aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/cxgb4
diff options
context:
space:
mode:
authorJonathan Herman <hermanjl@cs.unc.edu>2013-04-19 17:31:52 -0400
committerJonathan Herman <hermanjl@cs.unc.edu>2013-04-19 17:31:52 -0400
commitf70a290e8a889caa905ab7650c696f2bb299be1a (patch)
tree56f0886d839499e9f522f189999024b3e86f9be2 /drivers/net/cxgb4
parentfcc9d2e5a6c89d22b8b773a64fb4ad21ac318446 (diff)
parent7ef4a793a624c6e66c16ca1051847f75161f5bec (diff)
Merge branch 'wip-nested-locking' into tegra-nested-lockingwip-nested-locking
Conflicts: Makefile include/linux/fs.h
Diffstat (limited to 'drivers/net/cxgb4')
0 files changed, 0 insertions, 0 deletions
10 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
/*
 * Copyright (c) 2017-2018, NVIDIA CORPORATION.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/vmalloc.h>
#include <linux/stacktrace.h>

#include <nvgpu/lock.h>
#include <nvgpu/kmem.h>
#include <nvgpu/atomic.h>
#include <nvgpu/bug.h>
#include <nvgpu/gk20a.h>

#include "kmem_priv.h"

/*
 * Statically declared because this needs to be shared across all nvgpu driver
 * instances. This makes sure that all kmem caches are _definitely_ uniquely
 * named.
 */
static atomic_t kmem_cache_id;

void *__nvgpu_big_alloc(struct gk20a *g, size_t size, bool clear)
{
	void *p;

	if (size > PAGE_SIZE) {
		if (clear)
			p = nvgpu_vzalloc(g, size);
		else
			p = nvgpu_vmalloc(g, size);
	} else {
		if (clear)
			p = nvgpu_kzalloc(g, size);
		else
			p = nvgpu_kmalloc(g, size);
	}

	return p;
}

void nvgpu_big_free(struct gk20a *g, void *p)
{
	/*
	 * This will have to be fixed eventually. Allocs that use
	 * nvgpu_big_[mz]alloc() will need to remember the size of the alloc
	 * when freeing.
	 */
	if (is_vmalloc_addr(p))
		nvgpu_vfree(g, p);
	else
		nvgpu_kfree(g, p);
}

void *__nvgpu_kmalloc(struct gk20a *g, size_t size, void *ip)
{
	void *alloc;

#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
	alloc = __nvgpu_track_kmalloc(g, size, ip);
#else
	alloc = kmalloc(size, GFP_KERNEL);
#endif

	kmem_dbg(g, "kmalloc: size=%-6ld addr=0x%p gfp=0x%08x",
		 size, alloc, GFP_KERNEL);

	return alloc;
}

void *__nvgpu_kzalloc(struct gk20a *g, size_t size, void *ip)
{
	void *alloc;

#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
	alloc = __nvgpu_track_kzalloc(g, size, ip);
#else
	alloc = kzalloc(size, GFP_KERNEL);
#endif

	kmem_dbg(g, "kzalloc: size=%-6ld addr=0x%p gfp=0x%08x",
		 size, alloc, GFP_KERNEL);

	return alloc;
}

void *__nvgpu_kcalloc(struct gk20a *g, size_t n, size_t size, void *ip)
{
	void *alloc;

#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
	alloc = __nvgpu_track_kcalloc(g, n, size, ip);
#else
	alloc = kcalloc(n, size, GFP_KERNEL);
#endif

	kmem_dbg(g, "kcalloc: size=%-6ld addr=0x%p gfp=0x%08x",
		 n * size, alloc, GFP_KERNEL);

	return alloc;
}

void *__nvgpu_vmalloc(struct gk20a *g, unsigned long size, void *ip)
{
	void *alloc;

#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
	alloc = __nvgpu_track_vmalloc(g, size, ip);
#else
	alloc = vmalloc(size);
#endif

	kmem_dbg(g, "vmalloc: size=%-6ld addr=0x%p", size, alloc);

	return alloc;
}

void *__nvgpu_vzalloc(struct gk20a *g, unsigned long size, void *ip)
{
	void *alloc;

