1000e_setup_link(struct e1000_hw *hw) | ||
| 729 | { | ||
| 730 | struct e1000_mac_info *mac = &hw->mac; | ||
| 731 | s32 ret_val; | ||
| 732 | |||
| 733 | /* | ||
| 734 | * In the case of the phy reset being blocked, we already have a link. | ||
| 735 | * We do not need to set it up again. | ||
| 736 | */ | ||
| 737 | if (e1000_check_reset_block(hw)) | ||
| 738 | return 0; | ||
| 739 | |||
| 740 | /* | ||
| 741 | * If requested flow control is set to default, set flow control | ||
| 742 | * based on the EEPROM flow control settings. | ||
| 743 | */ | ||
| 744 | if (hw->fc.requested_mode == e1000_fc_default) { | ||
| 745 | ret_val = e1000_set_default_fc_generic(hw); | ||
| 746 | if (ret_val) | ||
| 747 | return ret_val; | ||
| 748 | } | ||
| 749 | |||
| 750 | /* | ||
| 751 | * Save off the requested flow control mode for use later. Depending | ||
| 752 | * on the link partner's capabilities, we may or may not use this mode. | ||
| 753 | */ | ||
| 754 | hw->fc.current_mode = hw->fc.requested_mode; | ||
| 755 | |||
| 756 | e_dbg("After fix-ups FlowControl is now = %x\n", | ||
| 757 | hw->fc.current_mode); | ||
| 758 | |||
| 759 | /* Call the necessary media_type subroutine to configure the link. */ | ||
| 760 | ret_val = mac->ops.setup_physical_interface(hw); | ||
| 761 | if (ret_val) | ||
| 762 | return ret_val; | ||
| 763 | |||
| 764 | /* | ||
| 765 | * Initialize the flow control address, type, and PAUSE timer | ||
| 766 | * registers to their default values. This is done even if flow | ||
| 767 | * control is disabled, because it does not hurt anything to | ||
| 768 | * initialize these registers. | ||
| 769 | */ | ||
| 770 | e_dbg("Initializing the Flow Control address, type and timer regs\n"); | ||
| 771 | ew32(FCT, FLOW_CONTROL_TYPE); | ||
| 772 | ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); | ||
| 773 | ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); | ||
| 774 | |||
| 775 | ew32(FCTTV, hw->fc.pause_time); | ||
| 776 | |||
| 777 | return e1000e_set_fc_watermarks(hw); | ||
| 778 | } | ||
| 779 | |||
| 780 | /** | ||
| 781 | * e1000_commit_fc_settings_generic - Configure flow control | ||
| 782 | * @hw: pointer to the HW structure | ||
| 783 | * | ||
| 784 | * Write the flow control settings to the Transmit Config Word Register (TXCW) | ||
| 785 | * base on the flow control settings in e1000_mac_info. | ||
| 786 | **/ | ||
| 787 | static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) | ||
| 788 | { | ||
| 789 | struct e1000_mac_info *mac = &hw->mac; | ||
| 790 | u32 txcw; | ||
| 791 | |||
| 792 | /* | ||
| 793 | * Check for a software override of the flow control settings, and | ||
| 794 | * setup the device accordingly. If auto-negotiation is enabled, then | ||
| 795 | * software will have to set the "PAUSE" bits to the correct value in | ||
| 796 | * the Transmit Config Word Register (TXCW) and re-start auto- | ||
| 797 | * negotiation. However, if auto-negotiation is disabled, then | ||
| 798 | * software will have to manually configure the two flow control enable | ||
| 799 | * bits in the CTRL register. | ||
| 800 | * | ||
| 801 | * The possible values of the "fc" parameter are: | ||
| 802 | * 0: Flow control is completely disabled | ||
| 803 | * 1: Rx flow control is enabled (we can receive pause frames, | ||
| 804 | * but not send pause frames). | ||
| 805 | * 2: Tx flow control is enabled (we can send pause frames but we | ||
| 806 | * do not support receiving pause frames). | ||
| 807 | * 3: Both Rx and Tx flow control (symmetric) are enabled. | ||
| 808 | */ | ||
| 809 | switch (hw->fc.current_mode) { | ||
| 810 | case e1000_fc_none: | ||
| 811 | /* Flow control completely disabled by a software over-ride. */ | ||
| 812 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); | ||
| 813 | break; | ||
| 814 | case e1000_fc_rx_pause: | ||
| 815 | /* | ||
| 816 | * Rx Flow control is enabled and Tx Flow control is disabled | ||
| 817 | * by a software over-ride. Since there really isn't a way to | ||
| 818 | * advertise that we are capable of Rx Pause ONLY, we will | ||
| 819 | * advertise that we support both symmetric and asymmetric Rx | ||
| 820 | * PAUSE. Later, we will disable the adapter's ability to send | ||
| 821 | * PAUSE frames. | ||
| 822 | */ | ||
| 823 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | ||
| 824 | break; | ||
| 825 | case e1000_fc_tx_pause: | ||
| 826 | /* | ||
| 827 | * Tx Flow control is enabled, and Rx Flow control is disabled, | ||
| 828 | * by a software over-ride. | ||
| 829 | */ | ||
| 830 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); | ||
| 831 | break; | ||
| 832 | case e1000_fc_full: | ||
| 833 | /* | ||
| 834 | * Flow control (both Rx and Tx) is enabled by a software | ||
| 835 | * over-ride. | ||
| 836 | */ | ||
| 837 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | ||
| 838 | break; | ||
| 839 | default: | ||
| 840 | e_dbg("Flow control param set incorrectly\n"); | ||
| 841 | return -E1000_ERR_CONFIG; | ||
| 842 | break; | ||
| 843 | } | ||
| 844 | |||
| 845 | ew32(TXCW, txcw); | ||
| 846 | mac->txcw = txcw; | ||
| 847 | |||
| 848 | return 0; | ||
| 849 | } | ||
| 850 | |||
| 851 | /** | ||
| 852 | * e1000_poll_fiber_serdes_link_generic - Poll for link up | ||
| 853 | * @hw: pointer to the HW structure | ||
| 854 | * | ||
| 855 | * Polls for link up by reading the status register, if link fails to come | ||
| 856 | * up with auto-negotiation, then the link is forced if a signal is detected. | ||
| 857 | **/ | ||
| 858 | static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) | ||
| 859 | { | ||
| 860 | struct e1000_mac_info *mac = &hw->mac; | ||
| 861 | u32 i, status; | ||
| 862 | s32 ret_val; | ||
| 863 | |||
| 864 | /* | ||
| 865 | * If we have a signal (the cable is plugged in, or assumed true for | ||
| 866 | * serdes media) then poll for a "Link-Up" indication in the Device | ||
| 867 | * Status Register. Time-out if a link isn't seen in 500 milliseconds | ||
| 868 | * seconds (Auto-negotiation should complete in less than 500 | ||
| 869 | * milliseconds even if the other end is doing it in SW). | ||
| 870 | */ | ||
| 871 | for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { | ||
| 872 | usleep_range(10000, 20000); | ||
| 873 | status = er32(STATUS); | ||
| 874 | if (status & E1000_STATUS_LU) | ||
| 875 | break; | ||
| 876 | } | ||
| 877 | if (i == FIBER_LINK_UP_LIMIT) { | ||
| 878 | e_dbg("Never got a valid link from auto-neg!!!\n"); | ||
| 879 | mac->autoneg_failed = 1; | ||
| 880 | /* | ||
| 881 | * AutoNeg failed to achieve a link, so we'll call | ||
| 882 | * mac->check_for_link. This routine will force the | ||
| 883 | * link up if we detect a signal. This will allow us to | ||
| 884 | * communicate with non-autonegotiating link partners. | ||
| 885 | */ | ||
| 886 | ret_val = mac->ops.check_for_link(hw); | ||
| 887 | if (ret_val) { | ||
| 888 | e_dbg("Error while checking for link\n"); | ||
| 889 | return ret_val; | ||
| 890 | } | ||
| 891 | mac->autoneg_failed = 0; | ||
| 892 | } else { | ||
| 893 | mac->autoneg_failed = 0; | ||
| 894 | e_dbg("Valid Link Found\n"); | ||
| 895 | } | ||
| 896 | |||
| 897 | return 0; | ||
| 898 | } | ||
| 899 | |||
| 900 | /** | ||
| 901 | * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes | ||
| 902 | * @hw: pointer to the HW structure | ||
| 903 | * | ||
| 904 | * Configures collision distance and flow control for fiber and serdes | ||
| 905 | * links. Upon successful setup, poll for link. | ||
| 906 | **/ | ||
| 907 | s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) | ||
| 908 | { | ||
| 909 | u32 ctrl; | ||
| 910 | s32 ret_val; | ||
| 911 | |||
| 912 | ctrl = er32(CTRL); | ||
| 913 | |||
| 914 | /* Take the link out of reset */ | ||
| 915 | ctrl &= ~E1000_CTRL_LRST; | ||
| 916 | |||
| 917 | e1000e_config_collision_dist(hw); | ||
| 918 | |||
| 919 | ret_val = e1000_commit_fc_settings_generic(hw); | ||
| 920 | if (ret_val) | ||
| 921 | return ret_val; | ||
| 922 | |||
| 923 | /* | ||
| 924 | * Since auto-negotiation is enabled, take the link out of reset (the | ||
| 925 | * link will be in reset, because we previously reset the chip). This | ||
| 926 | * will restart auto-negotiation. If auto-negotiation is successful | ||
| 927 | * then the link-up status bit will be set and the flow control enable | ||
| 928 | * bits (RFCE and TFCE) will be set according to their negotiated value. | ||
| 929 | */ | ||
| 930 | e_dbg("Auto-negotiation enabled\n"); | ||
| 931 | |||
| 932 | ew32(CTRL, ctrl); | ||
| 933 | e1e_flush(); | ||
| 934 | usleep_range(1000, 2000); | ||
| 935 | |||
| 936 | /* | ||
| 937 | * For these adapters, the SW definable pin 1 is set when the optics | ||
| 938 | * detect a signal. If we have a signal, then poll for a "Link-Up" | ||
| 939 | * indication. | ||
| 940 | */ | ||
| 941 | if (hw->phy.media_type == e1000_media_type_internal_serdes || | ||
| 942 | (er32(CTRL) & E1000_CTRL_SWDPIN1)) { | ||
| 943 | ret_val = e1000_poll_fiber_serdes_link_generic(hw); | ||
| 944 | } else { | ||
| 945 | e_dbg("No signal detected\n"); | ||
| 946 | } | ||
| 947 | |||
| 948 | return 0; | ||
| 949 | } | ||
| 950 | |||
| 951 | /** | ||
| 952 | * e1000e_config_collision_dist - Configure collision distance | ||
| 953 | * @hw: pointer to the HW structure | ||
