diff options
author | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
---|---|---|
committer | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
commit | fcc9d2e5a6c89d22b8b773a64fb4ad21ac318446 (patch) | |
tree | a57612d1888735a2ec7972891b68c1ac5ec8faea /drivers/media/dvb/frontends/dib7000m.c | |
parent | 8dea78da5cee153b8af9c07a2745f6c55057fe12 (diff) |
Diffstat (limited to 'drivers/media/dvb/frontends/dib7000m.c')
-rw-r--r-- | drivers/media/dvb/frontends/dib7000m.c | 1467 |
1 files changed, 1467 insertions, 0 deletions
diff --git a/drivers/media/dvb/frontends/dib7000m.c b/drivers/media/dvb/frontends/dib7000m.c new file mode 100644 index 00000000000..dbb76d75c93 --- /dev/null +++ b/drivers/media/dvb/frontends/dib7000m.c | |||
@@ -0,0 +1,1467 @@ | |||
1 | /* | ||
2 | * Linux-DVB Driver for DiBcom's DiB7000M and | ||
3 | * first generation DiB7000P-demodulator-family. | ||
4 | * | ||
5 | * Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/) | ||
6 | * | ||
7 | * This program is free software; you can redistribute it and/or | ||
8 | * modify it under the terms of the GNU General Public License as | ||
9 | * published by the Free Software Foundation, version 2. | ||
10 | */ | ||
11 | #include <linux/kernel.h> | ||
12 | #include <linux/slab.h> | ||
13 | #include <linux/i2c.h> | ||
14 | #include <linux/mutex.h> | ||
15 | |||
16 | #include "dvb_frontend.h" | ||
17 | |||
18 | #include "dib7000m.h" | ||
19 | |||
20 | static int debug; | ||
21 | module_param(debug, int, 0644); | ||
22 | MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); | ||
23 | |||
24 | #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000M: "); printk(args); printk("\n"); } } while (0) | ||
25 | |||
26 | struct dib7000m_state { | ||
27 | struct dvb_frontend demod; | ||
28 | struct dib7000m_config cfg; | ||
29 | |||
30 | u8 i2c_addr; | ||
31 | struct i2c_adapter *i2c_adap; | ||
32 | |||
33 | struct dibx000_i2c_master i2c_master; | ||
34 | |||
35 | /* offset is 1 in case of the 7000MC */ | ||
36 | u8 reg_offs; | ||
37 | |||
38 | u16 wbd_ref; | ||
39 | |||
40 | u8 current_band; | ||
41 | fe_bandwidth_t current_bandwidth; | ||
42 | struct dibx000_agc_config *current_agc; | ||
43 | u32 timf; | ||
44 | u32 timf_default; | ||
45 | u32 internal_clk; | ||
46 | |||
47 | u8 div_force_off : 1; | ||
48 | u8 div_state : 1; | ||
49 | u16 div_sync_wait; | ||
50 | |||
51 | u16 revision; | ||
52 | |||
53 | u8 agc_state; | ||
54 | |||
55 | /* for the I2C transfer */ | ||
56 | struct i2c_msg msg[2]; | ||
57 | u8 i2c_write_buffer[4]; | ||
58 | u8 i2c_read_buffer[2]; | ||
59 | struct mutex i2c_buffer_lock; | ||
60 | }; | ||
61 | |||
62 | enum dib7000m_power_mode { | ||
63 | DIB7000M_POWER_ALL = 0, | ||
64 | |||
65 | DIB7000M_POWER_NO, | ||
66 | DIB7000M_POWER_INTERF_ANALOG_AGC, | ||
67 | DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD, | ||
68 | DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD, | ||
69 | DIB7000M_POWER_INTERFACE_ONLY, | ||
70 | }; | ||
71 | |||
72 | static u16 dib7000m_read_word(struct dib7000m_state *state, u16 reg) | ||
73 | { | ||
74 | u16 ret; | ||
75 | |||
76 | if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { | ||
77 | dprintk("could not acquire lock"); | ||
78 | return 0; | ||
79 | } | ||
80 | |||
81 | state->i2c_write_buffer[0] = (reg >> 8) | 0x80; | ||
82 | state->i2c_write_buffer[1] = reg & 0xff; | ||
83 | |||
84 | memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); | ||
85 | state->msg[0].addr = state->i2c_addr >> 1; | ||
86 | state->msg[0].flags = 0; | ||
87 | state->msg[0].buf = state->i2c_write_buffer; | ||
88 | state->msg[0].len = 2; | ||
89 | state->msg[1].addr = state->i2c_addr >> 1; | ||
90 | state->msg[1].flags = I2C_M_RD; | ||
91 | state->msg[1].buf = state->i2c_read_buffer; | ||
92 | state->msg[1].len = 2; | ||
93 | |||
94 | if (i2c_transfer(state->i2c_adap, state->msg, 2) != 2) | ||
95 | dprintk("i2c read error on %d",reg); | ||
96 | |||
97 | ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; | ||
98 | mutex_unlock(&state->i2c_buffer_lock); | ||
99 | |||
100 | return ret; | ||
101 | } | ||
102 | |||
103 | static int dib7000m_write_word(struct dib7000m_state *state, u16 reg, u16 val) | ||
104 | { | ||
105 | int ret; | ||
106 | |||
107 | if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { | ||
108 | dprintk("could not acquire lock"); | ||
109 | return -EINVAL; | ||
110 | } | ||
111 | |||
112 | state->i2c_write_buffer[0] = (reg >> 8) & 0xff; | ||
113 | state->i2c_write_buffer[1] = reg & 0xff; | ||
114 | state->i2c_write_buffer[2] = (val >> 8) & 0xff; | ||
115 | state->i2c_write_buffer[3] = val & 0xff; | ||
116 | |||
117 | memset(&state->msg[0], 0, sizeof(struct i2c_msg)); | ||
118 | state->msg[0].addr = state->i2c_addr >> 1; | ||
119 | state->msg[0].flags = 0; | ||
120 | state->msg[0].buf = state->i2c_write_buffer; | ||
121 | state->msg[0].len = 4; | ||
122 | |||
123 | ret = (i2c_transfer(state->i2c_adap, state->msg, 1) != 1 ? | ||
124 | -EREMOTEIO : 0); | ||
125 | mutex_unlock(&state->i2c_buffer_lock); | ||
126 | return ret; | ||
127 | } | ||
128 | static void dib7000m_write_tab(struct dib7000m_state *state, u16 *buf) | ||
129 | { | ||
130 | u16 l = 0, r, *n; | ||
131 | n = buf; | ||
132 | l = *n++; | ||
133 | while (l) { | ||
134 | r = *n++; | ||
135 | |||
136 | if (state->reg_offs && (r >= 112 && r <= 331)) // compensate for 7000MC | ||
137 | r++; | ||
138 | |||
139 | do { | ||
140 | dib7000m_write_word(state, r, *n++); | ||
141 | r++; | ||
142 | } while (--l); | ||
143 | l = *n++; | ||
144 | } | ||
145 | } | ||
146 | |||
147 | static int dib7000m_set_output_mode(struct dib7000m_state *state, int mode) | ||
148 | { | ||
149 | int ret = 0; | ||
150 | u16 outreg, fifo_threshold, smo_mode, | ||
151 | sram = 0x0005; /* by default SRAM output is disabled */ | ||
152 | |||
153 | outreg = 0; | ||
154 | fifo_threshold = 1792; | ||
155 | smo_mode = (dib7000m_read_word(state, 294 + state->reg_offs) & 0x0010) | (1 << 1); | ||
156 | |||
157 | dprintk( "setting output mode for demod %p to %d", &state->demod, mode); | ||
158 | |||
159 | switch (mode) { | ||
160 | case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock | ||
161 | outreg = (1 << 10); /* 0x0400 */ | ||
162 | break; | ||
163 | case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock | ||
164 | outreg = (1 << 10) | (1 << 6); /* 0x0440 */ | ||
165 | break; | ||
166 | case OUTMODE_MPEG2_SERIAL: // STBs with serial input | ||
167 | outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */ | ||
168 | break; | ||
169 | case OUTMODE_DIVERSITY: | ||
170 | if (state->cfg.hostbus_diversity) | ||
171 | outreg = (1 << 10) | (4 << 6); /* 0x0500 */ | ||
172 | else | ||
173 | sram |= 0x0c00; | ||
174 | break; | ||
175 | case OUTMODE_MPEG2_FIFO: // e.g. USB feeding | ||
176 | smo_mode |= (3 << 1); | ||
177 | fifo_threshold = 512; | ||
178 | outreg = (1 << 10) | (5 << 6); | ||
179 | break; | ||
180 | case OUTMODE_HIGH_Z: // disable | ||
181 | outreg = 0; | ||
182 | break; | ||
183 | default: | ||
184 | dprintk( "Unhandled output_mode passed to be set for demod %p",&state->demod); | ||