#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
	alloc = __nvgpu_track_vzalloc(g, size, ip);
#else
	alloc = vzalloc(size);
#endif

	kmem_dbg(g, "vzalloc: size=%-6ld addr=0x%p", size, alloc);

	return alloc;
}

void __nvgpu_kfree(struct gk20a *g, void *addr)
{
	kmem_dbg(g, "kfree: addr=0x%p", addr);
#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
	__nvgpu_track_kfree(g, addr);
#else
	kfree(addr);
#endif
}

void __nvgpu_vfree(struct gk20a *g, void *addr)
{
	kmem_dbg(g, "vfree: addr=0x%p", addr);
#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE
	__nvgpu_track_vfree(g, addr);
#else
	vfree(addr);
#endif
}

#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE

void nvgpu_lock_tracker(struct nvgpu_mem_alloc_tracker *tracker)
{
	nvgpu_mutex_acquire(&tracker->lock);
}

void nvgpu_unlock_tracker(struct nvgpu_mem_alloc_tracker *tracker)
{
	nvgpu_mutex_release(&tracker->lock);
}

void kmem_print_mem_alloc(struct gk20a *g,
			 struct nvgpu_mem_alloc *alloc,
			 struct seq_file *s)
{
#ifdef __NVGPU_SAVE_KALLOC_STACK_TRACES
	int i;

	__pstat(s, "nvgpu-alloc: addr=0x%llx size=%ld\n",
		alloc->addr, alloc->size);
	for (i = 0; i < alloc->stack_length; i++)
		__pstat(s, "  %3d [<%p>] %pS\n", i,
			(void *)alloc->stack[i],
			(void *)alloc->stack[i]);
	__pstat(s, "\n");
#else
	__pstat(s, "nvgpu-alloc: addr=0x%llx size=%ld src=%pF\n",
		alloc->addr, alloc->size, alloc->ip);
#endif
}

static int nvgpu_add_alloc(struct nvgpu_mem_alloc_tracker *tracker,
			   struct nvgpu_mem_alloc *alloc)
{
	alloc->allocs_entry.key_start = alloc->addr;
	alloc->allocs_entry.key_end = alloc->addr + alloc->size;

	nvgpu_rbtree_insert(&alloc->allocs_entry, &tracker->allocs);
	return 0;
}

static struct nvgpu_mem_alloc *nvgpu_rem_alloc(
	struct nvgpu_mem_alloc_tracker *tracker, u64 alloc_addr)
{
	struct nvgpu_mem_alloc *alloc;
	struct nvgpu_rbtree_node *node = NULL;

	nvgpu_rbtree_search(alloc_addr, &node, tracker->allocs);
	if (!node)
		return NULL;

	alloc = nvgpu_mem_alloc_from_rbtree_node(node);

	nvgpu_rbtree_unlink(node, &tracker->allocs);

	return alloc;
}

static int __nvgpu_save_kmem_alloc(struct nvgpu_mem_alloc_tracker *tracker,
				   unsigned long size, unsigned long real_size,
				   u64 addr, void *ip)
{
	int ret;
	struct nvgpu_mem_alloc *alloc;
#ifdef __NVGPU_SAVE_KALLOC_STACK_TRACES
	struct stack_trace stack_trace;
#endif

	alloc = kzalloc(sizeof(*alloc), GFP_KERNEL);
	if (!alloc)
		return -ENOMEM;

	alloc->owner = tracker;
	alloc->size = size;
	alloc->real_size = real_size;
	alloc->addr = addr;
	alloc->ip = ip;

#ifdef __NVGPU_SAVE_KALLOC_STACK_TRACES
	stack_trace.max_entries = MAX_STACK_TRACE;
	stack_trace.nr_entries = 0;
	stack_trace.entries = alloc->stack;
	/*
	 * This 4 here skips the 2 function calls that happen for all traced
	 * allocs due to nvgpu:
	 *
	 *   __nvgpu_save_kmem_alloc+0x7c/0x128
	 *   __nvgpu_track_kzalloc+0xcc/0xf8
	 *
	 * And the function calls that get made by the stack trace code itself.
	 * If the trace savings code changes this will likely have to change
	 * as well.
	 */
	stack_trace.skip = 4;
	save_stack_trace(&stack_trace);
	alloc->stack_length = stack_trace.nr_entries;
#endif

	nvgpu_lock_tracker(tracker);
	tracker->bytes_alloced += size;
	tracker->bytes_alloced_real += real_size;
	tracker->nr_allocs++;

