diff options
author | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
---|---|---|
committer | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
commit | fcc9d2e5a6c89d22b8b773a64fb4ad21ac318446 (patch) | |
tree | a57612d1888735a2ec7972891b68c1ac5ec8faea /drivers/net/e1000e/82571.c | |
parent | 8dea78da5cee153b8af9c07a2745f6c55057fe12 (diff) |
Diffstat (limited to 'drivers/net/e1000e/82571.c')
-rw-r--r-- | drivers/net/e1000e/82571.c | 2117 |
1 files changed, 2117 insertions, 0 deletions
diff --git a/drivers/net/e1000e/82571.c b/drivers/net/e1000e/82571.c new file mode 100644 index 00000000000..536b3a55c45 --- /dev/null +++ b/drivers/net/e1000e/82571.c | |||
@@ -0,0 +1,2117 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/1000 Linux driver | ||
4 | Copyright(c) 1999 - 2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | /* | ||
30 | * 82571EB Gigabit Ethernet Controller | ||
31 | * 82571EB Gigabit Ethernet Controller (Copper) | ||
32 | * 82571EB Gigabit Ethernet Controller (Fiber) | ||
33 | * 82571EB Dual Port Gigabit Mezzanine Adapter | ||
34 | * 82571EB Quad Port Gigabit Mezzanine Adapter | ||
35 | * 82571PT Gigabit PT Quad Port Server ExpressModule | ||
36 | * 82572EI Gigabit Ethernet Controller (Copper) | ||
37 | * 82572EI Gigabit Ethernet Controller (Fiber) | ||
38 | * 82572EI Gigabit Ethernet Controller | ||
39 | * 82573V Gigabit Ethernet Controller (Copper) | ||
40 | * 82573E Gigabit Ethernet Controller (Copper) | ||
41 | * 82573L Gigabit Ethernet Controller | ||
42 | * 82574L Gigabit Network Connection | ||
43 | * 82583V Gigabit Network Connection | ||
44 | */ | ||
45 | |||
46 | #include "e1000.h" | ||
47 | |||
48 | #define ID_LED_RESERVED_F746 0xF746 | ||
49 | #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \ | ||
50 | (ID_LED_OFF1_ON2 << 8) | \ | ||
51 | (ID_LED_DEF1_DEF2 << 4) | \ | ||
52 | (ID_LED_DEF1_DEF2)) | ||
53 | |||
54 | #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 | ||
55 | #define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */ | ||
56 | #define E1000_BASE1000T_STATUS 10 | ||
57 | #define E1000_IDLE_ERROR_COUNT_MASK 0xFF | ||
58 | #define E1000_RECEIVE_ERROR_COUNTER 21 | ||
59 | #define E1000_RECEIVE_ERROR_MAX 0xFFFF | ||
60 | |||
61 | #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */ | ||
62 | |||
63 | static s32 e1000_get_phy_id_82571(struct e1000_hw *hw); | ||
64 | static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); | ||
65 | static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); | ||
66 | static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw); | ||
67 | static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, | ||
68 | u16 words, u16 *data); | ||
69 | static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); | ||
70 | static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); | ||
71 | static s32 e1000_setup_link_82571(struct e1000_hw *hw); | ||
72 | static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); | ||
73 | static void e1000_clear_vfta_82571(struct e1000_hw *hw); | ||
74 | static bool e1000_check_mng_mode_82574(struct e1000_hw *hw); | ||
75 | static s32 e1000_led_on_82574(struct e1000_hw *hw); | ||
76 | static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw); | ||
77 | static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw); | ||
78 | static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw); | ||
79 | static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw); | ||
80 | static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw); | ||
81 | static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active); | ||
82 | static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active); | ||
83 | |||
84 | /** | ||
85 | * e1000_init_phy_params_82571 - Init PHY func ptrs. | ||
86 | * @hw: pointer to the HW structure | ||
87 | **/ | ||
88 | static s32 e1000_init_phy_params_82571(struct e1000_hw *hw) | ||
89 | { | ||
90 | struct e1000_phy_info *phy = &hw->phy; | ||
91 | s32 ret_val; | ||
92 | |||
93 | if (hw->phy.media_type != e1000_media_type_copper) { | ||
94 | phy->type = e1000_phy_none; | ||
95 | return 0; | ||
96 | } | ||
97 | |||
98 | phy->addr = 1; | ||
99 | phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
100 | phy->reset_delay_us = 100; | ||
101 | |||
102 | phy->ops.power_up = e1000_power_up_phy_copper; | ||
103 | phy->ops.power_down = e1000_power_down_phy_copper_82571; | ||
104 | |||
105 | switch (hw->mac.type) { | ||
106 | case e1000_82571: | ||
107 | case e1000_82572: | ||
108 | phy->type = e1000_phy_igp_2; | ||
109 | break; | ||
110 | case e1000_82573: | ||
111 | phy->type = e1000_phy_m88; | ||
112 | break; | ||
113 | case e1000_82574: | ||
114 | case e1000_82583: | ||
115 | phy->type = e1000_phy_bm; | ||
116 | phy->ops.acquire = e1000_get_hw_semaphore_82574; | ||
117 | phy->ops.release = e1000_put_hw_semaphore_82574; | ||
118 | phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574; | ||
119 | phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574; | ||
120 | break; | ||
121 | default: | ||
122 | return -E1000_ERR_PHY; | ||
123 | break; | ||
124 | } | ||
125 | |||
126 | /* This can only be done after all function pointers are setup. */ | ||
127 | ret_val = e1000_get_phy_id_82571(hw); | ||
128 | if (ret_val) { | ||
129 | e_dbg("Error getting PHY ID\n"); | ||
130 | return ret_val; | ||
131 | } | ||
132 | |||
133 | /* Verify phy id */ | ||
134 | switch (hw->mac.type) { | ||
135 | case e1000_82571: | ||
136 | case e1000_82572: | ||
137 | if (phy->id != IGP01E1000_I_PHY_ID) | ||
138 | ret_val = -E1000_ERR_PHY; | ||
139 | break; | ||
140 | case e1000_82573: | ||
141 | if (phy->id != M88E1111_I_PHY_ID) | ||
142 | ret_val = -E1000_ERR_PHY; | ||
143 | break; | ||
144 | case e1000_82574: | ||
145 | case e1000_82583: | ||
146 | if (phy->id != BME1000_E_PHY_ID_R2) | ||
147 | ret_val = -E1000_ERR_PHY; | ||
148 | break; | ||
149 | default: | ||
150 | ret_val = -E1000_ERR_PHY; | ||
151 | break; | ||
152 | } | ||
153 | |||
154 | if (ret_val) | ||
155 | e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id); | ||
156 | |||
157 | return ret_val; | ||
158 | } | ||
159 | |||
160 | /** | ||
161 | * e1000_init_nvm_params_82571 - Init NVM func ptrs. | ||
162 | * @hw: pointer to the HW structure | ||
163 | **/ | ||
164 | static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) | ||
165 | { | ||
166 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
167 | u32 eecd = er32(EECD); | ||
168 | u16 size; | ||
169 | |||
170 | nvm->opcode_bits = 8; | ||
171 | nvm->delay_usec = 1; | ||
172 | switch (nvm->override) { | ||
173 | case e1000_nvm_override_spi_large: | ||
174 | nvm->page_size = 32; | ||
175 | nvm->address_bits = 16; | ||
176 | break; | ||
177 | case e1000_nvm_override_spi_small: | ||
178 | nvm->page_size = 8; | ||
179 | nvm->address_bits = 8; | ||
180 | break; | ||
181 | default: | ||
182 | nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; | ||
183 | nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; | ||
184 | break; | ||
185 | } | ||
186 | |||
187 | switch (hw->mac.type) { | ||
188 | case e1000_82573: | ||
189 | case e1000_82574: | ||
190 | case e1000_82583: | ||
191 | if (((eecd >> 15) & 0x3) == 0x3) { | ||
192 | nvm->type = e1000_nvm_flash_hw; | ||
193 | nvm->word_size = 2048; | ||
194 | /* | ||
195 | * Autonomous Flash update bit must be cleared due | ||
196 | * to Flash update issue. | ||
197 | */ | ||
198 | eecd &= ~E1000_EECD_AUPDEN; | ||
199 | ew32(EECD, eecd); | ||
200 | break; | ||
201 | } | ||
202 | /* Fall Through */ | ||
203 | default: | ||
204 | nvm->type = e1000_nvm_eeprom_spi; | ||
205 | size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> | ||
206 | E1000_EECD_SIZE_EX_SHIFT); | ||
207 | /* | ||
208 | * Added to a constant, "size" becomes the left-shift value | ||
209 | * for setting word_size. | ||
210 | */ | ||
211 | size += NVM_WORD_SIZE_BASE_SHIFT; | ||
212 | |||
213 | /* EEPROM access above 16k is unsupported */ | ||
214 | if (size > 14) | ||
215 | size = 14; | ||
216 | nvm->word_size = 1 << size; | ||
217 | break; | ||
218 | } | ||
219 | |||
220 | /* Function Pointers */ | ||
221 | switch (hw->mac.type) { | ||
222 | case e1000_82574: | ||
223 | case e1000_82583: | ||
224 | nvm->ops.acquire = e1000_get_hw_semaphore_82574; | ||
225 | nvm->ops.release = e1000_put_hw_semaphore_82574; | ||
226 | break; | ||
227 | default: | ||
228 | break; | ||
229 | } | ||
230 | |||
231 | return 0; | ||
232 | } | ||
233 | |||
234 | /** | ||
235 | * e1000_init_mac_params_82571 - Init MAC func ptrs. | ||
236 | * @hw: pointer to the HW structure | ||
237 | **/ | ||
238 | static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter) | ||
239 | { | ||
240 | struct e1000_hw *hw = &adapter->hw; | ||
241 | struct e1000_mac_info *mac = &hw->mac; | ||
242 | struct e1000_mac_operations *func = &mac->ops; | ||
243 | u32 swsm = 0; | ||
244 | u32 swsm2 = 0; | ||
245 | bool force_clear_smbi = false; | ||
246 | |||
247 | /* Set media type */ | ||
248 | switch (adapter->pdev->device) { | ||
249 | case E1000_DEV_ID_82571EB_FIBER: | ||
250 | case E1000_DEV_ID_82572EI_FIBER: | ||
251 | case E1000_DEV_ID_82571EB_QUAD_FIBER: | ||
252 | hw->phy.media_type = e1000_media_type_fiber; | ||
253 | break; | ||
254 | case E1000_DEV_ID_82571EB_SERDES: | ||
255 | case E1000_DEV_ID_82572EI_SERDES: | ||
256 | case E1000_DEV_ID_82571EB_SERDES_DUAL: | ||
257 | case E1000_DEV_ID_82571EB_SERDES_QUAD: | ||
258 | hw->phy.media_type = e1000_media_type_internal_serdes; | ||