185 | break; | ||
186 | } | ||
187 | |||
188 | if (state->cfg.output_mpeg2_in_188_bytes) | ||
189 | smo_mode |= (1 << 5) ; | ||
190 | |||
191 | ret |= dib7000m_write_word(state, 294 + state->reg_offs, smo_mode); | ||
192 | ret |= dib7000m_write_word(state, 295 + state->reg_offs, fifo_threshold); /* synchronous fread */ | ||
193 | ret |= dib7000m_write_word(state, 1795, outreg); | ||
194 | ret |= dib7000m_write_word(state, 1805, sram); | ||
195 | |||
196 | if (state->revision == 0x4003) { | ||
197 | u16 clk_cfg1 = dib7000m_read_word(state, 909) & 0xfffd; | ||
198 | if (mode == OUTMODE_DIVERSITY) | ||
199 | clk_cfg1 |= (1 << 1); // P_O_CLK_en | ||
200 | dib7000m_write_word(state, 909, clk_cfg1); | ||
201 | } | ||
202 | return ret; | ||
203 | } | ||
204 | |||
205 | static void dib7000m_set_power_mode(struct dib7000m_state *state, enum dib7000m_power_mode mode) | ||
206 | { | ||
207 | /* by default everything is going to be powered off */ | ||
208 | u16 reg_903 = 0xffff, reg_904 = 0xffff, reg_905 = 0xffff, reg_906 = 0x3fff; | ||
209 | u8 offset = 0; | ||
210 | |||
211 | /* now, depending on the requested mode, we power on */ | ||
212 | switch (mode) { | ||
213 | /* power up everything in the demod */ | ||
214 | case DIB7000M_POWER_ALL: | ||
215 | reg_903 = 0x0000; reg_904 = 0x0000; reg_905 = 0x0000; reg_906 = 0x0000; | ||
216 | break; | ||
217 | |||
218 | /* just leave power on the control-interfaces: GPIO and (I2C or SDIO or SRAM) */ | ||
219 | case DIB7000M_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C or SRAM */ | ||
220 | reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 2)); | ||
221 | break; | ||
222 | |||
223 | case DIB7000M_POWER_INTERF_ANALOG_AGC: | ||
224 | reg_903 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10)); | ||
225 | reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4) | (1 << 2)); | ||
226 | reg_906 &= ~((1 << 0)); | ||
227 | break; | ||
228 | |||
229 | case DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD: | ||
230 | reg_903 = 0x0000; reg_904 = 0x801f; reg_905 = 0x0000; reg_906 = 0x0000; | ||
231 | break; | ||
232 | |||
233 | case DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD: | ||
234 | reg_903 = 0x0000; reg_904 = 0x8000; reg_905 = 0x010b; reg_906 = 0x0000; | ||
235 | break; | ||
236 | case DIB7000M_POWER_NO: | ||
237 | break; | ||
238 | } | ||
239 | |||
240 | /* always power down unused parts */ | ||
241 | if (!state->cfg.mobile_mode) | ||
242 | reg_904 |= (1 << 7) | (1 << 6) | (1 << 4) | (1 << 2) | (1 << 1); | ||
243 | |||
244 | /* P_sdio_select_clk = 0 on MC and after*/ | ||
245 | if (state->revision != 0x4000) | ||
246 | reg_906 <<= 1; | ||
247 | |||
248 | if (state->revision == 0x4003) | ||
249 | offset = 1; | ||
250 | |||
251 | dib7000m_write_word(state, 903 + offset, reg_903); | ||
252 | dib7000m_write_word(state, 904 + offset, reg_904); | ||
253 | dib7000m_write_word(state, 905 + offset, reg_905); | ||
254 | dib7000m_write_word(state, 906 + offset, reg_906); | ||
255 | } | ||
256 | |||
257 | static int dib7000m_set_adc_state(struct dib7000m_state *state, enum dibx000_adc_states no) | ||
258 | { | ||
259 | int ret = 0; | ||
260 | u16 reg_913 = dib7000m_read_word(state, 913), | ||
261 | reg_914 = dib7000m_read_word(state, 914); | ||
262 | |||
263 | switch (no) { | ||
264 | case DIBX000_SLOW_ADC_ON: | ||
265 | reg_914 |= (1 << 1) | (1 << 0); | ||
266 | ret |= dib7000m_write_word(state, 914, reg_914); | ||
267 | reg_914 &= ~(1 << 1); | ||
268 | break; | ||
269 | |||
270 | case DIBX000_SLOW_ADC_OFF: | ||
271 | reg_914 |= (1 << 1) | (1 << 0); | ||
272 | break; | ||
273 | |||
274 | case DIBX000_ADC_ON: | ||
275 | if (state->revision == 0x4000) { // workaround for PA/MA | ||
276 | // power-up ADC | ||
277 | dib7000m_write_word(state, 913, 0); | ||
278 | dib7000m_write_word(state, 914, reg_914 & 0x3); | ||
279 | // power-down bandgag | ||
280 | dib7000m_write_word(state, 913, (1 << 15)); | ||
281 | dib7000m_write_word(state, 914, reg_914 & 0x3); | ||
282 | } | ||
283 | |||
284 | reg_913 &= 0x0fff; | ||
285 | reg_914 &= 0x0003; | ||
286 | break; | ||
287 | |||
288 | case DIBX000_ADC_OFF: // leave the VBG voltage on | ||
289 | reg_913 |= (1 << 14) | (1 << 13) | (1 << 12); | ||
290 | reg_914 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2); | ||
291 | break; | ||
292 | |||
293 | case DIBX000_VBG_ENABLE: | ||
294 | reg_913 &= ~(1 << 15); | ||
295 | break; | ||
296 | |||
297 | case DIBX000_VBG_DISABLE: | ||
298 | reg_913 |= (1 << 15); | ||
299 | break; | ||
300 | |||
301 | default: | ||
302 | break; | ||
303 | } | ||
304 | |||
305 | // dprintk( "913: %x, 914: %x", reg_913, reg_914); | ||
306 | ret |= dib7000m_write_word(state, 913, reg_913); | ||
307 | ret |= dib7000m_write_word(state, 914, reg_914); | ||
308 | |||
309 | return ret; | ||
310 | } | ||
311 | |||
312 | static int dib7000m_set_bandwidth(struct dib7000m_state *state, u32 bw) | ||
313 | { | ||
314 | u32 timf; | ||
315 | |||
316 | // store the current bandwidth for later use | ||
317 | state->current_bandwidth = bw; | ||
318 | |||
319 | if (state->timf == 0) { | ||
320 | dprintk( "using default timf"); | ||
321 | timf = state->timf_default; | ||
322 | } else { | ||
323 | dprintk( "using updated timf"); | ||
324 | timf = state->timf; | ||
325 | } | ||
326 | |||
327 | timf = timf * (bw / 50) / 160; | ||
328 | |||
329 | dib7000m_write_word(state, 23, (u16) ((timf >> 16) & 0xffff)); | ||
330 | dib7000m_write_word(state, 24, (u16) ((timf ) & 0xffff)); | ||
331 | |||
332 | return 0; | ||
333 | } | ||
334 | |||
335 | static int dib7000m_set_diversity_in(struct dvb_frontend *demod, int onoff) | ||
336 | { | ||
337 | struct dib7000m_state *state = demod->demodulator_priv; | ||
338 | |||
339 | if (state->div_force_off) { | ||
340 | dprintk( "diversity combination deactivated - forced by COFDM parameters"); | ||
341 | onoff = 0; | ||
342 | } | ||
343 | state->div_state = (u8)onoff; | ||
344 | |||
345 | if (onoff) { | ||
346 | dib7000m_write_word(state, 263 + state->reg_offs, 6); | ||
347 | dib7000m_write_word(state, 264 + state->reg_offs, 6); | ||
348 | dib7000m_write_word(state, 266 + state->reg_offs, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0)); | ||
349 | } else { | ||
350 | dib7000m_write_word(state, 263 + state->reg_offs, 1); | ||
351 | dib7000m_write_word(state, 264 + state->reg_offs, 0); | ||
352 | dib7000m_write_word(state, 266 + state->reg_offs, 0); | ||
353 | } | ||
354 | |||
355 | return 0; | ||
356 | } | ||
357 | |||
358 | static int dib7000m_sad_calib(struct dib7000m_state *state) | ||
359 | { | ||
360 | |||
361 | /* internal */ | ||
362 | // dib7000m_write_word(state, 928, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is writting in set_bandwidth | ||
363 | dib7000m_write_word(state, 929, (0 << 1) | (0 << 0)); | ||
364 | dib7000m_write_word(state, 930, 776); // 0.625*3.3 / 4096 | ||
365 | |||
366 | /* do the calibration */ | ||
367 | dib7000m_write_word(state, 929, (1 << 0)); | ||
368 | dib7000m_write_word(state, 929, (0 << 0)); | ||
369 | |||
370 | msleep(1); | ||
371 | |||
372 | return 0; | ||
373 | } | ||
374 | |||