	/* Keep track of this for building a histogram later on. */
	if (tracker->max_alloc < size)
		tracker->max_alloc = size;
	if (tracker->min_alloc > size)
		tracker->min_alloc = size;

	ret = nvgpu_add_alloc(tracker, alloc);
	if (ret) {
		WARN(1, "Duplicate alloc??? 0x%llx\n", addr);
		kfree(alloc);
		nvgpu_unlock_tracker(tracker);
		return ret;
	}
	nvgpu_unlock_tracker(tracker);

	return 0;
}

static int __nvgpu_free_kmem_alloc(struct nvgpu_mem_alloc_tracker *tracker,
				   u64 addr)
{
	struct nvgpu_mem_alloc *alloc;

	nvgpu_lock_tracker(tracker);
	alloc = nvgpu_rem_alloc(tracker, addr);
	if (WARN(!alloc, "Possible double-free detected: 0x%llx!", addr)) {
		nvgpu_unlock_tracker(tracker);
		return -EINVAL;
	}

	memset((void *)alloc->addr, 0, alloc->size);

	tracker->nr_frees++;
	tracker->bytes_freed += alloc->size;
	tracker->bytes_freed_real += alloc->real_size;
	nvgpu_unlock_tracker(tracker);

	return 0;
}

static void __nvgpu_check_valloc_size(unsigned long size)
{
	WARN(size < PAGE_SIZE, "Alloc smaller than page size! (%lu)!\n", size);
}

static void __nvgpu_check_kalloc_size(size_t size)
{
	WARN(size > PAGE_SIZE, "Alloc larger than page size! (%zu)!\n", size);
}

void *__nvgpu_track_vmalloc(struct gk20a *g, unsigned long size,
			    void *ip)
{
	void *alloc = vmalloc(size);

	if (!alloc)
		return NULL;

	__nvgpu_check_valloc_size(size);

	/*
	 * Ignore the return message. If this fails let's not cause any issues
	 * for the rest of the driver.
	 */
	__nvgpu_save_kmem_alloc(g->vmallocs, size, roundup_pow_of_two(size),
				(u64)(uintptr_t)alloc, ip);

	return alloc;
}

void *__nvgpu_track_vzalloc(struct gk20a *g, unsigned long size,
			    void *ip)
{
	void *alloc = vzalloc(size);

	if (!alloc)
		return NULL;

	__nvgpu_check_valloc_size(size);

	/*
	 * Ignore the return message. If this fails let's not cause any issues
	 * for the rest of the driver.
	 */
	__nvgpu_save_kmem_alloc(g->vmallocs, size, roundup_pow_of_two(size),
				(u64)(uintptr_t)alloc, ip);

	return alloc;
}

void *__nvgpu_track_kmalloc(struct gk20a *g, size_t size, void *ip)
{
	void *alloc = kmalloc(size, GFP_KERNEL);

	if (!alloc)
		return NULL;

	__nvgpu_check_kalloc_size(size);

	__nvgpu_save_kmem_alloc(g->kmallocs, size, roundup_pow_of_two(size),
				(u64)(uintptr_t)alloc, ip);

	return alloc;
}

void *__nvgpu_track_kzalloc(struct gk20a *g, size_t size, void *ip)
{
	void *alloc = kzalloc(size, GFP_KERNEL);

	if (!alloc)
		return NULL;

	__nvgpu_check_kalloc_size(size);

	__nvgpu_save_kmem_alloc(g->kmallocs, size, roundup_pow_of_two(size),
				(u64)(uintptr_t)alloc, ip);

	return alloc;
}

void *__nvgpu_track_kcalloc(struct gk20a *g, size_t n, size_t size,
			    void *ip)
{
	void *alloc = kcalloc(n, size, GFP_KERNEL);

	if (!alloc)
		return NULL;