259 | break; | ||
260 | default: | ||
261 | hw->phy.media_type = e1000_media_type_copper; | ||
262 | break; | ||
263 | } | ||
264 | |||
265 | /* Set mta register count */ | ||
266 | mac->mta_reg_count = 128; | ||
267 | /* Set rar entry count */ | ||
268 | mac->rar_entry_count = E1000_RAR_ENTRIES; | ||
269 | /* Adaptive IFS supported */ | ||
270 | mac->adaptive_ifs = true; | ||
271 | |||
272 | /* check for link */ | ||
273 | switch (hw->phy.media_type) { | ||
274 | case e1000_media_type_copper: | ||
275 | func->setup_physical_interface = e1000_setup_copper_link_82571; | ||
276 | func->check_for_link = e1000e_check_for_copper_link; | ||
277 | func->get_link_up_info = e1000e_get_speed_and_duplex_copper; | ||
278 | break; | ||
279 | case e1000_media_type_fiber: | ||
280 | func->setup_physical_interface = | ||
281 | e1000_setup_fiber_serdes_link_82571; | ||
282 | func->check_for_link = e1000e_check_for_fiber_link; | ||
283 | func->get_link_up_info = | ||
284 | e1000e_get_speed_and_duplex_fiber_serdes; | ||
285 | break; | ||
286 | case e1000_media_type_internal_serdes: | ||
287 | func->setup_physical_interface = | ||
288 | e1000_setup_fiber_serdes_link_82571; | ||
289 | func->check_for_link = e1000_check_for_serdes_link_82571; | ||
290 | func->get_link_up_info = | ||
291 | e1000e_get_speed_and_duplex_fiber_serdes; | ||
292 | break; | ||
293 | default: | ||
294 | return -E1000_ERR_CONFIG; | ||
295 | break; | ||
296 | } | ||
297 | |||
298 | switch (hw->mac.type) { | ||
299 | case e1000_82573: | ||
300 | func->set_lan_id = e1000_set_lan_id_single_port; | ||
301 | func->check_mng_mode = e1000e_check_mng_mode_generic; | ||
302 | func->led_on = e1000e_led_on_generic; | ||
303 | func->blink_led = e1000e_blink_led_generic; | ||
304 | |||
305 | /* FWSM register */ | ||
306 | mac->has_fwsm = true; | ||
307 | /* | ||
308 | * ARC supported; valid only if manageability features are | ||
309 | * enabled. | ||
310 | */ | ||
311 | mac->arc_subsystem_valid = | ||
312 | (er32(FWSM) & E1000_FWSM_MODE_MASK) | ||
313 | ? true : false; | ||
314 | break; | ||
315 | case e1000_82574: | ||
316 | case e1000_82583: | ||
317 | func->set_lan_id = e1000_set_lan_id_single_port; | ||
318 | func->check_mng_mode = e1000_check_mng_mode_82574; | ||
319 | func->led_on = e1000_led_on_82574; | ||
320 | break; | ||
321 | default: | ||
322 | func->check_mng_mode = e1000e_check_mng_mode_generic; | ||
323 | func->led_on = e1000e_led_on_generic; | ||
324 | func->blink_led = e1000e_blink_led_generic; | ||
325 | |||
326 | /* FWSM register */ | ||
327 | mac->has_fwsm = true; | ||
328 | break; | ||
329 | } | ||
330 | |||
331 | /* | ||
332 | * Ensure that the inter-port SWSM.SMBI lock bit is clear before | ||
333 | * first NVM or PHY access. This should be done for single-port | ||
334 | * devices, and for one port only on dual-port devices so that | ||
335 | * for those devices we can still use the SMBI lock to synchronize | ||
336 | * inter-port accesses to the PHY & NVM. | ||
337 | */ | ||
338 | switch (hw->mac.type) { | ||
339 | case e1000_82571: | ||
340 | case e1000_82572: | ||
341 | swsm2 = er32(SWSM2); | ||
342 | |||
343 | if (!(swsm2 & E1000_SWSM2_LOCK)) { | ||
344 | /* Only do this for the first interface on this card */ | ||
345 | ew32(SWSM2, | ||
346 | swsm2 | E1000_SWSM2_LOCK); | ||
347 | force_clear_smbi = true; | ||
348 | } else | ||
349 | force_clear_smbi = false; | ||
350 | break; | ||
351 | default: | ||
352 | force_clear_smbi = true; | ||
353 | break; | ||
354 | } | ||
355 | |||
356 | if (force_clear_smbi) { | ||
357 | /* Make sure SWSM.SMBI is clear */ | ||
358 | swsm = er32(SWSM); | ||
359 | if (swsm & E1000_SWSM_SMBI) { | ||
360 | /* This bit should not be set on a first interface, and | ||
361 | * indicates that the bootagent or EFI code has | ||
362 | * improperly left this bit enabled | ||
363 | */ | ||
364 | e_dbg("Please update your 82571 Bootagent\n"); | ||
365 | } | ||
366 | ew32(SWSM, swsm & ~E1000_SWSM_SMBI); | ||
367 | } | ||
368 | |||
369 | /* | ||
370 | * Initialize device specific counter of SMBI acquisition | ||
371 | * timeouts. | ||
372 | */ | ||
373 | hw->dev_spec.e82571.smb_counter = 0; | ||
374 | |||
375 | return 0; | ||
376 | } | ||
377 | |||
378 | static s32 e1000_get_variants_82571(struct e1000_adapter *adapter) | ||
379 | { | ||
380 | struct e1000_hw *hw = &adapter->hw; | ||
381 | static int global_quad_port_a; /* global port a indication */ | ||
382 | struct pci_dev *pdev = adapter->pdev; | ||
383 | int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1; | ||
384 | s32 rc; | ||
385 | |||
386 | rc = e1000_init_mac_params_82571(adapter); | ||
387 | if (rc) | ||
388 | return rc; | ||
389 | |||
390 | rc = e1000_init_nvm_params_82571(hw); | ||
391 | if (rc) | ||
392 | return rc; | ||
393 | |||
394 | rc = e1000_init_phy_params_82571(hw); | ||
395 | if (rc) | ||
396 | return rc; | ||
397 | |||
398 | /* tag quad port adapters first, it's used below */ | ||
399 | switch (pdev->device) { | ||
400 | case E1000_DEV_ID_82571EB_QUAD_COPPER: | ||
401 | case E1000_DEV_ID_82571EB_QUAD_FIBER: | ||
402 | case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: | ||
403 | case E1000_DEV_ID_82571PT_QUAD_COPPER: | ||
404 | adapter->flags |= FLAG_IS_QUAD_PORT; | ||
405 | /* mark the first port */ | ||
406 | if (global_quad_port_a == 0) | ||
407 | adapter->flags |= FLAG_IS_QUAD_PORT_A; | ||
408 | /* Reset for multiple quad port adapters */ | ||
409 | global_quad_port_a++; | ||
410 | if (global_quad_port_a == 4) | ||
411 | global_quad_port_a = 0; | ||
412 | break; | ||
413 | default: | ||
414 | break; | ||
415 | } | ||
416 | |||
417 | switch (adapter->hw.mac.type) { | ||
418 | case e1000_82571: | ||
419 | /* these dual ports don't have WoL on port B at all */ | ||
420 | if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) || | ||
421 | (pdev->device == E1000_DEV_ID_82571EB_SERDES) || | ||
422 | (pdev->device == E1000_DEV_ID_82571EB_COPPER)) && | ||
423 | (is_port_b)) | ||
424 | adapter->flags &= ~FLAG_HAS_WOL; | ||
425 | /* quad ports only support WoL on port A */ | ||
426 | if (adapter->flags & FLAG_IS_QUAD_PORT && | ||
427 | (!(adapter->flags & FLAG_IS_QUAD_PORT_A))) | ||
428 | adapter->flags &= ~FLAG_HAS_WOL; | ||
429 | /* Does not support WoL on any port */ | ||
430 | if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD) | ||
431 | adapter->flags &= ~FLAG_HAS_WOL; | ||
432 | break; | ||
433 | case e1000_82573: | ||
434 | if (pdev->device == E1000_DEV_ID_82573L) { | ||
435 | adapter->flags |= FLAG_HAS_JUMBO_FRAMES; | ||
436 | adapter->max_hw_frame_size = DEFAULT_JUMBO; | ||
437 | } | ||
438 | break; | ||
439 | default: | ||
440 | break; | ||
441 | } | ||
442 | |||
443 | return 0; | ||
444 | } | ||
445 | |||
446 | /** | ||
447 | * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision | ||
448 | * @hw: pointer to the HW structure | ||
449 | * | ||
450 | * Reads the PHY registers and stores the PHY ID and possibly the PHY | ||
451 | * revision in the hardware structure. | ||
452 | **/ | ||
453 | static s32 e1000_get_phy_id_82571(struct e1000_hw *hw) | ||
454 | { | ||
455 | struct e1000_phy_info *phy = &hw->phy; | ||
456 | s32 ret_val; | ||
457 | u16 phy_id = 0; | ||
458 | |||
459 | switch (hw->mac.type) { | ||
460 | case e1000_82571: | ||
461 | case e1000_82572: | ||
462 | /* | ||
463 | * The 82571 firmware may still be configuring the PHY. | ||
464 | * In this case, we cannot access the PHY until the | ||
465 | * configuration is done. So we explicitly set the | ||
466 | * PHY ID. | ||
467 | */ | ||
468 | phy->id = IGP01E1000_I_PHY_ID; | ||
469 | break; | ||
470 | case e1000_82573: | ||
471 | return e1000e_get_phy_id(hw); | ||
472 | break; | ||
473 | case e1000_82574: | ||
474 | case e1000_82583: | ||
475 | ret_val = e1e_rphy(hw, PHY_ID1, &phy_id); | ||
476 | if (ret_val) | ||
477 | return ret_val; | ||
478 | |||
479 | phy->id = (u32)(phy_id << 16); | ||
480 | udelay(20); | ||
481 | ret_val = e1e_rphy(hw, PHY_ID2, &phy_id); | ||
482 | if (ret_val) | ||
483 | return ret_val; | ||
484 | |||
485 | phy->id |= (u32)(phy_id); | ||
486 | phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); | ||
487 | break; | ||
488 | default: | ||
489 | return -E1000_ERR_PHY; | ||
490 | break; | ||
491 | } | ||
492 | |||
493 | return 0; | ||
494 | } | ||
495 | |||
496 | /** | ||
497 | * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore | ||
498 | * @hw: pointer to the HW structure | ||
499 | * | ||
500 | * Acquire the HW semaphore to access the PHY or NVM | ||
501 | **/ | ||
502 | static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw) | ||
503 | { | ||
504 | u32 swsm; | ||
505 | s32 sw_timeout = hw->nvm.word_size + 1; | ||
506 | s32 fw_timeout = hw->nvm.word_size + 1; | ||
507 | s32 i = 0; | ||
508 | |||
509 | /* | ||
510 | * If we have timedout 3 times on trying to acquire | ||
511 | * the inter-port SMBI semaphore, there is old code | ||
512 | * operating on the other port, and it is not | ||
513 | * releasing SMBI. Modify the number of times that | ||
514 | * we try for the semaphore to interwork with this | ||
515 | * older code. | ||
516 | */ | ||
517 | if (hw->dev_spec.e82571.smb_counter > 2) | ||
518 | sw_timeout = 1; | ||
519 | |||
520 | /* Get the SW semaphore */ | ||
521 | while (i < sw_timeout) { | ||
522 | swsm = er32(SWSM); | ||
523 | if (!(swsm & E1000_SWSM_SMBI)) | ||
524 | break; | ||
525 | |||
526 | udelay(50); | ||
527 | i++; | ||
528 | } | ||
529 | |||
