diff options
author | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
---|---|---|
committer | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
commit | fcc9d2e5a6c89d22b8b773a64fb4ad21ac318446 (patch) | |
tree | a57612d1888735a2ec7972891b68c1ac5ec8faea /drivers/media/common/tuners/xc5000.c | |
parent | 8dea78da5cee153b8af9c07a2745f6c55057fe12 (diff) |
Diffstat (limited to 'drivers/media/common/tuners/xc5000.c')
-rw-r--r-- | drivers/media/common/tuners/xc5000.c | 1201 |
1 files changed, 1201 insertions, 0 deletions
diff --git a/drivers/media/common/tuners/xc5000.c b/drivers/media/common/tuners/xc5000.c new file mode 100644 index 00000000000..aa1b2e844d3 --- /dev/null +++ b/drivers/media/common/tuners/xc5000.c | |||
@@ -0,0 +1,1201 @@ | |||
1 | /* | ||
2 | * Driver for Xceive XC5000 "QAM/8VSB single chip tuner" | ||
3 | * | ||
4 | * Copyright (c) 2007 Xceive Corporation | ||
5 | * Copyright (c) 2007 Steven Toth <stoth@linuxtv.org> | ||
6 | * Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com> | ||
7 | * | ||
8 | * This program is free software; you can redistribute it and/or modify | ||
9 | * it under the terms of the GNU General Public License as published by | ||
10 | * the Free Software Foundation; either version 2 of the License, or | ||
11 | * (at your option) any later version. | ||
12 | * | ||
13 | * This program is distributed in the hope that it will be useful, | ||
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
16 | * | ||
17 | * GNU General Public License for more details. | ||
18 | * | ||
19 | * You should have received a copy of the GNU General Public License | ||
20 | * along with this program; if not, write to the Free Software | ||
21 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
22 | */ | ||
23 | |||
24 | #include <linux/module.h> | ||
25 | #include <linux/moduleparam.h> | ||
26 | #include <linux/videodev2.h> | ||
27 | #include <linux/delay.h> | ||
28 | #include <linux/dvb/frontend.h> | ||
29 | #include <linux/i2c.h> | ||
30 | |||
31 | #include "dvb_frontend.h" | ||
32 | |||
33 | #include "xc5000.h" | ||
34 | #include "tuner-i2c.h" | ||
35 | |||
36 | static int debug; | ||
37 | module_param(debug, int, 0644); | ||
38 | MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); | ||
39 | |||
40 | static int no_poweroff; | ||
41 | module_param(no_poweroff, int, 0644); | ||
42 | MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n" | ||
43 | "\t\t1 keep device energized and with tuner ready all the times.\n" | ||
44 | "\t\tFaster, but consumes more power and keeps the device hotter"); | ||
45 | |||
46 | static DEFINE_MUTEX(xc5000_list_mutex); | ||
47 | static LIST_HEAD(hybrid_tuner_instance_list); | ||
48 | |||
49 | #define dprintk(level, fmt, arg...) if (debug >= level) \ | ||
50 | printk(KERN_INFO "%s: " fmt, "xc5000", ## arg) | ||
51 | |||
52 | #define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.6.114.fw" | ||
53 | #define XC5000_DEFAULT_FIRMWARE_SIZE 12401 | ||
54 | |||
55 | struct xc5000_priv { | ||
56 | struct tuner_i2c_props i2c_props; | ||
57 | struct list_head hybrid_tuner_instance_list; | ||
58 | |||
59 | u32 if_khz; | ||
60 | u32 freq_hz; | ||
61 | u32 bandwidth; | ||
62 | u8 video_standard; | ||
63 | u8 rf_mode; | ||
64 | u8 radio_input; | ||
65 | }; | ||
66 | |||
67 | /* Misc Defines */ | ||
68 | #define MAX_TV_STANDARD 24 | ||
69 | #define XC_MAX_I2C_WRITE_LENGTH 64 | ||
70 | |||
71 | /* Signal Types */ | ||
72 | #define XC_RF_MODE_AIR 0 | ||
73 | #define XC_RF_MODE_CABLE 1 | ||
74 | |||
75 | /* Result codes */ | ||
76 | #define XC_RESULT_SUCCESS 0 | ||
77 | #define XC_RESULT_RESET_FAILURE 1 | ||