	__nvgpu_check_kalloc_size(n * size);

	__nvgpu_save_kmem_alloc(g->kmallocs, n * size,
				roundup_pow_of_two(n * size),
				(u64)(uintptr_t)alloc, ip);

	return alloc;
}

void __nvgpu_track_vfree(struct gk20a *g, void *addr)
{
	/*
	 * Often it is accepted practice to pass NULL pointers into free
	 * functions to save code.
	 */
	if (!addr)
		return;

	__nvgpu_free_kmem_alloc(g->vmallocs, (u64)(uintptr_t)addr);

	vfree(addr);
}

void __nvgpu_track_kfree(struct gk20a *g, void *addr)
{
	if (!addr)
		return;

	__nvgpu_free_kmem_alloc(g->kmallocs, (u64)(uintptr_t)addr);

	kfree(addr);
}

static int __do_check_for_outstanding_allocs(
	struct gk20a *g,
	struct nvgpu_mem_alloc_tracker *tracker,
	const char *type, bool silent)
{
	struct nvgpu_rbtree_node *node;
	int count = 0;

	nvgpu_rbtree_enum_start(0, &node, tracker->allocs);
	while (node) {
		struct nvgpu_mem_alloc *alloc =
			nvgpu_mem_alloc_from_rbtree_node(node);

		if (!silent)
			kmem_print_mem_alloc(g, alloc, NULL);

		count++;
		nvgpu_rbtree_enum_next(&node, node);
	}

	return count;
}

/**
 * check_for_outstanding_allocs - Count and display outstanding allocs
 *
 * @g      - The GPU.
 * @silent - If set don't print anything about the allocs.
 *
 * Dump (or just count) the number of allocations left outstanding.
 */
static int check_for_outstanding_allocs(struct gk20a *g, bool silent)
{
	int count = 0;

	count += __do_check_for_outstanding_allocs(g, g->kmallocs, "kmalloc",
						   silent);
	count += __do_check_for_outstanding_allocs(g, g->vmallocs, "vmalloc",
						   silent);

	return count;
}

static void do_nvgpu_kmem_cleanup(struct nvgpu_mem_alloc_tracker *tracker,
				  void (*force_free_func)(const void *))
{
	struct nvgpu_rbtree_node *node;

	nvgpu_rbtree_enum_start(0, &node, tracker->allocs);
	while (node) {
		struct nvgpu_mem_alloc *alloc =
			nvgpu_mem_alloc_from_rbtree_node(node);

		if (force_free_func)
			force_free_func((void *)alloc->addr);

		nvgpu_rbtree_unlink(node, &tracker->allocs);
		kfree(alloc);

		nvgpu_rbtree_enum_start(0, &node, tracker->allocs);
	}
}

/**
 * nvgpu_kmem_cleanup - Cleanup the kmem tracking
 *
 * @g          - The GPU.
 * @force_free - If set will also free leaked objects if possible.
 *
 * Cleanup all of the allocs made by nvgpu_kmem tracking code. If @force_free
 * is non-zero then the allocation made by nvgpu is also freed. This is risky,
 * though, as it is possible that the memory is still in use by other parts of
 * the GPU driver not aware that this has happened.
 *
 * In theory it should be fine if the GPU driver has been deinitialized and
 * there are no bugs in that code. However, if there are any bugs in that code
 * then they could likely manifest as odd crashes indeterminate amounts of time
 * in the future. So use @force_free at your own risk.
 */
static void nvgpu_kmem_cleanup(struct gk20a *g, bool force_free)
{
	do_nvgpu_kmem_cleanup(g->kmallocs, force_free ? kfree : NULL);
	do_nvgpu_kmem_cleanup(g->vmallocs, force_free ? vfree : NULL);
}

void nvgpu_kmem_fini(struct gk20a *g, int flags)
{
	int count;
	bool silent, force_free;

	if (!flags)
		return;

	silent = !(flags & NVGPU_KMEM_FINI_DUMP_ALLOCS);
	force_free = !!(flags & NVGPU_KMEM_FINI_FORCE_CLEANUP);

	count = check_for_outstanding_allocs(g, silent);
	nvgpu_kmem_cleanup(g, force_free);

