aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/mfd/db8500-prcmu.c
diff options
context:
space:
mode:
authorJonathan Herman <hermanjl@cs.unc.edu>2013-01-17 16:15:55 -0500
committerJonathan Herman <hermanjl@cs.unc.edu>2013-01-17 16:15:55 -0500
commit8dea78da5cee153b8af9c07a2745f6c55057fe12 (patch)
treea8f4d49d63b1ecc92f2fddceba0655b2472c5bd9 /drivers/mfd/db8500-prcmu.c
parent406089d01562f1e2bf9f089fd7637009ebaad589 (diff)
Patched in Tegra support.
Diffstat (limited to 'drivers/mfd/db8500-prcmu.c')
-rw-r--r--drivers/mfd/db8500-prcmu.c1674
1 files changed, 283 insertions, 1391 deletions
diff --git a/drivers/mfd/db8500-prcmu.c b/drivers/mfd/db8500-prcmu.c
index dc8826d8d69..02a15d7cb3b 100644
--- a/drivers/mfd/db8500-prcmu.c
+++ b/drivers/mfd/db8500-prcmu.c
@@ -27,21 +27,23 @@
27#include <linux/platform_device.h> 27#include <linux/platform_device.h>
28#include <linux/uaccess.h> 28#include <linux/uaccess.h>
29#include <linux/mfd/core.h> 29#include <linux/mfd/core.h>
30#include <linux/mfd/dbx500-prcmu.h> 30#include <linux/mfd/db8500-prcmu.h>
31#include <linux/mfd/abx500/ab8500.h>
32#include <linux/regulator/db8500-prcmu.h> 31#include <linux/regulator/db8500-prcmu.h>
33#include <linux/regulator/machine.h> 32#include <linux/regulator/machine.h>
34#include <linux/cpufreq.h>
35#include <asm/hardware/gic.h>
36#include <mach/hardware.h> 33#include <mach/hardware.h>
37#include <mach/irqs.h> 34#include <mach/irqs.h>
38#include <mach/db8500-regs.h> 35#include <mach/db8500-regs.h>
39#include <mach/id.h> 36#include <mach/id.h>
40#include "dbx500-prcmu-regs.h" 37#include "db8500-prcmu-regs.h"
41 38
42/* Offset for the firmware version within the TCPM */ 39/* Offset for the firmware version within the TCPM */
43#define PRCMU_FW_VERSION_OFFSET 0xA4 40#define PRCMU_FW_VERSION_OFFSET 0xA4
44 41
42/* PRCMU project numbers, defined by PRCMU FW */
43#define PRCMU_PROJECT_ID_8500V1_0 1
44#define PRCMU_PROJECT_ID_8500V2_0 2
45#define PRCMU_PROJECT_ID_8400V2_0 3
46
45/* Index of different voltages to be used when accessing AVSData */ 47/* Index of different voltages to be used when accessing AVSData */
46#define PRCM_AVS_BASE 0x2FC 48#define PRCM_AVS_BASE 0x2FC
47#define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0) 49#define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
@@ -129,16 +131,12 @@
129#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3 131#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
130#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4 132#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
131#define MB1H_RELEASE_USB_WAKEUP 0x5 133#define MB1H_RELEASE_USB_WAKEUP 0x5
132#define MB1H_PLL_ON_OFF 0x6
133 134
134/* Mailbox 1 Requests */ 135/* Mailbox 1 Requests */
135#define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0) 136#define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
136#define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1) 137#define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
137#define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4) 138#define PRCM_REQ_MB1_APE_OPP_100_RESTORE (PRCM_REQ_MB1 + 0x4)
138#define PLL_SOC0_OFF 0x1 139#define PRCM_REQ_MB1_ARM_OPP_100_RESTORE (PRCM_REQ_MB1 + 0x8)
139#define PLL_SOC0_ON 0x2
140#define PLL_SOC1_OFF 0x4
141#define PLL_SOC1_ON 0x8
142 140
143/* Mailbox 1 ACKs */ 141/* Mailbox 1 ACKs */
144#define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0) 142#define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
@@ -186,11 +184,6 @@
186#define MB4H_HOTDOG 0x12 184#define MB4H_HOTDOG 0x12
187#define MB4H_HOTMON 0x13 185#define MB4H_HOTMON 0x13
188#define MB4H_HOT_PERIOD 0x14 186#define MB4H_HOT_PERIOD 0x14
189#define MB4H_A9WDOG_CONF 0x16
190#define MB4H_A9WDOG_EN 0x17
191#define MB4H_A9WDOG_DIS 0x18
192#define MB4H_A9WDOG_LOAD 0x19
193#define MB4H_A9WDOG_KICK 0x20
194 187
195/* Mailbox 4 Requests */ 188/* Mailbox 4 Requests */
196#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0) 189#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
@@ -203,13 +196,6 @@
203#define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0) 196#define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
204#define HOTMON_CONFIG_LOW BIT(0) 197#define HOTMON_CONFIG_LOW BIT(0)
205#define HOTMON_CONFIG_HIGH BIT(1) 198#define HOTMON_CONFIG_HIGH BIT(1)
206#define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
207#define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
208#define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
209#define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
210#define A9WDOG_AUTO_OFF_EN BIT(7)
211#define A9WDOG_AUTO_OFF_DIS 0
212#define A9WDOG_ID_MASK 0xf
213 199
214/* Mailbox 5 Requests */ 200/* Mailbox 5 Requests */
215#define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0) 201#define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
@@ -266,13 +252,6 @@
266#define WAKEUP_BIT_GPIO7 BIT(30) 252#define WAKEUP_BIT_GPIO7 BIT(30)
267#define WAKEUP_BIT_GPIO8 BIT(31) 253#define WAKEUP_BIT_GPIO8 BIT(31)
268 254
269static struct {
270 bool valid;
271 struct prcmu_fw_version version;
272} fw_info;
273
274static struct irq_domain *db8500_irq_domain;
275
276/* 255/*
277 * This vector maps irq numbers to the bits in the bit field used in 256 * This vector maps irq numbers to the bits in the bit field used in
278 * communication with the PRCMU firmware. 257 * communication with the PRCMU firmware.
@@ -348,13 +327,11 @@ static struct {
348 * mb1_transfer - state needed for mailbox 1 communication. 327 * mb1_transfer - state needed for mailbox 1 communication.
349 * @lock: The transaction lock. 328 * @lock: The transaction lock.
350 * @work: The transaction completion structure. 329 * @work: The transaction completion structure.
351 * @ape_opp: The current APE OPP.
352 * @ack: Reply ("acknowledge") data. 330 * @ack: Reply ("acknowledge") data.
353 */ 331 */
354static struct { 332static struct {
355 struct mutex lock; 333 struct mutex lock;
356 struct completion work; 334 struct completion work;
357 u8 ape_opp;
358 struct { 335 struct {
359 u8 header; 336 u8 header;
360 u8 arm_opp; 337 u8 arm_opp;
@@ -422,105 +399,52 @@ static struct {
422static atomic_t ac_wake_req_state = ATOMIC_INIT(0); 399static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
423 400
424/* Spinlocks */ 401/* Spinlocks */
425static DEFINE_SPINLOCK(prcmu_lock);
426static DEFINE_SPINLOCK(clkout_lock); 402static DEFINE_SPINLOCK(clkout_lock);
403static DEFINE_SPINLOCK(gpiocr_lock);
427 404
428/* Global var to runtime determine TCDM base for v2 or v1 */ 405/* Global var to runtime determine TCDM base for v2 or v1 */
429static __iomem void *tcdm_base; 406static __iomem void *tcdm_base;
430 407
431struct clk_mgt { 408struct clk_mgt {
432 void __iomem *reg; 409 unsigned int offset;
433 u32 pllsw; 410 u32 pllsw;
434 int branch;
435 bool clk38div;
436};
437
438enum {
439 PLL_RAW,
440 PLL_FIX,
441 PLL_DIV
442}; 411};
443 412
444static DEFINE_SPINLOCK(clk_mgt_lock); 413static DEFINE_SPINLOCK(clk_mgt_lock);
445 414
446#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \ 415#define CLK_MGT_ENTRY(_name)[PRCMU_##_name] = { (PRCM_##_name##_MGT), 0 }
447 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
448struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = { 416struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
449 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false), 417 CLK_MGT_ENTRY(SGACLK),
450 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true), 418 CLK_MGT_ENTRY(UARTCLK),
451 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true), 419 CLK_MGT_ENTRY(MSP02CLK),
452 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true), 420 CLK_MGT_ENTRY(MSP1CLK),
453 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true), 421 CLK_MGT_ENTRY(I2CCLK),
454 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true), 422 CLK_MGT_ENTRY(SDMMCCLK),
455 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true), 423 CLK_MGT_ENTRY(SLIMCLK),
456 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true), 424 CLK_MGT_ENTRY(PER1CLK),
457 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true), 425 CLK_MGT_ENTRY(PER2CLK),
458 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true), 426 CLK_MGT_ENTRY(PER3CLK),
459 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true), 427 CLK_MGT_ENTRY(PER5CLK),
460 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true), 428 CLK_MGT_ENTRY(PER6CLK),
461 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true), 429 CLK_MGT_ENTRY(PER7CLK),
462 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true), 430 CLK_MGT_ENTRY(LCDCLK),
463 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true), 431 CLK_MGT_ENTRY(BMLCLK),
464 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true), 432 CLK_MGT_ENTRY(HSITXCLK),
465 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true), 433 CLK_MGT_ENTRY(HSIRXCLK),
466 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false), 434 CLK_MGT_ENTRY(HDMICLK),
467 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true), 435 CLK_MGT_ENTRY(APEATCLK),
468 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true), 436 CLK_MGT_ENTRY(APETRACECLK),
469 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true), 437 CLK_MGT_ENTRY(MCDECLK),
470 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true), 438 CLK_MGT_ENTRY(IPI2CCLK),
471 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false), 439 CLK_MGT_ENTRY(DSIALTCLK),
472 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true), 440 CLK_MGT_ENTRY(DMACLK),
473 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true), 441 CLK_MGT_ENTRY(B2R2CLK),
474 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true), 442 CLK_MGT_ENTRY(TVCLK),
475 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true), 443 CLK_MGT_ENTRY(SSPCLK),
476 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true), 444 CLK_MGT_ENTRY(RNGCLK),
477 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false), 445 CLK_MGT_ENTRY(UICCCLK),
478};
479
480struct dsiclk {
481 u32 divsel_mask;
482 u32 divsel_shift;
483 u32 divsel;
484};
485
486static struct dsiclk dsiclk[2] = {
487 {
488 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
489 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
490 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
491 },
492 {
493 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
494 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
495 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
496 }
497};
498
499struct dsiescclk {
500 u32 en;
501 u32 div_mask;
502 u32 div_shift;
503};
504
505static struct dsiescclk dsiescclk[3] = {
506 {
507 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
508 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
509 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
510 },
511 {
512 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
513 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
514 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
515 },
516 {
517 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
518 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
519 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
520 }
521}; 446};
522 447
523
524/* 448/*
525* Used by MCDE to setup all necessary PRCMU registers 449* Used by MCDE to setup all necessary PRCMU registers
526*/ 450*/
@@ -536,6 +460,9 @@ static struct dsiescclk dsiescclk[3] = {
536/* PLLDIV=12, PLLSW=4 (PLLDDR) */ 460/* PLLDIV=12, PLLSW=4 (PLLDDR) */
537#define PRCMU_DSI_CLOCK_SETTING 0x0000008C 461#define PRCMU_DSI_CLOCK_SETTING 0x0000008C
538 462
463/* PLLDIV=8, PLLSW=4 (PLLDDR) */