530 | if (i == sw_timeout) { | ||
531 | e_dbg("Driver can't access device - SMBI bit is set.\n"); | ||
532 | hw->dev_spec.e82571.smb_counter++; | ||
533 | } | ||
534 | /* Get the FW semaphore. */ | ||
535 | for (i = 0; i < fw_timeout; i++) { | ||
536 | swsm = er32(SWSM); | ||
537 | ew32(SWSM, swsm | E1000_SWSM_SWESMBI); | ||
538 | |||
539 | /* Semaphore acquired if bit latched */ | ||
540 | if (er32(SWSM) & E1000_SWSM_SWESMBI) | ||
541 | break; | ||
542 | |||
543 | udelay(50); | ||
544 | } | ||
545 | |||
546 | if (i == fw_timeout) { | ||
547 | /* Release semaphores */ | ||
548 | e1000_put_hw_semaphore_82571(hw); | ||
549 | e_dbg("Driver can't access the NVM\n"); | ||
550 | return -E1000_ERR_NVM; | ||
551 | } | ||
552 | |||
553 | return 0; | ||
554 | } | ||
555 | |||
556 | /** | ||
557 | * e1000_put_hw_semaphore_82571 - Release hardware semaphore | ||
558 | * @hw: pointer to the HW structure | ||
559 | * | ||
560 | * Release hardware semaphore used to access the PHY or NVM | ||
561 | **/ | ||
562 | static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw) | ||
563 | { | ||
564 | u32 swsm; | ||
565 | |||
566 | swsm = er32(SWSM); | ||
567 | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | ||
568 | ew32(SWSM, swsm); | ||
569 | } | ||
570 | /** | ||
571 | * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore | ||
572 | * @hw: pointer to the HW structure | ||
573 | * | ||
574 | * Acquire the HW semaphore during reset. | ||
575 | * | ||
576 | **/ | ||
577 | static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw) | ||
578 | { | ||
579 | u32 extcnf_ctrl; | ||
580 | s32 ret_val = 0; | ||
581 | s32 i = 0; | ||
582 | |||
583 | extcnf_ctrl = er32(EXTCNF_CTRL); | ||
584 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | ||
585 | do { | ||
586 | ew32(EXTCNF_CTRL, extcnf_ctrl); | ||
587 | extcnf_ctrl = er32(EXTCNF_CTRL); | ||
588 | |||
589 | if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) | ||
590 | break; | ||
591 | |||
592 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | ||
593 | |||
594 | usleep_range(2000, 4000); | ||
595 | i++; | ||
596 | } while (i < MDIO_OWNERSHIP_TIMEOUT); | ||
597 | |||
598 | if (i == MDIO_OWNERSHIP_TIMEOUT) { | ||
599 | /* Release semaphores */ | ||
600 | e1000_put_hw_semaphore_82573(hw); | ||
601 | e_dbg("Driver can't access the PHY\n"); | ||
602 | ret_val = -E1000_ERR_PHY; | ||
603 | goto out; | ||
604 | } | ||
605 | |||
606 | out: | ||
607 | return ret_val; | ||
608 | } | ||
609 | |||
610 | /** | ||
611 | * e1000_put_hw_semaphore_82573 - Release hardware semaphore | ||
612 | * @hw: pointer to the HW structure | ||
613 | * | ||
614 | * Release hardware semaphore used during reset. | ||
615 | * | ||
616 | **/ | ||
617 | static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw) | ||
618 | { | ||
619 | u32 extcnf_ctrl; | ||
620 | |||
621 | extcnf_ctrl = er32(EXTCNF_CTRL); | ||
622 | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | ||
623 | ew32(EXTCNF_CTRL, extcnf_ctrl); | ||
624 | } | ||
625 | |||
626 | static DEFINE_MUTEX(swflag_mutex); | ||
627 | |||
628 | /** | ||
629 | * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore | ||
630 | * @hw: pointer to the HW structure | ||
631 | * | ||
632 | * Acquire the HW semaphore to access the PHY or NVM. | ||
633 | * | ||
634 | **/ | ||
635 | static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw) | ||
636 | { | ||
637 | s32 ret_val; | ||
638 | |||
639 | mutex_lock(&swflag_mutex); | ||
640 | ret_val = e1000_get_hw_semaphore_82573(hw); | ||
641 | if (ret_val) | ||
642 | mutex_unlock(&swflag_mutex); | ||
643 | return ret_val; | ||
644 | } | ||
645 | |||
646 | /** | ||
647 | * e1000_put_hw_semaphore_82574 - Release hardware semaphore | ||
648 | * @hw: pointer to the HW structure | ||
649 | * | ||
650 | * Release hardware semaphore used to access the PHY or NVM | ||
651 | * | ||
652 | **/ | ||
653 | static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw) | ||
654 | { | ||
655 | e1000_put_hw_semaphore_82573(hw); | ||
656 | mutex_unlock(&swflag_mutex); | ||
657 | } | ||
658 | |||
659 | /** | ||
660 | * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state | ||
661 | * @hw: pointer to the HW structure | ||
662 | * @active: true to enable LPLU, false to disable | ||
663 | * | ||
664 | * Sets the LPLU D0 state according to the active flag. | ||
665 | * LPLU will not be activated unless the | ||
666 | * device autonegotiation advertisement meets standards of | ||
667 | * either 10 or 10/100 or 10/100/1000 at all duplexes. | ||
668 | * This is a function pointer entry point only called by | ||
669 | * PHY setup routines. | ||
670 | **/ | ||
671 | static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active) | ||
672 | { | ||
673 | u16 data = er32(POEMB); | ||
674 | |||
675 | if (active) | ||
676 | data |= E1000_PHY_CTRL_D0A_LPLU; | ||
677 | else | ||
678 | data &= ~E1000_PHY_CTRL_D0A_LPLU; | ||
679 | |||
680 | ew32(POEMB, data); | ||
681 | return 0; | ||
682 | } | ||
683 | |||
684 | /** | ||
685 | * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3 | ||
686 | * @hw: pointer to the HW structure | ||
687 | * @active: boolean used to enable/disable lplu | ||
688 | * | ||
689 | * The low power link up (lplu) state is set to the power management level D3 | ||
690 | * when active is true, else clear lplu for D3. LPLU | ||
691 | * is used during Dx states where the power conservation is most important. | ||
692 | * During driver activity, SmartSpeed should be enabled so performance is | ||
693 | * maintained. | ||
694 | **/ | ||
695 | static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active) | ||
696 | { | ||
697 | u16 data = er32(POEMB); | ||
698 | |||
699 | if (!active) { | ||
700 | data &= ~E1000_PHY_CTRL_NOND0A_LPLU; | ||
701 | } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || | ||
702 | (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) || | ||
703 | (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) { | ||
704 | data |= E1000_PHY_CTRL_NOND0A_LPLU; | ||
705 | } | ||
706 | |||
707 | ew32(POEMB, data); | ||
708 | return 0; | ||
709 | } | ||
710 | |||
711 | /** | ||
712 | * e1000_acquire_nvm_82571 - Request for access to the EEPROM | ||
713 | * @hw: pointer to the HW structure | ||
714 | * | ||
715 | * To gain access to the EEPROM, first we must obtain a hardware semaphore. | ||
716 | * Then for non-82573 hardware, set the EEPROM access request bit and wait | ||
717 | * for EEPROM access grant bit. If the access grant bit is not set, release | ||
718 | * hardware semaphore. | ||
719 | **/ | ||
720 | static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw) | ||
721 | { | ||
722 | s32 ret_val; | ||
723 | |||
724 | ret_val = e1000_get_hw_semaphore_82571(hw); | ||
725 | if (ret_val) | ||
726 | return ret_val; | ||
727 | |||
728 | switch (hw->mac.type) { | ||
729 | case e1000_82573: | ||
730 | break; | ||
731 | default: | ||
732 | ret_val = e1000e_acquire_nvm(hw); | ||
733 | break; | ||
734 | } | ||
735 | |||
736 | if (ret_val) | ||
737 | e1000_put_hw_semaphore_82571(hw); | ||
738 | |||
739 | return ret_val; | ||
740 | } | ||
741 | |||
742 | /** | ||
743 | * e1000_release_nvm_82571 - Release exclusive access to EEPROM | ||
744 | * @hw: pointer to the HW structure | ||
745 | * | ||
746 | * Stop any current commands to the EEPROM and clear the EEPROM request bit. | ||
747 | **/ | ||
748 | static void e1000_release_nvm_82571(struct e1000_hw *hw) | ||
749 | { | ||
750 | e1000e_release_nvm(hw); | ||
751 | e1000_put_hw_semaphore_82571(hw); | ||
752 | } | ||
753 | |||
754 | /** | ||
755 | * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface | ||
756 | * @hw: pointer to the HW structure | ||
757 | * @offset: offset within the EEPROM to be written to | ||
758 | * @words: number of words to write | ||
759 | * @data: 16 bit word(s) to be written to the EEPROM | ||
760 | * | ||
761 | * For non-82573 silicon, write data to EEPROM at offset using SPI interface. | ||
762 | * | ||
763 | * If e1000e_update_nvm_checksum is not called after this function, the | ||
764 | * EEPROM will most likely contain an invalid checksum. | ||
765 | **/ | ||
766 | static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, | ||
767 | u16 *data) | ||
768 | { | ||
769 | s32 ret_val; | ||
770 | |||
771 | switch (hw->mac.type) { | ||
772 | case e1000_82573: | ||
773 | case e1000_82574: | ||
774 | case e1000_82583: | ||
775 | ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); | ||
776 | break; | ||
777 | case e1000_82571: | ||
778 | case e1000_82572: | ||
779 | ret_val = e1000e_write_nvm_spi(hw, offset, words, data); | ||
780 | break; | ||
781 | default: | ||
782 | ret_val = -E1000_ERR_NVM; | ||
783 | break; | ||
784 | } | ||
785 | |||
786 | return ret_val; | ||
787 | } | ||
788 | |||
789 | /** | ||
790 | * e1000_update_nvm_checksum_82571 - Update EEPROM checksum | ||
791 | * @hw: pointer to the HW structure | ||
792 | * | ||
793 | * Updates the EEPROM checksum by reading/adding each word of the EEPROM | ||
794 | * up to the checksum. Then calculates the EEPROM checksum and writes the | ||
795 | * value to the EEPROM. | ||
796 | **/ | ||
797 | static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) | ||
798 | { | ||
799 | u32 eecd; | ||
800 | s32 ret_val; | ||
801 | u16 i; | ||
802 | |||
803 | ret_val = e1000e_update_nvm_checksum_generic(hw); | ||
804 | if (ret_val) | ||
805 | return ret_val; | ||
806 | |||
807 | /* | ||
808 | * If our nvm is an EEPROM, then we're done | ||