375 | static void dib7000m_reset_pll_common(struct dib7000m_state *state, const struct dibx000_bandwidth_config *bw) | ||
376 | { | ||
377 | dib7000m_write_word(state, 18, (u16) (((bw->internal*1000) >> 16) & 0xffff)); | ||
378 | dib7000m_write_word(state, 19, (u16) ( (bw->internal*1000) & 0xffff)); | ||
379 | dib7000m_write_word(state, 21, (u16) ( (bw->ifreq >> 16) & 0xffff)); | ||
380 | dib7000m_write_word(state, 22, (u16) ( bw->ifreq & 0xffff)); | ||
381 | |||
382 | dib7000m_write_word(state, 928, bw->sad_cfg); | ||
383 | } | ||
384 | |||
385 | static void dib7000m_reset_pll(struct dib7000m_state *state) | ||
386 | { | ||
387 | const struct dibx000_bandwidth_config *bw = state->cfg.bw; | ||
388 | u16 reg_907,reg_910; | ||
389 | |||
390 | /* default */ | ||
391 | reg_907 = (bw->pll_bypass << 15) | (bw->modulo << 7) | | ||
392 | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | | ||
393 | (bw->enable_refdiv << 1) | (0 << 0); | ||
394 | reg_910 = (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset; | ||
395 | |||
396 | // for this oscillator frequency should be 30 MHz for the Master (default values in the board_parameters give that value) | ||
397 | // this is only working only for 30 MHz crystals | ||
398 | if (!state->cfg.quartz_direct) { | ||
399 | reg_910 |= (1 << 5); // forcing the predivider to 1 | ||
400 | |||
401 | // if the previous front-end is baseband, its output frequency is 15 MHz (prev freq divided by 2) | ||
402 | if(state->cfg.input_clk_is_div_2) | ||
403 | reg_907 |= (16 << 9); | ||
404 | else // otherwise the previous front-end puts out its input (default 30MHz) - no extra division necessary | ||
405 | reg_907 |= (8 << 9); | ||
406 | } else { | ||
407 | reg_907 |= (bw->pll_ratio & 0x3f) << 9; | ||
408 | reg_910 |= (bw->pll_prediv << 5); | ||
409 | } | ||
410 | |||
411 | dib7000m_write_word(state, 910, reg_910); // pll cfg | ||
412 | dib7000m_write_word(state, 907, reg_907); // clk cfg0 | ||
413 | dib7000m_write_word(state, 908, 0x0006); // clk_cfg1 | ||
414 | |||
415 | dib7000m_reset_pll_common(state, bw); | ||
416 | } | ||
417 | |||
418 | static void dib7000mc_reset_pll(struct dib7000m_state *state) | ||
419 | { | ||
420 | const struct dibx000_bandwidth_config *bw = state->cfg.bw; | ||
421 | u16 clk_cfg1; | ||
422 | |||
423 | // clk_cfg0 | ||
424 | dib7000m_write_word(state, 907, (bw->pll_prediv << 8) | (bw->pll_ratio << 0)); | ||
425 | |||
426 | // clk_cfg1 | ||
427 | //dib7000m_write_word(state, 908, (1 << 14) | (3 << 12) |(0 << 11) | | ||
428 | clk_cfg1 = (0 << 14) | (3 << 12) |(0 << 11) | | ||
429 | (bw->IO_CLK_en_core << 10) | (bw->bypclk_div << 5) | (bw->enable_refdiv << 4) | | ||
430 | (1 << 3) | (bw->pll_range << 1) | (bw->pll_reset << 0); | ||
431 | dib7000m_write_word(state, 908, clk_cfg1); | ||
432 | clk_cfg1 = (clk_cfg1 & 0xfff7) | (bw->pll_bypass << 3); | ||
433 | dib7000m_write_word(state, 908, clk_cfg1); | ||
434 | |||
435 | // smpl_cfg | ||
436 | dib7000m_write_word(state, 910, (1 << 12) | (2 << 10) | (bw->modulo << 8) | (bw->ADClkSrc << 7)); | ||
437 | |||
438 | dib7000m_reset_pll_common(state, bw); | ||
439 | } | ||
440 | |||
441 | static int dib7000m_reset_gpio(struct dib7000m_state *st) | ||
442 | { | ||
443 | /* reset the GPIOs */ | ||
444 | dib7000m_write_word(st, 773, st->cfg.gpio_dir); | ||
445 | dib7000m_write_word(st, 774, st->cfg.gpio_val); | ||
446 | |||
447 | /* TODO 782 is P_gpio_od */ | ||
448 | |||
449 | dib7000m_write_word(st, 775, st->cfg.gpio_pwm_pos); | ||
450 | |||
451 | dib7000m_write_word(st, 780, st->cfg.pwm_freq_div); | ||
452 | return 0; | ||
453 | } | ||
454 | |||
455 | static u16 dib7000m_defaults_common[] = | ||
456 | |||
457 | { | ||
458 | // auto search configuration | ||
459 | 3, 2, | ||
460 | 0x0004, | ||
461 | 0x1000, | ||
462 | 0x0814, | ||
463 | |||
464 | 12, 6, | ||
465 | 0x001b, | ||
466 | 0x7740, | ||
467 | 0x005b, | ||
468 | 0x8d80, | ||
469 | 0x01c9, | ||
470 | 0xc380, | ||
471 | 0x0000, | ||
472 | 0x0080, | ||
473 | 0x0000, | ||
474 | 0x0090, | ||
475 | 0x0001, | ||
476 | 0xd4c0, | ||
477 | |||
478 | 1, 26, | ||
479 | 0x6680, // P_corm_thres Lock algorithms configuration | ||
480 | |||
481 | 1, 170, | ||
482 | 0x0410, // P_palf_alpha_regul, P_palf_filter_freeze, P_palf_filter_on | ||
483 | |||
484 | 8, 173, | ||
485 | 0, | ||
486 | 0, | ||
487 | 0, | ||
488 | 0, | ||
489 | 0, | ||
490 | 0, | ||
491 | 0, | ||
492 | 0, | ||
493 | |||
494 | 1, 182, | ||
495 | 8192, // P_fft_nb_to_cut | ||
496 | |||
497 | 2, 195, | ||
498 | 0x0ccd, // P_pha3_thres | ||
499 | 0, // P_cti_use_cpe, P_cti_use_prog | ||
500 | |||
501 | 1, 205, | ||
502 | 0x200f, // P_cspu_regul, P_cspu_win_cut | ||
503 | |||
504 | 5, 214, | ||
505 | 0x023d, // P_adp_regul_cnt | ||
506 | 0x00a4, // P_adp_noise_cnt | ||
507 | 0x00a4, // P_adp_regul_ext | ||
508 | 0x7ff0, // P_adp_noise_ext | ||
509 | 0x3ccc, // P_adp_fil | ||
510 | |||
511 | 1, 226, | ||
512 | 0, // P_2d_byp_ti_num | ||
513 | |||
514 | 1, 255, | ||
515 | 0x800, // P_equal_thres_wgn | ||
516 | |||
517 | 1, 263, | ||
518 | 0x0001, | ||
519 | |||
520 | 1, 281, | ||
521 | 0x0010, // P_fec_* | ||
522 | |||
523 | 1, 294, | ||
524 | 0x0062, // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard | ||
525 | |||
526 | 0 | ||
527 | }; | ||
528 | |||
529 | static u16 dib7000m_defaults[] = | ||
530 | |||
531 | { | ||
532 | /* set ADC level to -16 */ | ||
533 | 11, 76, | ||
534 | (1 << 13) - 825 - 117, | ||
535 | (1 << 13) - 837 - 117, | ||
536 | (1 << 13) - 811 - 117, | ||
537 | (1 << 13) - 766 - 117, | ||
538 | (1 << 13) - 737 - 117, | ||
539 | (1 << 13) - 693 - 117, | ||
540 | (1 << 13) - 648 - 117, | ||
541 | (1 << 13) - 619 - 117, | ||
542 | (1 << 13) - 575 - 117, | ||
543 | (1 << 13) - 531 - 117, | ||
544 | (1 << 13) - 501 - 117, | ||
545 | |||
546 | // Tuner IO bank: max drive (14mA) | ||
547 | 1, 912, | ||
548 | 0x2c8a, | ||
549 | |||
550 | 1, 1817, | ||
551 | 1, | ||
552 | |||
553 | 0, | ||
554 | }; | ||
555 | |||
556 | static int dib7000m_demod_reset(struct dib7000m_state *state) | ||
557 | { | ||
558 | dib7000m_set_power_mode(state, DIB7000M_POWER_ALL); | ||
559 | |||
560 | /* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */ | ||
561 | dib7000m_set_adc_state(state, DIBX000_VBG_ENABLE); | ||
562 | |||
563 | /* restart all parts */ | ||
564 | dib7000m_write_word(state, 898, 0xffff); | ||
565 | dib7000m_write_word(state, 899, 0xffff); | ||
566 | dib7000m_write_word(state, 900, 0xff0f); | ||
567 | dib7000m_write_word(state, 901, 0xfffc); | ||
568 | |||
569 | dib7000m_write_word(state, 898, 0); | ||
570 | dib7000m_write_word(state, 899, 0); | ||
571 | dib7000m_write_word(state, 900, 0); | ||
572 | dib7000m_write_word(state, 901, 0); | ||
573 | |||
574 | if (state->revision == 0x4000) | ||
575 | dib7000m_reset_pll(state); | ||
576 | else | ||
577 | dib7000mc_reset_pll(state); | ||
578 | |||
579 | if (dib7000m_reset_gpio(state) != 0) | ||
580 | dprintk( "GPIO reset was not successful."); | ||
581 | |||
582 | if (dib7000m_set_output_mode(state, OUTMODE_HIGH_Z) != 0) | ||
583 | dprintk( "OUTPUT_MODE could not be reset."); | ||
584 | |||
