diff options
author | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
---|---|---|
committer | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
commit | fcc9d2e5a6c89d22b8b773a64fb4ad21ac318446 (patch) | |
tree | a57612d1888735a2ec7972891b68c1ac5ec8faea /drivers/net/cxgb4vf/sge.c | |
parent | 8dea78da5cee153b8af9c07a2745f6c55057fe12 (diff) |
Diffstat (limited to 'drivers/net/cxgb4vf/sge.c')
-rw-r--r-- | drivers/net/cxgb4vf/sge.c | 2465 |
1 files changed, 2465 insertions, 0 deletions
diff --git a/drivers/net/cxgb4vf/sge.c b/drivers/net/cxgb4vf/sge.c new file mode 100644 index 00000000000..cffb328c46c --- /dev/null +++ b/drivers/net/cxgb4vf/sge.c | |||
@@ -0,0 +1,2465 @@ | |||
1 | /* | ||
2 | * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet | ||
3 | * driver for Linux. | ||
4 | * | ||
5 | * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. | ||
6 | * | ||
7 | * This software is available to you under a choice of one of two | ||
8 | * licenses. You may choose to be licensed under the terms of the GNU | ||
9 | * General Public License (GPL) Version 2, available from the file | ||
10 | * COPYING in the main directory of this source tree, or the | ||
11 | * OpenIB.org BSD license below: | ||
12 | * | ||
13 | * Redistribution and use in source and binary forms, with or | ||
14 | * without modification, are permitted provided that the following | ||
15 | * conditions are met: | ||
16 | * | ||
17 | * - Redistributions of source code must retain the above | ||
18 | * copyright notice, this list of conditions and the following | ||
19 | * disclaimer. | ||
20 | * | ||
21 | * - Redistributions in binary form must reproduce the above | ||
22 | * copyright notice, this list of conditions and the following | ||
23 | * disclaimer in the documentation and/or other materials | ||
24 | * provided with the distribution. | ||
25 | * | ||
26 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
27 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
28 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
29 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
30 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
31 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
32 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
33 | * SOFTWARE. | ||
34 | */ | ||
35 | |||
36 | #include <linux/skbuff.h> | ||
37 | #include <linux/netdevice.h> | ||
38 | #include <linux/etherdevice.h> | ||
39 | #include <linux/if_vlan.h> | ||
40 | #include <linux/ip.h> | ||
41 | #include <net/ipv6.h> | ||
42 | #include <net/tcp.h> | ||
43 | #include <linux/dma-mapping.h> | ||
44 | #include <linux/prefetch.h> | ||
45 | |||
46 | #include "t4vf_common.h" | ||
47 | #include "t4vf_defs.h" | ||
48 | |||
49 | #include "../cxgb4/t4_regs.h" | ||
50 | #include "../cxgb4/t4fw_api.h" | ||
51 | #include "../cxgb4/t4_msg.h" | ||
52 | |||
53 | /* | ||
54 | * Decoded Adapter Parameters. | ||
55 | */ | ||
56 | static u32 FL_PG_ORDER; /* large page allocation size */ | ||
57 | static u32 STAT_LEN; /* length of status page at ring end */ | ||
58 | static u32 PKTSHIFT; /* padding between CPL and packet data */ | ||
59 | static u32 FL_ALIGN; /* response queue message alignment */ | ||
60 | |||
61 | /* | ||
62 | * Constants ... | ||
63 | */ | ||
64 | enum { | ||
65 | /* | ||
66 | * Egress Queue sizes, producer and consumer indices are all in units | ||
67 | * of Egress Context Units bytes. Note that as far as the hardware is | ||
68 | * concerned, the free list is an Egress Queue (the host produces free | ||
69 | * buffers which the hardware consumes) and free list entries are | ||
70 | * 64-bit PCI DMA addresses. | ||
71 | */ | ||
72 | EQ_UNIT = SGE_EQ_IDXSIZE, | ||
73 | FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), | ||
74 | TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), | ||
75 | |||
76 | /* | ||
77 | * Max number of TX descriptors we clean up at a time. Should be | ||
78 | * modest as freeing skbs isn't cheap and it happens while holding | ||
79 | * locks. We just need to free packets faster than they arrive, we | ||
80 | * eventually catch up and keep the amortized cost reasonable. | ||
81 | */ | ||
82 | MAX_TX_RECLAIM = 16, | ||
83 | |||
84 | /* | ||
85 | * Max number of Rx buffers we replenish at a time. Again keep this | ||
86 | * modest, allocating buffers isn't cheap either. | ||
87 | */ | ||
88 | MAX_RX_REFILL = 16, | ||
89 | |||
90 | /* | ||
91 | * Period of the Rx queue check timer. This timer is infrequent as it | ||
92 | * has something to do only when the system experiences severe memory | ||
93 | * shortage. | ||
94 | */ | ||
95 | RX_QCHECK_PERIOD = (HZ / 2), | ||
96 | |||
97 | /* | ||
98 | * Period of the TX queue check timer and the maximum number of TX | ||
99 | * descriptors to be reclaimed by the TX timer. | ||
100 | */ | ||
101 | TX_QCHECK_PERIOD = (HZ / 2), | ||
102 | MAX_TIMER_TX_RECLAIM = 100, | ||
103 | |||
104 | /* | ||
105 | * An FL with <= FL_STARVE_THRES buffers is starving and a periodic | ||
106 | * timer will attempt to refill it. | ||
107 | */ | ||
108 | FL_STARVE_THRES = 4, | ||
109 | |||
110 | /* | ||
111 | * Suspend an Ethernet TX queue with fewer available descriptors than | ||
112 | * this. We always want to have room for a maximum sized packet: | ||
113 | * inline immediate data + MAX_SKB_FRAGS. This is the same as | ||
114 | * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS | ||
115 | * (see that function and its helpers for a description of the | ||
116 | * calculation). | ||
117 | */ | ||
118 | ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1, | ||
119 | ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 + | ||
120 | ((ETHTXQ_MAX_FRAGS-1) & 1) + | ||
121 | 2), | ||
122 | ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) + | ||
123 | sizeof(struct cpl_tx_pkt_lso_core) + | ||
124 | sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64), | ||
125 | ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR, | ||
126 | |||
127 | ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT), | ||
128 | |||
129 | /* | ||
130 | * Max TX descriptor space we allow for an Ethernet packet to be | ||
131 | * inlined into a WR. This is limited by the maximum value which | ||
132 | * we can specify for immediate data in the firmware Ethernet TX | ||
133 | * Work Request. | ||
134 | */ | ||
135 | MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_MASK, | ||
136 | |||
137 | /* | ||
138 | * Max size of a WR sent through a control TX queue. | ||
139 | */ | ||
140 | MAX_CTRL_WR_LEN = 256, | ||
141 | |||
142 | /* | ||
143 | * Maximum amount of data which we'll ever need to inline into a | ||
144 | * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN). | ||
145 | */ | ||
146 | MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN | ||
147 | ? MAX_IMM_TX_PKT_LEN | ||
148 | : MAX_CTRL_WR_LEN), | ||
149 | |||
150 | /* | ||
151 | * For incoming packets less than RX_COPY_THRES, we copy the data into | ||
152 | * an skb rather than referencing the data. We allocate enough | ||
153 | * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes | ||
154 | * of the data (header). | ||
155 | */ | ||
156 | RX_COPY_THRES = 256, | ||
157 | RX_PULL_LEN = 128, | ||
158 | |||
159 | /* | ||
160 | * Main body length for sk_buffs used for RX Ethernet packets with | ||
161 | * fragments. Should be >= RX_PULL_LEN but possibly bigger to give | ||
162 | * pskb_may_pull() some room. | ||
163 | */ | ||
164 | RX_SKB_LEN = 512, | ||
165 | }; | ||
166 | |||
167 | /* | ||
168 | * Software state per TX descriptor. | ||
169 | */ | ||
170 | struct tx_sw_desc { | ||
171 | struct sk_buff *skb; /* socket buffer of TX data source */ | ||
172 | struct ulptx_sgl *sgl; /* scatter/gather list in TX Queue */ | ||
173 | }; | ||
174 | |||
175 | /* | ||
176 | * Software state per RX Free List descriptor. We keep track of the allocated | ||
177 | * FL page, its size, and its PCI DMA address (if the page is mapped). The FL | ||
178 | * page size and its PCI DMA mapped state are stored in the low bits of the | ||
179 | * PCI DMA address as per below. | ||
180 | */ | ||
181 | struct rx_sw_desc { | ||
182 | struct page *page; /* Free List page buffer */ | ||
183 | dma_addr_t dma_addr; /* PCI DMA address (if mapped) */ | ||
184 | /* and flags (see below) */ | ||
185 | }; | ||
186 | |||
187 | /* | ||
188 | * The low bits of rx_sw_desc.dma_addr have special meaning. Note that the | ||
189 | * SGE also uses the low 4 bits to determine the size of the buffer. It uses | ||
190 | * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array. | ||
191 | * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4 | ||
192 | * bits can only contain a 0 or a 1 to indicate which size buffer we're giving | ||
193 | * to the SGE. Thus, our software state of "is the buffer mapped for DMA" is | ||
194 | * maintained in an inverse sense so the hardware never sees that bit high. | ||
195 | */ | ||
196 | enum { | ||
197 | RX_LARGE_BUF = 1 << 0, /* buffer is SGE_FL_BUFFER_SIZE[1] */ | ||
198 | RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */ | ||
199 | }; | ||
200 | |||
201 | /** | ||
202 | * get_buf_addr - return DMA buffer address of software descriptor | ||
203 | * @sdesc: pointer to the software buffer descriptor | ||
204 | * | ||
205 | * Return the DMA buffer address of a software descriptor (stripping out | ||
206 | * our low-order flag bits). | ||
207 | */ | ||
208 | static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc) | ||
209 | { | ||
210 | return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF); | ||
211 | } | ||
212 | |||
213 | /** | ||
214 | * is_buf_mapped - is buffer mapped for DMA? | ||
215 | * @sdesc: pointer to the software buffer descriptor | ||
216 | * | ||
217 | * Determine whether the buffer associated with a software descriptor in | ||
218 | * mapped for DMA or not. | ||
219 | */ | ||
220 | static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc) | ||
221 | { | ||
222 | return !(sdesc->dma_addr & RX_UNMAPPED_BUF); | ||
223 | } | ||
224 | |||
225 | /** | ||
226 | * need_skb_unmap - does the platform need unmapping of sk_buffs? | ||
227 | * | ||
228 | * Returns true if the platform needs sk_buff unmapping. The compiler | ||
229 | * optimizes away unnecessary code if this returns true. | ||
230 | */ | ||
231 | static inline int need_skb_unmap(void) | ||
232 | { | ||
233 | #ifdef CONFIG_NEED_DMA_MAP_STATE | ||
234 | return 1; | ||
235 | #else | ||
236 | return 0; | ||
237 | #endif | ||
238 | } | ||
239 | |||
240 | /** | ||
241 | * txq_avail - return the number of available slots in a TX queue | ||
242 | * @tq: the TX queue | ||
243 | * | ||
244 | * Returns the number of available descriptors in a TX queue. | ||
245 | */ | ||
246 | static inline unsigned int txq_avail(const struct sge_txq *tq) | ||
247 | { | ||
248 | return tq->size - 1 - tq->in_use; | ||
249 | } | ||
250 | |||
251 | /** | ||
252 | * fl_cap - return the capacity of a Free List | ||
253 | * @fl: the Free List | ||
254 | * | ||
255 | * Returns the capacity of a Free List. The capacity is less than the | ||
256 | * size because an Egress Queue Index Unit worth of descriptors needs to | ||
257 | * be left unpopulated, otherwise the Producer and Consumer indices PIDX | ||
258 | * and CIDX will match and the hardware will think the FL is empty. | ||
259 | */ | ||
260 | static inline unsigned int fl_cap(const struct sge_fl *fl) | ||
261 | { | ||
262 | return fl->size - FL_PER_EQ_UNIT; | ||
263 | } | ||
264 | |||
265 | /** | ||
266 | * fl_starving - return whether a Free List is starving. | ||
267 | * @fl: the Free List | ||
268 | * | ||
269 | * Tests specified Free List to see whether the number of buffers | ||
270 | * available to the hardware has falled below our "starvation" | ||
271 | * threshold. | ||
272 | */ | ||
273 | static inline bool fl_starving(const struct sge_fl *fl) | ||
274 | { | ||
275 | return fl->avail - fl->pend_cred <= FL_STARVE_THRES; | ||
276 | } | ||
277 | |||
278 | /** | ||
279 | * map_skb - map an skb for DMA to the device | ||
280 | * @dev: the egress net device | ||
281 | * @skb: the packet to map | ||
282 | * @addr: a pointer to the base of the DMA mapping array | ||
283 | * | ||
284 | * Map an skb for DMA to the device and return an array of DMA addresses. | ||