809 | * otherwise, commit the checksum to the flash NVM. | ||
810 | */ | ||
811 | if (hw->nvm.type != e1000_nvm_flash_hw) | ||
812 | return ret_val; | ||
813 | |||
814 | /* Check for pending operations. */ | ||
815 | for (i = 0; i < E1000_FLASH_UPDATES; i++) { | ||
816 | usleep_range(1000, 2000); | ||
817 | if ((er32(EECD) & E1000_EECD_FLUPD) == 0) | ||
818 | break; | ||
819 | } | ||
820 | |||
821 | if (i == E1000_FLASH_UPDATES) | ||
822 | return -E1000_ERR_NVM; | ||
823 | |||
824 | /* Reset the firmware if using STM opcode. */ | ||
825 | if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) { | ||
826 | /* | ||
827 | * The enabling of and the actual reset must be done | ||
828 | * in two write cycles. | ||
829 | */ | ||
830 | ew32(HICR, E1000_HICR_FW_RESET_ENABLE); | ||
831 | e1e_flush(); | ||
832 | ew32(HICR, E1000_HICR_FW_RESET); | ||
833 | } | ||
834 | |||
835 | /* Commit the write to flash */ | ||
836 | eecd = er32(EECD) | E1000_EECD_FLUPD; | ||
837 | ew32(EECD, eecd); | ||
838 | |||
839 | for (i = 0; i < E1000_FLASH_UPDATES; i++) { | ||
840 | usleep_range(1000, 2000); | ||
841 | if ((er32(EECD) & E1000_EECD_FLUPD) == 0) | ||
842 | break; | ||
843 | } | ||
844 | |||
845 | if (i == E1000_FLASH_UPDATES) | ||
846 | return -E1000_ERR_NVM; | ||
847 | |||
848 | return 0; | ||
849 | } | ||
850 | |||
851 | /** | ||
852 | * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum | ||
853 | * @hw: pointer to the HW structure | ||
854 | * | ||
855 | * Calculates the EEPROM checksum by reading/adding each word of the EEPROM | ||
856 | * and then verifies that the sum of the EEPROM is equal to 0xBABA. | ||
857 | **/ | ||
858 | static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) | ||
859 | { | ||
860 | if (hw->nvm.type == e1000_nvm_flash_hw) | ||
861 | e1000_fix_nvm_checksum_82571(hw); | ||
862 | |||
863 | return e1000e_validate_nvm_checksum_generic(hw); | ||
864 | } | ||
865 | |||
866 | /** | ||
867 | * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon | ||
868 | * @hw: pointer to the HW structure | ||
869 | * @offset: offset within the EEPROM to be written to | ||
870 | * @words: number of words to write | ||
871 | * @data: 16 bit word(s) to be written to the EEPROM | ||
872 | * | ||
873 | * After checking for invalid values, poll the EEPROM to ensure the previous | ||
874 | * command has completed before trying to write the next word. After write | ||
875 | * poll for completion. | ||
876 | * | ||
877 | * If e1000e_update_nvm_checksum is not called after this function, the | ||
878 | * EEPROM will most likely contain an invalid checksum. | ||
879 | **/ | ||
880 | static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, | ||
881 | u16 words, u16 *data) | ||
882 | { | ||
883 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
884 | u32 i, eewr = 0; | ||
885 | s32 ret_val = 0; | ||
886 | |||
887 | /* | ||
888 | * A check for invalid values: offset too large, too many words, | ||
889 | * and not enough words. | ||
890 | */ | ||
891 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | ||
892 | (words == 0)) { | ||
893 | e_dbg("nvm parameter(s) out of bounds\n"); | ||
894 | return -E1000_ERR_NVM; | ||
895 | } | ||
896 | |||
897 | for (i = 0; i < words; i++) { | ||
898 | eewr = (data[i] << E1000_NVM_RW_REG_DATA) | | ||
899 | ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) | | ||
900 | E1000_NVM_RW_REG_START; | ||
901 | |||
902 | ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); | ||
903 | if (ret_val) | ||
904 | break; | ||
905 | |||
906 | ew32(EEWR, eewr); | ||
907 | |||
908 | ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); | ||
909 | if (ret_val) | ||
910 | break; | ||
911 | } | ||
912 | |||
913 | return ret_val; | ||
914 | } | ||
915 | |||
916 | /** | ||
917 | * e1000_get_cfg_done_82571 - Poll for configuration done | ||
918 | * @hw: pointer to the HW structure | ||
919 | * | ||
920 | * Reads the management control register for the config done bit to be set. | ||
921 | **/ | ||
922 | static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw) | ||
923 | { | ||
924 | s32 timeout = PHY_CFG_TIMEOUT; | ||
925 | |||
926 | while (timeout) { | ||
927 | if (er32(EEMNGCTL) & | ||
928 | E1000_NVM_CFG_DONE_PORT_0) | ||
929 | break; | ||
930 | usleep_range(1000, 2000); | ||
931 | timeout--; | ||
932 | } | ||
933 | if (!timeout) { | ||
934 | e_dbg("MNG configuration cycle has not completed.\n"); | ||
935 | return -E1000_ERR_RESET; | ||
936 | } | ||
937 | |||
938 | return 0; | ||
939 | } | ||
940 | |||
941 | /** | ||
942 | * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state | ||
943 | * @hw: pointer to the HW structure | ||
944 | * @active: true to enable LPLU, false to disable | ||
945 | * | ||
946 | * Sets the LPLU D0 state according to the active flag. When activating LPLU | ||
947 | * this function also disables smart speed and vice versa. LPLU will not be | ||
948 | * activated unless the device autonegotiation advertisement meets standards | ||
949 | * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function | ||
950 | * pointer entry point only called by PHY setup routines. | ||
951 | **/ | ||
952 | static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) | ||
953 | { | ||
954 | struct e1000_phy_info *phy = &hw->phy; | ||
955 | s32 ret_val; | ||
956 | u16 data; | ||
957 | |||
958 | ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); | ||
959 | if (ret_val) | ||
960 | return ret_val; | ||
961 | |||
962 | if (active) { | ||
963 | data |= IGP02E1000_PM_D0_LPLU; | ||
964 | ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); | ||
965 | if (ret_val) | ||
966 | return ret_val; | ||
967 | |||
968 | /* When LPLU is enabled, we should disable SmartSpeed */ | ||
969 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); | ||
970 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
971 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); | ||
972 | if (ret_val) | ||
973 | return ret_val; | ||
974 | } else { | ||
975 | data &= ~IGP02E1000_PM_D0_LPLU; | ||
976 | ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); | ||
977 | /* | ||
978 | * LPLU and SmartSpeed are mutually exclusive. LPLU is used | ||
979 | * during Dx states where the power conservation is most | ||
980 | * important. During driver activity we should enable | ||
981 | * SmartSpeed, so performance is maintained. | ||
982 | */ | ||
983 | if (phy->smart_speed == e1000_smart_speed_on) { | ||
984 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
985 | &data); | ||
986 | if (ret_val) | ||
987 | return ret_val; | ||
988 | |||
989 | data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
990 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
991 | data); | ||
992 | if (ret_val) | ||
993 | return ret_val; | ||
994 | } else if (phy->smart_speed == e1000_smart_speed_off) { | ||
995 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
996 | &data); | ||
997 | if (ret_val) | ||
998 | return ret_val; | ||
999 | |||
1000 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
1001 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1002 | data); | ||
1003 | if (ret_val) | ||
1004 | return ret_val; | ||
1005 | } | ||
1006 | } | ||
1007 | |||
1008 | return 0; | ||
1009 | } | ||
1010 | |||
1011 | /** | ||
1012 | * e1000_reset_hw_82571 - Reset hardware | ||
1013 | * @hw: pointer to the HW structure | ||
1014 | * | ||
1015 | * This resets the hardware into a known state. | ||
1016 | **/ | ||
1017 | static s32 e1000_reset_hw_82571(struct e1000_hw *hw) | ||
1018 | { | ||
1019 | u32 ctrl, ctrl_ext; | ||
1020 | s32 ret_val; | ||
1021 | |||
1022 | /* | ||
1023 | * Prevent the PCI-E bus from sticking if there is no TLP connection | ||
1024 | * on the last TLP read/write transaction when MAC is reset. | ||
1025 | */ | ||
1026 | ret_val = e1000e_disable_pcie_master(hw); | ||
1027 | if (ret_val) | ||
1028 | e_dbg("PCI-E Master disable polling has failed.\n"); | ||
1029 | |||
1030 | e_dbg("Masking off all interrupts\n"); | ||
1031 | ew32(IMC, 0xffffffff); | ||
1032 | |||
1033 | ew32(RCTL, 0); | ||
1034 | ew32(TCTL, E1000_TCTL_PSP); | ||
1035 | e1e_flush(); | ||
1036 | |||
1037 | usleep_range(10000, 20000); | ||
1038 | |||
1039 | /* | ||
1040 | * Must acquire the MDIO ownership before MAC reset. | ||
1041 | * Ownership defaults to firmware after a reset. | ||
1042 | */ | ||
1043 | switch (hw->mac.type) { | ||
1044 | case e1000_82573: | ||
1045 | ret_val = e1000_get_hw_semaphore_82573(hw); | ||
1046 | break; | ||
1047 | case e1000_82574: | ||
1048 | case e1000_82583: | ||
1049 | ret_val = e1000_get_hw_semaphore_82574(hw); | ||
1050 | break; | ||
1051 | default: | ||
1052 | break; | ||
1053 | } | ||
1054 | if (ret_val) | ||
1055 | e_dbg("Cannot acquire MDIO ownership\n"); | ||
1056 | |||
1057 | ctrl = er32(CTRL); | ||
1058 | |||
1059 | e_dbg("Issuing a global reset to MAC\n"); | ||
1060 | ew32(CTRL, ctrl | E1000_CTRL_RST); | ||
1061 | |||
1062 | /* Must release MDIO ownership and mutex after MAC reset. */ | ||
1063 | switch (hw->mac.type) { | ||
1064 | case e1000_82574: | ||
1065 | case e1000_82583: | ||
1066 | e1000_put_hw_semaphore_82574(hw); | ||
1067 | break; | ||
1068 | default: | ||
1069 | break; | ||
1070 | } | ||
1071 | |||
1072 | if (hw->nvm.type == e1000_nvm_flash_hw) { | ||
1073 | udelay(10); | ||
1074 | ctrl_ext = er32(CTRL_EXT); | ||
1075 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | ||
1076 | ew32(CTRL_EXT, ctrl_ext); | ||
1077 | e1e_flush(); | ||
1078 | } | ||
1079 | |||