585 | /* unforce divstr regardless whether i2c enumeration was done or not */ | ||
586 | dib7000m_write_word(state, 1794, dib7000m_read_word(state, 1794) & ~(1 << 1) ); | ||
587 | |||
588 | dib7000m_set_bandwidth(state, 8000); | ||
589 | |||
590 | dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON); | ||
591 | dib7000m_sad_calib(state); | ||
592 | dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_OFF); | ||
593 | |||
594 | if (state->cfg.dvbt_mode) | ||
595 | dib7000m_write_word(state, 1796, 0x0); // select DVB-T output | ||
596 | |||
597 | if (state->cfg.mobile_mode) | ||
598 | dib7000m_write_word(state, 261 + state->reg_offs, 2); | ||
599 | else | ||
600 | dib7000m_write_word(state, 224 + state->reg_offs, 1); | ||
601 | |||
602 | // P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ... | ||
603 | if(state->cfg.tuner_is_baseband) | ||
604 | dib7000m_write_word(state, 36, 0x0755); | ||
605 | else | ||
606 | dib7000m_write_word(state, 36, 0x1f55); | ||
607 | |||
608 | // P_divclksel=3 P_divbitsel=1 | ||
609 | if (state->revision == 0x4000) | ||
610 | dib7000m_write_word(state, 909, (3 << 10) | (1 << 6)); | ||
611 | else | ||
612 | dib7000m_write_word(state, 909, (3 << 4) | 1); | ||
613 | |||
614 | dib7000m_write_tab(state, dib7000m_defaults_common); | ||
615 | dib7000m_write_tab(state, dib7000m_defaults); | ||
616 | |||
617 | dib7000m_set_power_mode(state, DIB7000M_POWER_INTERFACE_ONLY); | ||
618 | |||
619 | state->internal_clk = state->cfg.bw->internal; | ||
620 | |||
621 | return 0; | ||
622 | } | ||
623 | |||
624 | static void dib7000m_restart_agc(struct dib7000m_state *state) | ||
625 | { | ||
626 | // P_restart_iqc & P_restart_agc | ||
627 | dib7000m_write_word(state, 898, 0x0c00); | ||
628 | dib7000m_write_word(state, 898, 0x0000); | ||
629 | } | ||
630 | |||
631 | static int dib7000m_agc_soft_split(struct dib7000m_state *state) | ||
632 | { | ||
633 | u16 agc,split_offset; | ||
634 | |||
635 | if(!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0) | ||
636 | return 0; | ||
637 | |||
638 | // n_agc_global | ||
639 | agc = dib7000m_read_word(state, 390); | ||
640 | |||
641 | if (agc > state->current_agc->split.min_thres) | ||
642 | split_offset = state->current_agc->split.min; | ||
643 | else if (agc < state->current_agc->split.max_thres) | ||
644 | split_offset = state->current_agc->split.max; | ||
645 | else | ||
646 | split_offset = state->current_agc->split.max * | ||
647 | (agc - state->current_agc->split.min_thres) / | ||
648 | (state->current_agc->split.max_thres - state->current_agc->split.min_thres); | ||
649 | |||
650 | dprintk( "AGC split_offset: %d",split_offset); | ||
651 | |||
652 | // P_agc_force_split and P_agc_split_offset | ||
653 | return dib7000m_write_word(state, 103, (dib7000m_read_word(state, 103) & 0xff00) | split_offset); | ||
654 | } | ||
655 | |||
656 | static int dib7000m_update_lna(struct dib7000m_state *state) | ||
657 | { | ||
658 | u16 dyn_gain; | ||
659 | |||
660 | if (state->cfg.update_lna) { | ||
661 | // read dyn_gain here (because it is demod-dependent and not fe) | ||
662 | dyn_gain = dib7000m_read_word(state, 390); | ||
663 | |||
664 | if (state->cfg.update_lna(&state->demod,dyn_gain)) { // LNA has changed | ||
665 | dib7000m_restart_agc(state); | ||
666 | return 1; | ||
667 | } | ||
668 | } | ||
669 | return 0; | ||
670 | } | ||
671 | |||
672 | static int dib7000m_set_agc_config(struct dib7000m_state *state, u8 band) | ||
673 | { | ||
674 | struct dibx000_agc_config *agc = NULL; | ||
675 | int i; | ||
676 | if (state->current_band == band && state->current_agc != NULL) | ||
677 | return 0; | ||
678 | state->current_band = band; | ||
679 | |||
680 | for (i = 0; i < state->cfg.agc_config_count; i++) | ||
681 | if (state->cfg.agc[i].band_caps & band) { | ||
682 | agc = &state->cfg.agc[i]; | ||
683 | break; | ||
684 | } | ||
685 | |||
686 | if (agc == NULL) { | ||
687 | dprintk( "no valid AGC configuration found for band 0x%02x",band); | ||
688 | return -EINVAL; | ||
689 | } | ||
690 | |||
691 | state->current_agc = agc; | ||
692 | |||
693 | /* AGC */ | ||
694 | dib7000m_write_word(state, 72 , agc->setup); | ||
695 | dib7000m_write_word(state, 73 , agc->inv_gain); | ||
696 | dib7000m_write_word(state, 74 , agc->time_stabiliz); | ||
697 | dib7000m_write_word(state, 97 , (agc->alpha_level << 12) | agc->thlock); | ||
698 | |||
699 | // Demod AGC loop configuration | ||
700 | dib7000m_write_word(state, 98, (agc->alpha_mant << 5) | agc->alpha_exp); | ||
701 | dib7000m_write_word(state, 99, (agc->beta_mant << 6) | agc->beta_exp); | ||
702 | |||
703 | dprintk( "WBD: ref: %d, sel: %d, active: %d, alpha: %d", | ||
704 | state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); | ||
705 | |||
706 | /* AGC continued */ | ||
707 | if (state->wbd_ref != 0) | ||
708 | dib7000m_write_word(state, 102, state->wbd_ref); | ||
709 | else // use default | ||
710 | dib7000m_write_word(state, 102, agc->wbd_ref); | ||
711 | |||
712 | dib7000m_write_word(state, 103, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8) ); | ||
713 | dib7000m_write_word(state, 104, agc->agc1_max); | ||
714 | dib7000m_write_word(state, 105, agc->agc1_min); | ||
715 | dib7000m_write_word(state, 106, agc->agc2_max); | ||
716 | dib7000m_write_word(state, 107, agc->agc2_min); | ||
717 | dib7000m_write_word(state, 108, (agc->agc1_pt1 << 8) | agc->agc1_pt2 ); | ||
718 | dib7000m_write_word(state, 109, (agc->agc1_slope1 << 8) | agc->agc1_slope2); | ||
719 | dib7000m_write_word(state, 110, (agc->agc2_pt1 << 8) | agc->agc2_pt2); | ||
720 | dib7000m_write_word(state, 111, (agc->agc2_slope1 << 8) | agc->agc2_slope2); | ||
721 | |||
722 | if (state->revision > 0x4000) { // settings for the MC | ||
723 | dib7000m_write_word(state, 71, agc->agc1_pt3); | ||
724 | // dprintk( "929: %x %d %d", | ||
725 | // (dib7000m_read_word(state, 929) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2), agc->wbd_inv, agc->wbd_sel); | ||
726 | dib7000m_write_word(state, 929, (dib7000m_read_word(state, 929) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2)); | ||
727 | } else { | ||
728 | // wrong default values | ||
729 | u16 b[9] = { 676, 696, 717, 737, 758, 778, 799, 819, 840 }; | ||
730 | for (i = 0; i < 9; i++) | ||
731 | dib7000m_write_word(state, 88 + i, b[i]); | ||
732 | } | ||
733 | return 0; | ||
734 | } | ||
735 | |||
736 | static void dib7000m_update_timf(struct dib7000m_state *state) | ||
737 | { | ||
738 | u32 timf = (dib7000m_read_word(state, 436) << 16) | dib7000m_read_word(state, 437); | ||
739 | state->timf = timf * 160 / (state->current_bandwidth / 50); | ||
740 | dib7000m_write_word(state, 23, (u16) (timf >> 16)); | ||
741 | dib7000m_write_word(state, 24, (u16) (timf & 0xffff)); | ||
742 | dprintk( "updated timf_frequency: %d (default: %d)",state->timf, state->timf_default); | ||
743 | } | ||
744 | |||
745 | static int dib7000m_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch) | ||
746 | { | ||
747 | struct dib7000m_state *state = demod->demodulator_priv; | ||
748 | u16 cfg_72 = dib7000m_read_word(state, 72); | ||
749 | int ret = -1; | ||
