diff options
author | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
---|---|---|
committer | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
commit | fcc9d2e5a6c89d22b8b773a64fb4ad21ac318446 (patch) | |
tree | a57612d1888735a2ec7972891b68c1ac5ec8faea /drivers/net/e1000e/lib.c | |
parent | 8dea78da5cee153b8af9c07a2745f6c55057fe12 (diff) |
Diffstat (limited to 'drivers/net/e1000e/lib.c')
-rw-r--r-- | drivers/net/e1000e/lib.c | 2693 |
1 files changed, 2693 insertions, 0 deletions
diff --git a/drivers/net/e1000e/lib.c b/drivers/net/e1000e/lib.c new file mode 100644 index 00000000000..0893ab107ad --- /dev/null +++ b/drivers/net/e1000e/lib.c | |||
@@ -0,0 +1,2693 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/1000 Linux driver | ||
4 | Copyright(c) 1999 - 2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | #include "e1000.h" | ||
30 | |||
31 | enum e1000_mng_mode { | ||
32 | e1000_mng_mode_none = 0, | ||
33 | e1000_mng_mode_asf, | ||
34 | e1000_mng_mode_pt, | ||
35 | e1000_mng_mode_ipmi, | ||
36 | e1000_mng_mode_host_if_only | ||
37 | }; | ||
38 | |||
39 | #define E1000_FACTPS_MNGCG 0x20000000 | ||
40 | |||
41 | /* Intel(R) Active Management Technology signature */ | ||
42 | #define E1000_IAMT_SIGNATURE 0x544D4149 | ||
43 | |||
44 | /** | ||
45 | * e1000e_get_bus_info_pcie - Get PCIe bus information | ||
46 | * @hw: pointer to the HW structure | ||
47 | * | ||
48 | * Determines and stores the system bus information for a particular | ||
49 | * network interface. The following bus information is determined and stored: | ||
50 | * bus speed, bus width, type (PCIe), and PCIe function. | ||
51 | **/ | ||
52 | s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw) | ||
53 | { | ||
54 | struct e1000_mac_info *mac = &hw->mac; | ||
55 | struct e1000_bus_info *bus = &hw->bus; | ||
56 | struct e1000_adapter *adapter = hw->adapter; | ||
57 | u16 pcie_link_status, cap_offset; | ||
58 | |||
59 | cap_offset = adapter->pdev->pcie_cap; | ||
60 | if (!cap_offset) { | ||
61 | bus->width = e1000_bus_width_unknown; | ||
62 | } else { | ||
63 | pci_read_config_word(adapter->pdev, | ||
64 | cap_offset + PCIE_LINK_STATUS, | ||
65 | &pcie_link_status); | ||
66 | bus->width = (enum e1000_bus_width)((pcie_link_status & | ||
67 | PCIE_LINK_WIDTH_MASK) >> | ||
68 | PCIE_LINK_WIDTH_SHIFT); | ||
69 | } | ||
70 | |||
71 | mac->ops.set_lan_id(hw); | ||
72 | |||
73 | return 0; | ||
74 | } | ||
75 | |||
76 | /** | ||
77 | * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices | ||
78 | * | ||
79 | * @hw: pointer to the HW structure | ||
80 | * | ||
81 | * Determines the LAN function id by reading memory-mapped registers | ||
82 | * and swaps the port value if requested. | ||
83 | **/ | ||
84 | void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) | ||
85 | { | ||
86 | struct e1000_bus_info *bus = &hw->bus; | ||
87 | u32 reg; | ||
88 | |||
89 | /* | ||
90 | * The status register reports the correct function number | ||
91 | * for the device regardless of function swap state. | ||
92 | */ | ||
93 | reg = er32(STATUS); | ||
94 | bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; | ||
95 | } | ||
96 | |||
97 | /** | ||
98 | * e1000_set_lan_id_single_port - Set LAN id for a single port device | ||
99 | * @hw: pointer to the HW structure | ||
100 | * | ||
101 | * Sets the LAN function id to zero for a single port device. | ||
102 | **/ | ||
103 | void e1000_set_lan_id_single_port(struct e1000_hw *hw) | ||
104 | { | ||
105 | struct e1000_bus_info *bus = &hw->bus; | ||
106 | |||
107 | bus->func = 0; | ||
108 | } | ||
109 | |||
110 | /** | ||
111 | * e1000_clear_vfta_generic - Clear VLAN filter table | ||
112 | * @hw: pointer to the HW structure | ||
113 | * | ||
114 | * Clears the register array which contains the VLAN filter table by | ||
115 | * setting all the values to 0. | ||
116 | **/ | ||
117 | void e1000_clear_vfta_generic(struct e1000_hw *hw) | ||
118 | { | ||
119 | u32 offset; | ||
120 | |||
121 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | ||
122 | E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); | ||
123 | e1e_flush(); | ||
124 | } | ||
125 | } | ||
126 | |||
127 | /** | ||
128 | * e1000_write_vfta_generic - Write value to VLAN filter table | ||
129 | * @hw: pointer to the HW structure | ||
130 | * @offset: register offset in VLAN filter table | ||
131 | * @value: register value written to VLAN filter table | ||
132 | * | ||
133 | * Writes value at the given offset in the register array which stores | ||
134 | * the VLAN filter table. | ||
135 | **/ | ||
136 | void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) | ||
137 | { | ||
138 | E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); | ||
139 | e1e_flush(); | ||
140 | } | ||
141 | |||
142 | /** | ||
143 | * e1000e_init_rx_addrs - Initialize receive address's | ||
144 | * @hw: pointer to the HW structure | ||
145 | * @rar_count: receive address registers | ||
146 | * | ||
147 | * Setup the receive address registers by setting the base receive address | ||
148 | * register to the devices MAC address and clearing all the other receive | ||
149 | * address registers to 0. | ||
150 | **/ | ||
151 | void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) | ||
152 | { | ||
153 | u32 i; | ||
154 | u8 mac_addr[ETH_ALEN] = {0}; | ||
155 | |||
156 | /* Setup the receive address */ | ||
157 | e_dbg("Programming MAC Address into RAR[0]\n"); | ||
158 | |||
159 | e1000e_rar_set(hw, hw->mac.addr, 0); | ||
160 | |||
161 | /* Zero out the other (rar_entry_count - 1) receive addresses */ | ||
162 | e_dbg("Clearing RAR[1-%u]\n", rar_count-1); | ||
163 | for (i = 1; i < rar_count; i++) | ||
164 | e1000e_rar_set(hw, mac_addr, i); | ||
165 | } | ||
166 | |||
167 | /** | ||
168 | * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr | ||
169 | * @hw: pointer to the HW structure | ||
170 | * | ||
171 | * Checks the nvm for an alternate MAC address. An alternate MAC address | ||
172 | * can be setup by pre-boot software and must be treated like a permanent | ||
173 | * address and must override the actual permanent MAC address. If an | ||
174 | * alternate MAC address is found it is programmed into RAR0, replacing | ||
175 | * the permanent address that was installed into RAR0 by the Si on reset. | ||
176 | * This function will return SUCCESS unless it encounters an error while | ||
177 | * reading the EEPROM. | ||
178 | **/ | ||
179 | s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) | ||
180 | { | ||
181 | u32 i; | ||
182 | s32 ret_val = 0; | ||
183 | u16 offset, nvm_alt_mac_addr_offset, nvm_data; | ||
184 | u8 alt_mac_addr[ETH_ALEN]; | ||
185 | |||
186 | ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data); | ||
187 | if (ret_val) | ||
188 | goto out; | ||
189 | |||
190 | /* Check for LOM (vs. NIC) or one of two valid mezzanine cards */ | ||
191 | if (!((nvm_data & NVM_COMPAT_LOM) || | ||
192 | (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_DUAL) || | ||
193 | (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD) || | ||
194 | (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES))) | ||
195 | goto out; | ||
196 | |||
197 | ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, | ||
198 | &nvm_alt_mac_addr_offset); | ||
199 | if (ret_val) { | ||
200 | e_dbg("NVM Read Error\n"); | ||
201 | goto out; | ||
202 | } | ||
203 | |||
204 | if ((nvm_alt_mac_addr_offset == 0xFFFF) || | ||
205 | (nvm_alt_mac_addr_offset == 0x0000)) | ||
206 | /* There is no Alternate MAC Address */ | ||
207 | goto out; | ||
208 | |||
209 | if (hw->bus.func == E1000_FUNC_1) | ||
210 | nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; | ||
211 | for (i = 0; i < ETH_ALEN; i += 2) { | ||
212 | offset = nvm_alt_mac_addr_offset + (i >> 1); | ||
213 | ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data); | ||
214 | if (ret_val) { | ||
215 | e_dbg("NVM Read Error\n"); | ||
216 | goto out; | ||
217 | } | ||
218 | |||
219 | alt_mac_addr[i] = (u8)(nvm_data & 0xFF); | ||
220 | alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); | ||
221 | } | ||
222 | |||
223 | /* if multicast bit is set, the alternate address will not be used */ | ||
224 | if (is_multicast_ether_addr(alt_mac_addr)) { | ||
225 | e_dbg("Ignoring Alternate Mac Address with MC bit set\n"); | ||
226 | goto out; | ||
227 | } | ||
228 | |||
229 | /* | ||
230 | * We have a valid alternate MAC address, and we want to treat it the | ||
231 | * same as the normal permanent MAC address stored by the HW into the | ||
232 | * RAR. Do this by mapping this address into RAR0. | ||
233 | */ | ||
234 | e1000e_rar_set(hw, alt_mac_addr, 0); | ||
235 | |||
236 | out: | ||
237 | return ret_val; | ||
238 | } | ||
239 | |||
240 | /** | ||
241 | * e1000e_rar_set - Set receive address register | ||
242 | * @hw: pointer to the HW structure | ||
243 | * @addr: pointer to the receive address | ||
244 | * @index: receive address array register | ||
245 | * | ||
246 | * Sets the receive address array register at index to the address passed | ||
247 | * in by addr. | ||
248 | **/ | ||
249 | void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) | ||
250 | { | ||
251 | u32 rar_low, rar_high; | ||
252 | |||
253 | /* | ||
254 | * HW expects these in little endian so we reverse the byte order | ||
255 | * from network order (big endian) to little endian | ||
256 | */ | ||
257 | rar_low = ((u32) addr[0] | | ||
258 | ((u32) addr[1] << 8) | | ||
259 | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); | ||
260 | |||
261 | rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); | ||
262 | |||
263 | /* If MAC address zero, no need to set the AV bit */ | ||
264 | if (rar_low || rar_high) | ||
265 | rar_high |= E1000_RAH_AV; | ||
266 | |||
267 | /* | ||
268 | * Some bridges will combine consecutive 32-bit writes into | ||
269 | * a single burst write, which will malfunction on some parts. | ||
270 | * The flushes avoid this. | ||
271 | */ | ||
272 | ew32(RAL(index), rar_low); | ||
273 | e1e_flush(); | ||
274 | ew32(RAH(index), rar_high); | ||
275 | e1e_flush(); | ||
276 | } | ||
277 | |||
278 | /** | ||
279 | * e1000_hash_mc_addr - Generate a multicast hash value | ||
280 | * @hw: pointer to the HW structure | ||
281 | * @mc_addr: pointer to a multicast address | ||
282 | * | ||
283 | * Generates a multicast address hash value which is used to determine | ||
284 | * the multicast filter table array address and new table value. See | ||
285 | * e1000_mta_set_generic() | ||
286 | **/ | ||
287 | static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) | ||
288 | { | ||
289 | u32 hash_value, hash_mask; | ||
290 | u8 bit_shift = 0; | ||
291 | |||
292 | /* Register count multiplied by bits per register */ | ||
293 | hash_mask = (hw->mac.mta_reg_count * 32) - 1; | ||
294 | |||
295 | /* | ||
296 | * For a mc_filter_type of 0, bit_shift is the number of left-shifts | ||
297 | * where 0xFF would still fall within the hash mask. | ||
298 | */ | ||
299 | while (hash_mask >> bit_shift != 0xFF) | ||
300 | bit_shift++; | ||
301 | |||
302 | /* | ||
303 | * The portion of the address that is used for the hash table | ||
304 | * is determined by the mc_filter_type setting. | ||
305 | * The algorithm is such that there is a total of 8 bits of shifting. | ||
306 | * The bit_shift for a mc_filter_type of 0 represents the number of | ||
307 | * left-shifts where the MSB of mc_addr[5] would still fall within | ||
308 | * the hash_mask. Case 0 does this exactly. Since there are a total | ||
309 | * of 8 bits of shifting, then mc_addr[4] will shift right the | ||
310 | * remaining number of bits. Thus 8 - bit_shift. The rest of the | ||
311 | * cases are a variation of this algorithm...essentially raising the | ||
312 | * number of bits to shift mc_addr[5] left, while still keeping the | ||
313 | * 8-bit shifting total. | ||
314 | * | ||
315 | * For example, given the following Destination MAC Address and an | ||
316 | * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), | ||
317 | * we can see that the bit_shift for case 0 is 4. These are the hash | ||
318 | * values resulting from each mc_filter_type... | ||
319 | * [0] [1] [2] [3] [4] [5] | ||