78 | #define XC_RESULT_I2C_WRITE_FAILURE 2 | ||
79 | #define XC_RESULT_I2C_READ_FAILURE 3 | ||
80 | #define XC_RESULT_OUT_OF_RANGE 5 | ||
81 | |||
82 | /* Product id */ | ||
83 | #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000 | ||
84 | #define XC_PRODUCT_ID_FW_LOADED 0x1388 | ||
85 | |||
86 | /* Registers */ | ||
87 | #define XREG_INIT 0x00 | ||
88 | #define XREG_VIDEO_MODE 0x01 | ||
89 | #define XREG_AUDIO_MODE 0x02 | ||
90 | #define XREG_RF_FREQ 0x03 | ||
91 | #define XREG_D_CODE 0x04 | ||
92 | #define XREG_IF_OUT 0x05 | ||
93 | #define XREG_SEEK_MODE 0x07 | ||
94 | #define XREG_POWER_DOWN 0x0A /* Obsolete */ | ||
95 | /* Set the output amplitude - SIF for analog, DTVP/DTVN for digital */ | ||
96 | #define XREG_OUTPUT_AMP 0x0B | ||
97 | #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */ | ||
98 | #define XREG_SMOOTHEDCVBS 0x0E | ||
99 | #define XREG_XTALFREQ 0x0F | ||
100 | #define XREG_FINERFREQ 0x10 | ||
101 | #define XREG_DDIMODE 0x11 | ||
102 | |||
103 | #define XREG_ADC_ENV 0x00 | ||
104 | #define XREG_QUALITY 0x01 | ||
105 | #define XREG_FRAME_LINES 0x02 | ||
106 | #define XREG_HSYNC_FREQ 0x03 | ||
107 | #define XREG_LOCK 0x04 | ||
108 | #define XREG_FREQ_ERROR 0x05 | ||
109 | #define XREG_SNR 0x06 | ||
110 | #define XREG_VERSION 0x07 | ||
111 | #define XREG_PRODUCT_ID 0x08 | ||
112 | #define XREG_BUSY 0x09 | ||
113 | #define XREG_BUILD 0x0D | ||
114 | |||
115 | /* | ||
116 | Basic firmware description. This will remain with | ||
117 | the driver for documentation purposes. | ||
118 | |||
119 | This represents an I2C firmware file encoded as a | ||
120 | string of unsigned char. Format is as follows: | ||
121 | |||
122 | char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB | ||
123 | char[1 ]=len0_LSB -> length of first write transaction | ||
124 | char[2 ]=data0 -> first byte to be sent | ||
125 | char[3 ]=data1 | ||
126 | char[4 ]=data2 | ||
127 | char[ ]=... | ||
128 | char[M ]=dataN -> last byte to be sent | ||
129 | char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB | ||
130 | char[M+2]=len1_LSB -> length of second write transaction | ||
131 | char[M+3]=data0 | ||
132 | char[M+4]=data1 | ||
133 | ... | ||
134 | etc. | ||
135 | |||
136 | The [len] value should be interpreted as follows: | ||
137 | |||
138 | len= len_MSB _ len_LSB | ||
139 | len=1111_1111_1111_1111 : End of I2C_SEQUENCE | ||
140 | len=0000_0000_0000_0000 : Reset command: Do hardware reset | ||
141 | len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767) | ||
142 | len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms | ||
143 | |||
144 | For the RESET and WAIT commands, the two following bytes will contain | ||
145 | immediately the length of the following transaction. | ||
146 | |||
147 | */ | ||
148 | struct XC_TV_STANDARD { | ||
149 | char *Name; | ||
150 | u16 AudioMode; | ||
151 | u16 VideoMode; | ||
152 | }; | ||
153 | |||
154 | /* Tuner standards */ | ||
155 | #define MN_NTSC_PAL_BTSC 0 | ||
156 | #define MN_NTSC_PAL_A2 1 | ||
157 | #define MN_NTSC_PAL_EIAJ 2 | ||
158 | #define MN_NTSC_PAL_Mono 3 | ||
159 | #define BG_PAL_A2 4 | ||
160 | #define BG_PAL_NICAM 5 | ||
161 | #define BG_PAL_MONO 6 | ||
162 | #define I_PAL_NICAM 7 | ||
163 | #define I_PAL_NICAM_MONO 8 | ||
164 | #define DK_PAL_A2 9 | ||
165 | #define DK_PAL_NICAM 10 | ||
166 | #define DK_PAL_MONO 11 | ||
167 | #define DK_SECAM_A2DK1 12 | ||
168 | #define DK_SECAM_A2LDK3 13 | ||
169 | #define DK_SECAM_A2MONO 14 | ||
170 | #define L_SECAM_NICAM 15 | ||
171 | #define LC_SECAM_NICAM 16 | ||
172 | #define DTV6 17 | ||
173 | #define DTV8 18 | ||
174 | #define DTV7_8 19 | ||
175 | #define DTV7 20 | ||
176 | #define FM_Radio_INPUT2 21 | ||