750 | u8 *agc_state = &state->agc_state; | ||
751 | u8 agc_split; | ||
752 | |||
753 | switch (state->agc_state) { | ||
754 | case 0: | ||
755 | // set power-up level: interf+analog+AGC | ||
756 | dib7000m_set_power_mode(state, DIB7000M_POWER_INTERF_ANALOG_AGC); | ||
757 | dib7000m_set_adc_state(state, DIBX000_ADC_ON); | ||
758 | |||
759 | if (dib7000m_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency/1000)) != 0) | ||
760 | return -1; | ||
761 | |||
762 | ret = 7; /* ADC power up */ | ||
763 | (*agc_state)++; | ||
764 | break; | ||
765 | |||
766 | case 1: | ||
767 | /* AGC initialization */ | ||
768 | if (state->cfg.agc_control) | ||
769 | state->cfg.agc_control(&state->demod, 1); | ||
770 | |||
771 | dib7000m_write_word(state, 75, 32768); | ||
772 | if (!state->current_agc->perform_agc_softsplit) { | ||
773 | /* we are using the wbd - so slow AGC startup */ | ||
774 | dib7000m_write_word(state, 103, 1 << 8); /* force 0 split on WBD and restart AGC */ | ||
775 | (*agc_state)++; | ||
776 | ret = 5; | ||
777 | } else { | ||
778 | /* default AGC startup */ | ||
779 | (*agc_state) = 4; | ||
780 | /* wait AGC rough lock time */ | ||
781 | ret = 7; | ||
782 | } | ||
783 | |||
784 | dib7000m_restart_agc(state); | ||
785 | break; | ||
786 | |||
787 | case 2: /* fast split search path after 5sec */ | ||
788 | dib7000m_write_word(state, 72, cfg_72 | (1 << 4)); /* freeze AGC loop */ | ||
789 | dib7000m_write_word(state, 103, 2 << 9); /* fast split search 0.25kHz */ | ||
790 | (*agc_state)++; | ||
791 | ret = 14; | ||
792 | break; | ||
793 | |||
794 | case 3: /* split search ended */ | ||
795 | agc_split = (u8)dib7000m_read_word(state, 392); /* store the split value for the next time */ | ||
796 | dib7000m_write_word(state, 75, dib7000m_read_word(state, 390)); /* set AGC gain start value */ | ||
797 | |||
798 | dib7000m_write_word(state, 72, cfg_72 & ~(1 << 4)); /* std AGC loop */ | ||
799 | dib7000m_write_word(state, 103, (state->current_agc->wbd_alpha << 9) | agc_split); /* standard split search */ | ||
800 | |||
801 | dib7000m_restart_agc(state); | ||
802 | |||
803 | dprintk( "SPLIT %p: %hd", demod, agc_split); | ||
804 | |||
805 | (*agc_state)++; | ||
806 | ret = 5; | ||
807 | break; | ||
808 | |||
809 | case 4: /* LNA startup */ | ||
810 | /* wait AGC accurate lock time */ | ||
811 | ret = 7; | ||
812 | |||
813 | if (dib7000m_update_lna(state)) | ||
814 | // wait only AGC rough lock time | ||
815 | ret = 5; | ||
816 | else | ||
817 | (*agc_state)++; | ||
818 | break; | ||
819 | |||
820 | case 5: | ||
821 | dib7000m_agc_soft_split(state); | ||
822 | |||
823 | if (state->cfg.agc_control) | ||
824 | state->cfg.agc_control(&state->demod, 0); | ||
825 | |||
826 | (*agc_state)++; | ||
827 | break; | ||
828 | |||
829 | default: | ||
830 | break; | ||
831 | } | ||
832 | return ret; | ||
833 | } | ||
834 | |||
835 | static void dib7000m_set_channel(struct dib7000m_state *state, struct dvb_frontend_parameters *ch, u8 seq) | ||
836 | { | ||
837 | u16 value, est[4]; | ||
838 | |||
839 | dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth)); | ||
840 | |||
841 | /* nfft, guard, qam, alpha */ | ||
842 | value = 0; | ||
843 | switch (ch->u.ofdm.transmission_mode) { | ||
844 | case TRANSMISSION_MODE_2K: value |= (0 << 7); break; | ||
845 | case TRANSMISSION_MODE_4K: value |= (2 << 7); break; | ||
846 | default: | ||
847 | case TRANSMISSION_MODE_8K: value |= (1 << 7); break; | ||
848 | } | ||
849 | switch (ch->u.ofdm.guard_interval) { | ||
850 | case GUARD_INTERVAL_1_32: value |= (0 << 5); break; | ||
851 | case GUARD_INTERVAL_1_16: value |= (1 << 5); break; | ||
852 | case GUARD_INTERVAL_1_4: value |= (3 << 5); break; | ||
853 | default: | ||
854 | case GUARD_INTERVAL_1_8: value |= (2 << 5); break; | ||
855 | } | ||
856 | switch (ch->u.ofdm.constellation) { | ||
857 | case QPSK: value |= (0 << 3); break; | ||
858 | case QAM_16: value |= (1 << 3); break; | ||
859 | default: | ||
860 | case QAM_64: value |= (2 << 3); break; | ||
861 | } | ||
862 | switch (HIERARCHY_1) { | ||
863 | case HIERARCHY_2: value |= 2; break; | ||
864 | case HIERARCHY_4: value |= 4; break; | ||
865 | default: | ||
866 | case HIERARCHY_1: value |= 1; break; | ||
867 | } | ||
868 | dib7000m_write_word(state, 0, value); | ||
869 | dib7000m_write_word(state, 5, (seq << 4)); | ||
870 | |||
871 | /* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */ | ||
872 | value = 0; | ||
873 | if (1 != 0) | ||
874 | value |= (1 << 6); | ||
875 | if (ch->u.ofdm.hierarchy_information == 1) | ||
876 | value |= (1 << 4); | ||
877 | if (1 == 1) | ||
878 | value |= 1; | ||
879 | switch ((ch->u.ofdm.hierarchy_information == 0 || 1 == 1) ? ch->u.ofdm.code_rate_HP : ch->u.ofdm.code_rate_LP) { | ||
880 | case FEC_2_3: value |= (2 << 1); break; | ||
881 | case FEC_3_4: value |= (3 << 1); break; | ||
882 | case FEC_5_6: value |= (5 << 1); break; | ||
883 | case FEC_7_8: value |= (7 << 1); break; | ||
884 | default: | ||
885 | case FEC_1_2: value |= (1 << 1); break; | ||
886 | } | ||
887 | dib7000m_write_word(state, 267 + state->reg_offs, value); | ||
888 | |||
889 | /* offset loop parameters */ | ||
890 | |||
891 | /* P_timf_alpha = 6, P_corm_alpha=6, P_corm_thres=0x80 */ | ||
892 | dib7000m_write_word(state, 26, (6 << 12) | (6 << 8) | 0x80); | ||
893 | |||
894 | /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=1, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */ | ||
895 | dib7000m_write_word(state, 29, (0 << 14) | (4 << 10) | (1 << 9) | (3 << 5) | (1 << 4) | (0x3)); | ||
896 | |||
897 | /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max=3 */ | ||
898 | dib7000m_write_word(state, 32, (0 << 4) | 0x3); | ||
899 | |||
900 | /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step=5 */ | ||
901 | dib7000m_write_word(state, 33, (0 << 4) | 0x5); | ||
902 | |||
903 | /* P_dvsy_sync_wait */ | ||
904 | switch (ch->u.ofdm.transmission_mode) { | ||
905 | case TRANSMISSION_MODE_8K: value = 256; break; | ||
906 | case TRANSMISSION_MODE_4K: value = 128; break; | ||
907 | case TRANSMISSION_MODE_2K: | ||
908 | default: value = 64; break; | ||
909 | } | ||
910 | switch (ch->u.ofdm.guard_interval) { | ||
911 | case GUARD_INTERVAL_1_16: value *= 2; break; | ||
912 | case GUARD_INTERVAL_1_8: value *= 4; break; | ||
913 | case GUARD_INTERVAL_1_4: value *= 8; break; | ||
914 | default: | ||
915 | case GUARD_INTERVAL_1_32: value *= 1; break; | ||
916 | } | ||
917 | state->div_sync_wait = (value * 3) / 2 + 32; // add 50% SFN margin + compensate for one DVSY-fifo TODO | ||
918 | |||
919 | /* deactive the possibility of diversity reception if extended interleave - not for 7000MC */ | ||
920 | /* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */ | ||
921 | if (1 == 1 || state->revision > 0x4000) | ||
922 | state->div_force_off = 0; | ||
923 | else | ||
924 | state->div_force_off = 1; | ||
925 | dib7000m_set_diversity_in(&state->demod, state->div_state); | ||
926 | |||
927 | /* channel estimation fine configuration */ | ||
928 | switch (ch->u.ofdm.constellation) { | ||
929 | case QAM_64: | ||
930 | est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */ | ||