1080 | ret_val = e1000e_get_auto_rd_done(hw); | ||
1081 | if (ret_val) | ||
1082 | /* We don't want to continue accessing MAC registers. */ | ||
1083 | return ret_val; | ||
1084 | |||
1085 | /* | ||
1086 | * Phy configuration from NVM just starts after EECD_AUTO_RD is set. | ||
1087 | * Need to wait for Phy configuration completion before accessing | ||
1088 | * NVM and Phy. | ||
1089 | */ | ||
1090 | |||
1091 | switch (hw->mac.type) { | ||
1092 | case e1000_82573: | ||
1093 | case e1000_82574: | ||
1094 | case e1000_82583: | ||
1095 | msleep(25); | ||
1096 | break; | ||
1097 | default: | ||
1098 | break; | ||
1099 | } | ||
1100 | |||
1101 | /* Clear any pending interrupt events. */ | ||
1102 | ew32(IMC, 0xffffffff); | ||
1103 | er32(ICR); | ||
1104 | |||
1105 | if (hw->mac.type == e1000_82571) { | ||
1106 | /* Install any alternate MAC address into RAR0 */ | ||
1107 | ret_val = e1000_check_alt_mac_addr_generic(hw); | ||
1108 | if (ret_val) | ||
1109 | return ret_val; | ||
1110 | |||
1111 | e1000e_set_laa_state_82571(hw, true); | ||
1112 | } | ||
1113 | |||
1114 | /* Reinitialize the 82571 serdes link state machine */ | ||
1115 | if (hw->phy.media_type == e1000_media_type_internal_serdes) | ||
1116 | hw->mac.serdes_link_state = e1000_serdes_link_down; | ||
1117 | |||
1118 | return 0; | ||
1119 | } | ||
1120 | |||
1121 | /** | ||
1122 | * e1000_init_hw_82571 - Initialize hardware | ||
1123 | * @hw: pointer to the HW structure | ||
1124 | * | ||
1125 | * This inits the hardware readying it for operation. | ||
1126 | **/ | ||
1127 | static s32 e1000_init_hw_82571(struct e1000_hw *hw) | ||
1128 | { | ||
1129 | struct e1000_mac_info *mac = &hw->mac; | ||
1130 | u32 reg_data; | ||
1131 | s32 ret_val; | ||
1132 | u16 i, rar_count = mac->rar_entry_count; | ||
1133 | |||
1134 | e1000_initialize_hw_bits_82571(hw); | ||
1135 | |||
1136 | /* Initialize identification LED */ | ||
1137 | ret_val = e1000e_id_led_init(hw); | ||
1138 | if (ret_val) | ||
1139 | e_dbg("Error initializing identification LED\n"); | ||
1140 | /* This is not fatal and we should not stop init due to this */ | ||
1141 | |||
1142 | /* Disabling VLAN filtering */ | ||
1143 | e_dbg("Initializing the IEEE VLAN\n"); | ||
1144 | mac->ops.clear_vfta(hw); | ||
1145 | |||
1146 | /* Setup the receive address. */ | ||
1147 | /* | ||
1148 | * If, however, a locally administered address was assigned to the | ||
1149 | * 82571, we must reserve a RAR for it to work around an issue where | ||
1150 | * resetting one port will reload the MAC on the other port. | ||
1151 | */ | ||
1152 | if (e1000e_get_laa_state_82571(hw)) | ||
1153 | rar_count--; | ||
1154 | e1000e_init_rx_addrs(hw, rar_count); | ||
1155 | |||
1156 | /* Zero out the Multicast HASH table */ | ||
1157 | e_dbg("Zeroing the MTA\n"); | ||
1158 | for (i = 0; i < mac->mta_reg_count; i++) | ||
1159 | E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); | ||
1160 | |||
1161 | /* Setup link and flow control */ | ||
1162 | ret_val = e1000_setup_link_82571(hw); | ||
1163 | |||
1164 | /* Set the transmit descriptor write-back policy */ | ||
1165 | reg_data = er32(TXDCTL(0)); | ||
1166 | reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | | ||
1167 | E1000_TXDCTL_FULL_TX_DESC_WB | | ||
1168 | E1000_TXDCTL_COUNT_DESC; | ||
1169 | ew32(TXDCTL(0), reg_data); | ||
1170 | |||
1171 | /* ...for both queues. */ | ||
1172 | switch (mac->type) { | ||
1173 | case e1000_82573: | ||
1174 | e1000e_enable_tx_pkt_filtering(hw); | ||
1175 | /* fall through */ | ||
1176 | case e1000_82574: | ||
1177 | case e1000_82583: | ||
1178 | reg_data = er32(GCR); | ||
1179 | reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; | ||
1180 | ew32(GCR, reg_data); | ||
1181 | break; | ||
1182 | default: | ||
1183 | reg_data = er32(TXDCTL(1)); | ||
1184 | reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | | ||
1185 | E1000_TXDCTL_FULL_TX_DESC_WB | | ||
1186 | E1000_TXDCTL_COUNT_DESC; | ||
1187 | ew32(TXDCTL(1), reg_data); | ||
1188 | break; | ||
1189 | } | ||
1190 | |||
1191 | /* | ||
1192 | * Clear all of the statistics registers (clear on read). It is | ||
1193 | * important that we do this after we have tried to establish link | ||
1194 | * because the symbol error count will increment wildly if there | ||
1195 | * is no link. | ||
1196 | */ | ||
1197 | e1000_clear_hw_cntrs_82571(hw); | ||
1198 | |||
1199 | return ret_val; | ||
1200 | } | ||
1201 | |||
1202 | /** | ||
1203 | * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits | ||
1204 | * @hw: pointer to the HW structure | ||
1205 | * | ||
1206 | * Initializes required hardware-dependent bits needed for normal operation. | ||
1207 | **/ | ||
1208 | static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw) | ||
1209 | { | ||
1210 | u32 reg; | ||
1211 | |||
1212 | /* Transmit Descriptor Control 0 */ | ||
1213 | reg = er32(TXDCTL(0)); | ||
1214 | reg |= (1 << 22); | ||
1215 | ew32(TXDCTL(0), reg); | ||
1216 | |||
1217 | /* Transmit Descriptor Control 1 */ | ||
1218 | reg = er32(TXDCTL(1)); | ||
1219 | reg |= (1 << 22); | ||
1220 | ew32(TXDCTL(1), reg); | ||
1221 | |||
1222 | /* Transmit Arbitration Control 0 */ | ||
1223 | reg = er32(TARC(0)); | ||
1224 | reg &= ~(0xF << 27); /* 30:27 */ | ||
1225 | switch (hw->mac.type) { | ||
1226 | case e1000_82571: | ||
1227 | case e1000_82572: | ||
1228 | reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26); | ||
1229 | break; | ||
1230 | default: | ||
1231 | break; | ||
1232 | } | ||
1233 | ew32(TARC(0), reg); | ||
1234 | |||
1235 | /* Transmit Arbitration Control 1 */ | ||
1236 | reg = er32(TARC(1)); | ||
1237 | switch (hw->mac.type) { | ||
1238 | case e1000_82571: | ||
1239 | case e1000_82572: | ||
1240 | reg &= ~((1 << 29) | (1 << 30)); | ||
1241 | reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26); | ||
1242 | if (er32(TCTL) & E1000_TCTL_MULR) | ||
1243 | reg &= ~(1 << 28); | ||
1244 | else | ||
1245 | reg |= (1 << 28); | ||
1246 | ew32(TARC(1), reg); | ||
1247 | break; | ||
1248 | default: | ||
1249 | break; | ||
1250 | } | ||
1251 | |||
1252 | /* Device Control */ | ||
1253 | switch (hw->mac.type) { | ||
1254 | case e1000_82573: | ||
1255 | case e1000_82574: | ||
1256 | case e1000_82583: | ||
1257 | reg = er32(CTRL); | ||
1258 | reg &= ~(1 << 29); | ||
1259 | ew32(CTRL, reg); | ||
1260 | break; | ||
1261 | default: | ||
1262 | break; | ||
1263 | } | ||
1264 | |||
1265 | /* Extended Device Control */ | ||
1266 | switch (hw->mac.type) { | ||
1267 | case e1000_82573: | ||
1268 | case e1000_82574: | ||
1269 | case e1000_82583: | ||
1270 | reg = er32(CTRL_EXT); | ||
1271 | reg &= ~(1 << 23); | ||
1272 | reg |= (1 << 22); | ||
1273 | ew32(CTRL_EXT, reg); | ||
1274 | break; | ||
1275 | default: | ||
1276 | break; | ||
1277 | } | ||
1278 | |||
1279 | if (hw->mac.type == e1000_82571) { | ||
1280 | reg = er32(PBA_ECC); | ||
1281 | reg |= E1000_PBA_ECC_CORR_EN; | ||
1282 | ew32(PBA_ECC, reg); | ||
1283 | } | ||
1284 | /* | ||
1285 | * Workaround for hardware errata. | ||
1286 | * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572 | ||
1287 | */ | ||
1288 | |||
1289 | if ((hw->mac.type == e1000_82571) || | ||
1290 | (hw->mac.type == e1000_82572)) { | ||
1291 | reg = er32(CTRL_EXT); | ||
1292 | reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN; | ||
1293 | ew32(CTRL_EXT, reg); | ||
1294 | } | ||
1295 | |||
1296 | |||
1297 | /* PCI-Ex Control Registers */ | ||
1298 | switch (hw->mac.type) { | ||
1299 | case e1000_82574: | ||
1300 | case e1000_82583: | ||
1301 | reg = er32(GCR); | ||
1302 | reg |= (1 << 22); | ||
1303 | ew32(GCR, reg); | ||
1304 | |||
1305 | /* | ||
1306 | * Workaround for hardware errata. | ||
1307 | * apply workaround for hardware errata documented in errata | ||
1308 | * docs Fixes issue where some error prone or unreliable PCIe | ||
1309 | * completions are occurring, particularly with ASPM enabled. | ||
1310 | * Without fix, issue can cause Tx timeouts. | ||
1311 | */ | ||
1312 | reg = er32(GCR2); | ||
1313 | reg |= 1; | ||
1314 | ew32(GCR2, reg); | ||
1315 | break; | ||
1316 | default: | ||
1317 | break; | ||
1318 | } | ||
1319 | } | ||
1320 | |||
1321 | /** | ||
1322 | * e1000_clear_vfta_82571 - Clear VLAN filter table | ||
1323 | * @hw: pointer to the HW structure | ||
1324 | * | ||
1325 | * Clears the register array which contains the VLAN filter table by | ||
1326 | * setting all the values to 0. | ||
1327 | **/ | ||
1328 | static void e1000_clear_vfta_82571(struct e1000_hw *hw) | ||
1329 | { | ||
1330 | u32 offset; | ||
1331 | u32 vfta_value = 0; | ||
1332 | u32 vfta_offset = 0; | ||
1333 | u32 vfta_bit_in_reg = 0; | ||
1334 | |||
1335 | switch (hw->mac.type) { | ||
1336 | case e1000_82573: | ||
1337 | case e1000_82574: | ||
1338 | case e1000_82583: | ||
1339 | if (hw->mng_cookie.vlan_id != 0) { | ||
1340 | /* | ||
1341 | * The VFTA is a 4096b bit-field, each identifying | ||
1342 | * a single VLAN ID. The following operations | ||
1343 | * determine which 32b entry (i.e. offset) into the | ||
1344 | * array we want to set the VLAN ID (i.e. bit) of | ||
1345 | * the manageability unit. | ||
1346 | */ | ||
1347 | vfta_offset = (hw->mng_cookie.vlan_id >> | ||
1348 | E1000_VFTA_ENTRY_SHIFT) & | ||
1349 | E1000_VFTA_ENTRY_MASK; | ||
1350 | vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & | ||
1351 | E1000_VFTA_ENTRY_BIT_SHIFT_MASK); | ||
1352 | } | ||
1353 | break; | ||
1354 | default: | ||
1355 | break; | ||
1356 | } | ||
1357 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | ||