| 954 | * | ||
| 955 | * Configures the collision distance to the default value and is used | ||
| 956 | * during link setup. Currently no func pointer exists and all | ||
| 957 | * implementations are handled in the generic version of this function. | ||
| 958 | **/ | ||
| 959 | void e1000e_config_collision_dist(struct e1000_hw *hw) | ||
| 960 | { | ||
| 961 | u32 tctl; | ||
| 962 | |||
| 963 | tctl = er32(TCTL); | ||
| 964 | |||
| 965 | tctl &= ~E1000_TCTL_COLD; | ||
| 966 | tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; | ||
| 967 | |||
| 968 | ew32(TCTL, tctl); | ||
| 969 | e1e_flush(); | ||
| 970 | } | ||
| 971 | |||
| 972 | /** | ||
| 973 | * e1000e_set_fc_watermarks - Set flow control high/low watermarks | ||
| 974 | * @hw: pointer to the HW structure | ||
| 975 | * | ||
| 976 | * Sets the flow control high/low threshold (watermark) registers. If | ||
| 977 | * flow control XON frame transmission is enabled, then set XON frame | ||
| 978 | * transmission as well. | ||
| 979 | **/ | ||
| 980 | s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) | ||
| 981 | { | ||
| 982 | u32 fcrtl = 0, fcrth = 0; | ||
| 983 | |||
| 984 | /* | ||
| 985 | * Set the flow control receive threshold registers. Normally, | ||
| 986 | * these registers will be set to a default threshold that may be | ||
| 987 | * adjusted later by the driver's runtime code. However, if the | ||
| 988 | * ability to transmit pause frames is not enabled, then these | ||
| 989 | * registers will be set to 0. | ||
| 990 | */ | ||
| 991 | if (hw->fc.current_mode & e1000_fc_tx_pause) { | ||
| 992 | /* | ||
| 993 | * We need to set up the Receive Threshold high and low water | ||
| 994 | * marks as well as (optionally) enabling the transmission of | ||
| 995 | * XON frames. | ||
| 996 | */ | ||
| 997 | fcrtl = hw->fc.low_water; | ||
| 998 | fcrtl |= E1000_FCRTL_XONE; | ||
| 999 | fcrth = hw->fc.high_water; | ||
| 1000 | } | ||
| 1001 | ew32(FCRTL, fcrtl); | ||
| 1002 | ew32(FCRTH, fcrth); | ||
| 1003 | |||
| 1004 | return 0; | ||
| 1005 | } | ||
| 1006 | |||
| 1007 | /** | ||
| 1008 | * e1000e_force_mac_fc - Force the MAC's flow control settings | ||
| 1009 | * @hw: pointer to the HW structure | ||
| 1010 | * | ||
| 1011 | * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the | ||
| 1012 | * device control register to reflect the adapter settings. TFCE and RFCE | ||
| 1013 | * need to be explicitly set by software when a copper PHY is used because | ||
| 1014 | * autonegotiation is managed by the PHY rather than the MAC. Software must | ||
| 1015 | * also configure these bits when link is forced on a fiber connection. | ||
| 1016 | **/ | ||
| 1017 | s32 e1000e_force_mac_fc(struct e1000_hw *hw) | ||
| 1018 | { | ||
| 1019 | u32 ctrl; | ||
| 1020 | |||
| 1021 | ctrl = er32(CTRL); | ||
| 1022 | |||
| 1023 | /* | ||
| 1024 | * Because we didn't get link via the internal auto-negotiation | ||
| 1025 | * mechanism (we either forced link or we got link via PHY | ||
| 1026 | * auto-neg), we have to manually enable/disable transmit an | ||
| 1027 | * receive flow control. | ||
| 1028 | * | ||
| 1029 | * The "Case" statement below enables/disable flow control | ||
| 1030 | * according to the "hw->fc.current_mode" parameter. | ||
| 1031 | * | ||
| 1032 | * The possible values of the "fc" parameter are: | ||
| 1033 | * 0: Flow control is completely disabled | ||
| 1034 | * 1: Rx flow control is enabled (we can receive pause | ||
| 1035 | * frames but not send pause frames). | ||
| 1036 | * 2: Tx flow control is enabled (we can send pause frames | ||
| 1037 | * frames but we do not receive pause frames). | ||
| 1038 | * 3: Both Rx and Tx flow control (symmetric) is enabled. | ||
| 1039 | * other: No other values should be possible at this point. | ||
| 1040 | */ | ||
| 1041 | e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); | ||
| 1042 | |||
| 1043 | switch (hw->fc.current_mode) { | ||
| 1044 | case e1000_fc_none: | ||
| 1045 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | ||
| 1046 | break; | ||
| 1047 | case e1000_fc_rx_pause: | ||
| 1048 | ctrl &= (~E1000_CTRL_TFCE); | ||
| 1049 | ctrl |= E1000_CTRL_RFCE; | ||
| 1050 | break; | ||
| 1051 | case e1000_fc_tx_pause: | ||
| 1052 | ctrl &= (~E1000_CTRL_RFCE); | ||
| 1053 | ctrl |= E1000_CTRL_TFCE; | ||
| 1054 | break; | ||
| 1055 | case e1000_fc_full: | ||
| 1056 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | ||
| 1057 | break; | ||
| 1058 | default: | ||
| 1059 | e_dbg("Flow control param set incorrectly\n"); | ||
| 1060 | return -E1000_ERR_CONFIG; | ||
| 1061 | } | ||
| 1062 | |||
| 1063 | ew32(CTRL, ctrl); | ||
| 1064 | |||
| 1065 | return 0; | ||
| 1066 | } | ||
| 1067 | |||
| 1068 | /** | ||
| 1069 | * e1000e_config_fc_after_link_up - Configures flow control after link | ||
| 1070 | * @hw: pointer to the HW structure | ||
| 1071 | * | ||
| 1072 | * Checks the status of auto-negotiation after link up to ensure that the | ||
| 1073 | * speed and duplex were not forced. If the link needed to be forced, then | ||
| 1074 | * flow control needs to be forced also. If auto-negotiation is enabled | ||
| 1075 | * and did not fail, then we configure flow control based on our link | ||
| 1076 | * partner. | ||
| 1077 | **/ | ||
| 1078 | s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) | ||
| 1079 | { | ||
| 1080 | struct e1000_mac_info *mac = &hw->mac; | ||
| 1081 | s32 ret_val = 0; | ||
| 1082 | u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; | ||
| 1083 | u16 speed, duplex; | ||
| 1084 | |||
| 1085 | /* | ||
| 1086 | * Check for the case where we have fiber media and auto-neg failed | ||
| 1087 | * so we had to force link. In this case, we need to force the | ||
| 1088 | * configuration of the MAC to match the "fc" parameter. | ||
| 1089 | */ | ||
| 1090 | if (mac->autoneg_failed) { | ||
| 1091 | if (hw->phy.media_type == e1000_media_type_fiber || | ||
| 1092 | hw->phy.media_type == e1000_media_type_internal_serdes) | ||
| 1093 | ret_val = e1000e_force_mac_fc(hw); | ||
| 1094 | } else { | ||
| 1095 | if (hw->phy.media_type == e1000_media_type_copper) | ||
| 1096 | ret_val = e1000e_force_mac_fc(hw); | ||
| 1097 | } | ||
| 1098 | |||
| 1099 | if (ret_val) { | ||
| 1100 | e_dbg("Error forcing flow control settings\n"); | ||
| 1101 | return ret_val; | ||
| 1102 | } | ||
| 1103 | |||
| 1104 | /* | ||
| 1105 | * Check for the case where we have copper media and auto-neg is | ||
| 1106 | * enabled. In this case, we need to check and see if Auto-Neg | ||
| 1107 | * has completed, and if so, how the PHY and link partner has | ||
| 1108 | * flow control configured. | ||
| 1109 | */ | ||
| 1110 | if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { | ||
| 1111 | /* | ||
| 1112 | * Read the MII Status Register and check to see if AutoNeg | ||
| 1113 | * has completed. We read this twice because this reg has | ||
| 1114 | * some "sticky" (latched) bits. | ||
| 1115 | */ | ||
| 1116 | ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); | ||
| 1117 | if (ret_val) | ||
| 1118 | return ret_val; | ||
| 1119 | ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); | ||
| 1120 | if (ret_val) | ||
| 1121 | return ret_val; | ||
| 1122 | |||
| 1123 | if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { | ||
| 1124 | e_dbg("Copper PHY and Auto Neg " | ||
| 1125 | "has not completed.\n"); | ||
| 1126 | return ret_val; | ||
| 1127 | } | ||
| 1128 | |||
| 1129 | /* | ||
| 1130 | * The AutoNeg process has completed, so we now need to | ||
| 1131 | * read both the Auto Negotiation Advertisement | ||
| 1132 | * Register (Address 4) and the Auto_Negotiation Base | ||
| 1133 | * Page Ability Register (Address 5) to determine how | ||
| 1134 | * flow control was negotiated. | ||
| 1135 | */ | ||
| 1136 | ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); | ||
| 1137 | if (ret_val) | ||
| 1138 | return ret_val; | ||
| 1139 | ret_val = | ||
| 1140 | e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg); | ||
| 1141 | if (ret_val) | ||
| 1142 | return ret_val; | ||
| 1143 | |||
| 1144 | /* | ||
| 1145 | * Two bits in the Auto Negotiation Advertisement Register | ||
| 1146 | * (Address 4) and two bits in the Auto Negotiation Base | ||
| 1147 | * Page Ability Register (Address 5) determine flow control | ||
| 1148 | * for both the PHY and the link partner. The following | ||
| 1149 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | ||
| 1150 | * 1999, describes these PAUSE resolution bits and how flow | ||
| 1151 | * control is determined based upon these settings. | ||
| 1152 | * NOTE: DC = Don't Care | ||
| 1153 | * | ||
| 1154 | * LOCAL DEVICE | LINK PARTNER | ||
| 1155 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | ||
| 1156 | *-------|---------|-------|---------|-------------------- | ||
| 1157 | * 0 | 0 | DC | DC | e1000_fc_none | ||
| 1158 | * 0 | 1 | 0 | DC | e1000_fc_none | ||
| 1159 | * 0 | 1 | 1 | 0 | e1000_fc_none | ||
| 1160 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
| 1161 | * 1 | 0 | 0 | DC | e1000_fc_none | ||
| 1162 | * 1 | DC | 1 | DC | e1000_fc_full | ||
| 1163 | * 1 | 1 | 0 | 0 | e1000_fc_none | ||
| 1164 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
| 1165 | * | ||
| 1166 | * Are both PAUSE bits set to 1? If so, this implies | ||