320 | * 01 AA 00 12 34 56 | ||
321 | * LSB MSB | ||
322 | * | ||
323 | * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 | ||
324 | * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 | ||
325 | * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 | ||
326 | * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 | ||
327 | */ | ||
328 | switch (hw->mac.mc_filter_type) { | ||
329 | default: | ||
330 | case 0: | ||
331 | break; | ||
332 | case 1: | ||
333 | bit_shift += 1; | ||
334 | break; | ||
335 | case 2: | ||
336 | bit_shift += 2; | ||
337 | break; | ||
338 | case 3: | ||
339 | bit_shift += 4; | ||
340 | break; | ||
341 | } | ||
342 | |||
343 | hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | | ||
344 | (((u16) mc_addr[5]) << bit_shift))); | ||
345 | |||
346 | return hash_value; | ||
347 | } | ||
348 | |||
349 | /** | ||
350 | * e1000e_update_mc_addr_list_generic - Update Multicast addresses | ||
351 | * @hw: pointer to the HW structure | ||
352 | * @mc_addr_list: array of multicast addresses to program | ||
353 | * @mc_addr_count: number of multicast addresses to program | ||
354 | * | ||
355 | * Updates entire Multicast Table Array. | ||
356 | * The caller must have a packed mc_addr_list of multicast addresses. | ||
357 | **/ | ||
358 | void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw, | ||
359 | u8 *mc_addr_list, u32 mc_addr_count) | ||
360 | { | ||
361 | u32 hash_value, hash_bit, hash_reg; | ||
362 | int i; | ||
363 | |||
364 | /* clear mta_shadow */ | ||
365 | memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); | ||
366 | |||
367 | /* update mta_shadow from mc_addr_list */ | ||
368 | for (i = 0; (u32) i < mc_addr_count; i++) { | ||
369 | hash_value = e1000_hash_mc_addr(hw, mc_addr_list); | ||
370 | |||
371 | hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); | ||
372 | hash_bit = hash_value & 0x1F; | ||
373 | |||
374 | hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); | ||
375 | mc_addr_list += (ETH_ALEN); | ||
376 | } | ||
377 | |||
378 | /* replace the entire MTA table */ | ||
379 | for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) | ||
380 | E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); | ||
381 | e1e_flush(); | ||
382 | } | ||
383 | |||
384 | /** | ||
385 | * e1000e_clear_hw_cntrs_base - Clear base hardware counters | ||
386 | * @hw: pointer to the HW structure | ||
387 | * | ||
388 | * Clears the base hardware counters by reading the counter registers. | ||
389 | **/ | ||
390 | void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw) | ||
391 | { | ||
392 | er32(CRCERRS); | ||
393 | er32(SYMERRS); | ||
394 | er32(MPC); | ||
395 | er32(SCC); | ||
396 | er32(ECOL); | ||
397 | er32(MCC); | ||
398 | er32(LATECOL); | ||
399 | er32(COLC); | ||
400 | er32(DC); | ||
401 | er32(SEC); | ||
402 | er32(RLEC); | ||
403 | er32(XONRXC); | ||
404 | er32(XONTXC); | ||
405 | er32(XOFFRXC); | ||
406 | er32(XOFFTXC); | ||
407 | er32(FCRUC); | ||
408 | er32(GPRC); | ||
409 | er32(BPRC); | ||
410 | er32(MPRC); | ||
411 | er32(GPTC); | ||
412 | er32(GORCL); | ||
413 | er32(GORCH); | ||
414 | er32(GOTCL); | ||
415 | er32(GOTCH); | ||
416 | er32(RNBC); | ||
417 | er32(RUC); | ||
418 | er32(RFC); | ||
419 | er32(ROC); | ||
420 | er32(RJC); | ||
421 | er32(TORL); | ||
422 | er32(TORH); | ||
423 | er32(TOTL); | ||
424 | er32(TOTH); | ||
425 | er32(TPR); | ||
426 | er32(TPT); | ||
427 | er32(MPTC); | ||
428 | er32(BPTC); | ||
429 | } | ||
430 | |||
431 | /** | ||
432 | * e1000e_check_for_copper_link - Check for link (Copper) | ||
433 | * @hw: pointer to the HW structure | ||
434 | * | ||
435 | * Checks to see of the link status of the hardware has changed. If a | ||
436 | * change in link status has been detected, then we read the PHY registers | ||
437 | * to get the current speed/duplex if link exists. | ||
438 | **/ | ||
439 | s32 e1000e_check_for_copper_link(struct e1000_hw *hw) | ||
440 | { | ||
441 | struct e1000_mac_info *mac = &hw->mac; | ||
442 | s32 ret_val; | ||
443 | bool link; | ||
444 | |||
445 | /* | ||
446 | * We only want to go out to the PHY registers to see if Auto-Neg | ||
447 | * has completed and/or if our link status has changed. The | ||
448 | * get_link_status flag is set upon receiving a Link Status | ||
449 | * Change or Rx Sequence Error interrupt. | ||
450 | */ | ||
451 | if (!mac->get_link_status) | ||
452 | return 0; | ||
453 | |||
454 | /* | ||
455 | * First we want to see if the MII Status Register reports | ||
456 | * link. If so, then we want to get the current speed/duplex | ||
457 | * of the PHY. | ||
458 | */ | ||
459 | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); | ||
460 | if (ret_val) | ||
461 | return ret_val; | ||
462 | |||
463 | if (!link) | ||
464 | return ret_val; /* No link detected */ | ||
465 | |||
466 | mac->get_link_status = false; | ||
467 | |||
468 | /* | ||
469 | * Check if there was DownShift, must be checked | ||
470 | * immediately after link-up | ||
471 | */ | ||
472 | e1000e_check_downshift(hw); | ||
473 | |||
474 | /* | ||
475 | * If we are forcing speed/duplex, then we simply return since | ||
476 | * we have already determined whether we have link or not. | ||
477 | */ | ||
478 | if (!mac->autoneg) { | ||
479 | ret_val = -E1000_ERR_CONFIG; | ||
480 | return ret_val; | ||
481 | } | ||
482 | |||
483 | /* | ||
484 | * Auto-Neg is enabled. Auto Speed Detection takes care | ||
485 | * of MAC speed/duplex configuration. So we only need to | ||
486 | * configure Collision Distance in the MAC. | ||
487 | */ | ||
488 | e1000e_config_collision_dist(hw); | ||
489 | |||
490 | /* | ||
491 | * Configure Flow Control now that Auto-Neg has completed. | ||
492 | * First, we need to restore the desired flow control | ||
493 | * settings because we may have had to re-autoneg with a | ||
494 | * different link partner. | ||
495 | */ | ||
496 | ret_val = e1000e_config_fc_after_link_up(hw); | ||
497 | if (ret_val) | ||
498 | e_dbg("Error configuring flow control\n"); | ||
499 | |||
500 | return ret_val; | ||
501 | } | ||
502 | |||
503 | /** | ||
504 | * e1000e_check_for_fiber_link - Check for link (Fiber) | ||
505 | * @hw: pointer to the HW structure | ||
506 | * | ||
507 | * Checks for link up on the hardware. If link is not up and we have | ||
508 | * a signal, then we need to force link up. | ||
509 | **/ | ||
510 | s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) | ||
511 | { | ||
512 | struct e1000_mac_info *mac = &hw->mac; | ||
513 | u32 rxcw; | ||
514 | u32 ctrl; | ||
515 | u32 status; | ||
516 | s32 ret_val; | ||
517 | |||
518 | ctrl = er32(CTRL); | ||
519 | status = er32(STATUS); | ||
520 | rxcw = er32(RXCW); | ||
521 | |||
522 | /* | ||
523 | * If we don't have link (auto-negotiation failed or link partner | ||
524 | * cannot auto-negotiate), the cable is plugged in (we have signal), | ||
525 | * and our link partner is not trying to auto-negotiate with us (we | ||
526 | * are receiving idles or data), we need to force link up. We also | ||
527 | * need to give auto-negotiation time to complete, in case the cable | ||
528 | * was just plugged in. The autoneg_failed flag does this. | ||
529 | */ | ||
530 | /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ | ||
531 | if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) && | ||
532 | (!(rxcw & E1000_RXCW_C))) { | ||
533 | if (mac->autoneg_failed == 0) { | ||
534 | mac->autoneg_failed = 1; | ||
535 | return 0; | ||
536 | } | ||
537 | e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); | ||
538 | |||
539 | /* Disable auto-negotiation in the TXCW register */ | ||
540 | ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); | ||
541 | |||
542 | /* Force link-up and also force full-duplex. */ | ||
543 | ctrl = er32(CTRL); | ||
544 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | ||
545 | ew32(CTRL, ctrl); | ||
546 | |||
547 | /* Configure Flow Control after forcing link up. */ | ||
548 | ret_val = e1000e_config_fc_after_link_up(hw); | ||
549 | if (ret_val) { | ||
550 | e_dbg("Error configuring flow control\n"); | ||
551 | return ret_val; | ||
552 | } | ||
553 | } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | ||
554 | /* | ||
555 | * If we are forcing link and we are receiving /C/ ordered | ||
556 | * sets, re-enable auto-negotiation in the TXCW register | ||
557 | * and disable forced link in the Device Control register | ||
558 | * in an attempt to auto-negotiate with our link partner. | ||
559 | */ | ||
560 | e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); | ||
561 | ew32(TXCW, mac->txcw); | ||
562 | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | ||
563 | |||
564 | mac->serdes_has_link = true; | ||
565 | } | ||
566 | |||
567 | return 0; | ||
568 | } | ||
569 | |||
570 | /** | ||
571 | * e1000e_check_for_serdes_link - Check for link (Serdes) | ||
572 | * @hw: pointer to the HW structure | ||
573 | * | ||
574 | * Checks for link up on the hardware. If link is not up and we have | ||
575 | * a signal, then we need to force link up. | ||
576 | **/ | ||
577 | s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) | ||
578 | { | ||
579 | struct e1000_mac_info *mac = &hw->mac; | ||
580 | u32 rxcw; | ||
581 | u32 ctrl; | ||
582 | u32 status; | ||
583 | s32 ret_val; | ||
584 | |||
585 | ctrl = er32(CTRL); | ||
586 | status = er32(STATUS); | ||
587 | rxcw = er32(RXCW); | ||
588 | |||
589 | /* | ||
590 | * If we don't have link (auto-negotiation failed or link partner | ||
591 | * cannot auto-negotiate), and our link partner is not trying to | ||
592 | * auto-negotiate with us (we are receiving idles or data), | ||
593 | * we need to force link up. We also need to give auto-negotiation | ||
594 | * time to complete. | ||
595 | */ | ||
596 | /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ | ||
597 | if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { | ||
598 | if (mac->autoneg_failed == 0) { | ||
599 | mac->autoneg_failed = 1; | ||
600 | return 0; | ||
601 | } | ||
602 | e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); | ||
603 | |||
604 | /* Disable auto-negotiation in the TXCW register */ | ||
605 | ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); | ||
606 | |||
607 | /* Force link-up and also force full-duplex. */ | ||
608 | ctrl = er32(CTRL); | ||
609 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | ||
610 | ew32(CTRL, ctrl); | ||
611 | |||
612 | /* Configure Flow Control after forcing link up. */ | ||
613 | ret_val = e1000e_config_fc_after_link_up(hw); | ||
614 | if (ret_val) { | ||
615 | e_dbg("Error configuring flow control\n"); | ||
616 | return ret_val; | ||
617 | } | ||
618 | } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | ||
619 | /* | ||
620 | * If we are forcing link and we are receiving /C/ ordered | ||
621 | * sets, re-enable auto-negotiation in the TXCW register | ||
622 | * and disable forced link in the Device Control register | ||
623 | * in an attempt to auto-negotiate with our link partner. | ||
624 | */ | ||
625 | e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); | ||
626 | ew32(TXCW, mac->txcw); | ||
627 | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | ||
628 | |||
629 | mac->serdes_has_link = true; | ||
630 | } else if (!(E1000_TXCW_ANE & er32(TXCW))) { | ||
631 | /* | ||
632 | * If we force link for non-auto-negotiation switch, check | ||
633 | * link status based on MAC synchronization for internal | ||
634 | * serdes media type. | ||
635 | */ | ||
636 | /* SYNCH bit and IV bit are sticky. */ | ||
637 | udelay(10); | ||
638 | rxcw = er32(RXCW); | ||
639 | if (rxcw & E1000_RXCW_SYNCH) { | ||
640 | if (!(rxcw & E1000_RXCW_IV)) { | ||
641 | mac->serdes_has_link = true; | ||
642 | e_dbg("SERDES: Link up - forced.\n"); | ||
643 | } | ||
644 | } else { | ||
645 | mac->serdes_has_link = false; | ||
646 | e_dbg("SERDES: Link down - force failed.\n"); | ||
647 | } | ||
648 | } | ||
649 | |||
650 | if (E1000_TXCW_ANE & er32(TXCW)) { | ||
651 | status = er32(STATUS); | ||
652 | if (status & E1000_STATUS_LU) { | ||
653 | /* SYNCH bit and IV bit are sticky, so reread rxcw. */ | ||
654 | udelay(10); | ||
655 | rxcw = er32(RXCW); | ||
656 | if (rxcw & E1000_RXCW_SYNCH) { | ||