464#define PRCMU_DSI_CLOCK_SETTING_U8400 0x00000088
465
539/* DPI 50000000 Hz */ 466/* DPI 50000000 Hz */
540#define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \ 467#define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
541 (16 << PRCMU_CLK_PLL_DIV_SHIFT)) 468 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
@@ -544,6 +471,9 @@ static struct dsiescclk dsiescclk[3] = {
544/* D=101, N=1, R=4, SELDIV2=0 */ 471/* D=101, N=1, R=4, SELDIV2=0 */
545#define PRCMU_PLLDSI_FREQ_SETTING 0x00040165 472#define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
546 473
474/* D=70, N=1, R=3, SELDIV2=0 */
475#define PRCMU_PLLDSI_FREQ_SETTING_U8400 0x00030146
476
547#define PRCMU_ENABLE_PLLDSI 0x00000001 477#define PRCMU_ENABLE_PLLDSI 0x00000001
548#define PRCMU_DISABLE_PLLDSI 0x00000000 478#define PRCMU_DISABLE_PLLDSI 0x00000000
549#define PRCMU_RELEASE_RESET_DSS 0x0000400C 479#define PRCMU_RELEASE_RESET_DSS 0x0000400C
@@ -555,96 +485,116 @@ static struct dsiescclk dsiescclk[3] = {
555 485
556#define PRCMU_PLLDSI_LOCKP_LOCKED 0x3 486#define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
557 487
558int db8500_prcmu_enable_dsipll(void) 488static struct {
489 u8 project_number;
490 u8 api_version;
491 u8 func_version;
492 u8 errata;
493} prcmu_version;
494
495
496int prcmu_enable_dsipll(void)
559{ 497{
560 int i; 498 int i;
499 unsigned int plldsifreq;
561 500
562 /* Clear DSIPLL_RESETN */ 501 /* Clear DSIPLL_RESETN */
563 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR); 502 writel(PRCMU_RESET_DSIPLL, (_PRCMU_BASE + PRCM_APE_RESETN_CLR));
564 /* Unclamp DSIPLL in/out */ 503 /* Unclamp DSIPLL in/out */
565 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR); 504 writel(PRCMU_UNCLAMP_DSIPLL, (_PRCMU_BASE + PRCM_MMIP_LS_CLAMP_CLR));
566 505
506 if (prcmu_is_u8400())
507 plldsifreq = PRCMU_PLLDSI_FREQ_SETTING_U8400;
508 else
509 plldsifreq = PRCMU_PLLDSI_FREQ_SETTING;
567 /* Set DSI PLL FREQ */ 510 /* Set DSI PLL FREQ */
568 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ); 511 writel(plldsifreq, (_PRCMU_BASE + PRCM_PLLDSI_FREQ));
569 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL); 512 writel(PRCMU_DSI_PLLOUT_SEL_SETTING,
513 (_PRCMU_BASE + PRCM_DSI_PLLOUT_SEL));
570 /* Enable Escape clocks */ 514 /* Enable Escape clocks */
571 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); 515 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV,
516 (_PRCMU_BASE + PRCM_DSITVCLK_DIV));
572 517
573 /* Start DSI PLL */ 518 /* Start DSI PLL */
574 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE); 519 writel(PRCMU_ENABLE_PLLDSI, (_PRCMU_BASE + PRCM_PLLDSI_ENABLE));
575 /* Reset DSI PLL */ 520 /* Reset DSI PLL */
576 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET); 521 writel(PRCMU_DSI_RESET_SW, (_PRCMU_BASE + PRCM_DSI_SW_RESET));
577 for (i = 0; i < 10; i++) { 522 for (i = 0; i < 10; i++) {
578 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED) 523 if ((readl(_PRCMU_BASE + PRCM_PLLDSI_LOCKP) &
524 PRCMU_PLLDSI_LOCKP_LOCKED)
579 == PRCMU_PLLDSI_LOCKP_LOCKED) 525 == PRCMU_PLLDSI_LOCKP_LOCKED)
580 break; 526 break;
581 udelay(100); 527 udelay(100);
582 } 528 }
583 /* Set DSIPLL_RESETN */ 529 /* Set DSIPLL_RESETN */
584 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET); 530 writel(PRCMU_RESET_DSIPLL, (_PRCMU_BASE + PRCM_APE_RESETN_SET));
585 return 0; 531 return 0;
586} 532}
587 533
588int db8500_prcmu_disable_dsipll(void) 534int prcmu_disable_dsipll(void)
589{ 535{
590 /* Disable dsi pll */ 536 /* Disable dsi pll */
591 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE); 537 writel(PRCMU_DISABLE_PLLDSI, (_PRCMU_BASE + PRCM_PLLDSI_ENABLE));
592 /* Disable escapeclock */ 538 /* Disable escapeclock */
593 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); 539 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV,
540 (_PRCMU_BASE + PRCM_DSITVCLK_DIV));
594 return 0; 541 return 0;
595} 542}
596 543
597int db8500_prcmu_set_display_clocks(void) 544int prcmu_set_display_clocks(void)
598{ 545{
599 unsigned long flags; 546 unsigned long flags;
547 unsigned int dsiclk;
548
549 if (prcmu_is_u8400())
550 dsiclk = PRCMU_DSI_CLOCK_SETTING_U8400;
551 else
552 dsiclk = PRCMU_DSI_CLOCK_SETTING;
600 553
601 spin_lock_irqsave(&clk_mgt_lock, flags); 554 spin_lock_irqsave(&clk_mgt_lock, flags);
602 555
603 /* Grab the HW semaphore. */ 556 /* Grab the HW semaphore. */
604 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 557 while ((readl(_PRCMU_BASE + PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
605 cpu_relax(); 558 cpu_relax();
606 559
607 writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT); 560 writel(dsiclk, (_PRCMU_BASE + PRCM_HDMICLK_MGT));
608 writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT); 561 writel(PRCMU_DSI_LP_CLOCK_SETTING, (_PRCMU_BASE + PRCM_TVCLK_MGT));
609 writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT); 562 writel(PRCMU_DPI_CLOCK_SETTING, (_PRCMU_BASE + PRCM_LCDCLK_MGT));
610 563
611 /* Release the HW semaphore. */ 564 /* Release the HW semaphore. */
612 writel(0, PRCM_SEM); 565 writel(0, (_PRCMU_BASE + PRCM_SEM));
613 566
614 spin_unlock_irqrestore(&clk_mgt_lock, flags); 567 spin_unlock_irqrestore(&clk_mgt_lock, flags);
615 568
616 return 0; 569 return 0;
617} 570}
618 571
619u32 db8500_prcmu_read(unsigned int reg) 572/**
620{ 573 * prcmu_enable_spi2 - Enables pin muxing for SPI2 on OtherAlternateC1.
621 return readl(_PRCMU_BASE + reg); 574 */
622} 575void prcmu_enable_spi2(void)
623
624void db8500_prcmu_write(unsigned int reg, u32 value)
625{ 576{
577 u32 reg;
626 unsigned long flags; 578 unsigned long flags;
627 579
628 spin_lock_irqsave(&prcmu_lock, flags); 580 spin_lock_irqsave(&gpiocr_lock, flags);
629 writel(value, (_PRCMU_BASE + reg)); 581 reg = readl(_PRCMU_BASE + PRCM_GPIOCR);
630 spin_unlock_irqrestore(&prcmu_lock, flags); 582 writel(reg | PRCM_GPIOCR_SPI2_SELECT, _PRCMU_BASE + PRCM_GPIOCR);
583 spin_unlock_irqrestore(&gpiocr_lock, flags);
631} 584}
632 585
633void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value) 586/**
587 * prcmu_disable_spi2 - Disables pin muxing for SPI2 on OtherAlternateC1.
588 */
589void prcmu_disable_spi2(void)
634{ 590{
635 u32 val; 591 u32 reg;
636 unsigned long flags; 592 unsigned long flags;
637 593
638 spin_lock_irqsave(&prcmu_lock, flags); 594 spin_lock_irqsave(&gpiocr_lock, flags);
639 val = readl(_PRCMU_BASE + reg); 595 reg = readl(_PRCMU_BASE + PRCM_GPIOCR);
640 val = ((val & ~mask) | (value & mask)); 596 writel(reg & ~PRCM_GPIOCR_SPI2_SELECT, _PRCMU_BASE + PRCM_GPIOCR);
641 writel(val, (_PRCMU_BASE + reg)); 597 spin_unlock_irqrestore(&gpiocr_lock, flags);
642 spin_unlock_irqrestore(&prcmu_lock, flags);
643}
644
645struct prcmu_fw_version *prcmu_get_fw_version(void)
646{
647 return fw_info.valid ? &fw_info.version : NULL;
648} 598}
649 599
650bool prcmu_has_arm_maxopp(void) 600bool prcmu_has_arm_maxopp(void)
@@ -653,6 +603,11 @@ bool prcmu_has_arm_maxopp(void)
653 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK; 603 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
654} 604}
655 605
606bool prcmu_is_u8400(void)
607{
608 return prcmu_version.project_number == PRCMU_PROJECT_ID_8400V2_0;
609}
610
656/** 611/**
657 * prcmu_get_boot_status - PRCMU boot status checking 612 * prcmu_get_boot_status - PRCMU boot status checking
658 * Returns: the current PRCMU boot status 613 * Returns: the current PRCMU boot status
@@ -746,7 +701,7 @@ int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
746 701
747 spin_lock_irqsave(&clkout_lock, flags); 702 spin_lock_irqsave(&clkout_lock, flags);
748 703
749 val = readl(PRCM_CLKOCR); 704 val = readl(_PRCMU_BASE + PRCM_CLKOCR);
750 if (val & div_mask) { 705 if (val & div_mask) {
751 if (div) { 706 if (div) {
752 if ((val & mask) != bits) { 707 if ((val & mask) != bits) {
@@ -760,7 +715,7 @@ int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
760 } 715 }
761 } 716 }
762 } 717 }
763 writel((bits | (val & ~mask)), PRCM_CLKOCR); 718 writel((bits | (val & ~mask)), (_PRCMU_BASE + PRCM_CLKOCR));
764 requests[clkout] += (div ? 1 : -1); 719 requests[clkout] += (div ? 1 : -1);
765 720
766unlock_and_return: 721unlock_and_return:
@@ -769,7 +724,7 @@ unlock_and_return:
769 return r; 724 return r;
770} 725}
771 726
772int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll) 727int prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
773{ 728{
774 unsigned long flags; 729 unsigned long flags;
775 730
@@ -777,7 +732,7 @@ int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
777 732
778 spin_lock_irqsave(&mb0_transfer.lock, flags); 733 spin_lock_irqsave(&mb0_transfer.lock, flags);
779 734
780 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 735 while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
781 cpu_relax(); 736 cpu_relax();
782 737
783 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 738 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
@@ -786,131 +741,13 @@ int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
786 writeb((keep_ulp_clk ? 1 : 0), 741 writeb((keep_ulp_clk ? 1 : 0),
787 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE)); 742 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
788 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI)); 743 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
789 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 744 writel(MBOX_BIT(0), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
790 745
791 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 746 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
792 747
793 return 0; 748 return 0;
794} 749}
795 750
796u8 db8500_prcmu_get_power_state_result(void)
797{
798 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
799}
800
801/* This function decouple the gic from the prcmu */
802int db8500_prcmu_gic_decouple(void)
803{
804 u32 val = readl(PRCM_A9_MASK_REQ);
805
806 /* Set bit 0 register value to 1 */
807 writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
808 PRCM_A9_MASK_REQ);
809
810 /* Make sure the register is updated */
811 readl(PRCM_A9_MASK_REQ);
812
813 /* Wait a few cycles for the gic mask completion */
814 udelay(1);
815
816 return 0;
817}
818
819/* This function recouple the gic with the prcmu */
820int db8500_prcmu_gic_recouple(void)
821{
822 u32 val = readl(PRCM_A9_MASK_REQ);
823
824 /* Set bit 0 register value to 0 */
825 writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
826
827 return 0;
828}
829
830#define PRCMU_GIC_NUMBER_REGS 5
831
832/*
833 * This function checks if there are pending irq on the gic. It only
834 * makes sense if the gic has been decoupled before with the
835 * db8500_prcmu_gic_decouple function. Disabling an interrupt only
836 * disables the forwarding of the interrupt to any CPU interface. It
837 * does not prevent the interrupt from changing state, for example
838 * becoming pending, or active and pending if it is already
839 * active. Hence, we have to check the interrupt is pending *and* is
840 * active.
841 */
842bool db8500_prcmu_gic_pending_irq(void)
843{
844 u32 pr; /* Pending register */
845 u32 er; /* Enable register */
846 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
847 int i;
848
849 /* 5 registers. STI & PPI not skipped */
850 for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
851
852 pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
853 er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
854
855 if (pr & er)
856 return true; /* There is a pending interrupt */
857 }
858
859 return false;
860}
861
862/*
863 * This function checks if there are pending interrupt on the
864 * prcmu which has been delegated to monitor the irqs with the
865 * db8500_prcmu_copy_gic_settings function.