| 1167 | * Symmetric Flow Control is enabled at both ends. The | ||
| 1168 | * ASM_DIR bits are irrelevant per the spec. | ||
| 1169 | * | ||
| 1170 | * For Symmetric Flow Control: | ||
| 1171 | * | ||
| 1172 | * LOCAL DEVICE | LINK PARTNER | ||
| 1173 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
| 1174 | *-------|---------|-------|---------|-------------------- | ||
| 1175 | * 1 | DC | 1 | DC | E1000_fc_full | ||
| 1176 | * | ||
| 1177 | */ | ||
| 1178 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
| 1179 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | ||
| 1180 | /* | ||
| 1181 | * Now we need to check if the user selected Rx ONLY | ||
| 1182 | * of pause frames. In this case, we had to advertise | ||
| 1183 | * FULL flow control because we could not advertise Rx | ||
| 1184 | * ONLY. Hence, we must now check to see if we need to | ||
| 1185 | * turn OFF the TRANSMISSION of PAUSE frames. | ||
| 1186 | */ | ||
| 1187 | if (hw->fc.requested_mode == e1000_fc_full) { | ||
| 1188 | hw->fc.current_mode = e1000_fc_full; | ||
| 1189 | e_dbg("Flow Control = FULL.\r\n"); | ||
| 1190 | } else { | ||
| 1191 | hw->fc.current_mode = e1000_fc_rx_pause; | ||
| 1192 | e_dbg("Flow Control = " | ||
| 1193 | "Rx PAUSE frames only.\r\n"); | ||
| 1194 | } | ||
| 1195 | } | ||
| 1196 | /* | ||
| 1197 | * For receiving PAUSE frames ONLY. | ||
| 1198 | * | ||
| 1199 | * LOCAL DEVICE | LINK PARTNER | ||
| 1200 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
| 1201 | *-------|---------|-------|---------|-------------------- | ||
| 1202 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
| 1203 | */ | ||
| 1204 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
| 1205 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
| 1206 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
| 1207 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
| 1208 | hw->fc.current_mode = e1000_fc_tx_pause; | ||
| 1209 | e_dbg("Flow Control = Tx PAUSE frames only.\r\n"); | ||
| 1210 | } | ||
| 1211 | /* | ||
| 1212 | * For transmitting PAUSE frames ONLY. | ||
| 1213 | * | ||
| 1214 | * LOCAL DEVICE | LINK PARTNER | ||
| 1215 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
| 1216 | *-------|---------|-------|---------|-------------------- | ||
| 1217 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
| 1218 | */ | ||
| 1219 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
| 1220 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
| 1221 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
| 1222 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
| 1223 | hw->fc.current_mode = e1000_fc_rx_pause; | ||
| 1224 | e_dbg("Flow Control = Rx PAUSE frames only.\r\n"); | ||
| 1225 | } else { | ||
| 1226 | /* | ||
| 1227 | * Per the IEEE spec, at this point flow control | ||
| 1228 | * should be disabled. | ||
| 1229 | */ | ||
| 1230 | hw->fc.current_mode = e1000_fc_none; | ||
| 1231 | e_dbg("Flow Control = NONE.\r\n"); | ||
| 1232 | } | ||
| 1233 | |||
| 1234 | /* | ||
| 1235 | * Now we need to do one last check... If we auto- | ||
| 1236 | * negotiated to HALF DUPLEX, flow control should not be | ||
| 1237 | * enabled per IEEE 802.3 spec. | ||
| 1238 | */ | ||
| 1239 | ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); | ||
| 1240 | if (ret_val) { | ||
| 1241 | e_dbg("Error getting link speed and duplex\n"); | ||
| 1242 | return ret_val; | ||
| 1243 | } | ||
| 1244 | |||
| 1245 | if (duplex == HALF_DUPLEX) | ||
| 1246 | hw->fc.current_mode = e1000_fc_none; | ||
| 1247 | |||
| 1248 | /* | ||
| 1249 | * Now we call a subroutine to actually force the MAC | ||
| 1250 | * controller to use the correct flow control settings. | ||
| 1251 | */ | ||
| 1252 | ret_val = e1000e_force_mac_fc(hw); | ||
| 1253 | if (ret_val) { | ||
| 1254 | e_dbg("Error forcing flow control settings\n"); | ||
| 1255 | return ret_val; | ||
| 1256 | } | ||
| 1257 | } | ||
| 1258 | |||
| 1259 | return 0; | ||
| 1260 | } | ||
| 1261 | |||
| 1262 | /** | ||
| 1263 | * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex | ||
| 1264 | * @hw: pointer to the HW structure | ||
| 1265 | * @speed: stores the current speed | ||
| 1266 | * @duplex: stores the current duplex | ||
| 1267 | * | ||
| 1268 | * Read the status register for the current speed/duplex and store the current | ||
| 1269 | * speed and duplex for copper connections. | ||
| 1270 | **/ | ||
| 1271 | s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex) | ||
| 1272 | { | ||
| 1273 | u32 status; | ||
| 1274 | |||
| 1275 | status = er32(STATUS); | ||
| 1276 | if (status & E1000_STATUS_SPEED_1000) | ||
| 1277 | *speed = SPEED_1000; | ||
| 1278 | else if (status & E1000_STATUS_SPEED_100) | ||
| 1279 | *speed = SPEED_100; | ||
| 1280 | else | ||
| 1281 | *speed = SPEED_10; | ||
| 1282 | |||
| 1283 | if (status & E1000_STATUS_FD) | ||
| 1284 | *duplex = FULL_DUPLEX; | ||
| 1285 | else | ||
| 1286 | *duplex = HALF_DUPLEX; | ||
| 1287 | |||
| 1288 | e_dbg("%u Mbps, %s Duplex\n", | ||
| 1289 | *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10, | ||
| 1290 | *duplex == FULL_DUPLEX ? "Full" : "Half"); | ||
| 1291 | |||
| 1292 | return 0; | ||
| 1293 | } | ||
| 1294 | |||
| 1295 | /** | ||
| 1296 | * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex | ||
| 1297 | * @hw: pointer to the HW structure | ||
| 1298 | * @speed: stores the current speed | ||
| 1299 | * @duplex: stores the current duplex | ||
| 1300 | * | ||
| 1301 | * Sets the speed and duplex to gigabit full duplex (the only possible option) | ||
| 1302 | * for fiber/serdes links. | ||
| 1303 | **/ | ||
| 1304 | s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex) | ||
| 1305 | { | ||
| 1306 | *speed = SPEED_1000; | ||
| 1307 | *duplex = FULL_DUPLEX; | ||
| 1308 | |||
| 1309 | return 0; | ||
| 1310 | } | ||
| 1311 | |||
| 1312 | /** | ||
| 1313 | * e1000e_get_hw_semaphore - Acquire hardware semaphore | ||
| 1314 | * @hw: pointer to the HW structure | ||
| 1315 | * | ||
| 1316 | * Acquire the HW semaphore to access the PHY or NVM | ||
| 1317 | **/ | ||
| 1318 | s32 e1000e_get_hw_semaphore(struct e1000_hw *hw) | ||
| 1319 | { | ||
| 1320 | u32 swsm; | ||
| 1321 | s32 timeout = hw->nvm.word_size + 1; | ||
| 1322 | s32 i = 0; | ||
| 1323 | |||
| 1324 | /* Get the SW semaphore */ | ||
| 1325 | while (i < timeout) { | ||
| 1326 | swsm = er32(SWSM); | ||
| 1327 | if (!(swsm & E1000_SWSM_SMBI)) | ||
| 1328 | break; | ||
| 1329 | |||
| 1330 | udelay(50); | ||
| 1331 | i++; | ||
| 1332 | } | ||
| 1333 | |||
| 1334 | if (i == timeout) { | ||
| 1335 | e_dbg("Driver can't access device - SMBI bit is set.\n"); | ||
| 1336 | return -E1000_ERR_NVM; | ||
| 1337 | } | ||
| 1338 | |||
| 1339 | /* Get the FW semaphore. */ | ||
| 1340 | for (i = 0; i < timeout; i++) { | ||
| 1341 | swsm = er32(SWSM); | ||
| 1342 | ew32(SWSM, swsm | E1000_SWSM_SWESMBI); | ||
| 1343 | |||
| 1344 | /* Semaphore acquired if bit latched */ | ||
| 1345 | if (er32(SWSM) & E1000_SWSM_SWESMBI) | ||
| 1346 | break; | ||
| 1347 | |||
| 1348 | udelay(50); | ||
| 1349 | } | ||
| 1350 | |||
| 1351 | if (i == timeout) { | ||
| 1352 | /* Release semaphores */ | ||
| 1353 | e1000e_put_hw_semaphore(hw); | ||
| 1354 | e_dbg("Driver can't access the NVM\n"); | ||
| 1355 | return -E1000_ERR_NVM; | ||
| 1356 | } | ||
| 1357 | |||
| 1358 | return 0; | ||
| 1359 | } | ||
| 1360 | |||
| 1361 | /** | ||
| 1362 | * e1000e_put_hw_semaphore - Release hardware semaphore | ||
| 1363 | * @hw: pointer to the HW structure | ||
| 1364 | * | ||
| 1365 | * Release hardware semaphore used to access the PHY or NVM | ||
| 1366 | **/ | ||
| 1367 | void e1000e_put_hw_semaphore(struct e1000_hw *hw) | ||
| 1368 | { | ||
| 1369 | u32 swsm; | ||
| 1370 | |||
| 1371 | swsm = er32(SWSM); | ||
| 1372 | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | ||
| 1373 | ew32(SWSM, swsm); | ||
| 1374 | } | ||
| 1375 | |||
| 1376 | /** | ||
| 1377 | * e1000e_get_auto_rd_done - Check for auto read completion | ||
| 1378 | * @hw: pointer to the HW structure | ||
| 1379 | * | ||
| 1380 | * Check EEPROM for Auto Read done bit. | ||
| 1381 | **/ | ||
| 1382 | s32 e1000e_get_auto_rd_done(struct e1000_hw *hw) | ||
| 1383 | { | ||
| 1384 | s32 i = 0; | ||
| 1385 | |||
| 1386 | while (i < AUTO_READ_DONE_TIMEOUT) { | ||
| 1387 | if (er32(EECD) & E1000_EECD_AUTO_RD) | ||
| 1388 | break; | ||
| 1389 | usleep_range(1000, 2000); | ||
| 1390 | i++; | ||
| 1391 | } | ||
| 1392 | |||
| 1393 | if (i == AUTO_READ_DONE_TIMEOUT) { | ||
| 1394 | e_dbg("Auto read by HW from NVM has not completed.\n"); | ||
| 1395 | return -E1000_ERR_RESET; | ||
| 1396 | } | ||
| 1397 | |||
| 1398 | return 0; | ||
| 1399 | } | ||
| 1400 | |||
| 1401 | /** | ||
| 1402 | * e1000e_valid_led_default - Verify a valid default LED config | ||
| 1403 | * @hw: pointer to the HW structure | ||
| 1404 | * @data: pointer to the NVM (EEPROM) | ||
| 1405 | * | ||
| 1406 | * Read the EEPROM for the current default LED configuration. If the | ||
| 1407 | * LED configuration is not valid, set to a valid LED configuration. | ||
| 1408 | **/ | ||
| 1409 | s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data) | ||
| 1410 | { | ||
| 1411 | s32 ret_val; | ||
| 1412 | |||
| 1413 | ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); | ||