657 | if (!(rxcw & E1000_RXCW_IV)) { | ||
658 | mac->serdes_has_link = true; | ||
659 | e_dbg("SERDES: Link up - autoneg " | ||
660 | "completed successfully.\n"); | ||
661 | } else { | ||
662 | mac->serdes_has_link = false; | ||
663 | e_dbg("SERDES: Link down - invalid" | ||
664 | "codewords detected in autoneg.\n"); | ||
665 | } | ||
666 | } else { | ||
667 | mac->serdes_has_link = false; | ||
668 | e_dbg("SERDES: Link down - no sync.\n"); | ||
669 | } | ||
670 | } else { | ||
671 | mac->serdes_has_link = false; | ||
672 | e_dbg("SERDES: Link down - autoneg failed\n"); | ||
673 | } | ||
674 | } | ||
675 | |||
676 | return 0; | ||
677 | } | ||
678 | |||
679 | /** | ||
680 | * e1000_set_default_fc_generic - Set flow control default values | ||
681 | * @hw: pointer to the HW structure | ||
682 | * | ||
683 | * Read the EEPROM for the default values for flow control and store the | ||
684 | * values. | ||
685 | **/ | ||
686 | static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) | ||
687 | { | ||
688 | s32 ret_val; | ||
689 | u16 nvm_data; | ||
690 | |||
691 | /* | ||
692 | * Read and store word 0x0F of the EEPROM. This word contains bits | ||
693 | * that determine the hardware's default PAUSE (flow control) mode, | ||
694 | * a bit that determines whether the HW defaults to enabling or | ||
695 | * disabling auto-negotiation, and the direction of the | ||
696 | * SW defined pins. If there is no SW over-ride of the flow | ||
697 | * control setting, then the variable hw->fc will | ||
698 | * be initialized based on a value in the EEPROM. | ||
699 | */ | ||
700 | ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); | ||
701 | |||
702 | if (ret_val) { | ||
703 | e_dbg("NVM Read Error\n"); | ||
704 | return ret_val; | ||
705 | } | ||
706 | |||
707 | if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) | ||
708 | hw->fc.requested_mode = e1000_fc_none; | ||
709 | else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == | ||
710 | NVM_WORD0F_ASM_DIR) | ||
711 | hw->fc.requested_mode = e1000_fc_tx_pause; | ||
712 | else | ||
713 | hw->fc.requested_mode = e1000_fc_full; | ||
714 | |||
715 | return 0; | ||
716 | } | ||
717 | |||
718 | /** | ||
719 | * e1000e_setup_link - Setup flow control and link settings | ||
720 | * @hw: pointer to the HW structure | ||
721 | * | ||
722 | * Determines which flow control settings to use, then configures flow | ||
723 | * control. Calls the appropriate media-specific link configuration | ||
724 | * function. Assuming the adapter has a valid link partner, a valid link | ||
725 | * should be established. Assumes the hardware has previously been reset | ||
726 | * and the transmitter and receiver are not enabled. | ||
727 | **/ | ||
728 | s32 e1000e_setup_link(struct e1000_hw *hw) | ||
729 | { | ||
730 | struct e1000_mac_info *mac = &hw->mac; | ||
731 | s32 ret_val; | ||
732 | |||
733 | /* | ||
734 | * In the case of the phy reset being blocked, we already have a link. | ||
735 | * We do not need to set it up again. | ||
736 | */ | ||
737 | if (e1000_check_reset_block(hw)) | ||
738 | return 0; | ||
739 | |||
740 | /* | ||
741 | * If requested flow control is set to default, set flow control | ||
742 | * based on the EEPROM flow control settings. | ||
743 | */ | ||
744 | if (hw->fc.requested_mode == e1000_fc_default) { | ||
745 | ret_val = e1000_set_default_fc_generic(hw); | ||
746 | if (ret_val) | ||
747 | return ret_val; | ||
748 | } | ||
749 | |||
750 | /* | ||
751 | * Save off the requested flow control mode for use later. Depending | ||
752 | * on the link partner's capabilities, we may or may not use this mode. | ||
753 | */ | ||
754 | hw->fc.current_mode = hw->fc.requested_mode; | ||
755 | |||
756 | e_dbg("After fix-ups FlowControl is now = %x\n", | ||
757 | hw->fc.current_mode); | ||
758 | |||
759 | /* Call the necessary media_type subroutine to configure the link. */ | ||
760 | ret_val = mac->ops.setup_physical_interface(hw); | ||
761 | if (ret_val) | ||
762 | return ret_val; | ||
763 | |||
764 | /* | ||
765 | * Initialize the flow control address, type, and PAUSE timer | ||
766 | * registers to their default values. This is done even if flow | ||
767 | * control is disabled, because it does not hurt anything to | ||
768 | * initialize these registers. | ||
769 | */ | ||
770 | e_dbg("Initializing the Flow Control address, type and timer regs\n"); | ||
771 | ew32(FCT, FLOW_CONTROL_TYPE); | ||
772 | ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); | ||
773 | ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); | ||
774 | |||
775 | ew32(FCTTV, hw->fc.pause_time); | ||
776 | |||
777 | return e1000e_set_fc_watermarks(hw); | ||
778 | } | ||
779 | |||
780 | /** | ||
781 | * e1000_commit_fc_settings_generic - Configure flow control | ||
782 | * @hw: pointer to the HW structure | ||
783 | * | ||
784 | * Write the flow control settings to the Transmit Config Word Register (TXCW) | ||
785 | * base on the flow control settings in e1000_mac_info. | ||
786 | **/ | ||
787 | static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) | ||
788 | { | ||
789 | struct e1000_mac_info *mac = &hw->mac; | ||
790 | u32 txcw; | ||
791 | |||
792 | /* | ||
793 | * Check for a software override of the flow control settings, and | ||
794 | * setup the device accordingly. If auto-negotiation is enabled, then | ||
795 | * software will have to set the "PAUSE" bits to the correct value in | ||
796 | * the Transmit Config Word Register (TXCW) and re-start auto- | ||
797 | * negotiation. However, if auto-negotiation is disabled, then | ||
798 | * software will have to manually configure the two flow control enable | ||
799 | * bits in the CTRL register. | ||
800 | * | ||
801 | * The possible values of the "fc" parameter are: | ||
802 | * 0: Flow control is completely disabled | ||
803 | * 1: Rx flow control is enabled (we can receive pause frames, | ||
804 | * but not send pause frames). | ||
805 | * 2: Tx flow control is enabled (we can send pause frames but we | ||
806 | * do not support receiving pause frames). | ||
807 | * 3: Both Rx and Tx flow control (symmetric) are enabled. | ||
808 | */ | ||
809 | switch (hw->fc.current_mode) { | ||
810 | case e1000_fc_none: | ||
811 | /* Flow control completely disabled by a software over-ride. */ | ||
812 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); | ||
813 | break; | ||
814 | case e1000_fc_rx_pause: | ||
815 | /* | ||
816 | * Rx Flow control is enabled and Tx Flow control is disabled | ||
817 | * by a software over-ride. Since there really isn't a way to | ||
818 | * advertise that we are capable of Rx Pause ONLY, we will | ||
819 | * advertise that we support both symmetric and asymmetric Rx | ||
820 | * PAUSE. Later, we will disable the adapter's ability to send | ||
821 | * PAUSE frames. | ||
822 | */ | ||
823 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | ||
824 | break; | ||
825 | case e1000_fc_tx_pause: | ||
826 | /* | ||
827 | * Tx Flow control is enabled, and Rx Flow control is disabled, | ||
828 | * by a software over-ride. | ||
829 | */ | ||
830 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); | ||
831 | break; | ||
832 | case e1000_fc_full: | ||
833 | /* | ||
834 | * Flow control (both Rx and Tx) is enabled by a software | ||
835 | * over-ride. | ||
836 | */ | ||
837 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | ||
838 | break; | ||
839 | default: | ||
840 | e_dbg("Flow control param set incorrectly\n"); | ||
841 | return -E1000_ERR_CONFIG; | ||
842 | break; | ||
843 | } | ||
844 | |||
845 | ew32(TXCW, txcw); | ||
846 | mac->txcw = txcw; | ||
847 | |||
848 | return 0; | ||
849 | } | ||
850 | |||
851 | /** | ||
852 | * e1000_poll_fiber_serdes_link_generic - Poll for link up | ||
853 | * @hw: pointer to the HW structure | ||
854 | * | ||
855 | * Polls for link up by reading the status register, if link fails to come | ||
856 | * up with auto-negotiation, then the link is forced if a signal is detected. | ||
857 | **/ | ||
858 | static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) | ||
859 | { | ||
860 | struct e1000_mac_info *mac = &hw->mac; | ||
861 | u32 i, status; | ||
862 | s32 ret_val; | ||
863 | |||
864 | /* | ||
865 | * If we have a signal (the cable is plugged in, or assumed true for | ||
866 | * serdes media) then poll for a "Link-Up" indication in the Device | ||
867 | * Status Register. Time-out if a link isn't seen in 500 milliseconds | ||
868 | * seconds (Auto-negotiation should complete in less than 500 | ||
869 | * milliseconds even if the other end is doing it in SW). | ||
870 | */ | ||
871 | for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { | ||
872 | usleep_range(10000, 20000); | ||
873 | status = er32(STATUS); | ||
874 | if (status & E1000_STATUS_LU) | ||
875 | break; | ||
876 | } | ||
877 | if (i == FIBER_LINK_UP_LIMIT) { | ||
878 | e_dbg("Never got a valid link from auto-neg!!!\n"); | ||
879 | mac->autoneg_failed = 1; | ||
880 | /* | ||
881 | * AutoNeg failed to achieve a link, so we'll call | ||
882 | * mac->check_for_link. This routine will force the | ||
883 | * link up if we detect a signal. This will allow us to | ||
884 | * communicate with non-autonegotiating link partners. | ||
885 | */ | ||
886 | ret_val = mac->ops.check_for_link(hw); | ||
887 | if (ret_val) { | ||
888 | e_dbg("Error while checking for link\n"); | ||
889 | return ret_val; | ||
890 | } | ||
891 | mac->autoneg_failed = 0; | ||
892 | } else { | ||
893 | mac->autoneg_failed = 0; | ||
894 | e_dbg("Valid Link Found\n"); | ||
895 | } | ||
896 | |||
897 | return 0; | ||
898 | } | ||
899 | |||
900 | /** | ||
901 | * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes | ||
902 | * @hw: pointer to the HW structure | ||
903 | * | ||
904 | * Configures collision distance and flow control for fiber and serdes | ||
905 | * links. Upon successful setup, poll for link. | ||
906 | **/ | ||
907 | s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) | ||
908 | { | ||
909 | u32 ctrl; | ||
910 | s32 ret_val; | ||
911 | |||
912 | ctrl = er32(CTRL); | ||
913 | |||
914 | /* Take the link out of reset */ | ||
915 | ctrl &= ~E1000_CTRL_LRST; | ||
916 | |||
917 | e1000e_config_collision_dist(hw); | ||
918 | |||
919 | ret_val = e1000_commit_fc_settings_generic(hw); | ||
920 | if (ret_val) | ||
921 | return ret_val; | ||
922 | |||
923 | /* | ||
924 | * Since auto-negotiation is enabled, take the link out of reset (the | ||
925 | * link will be in reset, because we previously reset the chip). This | ||
926 | * will restart auto-negotiation. If auto-negotiation is successful | ||
927 | * then the link-up status bit will be set and the flow control enable | ||
928 | * bits (RFCE and TFCE) will be set according to their negotiated value. | ||
929 | */ | ||
930 | e_dbg("Auto-negotiation enabled\n"); | ||
931 | |||
932 | ew32(CTRL, ctrl); | ||
933 | e1e_flush(); | ||
934 | usleep_range(1000, 2000); | ||
935 | |||
936 | /* | ||
937 | * For these adapters, the SW definable pin 1 is set when the optics | ||
938 | * detect a signal. If we have a signal, then poll for a "Link-Up" | ||
939 | * indication. | ||
940 | */ | ||
941 | if (hw->phy.media_type == e1000_media_type_internal_serdes || | ||
942 | (er32(CTRL) & E1000_CTRL_SWDPIN1)) { | ||
943 | ret_val = e1000_poll_fiber_serdes_link_generic(hw); | ||
944 | } else { | ||
945 | e_dbg("No signal detected\n"); | ||
946 | } | ||
947 | |||
948 | return 0; | ||
949 | } | ||
950 | |||
951 | /** | ||
952 | * e1000e_config_collision_dist - Configure collision distance | ||
953 | * @hw: pointer to the HW structure | ||
954 | * | ||
955 | * Configures the collision distance to the default value and is used | ||
956 | * during link setup. Currently no func pointer exists and all | ||
957 | * implementations are handled in the generic version of this function. | ||
958 | **/ | ||
959 | void e1000e_config_collision_dist(struct e1000_hw *hw) | ||
960 | { | ||
961 | u32 tctl; | ||
962 | |||
963 | tctl = er32(TCTL); | ||
964 | |||
965 | tctl &= ~E1000_TCTL_COLD; | ||
966 | tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; | ||
967 | |||
968 | ew32(TCTL, tctl); | ||
969 | e1e_flush(); | ||
970 | } | ||
971 | |||
972 | /** | ||