866 */
867bool db8500_prcmu_pending_irq(void)
868{
869 u32 it, im;
870 int i;
871
872 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
873 it = readl(PRCM_ARMITVAL31TO0 + i * 4);
874 im = readl(PRCM_ARMITMSK31TO0 + i * 4);
875 if (it & im)
876 return true; /* There is a pending interrupt */
877 }
878
879 return false;
880}
881
882/*
883 * This function checks if the specified cpu is in in WFI. It's usage
884 * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
885 * function. Of course passing smp_processor_id() to this function will
886 * always return false...
887 */
888bool db8500_prcmu_is_cpu_in_wfi(int cpu)
889{
890 return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
891 PRCM_ARM_WFI_STANDBY_WFI0;
892}
893
894/*
895 * This function copies the gic SPI settings to the prcmu in order to
896 * monitor them and abort/finish the retention/off sequence or state.
897 */
898int db8500_prcmu_copy_gic_settings(void)
899{
900 u32 er; /* Enable register */
901 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
902 int i;
903
904 /* We skip the STI and PPI */
905 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
906 er = readl_relaxed(dist_base +
907 GIC_DIST_ENABLE_SET + (i + 1) * 4);
908 writel(er, PRCM_ARMITMSK31TO0 + i * 4);
909 }
910
911 return 0;
912}
913
914/* This function should only be called while mb0_transfer.lock is held. */ 751/* This function should only be called while mb0_transfer.lock is held. */
915static void config_wakeups(void) 752static void config_wakeups(void)
916{ 753{
@@ -933,18 +770,18 @@ static void config_wakeups(void)
933 return; 770 return;
934 771
935 for (i = 0; i < 2; i++) { 772 for (i = 0; i < 2; i++) {
936 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 773 while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
937 cpu_relax(); 774 cpu_relax();
938 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500)); 775 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
939 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500)); 776 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
940 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 777 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
941 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 778 writel(MBOX_BIT(0), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
942 } 779 }
943 last_dbb_events = dbb_events; 780 last_dbb_events = dbb_events;
944 last_abb_events = abb_events; 781 last_abb_events = abb_events;
945} 782}
946 783
947void db8500_prcmu_enable_wakeups(u32 wakeups) 784void prcmu_enable_wakeups(u32 wakeups)
948{ 785{
949 unsigned long flags; 786 unsigned long flags;
950 u32 bits; 787 u32 bits;
@@ -965,7 +802,7 @@ void db8500_prcmu_enable_wakeups(u32 wakeups)
965 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 802 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
966} 803}
967 804
968void db8500_prcmu_config_abb_event_readout(u32 abb_events) 805void prcmu_config_abb_event_readout(u32 abb_events)
969{ 806{
970 unsigned long flags; 807 unsigned long flags;
971 808
@@ -977,7 +814,7 @@ void db8500_prcmu_config_abb_event_readout(u32 abb_events)
977 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 814 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
978} 815}
979 816
980void db8500_prcmu_get_abb_event_buffer(void __iomem **buf) 817void prcmu_get_abb_event_buffer(void __iomem **buf)
981{ 818{
982 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 819 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
983 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500); 820 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
@@ -986,13 +823,13 @@ void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
986} 823}
987 824
988/** 825/**
989 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP 826 * prcmu_set_arm_opp - set the appropriate ARM OPP
990 * @opp: The new ARM operating point to which transition is to be made 827 * @opp: The new ARM operating point to which transition is to be made
991 * Returns: 0 on success, non-zero on failure 828 * Returns: 0 on success, non-zero on failure
992 * 829 *
993 * This function sets the the operating point of the ARM. 830 * This function sets the the operating point of the ARM.
994 */ 831 */
995int db8500_prcmu_set_arm_opp(u8 opp) 832int prcmu_set_arm_opp(u8 opp)
996{ 833{
997 int r; 834 int r;
998 835
@@ -1003,14 +840,14 @@ int db8500_prcmu_set_arm_opp(u8 opp)
1003 840
1004 mutex_lock(&mb1_transfer.lock); 841 mutex_lock(&mb1_transfer.lock);
1005 842
1006 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 843 while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1007 cpu_relax(); 844 cpu_relax();
1008 845
1009 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 846 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1010 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 847 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1011 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 848 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1012 849
1013 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 850 writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1014 wait_for_completion(&mb1_transfer.work); 851 wait_for_completion(&mb1_transfer.work);
1015 852
1016 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 853 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
@@ -1023,155 +860,91 @@ int db8500_prcmu_set_arm_opp(u8 opp)
1023} 860}
1024 861
1025/** 862/**
1026 * db8500_prcmu_get_arm_opp - get the current ARM OPP 863 * prcmu_get_arm_opp - get the current ARM OPP
1027 * 864 *
1028 * Returns: the current ARM OPP 865 * Returns: the current ARM OPP
1029 */ 866 */
1030int db8500_prcmu_get_arm_opp(void) 867int prcmu_get_arm_opp(void)
1031{ 868{
1032 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP); 869 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1033} 870}
1034 871
1035/** 872/**
1036 * db8500_prcmu_get_ddr_opp - get the current DDR OPP 873 * prcmu_get_ddr_opp - get the current DDR OPP
1037 * 874 *
1038 * Returns: the current DDR OPP 875 * Returns: the current DDR OPP
1039 */ 876 */
1040int db8500_prcmu_get_ddr_opp(void) 877int prcmu_get_ddr_opp(void)
1041{ 878{
1042 return readb(PRCM_DDR_SUBSYS_APE_MINBW); 879 return readb(_PRCMU_BASE + PRCM_DDR_SUBSYS_APE_MINBW);
1043} 880}
1044 881
1045/** 882/**
1046 * db8500_set_ddr_opp - set the appropriate DDR OPP 883 * set_ddr_opp - set the appropriate DDR OPP
1047 * @opp: The new DDR operating point to which transition is to be made 884 * @opp: The new DDR operating point to which transition is to be made
1048 * Returns: 0 on success, non-zero on failure 885 * Returns: 0 on success, non-zero on failure
1049 * 886 *
1050 * This function sets the operating point of the DDR. 887 * This function sets the operating point of the DDR.
1051 */ 888 */
1052int db8500_prcmu_set_ddr_opp(u8 opp) 889int prcmu_set_ddr_opp(u8 opp)
1053{ 890{
1054 if (opp < DDR_100_OPP || opp > DDR_25_OPP) 891 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1055 return -EINVAL; 892 return -EINVAL;
1056 /* Changing the DDR OPP can hang the hardware pre-v21 */ 893 /* Changing the DDR OPP can hang the hardware pre-v21 */
1057 if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20()) 894 if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
1058 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW); 895 writeb(opp, (_PRCMU_BASE + PRCM_DDR_SUBSYS_APE_MINBW));
1059 896
1060 return 0; 897 return 0;
1061} 898}
1062
1063/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1064static void request_even_slower_clocks(bool enable)
1065{
1066 void __iomem *clock_reg[] = {
1067 PRCM_ACLK_MGT,
1068 PRCM_DMACLK_MGT
1069 };
1070 unsigned long flags;
1071 unsigned int i;
1072
1073 spin_lock_irqsave(&clk_mgt_lock, flags);
1074
1075 /* Grab the HW semaphore. */
1076 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1077 cpu_relax();
1078
1079 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1080 u32 val;
1081 u32 div;
1082
1083 val = readl(clock_reg[i]);
1084 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1085 if (enable) {
1086 if ((div <= 1) || (div > 15)) {
1087 pr_err("prcmu: Bad clock divider %d in %s\n",
1088 div, __func__);
1089 goto unlock_and_return;
1090 }
1091 div <<= 1;
1092 } else {
1093 if (div <= 2)
1094 goto unlock_and_return;
1095 div >>= 1;
1096 }
1097 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1098 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1099 writel(val, clock_reg[i]);
1100 }
1101
1102unlock_and_return:
1103 /* Release the HW semaphore. */
1104 writel(0, PRCM_SEM);
1105
1106 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1107}
1108
1109/** 899/**
1110 * db8500_set_ape_opp - set the appropriate APE OPP 900 * set_ape_opp - set the appropriate APE OPP
1111 * @opp: The new APE operating point to which transition is to be made 901 * @opp: The new APE operating point to which transition is to be made
1112 * Returns: 0 on success, non-zero on failure 902 * Returns: 0 on success, non-zero on failure
1113 * 903 *
1114 * This function sets the operating point of the APE. 904 * This function sets the operating point of the APE.
1115 */ 905 */
1116int db8500_prcmu_set_ape_opp(u8 opp) 906int prcmu_set_ape_opp(u8 opp)
1117{ 907{
1118 int r = 0; 908 int r = 0;
1119 909
1120 if (opp == mb1_transfer.ape_opp)
1121 return 0;
1122
1123 mutex_lock(&mb1_transfer.lock); 910 mutex_lock(&mb1_transfer.lock);
1124 911
1125 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP) 912 while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1126 request_even_slower_clocks(false);
1127
1128 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1129 goto skip_message;
1130
1131 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1132 cpu_relax(); 913 cpu_relax();
1133 914
1134 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 915 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1135 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 916 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1136 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp), 917 writeb(opp, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1137 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1138 918
1139 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 919 writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1140 wait_for_completion(&mb1_transfer.work); 920 wait_for_completion(&mb1_transfer.work);
1141 921
1142 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 922 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1143 (mb1_transfer.ack.ape_opp != opp)) 923 (mb1_transfer.ack.ape_opp != opp))
1144 r = -EIO; 924 r = -EIO;
1145 925
1146skip_message:
1147 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1148 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1149 request_even_slower_clocks(true);
1150 if (!r)
1151 mb1_transfer.ape_opp = opp;
1152
1153 mutex_unlock(&mb1_transfer.lock); 926 mutex_unlock(&mb1_transfer.lock);
1154 927
1155 return r; 928 return r;
1156} 929}
1157 930
1158/** 931/**
1159 * db8500_prcmu_get_ape_opp - get the current APE OPP 932 * prcmu_get_ape_opp - get the current APE OPP
1160 * 933 *
1161 * Returns: the current APE OPP 934 * Returns: the current APE OPP
1162 */ 935 */
1163int db8500_prcmu_get_ape_opp(void) 936int prcmu_get_ape_opp(void)
1164{ 937{
1165 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP); 938 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1166} 939}
1167 940
1168/** 941/**
1169 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage 942 * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1170 * @enable: true to request the higher voltage, false to drop a request. 943 * @enable: true to request the higher voltage, false to drop a request.
1171 * 944 *
1172 * Calls to this function to enable and disable requests must be balanced. 945 * Calls to this function to enable and disable requests must be balanced.