| 1414 | if (ret_val) { | ||
| 1415 | e_dbg("NVM Read Error\n"); | ||
| 1416 | return ret_val; | ||
| 1417 | } | ||
| 1418 | |||
| 1419 | if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) | ||
| 1420 | *data = ID_LED_DEFAULT; | ||
| 1421 | |||
| 1422 | return 0; | ||
| 1423 | } | ||
| 1424 | |||
| 1425 | /** | ||
| 1426 | * e1000e_id_led_init - | ||
| 1427 | * @hw: pointer to the HW structure | ||
| 1428 | * | ||
| 1429 | **/ | ||
| 1430 | s32 e1000e_id_led_init(struct e1000_hw *hw) | ||
| 1431 | { | ||
| 1432 | struct e1000_mac_info *mac = &hw->mac; | ||
| 1433 | s32 ret_val; | ||
| 1434 | const u32 ledctl_mask = 0x000000FF; | ||
| 1435 | const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; | ||
| 1436 | const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | ||
| 1437 | u16 data, i, temp; | ||
| 1438 | const u16 led_mask = 0x0F; | ||
| 1439 | |||
| 1440 | ret_val = hw->nvm.ops.valid_led_default(hw, &data); | ||
| 1441 | if (ret_val) | ||
| 1442 | return ret_val; | ||
| 1443 | |||
| 1444 | mac->ledctl_default = er32(LEDCTL); | ||
| 1445 | mac->ledctl_mode1 = mac->ledctl_default; | ||
| 1446 | mac->ledctl_mode2 = mac->ledctl_default; | ||
| 1447 | |||
| 1448 | for (i = 0; i < 4; i++) { | ||
| 1449 | temp = (data >> (i << 2)) & led_mask; | ||
| 1450 | switch (temp) { | ||
| 1451 | case ID_LED_ON1_DEF2: | ||
| 1452 | case ID_LED_ON1_ON2: | ||
| 1453 | case ID_LED_ON1_OFF2: | ||
| 1454 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
| 1455 | mac->ledctl_mode1 |= ledctl_on << (i << 3); | ||
| 1456 | break; | ||
| 1457 | case ID_LED_OFF1_DEF2: | ||
| 1458 | case ID_LED_OFF1_ON2: | ||
| 1459 | case ID_LED_OFF1_OFF2: | ||
| 1460 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
| 1461 | mac->ledctl_mode1 |= ledctl_off << (i << 3); | ||
| 1462 | break; | ||
| 1463 | default: | ||
| 1464 | /* Do nothing */ | ||
| 1465 | break; | ||
| 1466 | } | ||
| 1467 | switch (temp) { | ||
| 1468 | case ID_LED_DEF1_ON2: | ||
| 1469 | case ID_LED_ON1_ON2: | ||
| 1470 | case ID_LED_OFF1_ON2: | ||
| 1471 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
| 1472 | mac->ledctl_mode2 |= ledctl_on << (i << 3); | ||
| 1473 | break; | ||
| 1474 | case ID_LED_DEF1_OFF2: | ||
| 1475 | case ID_LED_ON1_OFF2: | ||
| 1476 | case ID_LED_OFF1_OFF2: | ||
| 1477 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
| 1478 | mac->ledctl_mode2 |= ledctl_off << (i << 3); | ||
| 1479 | break; | ||
| 1480 | default: | ||
| 1481 | /* Do nothing */ | ||
| 1482 | break; | ||
| 1483 | } | ||
| 1484 | } | ||
| 1485 | |||
| 1486 | return 0; | ||
| 1487 | } | ||
| 1488 | |||
| 1489 | /** | ||
| 1490 | * e1000e_setup_led_generic - Configures SW controllable LED | ||
| 1491 | * @hw: pointer to the HW structure | ||
| 1492 | * | ||
| 1493 | * This prepares the SW controllable LED for use and saves the current state | ||
| 1494 | * of the LED so it can be later restored. | ||
| 1495 | **/ | ||
| 1496 | s32 e1000e_setup_led_generic(struct e1000_hw *hw) | ||
| 1497 | { | ||
| 1498 | u32 ledctl; | ||
| 1499 | |||
| 1500 | if (hw->mac.ops.setup_led != e1000e_setup_led_generic) | ||
| 1501 | return -E1000_ERR_CONFIG; | ||
| 1502 | |||
| 1503 | if (hw->phy.media_type == e1000_media_type_fiber) { | ||
| 1504 | ledctl = er32(LEDCTL); | ||
| 1505 | hw->mac.ledctl_default = ledctl; | ||
| 1506 | /* Turn off LED0 */ | ||
| 1507 | ledctl &= ~(E1000_LEDCTL_LED0_IVRT | | ||
| 1508 | E1000_LEDCTL_LED0_BLINK | | ||
| 1509 | E1000_LEDCTL_LED0_MODE_MASK); | ||
| 1510 | ledctl |= (E1000_LEDCTL_MODE_LED_OFF << | ||
| 1511 | E1000_LEDCTL_LED0_MODE_SHIFT); | ||
| 1512 | ew32(LEDCTL, ledctl); | ||
| 1513 | } else if (hw->phy.media_type == e1000_media_type_copper) { | ||
| 1514 | ew32(LEDCTL, hw->mac.ledctl_mode1); | ||
| 1515 | } | ||
| 1516 | |||
| 1517 | return 0; | ||
| 1518 | } | ||
| 1519 | |||
| 1520 | /** | ||
| 1521 | * e1000e_cleanup_led_generic - Set LED config to default operation | ||
| 1522 | * @hw: pointer to the HW structure | ||
| 1523 | * | ||
| 1524 | * Remove the current LED configuration and set the LED configuration | ||
| 1525 | * to the default value, saved from the EEPROM. | ||
| 1526 | **/ | ||
| 1527 | s32 e1000e_cleanup_led_generic(struct e1000_hw *hw) | ||
| 1528 | { | ||
| 1529 | ew32(LEDCTL, hw->mac.ledctl_default); | ||
| 1530 | return 0; | ||
| 1531 | } | ||
| 1532 | |||
| 1533 | /** | ||
| 1534 | * e1000e_blink_led_generic - Blink LED | ||
| 1535 | * @hw: pointer to the HW structure | ||
| 1536 | * | ||
| 1537 | * Blink the LEDs which are set to be on. | ||
| 1538 | **/ | ||
| 1539 | s32 e1000e_blink_led_generic(struct e1000_hw *hw) | ||
| 1540 | { | ||
| 1541 | u32 ledctl_blink = 0; | ||
| 1542 | u32 i; | ||
| 1543 | |||
| 1544 | if (hw->phy.media_type == e1000_media_type_fiber) { | ||
| 1545 | /* always blink LED0 for PCI-E fiber */ | ||
| 1546 | ledctl_blink = E1000_LEDCTL_LED0_BLINK | | ||
| 1547 | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); | ||
| 1548 | } else { | ||
| 1549 | /* | ||
| 1550 | * set the blink bit for each LED that's "on" (0x0E) | ||
| 1551 | * in ledctl_mode2 | ||
| 1552 | */ | ||
| 1553 | ledctl_blink = hw->mac.ledctl_mode2; | ||
| 1554 | for (i = 0; i < 4; i++) | ||
| 1555 | if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == | ||
| 1556 | E1000_LEDCTL_MODE_LED_ON) | ||
| 1557 | ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << | ||
| 1558 | (i * 8)); | ||
| 1559 | } | ||
| 1560 | |||
| 1561 | ew32(LEDCTL, ledctl_blink); | ||
| 1562 | |||
| 1563 | return 0; | ||
| 1564 | } | ||
| 1565 | |||
| 1566 | /** | ||
| 1567 | * e1000e_led_on_generic - Turn LED on | ||
| 1568 | * @hw: pointer to the HW structure | ||
| 1569 | * | ||
| 1570 | * Turn LED on. | ||
| 1571 | **/ | ||
| 1572 | s32 e1000e_led_on_generic(struct e1000_hw *hw) | ||
| 1573 | { | ||
| 1574 | u32 ctrl; | ||
| 1575 | |||
| 1576 | switch (hw->phy.media_type) { | ||
| 1577 | case e1000_media_type_fiber: | ||
| 1578 | ctrl = er32(CTRL); | ||
| 1579 | ctrl &= ~E1000_CTRL_SWDPIN0; | ||
| 1580 | ctrl |= E1000_CTRL_SWDPIO0; | ||
| 1581 | ew32(CTRL, ctrl); | ||
| 1582 | break; | ||
| 1583 | case e1000_media_type_copper: | ||
| 1584 | ew32(LEDCTL, hw->mac.ledctl_mode2); | ||
| 1585 | break; | ||
| 1586 | default: | ||
| 1587 | break; | ||
| 1588 | } | ||
| 1589 | |||
| 1590 | return 0; | ||
| 1591 | } | ||
| 1592 | |||
| 1593 | /** | ||
| 1594 | * e1000e_led_off_generic - Turn LED off | ||
| 1595 | * @hw: pointer to the HW structure | ||
| 1596 | * | ||
| 1597 | * Turn LED off. | ||
| 1598 | **/ | ||
| 1599 | s32 e1000e_led_off_generic(struct e1000_hw *hw) | ||
| 1600 | { | ||
| 1601 | u32 ctrl; | ||
| 1602 | |||
| 1603 | switch (hw->phy.media_type) { | ||
| 1604 | case e1000_media_type_fiber: | ||
| 1605 | ctrl = er32(CTRL); | ||
| 1606 | ctrl |= E1000_CTRL_SWDPIN0; | ||
| 1607 | ctrl |= E1000_CTRL_SWDPIO0; | ||
| 1608 | ew32(CTRL, ctrl); | ||
| 1609 | break; | ||
| 1610 | case e1000_media_type_copper: | ||
| 1611 | ew32(LEDCTL, hw->mac.ledctl_mode1); | ||
| 1612 | break; | ||
| 1613 | default: | ||
| 1614 | break; | ||
| 1615 | } | ||
| 1616 | |||
| 1617 | return 0; | ||
| 1618 | } | ||
| 1619 | |||
| 1620 | /** | ||
| 1621 | * e1000e_set_pcie_no_snoop - Set PCI-express capabilities | ||
| 1622 | * @hw: pointer to the HW structure | ||
| 1623 | * @no_snoop: bitmap of snoop events | ||
| 1624 | * | ||
| 1625 | * Set the PCI-express register to snoop for events enabled in 'no_snoop'. | ||
| 1626 | **/ | ||
| 1627 | void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop) | ||
| 1628 | { | ||
| 1629 | u32 gcr; | ||
| 1630 | |||
| 1631 | if (no_snoop) { | ||
| 1632 | gcr = er32(GCR); | ||
| 1633 | gcr &= ~(PCIE_NO_SNOOP_ALL); | ||
| 1634 | gcr |= no_snoop; | ||
| 1635 | ew32(GCR, gcr); | ||
| 1636 | } | ||
| 1637 | } | ||
| 1638 | |||
| 1639 | /** | ||
| 1640 | * e1000e_disable_pcie_master - Disables PCI-express master access | ||
| 1641 | * @hw: pointer to the HW structure | ||
| 1642 | * | ||
| 1643 | * Returns 0 if successful, else returns -10 | ||
| 1644 | * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused | ||
| 1645 | * the master requests to be disabled. | ||
| 1646 | * | ||
| 1647 | * Disables PCI-Express master access and verifies there are no pending | ||
| 1648 | * requests. | ||
| 1649 | **/ | ||
| 1650 | s32 e1000e_disable_pcie_master(struct e1000_hw *hw) | ||
| 1651 | { | ||
| 1652 | u32 ctrl; | ||
| 1653 | s32 timeout = MASTER_DISABLE_TIMEOUT; | ||
| 1654 | |||
| 1655 | ctrl = er32(CTRL); | ||
| 1656 | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | ||
| 1657 | ew32(CTRL, ctrl); | ||
| 1658 | |||
| 1659 | while (timeout) { | ||
| 1660 | if (!(er32(STATUS) & | ||
| 1661 | E1000_STATUS_GIO_MASTER_ENABLE)) | ||
| 1662 | break; | ||
| 1663 | udelay(100); | ||
| 1664 | timeout--; | ||
| 1665 | } | ||
| 1666 | |||
| 1667 | if (!timeout) { | ||
| 1668 | e_dbg("Master requests are pending.\n"); | ||
| 1669 | return -E1000_ERR_MASTER_REQUESTS_PENDING; | ||
| 1670 | } | ||
| 1671 | |||
| 1672 | return 0; | ||
| 1673 | } | ||
| 1674 | |||
| 1675 | /** | ||
| 1676 | * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing | ||
| 1677 | * @hw: pointer to the HW structure | ||
| 1678 | * | ||
| 1679 | * Reset the Adaptive Interframe Spacing throttle to default values. | ||
| 1680 | **/ | ||