973 | * e1000e_set_fc_watermarks - Set flow control high/low watermarks | ||
974 | * @hw: pointer to the HW structure | ||
975 | * | ||
976 | * Sets the flow control high/low threshold (watermark) registers. If | ||
977 | * flow control XON frame transmission is enabled, then set XON frame | ||
978 | * transmission as well. | ||
979 | **/ | ||
980 | s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) | ||
981 | { | ||
982 | u32 fcrtl = 0, fcrth = 0; | ||
983 | |||
984 | /* | ||
985 | * Set the flow control receive threshold registers. Normally, | ||
986 | * these registers will be set to a default threshold that may be | ||
987 | * adjusted later by the driver's runtime code. However, if the | ||
988 | * ability to transmit pause frames is not enabled, then these | ||
989 | * registers will be set to 0. | ||
990 | */ | ||
991 | if (hw->fc.current_mode & e1000_fc_tx_pause) { | ||
992 | /* | ||
993 | * We need to set up the Receive Threshold high and low water | ||
994 | * marks as well as (optionally) enabling the transmission of | ||
995 | * XON frames. | ||
996 | */ | ||
997 | fcrtl = hw->fc.low_water; | ||
998 | fcrtl |= E1000_FCRTL_XONE; | ||
999 | fcrth = hw->fc.high_water; | ||
1000 | } | ||
1001 | ew32(FCRTL, fcrtl); | ||
1002 | ew32(FCRTH, fcrth); | ||
1003 | |||
1004 | return 0; | ||
1005 | } | ||
1006 | |||
1007 | /** | ||
1008 | * e1000e_force_mac_fc - Force the MAC's flow control settings | ||
1009 | * @hw: pointer to the HW structure | ||
1010 | * | ||
1011 | * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the | ||
1012 | * device control register to reflect the adapter settings. TFCE and RFCE | ||
1013 | * need to be explicitly set by software when a copper PHY is used because | ||
1014 | * autonegotiation is managed by the PHY rather than the MAC. Software must | ||
1015 | * also configure these bits when link is forced on a fiber connection. | ||
1016 | **/ | ||
1017 | s32 e1000e_force_mac_fc(struct e1000_hw *hw) | ||
1018 | { | ||
1019 | u32 ctrl; | ||
1020 | |||
1021 | ctrl = er32(CTRL); | ||
1022 | |||
1023 | /* | ||
1024 | * Because we didn't get link via the internal auto-negotiation | ||
1025 | * mechanism (we either forced link or we got link via PHY | ||
1026 | * auto-neg), we have to manually enable/disable transmit an | ||
1027 | * receive flow control. | ||
1028 | * | ||
1029 | * The "Case" statement below enables/disable flow control | ||
1030 | * according to the "hw->fc.current_mode" parameter. | ||
1031 | * | ||
1032 | * The possible values of the "fc" parameter are: | ||
1033 | * 0: Flow control is completely disabled | ||
1034 | * 1: Rx flow control is enabled (we can receive pause | ||
1035 | * frames but not send pause frames). | ||
1036 | * 2: Tx flow control is enabled (we can send pause frames | ||
1037 | * frames but we do not receive pause frames). | ||
1038 | * 3: Both Rx and Tx flow control (symmetric) is enabled. | ||
1039 | * other: No other values should be possible at this point. | ||
1040 | */ | ||
1041 | e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); | ||
1042 | |||
1043 | switch (hw->fc.current_mode) { | ||
1044 | case e1000_fc_none: | ||
1045 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | ||
1046 | break; | ||
1047 | case e1000_fc_rx_pause: | ||
1048 | ctrl &= (~E1000_CTRL_TFCE); | ||
1049 | ctrl |= E1000_CTRL_RFCE; | ||
1050 | break; | ||
1051 | case e1000_fc_tx_pause: | ||
1052 | ctrl &= (~E1000_CTRL_RFCE); | ||
1053 | ctrl |= E1000_CTRL_TFCE; | ||
1054 | break; | ||
1055 | case e1000_fc_full: | ||
1056 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | ||
1057 | break; | ||
1058 | default: | ||
1059 | e_dbg("Flow control param set incorrectly\n"); | ||
1060 | return -E1000_ERR_CONFIG; | ||
1061 | } | ||
1062 | |||
1063 | ew32(CTRL, ctrl); | ||
1064 | |||
1065 | return 0; | ||
1066 | } | ||
1067 | |||
1068 | /** | ||
1069 | * e1000e_config_fc_after_link_up - Configures flow control after link | ||
1070 | * @hw: pointer to the HW structure | ||
1071 | * | ||
1072 | * Checks the status of auto-negotiation after link up to ensure that the | ||
1073 | * speed and duplex were not forced. If the link needed to be forced, then | ||
1074 | * flow control needs to be forced also. If auto-negotiation is enabled | ||
1075 | * and did not fail, then we configure flow control based on our link | ||
1076 | * partner. | ||
1077 | **/ | ||
1078 | s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) | ||
1079 | { | ||
1080 | struct e1000_mac_info *mac = &hw->mac; | ||
1081 | s32 ret_val = 0; | ||
1082 | u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; | ||
1083 | u16 speed, duplex; | ||
1084 | |||
1085 | /* | ||
1086 | * Check for the case where we have fiber media and auto-neg failed | ||
1087 | * so we had to force link. In this case, we need to force the | ||
1088 | * configuration of the MAC to match the "fc" parameter. | ||
1089 | */ | ||
1090 | if (mac->autoneg_failed) { | ||
1091 | if (hw->phy.media_type == e1000_media_type_fiber || | ||
1092 | hw->phy.media_type == e1000_media_type_internal_serdes) | ||
1093 | ret_val = e1000e_force_mac_fc(hw); | ||
1094 | } else { | ||
1095 | if (hw->phy.media_type == e1000_media_type_copper) | ||
1096 | ret_val = e1000e_force_mac_fc(hw); | ||
1097 | } | ||
1098 | |||
1099 | if (ret_val) { | ||
1100 | e_dbg("Error forcing flow control settings\n"); | ||
1101 | return ret_val; | ||
1102 | } | ||
1103 | |||
1104 | /* | ||
1105 | * Check for the case where we have copper media and auto-neg is | ||
1106 | * enabled. In this case, we need to check and see if Auto-Neg | ||
1107 | * has completed, and if so, how the PHY and link partner has | ||
1108 | * flow control configured. | ||
1109 | */ | ||
1110 | if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { | ||
1111 | /* | ||
1112 | * Read the MII Status Register and check to see if AutoNeg | ||
1113 | * has completed. We read this twice because this reg has | ||
1114 | * some "sticky" (latched) bits. | ||
1115 | */ | ||
1116 | ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); | ||
1117 | if (ret_val) | ||
1118 | return ret_val; | ||
1119 | ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); | ||
1120 | if (ret_val) | ||
1121 | return ret_val; | ||
1122 | |||
1123 | if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { | ||
1124 | e_dbg("Copper PHY and Auto Neg " | ||
1125 | "has not completed.\n"); | ||
1126 | return ret_val; | ||
1127 | } | ||
1128 | |||
1129 | /* | ||
1130 | * The AutoNeg process has completed, so we now need to | ||
1131 | * read both the Auto Negotiation Advertisement | ||
1132 | * Register (Address 4) and the Auto_Negotiation Base | ||
1133 | * Page Ability Register (Address 5) to determine how | ||
1134 | * flow control was negotiated. | ||
1135 | */ | ||
1136 | ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); | ||
1137 | if (ret_val) | ||
1138 | return ret_val; | ||
1139 | ret_val = | ||
1140 | e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg); | ||
1141 | if (ret_val) | ||
1142 | return ret_val; | ||
1143 | |||
1144 | /* | ||
1145 | * Two bits in the Auto Negotiation Advertisement Register | ||
1146 | * (Address 4) and two bits in the Auto Negotiation Base | ||
1147 | * Page Ability Register (Address 5) determine flow control | ||
1148 | * for both the PHY and the link partner. The following | ||
1149 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | ||
1150 | * 1999, describes these PAUSE resolution bits and how flow | ||
1151 | * control is determined based upon these settings. | ||
1152 | * NOTE: DC = Don't Care | ||
1153 | * | ||
1154 | * LOCAL DEVICE | LINK PARTNER | ||
1155 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | ||
1156 | *-------|---------|-------|---------|-------------------- | ||
1157 | * 0 | 0 | DC | DC | e1000_fc_none | ||
1158 | * 0 | 1 | 0 | DC | e1000_fc_none | ||
1159 | * 0 | 1 | 1 | 0 | e1000_fc_none | ||
1160 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
1161 | * 1 | 0 | 0 | DC | e1000_fc_none | ||
1162 | * 1 | DC | 1 | DC | e1000_fc_full | ||
1163 | * 1 | 1 | 0 | 0 | e1000_fc_none | ||
1164 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
1165 | * | ||
1166 | * Are both PAUSE bits set to 1? If so, this implies | ||
1167 | * Symmetric Flow Control is enabled at both ends. The | ||
1168 | * ASM_DIR bits are irrelevant per the spec. | ||
1169 | * | ||
1170 | * For Symmetric Flow Control: | ||
1171 | * | ||
1172 | * LOCAL DEVICE | LINK PARTNER | ||
1173 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
1174 | *-------|---------|-------|---------|-------------------- | ||
1175 | * 1 | DC | 1 | DC | E1000_fc_full | ||
1176 | * | ||
1177 | */ | ||
1178 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
1179 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | ||
1180 | /* | ||
1181 | * Now we need to check if the user selected Rx ONLY | ||
1182 | * of pause frames. In this case, we had to advertise | ||
1183 | * FULL flow control because we could not advertise Rx | ||
1184 | * ONLY. Hence, we must now check to see if we need to | ||
1185 | * turn OFF the TRANSMISSION of PAUSE frames. | ||
1186 | */ | ||
1187 | if (hw->fc.requested_mode == e1000_fc_full) { | ||
1188 | hw->fc.current_mode = e1000_fc_full; | ||
1189 | e_dbg("Flow Control = FULL.\r\n"); | ||
1190 | } else { | ||
1191 | hw->fc.current_mode = e1000_fc_rx_pause; | ||
1192 | e_dbg("Flow Control = " | ||
1193 | "Rx PAUSE frames only.\r\n"); | ||
1194 | } | ||
1195 | } | ||
1196 | /* | ||
1197 | * For receiving PAUSE frames ONLY. | ||
1198 | * | ||
1199 | * LOCAL DEVICE | LINK PARTNER | ||
1200 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
1201 | *-------|---------|-------|---------|-------------------- | ||
1202 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
1203 | */ | ||
1204 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
1205 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
1206 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
1207 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
1208 | hw->fc.current_mode = e1000_fc_tx_pause; | ||
1209 | e_dbg("Flow Control = Tx PAUSE frames only.\r\n"); | ||
1210 | } | ||
1211 | /* | ||
1212 | * For transmitting PAUSE frames ONLY. | ||
1213 | * | ||
1214 | * LOCAL DEVICE | LINK PARTNER | ||
1215 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
1216 | *-------|---------|-------|---------|-------------------- | ||
1217 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
1218 | */ | ||
1219 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
1220 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
1221 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
1222 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
1223 | hw->fc.current_mode = e1000_fc_rx_pause; | ||
1224 | e_dbg("Flow Control = Rx PAUSE frames only.\r\n"); | ||
1225 | } else { | ||
1226 | /* | ||
1227 | * Per the IEEE spec, at this point flow control | ||
1228 | * should be disabled. | ||
1229 | */ | ||
1230 | hw->fc.current_mode = e1000_fc_none; | ||
1231 | e_dbg("Flow Control = NONE.\r\n"); | ||
1232 | } | ||
1233 | |||
1234 | /* | ||
1235 | * Now we need to do one last check... If we auto- | ||
1236 | * negotiated to HALF DUPLEX, flow control should not be | ||
1237 | * enabled per IEEE 802.3 spec. | ||
1238 | */ | ||
1239 | ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); | ||
1240 | if (ret_val) { | ||
1241 | e_dbg("Error getting link speed and duplex\n"); | ||
1242 | return ret_val; | ||
1243 | } | ||
1244 | |||
1245 | if (duplex == HALF_DUPLEX) | ||
1246 | hw->fc.current_mode = e1000_fc_none; | ||
1247 | |||
1248 | /* | ||
1249 | * Now we call a subroutine to actually force the MAC | ||
1250 | * controller to use the correct flow control settings. | ||
1251 | */ | ||
1252 | ret_val = e1000e_force_mac_fc(hw); | ||
1253 | if (ret_val) { | ||
1254 | e_dbg("Error forcing flow control settings\n"); | ||
1255 | return ret_val; | ||
1256 | } | ||
1257 | } | ||
1258 | |||
1259 | return 0; | ||
1260 | } | ||
1261 | |||
1262 | /** | ||
1263 | * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex | ||
1264 | * @hw: pointer to the HW structure | ||