1173 */ 946 */
1174int db8500_prcmu_request_ape_opp_100_voltage(bool enable) 947int prcmu_request_ape_opp_100_voltage(bool enable)
1175{ 948{
1176 int r = 0; 949 int r = 0;
1177 u8 header; 950 u8 header;
@@ -1193,12 +966,12 @@ int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1193 header = MB1H_RELEASE_APE_OPP_100_VOLT; 966 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1194 } 967 }
1195 968
1196 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 969 while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1197 cpu_relax(); 970 cpu_relax();
1198 971
1199 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 972 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1200 973
1201 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 974 writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1202 wait_for_completion(&mb1_transfer.work); 975 wait_for_completion(&mb1_transfer.work);
1203 976
1204 if ((mb1_transfer.ack.header != header) || 977 if ((mb1_transfer.ack.header != header) ||
@@ -1222,13 +995,13 @@ int prcmu_release_usb_wakeup_state(void)
1222 995
1223 mutex_lock(&mb1_transfer.lock); 996 mutex_lock(&mb1_transfer.lock);
1224 997
1225 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 998 while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1226 cpu_relax(); 999 cpu_relax();
1227 1000
1228 writeb(MB1H_RELEASE_USB_WAKEUP, 1001 writeb(MB1H_RELEASE_USB_WAKEUP,
1229 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1002 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1230 1003
1231 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1004 writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1232 wait_for_completion(&mb1_transfer.work); 1005 wait_for_completion(&mb1_transfer.work);
1233 1006
1234 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) || 1007 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
@@ -1240,45 +1013,15 @@ int prcmu_release_usb_wakeup_state(void)
1240 return r; 1013 return r;
1241} 1014}
1242 1015
1243static int request_pll(u8 clock, bool enable)
1244{
1245 int r = 0;
1246
1247 if (clock == PRCMU_PLLSOC0)
1248 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1249 else if (clock == PRCMU_PLLSOC1)
1250 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1251 else
1252 return -EINVAL;
1253
1254 mutex_lock(&mb1_transfer.lock);
1255
1256 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1257 cpu_relax();
1258
1259 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1260 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1261
1262 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1263 wait_for_completion(&mb1_transfer.work);
1264
1265 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1266 r = -EIO;
1267
1268 mutex_unlock(&mb1_transfer.lock);
1269
1270 return r;
1271}
1272
1273/** 1016/**
1274 * db8500_prcmu_set_epod - set the state of a EPOD (power domain) 1017 * prcmu_set_epod - set the state of a EPOD (power domain)
1275 * @epod_id: The EPOD to set 1018 * @epod_id: The EPOD to set
1276 * @epod_state: The new EPOD state 1019 * @epod_state: The new EPOD state
1277 * 1020 *
1278 * This function sets the state of a EPOD (power domain). It may not be called 1021 * This function sets the state of a EPOD (power domain). It may not be called
1279 * from interrupt context. 1022 * from interrupt context.
1280 */ 1023 */
1281int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state) 1024int prcmu_set_epod(u16 epod_id, u8 epod_state)
1282{ 1025{
1283 int r = 0; 1026 int r = 0;
1284 bool ram_retention = false; 1027 bool ram_retention = false;
@@ -1305,7 +1048,7 @@ int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1305 mutex_lock(&mb2_transfer.lock); 1048 mutex_lock(&mb2_transfer.lock);
1306 1049
1307 /* wait for mailbox */ 1050 /* wait for mailbox */
1308 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2)) 1051 while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1309 cpu_relax(); 1052 cpu_relax();
1310 1053
1311 /* fill in mailbox */ 1054 /* fill in mailbox */
@@ -1315,7 +1058,7 @@ int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1315 1058
1316 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2)); 1059 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1317 1060
1318 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET); 1061 writel(MBOX_BIT(2), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1319 1062
1320 /* 1063 /*
1321 * The current firmware version does not handle errors correctly, 1064 * The current firmware version does not handle errors correctly,
@@ -1402,13 +1145,13 @@ static int request_sysclk(bool enable)
1402 1145
1403 spin_lock_irqsave(&mb3_transfer.lock, flags); 1146 spin_lock_irqsave(&mb3_transfer.lock, flags);
1404 1147
1405 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3)) 1148 while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1406 cpu_relax(); 1149 cpu_relax();
1407 1150
1408 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT)); 1151 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1409 1152
1410 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3)); 1153 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1411 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET); 1154 writel(MBOX_BIT(3), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1412 1155
1413 spin_unlock_irqrestore(&mb3_transfer.lock, flags); 1156 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1414 1157
@@ -1434,12 +1177,12 @@ static int request_timclk(bool enable)
1434 1177
1435 if (!enable) 1178 if (!enable)
1436 val |= PRCM_TCR_STOP_TIMERS; 1179 val |= PRCM_TCR_STOP_TIMERS;
1437 writel(val, PRCM_TCR); 1180 writel(val, (_PRCMU_BASE + PRCM_TCR));
1438 1181
1439 return 0; 1182 return 0;
1440} 1183}
1441 1184
1442static int request_clock(u8 clock, bool enable) 1185static int request_reg_clock(u8 clock, bool enable)
1443{ 1186{
1444 u32 val; 1187 u32 val;
1445 unsigned long flags; 1188 unsigned long flags;
@@ -1447,645 +1190,47 @@ static int request_clock(u8 clock, bool enable)
1447 spin_lock_irqsave(&clk_mgt_lock, flags); 1190 spin_lock_irqsave(&clk_mgt_lock, flags);
1448 1191
1449 /* Grab the HW semaphore. */ 1192 /* Grab the HW semaphore. */
1450 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1193 while ((readl(_PRCMU_BASE + PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1451 cpu_relax(); 1194 cpu_relax();
1452 1195
1453 val = readl(clk_mgt[clock].reg); 1196 val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
1454 if (enable) { 1197 if (enable) {
1455 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw); 1198 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1456 } else { 1199 } else {
1457 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1200 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1458 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK); 1201 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1459 } 1202 }
1460 writel(val, clk_mgt[clock].reg); 1203 writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
1461 1204
1462 /* Release the HW semaphore. */ 1205 /* Release the HW semaphore. */
1463 writel(0, PRCM_SEM); 1206 writel(0, (_PRCMU_BASE + PRCM_SEM));
1464 1207
1465 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1208 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1466 1209
1467 return 0; 1210 return 0;
1468} 1211}
1469 1212
1470static int request_sga_clock(u8 clock, bool enable)
1471{
1472 u32 val;
1473 int ret;
1474
1475 if (enable) {
1476 val = readl(PRCM_CGATING_BYPASS);
1477 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1478 }
1479
1480 ret = request_clock(clock, enable);
1481
1482 if (!ret && !enable) {
1483 val = readl(PRCM_CGATING_BYPASS);
1484 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1485 }
1486
1487 return ret;
1488}
1489
1490static inline bool plldsi_locked(void)
1491{
1492 return (readl(PRCM_PLLDSI_LOCKP) &
1493 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1494 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1495 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1496 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1497}
1498
1499static int request_plldsi(bool enable)
1500{
1501 int r = 0;
1502 u32 val;
1503
1504 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1505 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1506 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1507
1508 val = readl(PRCM_PLLDSI_ENABLE);
1509 if (enable)
1510 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1511 else
1512 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1513 writel(val, PRCM_PLLDSI_ENABLE);
1514
1515 if (enable) {
1516 unsigned int i;
1517 bool locked = plldsi_locked();
1518
1519 for (i = 10; !locked && (i > 0); --i) {
1520 udelay(100);
1521 locked = plldsi_locked();
1522 }
1523 if (locked) {
1524 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1525 PRCM_APE_RESETN_SET);
1526 } else {
1527 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1528 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1529 PRCM_MMIP_LS_CLAMP_SET);
1530 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1531 writel(val, PRCM_PLLDSI_ENABLE);
1532 r = -EAGAIN;
1533 }
1534 } else {
1535 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1536 }
1537 return r;
1538}
1539
1540static int request_dsiclk(u8 n, bool enable)
1541{
1542 u32 val;
1543
1544 val = readl(PRCM_DSI_PLLOUT_SEL);
1545 val &= ~dsiclk[n].divsel_mask;
1546 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1547 dsiclk[n].divsel_shift);
1548 writel(val, PRCM_DSI_PLLOUT_SEL);
1549 return 0;
1550}
1551
1552static int request_dsiescclk(u8 n, bool enable)
1553{
1554 u32 val;
1555
1556 val = readl(PRCM_DSITVCLK_DIV);
1557 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1558 writel(val, PRCM_DSITVCLK_DIV);
1559 return 0;
1560}
1561
1562/** 1213/**
1563 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled. 1214 * prcmu_request_clock() - Request for a clock to be enabled or disabled.
1564 * @clock: The clock for which the request is made. 1215 * @clock: The clock for which the request is made.
1565 * @enable: Whether the clock should be enabled (true) or disabled (false). 1216 * @enable: Whether the clock should be enabled (true) or disabled (false).
1566 * 1217 *
1567 * This function should only be used by the clock implementation. 1218 * This function should only be used by the clock implementation.
1568 * Do not use it from any other place! 1219 * Do not use it from any other place!
1569 */ 1220 */
1570int db8500_prcmu_request_clock(u8 clock, bool enable) 1221int prcmu_request_clock(u8 clock, bool enable)
1571{ 1222{
1572 if (clock == PRCMU_SGACLK) 1223 if (clock < PRCMU_NUM_REG_CLOCKS)
1573 return request_sga_clock(clock, enable); 1224 return request_reg_clock(clock, enable);
1574 else if (clock < PRCMU_NUM_REG_CLOCKS)
1575 return request_clock(clock, enable);
1576 else if (clock == PRCMU_TIMCLK) 1225 else if (clock == PRCMU_TIMCLK)
1577 return request_timclk(enable); 1226 return request_timclk(enable);
1578 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1579 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1580 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1581 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1582 else if (clock == PRCMU_PLLDSI)
1583 return request_plldsi(enable);
1584 else if (clock == PRCMU_SYSCLK) 1227 else if (clock == PRCMU_SYSCLK)
1585 return request_sysclk(enable); 1228 return request_sysclk(enable);
1586 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1587 return request_pll(clock, enable);
1588 else 1229 else
1589 return -EINVAL; 1230 return -EINVAL;
1590} 1231}
1591 1232
1592static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate, 1233int prcmu_config_esram0_deep_sleep(u8 state)
1593 int branch)
1594{
1595 u64 rate;
1596 u32 val;
1597 u32 d;
1598 u32 div = 1;
1599
1600 val = readl(reg);
1601
1602 rate = src_rate;
1603 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1604
1605 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1606 if (d > 1)
1607 div *= d;
1608
1609 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1610 if (d > 1)
1611 div *= d;
1612
1613 if (val & PRCM_PLL_FREQ_SELDIV2)
1614 div *= 2;
1615
1616 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1617 (val & PRCM_PLL_FREQ_DIV2EN) &&
1618 ((reg == PRCM_PLLSOC0_FREQ) ||
1619 (reg == PRCM_PLLARM_FREQ) ||
1620 (reg == PRCM_PLLDDR_FREQ))))
1621 div *= 2;
1622
1623 (void)do_div(rate, div);
1624
1625 return (unsigned long)rate;
1626}
1627
1628#define ROOT_CLOCK_RATE 38400000
1629
1630static unsigned long clock_rate(u8 clock)
1631{
1632 u32 val;
1633 u32 pllsw;
1634 unsigned long rate = ROOT_CLOCK_RATE;
1635
1636 val = readl(clk_mgt[clock].reg);
1637
1638 if (val & PRCM_CLK_MGT_CLK38) {
1639 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1640 rate /= 2;
1641 return rate;
1642 }
1643
1644 val |= clk_mgt[clock].pllsw;
1645 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1646
1647 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1648 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1649 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1650 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1651 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1652 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1653 else
1654 return 0;
1655
1656 if ((clock == PRCMU_SGACLK) &&
1657 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1658 u64 r = (rate * 10);
1659
1660 (void)do_div(r, 25);
1661 return (unsigned long)r;
1662 }
1663 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1664 if (val)
1665 return rate / val;
1666 else
1667 return 0;
1668}
1669
1670static unsigned long armss_rate(void)
1671{
1672 u32 r;
1673 unsigned long rate;
1674
1675 r = readl(PRCM_ARM_CHGCLKREQ);
1676
1677 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1678 /* External ARMCLKFIX clock */
1679
1680 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1681
1682 /* Check PRCM_ARM_CHGCLKREQ divider */
1683 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1684 rate /= 2;
1685
1686 /* Check PRCM_ARMCLKFIX_MGT divider */
1687 r = readl(PRCM_ARMCLKFIX_MGT);
1688 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1689 rate /= r;
1690
1691 } else {/* ARM PLL */
1692 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1693 }
1694
1695 return rate;
1696}
1697
1698static unsigned long dsiclk_rate(u8 n)
1699{
1700 u32 divsel;
1701 u32 div = 1;
1702
1703 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1704 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1705
1706 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1707 divsel = dsiclk[n].divsel;
1708
1709 switch (divsel) {
1710 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1711 div *= 2;
1712 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1713 div *= 2;
1714 case PRCM_DSI_PLLOUT_SEL_PHI:
1715 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1716 PLL_RAW) / div;
1717 default:
1718 return 0;
1719 }
1720}
1721
1722static unsigned long dsiescclk_rate(u8 n)
1723{
1724 u32 div;
1725
1726 div = readl(PRCM_DSITVCLK_DIV);
1727 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1728 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1729}
1730
1731unsigned long prcmu_clock_rate(u8 clock)
1732{
1733 if (clock < PRCMU_NUM_REG_CLOCKS)