| 1681 | void e1000e_reset_adaptive(struct e1000_hw *hw) | ||
| 1682 | { | ||
| 1683 | struct e1000_mac_info *mac = &hw->mac; | ||
| 1684 | |||
| 1685 | if (!mac->adaptive_ifs) { | ||
| 1686 | e_dbg("Not in Adaptive IFS mode!\n"); | ||
| 1687 | goto out; | ||
| 1688 | } | ||
| 1689 | |||
| 1690 | mac->current_ifs_val = 0; | ||
| 1691 | mac->ifs_min_val = IFS_MIN; | ||
| 1692 | mac->ifs_max_val = IFS_MAX; | ||
| 1693 | mac->ifs_step_size = IFS_STEP; | ||
| 1694 | mac->ifs_ratio = IFS_RATIO; | ||
| 1695 | |||
| 1696 | mac->in_ifs_mode = false; | ||
| 1697 | ew32(AIT, 0); | ||
| 1698 | out: | ||
| 1699 | return; | ||
| 1700 | } | ||
| 1701 | |||
| 1702 | /** | ||
| 1703 | * e1000e_update_adaptive - Update Adaptive Interframe Spacing | ||
| 1704 | * @hw: pointer to the HW structure | ||
| 1705 | * | ||
| 1706 | * Update the Adaptive Interframe Spacing Throttle value based on the | ||
| 1707 | * time between transmitted packets and time between collisions. | ||
| 1708 | **/ | ||
| 1709 | void e1000e_update_adaptive(struct e1000_hw *hw) | ||
| 1710 | { | ||
| 1711 | struct e1000_mac_info *mac = &hw->mac; | ||
| 1712 | |||
| 1713 | if (!mac->adaptive_ifs) { | ||
| 1714 | e_dbg("Not in Adaptive IFS mode!\n"); | ||
| 1715 | goto out; | ||
| 1716 | } | ||
| 1717 | |||
| 1718 | if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { | ||
| 1719 | if (mac->tx_packet_delta > MIN_NUM_XMITS) { | ||
| 1720 | mac->in_ifs_mode = true; | ||
| 1721 | if (mac->current_ifs_val < mac->ifs_max_val) { | ||
| 1722 | if (!mac->current_ifs_val) | ||
| 1723 | mac->current_ifs_val = mac->ifs_min_val; | ||
| 1724 | else | ||
| 1725 | mac->current_ifs_val += | ||
| 1726 | mac->ifs_step_size; | ||
| 1727 | ew32(AIT, mac->current_ifs_val); | ||
| 1728 | } | ||
| 1729 | } | ||
| 1730 | } else { | ||
| 1731 | if (mac->in_ifs_mode && | ||
| 1732 | (mac->tx_packet_delta <= MIN_NUM_XMITS)) { | ||
| 1733 | mac->current_ifs_val = 0; | ||
| 1734 | mac->in_ifs_mode = false; | ||
| 1735 | ew32(AIT, 0); | ||
| 1736 | } | ||
| 1737 | } | ||
| 1738 | out: | ||
| 1739 | return; | ||
| 1740 | } | ||
| 1741 | |||
| 1742 | /** | ||
| 1743 | * e1000_raise_eec_clk - Raise EEPROM clock | ||
| 1744 | * @hw: pointer to the HW structure | ||
| 1745 | * @eecd: pointer to the EEPROM | ||
| 1746 | * | ||
| 1747 | * Enable/Raise the EEPROM clock bit. | ||
| 1748 | **/ | ||
| 1749 | static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) | ||
| 1750 | { | ||
| 1751 | *eecd = *eecd | E1000_EECD_SK; | ||
| 1752 | ew32(EECD, *eecd); | ||
| 1753 | e1e_flush(); | ||
| 1754 | udelay(hw->nvm.delay_usec); | ||
| 1755 | } | ||
| 1756 | |||
| 1757 | /** | ||
| 1758 | * e1000_lower_eec_clk - Lower EEPROM clock | ||
| 1759 | * @hw: pointer to the HW structure | ||
| 1760 | * @eecd: pointer to the EEPROM | ||
| 1761 | * | ||
| 1762 | * Clear/Lower the EEPROM clock bit. | ||
| 1763 | **/ | ||
| 1764 | static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) | ||
| 1765 | { | ||
| 1766 | *eecd = *eecd & ~E1000_EECD_SK; | ||
| 1767 | ew32(EECD, *eecd); | ||
| 1768 | e1e_flush(); | ||
| 1769 | udelay(hw->nvm.delay_usec); | ||
| 1770 | } | ||
| 1771 | |||
| 1772 | /** | ||
| 1773 | * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM | ||
| 1774 | * @hw: pointer to the HW structure | ||
| 1775 | * @data: data to send to the EEPROM | ||
| 1776 | * @count: number of bits to shift out | ||
| 1777 | * | ||
| 1778 | * We need to shift 'count' bits out to the EEPROM. So, the value in the | ||
| 1779 | * "data" parameter will be shifted out to the EEPROM one bit at a time. | ||
| 1780 | * In order to do this, "data" must be broken down into bits. | ||
| 1781 | **/ | ||
| 1782 | static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) | ||
| 1783 | { | ||
| 1784 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
| 1785 | u32 eecd = er32(EECD); | ||
| 1786 | u32 mask; | ||
| 1787 | |||
| 1788 | mask = 0x01 << (count - 1); | ||
| 1789 | if (nvm->type == e1000_nvm_eeprom_spi) | ||
| 1790 | eecd |= E1000_EECD_DO; | ||
| 1791 | |||
| 1792 | do { | ||
| 1793 | eecd &= ~E1000_EECD_DI; | ||
| 1794 | |||
| 1795 | if (data & mask) | ||
| 1796 | eecd |= E1000_EECD_DI; | ||
| 1797 | |||
| 1798 | ew32(EECD, eecd); | ||
| 1799 | e1e_flush(); | ||
| 1800 | |||
| 1801 | udelay(nvm->delay_usec); | ||
| 1802 | |||
| 1803 | e1000_raise_eec_clk(hw, &eecd); | ||
| 1804 | e1000_lower_eec_clk(hw, &eecd); | ||
| 1805 | |||
| 1806 | mask >>= 1; | ||
| 1807 | } while (mask); | ||
| 1808 | |||
| 1809 | eecd &= ~E1000_EECD_DI; | ||
| 1810 | ew32(EECD, eecd); | ||
| 1811 | } | ||
| 1812 | |||
| 1813 | /** | ||
| 1814 | * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM | ||
| 1815 | * @hw: pointer to the HW structure | ||
| 1816 | * @count: number of bits to shift in | ||
| 1817 | * | ||
| 1818 | * In order to read a register from the EEPROM, we need to shift 'count' bits | ||
| 1819 | * in from the EEPROM. Bits are "shifted in" by raising the clock input to | ||
| 1820 | * the EEPROM (setting the SK bit), and then reading the value of the data out | ||
| 1821 | * "DO" bit. During this "shifting in" process the data in "DI" bit should | ||
| 1822 | * always be clear. | ||
| 1823 | **/ | ||
| 1824 | static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) | ||
| 1825 | { | ||
| 1826 | u32 eecd; | ||
| 1827 | u32 i; | ||
| 1828 | u16 data; | ||
| 1829 | |||
| 1830 | eecd = er32(EECD); | ||
| 1831 | |||
| 1832 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | ||
| 1833 | data = 0; | ||
| 1834 | |||
| 1835 | for (i = 0; i < count; i++) { | ||
| 1836 | data <<= 1; | ||
| 1837 | e1000_raise_eec_clk(hw, &eecd); | ||
| 1838 | |||
| 1839 | eecd = er32(EECD); | ||
| 1840 | |||
| 1841 | eecd &= ~E1000_EECD_DI; | ||
| 1842 | if (eecd & E1000_EECD_DO) | ||
| 1843 | data |= 1; | ||
| 1844 | |||
| 1845 | e1000_lower_eec_clk(hw, &eecd); | ||
| 1846 | } | ||
| 1847 | |||
| 1848 | return data; | ||
| 1849 | } | ||
| 1850 | |||
| 1851 | /** | ||
| 1852 | * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion | ||
| 1853 | * @hw: pointer to the HW structure | ||
| 1854 | * @ee_reg: EEPROM flag for polling | ||
| 1855 | * | ||
| 1856 | * Polls the EEPROM status bit for either read or write completion based | ||
| 1857 | * upon the value of 'ee_reg'. | ||
| 1858 | **/ | ||
| 1859 | s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) | ||
| 1860 | { | ||
| 1861 | u32 attempts = 100000; | ||
| 1862 | u32 i, reg = 0; | ||
| 1863 | |||
| 1864 | for (i = 0; i < attempts; i++) { | ||
| 1865 | if (ee_reg == E1000_NVM_POLL_READ) | ||
| 1866 | reg = er32(EERD); | ||
| 1867 | else | ||
| 1868 | reg = er32(EEWR); | ||
| 1869 | |||
| 1870 | if (reg & E1000_NVM_RW_REG_DONE) | ||
| 1871 | return 0; | ||
| 1872 | |||
| 1873 | udelay(5); | ||
| 1874 | } | ||
| 1875 | |||
| 1876 | return -E1000_ERR_NVM; | ||
| 1877 | } | ||
| 1878 | |||
| 1879 | /** | ||
| 1880 | * e1000e_acquire_nvm - Generic request for access to EEPROM | ||
| 1881 | * @hw: pointer to the HW structure | ||
| 1882 | * | ||
| 1883 | * Set the EEPROM access request bit and wait for EEPROM access grant bit. | ||
| 1884 | * Return successful if access grant bit set, else clear the request for | ||
| 1885 | * EEPROM access and return -E1000_ERR_NVM (-1). | ||
| 1886 | **/ | ||
| 1887 | s32 e1000e_acquire_nvm(struct e1000_hw *hw) | ||
| 1888 | { | ||
| 1889 | u32 eecd = er32(EECD); | ||
| 1890 | s32 timeout = E1000_NVM_GRANT_ATTEMPTS; | ||
| 1891 | |||
| 1892 | ew32(EECD, eecd | E1000_EECD_REQ); | ||
| 1893 | eecd = er32(EECD); | ||
| 1894 | |||
| 1895 | while (timeout) { | ||
| 1896 | if (eecd & E1000_EECD_GNT) | ||
| 1897 | break; | ||
| 1898 | udelay(5); | ||
| 1899 | eecd = er32(EECD); | ||
| 1900 | timeout--; | ||
| 1901 | } | ||
| 1902 | |||
| 1903 | if (!timeout) { | ||
| 1904 | eecd &= ~E1000_EECD_REQ; | ||
| 1905 | ew32(EECD, eecd); | ||
| 1906 | e_dbg("Could not acquire NVM grant\n"); | ||
| 1907 | return -E1000_ERR_NVM; | ||
| 1908 | } | ||
| 1909 | |||
| 1910 | return 0; | ||
| 1911 | } | ||
| 1912 | |||
| 1913 | /** | ||
| 1914 | * e1000_standby_nvm - Return EEPROM to standby state | ||
| 1915 | * @hw: pointer to the HW structure | ||
| 1916 | * | ||
| 1917 | * Return the EEPROM to a standby state. | ||
| 1918 | **/ | ||
| 1919 | static void e1000_standby_nvm(struct e1000_hw *hw) | ||
| 1920 | { | ||
| 1921 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
| 1922 | u32 eecd = er32(EECD); | ||
| 1923 | |||
| 1924 | if (nvm->type == e1000_nvm_eeprom_spi) { | ||
| 1925 | /* Toggle CS to flush commands */ | ||
| 1926 | eecd |= E1000_EECD_CS; | ||
| 1927 | ew32(EECD, eecd); | ||
| 1928 | e1e_flush(); | ||
| 1929 | udelay(nvm->delay_usec); | ||
| 1930 | eecd &= ~E1000_EECD_CS; | ||
| 1931 | ew32(EECD, eecd); | ||
| 1932 | e1e_flush(); | ||
| 1933 | udelay(nvm->delay_usec); | ||
| 1934 | } | ||
| 1935 | } | ||
| 1936 | |||
| 1937 | /** | ||
| 1938 | * e1000_stop_nvm - Terminate EEPROM command | ||
| 1939 | * @hw: pointer to the HW structure | ||
| 1940 | * | ||
| 1941 | * Terminates the current command by inverting the EEPROM's chip select pin. | ||
| 1942 | **/ | ||
| 1943 | static void e1000_stop_nvm(struct e1000_hw *hw) | ||
| 1944 | { | ||
| 1945 | u32 eecd; | ||
| 1946 | |||
| 1947 | eecd = er32(EECD); | ||
| 1948 | if (hw->nvm.type == e1000_nvm_eeprom_spi) { | ||