	/*
	 * If we leak objects we can either BUG() out or just WARN(). In general
	 * it doesn't make sense to BUG() on here since leaking a few objects
	 * won't crash the kernel but it can be helpful for development.
	 *
	 * If neither flag is set then we just silently do nothing.
	 */
	if (count > 0) {
		if (flags & NVGPU_KMEM_FINI_WARN) {
			WARN(1, "Letting %d allocs leak!!\n", count);
		} else if (flags & NVGPU_KMEM_FINI_BUG) {
			nvgpu_err(g, "Letting %d allocs leak!!", count);
			BUG();
		}
	}
}

int nvgpu_kmem_init(struct gk20a *g)
{
	int err;

	g->vmallocs = kzalloc(sizeof(*g->vmallocs), GFP_KERNEL);
	g->kmallocs = kzalloc(sizeof(*g->kmallocs), GFP_KERNEL);

	if (!g->vmallocs || !g->kmallocs) {
		err = -ENOMEM;
		goto fail;
	}

	g->vmallocs->name = "vmalloc";
	g->kmallocs->name = "kmalloc";

	g->vmallocs->allocs = NULL;
	g->kmallocs->allocs = NULL;

	nvgpu_mutex_init(&g->vmallocs->lock);
	nvgpu_mutex_init(&g->kmallocs->lock);

	g->vmallocs->min_alloc = PAGE_SIZE;
	g->kmallocs->min_alloc = KMALLOC_MIN_SIZE;

	/*
	 * This needs to go after all the other initialization since they use
	 * the nvgpu_kzalloc() API.
	 */
	g->vmallocs->allocs_cache = nvgpu_kmem_cache_create(g,
						sizeof(struct nvgpu_mem_alloc));
	g->kmallocs->allocs_cache = nvgpu_kmem_cache_create(g,
						sizeof(struct nvgpu_mem_alloc));

	if (!g->vmallocs->allocs_cache || !g->kmallocs->allocs_cache) {
		err = -ENOMEM;
		if (g->vmallocs->allocs_cache)
			nvgpu_kmem_cache_destroy(g->vmallocs->allocs_cache);
		if (g->kmallocs->allocs_cache)
			nvgpu_kmem_cache_destroy(g->kmallocs->allocs_cache);
		goto fail;
	}

	return 0;

fail:
	if (g->vmallocs)
		kfree(g->vmallocs);
	if (g->kmallocs)
		kfree(g->kmallocs);
	return err;
}

#else /* !CONFIG_NVGPU_TRACK_MEM_USAGE */

int nvgpu_kmem_init(struct gk20a *g)
{
	return 0;
}

void nvgpu_kmem_fini(struct gk20a *g, int flags)
{
}
#endif /* CONFIG_NVGPU_TRACK_MEM_USAGE */

struct nvgpu_kmem_cache *nvgpu_kmem_cache_create(struct gk20a *g, size_t size)
{
	struct nvgpu_kmem_cache *cache =
		nvgpu_kzalloc(g, sizeof(struct nvgpu_kmem_cache));

	if (!cache)
		return NULL;

	cache->g = g;

	snprintf(cache->name, sizeof(cache->name),
		 "nvgpu-cache-0x%p-%d-%d", g, (int)size,
		 atomic_inc_return(&kmem_cache_id));
	cache->cache = kmem_cache_create(cache->name,
					 size, size, 0, NULL);
	if (!cache->cache) {
		nvgpu_kfree(g, cache);
		return NULL;
	}

	return cache;
}

void nvgpu_kmem_cache_destroy(struct nvgpu_kmem_cache *cache)
{
	struct gk20a *g = cache->g;

	kmem_cache_destroy(cache->cache);
	nvgpu_kfree(g, cache);
}

void *nvgpu_kmem_cache_alloc(struct nvgpu_kmem_cache *cache)
{
	return kmem_cache_alloc(cache->cache, GFP_KERNEL);
}

void nvgpu_kmem_cache_free(struct nvgpu_kmem_cache *cache, void *ptr)
{
	kmem_cache_free(cache->cache, ptr);
}