177 | #define FM_Radio_INPUT1 22 | ||
178 | #define FM_Radio_INPUT1_MONO 23 | ||
179 | |||
180 | static struct XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = { | ||
181 | {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020}, | ||
182 | {"M/N-NTSC/PAL-A2", 0x0600, 0x8020}, | ||
183 | {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020}, | ||
184 | {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020}, | ||
185 | {"B/G-PAL-A2", 0x0A00, 0x8049}, | ||
186 | {"B/G-PAL-NICAM", 0x0C04, 0x8049}, | ||
187 | {"B/G-PAL-MONO", 0x0878, 0x8059}, | ||
188 | {"I-PAL-NICAM", 0x1080, 0x8009}, | ||
189 | {"I-PAL-NICAM-MONO", 0x0E78, 0x8009}, | ||
190 | {"D/K-PAL-A2", 0x1600, 0x8009}, | ||
191 | {"D/K-PAL-NICAM", 0x0E80, 0x8009}, | ||
192 | {"D/K-PAL-MONO", 0x1478, 0x8009}, | ||
193 | {"D/K-SECAM-A2 DK1", 0x1200, 0x8009}, | ||
194 | {"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009}, | ||
195 | {"D/K-SECAM-A2 MONO", 0x1478, 0x8009}, | ||
196 | {"L-SECAM-NICAM", 0x8E82, 0x0009}, | ||
197 | {"L'-SECAM-NICAM", 0x8E82, 0x4009}, | ||
198 | {"DTV6", 0x00C0, 0x8002}, | ||
199 | {"DTV8", 0x00C0, 0x800B}, | ||
200 | {"DTV7/8", 0x00C0, 0x801B}, | ||
201 | {"DTV7", 0x00C0, 0x8007}, | ||
202 | {"FM Radio-INPUT2", 0x9802, 0x9002}, | ||
203 | {"FM Radio-INPUT1", 0x0208, 0x9002}, | ||
204 | {"FM Radio-INPUT1_MONO", 0x0278, 0x9002} | ||
205 | }; | ||
206 | |||
207 | static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe); | ||
208 | static int xc5000_is_firmware_loaded(struct dvb_frontend *fe); | ||
209 | static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val); | ||
210 | static int xc5000_TunerReset(struct dvb_frontend *fe); | ||
211 | |||
212 | static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len) | ||
213 | { | ||
214 | struct i2c_msg msg = { .addr = priv->i2c_props.addr, | ||
215 | .flags = 0, .buf = buf, .len = len }; | ||
216 | |||
217 | if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) { | ||
218 | printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len); | ||
219 | return XC_RESULT_I2C_WRITE_FAILURE; | ||
220 | } | ||
221 | return XC_RESULT_SUCCESS; | ||
222 | } | ||
223 | |||
224 | #if 0 | ||
225 | /* This routine is never used because the only time we read data from the | ||
226 | i2c bus is when we read registers, and we want that to be an atomic i2c | ||
227 | transaction in case we are on a multi-master bus */ | ||
228 | static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len) | ||
229 | { | ||
230 | struct i2c_msg msg = { .addr = priv->i2c_props.addr, | ||
231 | .flags = I2C_M_RD, .buf = buf, .len = len }; | ||
232 | |||
233 | if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) { | ||
234 | printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len); | ||
235 | return -EREMOTEIO; | ||
236 | } | ||
237 | return 0; | ||
238 | } | ||
239 | #endif | ||
240 | |||
241 | static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val) | ||
242 | { | ||
243 | u8 buf[2] = { reg >> 8, reg & 0xff }; | ||
244 | u8 bval[2] = { 0, 0 }; | ||
245 | struct i2c_msg msg[2] = { | ||
246 | { .addr = priv->i2c_props.addr, | ||
247 | .flags = 0, .buf = &buf[0], .len = 2 }, | ||
248 | { .addr = priv->i2c_props.addr, | ||
249 | .flags = I2C_M_RD, .buf = &bval[0], .len = 2 }, | ||
250 | }; | ||
251 | |||
252 | if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) { | ||
253 | printk(KERN_WARNING "xc5000: I2C read failed\n"); | ||
254 | return -EREMOTEIO; | ||
255 | } | ||
256 | |||
257 | *val = (bval[0] << 8) | bval[1]; | ||
258 | return XC_RESULT_SUCCESS; | ||
259 | } | ||
260 | |||
261 | static void xc_wait(int wait_ms) | ||