| 1949 | /* Pull CS high */ | ||
| 1950 | eecd |= E1000_EECD_CS; | ||
| 1951 | e1000_lower_eec_clk(hw, &eecd); | ||
| 1952 | } | ||
| 1953 | } | ||
| 1954 | |||
| 1955 | /** | ||
| 1956 | * e1000e_release_nvm - Release exclusive access to EEPROM | ||
| 1957 | * @hw: pointer to the HW structure | ||
| 1958 | * | ||
| 1959 | * Stop any current commands to the EEPROM and clear the EEPROM request bit. | ||
| 1960 | **/ | ||
| 1961 | void e1000e_release_nvm(struct e1000_hw *hw) | ||
| 1962 | { | ||
| 1963 | u32 eecd; | ||
| 1964 | |||
| 1965 | e1000_stop_nvm(hw); | ||
| 1966 | |||
| 1967 | eecd = er32(EECD); | ||
| 1968 | eecd &= ~E1000_EECD_REQ; | ||
| 1969 | ew32(EECD, eecd); | ||
| 1970 | } | ||
| 1971 | |||
| 1972 | /** | ||
| 1973 | * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write | ||
| 1974 | * @hw: pointer to the HW structure | ||
| 1975 | * | ||
| 1976 | * Setups the EEPROM for reading and writing. | ||
| 1977 | **/ | ||
| 1978 | static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) | ||
| 1979 | { | ||
| 1980 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
| 1981 | u32 eecd = er32(EECD); | ||
| 1982 | u8 spi_stat_reg; | ||
| 1983 | |||
| 1984 | if (nvm->type == e1000_nvm_eeprom_spi) { | ||
| 1985 | u16 timeout = NVM_MAX_RETRY_SPI; | ||
| 1986 | |||
| 1987 | /* Clear SK and CS */ | ||
| 1988 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | ||
| 1989 | ew32(EECD, eecd); | ||
| 1990 | e1e_flush(); | ||
| 1991 | udelay(1); | ||
| 1992 | |||
| 1993 | /* | ||
| 1994 | * Read "Status Register" repeatedly until the LSB is cleared. | ||
| 1995 | * The EEPROM will signal that the command has been completed | ||
| 1996 | * by clearing bit 0 of the internal status register. If it's | ||
| 1997 | * not cleared within 'timeout', then error out. | ||
| 1998 | */ | ||
| 1999 | while (timeout) { | ||
| 2000 | e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, | ||
| 2001 | hw->nvm.opcode_bits); | ||
| 2002 | spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); | ||
| 2003 | if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) | ||
| 2004 | break; | ||
| 2005 | |||
| 2006 | udelay(5); | ||
| 2007 | e1000_standby_nvm(hw); | ||
| 2008 | timeout--; | ||
| 2009 | } | ||
| 2010 | |||
| 2011 | if (!timeout) { | ||
| 2012 | e_dbg("SPI NVM Status error\n"); | ||
| 2013 | return -E1000_ERR_NVM; | ||
| 2014 | } | ||
| 2015 | } | ||
| 2016 | |||
| 2017 | return 0; | ||
| 2018 | } | ||
| 2019 | |||
| 2020 | /** | ||
| 2021 | * e1000e_read_nvm_eerd - Reads EEPROM using EERD register | ||
| 2022 | * @hw: pointer to the HW structure | ||
| 2023 | * @offset: offset of word in the EEPROM to read | ||
| 2024 | * @words: number of words to read | ||
| 2025 | * @data: word read from the EEPROM | ||
| 2026 | * | ||
| 2027 | * Reads a 16 bit word from the EEPROM using the EERD register. | ||
| 2028 | **/ | ||
| 2029 | s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | ||
| 2030 | { | ||
| 2031 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
| 2032 | u32 i, eerd = 0; | ||
| 2033 | s32 ret_val = 0; | ||
| 2034 | |||
| 2035 | /* | ||
| 2036 | * A check for invalid values: offset too large, too many words, | ||
| 2037 | * too many words for the offset, and not enough words. | ||
| 2038 | */ | ||
| 2039 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | ||
| 2040 | (words == 0)) { | ||
| 2041 | e_dbg("nvm parameter(s) out of bounds\n"); | ||
| 2042 | return -E1000_ERR_NVM; | ||
| 2043 | } | ||
| 2044 | |||
| 2045 | for (i = 0; i < words; i++) { | ||
| 2046 | eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + | ||
| 2047 | E1000_NVM_RW_REG_START; | ||
| 2048 | |||
| 2049 | ew32(EERD, eerd); | ||
| 2050 | ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); | ||
| 2051 | if (ret_val) | ||
| 2052 | break; | ||
| 2053 | |||
| 2054 | data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA); | ||
| 2055 | } | ||
| 2056 | |||
| 2057 | return ret_val; | ||
| 2058 | } | ||
| 2059 | |||
| 2060 | /** | ||
| 2061 | * e1000e_write_nvm_spi - Write to EEPROM using SPI | ||
| 2062 | * @hw: pointer to the HW structure | ||
| 2063 | * @offset: offset within the EEPROM to be written to | ||
| 2064 | * @words: number of words to write | ||
| 2065 | * @data: 16 bit word(s) to be written to the EEPROM | ||
| 2066 | * | ||
| 2067 | * Writes data to EEPROM at offset using SPI interface. | ||
| 2068 | * | ||
| 2069 | * If e1000e_update_nvm_checksum is not called after this function , the | ||
| 2070 | * EEPROM will most likely contain an invalid checksum. | ||
| 2071 | **/ | ||
| 2072 | s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | ||
| 2073 | { | ||
| 2074 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
| 2075 | s32 ret_val; | ||
| 2076 | u16 widx = 0; | ||
| 2077 | |||
| 2078 | /* | ||
| 2079 | * A check for invalid values: offset too large, too many words, | ||
| 2080 | * and not enough words. | ||
| 2081 | */ | ||
| 2082 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | ||
| 2083 | (words == 0)) { | ||
| 2084 | e_dbg("nvm parameter(s) out of bounds\n"); | ||
| 2085 | return -E1000_ERR_NVM; | ||
| 2086 | } | ||
| 2087 | |||
| 2088 | ret_val = nvm->ops.acquire(hw); | ||
| 2089 | if (ret_val) | ||
| 2090 | return ret_val; | ||
| 2091 | |||
| 2092 | while (widx < words) { | ||
| 2093 | u8 write_opcode = NVM_WRITE_OPCODE_SPI; | ||
| 2094 | |||
| 2095 | ret_val = e1000_ready_nvm_eeprom(hw); | ||
| 2096 | if (ret_val) { | ||
| 2097 | nvm->ops.release(hw); | ||
| 2098 | return ret_val; | ||
| 2099 | } | ||
| 2100 | |||
| 2101 | e1000_standby_nvm(hw); | ||
| 2102 | |||
| 2103 | /* Send the WRITE ENABLE command (8 bit opcode) */ | ||
| 2104 | e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, | ||
| 2105 | nvm->opcode_bits); | ||
| 2106 | |||
| 2107 | e1000_standby_nvm(hw); | ||
| 2108 | |||
| 2109 | /* | ||
| 2110 | * Some SPI eeproms use the 8th address bit embedded in the | ||
| 2111 | * opcode | ||
| 2112 | */ | ||
| 2113 | if ((nvm->address_bits == 8) && (offset >= 128)) | ||
| 2114 | write_opcode |= NVM_A8_OPCODE_SPI; | ||
| 2115 | |||
| 2116 | /* Send the Write command (8-bit opcode + addr) */ | ||
| 2117 | e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); | ||
| 2118 | e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), | ||
| 2119 | nvm->address_bits); | ||
| 2120 | |||
| 2121 | /* Loop to allow for up to whole page write of eeprom */ | ||
| 2122 | while (widx < words) { | ||
| 2123 | u16 word_out = data[widx]; | ||
| 2124 | word_out = (word_out >> 8) | (word_out << 8); | ||
| 2125 | e1000_shift_out_eec_bits(hw, word_out, 16); | ||
| 2126 | widx++; | ||
| 2127 | |||
| 2128 | if ((((offset + widx) * 2) % nvm->page_size) == 0) { | ||
| 2129 | e1000_standby_nvm(hw); | ||
| 2130 | break; | ||
| 2131 | } | ||
| 2132 | } | ||
| 2133 | } | ||
| 2134 | |||
| 2135 | usleep_range(10000, 20000); | ||
| 2136 | nvm->ops.release(hw); | ||
| 2137 | return 0; | ||
| 2138 | } | ||
| 2139 | |||
| 2140 | /** | ||
| 2141 | * e1000_read_pba_string_generic - Read device part number | ||
| 2142 | * @hw: pointer to the HW structure | ||
| 2143 | * @pba_num: pointer to device part number | ||
| 2144 | * @pba_num_size: size of part number buffer | ||
| 2145 | * | ||
| 2146 | * Reads the product board assembly (PBA) number from the EEPROM and stores | ||
| 2147 | * the value in pba_num. | ||
| 2148 | **/ | ||
| 2149 | s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, | ||
| 2150 | u32 pba_num_size) | ||
| 2151 | { | ||
| 2152 | s32 ret_val; | ||
| 2153 | u16 nvm_data; | ||
| 2154 | u16 pba_ptr; | ||
| 2155 | u16 offset; | ||
| 2156 | u16 length; | ||
| 2157 | |||
| 2158 | if (pba_num == NULL) { | ||
| 2159 | e_dbg("PBA string buffer was null\n"); | ||
| 2160 | ret_val = E1000_ERR_INVALID_ARGUMENT; | ||
| 2161 | goto out; | ||
| 2162 | } | ||
| 2163 | |||
| 2164 | ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); | ||
| 2165 | if (ret_val) { | ||
| 2166 | e_dbg("NVM Read Error\n"); | ||
| 2167 | goto out; | ||
| 2168 | } | ||
| 2169 | |||
| 2170 | ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); | ||
| 2171 | if (ret_val) { | ||
| 2172 | e_dbg("NVM Read Error\n"); | ||
| 2173 | goto out; | ||
| 2174 | } | ||
| 2175 | |||
| 2176 | /* | ||
| 2177 | * if nvm_data is not ptr guard the PBA must be in legacy format which | ||
| 2178 | * means pba_ptr is actually our second data word for the PBA number | ||
| 2179 | * and we can decode it into an ascii string | ||
| 2180 | */ | ||
| 2181 | if (nvm_data != NVM_PBA_PTR_GUARD) { | ||
| 2182 | e_dbg("NVM PBA number is not stored as string\n"); | ||
| 2183 | |||
| 2184 | /* we will need 11 characters to store the PBA */ | ||
| 2185 | if (pba_num_size < 11) { | ||
| 2186 | e_dbg("PBA string buffer too small\n"); | ||
| 2187 | return E1000_ERR_NO_SPACE; | ||
| 2188 | } | ||
| 2189 | |||
| 2190 | /* extract hex string from data and pba_ptr */ | ||
| 2191 | pba_num[0] = (nvm_data >> 12) & 0xF; | ||
| 2192 | pba_num[1] = (nvm_data >> 8) & 0xF; | ||
| 2193 | pba_num[2] = (nvm_data >> 4) & 0xF; | ||
| 2194 | pba_num[3] = nvm_data & 0xF; | ||
| 2195 | pba_num[4] = (pba_ptr >> 12) & 0xF; | ||
| 2196 | pba_num[5] = (pba_ptr >> 8) & 0xF; | ||
| 2197 | pba_num[6] = '-'; | ||
| 2198 | pba_num[7] = 0; | ||
| 2199 | pba_num[8] = (pba_ptr >> 4) & 0xF; | ||