931 | est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */ | ||
932 | est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ | ||
933 | est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */ | ||
934 | break; | ||
935 | case QAM_16: | ||
936 | est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */ | ||
937 | est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */ | ||
938 | est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ | ||
939 | est[3] = 0xfff0; /* P_adp_noise_ext -0.002 */ | ||
940 | break; | ||
941 | default: | ||
942 | est[0] = 0x099a; /* P_adp_regul_cnt 0.3 */ | ||
943 | est[1] = 0xffae; /* P_adp_noise_cnt -0.01 */ | ||
944 | est[2] = 0x0333; /* P_adp_regul_ext 0.1 */ | ||
945 | est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */ | ||
946 | break; | ||
947 | } | ||
948 | for (value = 0; value < 4; value++) | ||
949 | dib7000m_write_word(state, 214 + value + state->reg_offs, est[value]); | ||
950 | |||
951 | // set power-up level: autosearch | ||
952 | dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD); | ||
953 | } | ||
954 | |||
955 | static int dib7000m_autosearch_start(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch) | ||
956 | { | ||
957 | struct dib7000m_state *state = demod->demodulator_priv; | ||
958 | struct dvb_frontend_parameters schan; | ||
959 | int ret = 0; | ||
960 | u32 value, factor; | ||
961 | |||
962 | schan = *ch; | ||
963 | |||
964 | schan.u.ofdm.constellation = QAM_64; | ||
965 | schan.u.ofdm.guard_interval = GUARD_INTERVAL_1_32; | ||
966 | schan.u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; | ||
967 | schan.u.ofdm.code_rate_HP = FEC_2_3; | ||
968 | schan.u.ofdm.code_rate_LP = FEC_3_4; | ||
969 | schan.u.ofdm.hierarchy_information = 0; | ||
970 | |||
971 | dib7000m_set_channel(state, &schan, 7); | ||
972 | |||
973 | factor = BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth); | ||
974 | if (factor >= 5000) | ||
975 | factor = 1; | ||
976 | else | ||
977 | factor = 6; | ||
978 | |||
979 | // always use the setting for 8MHz here lock_time for 7,6 MHz are longer | ||
980 | value = 30 * state->internal_clk * factor; | ||
981 | ret |= dib7000m_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time | ||
982 | ret |= dib7000m_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time | ||
983 | value = 100 * state->internal_clk * factor; | ||
984 | ret |= dib7000m_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time | ||
985 | ret |= dib7000m_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time | ||
986 | value = 500 * state->internal_clk * factor; | ||
987 | ret |= dib7000m_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time | ||
988 | ret |= dib7000m_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time | ||
989 | |||
990 | // start search | ||
991 | value = dib7000m_read_word(state, 0); | ||
992 | ret |= dib7000m_write_word(state, 0, (u16) (value | (1 << 9))); | ||
993 | |||
994 | /* clear n_irq_pending */ | ||
995 | if (state->revision == 0x4000) | ||
996 | dib7000m_write_word(state, 1793, 0); | ||
997 | else | ||
998 | dib7000m_read_word(state, 537); | ||
999 | |||
1000 | ret |= dib7000m_write_word(state, 0, (u16) value); | ||
1001 | |||
1002 | return ret; | ||
1003 | } | ||
1004 | |||
1005 | static int dib7000m_autosearch_irq(struct dib7000m_state *state, u16 reg) | ||
1006 | { | ||
1007 | u16 irq_pending = dib7000m_read_word(state, reg); | ||
1008 | |||
1009 | if (irq_pending & 0x1) { // failed | ||
1010 | dprintk( "autosearch failed"); | ||
1011 | return 1; | ||
1012 | } | ||
1013 | |||
1014 | if (irq_pending & 0x2) { // succeeded | ||
1015 | dprintk( "autosearch succeeded"); | ||
1016 | return 2; | ||
1017 | } | ||
1018 | return 0; // still pending | ||
1019 | } | ||
1020 | |||
1021 | static int dib7000m_autosearch_is_irq(struct dvb_frontend *demod) | ||
1022 | { | ||
1023 | struct dib7000m_state *state = demod->demodulator_priv; | ||
1024 | if (state->revision == 0x4000) | ||
1025 | return dib7000m_autosearch_irq(state, 1793); | ||
1026 | else | ||
1027 | return dib7000m_autosearch_irq(state, 537); | ||
1028 | } | ||
1029 | |||
1030 | static int dib7000m_tune(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch) | ||
1031 | { | ||
1032 | struct dib7000m_state *state = demod->demodulator_priv; | ||
1033 | int ret = 0; | ||
1034 | u16 value; | ||
1035 | |||
1036 | // we are already tuned - just resuming from suspend | ||
1037 | if (ch != NULL) | ||
1038 | dib7000m_set_channel(state, ch, 0); | ||
1039 | else | ||
1040 | return -EINVAL; | ||
1041 | |||
1042 | // restart demod | ||
1043 | ret |= dib7000m_write_word(state, 898, 0x4000); | ||
1044 | ret |= dib7000m_write_word(state, 898, 0x0000); | ||
1045 | msleep(45); | ||
1046 | |||
1047 | dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD); | ||
1048 | /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */ | ||
1049 | ret |= dib7000m_write_word(state, 29, (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3)); | ||
1050 | |||
1051 | // never achieved a lock before - wait for timfreq to update | ||
1052 | if (state->timf == 0) | ||
1053 | msleep(200); | ||
1054 | |||
1055 | //dump_reg(state); | ||
1056 | /* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */ | ||
1057 | value = (6 << 8) | 0x80; | ||
1058 | switch (ch->u.ofdm.transmission_mode) { | ||
1059 | case TRANSMISSION_MODE_2K: value |= (7 << 12); break; | ||
1060 | case TRANSMISSION_MODE_4K: value |= (8 << 12); break; | ||
1061 | default: | ||
1062 | case TRANSMISSION_MODE_8K: value |= (9 << 12); break; | ||
1063 | } | ||
1064 | ret |= dib7000m_write_word(state, 26, value); | ||
1065 | |||
1066 | /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */ | ||
1067 | value = (0 << 4); | ||
1068 | switch (ch->u.ofdm.transmission_mode) { | ||
1069 | case TRANSMISSION_MODE_2K: value |= 0x6; break; | ||
1070 | case TRANSMISSION_MODE_4K: value |= 0x7; break; | ||
1071 | default: | ||
1072 | case TRANSMISSION_MODE_8K: value |= 0x8; break; | ||
1073 | } | ||
1074 | ret |= dib7000m_write_word(state, 32, value); | ||
1075 | |||
1076 | /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */ | ||
1077 | value = (0 << 4); | ||
1078 | switch (ch->u.ofdm.transmission_mode) { | ||
1079 | case TRANSMISSION_MODE_2K: value |= 0x6; break; | ||
1080 | case TRANSMISSION_MODE_4K: value |= 0x7; break; | ||
1081 | default: | ||
1082 | case TRANSMISSION_MODE_8K: value |= 0x8; break; | ||
1083 | } | ||
1084 | ret |= dib7000m_write_word(state, 33, value); | ||
1085 | |||
1086 | // we achieved a lock - it's time to update the timf freq | ||
1087 | if ((dib7000m_read_word(state, 535) >> 6) & 0x1) | ||
1088 | dib7000m_update_timf(state); | ||
1089 | |||
1090 | dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth)); | ||
1091 | return ret; | ||
1092 | } | ||
1093 | |||
1094 | static int dib7000m_wakeup(struct dvb_frontend *demod) | ||
1095 | { | ||
1096 | struct dib7000m_state *state = demod->demodulator_priv; | ||
1097 | |||
1098 | dib7000m_set_power_mode(state, DIB7000M_POWER_ALL); | ||
1099 | |||