1265 | * @speed: stores the current speed | ||
1266 | * @duplex: stores the current duplex | ||
1267 | * | ||
1268 | * Read the status register for the current speed/duplex and store the current | ||
1269 | * speed and duplex for copper connections. | ||
1270 | **/ | ||
1271 | s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex) | ||
1272 | { | ||
1273 | u32 status; | ||
1274 | |||
1275 | status = er32(STATUS); | ||
1276 | if (status & E1000_STATUS_SPEED_1000) | ||
1277 | *speed = SPEED_1000; | ||
1278 | else if (status & E1000_STATUS_SPEED_100) | ||
1279 | *speed = SPEED_100; | ||
1280 | else | ||
1281 | *speed = SPEED_10; | ||
1282 | |||
1283 | if (status & E1000_STATUS_FD) | ||
1284 | *duplex = FULL_DUPLEX; | ||
1285 | else | ||
1286 | *duplex = HALF_DUPLEX; | ||
1287 | |||
1288 | e_dbg("%u Mbps, %s Duplex\n", | ||
1289 | *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10, | ||
1290 | *duplex == FULL_DUPLEX ? "Full" : "Half"); | ||
1291 | |||
1292 | return 0; | ||
1293 | } | ||
1294 | |||
1295 | /** | ||
1296 | * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex | ||
1297 | * @hw: pointer to the HW structure | ||
1298 | * @speed: stores the current speed | ||
1299 | * @duplex: stores the current duplex | ||
1300 | * | ||
1301 | * Sets the speed and duplex to gigabit full duplex (the only possible option) | ||
1302 | * for fiber/serdes links. | ||
1303 | **/ | ||
1304 | s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex) | ||
1305 | { | ||
1306 | *speed = SPEED_1000; | ||
1307 | *duplex = FULL_DUPLEX; | ||
1308 | |||
1309 | return 0; | ||
1310 | } | ||
1311 | |||
1312 | /** | ||
1313 | * e1000e_get_hw_semaphore - Acquire hardware semaphore | ||
1314 | * @hw: pointer to the HW structure | ||
1315 | * | ||
1316 | * Acquire the HW semaphore to access the PHY or NVM | ||
1317 | **/ | ||
1318 | s32 e1000e_get_hw_semaphore(struct e1000_hw *hw) | ||
1319 | { | ||
1320 | u32 swsm; | ||
1321 | s32 timeout = hw->nvm.word_size + 1; | ||
1322 | s32 i = 0; | ||
1323 | |||
1324 | /* Get the SW semaphore */ | ||
1325 | while (i < timeout) { | ||
1326 | swsm = er32(SWSM); | ||
1327 | if (!(swsm & E1000_SWSM_SMBI)) | ||
1328 | break; | ||
1329 | |||
1330 | udelay(50); | ||
1331 | i++; | ||
1332 | } | ||
1333 | |||
1334 | if (i == timeout) { | ||
1335 | e_dbg("Driver can't access device - SMBI bit is set.\n"); | ||
1336 | return -E1000_ERR_NVM; | ||
1337 | } | ||
1338 | |||
1339 | /* Get the FW semaphore. */ | ||
1340 | for (i = 0; i < timeout; i++) { | ||
1341 | swsm = er32(SWSM); | ||
1342 | ew32(SWSM, swsm | E1000_SWSM_SWESMBI); | ||
1343 | |||
1344 | /* Semaphore acquired if bit latched */ | ||
1345 | if (er32(SWSM) & E1000_SWSM_SWESMBI) | ||
1346 | break; | ||
1347 | |||
1348 | udelay(50); | ||
1349 | } | ||
1350 | |||
1351 | if (i == timeout) { | ||
1352 | /* Release semaphores */ | ||
1353 | e1000e_put_hw_semaphore(hw); | ||
1354 | e_dbg("Driver can't access the NVM\n"); | ||
1355 | return -E1000_ERR_NVM; | ||
1356 | } | ||
1357 | |||
1358 | return 0; | ||
1359 | } | ||
1360 | |||
1361 | /** | ||
1362 | * e1000e_put_hw_semaphore - Release hardware semaphore | ||
1363 | * @hw: pointer to the HW structure | ||
1364 | * | ||
1365 | * Release hardware semaphore used to access the PHY or NVM | ||
1366 | **/ | ||
1367 | void e1000e_put_hw_semaphore(struct e1000_hw *hw) | ||
1368 | { | ||
1369 | u32 swsm; | ||
1370 | |||
1371 | swsm = er32(SWSM); | ||
1372 | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | ||
1373 | ew32(SWSM, swsm); | ||
1374 | } | ||
1375 | |||
1376 | /** | ||
1377 | * e1000e_get_auto_rd_done - Check for auto read completion | ||
1378 | * @hw: pointer to the HW structure | ||
1379 | * | ||
1380 | * Check EEPROM for Auto Read done bit. | ||
1381 | **/ | ||
1382 | s32 e1000e_get_auto_rd_done(struct e1000_hw *hw) | ||
1383 | { | ||
1384 | s32 i = 0; | ||
1385 | |||
1386 | while (i < AUTO_READ_DONE_TIMEOUT) { | ||
1387 | if (er32(EECD) & E1000_EECD_AUTO_RD) | ||
1388 | break; | ||
1389 | usleep_range(1000, 2000); | ||
1390 | i++; | ||
1391 | } | ||
1392 | |||
1393 | if (i == AUTO_READ_DONE_TIMEOUT) { | ||
1394 | e_dbg("Auto read by HW from NVM has not completed.\n"); | ||
1395 | return -E1000_ERR_RESET; | ||
1396 | } | ||
1397 | |||
1398 | return 0; | ||
1399 | } | ||
1400 | |||
1401 | /** | ||
1402 | * e1000e_valid_led_default - Verify a valid default LED config | ||
1403 | * @hw: pointer to the HW structure | ||
1404 | * @data: pointer to the NVM (EEPROM) | ||
1405 | * | ||
1406 | * Read the EEPROM for the current default LED configuration. If the | ||
1407 | * LED configuration is not valid, set to a valid LED configuration. | ||
1408 | **/ | ||
1409 | s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data) | ||
1410 | { | ||
1411 | s32 ret_val; | ||
1412 | |||
1413 | ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); | ||
1414 | if (ret_val) { | ||
1415 | e_dbg("NVM Read Error\n"); | ||
1416 | return ret_val; | ||
1417 | } | ||
1418 | |||
1419 | if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) | ||
1420 | *data = ID_LED_DEFAULT; | ||
1421 | |||
1422 | return 0; | ||
1423 | } | ||
1424 | |||
1425 | /** | ||
1426 | * e1000e_id_led_init - | ||
1427 | * @hw: pointer to the HW structure | ||
1428 | * | ||
1429 | **/ | ||
1430 | s32 e1000e_id_led_init(struct e1000_hw *hw) | ||
1431 | { | ||
1432 | struct e1000_mac_info *mac = &hw->mac; | ||
1433 | s32 ret_val; | ||
1434 | const u32 ledctl_mask = 0x000000FF; | ||
1435 | const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; | ||
1436 | const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | ||
1437 | u16 data, i, temp; | ||
1438 | const u16 led_mask = 0x0F; | ||
1439 | |||
1440 | ret_val = hw->nvm.ops.valid_led_default(hw, &data); | ||
1441 | if (ret_val) | ||
1442 | return ret_val; | ||
1443 | |||
1444 | mac->ledctl_default = er32(LEDCTL); | ||
1445 | mac->ledctl_mode1 = mac->ledctl_default; | ||
1446 | mac->ledctl_mode2 = mac->ledctl_default; | ||
1447 | |||
1448 | for (i = 0; i < 4; i++) { | ||
1449 | temp = (data >> (i << 2)) & led_mask; | ||
1450 | switch (temp) { | ||
1451 | case ID_LED_ON1_DEF2: | ||
1452 | case ID_LED_ON1_ON2: | ||
1453 | case ID_LED_ON1_OFF2: | ||
1454 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
1455 | mac->ledctl_mode1 |= ledctl_on << (i << 3); | ||
1456 | break; | ||
1457 | case ID_LED_OFF1_DEF2: | ||
1458 | case ID_LED_OFF1_ON2: | ||
1459 | case ID_LED_OFF1_OFF2: | ||
1460 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
1461 | mac->ledctl_mode1 |= ledctl_off << (i << 3); | ||
1462 | break; | ||
1463 | default: | ||
1464 | /* Do nothing */ | ||
1465 | break; | ||
1466 | } | ||
1467 | switch (temp) { | ||
1468 | case ID_LED_DEF1_ON2: | ||
1469 | case ID_LED_ON1_ON2: | ||
1470 | case ID_LED_OFF1_ON2: | ||
1471 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
1472 | mac->ledctl_mode2 |= ledctl_on << (i << 3); | ||
1473 | break; | ||
1474 | case ID_LED_DEF1_OFF2: | ||
1475 | case ID_LED_ON1_OFF2: | ||
1476 | case ID_LED_OFF1_OFF2: | ||
1477 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
1478 | mac->ledctl_mode2 |= ledctl_off << (i << 3); | ||
1479 | break; | ||
1480 | default: | ||
1481 | /* Do nothing */ | ||
1482 | break; | ||
1483 | } | ||
1484 | } | ||
1485 | |||
1486 | return 0; | ||
1487 | } | ||
1488 | |||
1489 | /** | ||
1490 | * e1000e_setup_led_generic - Configures SW controllable LED | ||
1491 | * @hw: pointer to the HW structure | ||
1492 | * | ||
1493 | * This prepares the SW controllable LED for use and saves the current state | ||
1494 | * of the LED so it can be later restored. | ||
1495 | **/ | ||
1496 | s32 e1000e_setup_led_generic(struct e1000_hw *hw) | ||
1497 | { | ||
1498 | u32 ledctl; | ||
1499 | |||
1500 | if (hw->mac.ops.setup_led != e1000e_setup_led_generic) | ||
1501 | return -E1000_ERR_CONFIG; | ||
1502 | |||
1503 | if (hw->phy.media_type == e1000_media_type_fiber) { | ||
1504 | ledctl = er32(LEDCTL); | ||
1505 | hw->mac.ledctl_default = ledctl; | ||
1506 | /* Turn off LED0 */ | ||
1507 | ledctl &= ~(E1000_LEDCTL_LED0_IVRT | | ||
1508 | E1000_LEDCTL_LED0_BLINK | | ||
1509 | E1000_LEDCTL_LED0_MODE_MASK); | ||
1510 | ledctl |= (E1000_LEDCTL_MODE_LED_OFF << | ||
1511 | E1000_LEDCTL_LED0_MODE_SHIFT); | ||
1512 | ew32(LEDCTL, ledctl); | ||
1513 | } else if (hw->phy.media_type == e1000_media_type_copper) { | ||
1514 | ew32(LEDCTL, hw->mac.ledctl_mode1); | ||
1515 | } | ||
1516 | |||
1517 | return 0; | ||
1518 | } | ||
1519 | |||
1520 | /** | ||
1521 | * e1000e_cleanup_led_generic - Set LED config to default operation | ||
1522 | * @hw: pointer to the HW structure | ||
1523 | * | ||
1524 | * Remove the current LED configuration and set the LED configuration | ||
1525 | * to the default value, saved from the EEPROM. | ||
1526 | **/ | ||
1527 | s32 e1000e_cleanup_led_generic(struct e1000_hw *hw) | ||
1528 | { | ||
1529 | ew32(LEDCTL, hw->mac.ledctl_default); | ||
1530 | return 0; | ||
1531 | } | ||
1532 | |||
1533 | /** | ||
1534 | * e1000e_blink_led_generic - Blink LED | ||
1535 | * @hw: pointer to the HW structure | ||
1536 | * | ||
1537 | * Blink the LEDs which are set to be on. | ||
1538 | **/ | ||
1539 | s32 e1000e_blink_led_generic(struct e1000_hw *hw) | ||
1540 | { | ||
1541 | u32 ledctl_blink = 0; | ||
1542 | u32 i; | ||
1543 | |||
1544 | if (hw->phy.media_type == e1000_media_type_fiber) { | ||
1545 | /* always blink LED0 for PCI-E fiber */ | ||
1546 | ledctl_blink = E1000_LEDCTL_LED0_BLINK | | ||
1547 | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); | ||
1548 | } else { | ||
1549 | /* | ||
1550 | * set the blink bit for each LED that's "on" (0x0E) | ||
1551 | * in ledctl_mode2 | ||
1552 | */ | ||
1553 | ledctl_blink = hw->mac.ledctl_mode2; | ||
1554 | for (i = 0; i < 4; i++) | ||
1555 | if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == | ||
1556 | E1000_LEDCTL_MODE_LED_ON) | ||
1557 | ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << | ||
1558 | (i * 8)); | ||
1559 | } | ||
1560 | |||
1561 | ew32(LEDCTL, ledctl_blink); | ||
1562 | |||
1563 | return 0; | ||
1564 | } | ||
1565 | |||
1566 | /** | ||
1567 | * e1000e_led_on_generic - Turn LED on | ||
1568 | * @hw: pointer to the HW structure | ||
1569 | * | ||
1570 | * Turn LED on. | ||
1571 | **/ | ||
1572 | s32 e1000e_led_on_generic(struct e1000_hw *hw) | ||
1573 | { | ||
1574 | u32 ctrl; | ||
1575 | |||
1576 | switch (hw->phy.media_type) { | ||
1577 | case e1000_media_type_fiber: | ||
1578 | ctrl = er32(CTRL); | ||
1579 | ctrl &= ~E1000_CTRL_SWDPIN0; | ||
1580 | ctrl |= E1000_CTRL_SWDPIO0; | ||
1581 | ew32(CTRL, ctrl); | ||
1582 | break; | ||
1583 | case e1000_media_type_copper: | ||
1584 | ew32(LEDCTL, hw->mac.ledctl_mode2); | ||
1585 | break; | ||
1586 | default: | ||
1587 | break; | ||
1588 | } | ||
1589 | |||
1590 | return 0; | ||
1591 | } | ||
1592 | |||
1593 | /** | ||
1594 | * e1000e_led_off_generic - Turn LED off | ||
1595 | * @hw: pointer to the HW structure | ||
1596 | * | ||
1597 | * Turn LED off. | ||
1598 | **/ | ||
1599 | s32 e1000e_led_off_generic(struct e1000_hw *hw) | ||
1600 | { | ||
1601 | u32 ctrl; | ||
1602 | |||
1603 | switch (hw->phy.media_type) { | ||
1604 | case e1000_media_type_fiber: | ||
1605 | ctrl = er32(CTRL); | ||
1606 | ctrl |= E1000_CTRL_SWDPIN0; | ||
1607 | ctrl |= E1000_CTRL_SWDPIO0; | ||
1608 | ew32(CTRL, ctrl); | ||
1609 | break; | ||
1610 | case e1000_media_type_copper: | ||
1611 | ew32(LEDCTL, hw->mac.ledctl_mode1); | ||
1612 | break; | ||
1613 | default: | ||
1614 | break; | ||
1615 | } | ||
1616 | |||
1617 | return 0; | ||
1618 | } | ||
1619 | |||
1620 | /** | ||
1621 | * e1000e_set_pcie_no_snoop - Set PCI-express capabilities | ||
1622 | * @hw: pointer to the HW structure | ||
1623 | * @no_snoop: bitmap of snoop events | ||
1624 | * | ||
1625 | * Set the PCI-express register to snoop for events enabled in 'no_snoop'. | ||
1626 | **/ | ||
1627 | void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop) | ||
1628 | { | ||
1629 | u32 gcr; | ||
1630 | |||
1631 | if (no_snoop) { | ||
1632 | gcr = er32(GCR); | ||
1633 | gcr &= ~(PCIE_NO_SNOOP_ALL); | ||
1634 | gcr |= no_snoop; | ||
1635 | ew32(GCR, gcr); | ||
1636 | } | ||
1637 | } | ||
1638 | |||
1639 | /** | ||