| 2200 | pba_num[9] = pba_ptr & 0xF; | ||
| 2201 | |||
| 2202 | /* put a null character on the end of our string */ | ||
| 2203 | pba_num[10] = '\0'; | ||
| 2204 | |||
| 2205 | /* switch all the data but the '-' to hex char */ | ||
| 2206 | for (offset = 0; offset < 10; offset++) { | ||
| 2207 | if (pba_num[offset] < 0xA) | ||
| 2208 | pba_num[offset] += '0'; | ||
| 2209 | else if (pba_num[offset] < 0x10) | ||
| 2210 | pba_num[offset] += 'A' - 0xA; | ||
| 2211 | } | ||
| 2212 | |||
| 2213 | goto out; | ||
| 2214 | } | ||
| 2215 | |||
| 2216 | ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length); | ||
| 2217 | if (ret_val) { | ||
| 2218 | e_dbg("NVM Read Error\n"); | ||
| 2219 | goto out; | ||
| 2220 | } | ||
| 2221 | |||
| 2222 | if (length == 0xFFFF || length == 0) { | ||
| 2223 | e_dbg("NVM PBA number section invalid length\n"); | ||
| 2224 | ret_val = E1000_ERR_NVM_PBA_SECTION; | ||
| 2225 | goto out; | ||
| 2226 | } | ||
| 2227 | /* check if pba_num buffer is big enough */ | ||
| 2228 | if (pba_num_size < (((u32)length * 2) - 1)) { | ||
| 2229 | e_dbg("PBA string buffer too small\n"); | ||
| 2230 | ret_val = E1000_ERR_NO_SPACE; | ||
| 2231 | goto out; | ||
| 2232 | } | ||
| 2233 | |||
| 2234 | /* trim pba length from start of string */ | ||
| 2235 | pba_ptr++; | ||
| 2236 | length--; | ||
| 2237 | |||
| 2238 | for (offset = 0; offset < length; offset++) { | ||
| 2239 | ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data); | ||
| 2240 | if (ret_val) { | ||
| 2241 | e_dbg("NVM Read Error\n"); | ||
| 2242 | goto out; | ||
| 2243 | } | ||
| 2244 | pba_num[offset * 2] = (u8)(nvm_data >> 8); | ||
| 2245 | pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); | ||
| 2246 | } | ||
| 2247 | pba_num[offset * 2] = '\0'; | ||
| 2248 | |||
| 2249 | out: | ||
| 2250 | return ret_val; | ||
| 2251 | } | ||
| 2252 | |||
| 2253 | /** | ||
| 2254 | * e1000_read_mac_addr_generic - Read device MAC address | ||
| 2255 | * @hw: pointer to the HW structure | ||
| 2256 | * | ||
| 2257 | * Reads the device MAC address from the EEPROM and stores the value. | ||
| 2258 | * Since devices with two ports use the same EEPROM, we increment the | ||
| 2259 | * last bit in the MAC address for the second port. | ||
| 2260 | **/ | ||
| 2261 | s32 e1000_read_mac_addr_generic(struct e1000_hw *hw) | ||
| 2262 | { | ||
| 2263 | u32 rar_high; | ||
| 2264 | u32 rar_low; | ||
| 2265 | u16 i; | ||
| 2266 | |||
| 2267 | rar_high = er32(RAH(0)); | ||
| 2268 | rar_low = er32(RAL(0)); | ||
| 2269 | |||
| 2270 | for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) | ||
| 2271 | hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); | ||
| 2272 | |||
| 2273 | for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) | ||
| 2274 | hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); | ||
| 2275 | |||
| 2276 | for (i = 0; i < ETH_ALEN; i++) | ||
| 2277 | hw->mac.addr[i] = hw->mac.perm_addr[i]; | ||
| 2278 | |||
| 2279 | return 0; | ||
| 2280 | } | ||
| 2281 | |||
| 2282 | /** | ||
| 2283 | * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum | ||
| 2284 | * @hw: pointer to the HW structure | ||
| 2285 | * | ||
| 2286 | * Calculates the EEPROM checksum by reading/adding each word of the EEPROM | ||
| 2287 | * and then verifies that the sum of the EEPROM is equal to 0xBABA. | ||
| 2288 | **/ | ||
| 2289 | s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw) | ||
| 2290 | { | ||
| 2291 | s32 ret_val; | ||
| 2292 | u16 checksum = 0; | ||
| 2293 | u16 i, nvm_data; | ||
| 2294 | |||
| 2295 | for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { | ||
| 2296 | ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); | ||
| 2297 | if (ret_val) { | ||
| 2298 | e_dbg("NVM Read Error\n"); | ||
| 2299 | return ret_val; | ||
| 2300 | } | ||
| 2301 | checksum += nvm_data; | ||
| 2302 | } | ||
| 2303 | |||
| 2304 | if (checksum != (u16) NVM_SUM) { | ||
| 2305 | e_dbg("NVM Checksum Invalid\n"); | ||
| 2306 | return -E1000_ERR_NVM; | ||
| 2307 | } | ||
| 2308 | |||
| 2309 | return 0; | ||
| 2310 | } | ||
| 2311 | |||
| 2312 | /** | ||
| 2313 | * e1000e_update_nvm_checksum_generic - Update EEPROM checksum | ||
| 2314 | * @hw: pointer to the HW structure | ||
| 2315 | * | ||
| 2316 | * Updates the EEPROM checksum by reading/adding each word of the EEPROM | ||
| 2317 | * up to the checksum. Then calculates the EEPROM checksum and writes the | ||
| 2318 | * value to the EEPROM. | ||
| 2319 | **/ | ||
| 2320 | s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw) | ||
| 2321 | { | ||
| 2322 | s32 ret_val; | ||
| 2323 | u16 checksum = 0; | ||
| 2324 | u16 i, nvm_data; | ||
| 2325 | |||
| 2326 | for (i = 0; i < NVM_CHECKSUM_REG; i++) { | ||
| 2327 | ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); | ||
| 2328 | if (ret_val) { | ||
| 2329 | e_dbg("NVM Read Error while updating checksum.\n"); | ||
| 2330 | return ret_val; | ||
| 2331 | } | ||
| 2332 | checksum += nvm_data; | ||
| 2333 | } | ||
| 2334 | checksum = (u16) NVM_SUM - checksum; | ||
| 2335 | ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum); | ||
| 2336 | if (ret_val) | ||
| 2337 | e_dbg("NVM Write Error while updating checksum.\n"); | ||
| 2338 | |||
| 2339 | return ret_val; | ||
| 2340 | } | ||
| 2341 | |||
| 2342 | /** | ||
| 2343 | * e1000e_reload_nvm - Reloads EEPROM | ||
| 2344 | * @hw: pointer to the HW structure | ||
| 2345 | * | ||
| 2346 | * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the | ||
| 2347 | * extended control register. | ||
| 2348 | **/ | ||
| 2349 | void e1000e_reload_nvm(struct e1000_hw *hw) | ||
| 2350 | { | ||
| 2351 | u32 ctrl_ext; | ||
| 2352 | |||
| 2353 | udelay(10); | ||
| 2354 | ctrl_ext = er32(CTRL_EXT); | ||
| 2355 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | ||
| 2356 | ew32(CTRL_EXT, ctrl_ext); | ||
| 2357 | e1e_flush(); | ||
| 2358 | } | ||
| 2359 | |||
| 2360 | /** | ||
| 2361 | * e1000_calculate_checksum - Calculate checksum for buffer | ||
| 2362 | * @buffer: pointer to EEPROM | ||
| 2363 | * @length: size of EEPROM to calculate a checksum for | ||
| 2364 | * | ||
| 2365 | * Calculates the checksum for some buffer on a specified length. The | ||
| 2366 | * checksum calculated is returned. | ||
| 2367 | **/ | ||
| 2368 | static u8 e1000_calculate_checksum(u8 *buffer, u32 length) | ||
| 2369 | { | ||
| 2370 | u32 i; | ||
| 2371 | u8 sum = 0; | ||
| 2372 | |||
| 2373 | if (!buffer) | ||
| 2374 | return 0; | ||
| 2375 | |||
| 2376 | for (i = 0; i < length; i++) | ||
| 2377 | sum += buffer[i]; | ||
| 2378 | |||
| 2379 | return (u8) (0 - sum); | ||
| 2380 | } | ||
| 2381 | |||
| 2382 | /** | ||
| 2383 | * e1000_mng_enable_host_if - Checks host interface is enabled | ||
| 2384 | * @hw: pointer to the HW structure | ||
| 2385 | * | ||
| 2386 | * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND | ||
| 2387 | * | ||
| 2388 | * This function checks whether the HOST IF is enabled for command operation | ||
| 2389 | * and also checks whether the previous command is completed. It busy waits | ||
| 2390 | * in case of previous command is not completed. | ||
| 2391 | **/ | ||
| 2392 | static s32 e1000_mng_enable_host_if(struct e1000_hw *hw) | ||
| 2393 | { | ||
| 2394 | u32 hicr; | ||
| 2395 | u8 i; | ||
| 2396 | |||
| 2397 | if (!(hw->mac.arc_subsystem_valid)) { | ||
| 2398 | e_dbg("ARC subsystem not valid.\n"); | ||
| 2399 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | ||
| 2400 | } | ||
| 2401 | |||
| 2402 | /* Check that the host interface is enabled. */ | ||
| 2403 | hicr = er32(HICR); | ||
| 2404 | if ((hicr & E1000_HICR_EN) == 0) { | ||
| 2405 | e_dbg("E1000_HOST_EN bit disabled.\n"); | ||
| 2406 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | ||
| 2407 | } | ||
| 2408 | /* check the previous command is completed */ | ||
| 2409 | for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { | ||
| 2410 | hicr = er32(HICR); | ||
| 2411 | if (!(hicr & E1000_HICR_C)) | ||
| 2412 | break; | ||
| 2413 | mdelay(1); | ||
| 2414 | } | ||
| 2415 | |||
| 2416 | if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { | ||
| 2417 | e_dbg("Previous command timeout failed .\n"); | ||
| 2418 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | ||
| 2419 | } | ||
| 2420 | |||
| 2421 | return 0; | ||
| 2422 | } | ||
| 2423 | |||
| 2424 | /** | ||
| 2425 | * e1000e_check_mng_mode_generic - check management mode | ||
| 2426 | * @hw: pointer to the HW structure | ||
| 2427 | * | ||
| 2428 | * Reads the firmware semaphore register and returns true (>0) if | ||
| 2429 | * manageability is enabled, else false (0). | ||
| 2430 | **/ | ||
| 2431 | bool e1000e_check_mng_mode_generic(struct e1000_hw *hw) | ||
| 2432 | { | ||
| 2433 | u32 fwsm = er32(FWSM); | ||
| 2434 | |||
| 2435 | return (fwsm & E1000_FWSM_MODE_MASK) == | ||
| 2436 | (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT); | ||
| 2437 | } | ||
| 2438 | |||
| 2439 | /** | ||
| 2440 | * e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx | ||
| 2441 | * @hw: pointer to the HW structure | ||
| 2442 | * | ||
| 2443 | * Enables packet filtering on transmit packets if manageability is enabled | ||
| 2444 | * and host interface is enabled. | ||
| 2445 | **/ | ||
| 2446 | bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw) | ||