1358 | /* | ||
1359 | * If the offset we want to clear is the same offset of the | ||
1360 | * manageability VLAN ID, then clear all bits except that of | ||
1361 | * the manageability unit. | ||
1362 | */ | ||
1363 | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; | ||
1364 | E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); | ||
1365 | e1e_flush(); | ||
1366 | } | ||
1367 | } | ||
1368 | |||
1369 | /** | ||
1370 | * e1000_check_mng_mode_82574 - Check manageability is enabled | ||
1371 | * @hw: pointer to the HW structure | ||
1372 | * | ||
1373 | * Reads the NVM Initialization Control Word 2 and returns true | ||
1374 | * (>0) if any manageability is enabled, else false (0). | ||
1375 | **/ | ||
1376 | static bool e1000_check_mng_mode_82574(struct e1000_hw *hw) | ||
1377 | { | ||
1378 | u16 data; | ||
1379 | |||
1380 | e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data); | ||
1381 | return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0; | ||
1382 | } | ||
1383 | |||
1384 | /** | ||
1385 | * e1000_led_on_82574 - Turn LED on | ||
1386 | * @hw: pointer to the HW structure | ||
1387 | * | ||
1388 | * Turn LED on. | ||
1389 | **/ | ||
1390 | static s32 e1000_led_on_82574(struct e1000_hw *hw) | ||
1391 | { | ||
1392 | u32 ctrl; | ||
1393 | u32 i; | ||
1394 | |||
1395 | ctrl = hw->mac.ledctl_mode2; | ||
1396 | if (!(E1000_STATUS_LU & er32(STATUS))) { | ||
1397 | /* | ||
1398 | * If no link, then turn LED on by setting the invert bit | ||
1399 | * for each LED that's "on" (0x0E) in ledctl_mode2. | ||
1400 | */ | ||
1401 | for (i = 0; i < 4; i++) | ||
1402 | if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == | ||
1403 | E1000_LEDCTL_MODE_LED_ON) | ||
1404 | ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8)); | ||
1405 | } | ||
1406 | ew32(LEDCTL, ctrl); | ||
1407 | |||
1408 | return 0; | ||
1409 | } | ||
1410 | |||
1411 | /** | ||
1412 | * e1000_check_phy_82574 - check 82574 phy hung state | ||
1413 | * @hw: pointer to the HW structure | ||
1414 | * | ||
1415 | * Returns whether phy is hung or not | ||
1416 | **/ | ||
1417 | bool e1000_check_phy_82574(struct e1000_hw *hw) | ||
1418 | { | ||
1419 | u16 status_1kbt = 0; | ||
1420 | u16 receive_errors = 0; | ||
1421 | bool phy_hung = false; | ||
1422 | s32 ret_val = 0; | ||
1423 | |||
1424 | /* | ||
1425 | * Read PHY Receive Error counter first, if its is max - all F's then | ||
1426 | * read the Base1000T status register If both are max then PHY is hung. | ||
1427 | */ | ||
1428 | ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors); | ||
1429 | |||
1430 | if (ret_val) | ||
1431 | goto out; | ||
1432 | if (receive_errors == E1000_RECEIVE_ERROR_MAX) { | ||
1433 | ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt); | ||
1434 | if (ret_val) | ||
1435 | goto out; | ||
1436 | if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) == | ||
1437 | E1000_IDLE_ERROR_COUNT_MASK) | ||
1438 | phy_hung = true; | ||
1439 | } | ||
1440 | out: | ||
1441 | return phy_hung; | ||
1442 | } | ||
1443 | |||
1444 | /** | ||
1445 | * e1000_setup_link_82571 - Setup flow control and link settings | ||
1446 | * @hw: pointer to the HW structure | ||
1447 | * | ||
1448 | * Determines which flow control settings to use, then configures flow | ||
1449 | * control. Calls the appropriate media-specific link configuration | ||
1450 | * function. Assuming the adapter has a valid link partner, a valid link | ||
1451 | * should be established. Assumes the hardware has previously been reset | ||
1452 | * and the transmitter and receiver are not enabled. | ||
1453 | **/ | ||
1454 | static s32 e1000_setup_link_82571(struct e1000_hw *hw) | ||
1455 | { | ||
1456 | /* | ||
1457 | * 82573 does not have a word in the NVM to determine | ||
1458 | * the default flow control setting, so we explicitly | ||
1459 | * set it to full. | ||
1460 | */ | ||
1461 | switch (hw->mac.type) { | ||
1462 | case e1000_82573: | ||
1463 | case e1000_82574: | ||
1464 | case e1000_82583: | ||
1465 | if (hw->fc.requested_mode == e1000_fc_default) | ||
1466 | hw->fc.requested_mode = e1000_fc_full; | ||
1467 | break; | ||
1468 | default: | ||
1469 | break; | ||
1470 | } | ||
1471 | |||
1472 | return e1000e_setup_link(hw); | ||
1473 | } | ||
1474 | |||
1475 | /** | ||
1476 | * e1000_setup_copper_link_82571 - Configure copper link settings | ||
1477 | * @hw: pointer to the HW structure | ||
1478 | * | ||
1479 | * Configures the link for auto-neg or forced speed and duplex. Then we check | ||
1480 | * for link, once link is established calls to configure collision distance | ||
1481 | * and flow control are called. | ||
1482 | **/ | ||
1483 | static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw) | ||
1484 | { | ||
1485 | u32 ctrl; | ||
1486 | s32 ret_val; | ||
1487 | |||
1488 | ctrl = er32(CTRL); | ||
1489 | ctrl |= E1000_CTRL_SLU; | ||
1490 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
1491 | ew32(CTRL, ctrl); | ||
1492 | |||
1493 | switch (hw->phy.type) { | ||
1494 | case e1000_phy_m88: | ||
1495 | case e1000_phy_bm: | ||
1496 | ret_val = e1000e_copper_link_setup_m88(hw); | ||
1497 | break; | ||
1498 | case e1000_phy_igp_2: | ||
1499 | ret_val = e1000e_copper_link_setup_igp(hw); | ||
1500 | break; | ||
1501 | default: | ||
1502 | return -E1000_ERR_PHY; | ||
1503 | break; | ||
1504 | } | ||
1505 | |||
1506 | if (ret_val) | ||
1507 | return ret_val; | ||
1508 | |||
1509 | ret_val = e1000e_setup_copper_link(hw); | ||
1510 | |||
1511 | return ret_val; | ||
1512 | } | ||
1513 | |||
1514 | /** | ||
1515 | * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes | ||
1516 | * @hw: pointer to the HW structure | ||
1517 | * | ||
1518 | * Configures collision distance and flow control for fiber and serdes links. | ||
1519 | * Upon successful setup, poll for link. | ||
1520 | **/ | ||
1521 | static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) | ||
1522 | { | ||
1523 | switch (hw->mac.type) { | ||
1524 | case e1000_82571: | ||
1525 | case e1000_82572: | ||
1526 | /* | ||
1527 | * If SerDes loopback mode is entered, there is no form | ||
1528 | * of reset to take the adapter out of that mode. So we | ||
1529 | * have to explicitly take the adapter out of loopback | ||
1530 | * mode. This prevents drivers from twiddling their thumbs | ||
1531 | * if another tool failed to take it out of loopback mode. | ||
1532 | */ | ||
1533 | ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); | ||
1534 | break; | ||
1535 | default: | ||
1536 | break; | ||
1537 | } | ||
1538 | |||
1539 | return e1000e_setup_fiber_serdes_link(hw); | ||
1540 | } | ||
1541 | |||
1542 | /** | ||
1543 | * e1000_check_for_serdes_link_82571 - Check for link (Serdes) | ||
1544 | * @hw: pointer to the HW structure | ||
1545 | * | ||
1546 | * Reports the link state as up or down. | ||
1547 | * | ||
1548 | * If autonegotiation is supported by the link partner, the link state is | ||
1549 | * determined by the result of autonegotiation. This is the most likely case. | ||
1550 | * If autonegotiation is not supported by the link partner, and the link | ||
1551 | * has a valid signal, force the link up. | ||
1552 | * | ||
1553 | * The link state is represented internally here by 4 states: | ||
1554 | * | ||
1555 | * 1) down | ||
1556 | * 2) autoneg_progress | ||
1557 | * 3) autoneg_complete (the link successfully autonegotiated) | ||
1558 | * 4) forced_up (the link has been forced up, it did not autonegotiate) | ||
1559 | * | ||
1560 | **/ | ||
1561 | static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw) | ||
1562 | { | ||
1563 | struct e1000_mac_info *mac = &hw->mac; | ||
1564 | u32 rxcw; | ||
1565 | u32 ctrl; | ||
1566 | u32 status; | ||
1567 | u32 txcw; | ||
1568 | u32 i; | ||
1569 | s32 ret_val = 0; | ||
1570 | |||
1571 | ctrl = er32(CTRL); | ||
1572 | status = er32(STATUS); | ||
1573 | rxcw = er32(RXCW); | ||
1574 | |||
1575 | if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) { | ||
1576 | |||
1577 | /* Receiver is synchronized with no invalid bits. */ | ||
1578 | switch (mac->serdes_link_state) { | ||
1579 | case e1000_serdes_link_autoneg_complete: | ||
1580 | if (!(status & E1000_STATUS_LU)) { | ||
1581 | /* | ||
1582 | * We have lost link, retry autoneg before | ||
1583 | * reporting link failure | ||
1584 | */ | ||
1585 | mac->serdes_link_state = | ||
1586 | e1000_serdes_link_autoneg_progress; | ||
1587 | mac->serdes_has_link = false; | ||
1588 | e_dbg("AN_UP -> AN_PROG\n"); | ||
1589 | } else { | ||
1590 | mac->serdes_has_link = true; | ||
1591 | } | ||
1592 | break; | ||
1593 | |||
1594 | case e1000_serdes_link_forced_up: | ||
1595 | /* | ||
1596 | * If we are receiving /C/ ordered sets, re-enable | ||
1597 | * auto-negotiation in the TXCW register and disable | ||
1598 | * forced link in the Device Control register in an | ||
1599 | * attempt to auto-negotiate with our link partner. | ||
1600 | * If the partner code word is null, stop forcing | ||
1601 | * and restart auto negotiation. | ||
1602 | */ | ||
1603 | if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW)) { | ||
1604 | /* Enable autoneg, and unforce link up */ | ||
1605 | ew32(TXCW, mac->txcw); | ||
1606 | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | ||
1607 | mac->serdes_link_state = | ||
1608 | e1000_serdes_link_autoneg_progress; | ||
1609 | mac->serdes_has_link = false; | ||
1610 | e_dbg("FORCED_UP -> AN_PROG\n"); | ||
1611 | } else { | ||
1612 | mac->serdes_has_link = true; | ||