1100 | if (dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0) | ||
1101 | dprintk( "could not start Slow ADC"); | ||
1102 | |||
1103 | return 0; | ||
1104 | } | ||
1105 | |||
1106 | static int dib7000m_sleep(struct dvb_frontend *demod) | ||
1107 | { | ||
1108 | struct dib7000m_state *st = demod->demodulator_priv; | ||
1109 | dib7000m_set_output_mode(st, OUTMODE_HIGH_Z); | ||
1110 | dib7000m_set_power_mode(st, DIB7000M_POWER_INTERFACE_ONLY); | ||
1111 | return dib7000m_set_adc_state(st, DIBX000_SLOW_ADC_OFF) | | ||
1112 | dib7000m_set_adc_state(st, DIBX000_ADC_OFF); | ||
1113 | } | ||
1114 | |||
1115 | static int dib7000m_identify(struct dib7000m_state *state) | ||
1116 | { | ||
1117 | u16 value; | ||
1118 | |||
1119 | if ((value = dib7000m_read_word(state, 896)) != 0x01b3) { | ||
1120 | dprintk( "wrong Vendor ID (0x%x)",value); | ||
1121 | return -EREMOTEIO; | ||
1122 | } | ||
1123 | |||
1124 | state->revision = dib7000m_read_word(state, 897); | ||
1125 | if (state->revision != 0x4000 && | ||
1126 | state->revision != 0x4001 && | ||
1127 | state->revision != 0x4002 && | ||
1128 | state->revision != 0x4003) { | ||
1129 | dprintk( "wrong Device ID (0x%x)",value); | ||
1130 | return -EREMOTEIO; | ||
1131 | } | ||
1132 | |||
1133 | /* protect this driver to be used with 7000PC */ | ||
1134 | if (state->revision == 0x4000 && dib7000m_read_word(state, 769) == 0x4000) { | ||
1135 | dprintk( "this driver does not work with DiB7000PC"); | ||
1136 | return -EREMOTEIO; | ||
1137 | } | ||
1138 | |||
1139 | switch (state->revision) { | ||
1140 | case 0x4000: dprintk( "found DiB7000MA/PA/MB/PB"); break; | ||
1141 | case 0x4001: state->reg_offs = 1; dprintk( "found DiB7000HC"); break; | ||
1142 | case 0x4002: state->reg_offs = 1; dprintk( "found DiB7000MC"); break; | ||
1143 | case 0x4003: state->reg_offs = 1; dprintk( "found DiB9000"); break; | ||
1144 | } | ||
1145 | |||
1146 | return 0; | ||
1147 | } | ||
1148 | |||
1149 | |||
1150 | static int dib7000m_get_frontend(struct dvb_frontend* fe, | ||
1151 | struct dvb_frontend_parameters *fep) | ||
1152 | { | ||
1153 | struct dib7000m_state *state = fe->demodulator_priv; | ||
1154 | u16 tps = dib7000m_read_word(state,480); | ||
1155 | |||
1156 | fep->inversion = INVERSION_AUTO; | ||
1157 | |||
1158 | fep->u.ofdm.bandwidth = state->current_bandwidth; | ||
1159 | |||
1160 | switch ((tps >> 8) & 0x3) { | ||
1161 | case 0: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break; | ||
1162 | case 1: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; break; | ||
1163 | /* case 2: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_4K; break; */ | ||
1164 | } | ||
1165 | |||
1166 | switch (tps & 0x3) { | ||
1167 | case 0: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break; | ||
1168 | case 1: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break; | ||
1169 | case 2: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break; | ||
1170 | case 3: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break; | ||
1171 | } | ||
1172 | |||
1173 | switch ((tps >> 14) & 0x3) { | ||
1174 | case 0: fep->u.ofdm.constellation = QPSK; break; | ||
1175 | case 1: fep->u.ofdm.constellation = QAM_16; break; | ||
1176 | case 2: | ||
1177 | default: fep->u.ofdm.constellation = QAM_64; break; | ||
1178 | } | ||
1179 | |||
1180 | /* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */ | ||
1181 | /* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */ | ||
1182 | |||
1183 | fep->u.ofdm.hierarchy_information = HIERARCHY_NONE; | ||
1184 | switch ((tps >> 5) & 0x7) { | ||
1185 | case 1: fep->u.ofdm.code_rate_HP = FEC_1_2; break; | ||
1186 | case 2: fep->u.ofdm.code_rate_HP = FEC_2_3; break; | ||
1187 | case 3: fep->u.ofdm.code_rate_HP = FEC_3_4; break; | ||
1188 | case 5: fep->u.ofdm.code_rate_HP = FEC_5_6; break; | ||
1189 | case 7: | ||
1190 | default: fep->u.ofdm.code_rate_HP = FEC_7_8; break; | ||
1191 | |||
1192 | } | ||
1193 | |||
1194 | switch ((tps >> 2) & 0x7) { | ||
1195 | case 1: fep->u.ofdm.code_rate_LP = FEC_1_2; break; | ||
1196 | case 2: fep->u.ofdm.code_rate_LP = FEC_2_3; break; | ||
1197 | case 3: fep->u.ofdm.code_rate_LP = FEC_3_4; break; | ||
1198 | case 5: fep->u.ofdm.code_rate_LP = FEC_5_6; break; | ||
1199 | case 7: | ||
1200 | default: fep->u.ofdm.code_rate_LP = FEC_7_8; break; | ||
1201 | } | ||
1202 | |||
1203 | /* native interleaver: (dib7000m_read_word(state, 481) >> 5) & 0x1 */ | ||
1204 | |||
1205 | return 0; | ||
1206 | } | ||
1207 | |||
1208 | static int dib7000m_set_frontend(struct dvb_frontend* fe, | ||
1209 | struct dvb_frontend_parameters *fep) | ||
1210 | { | ||
1211 | struct dib7000m_state *state = fe->demodulator_priv; | ||
1212 | int time, ret; | ||
1213 | |||
1214 | dib7000m_set_output_mode(state, OUTMODE_HIGH_Z); | ||
1215 | |||
1216 | state->current_bandwidth = fep->u.ofdm.bandwidth; | ||
1217 | dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(fep->u.ofdm.bandwidth)); | ||
1218 | |||
1219 | if (fe->ops.tuner_ops.set_params) | ||
1220 | fe->ops.tuner_ops.set_params(fe, fep); | ||
1221 | |||
1222 | /* start up the AGC */ | ||
1223 | state->agc_state = 0; | ||
1224 | do { | ||
1225 | time = dib7000m_agc_startup(fe, fep); | ||
1226 | if (time != -1) | ||
1227 | msleep(time); | ||
1228 | } while (time != -1); | ||
1229 | |||
1230 | if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO || | ||
1231 | fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || | ||
1232 | fep->u.ofdm.constellation == QAM_AUTO || | ||
1233 | fep->u.ofdm.code_rate_HP == FEC_AUTO) { | ||
1234 | int i = 800, found; | ||
1235 | |||
1236 | dib7000m_autosearch_start(fe, fep); | ||
1237 | do { | ||
1238 | msleep(1); | ||
1239 | found = dib7000m_autosearch_is_irq(fe); | ||
1240 | } while (found == 0 && i--); | ||
1241 | |||
1242 | dprintk("autosearch returns: %d",found); | ||
1243 | if (found == 0 || found == 1) | ||
1244 | return 0; // no channel found | ||
1245 | |||
1246 | dib7000m_get_frontend(fe, fep); | ||
1247 | } | ||
1248 | |||
1249 | ret = dib7000m_tune(fe, fep); | ||
1250 | |||
1251 | /* make this a config parameter */ | ||
1252 | dib7000m_set_output_mode(state, OUTMODE_MPEG2_FIFO); | ||
1253 | return ret; | ||
1254 | } | ||
1255 | |||
1256 | static int dib7000m_read_status(struct dvb_frontend *fe, fe_status_t *stat) | ||
1257 | { | ||
1258 | struct dib7000m_state *state = fe->demodulator_priv; | ||
1259 | u16 lock = dib7000m_read_word(state, 535); | ||
1260 | |||
1261 | *stat = 0; | ||
1262 | |||
1263 | if (lock & 0x8000) | ||
1264 | *stat |= FE_HAS_SIGNAL; | ||
1265 | if (lock & 0x3000) | ||
1266 | *stat |= FE_HAS_CARRIER; | ||
1267 | if (lock & 0x0100) | ||
1268 | *stat |= FE_HAS_VITERBI; | ||
1269 | if (lock & 0x0010) | ||
1270 | *stat |= FE_HAS_SYNC; | ||
1271 | if (lock & 0x0008) | ||
1272 | *stat |= FE_HAS_LOCK; | ||
1273 | |||
1274 | return 0; | ||
1275 | } | ||
1276 | |||
1277 | static int dib7000m_read_ber(struct dvb_frontend *fe, u32 *ber) | ||
1278 | { | ||
1279 | struct dib7000m_state *state = fe->demodulator_priv; | ||
1280 | *ber = (dib7000m_read_word(state, 526) << 16) | dib7000m_read_word(state, 527); | ||
1281 | return 0; | ||