285 | */ | ||
286 | static int map_skb(struct device *dev, const struct sk_buff *skb, | ||
287 | dma_addr_t *addr) | ||
288 | { | ||
289 | const skb_frag_t *fp, *end; | ||
290 | const struct skb_shared_info *si; | ||
291 | |||
292 | *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); | ||
293 | if (dma_mapping_error(dev, *addr)) | ||
294 | goto out_err; | ||
295 | |||
296 | si = skb_shinfo(skb); | ||
297 | end = &si->frags[si->nr_frags]; | ||
298 | for (fp = si->frags; fp < end; fp++) { | ||
299 | *++addr = dma_map_page(dev, fp->page, fp->page_offset, fp->size, | ||
300 | DMA_TO_DEVICE); | ||
301 | if (dma_mapping_error(dev, *addr)) | ||
302 | goto unwind; | ||
303 | } | ||
304 | return 0; | ||
305 | |||
306 | unwind: | ||
307 | while (fp-- > si->frags) | ||
308 | dma_unmap_page(dev, *--addr, fp->size, DMA_TO_DEVICE); | ||
309 | dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); | ||
310 | |||
311 | out_err: | ||
312 | return -ENOMEM; | ||
313 | } | ||
314 | |||
315 | static void unmap_sgl(struct device *dev, const struct sk_buff *skb, | ||
316 | const struct ulptx_sgl *sgl, const struct sge_txq *tq) | ||
317 | { | ||
318 | const struct ulptx_sge_pair *p; | ||
319 | unsigned int nfrags = skb_shinfo(skb)->nr_frags; | ||
320 | |||
321 | if (likely(skb_headlen(skb))) | ||
322 | dma_unmap_single(dev, be64_to_cpu(sgl->addr0), | ||
323 | be32_to_cpu(sgl->len0), DMA_TO_DEVICE); | ||
324 | else { | ||
325 | dma_unmap_page(dev, be64_to_cpu(sgl->addr0), | ||
326 | be32_to_cpu(sgl->len0), DMA_TO_DEVICE); | ||
327 | nfrags--; | ||
328 | } | ||
329 | |||
330 | /* | ||
331 | * the complexity below is because of the possibility of a wrap-around | ||
332 | * in the middle of an SGL | ||
333 | */ | ||
334 | for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { | ||
335 | if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) { | ||
336 | unmap: | ||
337 | dma_unmap_page(dev, be64_to_cpu(p->addr[0]), | ||
338 | be32_to_cpu(p->len[0]), DMA_TO_DEVICE); | ||
339 | dma_unmap_page(dev, be64_to_cpu(p->addr[1]), | ||
340 | be32_to_cpu(p->len[1]), DMA_TO_DEVICE); | ||
341 | p++; | ||
342 | } else if ((u8 *)p == (u8 *)tq->stat) { | ||
343 | p = (const struct ulptx_sge_pair *)tq->desc; | ||
344 | goto unmap; | ||
345 | } else if ((u8 *)p + 8 == (u8 *)tq->stat) { | ||
346 | const __be64 *addr = (const __be64 *)tq->desc; | ||
347 | |||
348 | dma_unmap_page(dev, be64_to_cpu(addr[0]), | ||
349 | be32_to_cpu(p->len[0]), DMA_TO_DEVICE); | ||
350 | dma_unmap_page(dev, be64_to_cpu(addr[1]), | ||
351 | be32_to_cpu(p->len[1]), DMA_TO_DEVICE); | ||
352 | p = (const struct ulptx_sge_pair *)&addr[2]; | ||
353 | } else { | ||
354 | const __be64 *addr = (const __be64 *)tq->desc; | ||
355 | |||
356 | dma_unmap_page(dev, be64_to_cpu(p->addr[0]), | ||
357 | be32_to_cpu(p->len[0]), DMA_TO_DEVICE); | ||
358 | dma_unmap_page(dev, be64_to_cpu(addr[0]), | ||
359 | be32_to_cpu(p->len[1]), DMA_TO_DEVICE); | ||
360 | p = (const struct ulptx_sge_pair *)&addr[1]; | ||
361 | } | ||
362 | } | ||
363 | if (nfrags) { | ||
364 | __be64 addr; | ||
365 | |||
366 | if ((u8 *)p == (u8 *)tq->stat) | ||
367 | p = (const struct ulptx_sge_pair *)tq->desc; | ||
368 | addr = ((u8 *)p + 16 <= (u8 *)tq->stat | ||
369 | ? p->addr[0] | ||
370 | : *(const __be64 *)tq->desc); | ||
371 | dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]), | ||
372 | DMA_TO_DEVICE); | ||
373 | } | ||
374 | } | ||
375 | |||
376 | /** | ||
377 | * free_tx_desc - reclaims TX descriptors and their buffers | ||
378 | * @adapter: the adapter | ||
379 | * @tq: the TX queue to reclaim descriptors from | ||
380 | * @n: the number of descriptors to reclaim | ||
381 | * @unmap: whether the buffers should be unmapped for DMA | ||
382 | * | ||
383 | * Reclaims TX descriptors from an SGE TX queue and frees the associated | ||
384 | * TX buffers. Called with the TX queue lock held. | ||
385 | */ | ||
386 | static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq, | ||
387 | unsigned int n, bool unmap) | ||
388 | { | ||
389 | struct tx_sw_desc *sdesc; | ||
390 | unsigned int cidx = tq->cidx; | ||
391 | struct device *dev = adapter->pdev_dev; | ||
392 | |||
393 | const int need_unmap = need_skb_unmap() && unmap; | ||
394 | |||
395 | sdesc = &tq->sdesc[cidx]; | ||
396 | while (n--) { | ||
397 | /* | ||
398 | * If we kept a reference to the original TX skb, we need to | ||
399 | * unmap it from PCI DMA space (if required) and free it. | ||
400 | */ | ||
401 | if (sdesc->skb) { | ||
402 | if (need_unmap) | ||
403 | unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq); | ||
404 | kfree_skb(sdesc->skb); | ||
405 | sdesc->skb = NULL; | ||
406 | } | ||
407 | |||
408 | sdesc++; | ||
409 | if (++cidx == tq->size) { | ||
410 | cidx = 0; | ||
411 | sdesc = tq->sdesc; | ||
412 | } | ||
413 | } | ||
414 | tq->cidx = cidx; | ||
415 | } | ||
416 | |||
417 | /* | ||
418 | * Return the number of reclaimable descriptors in a TX queue. | ||
419 | */ | ||
420 | static inline int reclaimable(const struct sge_txq *tq) | ||
421 | { | ||
422 | int hw_cidx = be16_to_cpu(tq->stat->cidx); | ||
423 | int reclaimable = hw_cidx - tq->cidx; | ||
424 | if (reclaimable < 0) | ||
425 | reclaimable += tq->size; | ||
426 | return reclaimable; | ||
427 | } | ||
428 | |||
429 | /** | ||
430 | * reclaim_completed_tx - reclaims completed TX descriptors | ||
431 | * @adapter: the adapter | ||
432 | * @tq: the TX queue to reclaim completed descriptors from | ||
433 | * @unmap: whether the buffers should be unmapped for DMA | ||
434 | * | ||
435 | * Reclaims TX descriptors that the SGE has indicated it has processed, | ||
436 | * and frees the associated buffers if possible. Called with the TX | ||
437 | * queue locked. | ||
438 | */ | ||
439 | static inline void reclaim_completed_tx(struct adapter *adapter, | ||
440 | struct sge_txq *tq, | ||
441 | bool unmap) | ||
442 | { | ||
443 | int avail = reclaimable(tq); | ||
444 | |||
445 | if (avail) { | ||
446 | /* | ||
447 | * Limit the amount of clean up work we do at a time to keep | ||
448 | * the TX lock hold time O(1). | ||
449 | */ | ||
450 | if (avail > MAX_TX_RECLAIM) | ||
451 | avail = MAX_TX_RECLAIM; | ||
452 | |||
453 | free_tx_desc(adapter, tq, avail, unmap); | ||
454 | tq->in_use -= avail; | ||
455 | } | ||
456 | } | ||
457 | |||
458 | /** | ||
459 | * get_buf_size - return the size of an RX Free List buffer. | ||
460 | * @sdesc: pointer to the software buffer descriptor | ||
461 | */ | ||
462 | static inline int get_buf_size(const struct rx_sw_desc *sdesc) | ||
463 | { | ||
464 | return FL_PG_ORDER > 0 && (sdesc->dma_addr & RX_LARGE_BUF) | ||
465 | ? (PAGE_SIZE << FL_PG_ORDER) | ||
466 | : PAGE_SIZE; | ||
467 | } | ||
468 | |||
469 | /** | ||
470 | * free_rx_bufs - free RX buffers on an SGE Free List | ||
471 | * @adapter: the adapter | ||
472 | * @fl: the SGE Free List to free buffers from | ||
473 | * @n: how many buffers to free | ||
474 | * | ||
475 | * Release the next @n buffers on an SGE Free List RX queue. The | ||
476 | * buffers must be made inaccessible to hardware before calling this | ||
477 | * function. | ||
478 | */ | ||
479 | static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n) | ||
480 | { | ||
481 | while (n--) { | ||
482 | struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx]; | ||
483 | |||
484 | if (is_buf_mapped(sdesc)) | ||
485 | dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc), | ||
486 | get_buf_size(sdesc), PCI_DMA_FROMDEVICE); | ||
487 | put_page(sdesc->page); | ||
488 | sdesc->page = NULL; | ||
489 | if (++fl->cidx == fl->size) | ||
490 | fl->cidx = 0; | ||
491 | fl->avail--; | ||
492 | } | ||
493 | } | ||
494 | |||
495 | /** | ||
496 | * unmap_rx_buf - unmap the current RX buffer on an SGE Free List | ||
497 | * @adapter: the adapter | ||
498 | * @fl: the SGE Free List | ||
499 | * | ||
500 | * Unmap the current buffer on an SGE Free List RX queue. The | ||
501 | * buffer must be made inaccessible to HW before calling this function. | ||
502 | * | ||
503 | * This is similar to @free_rx_bufs above but does not free the buffer. | ||
504 | * Do note that the FL still loses any further access to the buffer. | ||
505 | * This is used predominantly to "transfer ownership" of an FL buffer | ||
506 | * to another entity (typically an skb's fragment list). | ||
507 | */ | ||
508 | static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl) | ||
509 | { | ||
510 | struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx]; | ||
511 | |||
512 | if (is_buf_mapped(sdesc)) | ||
513 | dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc), | ||
514 | get_buf_size(sdesc), PCI_DMA_FROMDEVICE); | ||
515 | sdesc->page = NULL; | ||
516 | if (++fl->cidx == fl->size) | ||
517 | fl->cidx = 0; | ||
518 | fl->avail--; | ||
519 | } | ||
520 | |||
521 | /** | ||
522 | * ring_fl_db - righ doorbell on free list | ||
523 | * @adapter: the adapter | ||
524 | * @fl: the Free List whose doorbell should be rung ... | ||
525 | * | ||
526 | * Tell the Scatter Gather Engine that there are new free list entries | ||
527 | * available. | ||
528 | */ | ||
529 | static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl) | ||
530 | { | ||
531 | /* | ||
532 | * The SGE keeps track of its Producer and Consumer Indices in terms | ||
533 | * of Egress Queue Units so we can only tell it about integral numbers | ||
534 | * of multiples of Free List Entries per Egress Queue Units ... | ||
535 | */ | ||
536 | if (fl->pend_cred >= FL_PER_EQ_UNIT) { | ||
537 | wmb(); | ||
538 | t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL, | ||
539 | DBPRIO | | ||
540 | QID(fl->cntxt_id) | | ||
541 | PIDX(fl->pend_cred / FL_PER_EQ_UNIT)); | ||
542 | fl->pend_cred %= FL_PER_EQ_UNIT; | ||
543 | } | ||
544 | } | ||
545 | |||
546 | /** | ||
547 | * set_rx_sw_desc - initialize software RX buffer descriptor | ||
548 | * @sdesc: pointer to the softwore RX buffer descriptor | ||
549 | * @page: pointer to the page data structure backing the RX buffer | ||
550 | * @dma_addr: PCI DMA address (possibly with low-bit flags) | ||
551 | */ | ||
552 | static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page, | ||
553 | dma_addr_t dma_addr) | ||
554 | { | ||
555 | sdesc->page = page; | ||
556 | sdesc->dma_addr = dma_addr; | ||
557 | } | ||
558 | |||
559 | /* | ||
560 | * Support for poisoning RX buffers ... | ||
561 | */ | ||
562 | #define POISON_BUF_VAL -1 | ||
563 | |||
564 | static inline void poison_buf(struct page *page, size_t sz) | ||
565 | { | ||
566 | #if POISON_BUF_VAL >= 0 | ||
567 | memset(page_address(page), POISON_BUF_VAL, sz); | ||
568 | #endif | ||
569 | } | ||
570 | |||
571 | /** | ||
572 | * refill_fl - refill an SGE RX buffer ring | ||
573 | * @adapter: the adapter | ||
574 | * @fl: the Free List ring to refill | ||
575 | * @n: the number of new buffers to allocate | ||
576 | * @gfp: the gfp flags for the allocations | ||
577 | * | ||
578 | * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, | ||
579 | * allocated with the supplied gfp flags. The caller must assure that | ||
580 | * @n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN | ||
581 | * EGRESS QUEUE UNITS_ indicates an empty Free List! Returns the number | ||
582 | * of buffers allocated. If afterwards the queue is found critically low, | ||
583 | * mark it as starving in the bitmap of starving FLs. | ||
584 | */ | ||
585 | static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl, | ||
586 | int n, gfp_t gfp) | ||
587 | { | ||
588 | struct page *page; | ||
589 | dma_addr_t dma_addr; | ||
590 | unsigned int cred = fl->avail; | ||
591 | __be64 *d = &fl->desc[fl->pidx]; | ||
592 | struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx]; | ||
593 | |||
594 | /* | ||
595 | * Sanity: ensure that the result of adding n Free List buffers | ||
596 | * won't result in wrapping the SGE's Producer Index around to | ||
597 | * it's Consumer Index thereby indicating an empty Free List ... | ||
598 | */ | ||
599 | BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT); | ||
600 | |||
601 | /* | ||
602 | * If we support large pages, prefer large buffers and fail over to | ||
603 | * small pages if we can't allocate large pages to satisfy the refill. | ||