1640 | * e1000e_disable_pcie_master - Disables PCI-express master access | ||
1641 | * @hw: pointer to the HW structure | ||
1642 | * | ||
1643 | * Returns 0 if successful, else returns -10 | ||
1644 | * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused | ||
1645 | * the master requests to be disabled. | ||
1646 | * | ||
1647 | * Disables PCI-Express master access and verifies there are no pending | ||
1648 | * requests. | ||
1649 | **/ | ||
1650 | s32 e1000e_disable_pcie_master(struct e1000_hw *hw) | ||
1651 | { | ||
1652 | u32 ctrl; | ||
1653 | s32 timeout = MASTER_DISABLE_TIMEOUT; | ||
1654 | |||
1655 | ctrl = er32(CTRL); | ||
1656 | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | ||
1657 | ew32(CTRL, ctrl); | ||
1658 | |||
1659 | while (timeout) { | ||
1660 | if (!(er32(STATUS) & | ||
1661 | E1000_STATUS_GIO_MASTER_ENABLE)) | ||
1662 | break; | ||
1663 | udelay(100); | ||
1664 | timeout--; | ||
1665 | } | ||
1666 | |||
1667 | if (!timeout) { | ||
1668 | e_dbg("Master requests are pending.\n"); | ||
1669 | return -E1000_ERR_MASTER_REQUESTS_PENDING; | ||
1670 | } | ||
1671 | |||
1672 | return 0; | ||
1673 | } | ||
1674 | |||
1675 | /** | ||
1676 | * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing | ||
1677 | * @hw: pointer to the HW structure | ||
1678 | * | ||
1679 | * Reset the Adaptive Interframe Spacing throttle to default values. | ||
1680 | **/ | ||
1681 | void e1000e_reset_adaptive(struct e1000_hw *hw) | ||
1682 | { | ||
1683 | struct e1000_mac_info *mac = &hw->mac; | ||
1684 | |||
1685 | if (!mac->adaptive_ifs) { | ||
1686 | e_dbg("Not in Adaptive IFS mode!\n"); | ||
1687 | goto out; | ||
1688 | } | ||
1689 | |||
1690 | mac->current_ifs_val = 0; | ||
1691 | mac->ifs_min_val = IFS_MIN; | ||
1692 | mac->ifs_max_val = IFS_MAX; | ||
1693 | mac->ifs_step_size = IFS_STEP; | ||
1694 | mac->ifs_ratio = IFS_RATIO; | ||
1695 | |||
1696 | mac->in_ifs_mode = false; | ||
1697 | ew32(AIT, 0); | ||
1698 | out: | ||
1699 | return; | ||
1700 | } | ||
1701 | |||
1702 | /** | ||
1703 | * e1000e_update_adaptive - Update Adaptive Interframe Spacing | ||
1704 | * @hw: pointer to the HW structure | ||
1705 | * | ||
1706 | * Update the Adaptive Interframe Spacing Throttle value based on the | ||
1707 | * time between transmitted packets and time between collisions. | ||
1708 | **/ | ||
1709 | void e1000e_update_adaptive(struct e1000_hw *hw) | ||
1710 | { | ||
1711 | struct e1000_mac_info *mac = &hw->mac; | ||
1712 | |||
1713 | if (!mac->adaptive_ifs) { | ||
1714 | e_dbg("Not in Adaptive IFS mode!\n"); | ||
1715 | goto out; | ||
1716 | } | ||
1717 | |||
1718 | if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { | ||
1719 | if (mac->tx_packet_delta > MIN_NUM_XMITS) { | ||
1720 | mac->in_ifs_mode = true; | ||
1721 | if (mac->current_ifs_val < mac->ifs_max_val) { | ||
1722 | if (!mac->current_ifs_val) | ||
1723 | mac->current_ifs_val = mac->ifs_min_val; | ||
1724 | else | ||
1725 | mac->current_ifs_val += | ||
1726 | mac->ifs_step_size; | ||
1727 | ew32(AIT, mac->current_ifs_val); | ||
1728 | } | ||
1729 | } | ||
1730 | } else { | ||
1731 | if (mac->in_ifs_mode && | ||
1732 | (mac->tx_packet_delta <= MIN_NUM_XMITS)) { | ||
1733 | mac->current_ifs_val = 0; | ||
1734 | mac->in_ifs_mode = false; | ||
1735 | ew32(AIT, 0); | ||
1736 | } | ||
1737 | } | ||
1738 | out: | ||
1739 | return; | ||
1740 | } | ||
1741 | |||
1742 | /** | ||
1743 | * e1000_raise_eec_clk - Raise EEPROM clock | ||
1744 | * @hw: pointer to the HW structure | ||
1745 | * @eecd: pointer to the EEPROM | ||
1746 | * | ||
1747 | * Enable/Raise the EEPROM clock bit. | ||
1748 | **/ | ||
1749 | static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) | ||
1750 | { | ||
1751 | *eecd = *eecd | E1000_EECD_SK; | ||
1752 | ew32(EECD, *eecd); | ||
1753 | e1e_flush(); | ||
1754 | udelay(hw->nvm.delay_usec); | ||
1755 | } | ||
1756 | |||
1757 | /** | ||
1758 | * e1000_lower_eec_clk - Lower EEPROM clock | ||
1759 | * @hw: pointer to the HW structure | ||
1760 | * @eecd: pointer to the EEPROM | ||
1761 | * | ||
1762 | * Clear/Lower the EEPROM clock bit. | ||
1763 | **/ | ||
1764 | static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) | ||
1765 | { | ||
1766 | *eecd = *eecd & ~E1000_EECD_SK; | ||
1767 | ew32(EECD, *eecd); | ||
1768 | e1e_flush(); | ||
1769 | udelay(hw->nvm.delay_usec); | ||
1770 | } | ||
1771 | |||
1772 | /** | ||
1773 | * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM | ||
1774 | * @hw: pointer to the HW structure | ||
1775 | * @data: data to send to the EEPROM | ||
1776 | * @count: number of bits to shift out | ||
1777 | * | ||
1778 | * We need to shift 'count' bits out to the EEPROM. So, the value in the | ||
1779 | * "data" parameter will be shifted out to the EEPROM one bit at a time. | ||
1780 | * In order to do this, "data" must be broken down into bits. | ||
1781 | **/ | ||
1782 | static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) | ||
1783 | { | ||
1784 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
1785 | u32 eecd = er32(EECD); | ||
1786 | u32 mask; | ||
1787 | |||
1788 | mask = 0x01 << (count - 1); | ||
1789 | if (nvm->type == e1000_nvm_eeprom_spi) | ||
1790 | eecd |= E1000_EECD_DO; | ||
1791 | |||
1792 | do { | ||
1793 | eecd &= ~E1000_EECD_DI; | ||
1794 | |||
1795 | if (data & mask) | ||
1796 | eecd |= E1000_EECD_DI; | ||
1797 | |||
1798 | ew32(EECD, eecd); | ||
1799 | e1e_flush(); | ||
1800 | |||
1801 | udelay(nvm->delay_usec); | ||
1802 | |||
1803 | e1000_raise_eec_clk(hw, &eecd); | ||
1804 | e1000_lower_eec_clk(hw, &eecd); | ||
1805 | |||
1806 | mask >>= 1; | ||
1807 | } while (mask); | ||
1808 | |||
1809 | eecd &= ~E1000_EECD_DI; | ||
1810 | ew32(EECD, eecd); | ||
1811 | } | ||
1812 | |||
1813 | /** | ||
1814 | * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM | ||
1815 | * @hw: pointer to the HW structure | ||
1816 | * @count: number of bits to shift in | ||
1817 | * | ||
1818 | * In order to read a register from the EEPROM, we need to shift 'count' bits | ||
1819 | * in from the EEPROM. Bits are "shifted in" by raising the clock input to | ||
1820 | * the EEPROM (setting the SK bit), and then reading the value of the data out | ||
1821 | * "DO" bit. During this "shifting in" process the data in "DI" bit should | ||
1822 | * always be clear. | ||
1823 | **/ | ||
1824 | static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) | ||
1825 | { | ||
1826 | u32 eecd; | ||
1827 | u32 i; | ||
1828 | u16 data; | ||
1829 | |||
1830 | eecd = er32(EECD); | ||
1831 | |||
1832 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | ||
1833 | data = 0; | ||
1834 | |||
1835 | for (i = 0; i < count; i++) { | ||
1836 | data <<= 1; | ||
1837 | e1000_raise_eec_clk(hw, &eecd); | ||
1838 | |||
1839 | eecd = er32(EECD); | ||
1840 | |||
1841 | eecd &= ~E1000_EECD_DI; | ||
1842 | if (eecd & E1000_EECD_DO) | ||
1843 | data |= 1; | ||
1844 | |||
1845 | e1000_lower_eec_clk(hw, &eecd); | ||
1846 | } | ||
1847 | |||
1848 | return data; | ||
1849 | } | ||
1850 | |||
1851 | /** | ||
1852 | * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion | ||
1853 | * @hw: pointer to the HW structure | ||
1854 | * @ee_reg: EEPROM flag for polling | ||
1855 | * | ||
1856 | * Polls the EEPROM status bit for either read or write completion based | ||
1857 | * upon the value of 'ee_reg'. | ||
1858 | **/ | ||
1859 | s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) | ||
1860 | { | ||
1861 | u32 attempts = 100000; | ||
1862 | u32 i, reg = 0; | ||
1863 | |||
1864 | for (i = 0; i < attempts; i++) { | ||
1865 | if (ee_reg == E1000_NVM_POLL_READ) | ||
1866 | reg = er32(EERD); | ||
1867 | else | ||
1868 | reg = er32(EEWR); | ||
1869 | |||
1870 | if (reg & E1000_NVM_RW_REG_DONE) | ||
1871 | return 0; | ||
1872 | |||
1873 | udelay(5); | ||
1874 | } | ||
1875 | |||
1876 | return -E1000_ERR_NVM; | ||
1877 | } | ||
1878 | |||
1879 | /** | ||
1880 | * e1000e_acquire_nvm - Generic request for access to EEPROM | ||
1881 | * @hw: pointer to the HW structure | ||
1882 | * | ||
1883 | * Set the EEPROM access request bit and wait for EEPROM access grant bit. | ||
1884 | * Return successful if access grant bit set, else clear the request for | ||
1885 | * EEPROM access and return -E1000_ERR_NVM (-1). | ||
1886 | **/ | ||
1887 | s32 e1000e_acquire_nvm(struct e1000_hw *hw) | ||
1888 | { | ||
1889 | u32 eecd = er32(EECD); | ||
1890 | s32 timeout = E1000_NVM_GRANT_ATTEMPTS; | ||
1891 | |||
1892 | ew32(EECD, eecd | E1000_EECD_REQ); | ||
1893 | eecd = er32(EECD); | ||
1894 | |||
1895 | while (timeout) { | ||
1896 | if (eecd & E1000_EECD_GNT) | ||
1897 | break; | ||
1898 | udelay(5); | ||
1899 | eecd = er32(EECD); | ||
1900 | timeout--; | ||
1901 | } | ||
1902 | |||
1903 | if (!timeout) { | ||
1904 | eecd &= ~E1000_EECD_REQ; | ||
1905 | ew32(EECD, eecd); | ||
1906 | e_dbg("Could not acquire NVM grant\n"); | ||
1907 | return -E1000_ERR_NVM; | ||
1908 | } | ||
1909 | |||
1910 | return 0; | ||
1911 | } | ||
1912 | |||
1913 | /** | ||
1914 | * e1000_standby_nvm - Return EEPROM to standby state | ||
1915 | * @hw: pointer to the HW structure | ||
1916 | * | ||
1917 | * Return the EEPROM to a standby state. | ||
1918 | **/ | ||
1919 | static void e1000_standby_nvm(struct e1000_hw *hw) | ||
1920 | { | ||
1921 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
1922 | u32 eecd = er32(EECD); | ||
1923 | |||
1924 | if (nvm->type == e1000_nvm_eeprom_spi) { | ||
1925 | /* Toggle CS to flush commands */ | ||
1926 | eecd |= E1000_EECD_CS; | ||
1927 | ew32(EECD, eecd); | ||
1928 | e1e_flush(); | ||
1929 | udelay(nvm->delay_usec); | ||
1930 | eecd &= ~E1000_EECD_CS; | ||
1931 | ew32(EECD, eecd); | ||
1932 | e1e_flush(); | ||
1933 | udelay(nvm->delay_usec); | ||
1934 | } | ||
1935 | } | ||
1936 | |||
1937 | /** | ||
1938 | * e1000_stop_nvm - Terminate EEPROM command | ||
1939 | * @hw: pointer to the HW structure | ||
1940 | * | ||
1941 | * Terminates the current command by inverting the EEPROM's chip select pin. | ||
1942 | **/ | ||
1943 | static void e1000_stop_nvm(struct e1000_hw *hw) | ||
1944 | { | ||
1945 | u32 eecd; | ||
1946 | |||
1947 | eecd = er32(EECD); | ||
1948 | if (hw->nvm.type == e1000_nvm_eeprom_spi) { | ||
1949 | /* Pull CS high */ | ||
1950 | eecd |= E1000_EECD_CS; | ||
1951 | e1000_lower_eec_clk(hw, &eecd); | ||
1952 | } | ||
1953 | } | ||
1954 | |||
1955 | /** | ||
1956 | * e1000e_release_nvm - Release exclusive access to EEPROM | ||
1957 | * @hw: pointer to the HW structure | ||
1958 | * | ||
1959 | * Stop any current commands to the EEPROM and clear the EEPROM request bit. | ||
1960 | **/ | ||
1961 | void e1000e_release_nvm(struct e1000_hw *hw) | ||
1962 | { | ||
1963 | u32 eecd; | ||
1964 | |||
1965 | e1000_stop_nvm(hw); | ||
1966 | |||
1967 | eecd = er32(EECD); | ||
1968 | eecd &= ~E1000_EECD_REQ; | ||
1969 | ew32(EECD, eecd); | ||
1970 | } | ||
1971 | |||
1972 | /** | ||
1973 | * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write | ||
1974 | * @hw: pointer to the HW structure | ||
1975 | * | ||
1976 | * Setups the EEPROM for reading and writing. | ||
1977 | **/ | ||
1978 | static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) | ||
1979 | { | ||
1980 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
1981 | u32 eecd = er32(EECD); | ||
1982 | u8 spi_stat_reg; | ||
1983 | |||
1984 | if (nvm->type == e1000_nvm_eeprom_spi) { | ||
1985 | u16 timeout = NVM_MAX_RETRY_SPI; | ||
1986 | |||
1987 | /* Clear SK and CS */ | ||
1988 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | ||
1989 | ew32(EECD, eecd); | ||
1990 | e1e_flush(); | ||
1991 | udelay(1); | ||
1992 | |||
1993 | /* | ||
1994 | * Read "Status Register" repeatedly until the LSB is cleared. | ||
1995 | * The EEPROM will signal that the command has been completed | ||
1996 | * by clearing bit 0 of the internal status register. If it's | ||
1997 | * not cleared within 'timeout', then error out. | ||
1998 | */ | ||
1999 | while (timeout) { | ||
2000 | e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, | ||
2001 | hw->nvm.opcode_bits); | ||
2002 | spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); | ||
2003 | if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) | ||
2004 | break; | ||