1282 | } | ||
1283 | |||
1284 | static int dib7000m_read_unc_blocks(struct dvb_frontend *fe, u32 *unc) | ||
1285 | { | ||
1286 | struct dib7000m_state *state = fe->demodulator_priv; | ||
1287 | *unc = dib7000m_read_word(state, 534); | ||
1288 | return 0; | ||
1289 | } | ||
1290 | |||
1291 | static int dib7000m_read_signal_strength(struct dvb_frontend *fe, u16 *strength) | ||
1292 | { | ||
1293 | struct dib7000m_state *state = fe->demodulator_priv; | ||
1294 | u16 val = dib7000m_read_word(state, 390); | ||
1295 | *strength = 65535 - val; | ||
1296 | return 0; | ||
1297 | } | ||
1298 | |||
1299 | static int dib7000m_read_snr(struct dvb_frontend* fe, u16 *snr) | ||
1300 | { | ||
1301 | *snr = 0x0000; | ||
1302 | return 0; | ||
1303 | } | ||
1304 | |||
1305 | static int dib7000m_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune) | ||
1306 | { | ||
1307 | tune->min_delay_ms = 1000; | ||
1308 | return 0; | ||
1309 | } | ||
1310 | |||
1311 | static void dib7000m_release(struct dvb_frontend *demod) | ||
1312 | { | ||
1313 | struct dib7000m_state *st = demod->demodulator_priv; | ||
1314 | dibx000_exit_i2c_master(&st->i2c_master); | ||
1315 | kfree(st); | ||
1316 | } | ||
1317 | |||
1318 | struct i2c_adapter * dib7000m_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating) | ||
1319 | { | ||
1320 | struct dib7000m_state *st = demod->demodulator_priv; | ||
1321 | return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); | ||
1322 | } | ||
1323 | EXPORT_SYMBOL(dib7000m_get_i2c_master); | ||
1324 | |||
1325 | int dib7000m_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) | ||
1326 | { | ||
1327 | struct dib7000m_state *state = fe->demodulator_priv; | ||
1328 | u16 val = dib7000m_read_word(state, 294 + state->reg_offs) & 0xffef; | ||
1329 | val |= (onoff & 0x1) << 4; | ||
1330 | dprintk("PID filter enabled %d", onoff); | ||
1331 | return dib7000m_write_word(state, 294 + state->reg_offs, val); | ||
1332 | } | ||
1333 | EXPORT_SYMBOL(dib7000m_pid_filter_ctrl); | ||
1334 | |||
1335 | int dib7000m_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) | ||
1336 | { | ||
1337 | struct dib7000m_state *state = fe->demodulator_priv; | ||
1338 | dprintk("PID filter: index %x, PID %d, OnOff %d", id, pid, onoff); | ||
1339 | return dib7000m_write_word(state, 300 + state->reg_offs + id, | ||
1340 | onoff ? (1 << 13) | pid : 0); | ||
1341 | } | ||
1342 | EXPORT_SYMBOL(dib7000m_pid_filter); | ||
1343 | |||
1344 | #if 0 | ||
1345 | /* used with some prototype boards */ | ||
1346 | int dib7000m_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, | ||
1347 | u8 default_addr, struct dib7000m_config cfg[]) | ||
1348 | { | ||
1349 | struct dib7000m_state st = { .i2c_adap = i2c }; | ||
1350 | int k = 0; | ||
1351 | u8 new_addr = 0; | ||
1352 | |||
1353 | for (k = no_of_demods-1; k >= 0; k--) { | ||
1354 | st.cfg = cfg[k]; | ||
1355 | |||
1356 | /* designated i2c address */ | ||
1357 | new_addr = (0x40 + k) << 1; | ||
1358 | st.i2c_addr = new_addr; | ||
1359 | if (dib7000m_identify(&st) != 0) { | ||
1360 | st.i2c_addr = default_addr; | ||
1361 | if (dib7000m_identify(&st) != 0) { | ||
1362 | dprintk("DiB7000M #%d: not identified", k); | ||
1363 | return -EIO; | ||
1364 | } | ||
1365 | } | ||
1366 | |||
1367 | /* start diversity to pull_down div_str - just for i2c-enumeration */ | ||
1368 | dib7000m_set_output_mode(&st, OUTMODE_DIVERSITY); | ||
1369 | |||
1370 | dib7000m_write_word(&st, 1796, 0x0); // select DVB-T output | ||
1371 | |||
1372 | /* set new i2c address and force divstart */ | ||
1373 | dib7000m_write_word(&st, 1794, (new_addr << 2) | 0x2); | ||
1374 | |||
1375 | dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr); | ||
1376 | } | ||
1377 | |||
1378 | for (k = 0; k < no_of_demods; k++) { | ||
1379 | st.cfg = cfg[k]; | ||
1380 | st.i2c_addr = (0x40 + k) << 1; | ||
1381 | |||
1382 | // unforce divstr | ||
1383 | dib7000m_write_word(&st,1794, st.i2c_addr << 2); | ||
1384 | |||
1385 | /* deactivate div - it was just for i2c-enumeration */ | ||
1386 | dib7000m_set_output_mode(&st, OUTMODE_HIGH_Z); | ||
1387 | } | ||
1388 | |||
1389 | return 0; | ||
1390 | } | ||
1391 | EXPORT_SYMBOL(dib7000m_i2c_enumeration); | ||
1392 | #endif | ||
1393 | |||
1394 | static struct dvb_frontend_ops dib7000m_ops; | ||
1395 | struct dvb_frontend * dib7000m_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000m_config *cfg) | ||
1396 | { | ||
1397 | struct dvb_frontend *demod; | ||
1398 | struct dib7000m_state *st; | ||
1399 | st = kzalloc(sizeof(struct dib7000m_state), GFP_KERNEL); | ||
1400 | if (st == NULL) | ||
1401 | return NULL; | ||
1402 | |||
1403 | memcpy(&st->cfg, cfg, sizeof(struct dib7000m_config)); | ||
1404 | st->i2c_adap = i2c_adap; | ||
1405 | st->i2c_addr = i2c_addr; | ||
1406 | |||
1407 | demod = &st->demod; | ||
1408 | demod->demodulator_priv = st; | ||
1409 | memcpy(&st->demod.ops, &dib7000m_ops, sizeof(struct dvb_frontend_ops)); | ||
1410 | mutex_init(&st->i2c_buffer_lock); | ||
1411 | |||
1412 | st->timf_default = cfg->bw->timf; | ||
1413 | |||
1414 | if (dib7000m_identify(st) != 0) | ||
1415 | goto error; | ||
1416 | |||
1417 | if (st->revision == 0x4000) | ||
1418 | dibx000_init_i2c_master(&st->i2c_master, DIB7000, st->i2c_adap, st->i2c_addr); | ||
1419 | else | ||
1420 | dibx000_init_i2c_master(&st->i2c_master, DIB7000MC, st->i2c_adap, st->i2c_addr); | ||
1421 | |||
1422 | dib7000m_demod_reset(st); | ||
1423 | |||
1424 | return demod; | ||
1425 | |||
1426 | error: | ||
1427 | kfree(st); | ||
1428 | return NULL; | ||
1429 | } | ||
1430 | EXPORT_SYMBOL(dib7000m_attach); | ||
1431 | |||
1432 | static struct dvb_frontend_ops dib7000m_ops = { | ||
1433 | .info = { | ||
1434 | .name = "DiBcom 7000MA/MB/PA/PB/MC", | ||
1435 | .type = FE_OFDM, | ||
1436 | .frequency_min = 44250000, | ||
1437 | .frequency_max = 867250000, | ||
1438 | .frequency_stepsize = 62500, | ||
1439 | .caps = FE_CAN_INVERSION_AUTO | | ||
1440 | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | | ||
1441 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | | ||
1442 | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | | ||
1443 | FE_CAN_TRANSMISSION_MODE_AUTO | | ||
1444 | FE_CAN_GUARD_INTERVAL_AUTO | | ||
1445 | FE_CAN_RECOVER | | ||
1446 | FE_CAN_HIERARCHY_AUTO, | ||
1447 | }, | ||
1448 | |||
1449 | .release = dib7000m_release, | ||
1450 | |||
1451 | .init = dib7000m_wakeup, | ||
1452 | .sleep = dib7000m_sleep, | ||
1453 | |||
1454 | .set_frontend = dib7000m_set_frontend, | ||
1455 | .get_tune_settings = dib7000m_fe_get_tune_settings, | ||
1456 | .get_frontend = dib7000m_get_frontend, | ||
1457 | |||
1458 | .read_status = dib7000m_read_status, | ||
1459 | .read_ber = dib7000m_read_ber, | ||
1460 | .read_signal_strength = dib7000m_read_signal_strength, | ||
1461 | .read_snr = dib7000m_read_snr, | ||
1462 | .read_ucblocks = dib7000m_read_unc_blocks, | ||
1463 | }; | ||
1464 | |||
1465 | MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>"); | ||
1466 | MODULE_DESCRIPTION("Driver for the DiBcom 7000MA/MB/PA/PB/MC COFDM demodulator"); | ||
1467 | MODULE_LICENSE("GPL"); | ||