1613 | } | ||
1614 | break; | ||
1615 | |||
1616 | case e1000_serdes_link_autoneg_progress: | ||
1617 | if (rxcw & E1000_RXCW_C) { | ||
1618 | /* | ||
1619 | * We received /C/ ordered sets, meaning the | ||
1620 | * link partner has autonegotiated, and we can | ||
1621 | * trust the Link Up (LU) status bit. | ||
1622 | */ | ||
1623 | if (status & E1000_STATUS_LU) { | ||
1624 | mac->serdes_link_state = | ||
1625 | e1000_serdes_link_autoneg_complete; | ||
1626 | e_dbg("AN_PROG -> AN_UP\n"); | ||
1627 | mac->serdes_has_link = true; | ||
1628 | } else { | ||
1629 | /* Autoneg completed, but failed. */ | ||
1630 | mac->serdes_link_state = | ||
1631 | e1000_serdes_link_down; | ||
1632 | e_dbg("AN_PROG -> DOWN\n"); | ||
1633 | } | ||
1634 | } else { | ||
1635 | /* | ||
1636 | * The link partner did not autoneg. | ||
1637 | * Force link up and full duplex, and change | ||
1638 | * state to forced. | ||
1639 | */ | ||
1640 | ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); | ||
1641 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | ||
1642 | ew32(CTRL, ctrl); | ||
1643 | |||
1644 | /* Configure Flow Control after link up. */ | ||
1645 | ret_val = e1000e_config_fc_after_link_up(hw); | ||
1646 | if (ret_val) { | ||
1647 | e_dbg("Error config flow control\n"); | ||
1648 | break; | ||
1649 | } | ||
1650 | mac->serdes_link_state = | ||
1651 | e1000_serdes_link_forced_up; | ||
1652 | mac->serdes_has_link = true; | ||
1653 | e_dbg("AN_PROG -> FORCED_UP\n"); | ||
1654 | } | ||
1655 | break; | ||
1656 | |||
1657 | case e1000_serdes_link_down: | ||
1658 | default: | ||
1659 | /* | ||
1660 | * The link was down but the receiver has now gained | ||
1661 | * valid sync, so lets see if we can bring the link | ||
1662 | * up. | ||
1663 | */ | ||
1664 | ew32(TXCW, mac->txcw); | ||
1665 | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | ||
1666 | mac->serdes_link_state = | ||
1667 | e1000_serdes_link_autoneg_progress; | ||
1668 | mac->serdes_has_link = false; | ||
1669 | e_dbg("DOWN -> AN_PROG\n"); | ||
1670 | break; | ||
1671 | } | ||
1672 | } else { | ||
1673 | if (!(rxcw & E1000_RXCW_SYNCH)) { | ||
1674 | mac->serdes_has_link = false; | ||
1675 | mac->serdes_link_state = e1000_serdes_link_down; | ||
1676 | e_dbg("ANYSTATE -> DOWN\n"); | ||
1677 | } else { | ||
1678 | /* | ||
1679 | * Check several times, if Sync and Config | ||
1680 | * both are consistently 1 then simply ignore | ||
1681 | * the Invalid bit and restart Autoneg | ||
1682 | */ | ||
1683 | for (i = 0; i < AN_RETRY_COUNT; i++) { | ||
1684 | udelay(10); | ||
1685 | rxcw = er32(RXCW); | ||
1686 | if ((rxcw & E1000_RXCW_IV) && | ||
1687 | !((rxcw & E1000_RXCW_SYNCH) && | ||
1688 | (rxcw & E1000_RXCW_C))) { | ||
1689 | mac->serdes_has_link = false; | ||
1690 | mac->serdes_link_state = | ||
1691 | e1000_serdes_link_down; | ||
1692 | e_dbg("ANYSTATE -> DOWN\n"); | ||
1693 | break; | ||
1694 | } | ||
1695 | } | ||
1696 | |||
1697 | if (i == AN_RETRY_COUNT) { | ||
1698 | txcw = er32(TXCW); | ||
1699 | txcw |= E1000_TXCW_ANE; | ||
1700 | ew32(TXCW, txcw); | ||
1701 | mac->serdes_link_state = | ||
1702 | e1000_serdes_link_autoneg_progress; | ||
1703 | mac->serdes_has_link = false; | ||
1704 | e_dbg("ANYSTATE -> AN_PROG\n"); | ||
1705 | } | ||
1706 | } | ||
1707 | } | ||
1708 | |||
1709 | return ret_val; | ||
1710 | } | ||
1711 | |||
1712 | /** | ||
1713 | * e1000_valid_led_default_82571 - Verify a valid default LED config | ||
1714 | * @hw: pointer to the HW structure | ||
1715 | * @data: pointer to the NVM (EEPROM) | ||
1716 | * | ||
1717 | * Read the EEPROM for the current default LED configuration. If the | ||
1718 | * LED configuration is not valid, set to a valid LED configuration. | ||
1719 | **/ | ||
1720 | static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data) | ||
1721 | { | ||
1722 | s32 ret_val; | ||
1723 | |||
1724 | ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); | ||
1725 | if (ret_val) { | ||
1726 | e_dbg("NVM Read Error\n"); | ||
1727 | return ret_val; | ||
1728 | } | ||
1729 | |||
1730 | switch (hw->mac.type) { | ||
1731 | case e1000_82573: | ||
1732 | case e1000_82574: | ||
1733 | case e1000_82583: | ||
1734 | if (*data == ID_LED_RESERVED_F746) | ||
1735 | *data = ID_LED_DEFAULT_82573; | ||
1736 | break; | ||
1737 | default: | ||
1738 | if (*data == ID_LED_RESERVED_0000 || | ||
1739 | *data == ID_LED_RESERVED_FFFF) | ||
1740 | *data = ID_LED_DEFAULT; | ||
1741 | break; | ||
1742 | } | ||
1743 | |||
1744 | return 0; | ||
1745 | } | ||
1746 | |||
1747 | /** | ||
1748 | * e1000e_get_laa_state_82571 - Get locally administered address state | ||
1749 | * @hw: pointer to the HW structure | ||
1750 | * | ||
1751 | * Retrieve and return the current locally administered address state. | ||
1752 | **/ | ||
1753 | bool e1000e_get_laa_state_82571(struct e1000_hw *hw) | ||
1754 | { | ||
1755 | if (hw->mac.type != e1000_82571) | ||
1756 | return false; | ||
1757 | |||
1758 | return hw->dev_spec.e82571.laa_is_present; | ||
1759 | } | ||
1760 | |||
1761 | /** | ||
1762 | * e1000e_set_laa_state_82571 - Set locally administered address state | ||
1763 | * @hw: pointer to the HW structure | ||
1764 | * @state: enable/disable locally administered address | ||
1765 | * | ||
1766 | * Enable/Disable the current locally administered address state. | ||
1767 | **/ | ||
1768 | void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state) | ||
1769 | { | ||
1770 | if (hw->mac.type != e1000_82571) | ||
1771 | return; | ||
1772 | |||
1773 | hw->dev_spec.e82571.laa_is_present = state; | ||
1774 | |||
1775 | /* If workaround is activated... */ | ||
1776 | if (state) | ||
1777 | /* | ||
1778 | * Hold a copy of the LAA in RAR[14] This is done so that | ||
1779 | * between the time RAR[0] gets clobbered and the time it | ||
1780 | * gets fixed, the actual LAA is in one of the RARs and no | ||
1781 | * incoming packets directed to this port are dropped. | ||
1782 | * Eventually the LAA will be in RAR[0] and RAR[14]. | ||
1783 | */ | ||
1784 | e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1); | ||
1785 | } | ||
1786 | |||
1787 | /** | ||
1788 | * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum | ||
1789 | * @hw: pointer to the HW structure | ||
1790 | * | ||
1791 | * Verifies that the EEPROM has completed the update. After updating the | ||
1792 | * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If | ||
1793 | * the checksum fix is not implemented, we need to set the bit and update | ||
1794 | * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect, | ||
1795 | * we need to return bad checksum. | ||
1796 | **/ | ||
1797 | static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) | ||
1798 | { | ||
1799 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
1800 | s32 ret_val; | ||
1801 | u16 data; | ||
1802 | |||
1803 | if (nvm->type != e1000_nvm_flash_hw) | ||
1804 | return 0; | ||
1805 | |||
1806 | /* | ||
1807 | * Check bit 4 of word 10h. If it is 0, firmware is done updating | ||
1808 | * 10h-12h. Checksum may need to be fixed. | ||
1809 | */ | ||
1810 | ret_val = e1000_read_nvm(hw, 0x10, 1, &data); | ||
1811 | if (ret_val) | ||
1812 | return ret_val; | ||
1813 | |||
1814 | if (!(data & 0x10)) { | ||
1815 | /* | ||
1816 | * Read 0x23 and check bit 15. This bit is a 1 | ||
1817 | * when the checksum has already been fixed. If | ||
1818 | * the checksum is still wrong and this bit is a | ||
1819 | * 1, we need to return bad checksum. Otherwise, | ||
1820 | * we need to set this bit to a 1 and update the | ||
1821 | * checksum. | ||
1822 | */ | ||
1823 | ret_val = e1000_read_nvm(hw, 0x23, 1, &data); | ||
1824 | if (ret_val) | ||
1825 | return ret_val; | ||
1826 | |||
1827 | if (!(data & 0x8000)) { | ||
1828 | data |= 0x8000; | ||
1829 | ret_val = e1000_write_nvm(hw, 0x23, 1, &data); | ||
1830 | if (ret_val) | ||
1831 | return ret_val; | ||
1832 | ret_val = e1000e_update_nvm_checksum(hw); | ||
1833 | } | ||
1834 | } | ||
1835 | |||
1836 | return 0; | ||
1837 | } | ||
1838 | |||
1839 | /** | ||
1840 | * e1000_read_mac_addr_82571 - Read device MAC address | ||
1841 | * @hw: pointer to the HW structure | ||
1842 | **/ | ||
1843 | static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw) | ||
1844 | { | ||
1845 | s32 ret_val = 0; | ||
1846 | |||
1847 | if (hw->mac.type == e1000_82571) { | ||
1848 | /* | ||
1849 | * If there's an alternate MAC address place it in RAR0 | ||
1850 | * so that it will override the Si installed default perm | ||
1851 | * address. | ||
1852 | */ | ||
1853 | ret_val = e1000_check_alt_mac_addr_generic(hw); | ||
1854 | if (ret_val) | ||
1855 | goto out; | ||
1856 | } | ||
1857 | |||
1858 | ret_val = e1000_read_mac_addr_generic(hw); | ||
1859 | |||
1860 | out: | ||
1861 | return ret_val; | ||
1862 | } | ||
1863 | |||
1864 | /** | ||
1865 | * e1000_power_down_phy_copper_82571 - Remove link during PHY power down | ||
1866 | * @hw: pointer to the HW structure | ||
1867 | * | ||
1868 | * In the case of a PHY power down to save power, or to turn off link during a | ||
1869 | * driver unload, or wake on lan is not enabled, remove the link. | ||
1870 | **/ | ||
1871 | static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw) | ||
1872 | { | ||
1873 | struct e1000_phy_info *phy = &hw->phy; | ||
1874 | struct e1000_mac_info *mac = &hw->mac; | ||
1875 | |||
1876 | if (!(phy->ops.check_reset_block)) | ||
1877 | return; | ||
1878 | |||
1879 | /* If the management interface is not enabled, then power down */ | ||