604 | * If we don't support large pages, drop directly into the small page | ||
605 | * allocation code. | ||
606 | */ | ||
607 | if (FL_PG_ORDER == 0) | ||
608 | goto alloc_small_pages; | ||
609 | |||
610 | while (n) { | ||
611 | page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN, | ||
612 | FL_PG_ORDER); | ||
613 | if (unlikely(!page)) { | ||
614 | /* | ||
615 | * We've failed inour attempt to allocate a "large | ||
616 | * page". Fail over to the "small page" allocation | ||
617 | * below. | ||
618 | */ | ||
619 | fl->large_alloc_failed++; | ||
620 | break; | ||
621 | } | ||
622 | poison_buf(page, PAGE_SIZE << FL_PG_ORDER); | ||
623 | |||
624 | dma_addr = dma_map_page(adapter->pdev_dev, page, 0, | ||
625 | PAGE_SIZE << FL_PG_ORDER, | ||
626 | PCI_DMA_FROMDEVICE); | ||
627 | if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) { | ||
628 | /* | ||
629 | * We've run out of DMA mapping space. Free up the | ||
630 | * buffer and return with what we've managed to put | ||
631 | * into the free list. We don't want to fail over to | ||
632 | * the small page allocation below in this case | ||
633 | * because DMA mapping resources are typically | ||
634 | * critical resources once they become scarse. | ||
635 | */ | ||
636 | __free_pages(page, FL_PG_ORDER); | ||
637 | goto out; | ||
638 | } | ||
639 | dma_addr |= RX_LARGE_BUF; | ||
640 | *d++ = cpu_to_be64(dma_addr); | ||
641 | |||
642 | set_rx_sw_desc(sdesc, page, dma_addr); | ||
643 | sdesc++; | ||
644 | |||
645 | fl->avail++; | ||
646 | if (++fl->pidx == fl->size) { | ||
647 | fl->pidx = 0; | ||
648 | sdesc = fl->sdesc; | ||
649 | d = fl->desc; | ||
650 | } | ||
651 | n--; | ||
652 | } | ||
653 | |||
654 | alloc_small_pages: | ||
655 | while (n--) { | ||
656 | page = __netdev_alloc_page(adapter->port[0], | ||
657 | gfp | __GFP_NOWARN); | ||
658 | if (unlikely(!page)) { | ||
659 | fl->alloc_failed++; | ||
660 | break; | ||
661 | } | ||
662 | poison_buf(page, PAGE_SIZE); | ||
663 | |||
664 | dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE, | ||
665 | PCI_DMA_FROMDEVICE); | ||
666 | if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) { | ||
667 | netdev_free_page(adapter->port[0], page); | ||
668 | break; | ||
669 | } | ||
670 | *d++ = cpu_to_be64(dma_addr); | ||
671 | |||
672 | set_rx_sw_desc(sdesc, page, dma_addr); | ||
673 | sdesc++; | ||
674 | |||
675 | fl->avail++; | ||
676 | if (++fl->pidx == fl->size) { | ||
677 | fl->pidx = 0; | ||
678 | sdesc = fl->sdesc; | ||
679 | d = fl->desc; | ||
680 | } | ||
681 | } | ||
682 | |||
683 | out: | ||
684 | /* | ||
685 | * Update our accounting state to incorporate the new Free List | ||
686 | * buffers, tell the hardware about them and return the number of | ||
687 | * bufers which we were able to allocate. | ||
688 | */ | ||
689 | cred = fl->avail - cred; | ||
690 | fl->pend_cred += cred; | ||
691 | ring_fl_db(adapter, fl); | ||
692 | |||
693 | if (unlikely(fl_starving(fl))) { | ||
694 | smp_wmb(); | ||
695 | set_bit(fl->cntxt_id, adapter->sge.starving_fl); | ||
696 | } | ||
697 | |||
698 | return cred; | ||
699 | } | ||
700 | |||
701 | /* | ||
702 | * Refill a Free List to its capacity or the Maximum Refill Increment, | ||
703 | * whichever is smaller ... | ||
704 | */ | ||
705 | static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl) | ||
706 | { | ||
707 | refill_fl(adapter, fl, | ||
708 | min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail), | ||
709 | GFP_ATOMIC); | ||
710 | } | ||
711 | |||
712 | /** | ||
713 | * alloc_ring - allocate resources for an SGE descriptor ring | ||
714 | * @dev: the PCI device's core device | ||
715 | * @nelem: the number of descriptors | ||
716 | * @hwsize: the size of each hardware descriptor | ||
717 | * @swsize: the size of each software descriptor | ||
718 | * @busaddrp: the physical PCI bus address of the allocated ring | ||
719 | * @swringp: return address pointer for software ring | ||
720 | * @stat_size: extra space in hardware ring for status information | ||
721 | * | ||
722 | * Allocates resources for an SGE descriptor ring, such as TX queues, | ||
723 | * free buffer lists, response queues, etc. Each SGE ring requires | ||
724 | * space for its hardware descriptors plus, optionally, space for software | ||
725 | * state associated with each hardware entry (the metadata). The function | ||
726 | * returns three values: the virtual address for the hardware ring (the | ||
727 | * return value of the function), the PCI bus address of the hardware | ||
728 | * ring (in *busaddrp), and the address of the software ring (in swringp). | ||
729 | * Both the hardware and software rings are returned zeroed out. | ||
730 | */ | ||
731 | static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize, | ||
732 | size_t swsize, dma_addr_t *busaddrp, void *swringp, | ||
733 | size_t stat_size) | ||
734 | { | ||
735 | /* | ||
736 | * Allocate the hardware ring and PCI DMA bus address space for said. | ||
737 | */ | ||
738 | size_t hwlen = nelem * hwsize + stat_size; | ||
739 | void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL); | ||
740 | |||
741 | if (!hwring) | ||
742 | return NULL; | ||
743 | |||
744 | /* | ||
745 | * If the caller wants a software ring, allocate it and return a | ||
746 | * pointer to it in *swringp. | ||
747 | */ | ||
748 | BUG_ON((swsize != 0) != (swringp != NULL)); | ||
749 | if (swsize) { | ||
750 | void *swring = kcalloc(nelem, swsize, GFP_KERNEL); | ||
751 | |||
752 | if (!swring) { | ||
753 | dma_free_coherent(dev, hwlen, hwring, *busaddrp); | ||
754 | return NULL; | ||
755 | } | ||
756 | *(void **)swringp = swring; | ||
757 | } | ||
758 | |||
759 | /* | ||
760 | * Zero out the hardware ring and return its address as our function | ||
761 | * value. | ||
762 | */ | ||
763 | memset(hwring, 0, hwlen); | ||
764 | return hwring; | ||
765 | } | ||
766 | |||
767 | /** | ||
768 | * sgl_len - calculates the size of an SGL of the given capacity | ||
769 | * @n: the number of SGL entries | ||
770 | * | ||
771 | * Calculates the number of flits (8-byte units) needed for a Direct | ||
772 | * Scatter/Gather List that can hold the given number of entries. | ||
773 | */ | ||
774 | static inline unsigned int sgl_len(unsigned int n) | ||
775 | { | ||
776 | /* | ||
777 | * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA | ||
778 | * addresses. The DSGL Work Request starts off with a 32-bit DSGL | ||
779 | * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, | ||
780 | * repeated sequences of { Length[i], Length[i+1], Address[i], | ||
781 | * Address[i+1] } (this ensures that all addresses are on 64-bit | ||
782 | * boundaries). If N is even, then Length[N+1] should be set to 0 and | ||
783 | * Address[N+1] is omitted. | ||
784 | * | ||
785 | * The following calculation incorporates all of the above. It's | ||
786 | * somewhat hard to follow but, briefly: the "+2" accounts for the | ||
787 | * first two flits which include the DSGL header, Length0 and | ||
788 | * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 | ||
789 | * flits for every pair of the remaining N) +1 if (n-1) is odd; and | ||
790 | * finally the "+((n-1)&1)" adds the one remaining flit needed if | ||
791 | * (n-1) is odd ... | ||
792 | */ | ||
793 | n--; | ||
794 | return (3 * n) / 2 + (n & 1) + 2; | ||
795 | } | ||
796 | |||
797 | /** | ||
798 | * flits_to_desc - returns the num of TX descriptors for the given flits | ||
799 | * @flits: the number of flits | ||
800 | * | ||
801 | * Returns the number of TX descriptors needed for the supplied number | ||
802 | * of flits. | ||
803 | */ | ||
804 | static inline unsigned int flits_to_desc(unsigned int flits) | ||
805 | { | ||
806 | BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64)); | ||
807 | return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT); | ||
808 | } | ||
809 | |||
810 | /** | ||
811 | * is_eth_imm - can an Ethernet packet be sent as immediate data? | ||
812 | * @skb: the packet | ||
813 | * | ||
814 | * Returns whether an Ethernet packet is small enough to fit completely as | ||
815 | * immediate data. | ||
816 | */ | ||
817 | static inline int is_eth_imm(const struct sk_buff *skb) | ||
818 | { | ||
819 | /* | ||
820 | * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request | ||
821 | * which does not accommodate immediate data. We could dike out all | ||
822 | * of the support code for immediate data but that would tie our hands | ||
823 | * too much if we ever want to enhace the firmware. It would also | ||
824 | * create more differences between the PF and VF Drivers. | ||
825 | */ | ||
826 | return false; | ||
827 | } | ||
828 | |||
829 | /** | ||
830 | * calc_tx_flits - calculate the number of flits for a packet TX WR | ||
831 | * @skb: the packet | ||
832 | * | ||
833 | * Returns the number of flits needed for a TX Work Request for the | ||
834 | * given Ethernet packet, including the needed WR and CPL headers. | ||
835 | */ | ||
836 | static inline unsigned int calc_tx_flits(const struct sk_buff *skb) | ||
837 | { | ||
838 | unsigned int flits; | ||
839 | |||
840 | /* | ||
841 | * If the skb is small enough, we can pump it out as a work request | ||
842 | * with only immediate data. In that case we just have to have the | ||
843 | * TX Packet header plus the skb data in the Work Request. | ||
844 | */ | ||
845 | if (is_eth_imm(skb)) | ||
846 | return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), | ||
847 | sizeof(__be64)); | ||
848 | |||
849 | /* | ||
850 | * Otherwise, we're going to have to construct a Scatter gather list | ||
851 | * of the skb body and fragments. We also include the flits necessary | ||
852 | * for the TX Packet Work Request and CPL. We always have a firmware | ||
853 | * Write Header (incorporated as part of the cpl_tx_pkt_lso and | ||
854 | * cpl_tx_pkt structures), followed by either a TX Packet Write CPL | ||
855 | * message or, if we're doing a Large Send Offload, an LSO CPL message | ||
856 | * with an embeded TX Packet Write CPL message. | ||
857 | */ | ||
858 | flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); | ||
859 | if (skb_shinfo(skb)->gso_size) | ||
860 | flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + | ||
861 | sizeof(struct cpl_tx_pkt_lso_core) + | ||
862 | sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); | ||
863 | else | ||
864 | flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + | ||
865 | sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); | ||
866 | return flits; | ||
867 | } | ||
868 | |||
869 | /** | ||
870 | * write_sgl - populate a Scatter/Gather List for a packet | ||
871 | * @skb: the packet | ||
872 | * @tq: the TX queue we are writing into | ||
873 | * @sgl: starting location for writing the SGL | ||
874 | * @end: points right after the end of the SGL | ||
875 | * @start: start offset into skb main-body data to include in the SGL | ||
876 | * @addr: the list of DMA bus addresses for the SGL elements | ||
877 | * | ||
878 | * Generates a Scatter/Gather List for the buffers that make up a packet. | ||
879 | * The caller must provide adequate space for the SGL that will be written. | ||
880 | * The SGL includes all of the packet's page fragments and the data in its | ||
881 | * main body except for the first @start bytes. @pos must be 16-byte | ||
882 | * aligned and within a TX descriptor with available space. @end points | ||
883 | * write after the end of the SGL but does not account for any potential | ||
884 | * wrap around, i.e., @end > @tq->stat. | ||
885 | */ | ||
886 | static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq, | ||
887 | struct ulptx_sgl *sgl, u64 *end, unsigned int start, | ||
888 | const dma_addr_t *addr) | ||
889 | { | ||
890 | unsigned int i, len; | ||
891 | struct ulptx_sge_pair *to; | ||
892 | const struct skb_shared_info *si = skb_shinfo(skb); | ||
893 | unsigned int nfrags = si->nr_frags; | ||
894 | struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; | ||
895 | |||
896 | len = skb_headlen(skb) - start; | ||
897 | if (likely(len)) { | ||
898 | sgl->len0 = htonl(len); | ||
899 | sgl->addr0 = cpu_to_be64(addr[0] + start); | ||
900 | nfrags++; | ||
901 | } else { | ||
902 | sgl->len0 = htonl(si->frags[0].size); | ||
903 | sgl->addr0 = cpu_to_be64(addr[1]); | ||
904 | } | ||