1734 return clock_rate(clock);
1735 else if (clock == PRCMU_TIMCLK)
1736 return ROOT_CLOCK_RATE / 16;
1737 else if (clock == PRCMU_SYSCLK)
1738 return ROOT_CLOCK_RATE;
1739 else if (clock == PRCMU_PLLSOC0)
1740 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1741 else if (clock == PRCMU_PLLSOC1)
1742 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1743 else if (clock == PRCMU_ARMSS)
1744 return armss_rate();
1745 else if (clock == PRCMU_PLLDDR)
1746 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1747 else if (clock == PRCMU_PLLDSI)
1748 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1749 PLL_RAW);
1750 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1751 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1752 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1753 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1754 else
1755 return 0;
1756}
1757
1758static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1759{
1760 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1761 return ROOT_CLOCK_RATE;
1762 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1763 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1764 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1765 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1766 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1767 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1768 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1769 else
1770 return 0;
1771}
1772
1773static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1774{
1775 u32 div;
1776
1777 div = (src_rate / rate);
1778 if (div == 0)
1779 return 1;
1780 if (rate < (src_rate / div))
1781 div++;
1782 return div;
1783}
1784
1785static long round_clock_rate(u8 clock, unsigned long rate)
1786{
1787 u32 val;
1788 u32 div;
1789 unsigned long src_rate;
1790 long rounded_rate;
1791
1792 val = readl(clk_mgt[clock].reg);
1793 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1794 clk_mgt[clock].branch);
1795 div = clock_divider(src_rate, rate);
1796 if (val & PRCM_CLK_MGT_CLK38) {
1797 if (clk_mgt[clock].clk38div) {
1798 if (div > 2)
1799 div = 2;
1800 } else {
1801 div = 1;
1802 }
1803 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1804 u64 r = (src_rate * 10);
1805
1806 (void)do_div(r, 25);
1807 if (r <= rate)
1808 return (unsigned long)r;
1809 }
1810 rounded_rate = (src_rate / min(div, (u32)31));
1811
1812 return rounded_rate;
1813}
1814
1815/* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1816static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1817 { .frequency = 200000, .index = ARM_EXTCLK,},
1818 { .frequency = 400000, .index = ARM_50_OPP,},
1819 { .frequency = 800000, .index = ARM_100_OPP,},
1820 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1821 { .frequency = CPUFREQ_TABLE_END,},
1822};
1823
1824static long round_armss_rate(unsigned long rate)
1825{
1826 long freq = 0;
1827 int i = 0;
1828
1829 /* cpufreq table frequencies is in KHz. */
1830 rate = rate / 1000;
1831
1832 /* Find the corresponding arm opp from the cpufreq table. */
1833 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1834 freq = db8500_cpufreq_table[i].frequency;
1835 if (freq == rate)
1836 break;
1837 i++;
1838 }
1839
1840 /* Return the last valid value, even if a match was not found. */
1841 return freq * 1000;
1842}
1843
1844#define MIN_PLL_VCO_RATE 600000000ULL
1845#define MAX_PLL_VCO_RATE 1680640000ULL
1846
1847static long round_plldsi_rate(unsigned long rate)
1848{
1849 long rounded_rate = 0;
1850 unsigned long src_rate;
1851 unsigned long rem;
1852 u32 r;
1853
1854 src_rate = clock_rate(PRCMU_HDMICLK);
1855 rem = rate;
1856
1857 for (r = 7; (rem > 0) && (r > 0); r--) {
1858 u64 d;
1859
1860 d = (r * rate);
1861 (void)do_div(d, src_rate);
1862 if (d < 6)
1863 d = 6;
1864 else if (d > 255)
1865 d = 255;
1866 d *= src_rate;
1867 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1868 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1869 continue;
1870 (void)do_div(d, r);
1871 if (rate < d) {
1872 if (rounded_rate == 0)
1873 rounded_rate = (long)d;
1874 break;
1875 }
1876 if ((rate - d) < rem) {
1877 rem = (rate - d);
1878 rounded_rate = (long)d;
1879 }
1880 }
1881 return rounded_rate;
1882}
1883
1884static long round_dsiclk_rate(unsigned long rate)
1885{
1886 u32 div;
1887 unsigned long src_rate;
1888 long rounded_rate;
1889
1890 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1891 PLL_RAW);
1892 div = clock_divider(src_rate, rate);
1893 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1894
1895 return rounded_rate;
1896}
1897
1898static long round_dsiescclk_rate(unsigned long rate)
1899{
1900 u32 div;
1901 unsigned long src_rate;
1902 long rounded_rate;
1903
1904 src_rate = clock_rate(PRCMU_TVCLK);
1905 div = clock_divider(src_rate, rate);
1906 rounded_rate = (src_rate / min(div, (u32)255));
1907
1908 return rounded_rate;
1909}
1910
1911long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1912{
1913 if (clock < PRCMU_NUM_REG_CLOCKS)
1914 return round_clock_rate(clock, rate);
1915 else if (clock == PRCMU_ARMSS)
1916 return round_armss_rate(rate);
1917 else if (clock == PRCMU_PLLDSI)
1918 return round_plldsi_rate(rate);
1919 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1920 return round_dsiclk_rate(rate);
1921 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1922 return round_dsiescclk_rate(rate);
1923 else
1924 return (long)prcmu_clock_rate(clock);
1925}
1926
1927static void set_clock_rate(u8 clock, unsigned long rate)
1928{
1929 u32 val;
1930 u32 div;
1931 unsigned long src_rate;
1932 unsigned long flags;
1933
1934 spin_lock_irqsave(&clk_mgt_lock, flags);
1935
1936 /* Grab the HW semaphore. */
1937 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1938 cpu_relax();
1939
1940 val = readl(clk_mgt[clock].reg);
1941 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1942 clk_mgt[clock].branch);
1943 div = clock_divider(src_rate, rate);
1944 if (val & PRCM_CLK_MGT_CLK38) {
1945 if (clk_mgt[clock].clk38div) {
1946 if (div > 1)
1947 val |= PRCM_CLK_MGT_CLK38DIV;
1948 else
1949 val &= ~PRCM_CLK_MGT_CLK38DIV;
1950 }
1951 } else if (clock == PRCMU_SGACLK) {
1952 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1953 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1954 if (div == 3) {
1955 u64 r = (src_rate * 10);
1956
1957 (void)do_div(r, 25);
1958 if (r <= rate) {
1959 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1960 div = 0;
1961 }
1962 }
1963 val |= min(div, (u32)31);
1964 } else {
1965 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1966 val |= min(div, (u32)31);
1967 }
1968 writel(val, clk_mgt[clock].reg);
1969
1970 /* Release the HW semaphore. */
1971 writel(0, PRCM_SEM);
1972
1973 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1974}
1975
1976static int set_armss_rate(unsigned long rate)
1977{
1978 int i = 0;
1979
1980 /* cpufreq table frequencies is in KHz. */
1981 rate = rate / 1000;
1982
1983 /* Find the corresponding arm opp from the cpufreq table. */
1984 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1985 if (db8500_cpufreq_table[i].frequency == rate)
1986 break;
1987 i++;
1988 }
1989
1990 if (db8500_cpufreq_table[i].frequency != rate)
1991 return -EINVAL;
1992
1993 /* Set the new arm opp. */
1994 return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].index);
1995}
1996
1997static int set_plldsi_rate(unsigned long rate)
1998{
1999 unsigned long src_rate;
2000 unsigned long rem;
2001 u32 pll_freq = 0;
2002 u32 r;
2003
2004 src_rate = clock_rate(PRCMU_HDMICLK);
2005 rem = rate;
2006
2007 for (r = 7; (rem > 0) && (r > 0); r--) {
2008 u64 d;
2009 u64 hwrate;
2010
2011 d = (r * rate);
2012 (void)do_div(d, src_rate);
2013 if (d < 6)
2014 d = 6;
2015 else if (d > 255)
2016 d = 255;
2017 hwrate = (d * src_rate);
2018 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
2019 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
2020 continue;
2021 (void)do_div(hwrate, r);
2022 if (rate < hwrate) {
2023 if (pll_freq == 0)
2024 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2025 (r << PRCM_PLL_FREQ_R_SHIFT));
2026 break;
2027 }
2028 if ((rate - hwrate) < rem) {
2029 rem = (rate - hwrate);
2030 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2031 (r << PRCM_PLL_FREQ_R_SHIFT));
2032 }
2033 }
2034 if (pll_freq == 0)
2035 return -EINVAL;
2036
2037 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
2038 writel(pll_freq, PRCM_PLLDSI_FREQ);
2039
2040 return 0;
2041}
2042
2043static void set_dsiclk_rate(u8 n, unsigned long rate)
2044{
2045 u32 val;
2046 u32 div;
2047
2048 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
2049 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
2050
2051 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
2052 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
2053 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
2054
2055 val = readl(PRCM_DSI_PLLOUT_SEL);
2056 val &= ~dsiclk[n].divsel_mask;
2057 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
2058 writel(val, PRCM_DSI_PLLOUT_SEL);
2059}
2060
2061static void set_dsiescclk_rate(u8 n, unsigned long rate)
2062{
2063 u32 val;
2064 u32 div;
2065
2066 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
2067 val = readl(PRCM_DSITVCLK_DIV);
2068 val &= ~dsiescclk[n].div_mask;
2069 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
2070 writel(val, PRCM_DSITVCLK_DIV);
2071}
2072
2073int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2074{
2075 if (clock < PRCMU_NUM_REG_CLOCKS)
2076 set_clock_rate(clock, rate);
2077 else if (clock == PRCMU_ARMSS)
2078 return set_armss_rate(rate);
2079 else if (clock == PRCMU_PLLDSI)
2080 return set_plldsi_rate(rate);
2081 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2082 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2083 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2084 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2085 return 0;
2086}
2087
2088int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2089{ 1234{
2090 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) || 1235 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2091 (state < ESRAM0_DEEP_SLEEP_STATE_OFF)) 1236 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
@@ -2093,7 +1238,7 @@ int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2093 1238
2094 mutex_lock(&mb4_transfer.lock); 1239 mutex_lock(&mb4_transfer.lock);
2095 1240
2096 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 1241 while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2097 cpu_relax(); 1242 cpu_relax();
2098 1243
2099 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 1244 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
@@ -2103,7 +1248,7 @@ int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2103 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE)); 1248 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2104 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST)); 1249 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2105 1250
2106 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 1251 writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
2107 wait_for_completion(&mb4_transfer.work); 1252 wait_for_completion(&mb4_transfer.work);
2108 1253
2109 mutex_unlock(&mb4_transfer.lock); 1254 mutex_unlock(&mb4_transfer.lock);
@@ -2111,17 +1256,17 @@ int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2111 return 0; 1256 return 0;
2112} 1257}
2113 1258
2114int db8500_prcmu_config_hotdog(u8 threshold) 1259int prcmu_config_hotdog(u8 threshold)
2115{ 1260{
2116 mutex_lock(&mb4_transfer.lock); 1261 mutex_lock(&mb4_transfer.lock);
2117 1262
2118 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 1263 while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2119 cpu_relax(); 1264 cpu_relax();
2120 1265
2121 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD)); 1266 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2122 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 1267 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2123 1268
2124 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 1269 writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
2125 wait_for_completion(&mb4_transfer.work); 1270 wait_for_completion(&mb4_transfer.work);
2126 1271
2127 mutex_unlock(&mb4_transfer.lock); 1272 mutex_unlock(&mb4_transfer.lock);
@@ -2129,11 +1274,11 @@ int db8500_prcmu_config_hotdog(u8 threshold)
2129 return 0; 1274 return 0;
2130} 1275}
2131 1276
2132int db8500_prcmu_config_hotmon(u8 low, u8 high) 1277int prcmu_config_hotmon(u8 low, u8 high)
2133{ 1278{
2134 mutex_lock(&mb4_transfer.lock); 1279 mutex_lock(&mb4_transfer.lock);
2135 1280
2136 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 1281 while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2137 cpu_relax(); 1282 cpu_relax();
2138 1283
2139 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW)); 1284 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
@@ -2142,7 +1287,7 @@ int db8500_prcmu_config_hotmon(u8 low, u8 high)
2142 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG)); 1287 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2143 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 1288 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2144 1289
2145 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 1290 writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
2146 wait_for_completion(&mb4_transfer.work); 1291 wait_for_completion(&mb4_transfer.work);
2147 1292
2148 mutex_unlock(&mb4_transfer.lock); 1293 mutex_unlock(&mb4_transfer.lock);
@@ -2154,13 +1299,13 @@ static int config_hot_period(u16 val)
2154{ 1299{
2155 mutex_lock(&mb4_transfer.lock); 1300 mutex_lock(&mb4_transfer.lock);
2156 1301
2157 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 1302 while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2158 cpu_relax(); 1303 cpu_relax();
2159 1304
2160 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD)); 1305 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2161 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 1306 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2162 1307
2163 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 1308 writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
2164 wait_for_completion(&mb4_transfer.work); 1309 wait_for_completion(&mb4_transfer.work);
2165 1310
2166 mutex_unlock(&mb4_transfer.lock); 1311 mutex_unlock(&mb4_transfer.lock);
@@ -2168,7 +1313,7 @@ static int config_hot_period(u16 val)
2168 return 0; 1313 return 0;
2169} 1314}
2170 1315
2171int db8500_prcmu_start_temp_sense(u16 cycles32k) 1316int prcmu_start_temp_sense(u16 cycles32k)
2172{ 1317{
2173 if (cycles32k == 0xFFFF) 1318 if (cycles32k == 0xFFFF)
2174 return -EINVAL; 1319 return -EINVAL;
@@ -2176,73 +1321,44 @@ int db8500_prcmu_start_temp_sense(u16 cycles32k)
2176 return config_hot_period(cycles32k); 1321 return config_hot_period(cycles32k);
2177} 1322}
2178 1323
2179int db8500_prcmu_stop_temp_sense(void) 1324int prcmu_stop_temp_sense(void)
2180{ 1325{
2181 return config_hot_period(0xFFFF); 1326 return config_hot_period(0xFFFF);
2182} 1327}
2183 1328
2184static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3) 1329/**
1330 * prcmu_set_clock_divider() - Configure the clock divider.