2005 | |||
2006 | udelay(5); | ||
2007 | e1000_standby_nvm(hw); | ||
2008 | timeout--; | ||
2009 | } | ||
2010 | |||
2011 | if (!timeout) { | ||
2012 | e_dbg("SPI NVM Status error\n"); | ||
2013 | return -E1000_ERR_NVM; | ||
2014 | } | ||
2015 | } | ||
2016 | |||
2017 | return 0; | ||
2018 | } | ||
2019 | |||
2020 | /** | ||
2021 | * e1000e_read_nvm_eerd - Reads EEPROM using EERD register | ||
2022 | * @hw: pointer to the HW structure | ||
2023 | * @offset: offset of word in the EEPROM to read | ||
2024 | * @words: number of words to read | ||
2025 | * @data: word read from the EEPROM | ||
2026 | * | ||
2027 | * Reads a 16 bit word from the EEPROM using the EERD register. | ||
2028 | **/ | ||
2029 | s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | ||
2030 | { | ||
2031 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
2032 | u32 i, eerd = 0; | ||
2033 | s32 ret_val = 0; | ||
2034 | |||
2035 | /* | ||
2036 | * A check for invalid values: offset too large, too many words, | ||
2037 | * too many words for the offset, and not enough words. | ||
2038 | */ | ||
2039 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | ||
2040 | (words == 0)) { | ||
2041 | e_dbg("nvm parameter(s) out of bounds\n"); | ||
2042 | return -E1000_ERR_NVM; | ||
2043 | } | ||
2044 | |||
2045 | for (i = 0; i < words; i++) { | ||
2046 | eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + | ||
2047 | E1000_NVM_RW_REG_START; | ||
2048 | |||
2049 | ew32(EERD, eerd); | ||
2050 | ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); | ||
2051 | if (ret_val) | ||
2052 | break; | ||
2053 | |||
2054 | data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA); | ||
2055 | } | ||
2056 | |||
2057 | return ret_val; | ||
2058 | } | ||
2059 | |||
2060 | /** | ||
2061 | * e1000e_write_nvm_spi - Write to EEPROM using SPI | ||
2062 | * @hw: pointer to the HW structure | ||
2063 | * @offset: offset within the EEPROM to be written to | ||
2064 | * @words: number of words to write | ||
2065 | * @data: 16 bit word(s) to be written to the EEPROM | ||
2066 | * | ||
2067 | * Writes data to EEPROM at offset using SPI interface. | ||
2068 | * | ||
2069 | * If e1000e_update_nvm_checksum is not called after this function , the | ||
2070 | * EEPROM will most likely contain an invalid checksum. | ||
2071 | **/ | ||
2072 | s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | ||
2073 | { | ||
2074 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
2075 | s32 ret_val; | ||
2076 | u16 widx = 0; | ||
2077 | |||
2078 | /* | ||
2079 | * A check for invalid values: offset too large, too many words, | ||
2080 | * and not enough words. | ||
2081 | */ | ||
2082 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | ||
2083 | (words == 0)) { | ||
2084 | e_dbg("nvm parameter(s) out of bounds\n"); | ||
2085 | return -E1000_ERR_NVM; | ||
2086 | } | ||
2087 | |||
2088 | ret_val = nvm->ops.acquire(hw); | ||
2089 | if (ret_val) | ||
2090 | return ret_val; | ||
2091 | |||
2092 | while (widx < words) { | ||
2093 | u8 write_opcode = NVM_WRITE_OPCODE_SPI; | ||
2094 | |||
2095 | ret_val = e1000_ready_nvm_eeprom(hw); | ||
2096 | if (ret_val) { | ||
2097 | nvm->ops.release(hw); | ||
2098 | return ret_val; | ||
2099 | } | ||
2100 | |||
2101 | e1000_standby_nvm(hw); | ||
2102 | |||
2103 | /* Send the WRITE ENABLE command (8 bit opcode) */ | ||
2104 | e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, | ||
2105 | nvm->opcode_bits); | ||
2106 | |||
2107 | e1000_standby_nvm(hw); | ||
2108 | |||
2109 | /* | ||
2110 | * Some SPI eeproms use the 8th address bit embedded in the | ||
2111 | * opcode | ||
2112 | */ | ||
2113 | if ((nvm->address_bits == 8) && (offset >= 128)) | ||
2114 | write_opcode |= NVM_A8_OPCODE_SPI; | ||
2115 | |||
2116 | /* Send the Write command (8-bit opcode + addr) */ | ||
2117 | e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); | ||
2118 | e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), | ||
2119 | nvm->address_bits); | ||
2120 | |||
2121 | /* Loop to allow for up to whole page write of eeprom */ | ||
2122 | while (widx < words) { | ||
2123 | u16 word_out = data[widx]; | ||
2124 | word_out = (word_out >> 8) | (word_out << 8); | ||
2125 | e1000_shift_out_eec_bits(hw, word_out, 16); | ||
2126 | widx++; | ||
2127 | |||
2128 | if ((((offset + widx) * 2) % nvm->page_size) == 0) { | ||
2129 | e1000_standby_nvm(hw); | ||
2130 | break; | ||
2131 | } | ||
2132 | } | ||
2133 | } | ||
2134 | |||
2135 | usleep_range(10000, 20000); | ||
2136 | nvm->ops.release(hw); | ||
2137 | return 0; | ||
2138 | } | ||
2139 | |||
2140 | /** | ||
2141 | * e1000_read_pba_string_generic - Read device part number | ||
2142 | * @hw: pointer to the HW structure | ||
2143 | * @pba_num: pointer to device part number | ||
2144 | * @pba_num_size: size of part number buffer | ||
2145 | * | ||
2146 | * Reads the product board assembly (PBA) number from the EEPROM and stores | ||
2147 | * the value in pba_num. | ||
2148 | **/ | ||
2149 | s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, | ||
2150 | u32 pba_num_size) | ||
2151 | { | ||
2152 | s32 ret_val; | ||
2153 | u16 nvm_data; | ||
2154 | u16 pba_ptr; | ||
2155 | u16 offset; | ||
2156 | u16 length; | ||
2157 | |||
2158 | if (pba_num == NULL) { | ||
2159 | e_dbg("PBA string buffer was null\n"); | ||
2160 | ret_val = E1000_ERR_INVALID_ARGUMENT; | ||
2161 | goto out; | ||
2162 | } | ||
2163 | |||
2164 | ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); | ||
2165 | if (ret_val) { | ||
2166 | e_dbg("NVM Read Error\n"); | ||
2167 | goto out; | ||
2168 | } | ||
2169 | |||
2170 | ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); | ||
2171 | if (ret_val) { | ||
2172 | e_dbg("NVM Read Error\n"); | ||
2173 | goto out; | ||
2174 | } | ||
2175 | |||
2176 | /* | ||
2177 | * if nvm_data is not ptr guard the PBA must be in legacy format which | ||
2178 | * means pba_ptr is actually our second data word for the PBA number | ||
2179 | * and we can decode it into an ascii string | ||
2180 | */ | ||
2181 | if (nvm_data != NVM_PBA_PTR_GUARD) { | ||
2182 | e_dbg("NVM PBA number is not stored as string\n"); | ||
2183 | |||
2184 | /* we will need 11 characters to store the PBA */ | ||
2185 | if (pba_num_size < 11) { | ||
2186 | e_dbg("PBA string buffer too small\n"); | ||
2187 | return E1000_ERR_NO_SPACE; | ||
2188 | } | ||
2189 | |||
2190 | /* extract hex string from data and pba_ptr */ | ||
2191 | pba_num[0] = (nvm_data >> 12) & 0xF; | ||
2192 | pba_num[1] = (nvm_data >> 8) & 0xF; | ||
2193 | pba_num[2] = (nvm_data >> 4) & 0xF; | ||
2194 | pba_num[3] = nvm_data & 0xF; | ||
2195 | pba_num[4] = (pba_ptr >> 12) & 0xF; | ||
2196 | pba_num[5] = (pba_ptr >> 8) & 0xF; | ||
2197 | pba_num[6] = '-'; | ||
2198 | pba_num[7] = 0; | ||
2199 | pba_num[8] = (pba_ptr >> 4) & 0xF; | ||
2200 | pba_num[9] = pba_ptr & 0xF; | ||
2201 | |||
2202 | /* put a null character on the end of our string */ | ||
2203 | pba_num[10] = '\0'; | ||
2204 | |||
2205 | /* switch all the data but the '-' to hex char */ | ||
2206 | for (offset = 0; offset < 10; offset++) { | ||
2207 | if (pba_num[offset] < 0xA) | ||
2208 | pba_num[offset] += '0'; | ||
2209 | else if (pba_num[offset] < 0x10) | ||
2210 | pba_num[offset] += 'A' - 0xA; | ||
2211 | } | ||
2212 | |||
2213 | goto out; | ||
2214 | } | ||
2215 | |||
2216 | ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length); | ||
2217 | if (ret_val) { | ||
2218 | e_dbg("NVM Read Error\n"); | ||
2219 | goto out; | ||
2220 | } | ||
2221 | |||
2222 | if (length == 0xFFFF || length == 0) { | ||
2223 | e_dbg("NVM PBA number section invalid length\n"); | ||
2224 | ret_val = E1000_ERR_NVM_PBA_SECTION; | ||
2225 | goto out; | ||
2226 | } | ||
2227 | /* check if pba_num buffer is big enough */ | ||
2228 | if (pba_num_size < (((u32)length * 2) - 1)) { | ||
2229 | e_dbg("PBA string buffer too small\n"); | ||
2230 | ret_val = E1000_ERR_NO_SPACE; | ||
2231 | goto out; | ||
2232 | } | ||
2233 | |||
2234 | /* trim pba length from start of string */ | ||
2235 | pba_ptr++; | ||
2236 | length--; | ||
2237 | |||
2238 | for (offset = 0; offset < length; offset++) { | ||
2239 | ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data); | ||
2240 | if (ret_val) { | ||
2241 | e_dbg("NVM Read Error\n"); | ||
2242 | goto out; | ||
2243 | } | ||
2244 | pba_num[offset * 2] = (u8)(nvm_data >> 8); | ||
2245 | pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); | ||
2246 | } | ||
2247 | pba_num[offset * 2] = '\0'; | ||
2248 | |||
2249 | out: | ||
2250 | return ret_val; | ||
2251 | } | ||
2252 | |||
2253 | /** | ||
2254 | * e1000_read_mac_addr_generic - Read device MAC address | ||
2255 | * @hw: pointer to the HW structure | ||
2256 | * | ||
2257 | * Reads the device MAC address from the EEPROM and stores the value. | ||
2258 | * Since devices with two ports use the same EEPROM, we increment the | ||
2259 | * last bit in the MAC address for the second port. | ||
2260 | **/ | ||
2261 | s32 e1000_read_mac_addr_generic(struct e1000_hw *hw) | ||
2262 | { | ||
2263 | u32 rar_high; | ||
2264 | u32 rar_low; | ||
2265 | u16 i; | ||
2266 | |||
2267 | rar_high = er32(RAH(0)); | ||
2268 | rar_low = er32(RAL(0)); | ||
2269 | |||
2270 | for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) | ||
2271 | hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); | ||
2272 | |||
2273 | for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) | ||
2274 | hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); | ||
2275 | |||
2276 | for (i = 0; i < ETH_ALEN; i++) | ||
2277 | hw->mac.addr[i] = hw->mac.perm_addr[i]; | ||
2278 | |||
2279 | return 0; | ||
2280 | } | ||
2281 | |||
2282 | /** | ||
2283 | * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum | ||
2284 | * @hw: pointer to the HW structure | ||
2285 | * | ||
2286 | * Calculates the EEPROM checksum by reading/adding each word of the EEPROM | ||
2287 | * and then verifies that the sum of the EEPROM is equal to 0xBABA. | ||
2288 | **/ | ||
2289 | s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw) | ||
2290 | { | ||
2291 | s32 ret_val; | ||
2292 | u16 checksum = 0; | ||
2293 | u16 i, nvm_data; | ||
2294 | |||
2295 | for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { | ||
2296 | ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); | ||
2297 | if (ret_val) { | ||
2298 | e_dbg("NVM Read Error\n"); | ||
2299 | return ret_val; | ||
2300 | } | ||
2301 | checksum += nvm_data; | ||
2302 | } | ||
2303 | |||
2304 | if (checksum != (u16) NVM_SUM) { | ||
2305 | e_dbg("NVM Checksum Invalid\n"); | ||
2306 | return -E1000_ERR_NVM; | ||
2307 | } | ||
2308 | |||
2309 | return 0; | ||
2310 | } | ||
2311 | |||
2312 | /** | ||
2313 | * e1000e_update_nvm_checksum_generic - Update EEPROM checksum | ||
2314 | * @hw: pointer to the HW structure | ||
2315 | * | ||
2316 | * Updates the EEPROM checksum by reading/adding each word of the EEPROM | ||
2317 | * up to the checksum. Then calculates the EEPROM checksum and writes the | ||
2318 | * value to the EEPROM. | ||
2319 | **/ | ||
2320 | s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw) | ||
2321 | { | ||
2322 | s32 ret_val; | ||
2323 | u16 checksum = 0; | ||
2324 | u16 i, nvm_data; | ||
2325 | |||
2326 | for (i = 0; i < NVM_CHECKSUM_REG; i++) { | ||
2327 | ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); | ||
2328 | if (ret_val) { | ||
2329 | e_dbg("NVM Read Error while updating checksum.\n"); | ||
2330 | return ret_val; | ||
2331 | } | ||
2332 | checksum += nvm_data; | ||
2333 | } | ||
2334 | checksum = (u16) NVM_SUM - checksum; | ||
2335 | ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum); | ||
2336 | if (ret_val) | ||
2337 | e_dbg("NVM Write Error while updating checksum.\n"); | ||
2338 | |||
2339 | return ret_val; | ||
2340 | } | ||
2341 | |||
2342 | /** | ||
2343 | * e1000e_reload_nvm - Reloads EEPROM | ||
2344 | * @hw: pointer to the HW structure | ||
2345 | * | ||
2346 | * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the | ||
2347 | * extended control register. | ||
2348 | **/ | ||
2349 | void e1000e_reload_nvm(struct e1000_hw *hw) | ||
2350 | { | ||
2351 | u32 ctrl_ext; | ||
2352 | |||
2353 | udelay(10); | ||
2354 | ctrl_ext = er32(CTRL_EXT); | ||