905 | |||
906 | sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | | ||
907 | ULPTX_NSGE(nfrags)); | ||
908 | if (likely(--nfrags == 0)) | ||
909 | return; | ||
910 | /* | ||
911 | * Most of the complexity below deals with the possibility we hit the | ||
912 | * end of the queue in the middle of writing the SGL. For this case | ||
913 | * only we create the SGL in a temporary buffer and then copy it. | ||
914 | */ | ||
915 | to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge; | ||
916 | |||
917 | for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { | ||
918 | to->len[0] = cpu_to_be32(si->frags[i].size); | ||
919 | to->len[1] = cpu_to_be32(si->frags[++i].size); | ||
920 | to->addr[0] = cpu_to_be64(addr[i]); | ||
921 | to->addr[1] = cpu_to_be64(addr[++i]); | ||
922 | } | ||
923 | if (nfrags) { | ||
924 | to->len[0] = cpu_to_be32(si->frags[i].size); | ||
925 | to->len[1] = cpu_to_be32(0); | ||
926 | to->addr[0] = cpu_to_be64(addr[i + 1]); | ||
927 | } | ||
928 | if (unlikely((u8 *)end > (u8 *)tq->stat)) { | ||
929 | unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1; | ||
930 | |||
931 | if (likely(part0)) | ||
932 | memcpy(sgl->sge, buf, part0); | ||
933 | part1 = (u8 *)end - (u8 *)tq->stat; | ||
934 | memcpy(tq->desc, (u8 *)buf + part0, part1); | ||
935 | end = (void *)tq->desc + part1; | ||
936 | } | ||
937 | if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ | ||
938 | *(u64 *)end = 0; | ||
939 | } | ||
940 | |||
941 | /** | ||
942 | * check_ring_tx_db - check and potentially ring a TX queue's doorbell | ||
943 | * @adapter: the adapter | ||
944 | * @tq: the TX queue | ||
945 | * @n: number of new descriptors to give to HW | ||
946 | * | ||
947 | * Ring the doorbel for a TX queue. | ||
948 | */ | ||
949 | static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq, | ||
950 | int n) | ||
951 | { | ||
952 | /* | ||
953 | * Warn if we write doorbells with the wrong priority and write | ||
954 | * descriptors before telling HW. | ||
955 | */ | ||
956 | WARN_ON((QID(tq->cntxt_id) | PIDX(n)) & DBPRIO); | ||
957 | wmb(); | ||
958 | t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL, | ||
959 | QID(tq->cntxt_id) | PIDX(n)); | ||
960 | } | ||
961 | |||
962 | /** | ||
963 | * inline_tx_skb - inline a packet's data into TX descriptors | ||
964 | * @skb: the packet | ||
965 | * @tq: the TX queue where the packet will be inlined | ||
966 | * @pos: starting position in the TX queue to inline the packet | ||
967 | * | ||
968 | * Inline a packet's contents directly into TX descriptors, starting at | ||
969 | * the given position within the TX DMA ring. | ||
970 | * Most of the complexity of this operation is dealing with wrap arounds | ||
971 | * in the middle of the packet we want to inline. | ||
972 | */ | ||
973 | static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq, | ||
974 | void *pos) | ||
975 | { | ||
976 | u64 *p; | ||
977 | int left = (void *)tq->stat - pos; | ||
978 | |||
979 | if (likely(skb->len <= left)) { | ||
980 | if (likely(!skb->data_len)) | ||
981 | skb_copy_from_linear_data(skb, pos, skb->len); | ||
982 | else | ||
983 | skb_copy_bits(skb, 0, pos, skb->len); | ||
984 | pos += skb->len; | ||
985 | } else { | ||
986 | skb_copy_bits(skb, 0, pos, left); | ||
987 | skb_copy_bits(skb, left, tq->desc, skb->len - left); | ||
988 | pos = (void *)tq->desc + (skb->len - left); | ||
989 | } | ||
990 | |||
991 | /* 0-pad to multiple of 16 */ | ||
992 | p = PTR_ALIGN(pos, 8); | ||
993 | if ((uintptr_t)p & 8) | ||
994 | *p = 0; | ||
995 | } | ||
996 | |||
997 | /* | ||
998 | * Figure out what HW csum a packet wants and return the appropriate control | ||
999 | * bits. | ||
1000 | */ | ||
1001 | static u64 hwcsum(const struct sk_buff *skb) | ||
1002 | { | ||
1003 | int csum_type; | ||
1004 | const struct iphdr *iph = ip_hdr(skb); | ||
1005 | |||
1006 | if (iph->version == 4) { | ||
1007 | if (iph->protocol == IPPROTO_TCP) | ||
1008 | csum_type = TX_CSUM_TCPIP; | ||
1009 | else if (iph->protocol == IPPROTO_UDP) | ||
1010 | csum_type = TX_CSUM_UDPIP; | ||
1011 | else { | ||
1012 | nocsum: | ||
1013 | /* | ||
1014 | * unknown protocol, disable HW csum | ||
1015 | * and hope a bad packet is detected | ||
1016 | */ | ||
1017 | return TXPKT_L4CSUM_DIS; | ||
1018 | } | ||
1019 | } else { | ||
1020 | /* | ||
1021 | * this doesn't work with extension headers | ||
1022 | */ | ||
1023 | const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph; | ||
1024 | |||
1025 | if (ip6h->nexthdr == IPPROTO_TCP) | ||
1026 | csum_type = TX_CSUM_TCPIP6; | ||
1027 | else if (ip6h->nexthdr == IPPROTO_UDP) | ||
1028 | csum_type = TX_CSUM_UDPIP6; | ||
1029 | else | ||
1030 | goto nocsum; | ||
1031 | } | ||
1032 | |||
1033 | if (likely(csum_type >= TX_CSUM_TCPIP)) | ||
1034 | return TXPKT_CSUM_TYPE(csum_type) | | ||
1035 | TXPKT_IPHDR_LEN(skb_network_header_len(skb)) | | ||
1036 | TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN); | ||
1037 | else { | ||
1038 | int start = skb_transport_offset(skb); | ||
1039 | |||
1040 | return TXPKT_CSUM_TYPE(csum_type) | | ||
1041 | TXPKT_CSUM_START(start) | | ||
1042 | TXPKT_CSUM_LOC(start + skb->csum_offset); | ||
1043 | } | ||
1044 | } | ||
1045 | |||
1046 | /* | ||
1047 | * Stop an Ethernet TX queue and record that state change. | ||
1048 | */ | ||
1049 | static void txq_stop(struct sge_eth_txq *txq) | ||
1050 | { | ||
1051 | netif_tx_stop_queue(txq->txq); | ||
1052 | txq->q.stops++; | ||
1053 | } | ||
1054 | |||
1055 | /* | ||
1056 | * Advance our software state for a TX queue by adding n in use descriptors. | ||
1057 | */ | ||
1058 | static inline void txq_advance(struct sge_txq *tq, unsigned int n) | ||
1059 | { | ||
1060 | tq->in_use += n; | ||
1061 | tq->pidx += n; | ||
1062 | if (tq->pidx >= tq->size) | ||
1063 | tq->pidx -= tq->size; | ||
1064 | } | ||
1065 | |||
1066 | /** | ||
1067 | * t4vf_eth_xmit - add a packet to an Ethernet TX queue | ||
1068 | * @skb: the packet | ||
1069 | * @dev: the egress net device | ||
1070 | * | ||
1071 | * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled. | ||
1072 | */ | ||
1073 | int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev) | ||
1074 | { | ||
1075 | u32 wr_mid; | ||
1076 | u64 cntrl, *end; | ||
1077 | int qidx, credits; | ||
1078 | unsigned int flits, ndesc; | ||
1079 | struct adapter *adapter; | ||
1080 | struct sge_eth_txq *txq; | ||
1081 | const struct port_info *pi; | ||
1082 | struct fw_eth_tx_pkt_vm_wr *wr; | ||
1083 | struct cpl_tx_pkt_core *cpl; | ||
1084 | const struct skb_shared_info *ssi; | ||
1085 | dma_addr_t addr[MAX_SKB_FRAGS + 1]; | ||
1086 | const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) + | ||
1087 | sizeof(wr->ethmacsrc) + | ||
1088 | sizeof(wr->ethtype) + | ||
1089 | sizeof(wr->vlantci)); | ||
1090 | |||
1091 | /* | ||
1092 | * The chip minimum packet length is 10 octets but the firmware | ||
1093 | * command that we are using requires that we copy the Ethernet header | ||
1094 | * (including the VLAN tag) into the header so we reject anything | ||
1095 | * smaller than that ... | ||
1096 | */ | ||
1097 | if (unlikely(skb->len < fw_hdr_copy_len)) | ||
1098 | goto out_free; | ||
1099 | |||
1100 | /* | ||
1101 | * Figure out which TX Queue we're going to use. | ||
1102 | */ | ||
1103 | pi = netdev_priv(dev); | ||
1104 | adapter = pi->adapter; | ||
1105 | qidx = skb_get_queue_mapping(skb); | ||
1106 | BUG_ON(qidx >= pi->nqsets); | ||
1107 | txq = &adapter->sge.ethtxq[pi->first_qset + qidx]; | ||
1108 | |||
1109 | /* | ||
1110 | * Take this opportunity to reclaim any TX Descriptors whose DMA | ||
1111 | * transfers have completed. | ||
1112 | */ | ||
1113 | reclaim_completed_tx(adapter, &txq->q, true); | ||
1114 | |||
1115 | /* | ||
1116 | * Calculate the number of flits and TX Descriptors we're going to | ||
1117 | * need along with how many TX Descriptors will be left over after | ||
1118 | * we inject our Work Request. | ||
1119 | */ | ||
1120 | flits = calc_tx_flits(skb); | ||
1121 | ndesc = flits_to_desc(flits); | ||
1122 | credits = txq_avail(&txq->q) - ndesc; | ||
1123 | |||
1124 | if (unlikely(credits < 0)) { | ||
1125 | /* | ||
1126 | * Not enough room for this packet's Work Request. Stop the | ||
1127 | * TX Queue and return a "busy" condition. The queue will get | ||
1128 | * started later on when the firmware informs us that space | ||
1129 | * has opened up. | ||
1130 | */ | ||
1131 | txq_stop(txq); | ||
1132 | dev_err(adapter->pdev_dev, | ||
1133 | "%s: TX ring %u full while queue awake!\n", | ||
1134 | dev->name, qidx); | ||
1135 | return NETDEV_TX_BUSY; | ||
1136 | } | ||
1137 | |||
1138 | if (!is_eth_imm(skb) && | ||
1139 | unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) { | ||
1140 | /* | ||
1141 | * We need to map the skb into PCI DMA space (because it can't | ||
1142 | * be in-lined directly into the Work Request) and the mapping | ||
1143 | * operation failed. Record the error and drop the packet. | ||
1144 | */ | ||
1145 | txq->mapping_err++; | ||
1146 | goto out_free; | ||
1147 | } | ||
1148 | |||
1149 | wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2)); | ||
1150 | if (unlikely(credits < ETHTXQ_STOP_THRES)) { | ||
1151 | /* | ||
1152 | * After we're done injecting the Work Request for this | ||
1153 | * packet, we'll be below our "stop threshold" so stop the TX | ||
1154 | * Queue now and schedule a request for an SGE Egress Queue | ||
1155 | * Update message. The queue will get started later on when | ||
1156 | * the firmware processes this Work Request and sends us an | ||
1157 | * Egress Queue Status Update message indicating that space | ||
1158 | * has opened up. | ||
1159 | */ | ||
1160 | txq_stop(txq); | ||
1161 | wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ; | ||
1162 | } | ||
1163 | |||
1164 | /* | ||
1165 | * Start filling in our Work Request. Note that we do _not_ handle | ||
1166 | * the WR Header wrapping around the TX Descriptor Ring. If our | ||
1167 | * maximum header size ever exceeds one TX Descriptor, we'll need to | ||
1168 | * do something else here. | ||
1169 | */ | ||
1170 | BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1); | ||
1171 | wr = (void *)&txq->q.desc[txq->q.pidx]; | ||
1172 | wr->equiq_to_len16 = cpu_to_be32(wr_mid); | ||
1173 | wr->r3[0] = cpu_to_be64(0); | ||
1174 | wr->r3[1] = cpu_to_be64(0); | ||
1175 | skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len); | ||
1176 | end = (u64 *)wr + flits; | ||
1177 | |||
1178 | /* | ||
1179 | * If this is a Large Send Offload packet we'll put in an LSO CPL | ||
1180 | * message with an encapsulated TX Packet CPL message. Otherwise we | ||
1181 | * just use a TX Packet CPL message. | ||
1182 | */ | ||
1183 | ssi = skb_shinfo(skb); | ||
1184 | if (ssi->gso_size) { | ||
1185 | struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); | ||
1186 | bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; | ||
1187 | int l3hdr_len = skb_network_header_len(skb); | ||
1188 | int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; | ||
1189 | |||
1190 | wr->op_immdlen = | ||
1191 | cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) | | ||
1192 | FW_WR_IMMDLEN(sizeof(*lso) + | ||
1193 | sizeof(*cpl))); | ||
1194 | /* | ||
1195 | * Fill in the LSO CPL message. | ||
1196 | */ | ||
1197 | lso->lso_ctrl = | ||
1198 | cpu_to_be32(LSO_OPCODE(CPL_TX_PKT_LSO) | | ||
1199 | LSO_FIRST_SLICE | | ||
1200 | LSO_LAST_SLICE | | ||
1201 | LSO_IPV6(v6) | | ||
1202 | LSO_ETHHDR_LEN(eth_xtra_len/4) | | ||
1203 | LSO_IPHDR_LEN(l3hdr_len/4) | | ||
1204 | LSO_TCPHDR_LEN(tcp_hdr(skb)->doff)); | ||
1205 | lso->ipid_ofst = cpu_to_be16(0); | ||
1206 | lso->mss = cpu_to_be16(ssi->gso_size); | ||
1207 | lso->seqno_offset = cpu_to_be32(0); | ||
1208 | lso->len = cpu_to_be32(skb->len); | ||
1209 | |||
1210 | /* | ||
1211 | * Set up TX Packet CPL pointer, control word and perform | ||
1212 | * accounting. | ||
1213 | */ | ||
1214 | cpl = (void *)(lso + 1); | ||
1215 | cntrl = (TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | | ||
1216 | TXPKT_IPHDR_LEN(l3hdr_len) | | ||
1217 | TXPKT_ETHHDR_LEN(eth_xtra_len)); | ||
1218 | txq->tso++; | ||
1219 | txq->tx_cso += ssi->gso_segs; | ||
1220 | } else { | ||
1221 | int len; | ||
1222 | |||