1331 * @clock: The clock for which the request is made.
1332 * @divider: The clock divider. (< 32)
1333 *
1334 * This function should only be used by the clock implementation.
1335 * Do not use it from any other place!
1336 */
1337int prcmu_set_clock_divider(u8 clock, u8 divider)
2185{ 1338{
1339 u32 val;
1340 unsigned long flags;
2186 1341
2187 mutex_lock(&mb4_transfer.lock); 1342 if ((clock >= PRCMU_NUM_REG_CLOCKS) || (divider < 1) || (31 < divider))
1343 return -EINVAL;
2188 1344
2189 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 1345 spin_lock_irqsave(&clk_mgt_lock, flags);
2190 cpu_relax();
2191 1346
2192 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0)); 1347 /* Grab the HW semaphore. */
2193 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1)); 1348 while ((readl(_PRCMU_BASE + PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
2194 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2)); 1349 cpu_relax();
2195 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2196 1350
2197 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 1351 val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
1352 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK);
1353 val |= (u32)divider;
1354 writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
2198 1355
2199 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 1356 /* Release the HW semaphore. */
2200 wait_for_completion(&mb4_transfer.work); 1357 writel(0, (_PRCMU_BASE + PRCM_SEM));
2201 1358
2202 mutex_unlock(&mb4_transfer.lock); 1359 spin_unlock_irqrestore(&clk_mgt_lock, flags);
2203 1360
2204 return 0; 1361 return 0;
2205
2206}
2207
2208int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2209{
2210 BUG_ON(num == 0 || num > 0xf);
2211 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2212 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2213 A9WDOG_AUTO_OFF_DIS);
2214}
2215
2216int db8500_prcmu_enable_a9wdog(u8 id)
2217{
2218 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2219}
2220
2221int db8500_prcmu_disable_a9wdog(u8 id)
2222{
2223 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2224}
2225
2226int db8500_prcmu_kick_a9wdog(u8 id)
2227{
2228 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2229}
2230
2231/*
2232 * timeout is 28 bit, in ms.
2233 */
2234int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2235{
2236 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2237 (id & A9WDOG_ID_MASK) |
2238 /*
2239 * Put the lowest 28 bits of timeout at
2240 * offset 4. Four first bits are used for id.
2241 */
2242 (u8)((timeout << 4) & 0xf0),
2243 (u8)((timeout >> 4) & 0xff),
2244 (u8)((timeout >> 12) & 0xff),
2245 (u8)((timeout >> 20) & 0xff));
2246} 1362}
2247 1363
2248/** 1364/**
@@ -2264,16 +1380,15 @@ int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2264 1380
2265 mutex_lock(&mb5_transfer.lock); 1381 mutex_lock(&mb5_transfer.lock);
2266 1382
2267 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 1383 while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2268 cpu_relax(); 1384 cpu_relax();
2269 1385
2270 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2271 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 1386 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2272 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 1387 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2273 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 1388 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2274 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 1389 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2275 1390
2276 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 1391 writel(MBOX_BIT(5), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
2277 1392
2278 if (!wait_for_completion_timeout(&mb5_transfer.work, 1393 if (!wait_for_completion_timeout(&mb5_transfer.work,
2279 msecs_to_jiffies(20000))) { 1394 msecs_to_jiffies(20000))) {
@@ -2293,19 +1408,16 @@ int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2293} 1408}
2294 1409
2295/** 1410/**
2296 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB. 1411 * prcmu_abb_write() - Write register value(s) to the ABB.
2297 * @slave: The I2C slave address. 1412 * @slave: The I2C slave address.
2298 * @reg: The (start) register address. 1413 * @reg: The (start) register address.
2299 * @value: The value(s) to write. 1414 * @value: The value(s) to write.
2300 * @mask: The mask(s) to use.
2301 * @size: The number of registers to write. 1415 * @size: The number of registers to write.
2302 * 1416 *
2303 * Writes masked register value(s) to the ABB. 1417 * Reads register value(s) from the ABB.
2304 * For each @value, only the bits set to 1 in the corresponding @mask
2305 * will be written. The other bits are not changed.
2306 * @size has to be 1 for the current firmware version. 1418 * @size has to be 1 for the current firmware version.
2307 */ 1419 */
2308int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size) 1420int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2309{ 1421{
2310 int r; 1422 int r;
2311 1423
@@ -2314,16 +1426,15 @@ int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2314 1426
2315 mutex_lock(&mb5_transfer.lock); 1427 mutex_lock(&mb5_transfer.lock);
2316 1428
2317 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 1429 while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2318 cpu_relax(); 1430 cpu_relax();
2319 1431
2320 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2321 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 1432 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2322 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 1433 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2323 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 1434 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2324 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 1435 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2325 1436
2326 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 1437 writel(MBOX_BIT(5), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
2327 1438
2328 if (!wait_for_completion_timeout(&mb5_transfer.work, 1439 if (!wait_for_completion_timeout(&mb5_transfer.work,
2329 msecs_to_jiffies(20000))) { 1440 msecs_to_jiffies(20000))) {
@@ -2340,64 +1451,31 @@ int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2340} 1451}
2341 1452
2342/** 1453/**
2343 * prcmu_abb_write() - Write register value(s) to the ABB.
2344 * @slave: The I2C slave address.
2345 * @reg: The (start) register address.
2346 * @value: The value(s) to write.
2347 * @size: The number of registers to write.
2348 *
2349 * Writes register value(s) to the ABB.
2350 * @size has to be 1 for the current firmware version.
2351 */
2352int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2353{
2354 u8 mask = ~0;
2355
2356 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2357}
2358
2359/**
2360 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem 1454 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2361 */ 1455 */
2362int prcmu_ac_wake_req(void) 1456void prcmu_ac_wake_req(void)
2363{ 1457{
2364 u32 val; 1458 u32 val;
2365 int ret = 0;
2366 1459
2367 mutex_lock(&mb0_transfer.ac_wake_lock); 1460 mutex_lock(&mb0_transfer.ac_wake_lock);
2368 1461
2369 val = readl(PRCM_HOSTACCESS_REQ); 1462 val = readl(_PRCMU_BASE + PRCM_HOSTACCESS_REQ);
2370 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ) 1463 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2371 goto unlock_and_return; 1464 goto unlock_and_return;
2372 1465
2373 atomic_set(&ac_wake_req_state, 1); 1466 atomic_set(&ac_wake_req_state, 1);
2374 1467
2375 /* 1468 writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2376 * Force Modem Wake-up before hostaccess_req ping-pong. 1469 (_PRCMU_BASE + PRCM_HOSTACCESS_REQ));
2377 * It prevents Modem to enter in Sleep while acking the hostaccess
2378 * request. The 31us delay has been calculated by HWI.
2379 */
2380 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2381 writel(val, PRCM_HOSTACCESS_REQ);
2382
2383 udelay(31);
2384
2385 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2386 writel(val, PRCM_HOSTACCESS_REQ);
2387 1470
2388 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 1471 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2389 msecs_to_jiffies(5000))) { 1472 msecs_to_jiffies(20000))) {
2390#if defined(CONFIG_DBX500_PRCMU_DEBUG) 1473 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2391 db8500_prcmu_debug_dump(__func__, true, true);
2392#endif
2393 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2394 __func__); 1474 __func__);
2395 ret = -EFAULT;
2396 } 1475 }
2397 1476
2398unlock_and_return: 1477unlock_and_return:
2399 mutex_unlock(&mb0_transfer.ac_wake_lock); 1478 mutex_unlock(&mb0_transfer.ac_wake_lock);
2400 return ret;
2401} 1479}
2402 1480
2403/** 1481/**
@@ -2409,16 +1487,16 @@ void prcmu_ac_sleep_req()
2409 1487
2410 mutex_lock(&mb0_transfer.ac_wake_lock); 1488 mutex_lock(&mb0_transfer.ac_wake_lock);
2411 1489
2412 val = readl(PRCM_HOSTACCESS_REQ); 1490 val = readl(_PRCMU_BASE + PRCM_HOSTACCESS_REQ);
2413 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)) 1491 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2414 goto unlock_and_return; 1492 goto unlock_and_return;
2415 1493
2416 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), 1494 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2417 PRCM_HOSTACCESS_REQ); 1495 (_PRCMU_BASE + PRCM_HOSTACCESS_REQ));
2418 1496
2419 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 1497 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2420 msecs_to_jiffies(5000))) { 1498 msecs_to_jiffies(20000))) {
2421 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 1499 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2422 __func__); 1500 __func__);
2423 } 1501 }
2424 1502
@@ -2428,46 +1506,35 @@ unlock_and_return:
2428 mutex_unlock(&mb0_transfer.ac_wake_lock); 1506 mutex_unlock(&mb0_transfer.ac_wake_lock);
2429} 1507}
2430 1508
2431bool db8500_prcmu_is_ac_wake_requested(void) 1509bool prcmu_is_ac_wake_requested(void)
2432{ 1510{
2433 return (atomic_read(&ac_wake_req_state) != 0); 1511 return (atomic_read(&ac_wake_req_state) != 0);
2434} 1512}
2435 1513
2436/** 1514/**
2437 * db8500_prcmu_system_reset - System reset 1515 * prcmu_system_reset - System reset
2438 * 1516 *
2439 * Saves the reset reason code and then sets the APE_SOFTRST register which 1517 * Saves the reset reason code and then sets the APE_SOFRST register which
2440 * fires interrupt to fw 1518 * fires interrupt to fw
2441 */ 1519 */
2442void db8500_prcmu_system_reset(u16 reset_code) 1520void prcmu_system_reset(u16 reset_code)
2443{ 1521{
2444 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON)); 1522 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2445 writel(1, PRCM_APE_SOFTRST); 1523 writel(1, (_PRCMU_BASE + PRCM_APE_SOFTRST));
2446} 1524}
2447 1525
2448/** 1526/**
2449 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code 1527 * prcmu_reset_modem - ask the PRCMU to reset modem
2450 *
2451 * Retrieves the reset reason code stored by prcmu_system_reset() before
2452 * last restart.