| 2447 | { | ||
| 2448 | struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; | ||
| 2449 | u32 *buffer = (u32 *)&hw->mng_cookie; | ||
| 2450 | u32 offset; | ||
| 2451 | s32 ret_val, hdr_csum, csum; | ||
| 2452 | u8 i, len; | ||
| 2453 | |||
| 2454 | hw->mac.tx_pkt_filtering = true; | ||
| 2455 | |||
| 2456 | /* No manageability, no filtering */ | ||
| 2457 | if (!e1000e_check_mng_mode(hw)) { | ||
| 2458 | hw->mac.tx_pkt_filtering = false; | ||
| 2459 | goto out; | ||
| 2460 | } | ||
| 2461 | |||
| 2462 | /* | ||
| 2463 | * If we can't read from the host interface for whatever | ||
| 2464 | * reason, disable filtering. | ||
| 2465 | */ | ||
| 2466 | ret_val = e1000_mng_enable_host_if(hw); | ||
| 2467 | if (ret_val) { | ||
| 2468 | hw->mac.tx_pkt_filtering = false; | ||
| 2469 | goto out; | ||
| 2470 | } | ||
| 2471 | |||
| 2472 | /* Read in the header. Length and offset are in dwords. */ | ||
| 2473 | len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; | ||
| 2474 | offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; | ||
| 2475 | for (i = 0; i < len; i++) | ||
| 2476 | *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i); | ||
| 2477 | hdr_csum = hdr->checksum; | ||
| 2478 | hdr->checksum = 0; | ||
| 2479 | csum = e1000_calculate_checksum((u8 *)hdr, | ||
| 2480 | E1000_MNG_DHCP_COOKIE_LENGTH); | ||
| 2481 | /* | ||
| 2482 | * If either the checksums or signature don't match, then | ||
| 2483 | * the cookie area isn't considered valid, in which case we | ||
| 2484 | * take the safe route of assuming Tx filtering is enabled. | ||
| 2485 | */ | ||
| 2486 | if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) { | ||
| 2487 | hw->mac.tx_pkt_filtering = true; | ||
| 2488 | goto out; | ||
| 2489 | } | ||
| 2490 | |||
| 2491 | /* Cookie area is valid, make the final check for filtering. */ | ||
| 2492 | if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) { | ||
| 2493 | hw->mac.tx_pkt_filtering = false; | ||
| 2494 | goto out; | ||
| 2495 | } | ||
| 2496 | |||
| 2497 | out: | ||
| 2498 | return hw->mac.tx_pkt_filtering; | ||
| 2499 | } | ||
| 2500 | |||
| 2501 | /** | ||
| 2502 | * e1000_mng_write_cmd_header - Writes manageability command header | ||
| 2503 | * @hw: pointer to the HW structure | ||
| 2504 | * @hdr: pointer to the host interface command header | ||
| 2505 | * | ||
| 2506 | * Writes the command header after does the checksum calculation. | ||
| 2507 | **/ | ||
| 2508 | static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, | ||
| 2509 | struct e1000_host_mng_command_header *hdr) | ||
| 2510 | { | ||
| 2511 | u16 i, length = sizeof(struct e1000_host_mng_command_header); | ||
| 2512 | |||
| 2513 | /* Write the whole command header structure with new checksum. */ | ||
| 2514 | |||
| 2515 | hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); | ||
| 2516 | |||
| 2517 | length >>= 2; | ||
| 2518 | /* Write the relevant command block into the ram area. */ | ||
| 2519 | for (i = 0; i < length; i++) { | ||
| 2520 | E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i, | ||
| 2521 | *((u32 *) hdr + i)); | ||
| 2522 | e1e_flush(); | ||
| 2523 | } | ||
| 2524 | |||
| 2525 | return 0; | ||
| 2526 | } | ||
| 2527 | |||
| 2528 | /** | ||
| 2529 | * e1000_mng_host_if_write - Write to the manageability host interface | ||
| 2530 | * @hw: pointer to the HW structure | ||
| 2531 | * @buffer: pointer to the host interface buffer | ||
| 2532 | * @length: size of the buffer | ||
| 2533 | * @offset: location in the buffer to write to | ||
| 2534 | * @sum: sum of the data (not checksum) | ||
| 2535 | * | ||
| 2536 | * This function writes the buffer content at the offset given on the host if. | ||
| 2537 | * It also does alignment considerations to do the writes in most efficient | ||
| 2538 | * way. Also fills up the sum of the buffer in *buffer parameter. | ||
| 2539 | **/ | ||
| 2540 | static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, | ||
| 2541 | u16 length, u16 offset, u8 *sum) | ||
| 2542 | { | ||
| 2543 | u8 *tmp; | ||
| 2544 | u8 *bufptr = buffer; | ||
| 2545 | u32 data = 0; | ||
| 2546 | u16 remaining, i, j, prev_bytes; | ||
| 2547 | |||
| 2548 | /* sum = only sum of the data and it is not checksum */ | ||
| 2549 | |||
| 2550 | if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) | ||
| 2551 | return -E1000_ERR_PARAM; | ||
| 2552 | |||
| 2553 | tmp = (u8 *)&data; | ||
| 2554 | prev_bytes = offset & 0x3; | ||
| 2555 | offset >>= 2; | ||
| 2556 | |||
| 2557 | if (prev_bytes) { | ||
| 2558 | data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset); | ||
| 2559 | for (j = prev_bytes; j < sizeof(u32); j++) { | ||
| 2560 | *(tmp + j) = *bufptr++; | ||
| 2561 | *sum += *(tmp + j); | ||
| 2562 | } | ||
| 2563 | E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data); | ||
| 2564 | length -= j - prev_bytes; | ||
| 2565 | offset++; | ||
| 2566 | } | ||
| 2567 | |||
| 2568 | remaining = length & 0x3; | ||
| 2569 | length -= remaining; | ||
| 2570 | |||
| 2571 | /* Calculate length in DWORDs */ | ||
| 2572 | length >>= 2; | ||
| 2573 | |||
| 2574 | /* | ||
| 2575 | * The device driver writes the relevant command block into the | ||
| 2576 | * ram area. | ||
| 2577 | */ | ||
| 2578 | for (i = 0; i < length; i++) { | ||
| 2579 | for (j = 0; j < sizeof(u32); j++) { | ||
| 2580 | *(tmp + j) = *bufptr++; | ||
| 2581 | *sum += *(tmp + j); | ||
| 2582 | } | ||
| 2583 | |||
| 2584 | E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); | ||
| 2585 | } | ||
| 2586 | if (remaining) { | ||
| 2587 | for (j = 0; j < sizeof(u32); j++) { | ||
| 2588 | if (j < remaining) | ||
| 2589 | *(tmp + j) = *bufptr++; | ||
| 2590 | else | ||
| 2591 | *(tmp + j) = 0; | ||
| 2592 | |||
| 2593 | *sum += *(tmp + j); | ||
| 2594 | } | ||
| 2595 | E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); | ||
| 2596 | } | ||
| 2597 | |||
| 2598 | return 0; | ||
| 2599 | } | ||
| 2600 | |||
| 2601 | /** | ||
| 2602 | * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface | ||
| 2603 | * @hw: pointer to the HW structure | ||
| 2604 | * @buffer: pointer to the host interface | ||
| 2605 | * @length: size of the buffer | ||
| 2606 | * | ||
| 2607 | * Writes the DHCP information to the host interface. | ||
| 2608 | **/ | ||
| 2609 | s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) | ||
| 2610 | { | ||
| 2611 | struct e1000_host_mng_command_header hdr; | ||
| 2612 | s32 ret_val; | ||
| 2613 | u32 hicr; | ||
| 2614 | |||
| 2615 | hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; | ||
| 2616 | hdr.command_length = length; | ||
| 2617 | hdr.reserved1 = 0; | ||
| 2618 | hdr.reserved2 = 0; | ||
| 2619 | hdr.checksum = 0; | ||
| 2620 | |||
| 2621 | /* Enable the host interface */ | ||
| 2622 | ret_val = e1000_mng_enable_host_if(hw); | ||
| 2623 | if (ret_val) | ||
| 2624 | return ret_val; | ||
| 2625 | |||
| 2626 | /* Populate the host interface with the contents of "buffer". */ | ||
| 2627 | ret_val = e1000_mng_host_if_write(hw, buffer, length, | ||
| 2628 | sizeof(hdr), &(hdr.checksum)); | ||
| 2629 | if (ret_val) | ||
| 2630 | return ret_val; | ||
| 2631 | |||
| 2632 | /* Write the manageability command header */ | ||
| 2633 | ret_val = e1000_mng_write_cmd_header(hw, &hdr); | ||
| 2634 | if (ret_val) | ||
| 2635 | return ret_val; | ||
| 2636 | |||
| 2637 | /* Tell the ARC a new command is pending. */ | ||
| 2638 | hicr = er32(HICR); | ||
| 2639 | ew32(HICR, hicr | E1000_HICR_C); | ||
| 2640 | |||
| 2641 | return 0; | ||
| 2642 | } | ||
| 2643 | |||
| 2644 | /** | ||
| 2645 | * e1000e_enable_mng_pass_thru - Check if management passthrough is needed | ||
| 2646 | * @hw: pointer to the HW structure | ||
| 2647 | * | ||
| 2648 | * Verifies the hardware needs to leave interface enabled so that frames can | ||
| 2649 | * be directed to and from the management interface. | ||
| 2650 | **/ | ||
| 2651 | bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw) | ||
| 2652 | { | ||
| 2653 | u32 manc; | ||
| 2654 | u32 fwsm, factps; | ||
| 2655 | bool ret_val = false; | ||
| 2656 | |||
| 2657 | manc = er32(MANC); | ||
| 2658 | |||
| 2659 | if (!(manc & E1000_MANC_RCV_TCO_EN)) | ||
| 2660 | goto out; | ||
| 2661 | |||
| 2662 | if (hw->mac.has_fwsm) { | ||
| 2663 | fwsm = er32(FWSM); | ||
| 2664 | factps = er32(FACTPS); | ||
| 2665 | |||
| 2666 | if (!(factps & E1000_FACTPS_MNGCG) && | ||
| 2667 | ((fwsm & E1000_FWSM_MODE_MASK) == | ||
| 2668 | (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { | ||
| 2669 | ret_val = true; | ||
| 2670 | goto out; | ||
| 2671 | } | ||
| 2672 | } else if ((hw->mac.type == e1000_82574) || | ||
| 2673 | (hw->mac.type == e1000_82583)) { | ||
| 2674 | u16 data; | ||
| 2675 | |||
| 2676 | factps = er32(FACTPS); | ||
| 2677 | e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data); | ||
| 2678 | |||
| 2679 | if (!(factps & E1000_FACTPS_MNGCG) && | ||
| 2680 | ((data & E1000_NVM_INIT_CTRL2_MNGM) == | ||
| 2681 | (e1000_mng_mode_pt << 13))) { | ||
| 2682 | ret_val = true; | ||
| 2683 | goto out; | ||
| 2684 | } | ||
| 2685 | } else if ((manc & E1000_MANC_SMBUS_EN) && | ||
| 2686 | !(manc & E1000_MANC_ASF_EN)) { | ||
| 2687 | ret_val = true; | ||
| 2688 | goto out; | ||
| 2689 | } | ||
| 2690 | |||
| 2691 | out: | ||
| 2692 | return ret_val; | ||
| 2693 | } | ||