2355 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | ||
2356 | ew32(CTRL_EXT, ctrl_ext); | ||
2357 | e1e_flush(); | ||
2358 | } | ||
2359 | |||
2360 | /** | ||
2361 | * e1000_calculate_checksum - Calculate checksum for buffer | ||
2362 | * @buffer: pointer to EEPROM | ||
2363 | * @length: size of EEPROM to calculate a checksum for | ||
2364 | * | ||
2365 | * Calculates the checksum for some buffer on a specified length. The | ||
2366 | * checksum calculated is returned. | ||
2367 | **/ | ||
2368 | static u8 e1000_calculate_checksum(u8 *buffer, u32 length) | ||
2369 | { | ||
2370 | u32 i; | ||
2371 | u8 sum = 0; | ||
2372 | |||
2373 | if (!buffer) | ||
2374 | return 0; | ||
2375 | |||
2376 | for (i = 0; i < length; i++) | ||
2377 | sum += buffer[i]; | ||
2378 | |||
2379 | return (u8) (0 - sum); | ||
2380 | } | ||
2381 | |||
2382 | /** | ||
2383 | * e1000_mng_enable_host_if - Checks host interface is enabled | ||
2384 | * @hw: pointer to the HW structure | ||
2385 | * | ||
2386 | * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND | ||
2387 | * | ||
2388 | * This function checks whether the HOST IF is enabled for command operation | ||
2389 | * and also checks whether the previous command is completed. It busy waits | ||
2390 | * in case of previous command is not completed. | ||
2391 | **/ | ||
2392 | static s32 e1000_mng_enable_host_if(struct e1000_hw *hw) | ||
2393 | { | ||
2394 | u32 hicr; | ||
2395 | u8 i; | ||
2396 | |||
2397 | if (!(hw->mac.arc_subsystem_valid)) { | ||
2398 | e_dbg("ARC subsystem not valid.\n"); | ||
2399 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | ||
2400 | } | ||
2401 | |||
2402 | /* Check that the host interface is enabled. */ | ||
2403 | hicr = er32(HICR); | ||
2404 | if ((hicr & E1000_HICR_EN) == 0) { | ||
2405 | e_dbg("E1000_HOST_EN bit disabled.\n"); | ||
2406 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | ||
2407 | } | ||
2408 | /* check the previous command is completed */ | ||
2409 | for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { | ||
2410 | hicr = er32(HICR); | ||
2411 | if (!(hicr & E1000_HICR_C)) | ||
2412 | break; | ||
2413 | mdelay(1); | ||
2414 | } | ||
2415 | |||
2416 | if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { | ||
2417 | e_dbg("Previous command timeout failed .\n"); | ||
2418 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | ||
2419 | } | ||
2420 | |||
2421 | return 0; | ||
2422 | } | ||
2423 | |||
2424 | /** | ||
2425 | * e1000e_check_mng_mode_generic - check management mode | ||
2426 | * @hw: pointer to the HW structure | ||
2427 | * | ||
2428 | * Reads the firmware semaphore register and returns true (>0) if | ||
2429 | * manageability is enabled, else false (0). | ||
2430 | **/ | ||
2431 | bool e1000e_check_mng_mode_generic(struct e1000_hw *hw) | ||
2432 | { | ||
2433 | u32 fwsm = er32(FWSM); | ||
2434 | |||
2435 | return (fwsm & E1000_FWSM_MODE_MASK) == | ||
2436 | (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT); | ||
2437 | } | ||
2438 | |||
2439 | /** | ||
2440 | * e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx | ||
2441 | * @hw: pointer to the HW structure | ||
2442 | * | ||
2443 | * Enables packet filtering on transmit packets if manageability is enabled | ||
2444 | * and host interface is enabled. | ||
2445 | **/ | ||
2446 | bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw) | ||
2447 | { | ||
2448 | struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; | ||
2449 | u32 *buffer = (u32 *)&hw->mng_cookie; | ||
2450 | u32 offset; | ||
2451 | s32 ret_val, hdr_csum, csum; | ||
2452 | u8 i, len; | ||
2453 | |||
2454 | hw->mac.tx_pkt_filtering = true; | ||
2455 | |||
2456 | /* No manageability, no filtering */ | ||
2457 | if (!e1000e_check_mng_mode(hw)) { | ||
2458 | hw->mac.tx_pkt_filtering = false; | ||
2459 | goto out; | ||
2460 | } | ||
2461 | |||
2462 | /* | ||
2463 | * If we can't read from the host interface for whatever | ||
2464 | * reason, disable filtering. | ||
2465 | */ | ||
2466 | ret_val = e1000_mng_enable_host_if(hw); | ||
2467 | if (ret_val) { | ||
2468 | hw->mac.tx_pkt_filtering = false; | ||
2469 | goto out; | ||
2470 | } | ||
2471 | |||
2472 | /* Read in the header. Length and offset are in dwords. */ | ||
2473 | len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; | ||
2474 | offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; | ||
2475 | for (i = 0; i < len; i++) | ||
2476 | *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i); | ||
2477 | hdr_csum = hdr->checksum; | ||
2478 | hdr->checksum = 0; | ||
2479 | csum = e1000_calculate_checksum((u8 *)hdr, | ||
2480 | E1000_MNG_DHCP_COOKIE_LENGTH); | ||
2481 | /* | ||
2482 | * If either the checksums or signature don't match, then | ||
2483 | * the cookie area isn't considered valid, in which case we | ||
2484 | * take the safe route of assuming Tx filtering is enabled. | ||
2485 | */ | ||
2486 | if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) { | ||
2487 | hw->mac.tx_pkt_filtering = true; | ||
2488 | goto out; | ||
2489 | } | ||
2490 | |||
2491 | /* Cookie area is valid, make the final check for filtering. */ | ||
2492 | if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) { | ||
2493 | hw->mac.tx_pkt_filtering = false; | ||
2494 | goto out; | ||
2495 | } | ||
2496 | |||
2497 | out: | ||
2498 | return hw->mac.tx_pkt_filtering; | ||
2499 | } | ||
2500 | |||
2501 | /** | ||
2502 | * e1000_mng_write_cmd_header - Writes manageability command header | ||
2503 | * @hw: pointer to the HW structure | ||
2504 | * @hdr: pointer to the host interface command header | ||
2505 | * | ||
2506 | * Writes the command header after does the checksum calculation. | ||
2507 | **/ | ||
2508 | static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, | ||
2509 | struct e1000_host_mng_command_header *hdr) | ||
2510 | { | ||
2511 | u16 i, length = sizeof(struct e1000_host_mng_command_header); | ||
2512 | |||
2513 | /* Write the whole command header structure with new checksum. */ | ||
2514 | |||
2515 | hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); | ||
2516 | |||
2517 | length >>= 2; | ||
2518 | /* Write the relevant command block into the ram area. */ | ||
2519 | for (i = 0; i < length; i++) { | ||
2520 | E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i, | ||
2521 | *((u32 *) hdr + i)); | ||
2522 | e1e_flush(); | ||
2523 | } | ||
2524 | |||
2525 | return 0; | ||
2526 | } | ||
2527 | |||
2528 | /** | ||
2529 | * e1000_mng_host_if_write - Write to the manageability host interface | ||
2530 | * @hw: pointer to the HW structure | ||
2531 | * @buffer: pointer to the host interface buffer | ||
2532 | * @length: size of the buffer | ||
2533 | * @offset: location in the buffer to write to | ||
2534 | * @sum: sum of the data (not checksum) | ||
2535 | * | ||
2536 | * This function writes the buffer content at the offset given on the host if. | ||
2537 | * It also does alignment considerations to do the writes in most efficient | ||
2538 | * way. Also fills up the sum of the buffer in *buffer parameter. | ||
2539 | **/ | ||
2540 | static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, | ||
2541 | u16 length, u16 offset, u8 *sum) | ||
2542 | { | ||
2543 | u8 *tmp; | ||
2544 | u8 *bufptr = buffer; | ||
2545 | u32 data = 0; | ||
2546 | u16 remaining, i, j, prev_bytes; | ||
2547 | |||
2548 | /* sum = only sum of the data and it is not checksum */ | ||
2549 | |||
2550 | if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) | ||
2551 | return -E1000_ERR_PARAM; | ||
2552 | |||
2553 | tmp = (u8 *)&data; | ||
2554 | prev_bytes = offset & 0x3; | ||
2555 | offset >>= 2; | ||
2556 | |||
2557 | if (prev_bytes) { | ||
2558 | data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset); | ||
2559 | for (j = prev_bytes; j < sizeof(u32); j++) { | ||
2560 | *(tmp + j) = *bufptr++; | ||
2561 | *sum += *(tmp + j); | ||
2562 | } | ||
2563 | E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data); | ||
2564 | length -= j - prev_bytes; | ||
2565 | offset++; | ||
2566 | } | ||
2567 | |||
2568 | remaining = length & 0x3; | ||
2569 | length -= remaining; | ||
2570 | |||
2571 | /* Calculate length in DWORDs */ | ||
2572 | length >>= 2; | ||
2573 | |||
2574 | /* | ||
2575 | * The device driver writes the relevant command block into the | ||
2576 | * ram area. | ||
2577 | */ | ||
2578 | for (i = 0; i < length; i++) { | ||
2579 | for (j = 0; j < sizeof(u32); j++) { | ||
2580 | *(tmp + j) = *bufptr++; | ||
2581 | *sum += *(tmp + j); | ||
2582 | } | ||
2583 | |||
2584 | E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); | ||
2585 | } | ||
2586 | if (remaining) { | ||
2587 | for (j = 0; j < sizeof(u32); j++) { | ||
2588 | if (j < remaining) | ||
2589 | *(tmp + j) = *bufptr++; | ||
2590 | else | ||
2591 | *(tmp + j) = 0; | ||
2592 | |||
2593 | *sum += *(tmp + j); | ||
2594 | } | ||
2595 | E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); | ||
2596 | } | ||
2597 | |||
2598 | return 0; | ||
2599 | } | ||
2600 | |||
2601 | /** | ||
2602 | * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface | ||
2603 | * @hw: pointer to the HW structure | ||
2604 | * @buffer: pointer to the host interface | ||
2605 | * @length: size of the buffer | ||
2606 | * | ||
2607 | * Writes the DHCP information to the host interface. | ||
2608 | **/ | ||
2609 | s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) | ||
2610 | { | ||
2611 | struct e1000_host_mng_command_header hdr; | ||
2612 | s32 ret_val; | ||
2613 | u32 hicr; | ||
2614 | |||
2615 | hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; | ||
2616 | hdr.command_length = length; | ||
2617 | hdr.reserved1 = 0; | ||
2618 | hdr.reserved2 = 0; | ||
2619 | hdr.checksum = 0; | ||
2620 | |||
2621 | /* Enable the host interface */ | ||
2622 | ret_val = e1000_mng_enable_host_if(hw); | ||
2623 | if (ret_val) | ||
2624 | return ret_val; | ||
2625 | |||
2626 | /* Populate the host interface with the contents of "buffer". */ | ||
2627 | ret_val = e1000_mng_host_if_write(hw, buffer, length, | ||
2628 | sizeof(hdr), &(hdr.checksum)); | ||
2629 | if (ret_val) | ||
2630 | return ret_val; | ||
2631 | |||
2632 | /* Write the manageability command header */ | ||
2633 | ret_val = e1000_mng_write_cmd_header(hw, &hdr); | ||
2634 | if (ret_val) | ||
2635 | return ret_val; | ||
2636 | |||
2637 | /* Tell the ARC a new command is pending. */ | ||
2638 | hicr = er32(HICR); | ||
2639 | ew32(HICR, hicr | E1000_HICR_C); | ||
2640 | |||
2641 | return 0; | ||
2642 | } | ||
2643 | |||
2644 | /** | ||
2645 | * e1000e_enable_mng_pass_thru - Check if management passthrough is needed | ||
2646 | * @hw: pointer to the HW structure | ||
2647 | * | ||
2648 | * Verifies the hardware needs to leave interface enabled so that frames can | ||
2649 | * be directed to and from the management interface. | ||
2650 | **/ | ||
2651 | bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw) | ||
2652 | { | ||
2653 | u32 manc; | ||
2654 | u32 fwsm, factps; | ||
2655 | bool ret_val = false; | ||
2656 | |||
2657 | manc = er32(MANC); | ||
2658 | |||
2659 | if (!(manc & E1000_MANC_RCV_TCO_EN)) | ||
2660 | goto out; | ||
2661 | |||
2662 | if (hw->mac.has_fwsm) { | ||
2663 | fwsm = er32(FWSM); | ||
2664 | factps = er32(FACTPS); | ||
2665 | |||
2666 | if (!(factps & E1000_FACTPS_MNGCG) && | ||
2667 | ((fwsm & E1000_FWSM_MODE_MASK) == | ||
2668 | (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { | ||
2669 | ret_val = true; | ||
2670 | goto out; | ||
2671 | } | ||
2672 | } else if ((hw->mac.type == e1000_82574) || | ||
2673 | (hw->mac.type == e1000_82583)) { | ||
2674 | u16 data; | ||
2675 | |||
2676 | factps = er32(FACTPS); | ||
2677 | e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data); | ||
2678 | |||
2679 | if (!(factps & E1000_FACTPS_MNGCG) && | ||
2680 | ((data & E1000_NVM_INIT_CTRL2_MNGM) == | ||
2681 | (e1000_mng_mode_pt << 13))) { | ||
2682 | ret_val = true; | ||
2683 | goto out; | ||
2684 | } | ||
2685 | } else if ((manc & E1000_MANC_SMBUS_EN) && | ||
2686 | !(manc & E1000_MANC_ASF_EN)) { | ||
2687 | ret_val = true; | ||
2688 | goto out; | ||
2689 | } | ||
2690 | |||
2691 | out: | ||
2692 | return ret_val; | ||
2693 | } | ||