2453 */ 1528 */
2454u16 db8500_prcmu_get_reset_code(void) 1529void prcmu_modem_reset(void)
2455{
2456 return readw(tcdm_base + PRCM_SW_RST_REASON);
2457}
2458
2459/**
2460 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2461 */
2462void db8500_prcmu_modem_reset(void)
2463{ 1530{
2464 mutex_lock(&mb1_transfer.lock); 1531 mutex_lock(&mb1_transfer.lock);
2465 1532
2466 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1533 while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2467 cpu_relax(); 1534 cpu_relax();
2468 1535
2469 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1536 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2470 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1537 writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
2471 wait_for_completion(&mb1_transfer.work); 1538 wait_for_completion(&mb1_transfer.work);
2472 1539
2473 /* 1540 /*
@@ -2484,11 +1551,11 @@ static void ack_dbb_wakeup(void)
2484 1551
2485 spin_lock_irqsave(&mb0_transfer.lock, flags); 1552 spin_lock_irqsave(&mb0_transfer.lock, flags);
2486 1553
2487 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 1554 while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2488 cpu_relax(); 1555 cpu_relax();
2489 1556
2490 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 1557 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2491 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 1558 writel(MBOX_BIT(0), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
2492 1559
2493 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 1560 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2494} 1561}
@@ -2533,7 +1600,7 @@ static bool read_mailbox_0(void)
2533 r = false; 1600 r = false;
2534 break; 1601 break;
2535 } 1602 }
2536 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR); 1603 writel(MBOX_BIT(0), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
2537 return r; 1604 return r;
2538} 1605}
2539 1606
@@ -2546,7 +1613,7 @@ static bool read_mailbox_1(void)
2546 PRCM_ACK_MB1_CURRENT_APE_OPP); 1613 PRCM_ACK_MB1_CURRENT_APE_OPP);
2547 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base + 1614 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2548 PRCM_ACK_MB1_APE_VOLTAGE_STATUS); 1615 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2549 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR); 1616 writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
2550 complete(&mb1_transfer.work); 1617 complete(&mb1_transfer.work);
2551 return false; 1618 return false;
2552} 1619}
@@ -2554,14 +1621,14 @@ static bool read_mailbox_1(void)
2554static bool read_mailbox_2(void) 1621static bool read_mailbox_2(void)
2555{ 1622{
2556 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS); 1623 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2557 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR); 1624 writel(MBOX_BIT(2), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
2558 complete(&mb2_transfer.work); 1625 complete(&mb2_transfer.work);
2559 return false; 1626 return false;
2560} 1627}
2561 1628
2562static bool read_mailbox_3(void) 1629static bool read_mailbox_3(void)
2563{ 1630{
2564 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR); 1631 writel(MBOX_BIT(3), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
2565 return false; 1632 return false;
2566} 1633}
2567 1634
@@ -2576,11 +1643,6 @@ static bool read_mailbox_4(void)
2576 case MB4H_HOTDOG: 1643 case MB4H_HOTDOG:
2577 case MB4H_HOTMON: 1644 case MB4H_HOTMON:
2578 case MB4H_HOT_PERIOD: 1645 case MB4H_HOT_PERIOD:
2579 case MB4H_A9WDOG_CONF:
2580 case MB4H_A9WDOG_EN:
2581 case MB4H_A9WDOG_DIS:
2582 case MB4H_A9WDOG_LOAD:
2583 case MB4H_A9WDOG_KICK:
2584 break; 1646 break;
2585 default: 1647 default:
2586 print_unknown_header_warning(4, header); 1648 print_unknown_header_warning(4, header);
@@ -2588,7 +1650,7 @@ static bool read_mailbox_4(void)
2588 break; 1650 break;
2589 } 1651 }
2590 1652
2591 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR); 1653 writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
2592 1654
2593 if (do_complete) 1655 if (do_complete)
2594 complete(&mb4_transfer.work); 1656 complete(&mb4_transfer.work);
@@ -2600,20 +1662,20 @@ static bool read_mailbox_5(void)
2600{ 1662{
2601 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS); 1663 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2602 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL); 1664 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2603 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR); 1665 writel(MBOX_BIT(5), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
2604 complete(&mb5_transfer.work); 1666 complete(&mb5_transfer.work);
2605 return false; 1667 return false;
2606} 1668}
2607 1669
2608static bool read_mailbox_6(void) 1670static bool read_mailbox_6(void)
2609{ 1671{
2610 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR); 1672 writel(MBOX_BIT(6), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
2611 return false; 1673 return false;
2612} 1674}
2613 1675
2614static bool read_mailbox_7(void) 1676static bool read_mailbox_7(void)
2615{ 1677{
2616 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR); 1678 writel(MBOX_BIT(7), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
2617 return false; 1679 return false;
2618} 1680}
2619 1681
@@ -2634,7 +1696,7 @@ static irqreturn_t prcmu_irq_handler(int irq, void *data)
2634 u8 n; 1696 u8 n;
2635 irqreturn_t r; 1697 irqreturn_t r;
2636 1698
2637 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS); 1699 bits = (readl(_PRCMU_BASE + PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2638 if (unlikely(!bits)) 1700 if (unlikely(!bits))
2639 return IRQ_NONE; 1701 return IRQ_NONE;
2640 1702
@@ -2672,7 +1734,7 @@ static void prcmu_irq_mask(struct irq_data *d)
2672 1734
2673 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 1735 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2674 1736
2675 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq]; 1737 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2676 1738
2677 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 1739 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2678 1740
@@ -2686,7 +1748,7 @@ static void prcmu_irq_unmask(struct irq_data *d)
2686 1748
2687 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 1749 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2688 1750
2689 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq]; 1751 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2690 1752
2691 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 1753 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2692 1754
@@ -2706,86 +1768,29 @@ static struct irq_chip prcmu_irq_chip = {
2706 .irq_unmask = prcmu_irq_unmask, 1768 .irq_unmask = prcmu_irq_unmask,
2707}; 1769};
2708 1770
2709static char *fw_project_name(u8 project) 1771void __init prcmu_early_init(void)
2710{
2711 switch (project) {
2712 case PRCMU_FW_PROJECT_U8500:
2713 return "U8500";
2714 case PRCMU_FW_PROJECT_U8500_C2:
2715 return "U8500 C2";
2716 case PRCMU_FW_PROJECT_U9500:
2717 return "U9500";
2718 case PRCMU_FW_PROJECT_U9500_C2:
2719 return "U9500 C2";
2720 case PRCMU_FW_PROJECT_U8520:
2721 return "U8520";
2722 case PRCMU_FW_PROJECT_U8420:
2723 return "U8420";
2724 default:
2725 return "Unknown";
2726 }
2727}
2728
2729static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2730 irq_hw_number_t hwirq)
2731{
2732 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2733 handle_simple_irq);
2734 set_irq_flags(virq, IRQF_VALID);
2735
2736 return 0;
2737}
2738
2739static struct irq_domain_ops db8500_irq_ops = {
2740 .map = db8500_irq_map,
2741 .xlate = irq_domain_xlate_twocell,
2742};
2743
2744static int db8500_irq_init(struct device_node *np)
2745{ 1772{
2746 int irq_base = -1; 1773 unsigned int i;
2747
2748 /* In the device tree case, just take some IRQs */
2749 if (!np)
2750 irq_base = IRQ_PRCMU_BASE;
2751
2752 db8500_irq_domain = irq_domain_add_simple(
2753 np, NUM_PRCMU_WAKEUPS, irq_base,
2754 &db8500_irq_ops, NULL);
2755
2756 if (!db8500_irq_domain) {
2757 pr_err("Failed to create irqdomain\n");
2758 return -ENOSYS;
2759 }
2760
2761 return 0;
2762}
2763 1774
2764void __init db8500_prcmu_early_init(void) 1775 if (cpu_is_u8500v1()) {
2765{ 1776 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE_V1);
2766 if (cpu_is_u8500v2() || cpu_is_u9540()) { 1777 } else if (cpu_is_u8500v2()) {
2767 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K); 1778 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2768 1779
2769 if (tcpm_base != NULL) { 1780 if (tcpm_base != NULL) {
2770 u32 version; 1781 int version;
2771 version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET); 1782 version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2772 fw_info.version.project = version & 0xFF; 1783 prcmu_version.project_number = version & 0xFF;
2773 fw_info.version.api_version = (version >> 8) & 0xFF; 1784 prcmu_version.api_version = (version >> 8) & 0xFF;
2774 fw_info.version.func_version = (version >> 16) & 0xFF; 1785 prcmu_version.func_version = (version >> 16) & 0xFF;
2775 fw_info.version.errata = (version >> 24) & 0xFF; 1786 prcmu_version.errata = (version >> 24) & 0xFF;
2776 fw_info.valid = true; 1787 pr_info("PRCMU firmware version %d.%d.%d\n",
2777 pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2778 fw_project_name(fw_info.version.project),
2779 (version >> 8) & 0xFF, (version >> 16) & 0xFF, 1788 (version >> 8) & 0xFF, (version >> 16) & 0xFF,
2780 (version >> 24) & 0xFF); 1789 (version >> 24) & 0xFF);
2781 iounmap(tcpm_base); 1790 iounmap(tcpm_base);
2782 } 1791 }
2783 1792
2784 if (cpu_is_u9540()) 1793 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2785 tcdm_base = ioremap_nocache(U8500_PRCMU_TCDM_BASE,
2786 SZ_4K + SZ_8K) + SZ_8K;
2787 else
2788 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2789 } else { 1794 } else {
2790 pr_err("prcmu: Unsupported chip version\n"); 1795 pr_err("prcmu: Unsupported chip version\n");
2791 BUG(); 1796 BUG();
@@ -2797,7 +1802,6 @@ void __init db8500_prcmu_early_init(void)
2797 init_completion(&mb0_transfer.ac_wake_work); 1802 init_completion(&mb0_transfer.ac_wake_work);
2798 mutex_init(&mb1_transfer.lock); 1803 mutex_init(&mb1_transfer.lock);
2799 init_completion(&mb1_transfer.work); 1804 init_completion(&mb1_transfer.work);
2800 mb1_transfer.ape_opp = APE_NO_CHANGE;
2801 mutex_init(&mb2_transfer.lock); 1805 mutex_init(&mb2_transfer.lock);
2802 init_completion(&mb2_transfer.work); 1806 init_completion(&mb2_transfer.work);
2803 spin_lock_init(&mb2_transfer.auto_pm_lock); 1807 spin_lock_init(&mb2_transfer.auto_pm_lock);
@@ -2810,16 +1814,16 @@ void __init db8500_prcmu_early_init(void)
2810 init_completion(&mb5_transfer.work); 1814 init_completion(&mb5_transfer.work);
2811 1815
2812 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work); 1816 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2813}
2814 1817
2815static void __init init_prcm_registers(void) 1818 /* Initalize irqs. */
2816{ 1819 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
2817 u32 val; 1820 unsigned int irq;
2818 1821
2819 val = readl(PRCM_A9PL_FORCE_CLKEN); 1822 irq = IRQ_PRCMU_BASE + i;
2820 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN | 1823 irq_set_chip_and_handler(irq, &prcmu_irq_chip,
2821 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN); 1824 handle_simple_irq);
2822 writel(val, (PRCM_A9PL_FORCE_CLKEN)); 1825 set_irq_flags(irq, IRQF_VALID);
1826 }
2823} 1827}
2824 1828
2825/* 1829/*
@@ -2831,7 +1835,6 @@ static struct regulator_consumer_supply db8500_vape_consumers[] = {
2831 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"), 1835 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2832 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"), 1836 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2833 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"), 1837 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2834 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2835 /* "v-mmc" changed to "vcore" in the mainline kernel */ 1838 /* "v-mmc" changed to "vcore" in the mainline kernel */
2836 REGULATOR_SUPPLY("vcore", "sdi0"), 1839 REGULATOR_SUPPLY("vcore", "sdi0"),
2837 REGULATOR_SUPPLY("vcore", "sdi1"), 1840 REGULATOR_SUPPLY("vcore", "sdi1"),
@@ -2845,55 +1848,20 @@ static struct regulator_consumer_supply db8500_vape_consumers[] = {
2845 REGULATOR_SUPPLY("vcore", "uart1"), 1848 REGULATOR_SUPPLY("vcore", "uart1"),
2846 REGULATOR_SUPPLY("vcore", "uart2"), 1849 REGULATOR_SUPPLY("vcore", "uart2"),
2847 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"), 1850 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2848 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2849 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2850}; 1851};
2851 1852
2852static struct regulator_consumer_supply db8500_vsmps2_consumers[] = { 1853static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
1854 /* CG2900 and CW1200 power to off-chip peripherals */
1855 REGULATOR_SUPPLY("gbf_1v8", "cg2900-uart.0"),
1856 REGULATOR_SUPPLY("wlan_1v8", "cw1200.0"),
2853 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"), 1857 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2854 /* AV8100 regulator */ 1858 /* AV8100 regulator */