1223 | len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl); | ||
1224 | wr->op_immdlen = | ||
1225 | cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) | | ||
1226 | FW_WR_IMMDLEN(len)); | ||
1227 | |||
1228 | /* | ||
1229 | * Set up TX Packet CPL pointer, control word and perform | ||
1230 | * accounting. | ||
1231 | */ | ||
1232 | cpl = (void *)(wr + 1); | ||
1233 | if (skb->ip_summed == CHECKSUM_PARTIAL) { | ||
1234 | cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS; | ||
1235 | txq->tx_cso++; | ||
1236 | } else | ||
1237 | cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS; | ||
1238 | } | ||
1239 | |||
1240 | /* | ||
1241 | * If there's a VLAN tag present, add that to the list of things to | ||
1242 | * do in this Work Request. | ||
1243 | */ | ||
1244 | if (vlan_tx_tag_present(skb)) { | ||
1245 | txq->vlan_ins++; | ||
1246 | cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb)); | ||
1247 | } | ||
1248 | |||
1249 | /* | ||
1250 | * Fill in the TX Packet CPL message header. | ||
1251 | */ | ||
1252 | cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE(CPL_TX_PKT_XT) | | ||
1253 | TXPKT_INTF(pi->port_id) | | ||
1254 | TXPKT_PF(0)); | ||
1255 | cpl->pack = cpu_to_be16(0); | ||
1256 | cpl->len = cpu_to_be16(skb->len); | ||
1257 | cpl->ctrl1 = cpu_to_be64(cntrl); | ||
1258 | |||
1259 | #ifdef T4_TRACE | ||
1260 | T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7], | ||
1261 | "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u", | ||
1262 | ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags); | ||
1263 | #endif | ||
1264 | |||
1265 | /* | ||
1266 | * Fill in the body of the TX Packet CPL message with either in-lined | ||
1267 | * data or a Scatter/Gather List. | ||
1268 | */ | ||
1269 | if (is_eth_imm(skb)) { | ||
1270 | /* | ||
1271 | * In-line the packet's data and free the skb since we don't | ||
1272 | * need it any longer. | ||
1273 | */ | ||
1274 | inline_tx_skb(skb, &txq->q, cpl + 1); | ||
1275 | dev_kfree_skb(skb); | ||
1276 | } else { | ||
1277 | /* | ||
1278 | * Write the skb's Scatter/Gather list into the TX Packet CPL | ||
1279 | * message and retain a pointer to the skb so we can free it | ||
1280 | * later when its DMA completes. (We store the skb pointer | ||
1281 | * in the Software Descriptor corresponding to the last TX | ||
1282 | * Descriptor used by the Work Request.) | ||
1283 | * | ||
1284 | * The retained skb will be freed when the corresponding TX | ||
1285 | * Descriptors are reclaimed after their DMAs complete. | ||
1286 | * However, this could take quite a while since, in general, | ||
1287 | * the hardware is set up to be lazy about sending DMA | ||
1288 | * completion notifications to us and we mostly perform TX | ||
1289 | * reclaims in the transmit routine. | ||
1290 | * | ||
1291 | * This is good for performamce but means that we rely on new | ||
1292 | * TX packets arriving to run the destructors of completed | ||
1293 | * packets, which open up space in their sockets' send queues. | ||
1294 | * Sometimes we do not get such new packets causing TX to | ||
1295 | * stall. A single UDP transmitter is a good example of this | ||
1296 | * situation. We have a clean up timer that periodically | ||
1297 | * reclaims completed packets but it doesn't run often enough | ||
1298 | * (nor do we want it to) to prevent lengthy stalls. A | ||
1299 | * solution to this problem is to run the destructor early, | ||
1300 | * after the packet is queued but before it's DMAd. A con is | ||
1301 | * that we lie to socket memory accounting, but the amount of | ||
1302 | * extra memory is reasonable (limited by the number of TX | ||
1303 | * descriptors), the packets do actually get freed quickly by | ||
1304 | * new packets almost always, and for protocols like TCP that | ||
1305 | * wait for acks to really free up the data the extra memory | ||
1306 | * is even less. On the positive side we run the destructors | ||
1307 | * on the sending CPU rather than on a potentially different | ||
1308 | * completing CPU, usually a good thing. | ||
1309 | * | ||
1310 | * Run the destructor before telling the DMA engine about the | ||
1311 | * packet to make sure it doesn't complete and get freed | ||
1312 | * prematurely. | ||
1313 | */ | ||
1314 | struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1); | ||
1315 | struct sge_txq *tq = &txq->q; | ||
1316 | int last_desc; | ||
1317 | |||
1318 | /* | ||
1319 | * If the Work Request header was an exact multiple of our TX | ||
1320 | * Descriptor length, then it's possible that the starting SGL | ||
1321 | * pointer lines up exactly with the end of our TX Descriptor | ||
1322 | * ring. If that's the case, wrap around to the beginning | ||
1323 | * here ... | ||
1324 | */ | ||
1325 | if (unlikely((void *)sgl == (void *)tq->stat)) { | ||
1326 | sgl = (void *)tq->desc; | ||
1327 | end = (void *)((void *)tq->desc + | ||
1328 | ((void *)end - (void *)tq->stat)); | ||
1329 | } | ||
1330 | |||
1331 | write_sgl(skb, tq, sgl, end, 0, addr); | ||
1332 | skb_orphan(skb); | ||
1333 | |||
1334 | last_desc = tq->pidx + ndesc - 1; | ||
1335 | if (last_desc >= tq->size) | ||
1336 | last_desc -= tq->size; | ||
1337 | tq->sdesc[last_desc].skb = skb; | ||
1338 | tq->sdesc[last_desc].sgl = sgl; | ||
1339 | } | ||
1340 | |||
1341 | /* | ||
1342 | * Advance our internal TX Queue state, tell the hardware about | ||
1343 | * the new TX descriptors and return success. | ||
1344 | */ | ||
1345 | txq_advance(&txq->q, ndesc); | ||
1346 | dev->trans_start = jiffies; | ||
1347 | ring_tx_db(adapter, &txq->q, ndesc); | ||
1348 | return NETDEV_TX_OK; | ||
1349 | |||
1350 | out_free: | ||
1351 | /* | ||
1352 | * An error of some sort happened. Free the TX skb and tell the | ||
1353 | * OS that we've "dealt" with the packet ... | ||
1354 | */ | ||
1355 | dev_kfree_skb(skb); | ||
1356 | return NETDEV_TX_OK; | ||
1357 | } | ||
1358 | |||
1359 | /** | ||
1360 | * t4vf_pktgl_to_skb - build an sk_buff from a packet gather list | ||
1361 | * @gl: the gather list | ||
1362 | * @skb_len: size of sk_buff main body if it carries fragments | ||
1363 | * @pull_len: amount of data to move to the sk_buff's main body | ||
1364 | * | ||
1365 | * Builds an sk_buff from the given packet gather list. Returns the | ||
1366 | * sk_buff or %NULL if sk_buff allocation failed. | ||
1367 | */ | ||
1368 | struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl, | ||
1369 | unsigned int skb_len, unsigned int pull_len) | ||
1370 | { | ||
1371 | struct sk_buff *skb; | ||
1372 | struct skb_shared_info *ssi; | ||
1373 | |||
1374 | /* | ||
1375 | * If the ingress packet is small enough, allocate an skb large enough | ||
1376 | * for all of the data and copy it inline. Otherwise, allocate an skb | ||
1377 | * with enough room to pull in the header and reference the rest of | ||
1378 | * the data via the skb fragment list. | ||
1379 | * | ||
1380 | * Below we rely on RX_COPY_THRES being less than the smallest Rx | ||
1381 | * buff! size, which is expected since buffers are at least | ||
1382 | * PAGE_SIZEd. In this case packets up to RX_COPY_THRES have only one | ||
1383 | * fragment. | ||
1384 | */ | ||
1385 | if (gl->tot_len <= RX_COPY_THRES) { | ||
1386 | /* small packets have only one fragment */ | ||
1387 | skb = alloc_skb(gl->tot_len, GFP_ATOMIC); | ||
1388 | if (unlikely(!skb)) | ||
1389 | goto out; | ||
1390 | __skb_put(skb, gl->tot_len); | ||
1391 | skb_copy_to_linear_data(skb, gl->va, gl->tot_len); | ||
1392 | } else { | ||
1393 | skb = alloc_skb(skb_len, GFP_ATOMIC); | ||
1394 | if (unlikely(!skb)) | ||
1395 | goto out; | ||
1396 | __skb_put(skb, pull_len); | ||
1397 | skb_copy_to_linear_data(skb, gl->va, pull_len); | ||
1398 | |||
1399 | ssi = skb_shinfo(skb); | ||
1400 | ssi->frags[0].page = gl->frags[0].page; | ||
1401 | ssi->frags[0].page_offset = gl->frags[0].page_offset + pull_len; | ||
1402 | ssi->frags[0].size = gl->frags[0].size - pull_len; | ||
1403 | if (gl->nfrags > 1) | ||
1404 | memcpy(&ssi->frags[1], &gl->frags[1], | ||
1405 | (gl->nfrags-1) * sizeof(skb_frag_t)); | ||
1406 | ssi->nr_frags = gl->nfrags; | ||
1407 | |||
1408 | skb->len = gl->tot_len; | ||
1409 | skb->data_len = skb->len - pull_len; | ||
1410 | skb->truesize += skb->data_len; | ||
1411 | |||
1412 | /* Get a reference for the last page, we don't own it */ | ||
1413 | get_page(gl->frags[gl->nfrags - 1].page); | ||
1414 | } | ||
1415 | |||
1416 | out: | ||
1417 | return skb; | ||
1418 | } | ||
1419 | |||
1420 | /** | ||
1421 | * t4vf_pktgl_free - free a packet gather list | ||
1422 | * @gl: the gather list | ||
1423 | * | ||
1424 | * Releases the pages of a packet gather list. We do not own the last | ||
1425 | * page on the list and do not free it. | ||
1426 | */ | ||
1427 | void t4vf_pktgl_free(const struct pkt_gl *gl) | ||
1428 | { | ||
1429 | int frag; | ||
1430 | |||
1431 | frag = gl->nfrags - 1; | ||
1432 | while (frag--) | ||
1433 | put_page(gl->frags[frag].page); | ||
1434 | } | ||
1435 | |||
1436 | /** | ||
1437 | * copy_frags - copy fragments from gather list into skb_shared_info | ||
1438 | * @si: destination skb shared info structure | ||
1439 | * @gl: source internal packet gather list | ||
1440 | * @offset: packet start offset in first page | ||
1441 | * | ||
1442 | * Copy an internal packet gather list into a Linux skb_shared_info | ||
1443 | * structure. | ||
1444 | */ | ||
1445 | static inline void copy_frags(struct skb_shared_info *si, | ||
1446 | const struct pkt_gl *gl, | ||
1447 | unsigned int offset) | ||
1448 | { | ||
1449 | unsigned int n; | ||
1450 | |||
1451 | /* usually there's just one frag */ | ||
1452 | si->frags[0].page = gl->frags[0].page; | ||
1453 | si->frags[0].page_offset = gl->frags[0].page_offset + offset; | ||
1454 | si->frags[0].size = gl->frags[0].size - offset; | ||
1455 | si->nr_frags = gl->nfrags; | ||
1456 | |||
1457 | n = gl->nfrags - 1; | ||
1458 | if (n) | ||
1459 | memcpy(&si->frags[1], &gl->frags[1], n * sizeof(skb_frag_t)); | ||
1460 | |||
1461 | /* get a reference to the last page, we don't own it */ | ||
1462 | get_page(gl->frags[n].page); | ||
1463 | } | ||
1464 | |||
1465 | /** | ||
1466 | * do_gro - perform Generic Receive Offload ingress packet processing | ||
1467 | * @rxq: ingress RX Ethernet Queue | ||
1468 | * @gl: gather list for ingress packet | ||
1469 | * @pkt: CPL header for last packet fragment | ||
1470 | * | ||
1471 | * Perform Generic Receive Offload (GRO) ingress packet processing. | ||
1472 | * We use the standard Linux GRO interfaces for this. | ||
1473 | */ | ||
1474 | static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, | ||
1475 | const struct cpl_rx_pkt *pkt) | ||
1476 | { | ||
1477 | int ret; | ||
1478 | struct sk_buff *skb; | ||
1479 | |||
1480 | skb = napi_get_frags(&rxq->rspq.napi); | ||
1481 | if (unlikely(!skb)) { | ||
1482 | t4vf_pktgl_free(gl); | ||
1483 | rxq->stats.rx_drops++; | ||
1484 | return; | ||
1485 | } | ||
1486 | |||
1487 | copy_frags(skb_shinfo(skb), gl, PKTSHIFT); | ||
1488 | skb->len = gl->tot_len - PKTSHIFT; | ||
1489 | skb->data_len = skb->len; | ||
1490 | skb->truesize += skb->data_len; | ||
1491 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
1492 | skb_record_rx_queue(skb, rxq->rspq.idx); | ||
1493 | |||
1494 | if (pkt->vlan_ex) | ||
1495 | __vlan_hwaccel_put_tag(skb, be16_to_cpu(pkt->vlan)); | ||
1496 | ret = napi_gro_frags(&rxq->rspq.napi); | ||
1497 | |||
1498 | if (ret == GRO_HELD) | ||
1499 | rxq->stats.lro_pkts++; | ||
1500 | else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) | ||
1501 | rxq->stats.lro_merged++; | ||
1502 | rxq->stats.pkts++; | ||
1503 | rxq->stats.rx_cso++; | ||
1504 | } | ||
1505 | |||
1506 | /** | ||
1507 | * t4vf_ethrx_handler - process an ingress ethernet packet | ||
1508 | * @rspq: the response queue that received the packet | ||
1509 | * @rsp: the response queue descriptor holding the RX_PKT message | ||
1510 | * @gl: the gather list of packet fragments | ||
1511 | * | ||
1512 | * Process an ingress ethernet packet and deliver it to the stack. | ||
1513 | */ | ||
1514 | int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp, | ||
1515 | const struct pkt_gl *gl) | ||
1516 | { | ||
1517 | struct sk_buff *skb; | ||
1518 | const struct cpl_rx_pkt *pkt = (void *)&rsp[1]; | ||