262 | { | ||
263 | msleep(wait_ms); | ||
264 | } | ||
265 | |||
266 | static int xc5000_TunerReset(struct dvb_frontend *fe) | ||
267 | { | ||
268 | struct xc5000_priv *priv = fe->tuner_priv; | ||
269 | int ret; | ||
270 | |||
271 | dprintk(1, "%s()\n", __func__); | ||
272 | |||
273 | if (fe->callback) { | ||
274 | ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ? | ||
275 | fe->dvb->priv : | ||
276 | priv->i2c_props.adap->algo_data, | ||
277 | DVB_FRONTEND_COMPONENT_TUNER, | ||
278 | XC5000_TUNER_RESET, 0); | ||
279 | if (ret) { | ||
280 | printk(KERN_ERR "xc5000: reset failed\n"); | ||
281 | return XC_RESULT_RESET_FAILURE; | ||
282 | } | ||
283 | } else { | ||
284 | printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n"); | ||
285 | return XC_RESULT_RESET_FAILURE; | ||
286 | } | ||
287 | return XC_RESULT_SUCCESS; | ||
288 | } | ||
289 | |||
290 | static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData) | ||
291 | { | ||
292 | u8 buf[4]; | ||
293 | int WatchDogTimer = 100; | ||
294 | int result; | ||
295 | |||
296 | buf[0] = (regAddr >> 8) & 0xFF; | ||
297 | buf[1] = regAddr & 0xFF; | ||
298 | buf[2] = (i2cData >> 8) & 0xFF; | ||
299 | buf[3] = i2cData & 0xFF; | ||
300 | result = xc_send_i2c_data(priv, buf, 4); | ||
301 | if (result == XC_RESULT_SUCCESS) { | ||
302 | /* wait for busy flag to clear */ | ||
303 | while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) { | ||
304 | result = xc5000_readreg(priv, XREG_BUSY, (u16 *)buf); | ||
305 | if (result == XC_RESULT_SUCCESS) { | ||
306 | if ((buf[0] == 0) && (buf[1] == 0)) { | ||
307 | /* busy flag cleared */ | ||
308 | break; | ||
309 | } else { | ||
310 | xc_wait(5); /* wait 5 ms */ | ||
311 | WatchDogTimer--; | ||
312 | } | ||
313 | } | ||
314 | } | ||
315 | } | ||
316 | if (WatchDogTimer < 0) | ||
317 | result = XC_RESULT_I2C_WRITE_FAILURE; | ||
318 | |||
319 | return result; | ||
320 | } | ||
321 | |||
322 | static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence) | ||
323 | { | ||
324 | struct xc5000_priv *priv = fe->tuner_priv; | ||
325 | |||
326 | int i, nbytes_to_send, result; | ||
327 | unsigned int len, pos, index; | ||
328 | u8 buf[XC_MAX_I2C_WRITE_LENGTH]; | ||
329 | |||
330 | index = 0; | ||
331 | while ((i2c_sequence[index] != 0xFF) || | ||
332 | (i2c_sequence[index + 1] != 0xFF)) { | ||
333 | len = i2c_sequence[index] * 256 + i2c_sequence[index+1]; | ||
334 | if (len == 0x0000) { | ||
335 | /* RESET command */ | ||
336 | result = xc5000_TunerReset(fe); | ||
337 | index += 2; | ||
338 | if (result != XC_RESULT_SUCCESS) | ||
339 | return result; | ||
340 | } else if (len & 0x8000) { | ||
341 | /* WAIT command */ | ||
342 | xc_wait(len & 0x7FFF); | ||
343 | index += 2; | ||
344 | } else { | ||
345 | /* Send i2c data whilst ensuring individual transactions | ||
346 | * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes. | ||
347 | */ | ||
348 | index += 2; | ||
349 | buf[0] = i2c_sequence[index]; | ||
350 | buf[1] = i2c_sequence[index + 1]; | ||
351 | pos = 2; | ||
352 | while (pos < len) { | ||
353 | if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2) | ||
354 | nbytes_to_send = | ||
355 | XC_MAX_I2C_WRITE_LENGTH; | ||
356 | else | ||
357 | nbytes_to_send = (len - pos + 2); | ||
358 | for (i = 2; i < nbytes_to_send; i++) { | ||
359 | buf[i] = i2c_sequence[index + pos + | ||
360 | i - 2]; | ||
361 | } | ||
362 | result = xc_send_i2c_data(priv, buf, | ||
363 | nbytes_to_send); | ||
364 | |||
365 | if (result != XC_RESULT_SUCCESS) | ||
366 | return result; | ||
367 | |||
368 | pos += nbytes_to_send - 2; | ||
369 | } | ||
370 | index += len; | ||
371 | } | ||
372 | } | ||