1880 | if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw))) | ||
1881 | e1000_power_down_phy_copper(hw); | ||
1882 | } | ||
1883 | |||
1884 | /** | ||
1885 | * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters | ||
1886 | * @hw: pointer to the HW structure | ||
1887 | * | ||
1888 | * Clears the hardware counters by reading the counter registers. | ||
1889 | **/ | ||
1890 | static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) | ||
1891 | { | ||
1892 | e1000e_clear_hw_cntrs_base(hw); | ||
1893 | |||
1894 | er32(PRC64); | ||
1895 | er32(PRC127); | ||
1896 | er32(PRC255); | ||
1897 | er32(PRC511); | ||
1898 | er32(PRC1023); | ||
1899 | er32(PRC1522); | ||
1900 | er32(PTC64); | ||
1901 | er32(PTC127); | ||
1902 | er32(PTC255); | ||
1903 | er32(PTC511); | ||
1904 | er32(PTC1023); | ||
1905 | er32(PTC1522); | ||
1906 | |||
1907 | er32(ALGNERRC); | ||
1908 | er32(RXERRC); | ||
1909 | er32(TNCRS); | ||
1910 | er32(CEXTERR); | ||
1911 | er32(TSCTC); | ||
1912 | er32(TSCTFC); | ||
1913 | |||
1914 | er32(MGTPRC); | ||
1915 | er32(MGTPDC); | ||
1916 | er32(MGTPTC); | ||
1917 | |||
1918 | er32(IAC); | ||
1919 | er32(ICRXOC); | ||
1920 | |||
1921 | er32(ICRXPTC); | ||
1922 | er32(ICRXATC); | ||
1923 | er32(ICTXPTC); | ||
1924 | er32(ICTXATC); | ||
1925 | er32(ICTXQEC); | ||
1926 | er32(ICTXQMTC); | ||
1927 | er32(ICRXDMTC); | ||
1928 | } | ||
1929 | |||
1930 | static struct e1000_mac_operations e82571_mac_ops = { | ||
1931 | /* .check_mng_mode: mac type dependent */ | ||
1932 | /* .check_for_link: media type dependent */ | ||
1933 | .id_led_init = e1000e_id_led_init, | ||
1934 | .cleanup_led = e1000e_cleanup_led_generic, | ||
1935 | .clear_hw_cntrs = e1000_clear_hw_cntrs_82571, | ||
1936 | .get_bus_info = e1000e_get_bus_info_pcie, | ||
1937 | .set_lan_id = e1000_set_lan_id_multi_port_pcie, | ||
1938 | /* .get_link_up_info: media type dependent */ | ||
1939 | /* .led_on: mac type dependent */ | ||
1940 | .led_off = e1000e_led_off_generic, | ||
1941 | .update_mc_addr_list = e1000e_update_mc_addr_list_generic, | ||
1942 | .write_vfta = e1000_write_vfta_generic, | ||
1943 | .clear_vfta = e1000_clear_vfta_82571, | ||
1944 | .reset_hw = e1000_reset_hw_82571, | ||
1945 | .init_hw = e1000_init_hw_82571, | ||
1946 | .setup_link = e1000_setup_link_82571, | ||
1947 | /* .setup_physical_interface: media type dependent */ | ||
1948 | .setup_led = e1000e_setup_led_generic, | ||
1949 | .read_mac_addr = e1000_read_mac_addr_82571, | ||
1950 | }; | ||
1951 | |||
1952 | static struct e1000_phy_operations e82_phy_ops_igp = { | ||
1953 | .acquire = e1000_get_hw_semaphore_82571, | ||
1954 | .check_polarity = e1000_check_polarity_igp, | ||
1955 | .check_reset_block = e1000e_check_reset_block_generic, | ||
1956 | .commit = NULL, | ||
1957 | .force_speed_duplex = e1000e_phy_force_speed_duplex_igp, | ||
1958 | .get_cfg_done = e1000_get_cfg_done_82571, | ||
1959 | .get_cable_length = e1000e_get_cable_length_igp_2, | ||
1960 | .get_info = e1000e_get_phy_info_igp, | ||
1961 | .read_reg = e1000e_read_phy_reg_igp, | ||
1962 | .release = e1000_put_hw_semaphore_82571, | ||
1963 | .reset = e1000e_phy_hw_reset_generic, | ||
1964 | .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, | ||
1965 | .set_d3_lplu_state = e1000e_set_d3_lplu_state, | ||
1966 | .write_reg = e1000e_write_phy_reg_igp, | ||
1967 | .cfg_on_link_up = NULL, | ||
1968 | }; | ||
1969 | |||
1970 | static struct e1000_phy_operations e82_phy_ops_m88 = { | ||
1971 | .acquire = e1000_get_hw_semaphore_82571, | ||
1972 | .check_polarity = e1000_check_polarity_m88, | ||
1973 | .check_reset_block = e1000e_check_reset_block_generic, | ||
1974 | .commit = e1000e_phy_sw_reset, | ||
1975 | .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, | ||
1976 | .get_cfg_done = e1000e_get_cfg_done, | ||
1977 | .get_cable_length = e1000e_get_cable_length_m88, | ||
1978 | .get_info = e1000e_get_phy_info_m88, | ||
1979 | .read_reg = e1000e_read_phy_reg_m88, | ||
1980 | .release = e1000_put_hw_semaphore_82571, | ||
1981 | .reset = e1000e_phy_hw_reset_generic, | ||
1982 | .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, | ||
1983 | .set_d3_lplu_state = e1000e_set_d3_lplu_state, | ||
1984 | .write_reg = e1000e_write_phy_reg_m88, | ||
1985 | .cfg_on_link_up = NULL, | ||
1986 | }; | ||
1987 | |||
1988 | static struct e1000_phy_operations e82_phy_ops_bm = { | ||
1989 | .acquire = e1000_get_hw_semaphore_82571, | ||
1990 | .check_polarity = e1000_check_polarity_m88, | ||
1991 | .check_reset_block = e1000e_check_reset_block_generic, | ||
1992 | .commit = e1000e_phy_sw_reset, | ||
1993 | .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, | ||
1994 | .get_cfg_done = e1000e_get_cfg_done, | ||
1995 | .get_cable_length = e1000e_get_cable_length_m88, | ||
1996 | .get_info = e1000e_get_phy_info_m88, | ||
1997 | .read_reg = e1000e_read_phy_reg_bm2, | ||
1998 | .release = e1000_put_hw_semaphore_82571, | ||
1999 | .reset = e1000e_phy_hw_reset_generic, | ||
2000 | .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, | ||
2001 | .set_d3_lplu_state = e1000e_set_d3_lplu_state, | ||
2002 | .write_reg = e1000e_write_phy_reg_bm2, | ||
2003 | .cfg_on_link_up = NULL, | ||
2004 | }; | ||
2005 | |||
2006 | static struct e1000_nvm_operations e82571_nvm_ops = { | ||
2007 | .acquire = e1000_acquire_nvm_82571, | ||
2008 | .read = e1000e_read_nvm_eerd, | ||
2009 | .release = e1000_release_nvm_82571, | ||
2010 | .update = e1000_update_nvm_checksum_82571, | ||
2011 | .valid_led_default = e1000_valid_led_default_82571, | ||
2012 | .validate = e1000_validate_nvm_checksum_82571, | ||
2013 | .write = e1000_write_nvm_82571, | ||
2014 | }; | ||
2015 | |||
2016 | struct e1000_info e1000_82571_info = { | ||
2017 | .mac = e1000_82571, | ||
2018 | .flags = FLAG_HAS_HW_VLAN_FILTER | ||
2019 | | FLAG_HAS_JUMBO_FRAMES | ||
2020 | | FLAG_HAS_WOL | ||
2021 | | FLAG_APME_IN_CTRL3 | ||
2022 | | FLAG_RX_CSUM_ENABLED | ||
2023 | | FLAG_HAS_CTRLEXT_ON_LOAD | ||
2024 | | FLAG_HAS_SMART_POWER_DOWN | ||
2025 | | FLAG_RESET_OVERWRITES_LAA /* errata */ | ||
2026 | | FLAG_TARC_SPEED_MODE_BIT /* errata */ | ||
2027 | | FLAG_APME_CHECK_PORT_B, | ||
2028 | .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */ | ||
2029 | | FLAG2_DMA_BURST, | ||
2030 | .pba = 38, | ||
2031 | .max_hw_frame_size = DEFAULT_JUMBO, | ||
2032 | .get_variants = e1000_get_variants_82571, | ||
2033 | .mac_ops = &e82571_mac_ops, | ||
2034 | .phy_ops = &e82_phy_ops_igp, | ||
2035 | .nvm_ops = &e82571_nvm_ops, | ||
2036 | }; | ||
2037 | |||
2038 | struct e1000_info e1000_82572_info = { | ||
2039 | .mac = e1000_82572, | ||
2040 | .flags = FLAG_HAS_HW_VLAN_FILTER | ||
2041 | | FLAG_HAS_JUMBO_FRAMES | ||
2042 | | FLAG_HAS_WOL | ||
2043 | | FLAG_APME_IN_CTRL3 | ||
2044 | | FLAG_RX_CSUM_ENABLED | ||
2045 | | FLAG_HAS_CTRLEXT_ON_LOAD | ||
2046 | | FLAG_TARC_SPEED_MODE_BIT, /* errata */ | ||
2047 | .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */ | ||
2048 | | FLAG2_DMA_BURST, | ||
2049 | .pba = 38, | ||
2050 | .max_hw_frame_size = DEFAULT_JUMBO, | ||
2051 | .get_variants = e1000_get_variants_82571, | ||
2052 | .mac_ops = &e82571_mac_ops, | ||
2053 | .phy_ops = &e82_phy_ops_igp, | ||
2054 | .nvm_ops = &e82571_nvm_ops, | ||
2055 | }; | ||
2056 | |||
2057 | struct e1000_info e1000_82573_info = { | ||
2058 | .mac = e1000_82573, | ||
2059 | .flags = FLAG_HAS_HW_VLAN_FILTER | ||
2060 | | FLAG_HAS_WOL | ||
2061 | | FLAG_APME_IN_CTRL3 | ||
2062 | | FLAG_RX_CSUM_ENABLED | ||
2063 | | FLAG_HAS_SMART_POWER_DOWN | ||
2064 | | FLAG_HAS_AMT | ||
2065 | | FLAG_HAS_SWSM_ON_LOAD, | ||
2066 | .flags2 = FLAG2_DISABLE_ASPM_L1 | ||
2067 | | FLAG2_DISABLE_ASPM_L0S, | ||
2068 | .pba = 20, | ||
2069 | .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN, | ||
2070 | .get_variants = e1000_get_variants_82571, | ||
2071 | .mac_ops = &e82571_mac_ops, | ||
2072 | .phy_ops = &e82_phy_ops_m88, | ||
2073 | .nvm_ops = &e82571_nvm_ops, | ||
2074 | }; | ||
2075 | |||
2076 | struct e1000_info e1000_82574_info = { | ||
2077 | .mac = e1000_82574, | ||
2078 | .flags = FLAG_HAS_HW_VLAN_FILTER | ||
2079 | | FLAG_HAS_MSIX | ||
2080 | | FLAG_HAS_JUMBO_FRAMES | ||
2081 | | FLAG_HAS_WOL | ||
2082 | | FLAG_APME_IN_CTRL3 | ||
2083 | | FLAG_RX_CSUM_ENABLED | ||
2084 | | FLAG_HAS_SMART_POWER_DOWN | ||
2085 | | FLAG_HAS_AMT | ||
2086 | | FLAG_HAS_CTRLEXT_ON_LOAD, | ||
2087 | .flags2 = FLAG2_CHECK_PHY_HANG | ||
2088 | | FLAG2_DISABLE_ASPM_L0S | ||
2089 | | FLAG2_NO_DISABLE_RX, | ||
2090 | .pba = 32, | ||
2091 | .max_hw_frame_size = DEFAULT_JUMBO, | ||
2092 | .get_variants = e1000_get_variants_82571, | ||
2093 | .mac_ops = &e82571_mac_ops, | ||
2094 | .phy_ops = &e82_phy_ops_bm, | ||
2095 | .nvm_ops = &e82571_nvm_ops, | ||
2096 | }; | ||
2097 | |||
2098 | struct e1000_info e1000_82583_info = { | ||
2099 | .mac = e1000_82583, | ||
2100 | .flags = FLAG_HAS_HW_VLAN_FILTER | ||
2101 | | FLAG_HAS_WOL | ||
2102 | | FLAG_APME_IN_CTRL3 | ||
2103 | | FLAG_RX_CSUM_ENABLED | ||
2104 | | FLAG_HAS_SMART_POWER_DOWN | ||
2105 | | FLAG_HAS_AMT | ||
2106 | | FLAG_HAS_JUMBO_FRAMES | ||
2107 | | FLAG_HAS_CTRLEXT_ON_LOAD, | ||
2108 | .flags2 = FLAG2_DISABLE_ASPM_L0S | ||
2109 | | FLAG2_NO_DISABLE_RX, | ||
2110 | .pba = 32, | ||
2111 | .max_hw_frame_size = DEFAULT_JUMBO, | ||
2112 | .get_variants = e1000_get_variants_82571, | ||
2113 | .mac_ops = &e82571_mac_ops, | ||
2114 | .phy_ops = &e82_phy_ops_bm, | ||
2115 | .nvm_ops = &e82571_nvm_ops, | ||
2116 | }; | ||
2117 | |||