1519 | bool csum_ok = pkt->csum_calc && !pkt->err_vec; | ||
1520 | struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq); | ||
1521 | |||
1522 | /* | ||
1523 | * If this is a good TCP packet and we have Generic Receive Offload | ||
1524 | * enabled, handle the packet in the GRO path. | ||
1525 | */ | ||
1526 | if ((pkt->l2info & cpu_to_be32(RXF_TCP)) && | ||
1527 | (rspq->netdev->features & NETIF_F_GRO) && csum_ok && | ||
1528 | !pkt->ip_frag) { | ||
1529 | do_gro(rxq, gl, pkt); | ||
1530 | return 0; | ||
1531 | } | ||
1532 | |||
1533 | /* | ||
1534 | * Convert the Packet Gather List into an skb. | ||
1535 | */ | ||
1536 | skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN); | ||
1537 | if (unlikely(!skb)) { | ||
1538 | t4vf_pktgl_free(gl); | ||
1539 | rxq->stats.rx_drops++; | ||
1540 | return 0; | ||
1541 | } | ||
1542 | __skb_pull(skb, PKTSHIFT); | ||
1543 | skb->protocol = eth_type_trans(skb, rspq->netdev); | ||
1544 | skb_record_rx_queue(skb, rspq->idx); | ||
1545 | rxq->stats.pkts++; | ||
1546 | |||
1547 | if (csum_ok && (rspq->netdev->features & NETIF_F_RXCSUM) && | ||
1548 | !pkt->err_vec && (be32_to_cpu(pkt->l2info) & (RXF_UDP|RXF_TCP))) { | ||
1549 | if (!pkt->ip_frag) | ||
1550 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
1551 | else { | ||
1552 | __sum16 c = (__force __sum16)pkt->csum; | ||
1553 | skb->csum = csum_unfold(c); | ||
1554 | skb->ip_summed = CHECKSUM_COMPLETE; | ||
1555 | } | ||
1556 | rxq->stats.rx_cso++; | ||
1557 | } else | ||
1558 | skb_checksum_none_assert(skb); | ||
1559 | |||
1560 | if (pkt->vlan_ex) { | ||
1561 | rxq->stats.vlan_ex++; | ||
1562 | __vlan_hwaccel_put_tag(skb, be16_to_cpu(pkt->vlan)); | ||
1563 | } | ||
1564 | |||
1565 | netif_receive_skb(skb); | ||
1566 | |||
1567 | return 0; | ||
1568 | } | ||
1569 | |||
1570 | /** | ||
1571 | * is_new_response - check if a response is newly written | ||
1572 | * @rc: the response control descriptor | ||
1573 | * @rspq: the response queue | ||
1574 | * | ||
1575 | * Returns true if a response descriptor contains a yet unprocessed | ||
1576 | * response. | ||
1577 | */ | ||
1578 | static inline bool is_new_response(const struct rsp_ctrl *rc, | ||
1579 | const struct sge_rspq *rspq) | ||
1580 | { | ||
1581 | return RSPD_GEN(rc->type_gen) == rspq->gen; | ||
1582 | } | ||
1583 | |||
1584 | /** | ||
1585 | * restore_rx_bufs - put back a packet's RX buffers | ||
1586 | * @gl: the packet gather list | ||
1587 | * @fl: the SGE Free List | ||
1588 | * @nfrags: how many fragments in @si | ||
1589 | * | ||
1590 | * Called when we find out that the current packet, @si, can't be | ||
1591 | * processed right away for some reason. This is a very rare event and | ||
1592 | * there's no effort to make this suspension/resumption process | ||
1593 | * particularly efficient. | ||
1594 | * | ||
1595 | * We implement the suspension by putting all of the RX buffers associated | ||
1596 | * with the current packet back on the original Free List. The buffers | ||
1597 | * have already been unmapped and are left unmapped, we mark them as | ||
1598 | * unmapped in order to prevent further unmapping attempts. (Effectively | ||
1599 | * this function undoes the series of @unmap_rx_buf calls which were done | ||
1600 | * to create the current packet's gather list.) This leaves us ready to | ||
1601 | * restart processing of the packet the next time we start processing the | ||
1602 | * RX Queue ... | ||
1603 | */ | ||
1604 | static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl, | ||
1605 | int frags) | ||
1606 | { | ||
1607 | struct rx_sw_desc *sdesc; | ||
1608 | |||
1609 | while (frags--) { | ||
1610 | if (fl->cidx == 0) | ||
1611 | fl->cidx = fl->size - 1; | ||
1612 | else | ||
1613 | fl->cidx--; | ||
1614 | sdesc = &fl->sdesc[fl->cidx]; | ||
1615 | sdesc->page = gl->frags[frags].page; | ||
1616 | sdesc->dma_addr |= RX_UNMAPPED_BUF; | ||
1617 | fl->avail++; | ||
1618 | } | ||
1619 | } | ||
1620 | |||
1621 | /** | ||
1622 | * rspq_next - advance to the next entry in a response queue | ||
1623 | * @rspq: the queue | ||
1624 | * | ||
1625 | * Updates the state of a response queue to advance it to the next entry. | ||
1626 | */ | ||
1627 | static inline void rspq_next(struct sge_rspq *rspq) | ||
1628 | { | ||
1629 | rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len; | ||
1630 | if (unlikely(++rspq->cidx == rspq->size)) { | ||
1631 | rspq->cidx = 0; | ||
1632 | rspq->gen ^= 1; | ||
1633 | rspq->cur_desc = rspq->desc; | ||
1634 | } | ||
1635 | } | ||
1636 | |||
1637 | /** | ||
1638 | * process_responses - process responses from an SGE response queue | ||
1639 | * @rspq: the ingress response queue to process | ||
1640 | * @budget: how many responses can be processed in this round | ||
1641 | * | ||
1642 | * Process responses from a Scatter Gather Engine response queue up to | ||
1643 | * the supplied budget. Responses include received packets as well as | ||
1644 | * control messages from firmware or hardware. | ||
1645 | * | ||
1646 | * Additionally choose the interrupt holdoff time for the next interrupt | ||
1647 | * on this queue. If the system is under memory shortage use a fairly | ||
1648 | * long delay to help recovery. | ||
1649 | */ | ||
1650 | int process_responses(struct sge_rspq *rspq, int budget) | ||
1651 | { | ||
1652 | struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq); | ||
1653 | int budget_left = budget; | ||
1654 | |||
1655 | while (likely(budget_left)) { | ||
1656 | int ret, rsp_type; | ||
1657 | const struct rsp_ctrl *rc; | ||
1658 | |||
1659 | rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc)); | ||
1660 | if (!is_new_response(rc, rspq)) | ||
1661 | break; | ||
1662 | |||
1663 | /* | ||
1664 | * Figure out what kind of response we've received from the | ||
1665 | * SGE. | ||
1666 | */ | ||
1667 | rmb(); | ||
1668 | rsp_type = RSPD_TYPE(rc->type_gen); | ||
1669 | if (likely(rsp_type == RSP_TYPE_FLBUF)) { | ||
1670 | skb_frag_t *fp; | ||
1671 | struct pkt_gl gl; | ||
1672 | const struct rx_sw_desc *sdesc; | ||
1673 | u32 bufsz, frag; | ||
1674 | u32 len = be32_to_cpu(rc->pldbuflen_qid); | ||
1675 | |||
1676 | /* | ||
1677 | * If we get a "new buffer" message from the SGE we | ||
1678 | * need to move on to the next Free List buffer. | ||
1679 | */ | ||
1680 | if (len & RSPD_NEWBUF) { | ||
1681 | /* | ||
1682 | * We get one "new buffer" message when we | ||
1683 | * first start up a queue so we need to ignore | ||
1684 | * it when our offset into the buffer is 0. | ||
1685 | */ | ||
1686 | if (likely(rspq->offset > 0)) { | ||
1687 | free_rx_bufs(rspq->adapter, &rxq->fl, | ||
1688 | 1); | ||
1689 | rspq->offset = 0; | ||
1690 | } | ||
1691 | len = RSPD_LEN(len); | ||
1692 | } | ||
1693 | gl.tot_len = len; | ||
1694 | |||
1695 | /* | ||
1696 | * Gather packet fragments. | ||
1697 | */ | ||
1698 | for (frag = 0, fp = gl.frags; /**/; frag++, fp++) { | ||
1699 | BUG_ON(frag >= MAX_SKB_FRAGS); | ||
1700 | BUG_ON(rxq->fl.avail == 0); | ||
1701 | sdesc = &rxq->fl.sdesc[rxq->fl.cidx]; | ||
1702 | bufsz = get_buf_size(sdesc); | ||
1703 | fp->page = sdesc->page; | ||
1704 | fp->page_offset = rspq->offset; | ||
1705 | fp->size = min(bufsz, len); | ||
1706 | len -= fp->size; | ||
1707 | if (!len) | ||
1708 | break; | ||
1709 | unmap_rx_buf(rspq->adapter, &rxq->fl); | ||
1710 | } | ||
1711 | gl.nfrags = frag+1; | ||
1712 | |||
1713 | /* | ||
1714 | * Last buffer remains mapped so explicitly make it | ||
1715 | * coherent for CPU access and start preloading first | ||
1716 | * cache line ... | ||
1717 | */ | ||
1718 | dma_sync_single_for_cpu(rspq->adapter->pdev_dev, | ||
1719 | get_buf_addr(sdesc), | ||
1720 | fp->size, DMA_FROM_DEVICE); | ||
1721 | gl.va = (page_address(gl.frags[0].page) + | ||
1722 | gl.frags[0].page_offset); | ||
1723 | prefetch(gl.va); | ||
1724 | |||
1725 | /* | ||
1726 | * Hand the new ingress packet to the handler for | ||
1727 | * this Response Queue. | ||
1728 | */ | ||
1729 | ret = rspq->handler(rspq, rspq->cur_desc, &gl); | ||
1730 | if (likely(ret == 0)) | ||
1731 | rspq->offset += ALIGN(fp->size, FL_ALIGN); | ||
1732 | else | ||
1733 | restore_rx_bufs(&gl, &rxq->fl, frag); | ||
1734 | } else if (likely(rsp_type == RSP_TYPE_CPL)) { | ||
1735 | ret = rspq->handler(rspq, rspq->cur_desc, NULL); | ||
1736 | } else { | ||
1737 | WARN_ON(rsp_type > RSP_TYPE_CPL); | ||
1738 | ret = 0; | ||
1739 | } | ||
1740 | |||
1741 | if (unlikely(ret)) { | ||
1742 | /* | ||
1743 | * Couldn't process descriptor, back off for recovery. | ||
1744 | * We use the SGE's last timer which has the longest | ||
1745 | * interrupt coalescing value ... | ||
1746 | */ | ||
1747 | const int NOMEM_TIMER_IDX = SGE_NTIMERS-1; | ||
1748 | rspq->next_intr_params = | ||
1749 | QINTR_TIMER_IDX(NOMEM_TIMER_IDX); | ||
1750 | break; | ||
1751 | } | ||
1752 | |||
1753 | rspq_next(rspq); | ||
1754 | budget_left--; | ||
1755 | } | ||
1756 | |||
1757 | /* | ||
1758 | * If this is a Response Queue with an associated Free List and | ||
1759 | * at least two Egress Queue units available in the Free List | ||
1760 | * for new buffer pointers, refill the Free List. | ||
1761 | */ | ||
1762 | if (rspq->offset >= 0 && | ||
1763 | rxq->fl.size - rxq->fl.avail >= 2*FL_PER_EQ_UNIT) | ||
1764 | __refill_fl(rspq->adapter, &rxq->fl); | ||
1765 | return budget - budget_left; | ||
1766 | } | ||
1767 | |||
1768 | /** | ||
1769 | * napi_rx_handler - the NAPI handler for RX processing | ||
1770 | * @napi: the napi instance | ||
1771 | * @budget: how many packets we can process in this round | ||
1772 | * | ||
1773 | * Handler for new data events when using NAPI. This does not need any | ||
1774 | * locking or protection from interrupts as data interrupts are off at | ||
1775 | * this point and other adapter interrupts do not interfere (the latter | ||
1776 | * in not a concern at all with MSI-X as non-data interrupts then have | ||
1777 | * a separate handler). | ||
1778 | */ | ||
1779 | static int napi_rx_handler(struct napi_struct *napi, int budget) | ||
1780 | { | ||
1781 | unsigned int intr_params; | ||
1782 | struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi); | ||
1783 | int work_done = process_responses(rspq, budget); | ||
1784 | |||
1785 | if (likely(work_done < budget)) { | ||
1786 | napi_complete(napi); | ||
1787 | intr_params = rspq->next_intr_params; | ||
1788 | rspq->next_intr_params = rspq->intr_params; | ||
1789 | } else | ||
1790 | intr_params = QINTR_TIMER_IDX(SGE_TIMER_UPD_CIDX); | ||
1791 | |||
1792 | if (unlikely(work_done == 0)) | ||
1793 | rspq->unhandled_irqs++; | ||
1794 | |||
1795 | t4_write_reg(rspq->adapter, | ||
1796 | T4VF_SGE_BASE_ADDR + SGE_VF_GTS, | ||
1797 | CIDXINC(work_done) | | ||
1798 | INGRESSQID((u32)rspq->cntxt_id) | | ||
1799 | SEINTARM(intr_params)); | ||
1800 | return work_done; | ||
1801 | } | ||
1802 | |||
1803 | /* | ||
1804 | * The MSI-X interrupt handler for an SGE response queue for the NAPI case | ||
1805 | * (i.e., response queue serviced by NAPI polling). | ||
1806 | */ | ||
1807 | irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie) | ||
1808 | { | ||
1809 | struct sge_rspq *rspq = cookie; | ||
1810 | |||
1811 | napi_schedule(&rspq->napi); | ||
1812 | return IRQ_HANDLED; | ||
1813 | } | ||
1814 | |||
1815 | /* | ||
1816 | * Process the indirect interrupt entries in the interrupt queue and kick off | ||
1817 | * NAPI for each queue that has generated an entry. | ||
1818 | */ | ||
1819 | static unsigned int process_intrq(struct adapter *adapter) | ||
1820 | { | ||
1821 | struct sge *s = &adapter->sge; | ||
1822 | struct sge_rspq *intrq = &s->intrq; | ||
1823 | unsigned int work_done; | ||
1824 | |||
1825 | spin_lock(&adapter->sge.intrq_lock); | ||
1826 | for (work_done = 0; ; work_done++) { | ||
1827 | const struct rsp_ctrl *rc; | ||
1828 | unsigned int qid, iq_idx; | ||
1829 | struct sge_rspq *rspq; | ||
1830 | |||
1831 | /* | ||
1832 | * Grab the next response from the interrupt queue and bail | ||
1833 | * out if it's not a new response. | ||
1834 | */ | ||
1835 | rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc)); | ||
1836 | if (!is_new_response(rc, intrq)) | ||
1837 | break; | ||
1838 | |||
1839 | /* | ||
1840 | * If the response isn't a forwarded interrupt message issue a | ||