2855 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"), 1859 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2856}; 1860};
2857 1861
2858static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = { 1862static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2859 REGULATOR_SUPPLY("vsupply", "b2r2_bus"), 1863 REGULATOR_SUPPLY("vsupply", "b2r2.0"),
2860 REGULATOR_SUPPLY("vsupply", "mcde"), 1864 REGULATOR_SUPPLY("vsupply", "mcde.0"),
2861};
2862
2863/* SVA MMDSP regulator switch */
2864static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2865 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2866};
2867
2868/* SVA pipe regulator switch */
2869static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2870 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2871};
2872
2873/* SIA MMDSP regulator switch */
2874static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2875 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2876};
2877
2878/* SIA pipe regulator switch */
2879static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2880 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2881};
2882
2883static struct regulator_consumer_supply db8500_sga_consumers[] = {
2884 REGULATOR_SUPPLY("v-mali", NULL),
2885};
2886
2887/* ESRAM1 and 2 regulator switch */
2888static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2889 REGULATOR_SUPPLY("esram12", "cm_control"),
2890};
2891
2892/* ESRAM3 and 4 regulator switch */
2893static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2894 REGULATOR_SUPPLY("v-esram34", "mcde"),
2895 REGULATOR_SUPPLY("esram34", "cm_control"),
2896 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2897}; 1865};
2898 1866
2899static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = { 1867static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
@@ -2901,7 +1869,6 @@ static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2901 .constraints = { 1869 .constraints = {
2902 .name = "db8500-vape", 1870 .name = "db8500-vape",
2903 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 1871 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2904 .always_on = true,
2905 }, 1872 },
2906 .consumer_supplies = db8500_vape_consumers, 1873 .consumer_supplies = db8500_vape_consumers,
2907 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers), 1874 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
@@ -2951,13 +1918,11 @@ static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2951 }, 1918 },
2952 }, 1919 },
2953 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = { 1920 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2954 /* dependency to u8500-vape is handled outside regulator framework */ 1921 .supply_regulator = "db8500-vape",
2955 .constraints = { 1922 .constraints = {
2956 .name = "db8500-sva-mmdsp", 1923 .name = "db8500-sva-mmdsp",
2957 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 1924 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2958 }, 1925 },
2959 .consumer_supplies = db8500_svammdsp_consumers,
2960 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2961 }, 1926 },
2962 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = { 1927 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2963 .constraints = { 1928 .constraints = {
@@ -2967,22 +1932,18 @@ static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2967 }, 1932 },
2968 }, 1933 },
2969 [DB8500_REGULATOR_SWITCH_SVAPIPE] = { 1934 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2970 /* dependency to u8500-vape is handled outside regulator framework */ 1935 .supply_regulator = "db8500-vape",
2971 .constraints = { 1936 .constraints = {
2972 .name = "db8500-sva-pipe", 1937 .name = "db8500-sva-pipe",
2973 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 1938 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2974 }, 1939 },
2975 .consumer_supplies = db8500_svapipe_consumers,
2976 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2977 }, 1940 },
2978 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = { 1941 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2979 /* dependency to u8500-vape is handled outside regulator framework */ 1942 .supply_regulator = "db8500-vape",
2980 .constraints = { 1943 .constraints = {
2981 .name = "db8500-sia-mmdsp", 1944 .name = "db8500-sia-mmdsp",
2982 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 1945 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2983 }, 1946 },
2984 .consumer_supplies = db8500_siammdsp_consumers,
2985 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2986 }, 1947 },
2987 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = { 1948 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2988 .constraints = { 1949 .constraints = {
@@ -2991,13 +1952,11 @@ static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2991 }, 1952 },
2992 }, 1953 },
2993 [DB8500_REGULATOR_SWITCH_SIAPIPE] = { 1954 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2994 /* dependency to u8500-vape is handled outside regulator framework */ 1955 .supply_regulator = "db8500-vape",
2995 .constraints = { 1956 .constraints = {
2996 .name = "db8500-sia-pipe", 1957 .name = "db8500-sia-pipe",
2997 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 1958 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2998 }, 1959 },
2999 .consumer_supplies = db8500_siapipe_consumers,
3000 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
3001 }, 1960 },
3002 [DB8500_REGULATOR_SWITCH_SGA] = { 1961 [DB8500_REGULATOR_SWITCH_SGA] = {
3003 .supply_regulator = "db8500-vape", 1962 .supply_regulator = "db8500-vape",
@@ -3005,9 +1964,6 @@ static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
3005 .name = "db8500-sga", 1964 .name = "db8500-sga",
3006 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 1965 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3007 }, 1966 },
3008 .consumer_supplies = db8500_sga_consumers,
3009 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
3010
3011 }, 1967 },
3012 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = { 1968 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
3013 .supply_regulator = "db8500-vape", 1969 .supply_regulator = "db8500-vape",
@@ -3019,16 +1975,11 @@ static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
3019 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers), 1975 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
3020 }, 1976 },
3021 [DB8500_REGULATOR_SWITCH_ESRAM12] = { 1977 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
3022 /* 1978 .supply_regulator = "db8500-vape",
3023 * esram12 is set in retention and supplied by Vsafe when Vape is off,
3024 * no need to hold Vape
3025 */
3026 .constraints = { 1979 .constraints = {
3027 .name = "db8500-esram12", 1980 .name = "db8500-esram12",
3028 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 1981 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3029 }, 1982 },
3030 .consumer_supplies = db8500_esram12_consumers,
3031 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
3032 }, 1983 },
3033 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = { 1984 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
3034 .constraints = { 1985 .constraints = {
@@ -3037,16 +1988,11 @@ static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
3037 }, 1988 },
3038 }, 1989 },
3039 [DB8500_REGULATOR_SWITCH_ESRAM34] = { 1990 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
3040 /* 1991 .supply_regulator = "db8500-vape",
3041 * esram34 is set in retention and supplied by Vsafe when Vape is off,
3042 * no need to hold Vape
3043 */
3044 .constraints = { 1992 .constraints = {
3045 .name = "db8500-esram34", 1993 .name = "db8500-esram34",
3046 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 1994 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3047 }, 1995 },
3048 .consumer_supplies = db8500_esram34_consumers,
3049 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3050 }, 1996 },
3051 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = { 1997 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3052 .constraints = { 1998 .constraints = {
@@ -3056,122 +2002,68 @@ static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
3056 }, 2002 },
3057}; 2003};
3058 2004
3059static struct resource ab8500_resources[] = {
3060 [0] = {
3061 .start = IRQ_DB8500_AB8500,
3062 .end = IRQ_DB8500_AB8500,
3063 .flags = IORESOURCE_IRQ
3064 }
3065};
3066
3067static struct mfd_cell db8500_prcmu_devs[] = { 2005static struct mfd_cell db8500_prcmu_devs[] = {
3068 { 2006 {
3069 .name = "db8500-prcmu-regulators", 2007 .name = "db8500-prcmu-regulators",
3070 .of_compatible = "stericsson,db8500-prcmu-regulator",
3071 .platform_data = &db8500_regulators, 2008 .platform_data = &db8500_regulators,
3072 .pdata_size = sizeof(db8500_regulators), 2009 .pdata_size = sizeof(db8500_regulators),
3073 }, 2010 },
3074 { 2011 {
3075 .name = "cpufreq-u8500", 2012 .name = "cpufreq-u8500",
3076 .of_compatible = "stericsson,cpufreq-u8500",
3077 .platform_data = &db8500_cpufreq_table,
3078 .pdata_size = sizeof(db8500_cpufreq_table),
3079 },
3080 {
3081 .name = "ab8500-core",
3082 .of_compatible = "stericsson,ab8500",
3083 .num_resources = ARRAY_SIZE(ab8500_resources),
3084 .resources = ab8500_resources,
3085 .id = AB8500_VERSION_AB8500,
3086 }, 2013 },
3087}; 2014};
3088 2015
3089static void db8500_prcmu_update_cpufreq(void)
3090{
3091 if (prcmu_has_arm_maxopp()) {
3092 db8500_cpufreq_table[3].frequency = 1000000;
3093 db8500_cpufreq_table[3].index = ARM_MAX_OPP;
3094 }
3095}
3096
3097/** 2016/**
3098 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic 2017 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3099 * 2018 *
3100 */ 2019 */
3101static int db8500_prcmu_probe(struct platform_device *pdev) 2020static int __init db8500_prcmu_probe(struct platform_device *pdev)
3102{ 2021{
3103 struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data; 2022 int err = 0;
3104 struct device_node *np = pdev->dev.of_node;
3105 int irq = 0, err = 0, i;
3106 2023
3107 if (ux500_is_svp()) 2024 if (ux500_is_svp())
3108 return -ENODEV; 2025 return -ENODEV;
3109 2026
3110 init_prcm_registers();
3111
3112 /* Clean up the mailbox interrupts after pre-kernel code. */ 2027 /* Clean up the mailbox interrupts after pre-kernel code. */
3113 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR); 2028 writel(ALL_MBOX_BITS, (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
3114
3115 if (np)
3116 irq = platform_get_irq(pdev, 0);
3117 2029
3118 if (!np || irq <= 0) 2030 err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
3119 irq = IRQ_DB8500_PRCMU1; 2031 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3120
3121 err = request_threaded_irq(irq, prcmu_irq_handler,
3122 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3123 if (err < 0) { 2032 if (err < 0) {
3124 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n"); 2033 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3125 err = -EBUSY; 2034 err = -EBUSY;
3126 goto no_irq_return; 2035 goto no_irq_return;
3127 } 2036 }
3128 2037
3129 db8500_irq_init(np);
3130
3131 for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3132 if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
3133 db8500_prcmu_devs[i].platform_data = ab8500_platdata;
3134 db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3135 }
3136 }
3137
3138 if (cpu_is_u8500v20_or_later()) 2038 if (cpu_is_u8500v20_or_later())
3139 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET); 2039 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3140 2040
3141 db8500_prcmu_update_cpufreq();
3142
3143 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs, 2041 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3144 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL); 2042 ARRAY_SIZE(db8500_prcmu_devs), NULL,
3145 if (err) { 2043 0);
3146 pr_err("prcmu: Failed to add subdevices\n");
3147 return err;
3148 }
3149 2044
3150 pr_info("DB8500 PRCMU initialized\n"); 2045 if (err)
2046 pr_err("prcmu: Failed to add subdevices\n");
2047 else
2048 pr_info("DB8500 PRCMU initialized\n");
3151 2049
3152no_irq_return: 2050no_irq_return:
3153 return err; 2051 return err;
3154} 2052}
3155static const struct of_device_id db8500_prcmu_match[] = {
3156 { .compatible = "stericsson,db8500-prcmu"},
3157 { },
3158};
3159 2053
3160static struct platform_driver db8500_prcmu_driver = { 2054static struct platform_driver db8500_prcmu_driver = {
3161 .driver = { 2055 .driver = {
3162 .name = "db8500-prcmu", 2056 .name = "db8500-prcmu",
3163 .owner = THIS_MODULE, 2057 .owner = THIS_MODULE,
3164 .of_match_table = db8500_prcmu_match,
3165 }, 2058 },
3166 .probe = db8500_prcmu_probe,
3167}; 2059};
3168 2060
3169static int __init db8500_prcmu_init(void) 2061static int __init db8500_prcmu_init(void)
3170{ 2062{
3171 return platform_driver_register(&db8500_prcmu_driver); 2063 return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
3172} 2064}
3173 2065
3174core_initcall(db8500_prcmu_init); 2066arch_initcall(db8500_prcmu_init);
3175 2067
3176MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>"); 2068MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3177MODULE_DESCRIPTION("DB8500 PRCM Unit driver"); 2069MODULE_DESCRIPTION("DB8500 PRCM Unit driver");