1841 | * error and go on to the next response message. This should | ||
1842 | * never happen ... | ||
1843 | */ | ||
1844 | rmb(); | ||
1845 | if (unlikely(RSPD_TYPE(rc->type_gen) != RSP_TYPE_INTR)) { | ||
1846 | dev_err(adapter->pdev_dev, | ||
1847 | "Unexpected INTRQ response type %d\n", | ||
1848 | RSPD_TYPE(rc->type_gen)); | ||
1849 | continue; | ||
1850 | } | ||
1851 | |||
1852 | /* | ||
1853 | * Extract the Queue ID from the interrupt message and perform | ||
1854 | * sanity checking to make sure it really refers to one of our | ||
1855 | * Ingress Queues which is active and matches the queue's ID. | ||
1856 | * None of these error conditions should ever happen so we may | ||
1857 | * want to either make them fatal and/or conditionalized under | ||
1858 | * DEBUG. | ||
1859 | */ | ||
1860 | qid = RSPD_QID(be32_to_cpu(rc->pldbuflen_qid)); | ||
1861 | iq_idx = IQ_IDX(s, qid); | ||
1862 | if (unlikely(iq_idx >= MAX_INGQ)) { | ||
1863 | dev_err(adapter->pdev_dev, | ||
1864 | "Ingress QID %d out of range\n", qid); | ||
1865 | continue; | ||
1866 | } | ||
1867 | rspq = s->ingr_map[iq_idx]; | ||
1868 | if (unlikely(rspq == NULL)) { | ||
1869 | dev_err(adapter->pdev_dev, | ||
1870 | "Ingress QID %d RSPQ=NULL\n", qid); | ||
1871 | continue; | ||
1872 | } | ||
1873 | if (unlikely(rspq->abs_id != qid)) { | ||
1874 | dev_err(adapter->pdev_dev, | ||
1875 | "Ingress QID %d refers to RSPQ %d\n", | ||
1876 | qid, rspq->abs_id); | ||
1877 | continue; | ||
1878 | } | ||
1879 | |||
1880 | /* | ||
1881 | * Schedule NAPI processing on the indicated Response Queue | ||
1882 | * and move on to the next entry in the Forwarded Interrupt | ||
1883 | * Queue. | ||
1884 | */ | ||
1885 | napi_schedule(&rspq->napi); | ||
1886 | rspq_next(intrq); | ||
1887 | } | ||
1888 | |||
1889 | t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, | ||
1890 | CIDXINC(work_done) | | ||
1891 | INGRESSQID(intrq->cntxt_id) | | ||
1892 | SEINTARM(intrq->intr_params)); | ||
1893 | |||
1894 | spin_unlock(&adapter->sge.intrq_lock); | ||
1895 | |||
1896 | return work_done; | ||
1897 | } | ||
1898 | |||
1899 | /* | ||
1900 | * The MSI interrupt handler handles data events from SGE response queues as | ||
1901 | * well as error and other async events as they all use the same MSI vector. | ||
1902 | */ | ||
1903 | irqreturn_t t4vf_intr_msi(int irq, void *cookie) | ||
1904 | { | ||
1905 | struct adapter *adapter = cookie; | ||
1906 | |||
1907 | process_intrq(adapter); | ||
1908 | return IRQ_HANDLED; | ||
1909 | } | ||
1910 | |||
1911 | /** | ||
1912 | * t4vf_intr_handler - select the top-level interrupt handler | ||
1913 | * @adapter: the adapter | ||
1914 | * | ||
1915 | * Selects the top-level interrupt handler based on the type of interrupts | ||
1916 | * (MSI-X or MSI). | ||
1917 | */ | ||
1918 | irq_handler_t t4vf_intr_handler(struct adapter *adapter) | ||
1919 | { | ||
1920 | BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); | ||
1921 | if (adapter->flags & USING_MSIX) | ||
1922 | return t4vf_sge_intr_msix; | ||
1923 | else | ||
1924 | return t4vf_intr_msi; | ||
1925 | } | ||
1926 | |||
1927 | /** | ||
1928 | * sge_rx_timer_cb - perform periodic maintenance of SGE RX queues | ||
1929 | * @data: the adapter | ||
1930 | * | ||
1931 | * Runs periodically from a timer to perform maintenance of SGE RX queues. | ||
1932 | * | ||
1933 | * a) Replenishes RX queues that have run out due to memory shortage. | ||
1934 | * Normally new RX buffers are added when existing ones are consumed but | ||
1935 | * when out of memory a queue can become empty. We schedule NAPI to do | ||
1936 | * the actual refill. | ||
1937 | */ | ||
1938 | static void sge_rx_timer_cb(unsigned long data) | ||
1939 | { | ||
1940 | struct adapter *adapter = (struct adapter *)data; | ||
1941 | struct sge *s = &adapter->sge; | ||
1942 | unsigned int i; | ||
1943 | |||
1944 | /* | ||
1945 | * Scan the "Starving Free Lists" flag array looking for any Free | ||
1946 | * Lists in need of more free buffers. If we find one and it's not | ||
1947 | * being actively polled, then bump its "starving" counter and attempt | ||
1948 | * to refill it. If we're successful in adding enough buffers to push | ||
1949 | * the Free List over the starving threshold, then we can clear its | ||
1950 | * "starving" status. | ||
1951 | */ | ||
1952 | for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) { | ||
1953 | unsigned long m; | ||
1954 | |||
1955 | for (m = s->starving_fl[i]; m; m &= m - 1) { | ||
1956 | unsigned int id = __ffs(m) + i * BITS_PER_LONG; | ||
1957 | struct sge_fl *fl = s->egr_map[id]; | ||
1958 | |||
1959 | clear_bit(id, s->starving_fl); | ||
1960 | smp_mb__after_clear_bit(); | ||
1961 | |||
1962 | /* | ||
1963 | * Since we are accessing fl without a lock there's a | ||
1964 | * small probability of a false positive where we | ||
1965 | * schedule napi but the FL is no longer starving. | ||
1966 | * No biggie. | ||
1967 | */ | ||
1968 | if (fl_starving(fl)) { | ||
1969 | struct sge_eth_rxq *rxq; | ||
1970 | |||
1971 | rxq = container_of(fl, struct sge_eth_rxq, fl); | ||
1972 | if (napi_reschedule(&rxq->rspq.napi)) | ||
1973 | fl->starving++; | ||
1974 | else | ||
1975 | set_bit(id, s->starving_fl); | ||
1976 | } | ||
1977 | } | ||
1978 | } | ||
1979 | |||
1980 | /* | ||
1981 | * Reschedule the next scan for starving Free Lists ... | ||
1982 | */ | ||
1983 | mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); | ||
1984 | } | ||
1985 | |||
1986 | /** | ||
1987 | * sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues | ||
1988 | * @data: the adapter | ||
1989 | * | ||
1990 | * Runs periodically from a timer to perform maintenance of SGE TX queues. | ||
1991 | * | ||
1992 | * b) Reclaims completed Tx packets for the Ethernet queues. Normally | ||
1993 | * packets are cleaned up by new Tx packets, this timer cleans up packets | ||
1994 | * when no new packets are being submitted. This is essential for pktgen, | ||
1995 | * at least. | ||
1996 | */ | ||
1997 | static void sge_tx_timer_cb(unsigned long data) | ||
1998 | { | ||
1999 | struct adapter *adapter = (struct adapter *)data; | ||
2000 | struct sge *s = &adapter->sge; | ||
2001 | unsigned int i, budget; | ||
2002 | |||
2003 | budget = MAX_TIMER_TX_RECLAIM; | ||
2004 | i = s->ethtxq_rover; | ||
2005 | do { | ||
2006 | struct sge_eth_txq *txq = &s->ethtxq[i]; | ||
2007 | |||
2008 | if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) { | ||
2009 | int avail = reclaimable(&txq->q); | ||
2010 | |||
2011 | if (avail > budget) | ||
2012 | avail = budget; | ||
2013 | |||
2014 | free_tx_desc(adapter, &txq->q, avail, true); | ||
2015 | txq->q.in_use -= avail; | ||
2016 | __netif_tx_unlock(txq->txq); | ||
2017 | |||
2018 | budget -= avail; | ||
2019 | if (!budget) | ||
2020 | break; | ||
2021 | } | ||
2022 | |||
2023 | i++; | ||
2024 | if (i >= s->ethqsets) | ||
2025 | i = 0; | ||
2026 | } while (i != s->ethtxq_rover); | ||
2027 | s->ethtxq_rover = i; | ||
2028 | |||
2029 | /* | ||
2030 | * If we found too many reclaimable packets schedule a timer in the | ||
2031 | * near future to continue where we left off. Otherwise the next timer | ||
2032 | * will be at its normal interval. | ||
2033 | */ | ||
2034 | mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2)); | ||
2035 | } | ||
2036 | |||
2037 | /** | ||
2038 | * t4vf_sge_alloc_rxq - allocate an SGE RX Queue | ||
2039 | * @adapter: the adapter | ||
2040 | * @rspq: pointer to to the new rxq's Response Queue to be filled in | ||
2041 | * @iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue | ||
2042 | * @dev: the network device associated with the new rspq | ||
2043 | * @intr_dest: MSI-X vector index (overriden in MSI mode) | ||
2044 | * @fl: pointer to the new rxq's Free List to be filled in | ||
2045 | * @hnd: the interrupt handler to invoke for the rspq | ||
2046 | */ | ||
2047 | int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq, | ||
2048 | bool iqasynch, struct net_device *dev, | ||
2049 | int intr_dest, | ||
2050 | struct sge_fl *fl, rspq_handler_t hnd) | ||
2051 | { | ||
2052 | struct port_info *pi = netdev_priv(dev); | ||
2053 | struct fw_iq_cmd cmd, rpl; | ||
2054 | int ret, iqandst, flsz = 0; | ||
2055 | |||
2056 | /* | ||
2057 | * If we're using MSI interrupts and we're not initializing the | ||
2058 | * Forwarded Interrupt Queue itself, then set up this queue for | ||
2059 | * indirect interrupts to the Forwarded Interrupt Queue. Obviously | ||
2060 | * the Forwarded Interrupt Queue must be set up before any other | ||
2061 | * ingress queue ... | ||
2062 | */ | ||
2063 | if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) { | ||
2064 | iqandst = SGE_INTRDST_IQ; | ||
2065 | intr_dest = adapter->sge.intrq.abs_id; | ||
2066 | } else | ||
2067 | iqandst = SGE_INTRDST_PCI; | ||
2068 | |||
2069 | /* | ||
2070 | * Allocate the hardware ring for the Response Queue. The size needs | ||
2071 | * to be a multiple of 16 which includes the mandatory status entry | ||
2072 | * (regardless of whether the Status Page capabilities are enabled or | ||
2073 | * not). | ||
2074 | */ | ||
2075 | rspq->size = roundup(rspq->size, 16); | ||
2076 | rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len, | ||
2077 | 0, &rspq->phys_addr, NULL, 0); | ||
2078 | if (!rspq->desc) | ||
2079 | return -ENOMEM; | ||
2080 | |||
2081 | /* | ||
2082 | * Fill in the Ingress Queue Command. Note: Ideally this code would | ||
2083 | * be in t4vf_hw.c but there are so many parameters and dependencies | ||
2084 | * on our Linux SGE state that we would end up having to pass tons of | ||
2085 | * parameters. We'll have to think about how this might be migrated | ||
2086 | * into OS-independent common code ... | ||
2087 | */ | ||
2088 | memset(&cmd, 0, sizeof(cmd)); | ||
2089 | cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) | | ||
2090 | FW_CMD_REQUEST | | ||
2091 | FW_CMD_WRITE | | ||
2092 | FW_CMD_EXEC); | ||
2093 | cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC | | ||
2094 | FW_IQ_CMD_IQSTART(1) | | ||
2095 | FW_LEN16(cmd)); | ||
2096 | cmd.type_to_iqandstindex = | ||
2097 | cpu_to_be32(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | | ||
2098 | FW_IQ_CMD_IQASYNCH(iqasynch) | | ||
2099 | FW_IQ_CMD_VIID(pi->viid) | | ||
2100 | FW_IQ_CMD_IQANDST(iqandst) | | ||
2101 | FW_IQ_CMD_IQANUS(1) | | ||
2102 | FW_IQ_CMD_IQANUD(SGE_UPDATEDEL_INTR) | | ||
2103 | FW_IQ_CMD_IQANDSTINDEX(intr_dest)); | ||
2104 | cmd.iqdroprss_to_iqesize = | ||
2105 | cpu_to_be16(FW_IQ_CMD_IQPCIECH(pi->port_id) | | ||
2106 | FW_IQ_CMD_IQGTSMODE | | ||
2107 | FW_IQ_CMD_IQINTCNTTHRESH(rspq->pktcnt_idx) | | ||
2108 | FW_IQ_CMD_IQESIZE(ilog2(rspq->iqe_len) - 4)); | ||
2109 | cmd.iqsize = cpu_to_be16(rspq->size); | ||
2110 | cmd.iqaddr = cpu_to_be64(rspq->phys_addr); | ||
2111 | |||
2112 | if (fl) { | ||
2113 | /* | ||
2114 | * Allocate the ring for the hardware free list (with space | ||
2115 | * for its status page) along with the associated software | ||
2116 | * descriptor ring. The free list size needs to be a multiple | ||
2117 | * of the Egress Queue Unit. | ||
2118 | */ | ||
2119 | fl->size = roundup(fl->size, FL_PER_EQ_UNIT); | ||
2120 | fl->desc = alloc_ring(adapter->pdev_dev, fl->size, | ||
2121 | sizeof(__be64), sizeof(struct rx_sw_desc), | ||
2122 | &fl->addr, &fl->sdesc, STAT_LEN); | ||
2123 | if (!fl->desc) { | ||
2124 | ret = -ENOMEM; | ||
2125 | goto err; | ||
2126 | } | ||
2127 | |||
2128 | /* | ||
2129 | * Calculate the size of the hardware free list ring plus | ||
2130 | * Status Page (which the SGE will place after the end of the | ||
2131 | * free list ring) in Egress Queue Units. | ||
2132 | */ | ||
2133 | flsz = (fl->size / FL_PER_EQ_UNIT + | ||
2134 | STAT_LEN / EQ_UNIT); | ||
2135 | |||
2136 | /* | ||
2137 | * Fill in all the relevant firmware Ingress Queue Command | ||
2138 | * fields for the free list. | ||
2139 | */ | ||
2140 | cmd.iqns_to_fl0congen = | ||
2141 | cpu_to_be32( | ||
2142 | FW_IQ_CMD_FL0HOSTFCMODE(SGE_HOSTFCMODE_NONE) | | ||
2143 | FW_IQ_CMD_FL0PACKEN | | ||
2144 | FW_IQ_CMD_FL0PADEN); | ||
2145 | cmd.fl0dcaen_to_fl0cidxfthresh = | ||
2146 | cpu_to_be16( | ||
2147 | FW_IQ_CMD_FL0FBMIN(SGE_FETCHBURSTMIN_64B) | | ||
2148 | FW_IQ_CMD_FL0FBMAX(SGE_FETCHBURSTMAX_512B)); | ||
2149 | cmd.fl0size = cpu_to_be16(flsz); | ||
2150 | cmd.fl0addr = cpu_to_be64(fl->addr); | ||
2151 | } | ||
2152 | |||
2153 | /* | ||
2154 | * Issue the firmware Ingress Queue Command and extract the results if | ||
2155 | * it completes successfully. | ||
2156 | */ | ||
2157 | ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); | ||
2158 | if (ret) | ||
2159 | goto err; | ||
2160 | |||
2161 | netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64); | ||
2162 | rspq->cur_desc = rspq->desc; | ||
2163 | rspq->cidx = 0; | ||
2164 | rspq->gen = 1; | ||
2165 | rspq->next_intr_params = rspq->intr_params; | ||
2166 | rspq->cntxt_id = be16_to_cpu(rpl.iqid); | ||
2167 | rspq->abs_id = be16_to_cpu(rpl.physiqid); | ||
2168 | rspq->size--; /* subtract status entry */ | ||
2169 | rspq->adapter = adapter; | ||
2170 | rspq->netdev = dev; | ||
2171 | rspq->handler = hnd; | ||
2172 | |||
2173 | /* set offset to -1 to distinguish ingress queues without FL */ | ||
2174 | rspq->offset = fl ? 0 : -1; | ||
2175 | |||
2176 | if (fl) { | ||
2177 | fl->cntxt_id = be16_to_cpu(rpl.fl0id); | ||
2178 | fl->avail = 0; | ||
2179 | fl->pend_cred = 0; | ||
2180 | fl->pidx = 0; | ||
2181 | fl->cidx = 0; | ||
2182 | fl->alloc_failed = 0; | ||
2183 | fl->large_alloc_failed = 0; | ||
2184 | fl->starving = 0; | ||
2185 | refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL); | ||
2186 | } | ||
2187 | |||
2188 | return 0; | ||
2189 | |||
2190 | err: | ||
2191 | /* | ||
2192 | * An error occurred. Clean up our partial allocation state and | ||
2193 | * return the error. | ||
2194 | */ | ||
2195 | if (rspq->desc) { | ||
2196 | dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len, | ||
2197 | rspq->desc, rspq->phys_addr); | ||
2198 | rspq->desc = NULL; | ||
2199 | } | ||
2200 | if (fl && fl->desc) { | ||
2201 | kfree(fl->sdesc); | ||
2202 | fl->sdesc = NULL; | ||
2203 | dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT, | ||
2204 | fl->desc, fl->addr); | ||
2205 | fl->desc = NULL; | ||
2206 | } | ||
2207 | return ret; | ||
2208 | } | ||
2209 | |||
2210 | /** | ||
2211 | * t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue | ||
2212 | * @adapter: the adapter | ||
2213 | * @txq: pointer to the new txq to be filled in | ||
2214 | * @devq: the network TX queue associated with the new txq | ||
2215 | * @iqid: the relative ingress queue ID to which events relating to | ||
2216 | * the new txq should be directed | ||
2217 | */ | ||
2218 | int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq, | ||
2219 | struct net_device *dev, struct netdev_queue *devq, | ||
2220 | unsigned int iqid) | ||
2221 | { | ||
2222 | int ret, nentries; | ||
2223 | struct fw_eq_eth_cmd cmd, rpl; | ||
2224 | struct port_info *pi = netdev_priv(dev); | ||
2225 | |||
2226 | /* | ||
2227 | * Calculate the size of the hardware TX Queue (including the Status | ||
2228 | * Page on the end of the TX Queue) in units of TX Descriptors. | ||
2229 | */ | ||
2230 | nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc); | ||
2231 | |||
2232 | /* | ||
2233 | * Allocate the hardware ring for the TX ring (with space for its | ||
2234 | * status page) along with the associated software descriptor ring. | ||
2235 | */ | ||
2236 | txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size, | ||
2237 | sizeof(struct tx_desc), | ||
2238 | sizeof(struct tx_sw_desc), | ||
2239 | &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN); | ||
2240 | if (!txq->q.desc) | ||
2241 | return -ENOMEM; | ||
2242 | |||
2243 | /* | ||
2244 | * Fill in the Egress Queue Command. Note: As with the direct use of | ||
2245 | * the firmware Ingress Queue COmmand above in our RXQ allocation | ||
2246 | * routine, ideally, this code would be in t4vf_hw.c. Again, we'll | ||
2247 | * have to see if there's some reasonable way to parameterize it | ||
2248 | * into the common code ... | ||
2249 | */ | ||
2250 | memset(&cmd, 0, sizeof(cmd)); | ||
2251 | cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) | | ||
2252 | FW_CMD_REQUEST | | ||
2253 | FW_CMD_WRITE | | ||
2254 | FW_CMD_EXEC); | ||
2255 | cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC | | ||
2256 | FW_EQ_ETH_CMD_EQSTART | | ||
2257 | FW_LEN16(cmd)); | ||
2258 | cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_VIID(pi->viid)); | ||
2259 | cmd.fetchszm_to_iqid = | ||
2260 | cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE(SGE_HOSTFCMODE_STPG) | | ||
2261 | FW_EQ_ETH_CMD_PCIECHN(pi->port_id) | | ||
2262 | FW_EQ_ETH_CMD_IQID(iqid)); | ||
2263 | cmd.dcaen_to_eqsize = | ||
2264 | cpu_to_be32(FW_EQ_ETH_CMD_FBMIN(SGE_FETCHBURSTMIN_64B) | | ||
2265 | FW_EQ_ETH_CMD_FBMAX(SGE_FETCHBURSTMAX_512B) | | ||
2266 | FW_EQ_ETH_CMD_CIDXFTHRESH(SGE_CIDXFLUSHTHRESH_32) | | ||
2267 | FW_EQ_ETH_CMD_EQSIZE(nentries)); | ||
2268 | cmd.eqaddr = cpu_to_be64(txq->q.phys_addr); | ||
2269 | |||
2270 | /* | ||
2271 | * Issue the firmware Egress Queue Command and extract the results if | ||
2272 | * it completes successfully. | ||
2273 | */ | ||
2274 | ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); | ||
2275 | if (ret) { | ||
2276 | /* | ||
2277 | * The girmware Ingress Queue Command failed for some reason. | ||
2278 | * Free up our partial allocation state and return the error. | ||
2279 | */ | ||
2280 | kfree(txq->q.sdesc); | ||
2281 | txq->q.sdesc = NULL; | ||
2282 | dma_free_coherent(adapter->pdev_dev, | ||
2283 | nentries * sizeof(struct tx_desc), | ||
2284 | txq->q.desc, txq->q.phys_addr); | ||
2285 | txq->q.desc = NULL; | ||
2286 | return ret; | ||
2287 | } | ||
2288 | |||
2289 | txq->q.in_use = 0; | ||
2290 | txq->q.cidx = 0; | ||
2291 | txq->q.pidx = 0; | ||
2292 | txq->q.stat = (void *)&txq->q.desc[txq->q.size]; | ||
2293 | txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_GET(be32_to_cpu(rpl.eqid_pkd)); | ||
2294 | txq->q.abs_id = | ||
2295 | FW_EQ_ETH_CMD_PHYSEQID_GET(be32_to_cpu(rpl.physeqid_pkd)); | ||
2296 | txq->txq = devq; | ||
2297 | txq->tso = 0; | ||
2298 | txq->tx_cso = 0; | ||
2299 | txq->vlan_ins = 0; | ||
2300 | txq->q.stops = 0; | ||
2301 | txq->q.restarts = 0; | ||
2302 | txq->mapping_err = 0; | ||
2303 | return 0; | ||
2304 | } | ||
2305 | |||
2306 | /* | ||
2307 | * Free the DMA map resources associated with a TX queue. | ||
2308 | */ | ||
2309 | static void free_txq(struct adapter *adapter, struct sge_txq *tq) | ||
2310 | { | ||
2311 | dma_free_coherent(adapter->pdev_dev, | ||
2312 | tq->size * sizeof(*tq->desc) + STAT_LEN, | ||
2313 | tq->desc, tq->phys_addr); | ||
2314 | tq->cntxt_id = 0; | ||
2315 | tq->sdesc = NULL; | ||
2316 | tq->desc = NULL; | ||
2317 | } | ||
2318 | |||
2319 | /* | ||
2320 | * Free the resources associated with a response queue (possibly including a | ||
2321 | * free list). | ||
2322 | */ | ||
2323 | static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq, | ||
2324 | struct sge_fl *fl) | ||
2325 | { | ||
2326 | unsigned int flid = fl ? fl->cntxt_id : 0xffff; | ||
2327 | |||
2328 | t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP, | ||
2329 | rspq->cntxt_id, flid, 0xffff); | ||
2330 | dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len, | ||
2331 | rspq->desc, rspq->phys_addr); | ||
2332 | netif_napi_del(&rspq->napi); | ||
2333 | rspq->netdev = NULL; | ||
2334 | rspq->cntxt_id = 0; | ||
2335 | rspq->abs_id = 0; | ||
2336 | rspq->desc = NULL; | ||
2337 | |||
2338 | if (fl) { | ||
2339 | free_rx_bufs(adapter, fl, fl->avail); | ||
2340 | dma_free_coherent(adapter->pdev_dev, | ||
2341 | fl->size * sizeof(*fl->desc) + STAT_LEN, | ||
2342 | fl->desc, fl->addr); | ||
2343 | kfree(fl->sdesc); | ||
2344 | fl->sdesc = NULL; | ||
2345 | fl->cntxt_id = 0; | ||
2346 | fl->desc = NULL; | ||
2347 | } | ||
2348 | } | ||
2349 | |||
2350 | /** | ||
2351 | * t4vf_free_sge_resources - free SGE resources | ||
2352 | * @adapter: the adapter | ||
2353 | * | ||
2354 | * Frees resources used by the SGE queue sets. | ||
2355 | */ | ||
2356 | void t4vf_free_sge_resources(struct adapter *adapter) | ||
2357 | { | ||
2358 | struct sge *s = &adapter->sge; | ||
2359 | struct sge_eth_rxq *rxq = s->ethrxq; | ||
2360 | struct sge_eth_txq *txq = s->ethtxq; | ||
2361 | struct sge_rspq *evtq = &s->fw_evtq; | ||
2362 | struct sge_rspq *intrq = &s->intrq; | ||
2363 | int qs; | ||
2364 | |||
2365 | for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) { | ||
2366 | if (rxq->rspq.desc) | ||
2367 | free_rspq_fl(adapter, &rxq->rspq, &rxq->fl); | ||
2368 | if (txq->q.desc) { | ||
2369 | t4vf_eth_eq_free(adapter, txq->q.cntxt_id); | ||
2370 | free_tx_desc(adapter, &txq->q, txq->q.in_use, true); | ||
2371 | kfree(txq->q.sdesc); | ||
2372 | free_txq(adapter, &txq->q); | ||
2373 | } | ||
2374 | } | ||
2375 | if (evtq->desc) | ||
2376 | free_rspq_fl(adapter, evtq, NULL); | ||
2377 | if (intrq->desc) | ||
2378 | free_rspq_fl(adapter, intrq, NULL); | ||
2379 | } | ||
2380 | |||
2381 | /** | ||
2382 | * t4vf_sge_start - enable SGE operation | ||
2383 | * @adapter: the adapter | ||
2384 | * | ||
2385 | * Start tasklets and timers associated with the DMA engine. | ||
2386 | */ | ||
2387 | void t4vf_sge_start(struct adapter *adapter) | ||
2388 | { | ||
2389 | adapter->sge.ethtxq_rover = 0; | ||
2390 | mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); | ||
2391 | mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); | ||
2392 | } | ||
2393 | |||
2394 | /** | ||
2395 | * t4vf_sge_stop - disable SGE operation | ||
2396 | * @adapter: the adapter | ||
2397 | * | ||
2398 | * Stop tasklets and timers associated with the DMA engine. Note that | ||
2399 | * this is effective only if measures have been taken to disable any HW | ||
2400 | * events that may restart them. | ||
2401 | */ | ||
2402 | void t4vf_sge_stop(struct adapter *adapter) | ||
2403 | { | ||
2404 | struct sge *s = &adapter->sge; | ||
2405 | |||
2406 | if (s->rx_timer.function) | ||
2407 | del_timer_sync(&s->rx_timer); | ||
2408 | if (s->tx_timer.function) | ||
2409 | del_timer_sync(&s->tx_timer); | ||
2410 | } | ||
2411 | |||
2412 | /** | ||
2413 | * t4vf_sge_init - initialize SGE | ||
2414 | * @adapter: the adapter | ||
2415 | * | ||
2416 | * Performs SGE initialization needed every time after a chip reset. | ||
2417 | * We do not initialize any of the queue sets here, instead the driver | ||
2418 | * top-level must request those individually. We also do not enable DMA | ||
2419 | * here, that should be done after the queues have been set up. | ||
2420 | */ | ||
2421 | int t4vf_sge_init(struct adapter *adapter) | ||
2422 | { | ||
2423 | struct sge_params *sge_params = &adapter->params.sge; | ||
2424 | u32 fl0 = sge_params->sge_fl_buffer_size[0]; | ||
2425 | u32 fl1 = sge_params->sge_fl_buffer_size[1]; | ||
2426 | struct sge *s = &adapter->sge; | ||
2427 | |||
2428 | /* | ||
2429 | * Start by vetting the basic SGE parameters which have been set up by | ||
2430 | * the Physical Function Driver. Ideally we should be able to deal | ||
2431 | * with _any_ configuration. Practice is different ... | ||
2432 | */ | ||
2433 | if (fl0 != PAGE_SIZE || (fl1 != 0 && fl1 <= fl0)) { | ||
2434 | dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n", | ||
2435 | fl0, fl1); | ||
2436 | return -EINVAL; | ||
2437 | } | ||
2438 | if ((sge_params->sge_control & RXPKTCPLMODE) == 0) { | ||
2439 | dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n"); | ||
2440 | return -EINVAL; | ||
2441 | } | ||
2442 | |||
2443 | /* | ||
2444 | * Now translate the adapter parameters into our internal forms. | ||
2445 | */ | ||
2446 | if (fl1) | ||
2447 | FL_PG_ORDER = ilog2(fl1) - PAGE_SHIFT; | ||
2448 | STAT_LEN = ((sge_params->sge_control & EGRSTATUSPAGESIZE) ? 128 : 64); | ||
2449 | PKTSHIFT = PKTSHIFT_GET(sge_params->sge_control); | ||
2450 | FL_ALIGN = 1 << (INGPADBOUNDARY_GET(sge_params->sge_control) + | ||
2451 | SGE_INGPADBOUNDARY_SHIFT); | ||
2452 | |||
2453 | /* | ||
2454 | * Set up tasklet timers. | ||
2455 | */ | ||
2456 | setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adapter); | ||
2457 | setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adapter); | ||
2458 | |||
2459 | /* | ||
2460 | * Initialize Forwarded Interrupt Queue lock. | ||
2461 | */ | ||
2462 | spin_lock_init(&s->intrq_lock); | ||
2463 | |||
2464 | return 0; | ||
2465 | } | ||