373 | return XC_RESULT_SUCCESS; | ||
374 | } | ||
375 | |||
376 | static int xc_initialize(struct xc5000_priv *priv) | ||
377 | { | ||
378 | dprintk(1, "%s()\n", __func__); | ||
379 | return xc_write_reg(priv, XREG_INIT, 0); | ||
380 | } | ||
381 | |||
382 | static int xc_SetTVStandard(struct xc5000_priv *priv, | ||
383 | u16 VideoMode, u16 AudioMode) | ||
384 | { | ||
385 | int ret; | ||
386 | dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode); | ||
387 | dprintk(1, "%s() Standard = %s\n", | ||
388 | __func__, | ||
389 | XC5000_Standard[priv->video_standard].Name); | ||
390 | |||
391 | ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode); | ||
392 | if (ret == XC_RESULT_SUCCESS) | ||
393 | ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode); | ||
394 | |||
395 | return ret; | ||
396 | } | ||
397 | |||
398 | static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode) | ||
399 | { | ||
400 | dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode, | ||
401 | rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE"); | ||
402 | |||
403 | if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) { | ||
404 | rf_mode = XC_RF_MODE_CABLE; | ||
405 | printk(KERN_ERR | ||
406 | "%s(), Invalid mode, defaulting to CABLE", | ||
407 | __func__); | ||
408 | } | ||
409 | return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode); | ||
410 | } | ||
411 | |||
412 | static const struct dvb_tuner_ops xc5000_tuner_ops; | ||
413 | |||
414 | static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz) | ||
415 | { | ||
416 | u16 freq_code; | ||
417 | |||
418 | dprintk(1, "%s(%u)\n", __func__, freq_hz); | ||
419 | |||
420 | if ((freq_hz > xc5000_tuner_ops.info.frequency_max) || | ||
421 | (freq_hz < xc5000_tuner_ops.info.frequency_min)) | ||
422 | return XC_RESULT_OUT_OF_RANGE; | ||
423 | |||
424 | freq_code = (u16)(freq_hz / 15625); | ||
425 | |||
426 | /* Starting in firmware version 1.1.44, Xceive recommends using the | ||
427 | FINERFREQ for all normal tuning (the doc indicates reg 0x03 should | ||
428 | only be used for fast scanning for channel lock) */ | ||
429 | return xc_write_reg(priv, XREG_FINERFREQ, freq_code); | ||
430 | } | ||
431 | |||
432 | |||
433 | static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz) | ||
434 | { | ||
435 | u32 freq_code = (freq_khz * 1024)/1000; | ||
436 | dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n", | ||
437 | __func__, freq_khz, freq_code); | ||
438 | |||
439 | return xc_write_reg(priv, XREG_IF_OUT, freq_code); | ||
440 | } | ||
441 | |||
442 | |||
443 | static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope) | ||
444 | { | ||
445 | return xc5000_readreg(priv, XREG_ADC_ENV, adc_envelope); | ||
446 | } | ||
447 | |||
448 | static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz) | ||
449 | { | ||
450 | int result; | ||
451 | u16 regData; | ||
452 | u32 tmp; | ||
453 | |||
454 | result = xc5000_readreg(priv, XREG_FREQ_ERROR, ®Data); | ||
455 | if (result != XC_RESULT_SUCCESS) | ||
456 | return result; | ||
457 | |||
458 | tmp = (u32)regData; | ||
459 | (*freq_error_hz) = (tmp * 15625) / 1000; | ||
460 | return result; | ||
461 | } | ||
462 | |||
463 | static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status) | ||
464 | { | ||
465 | return xc5000_readreg(priv, XREG_LOCK, lock_status); | ||
466 | } | ||
467 | |||
468 | static int xc_get_version(struct xc5000_priv *priv, | ||
469 | u8 *hw_majorversion, u8 *hw_minorversion, | ||
470 | u8 *fw_majorversion, u8 *fw_minorversion) | ||
471 | { | ||
472 | u16 data; | ||
473 | int result; | ||
474 | |||
475 | result = xc5000_readreg(priv, XREG_VERSION, &data); | ||
476 | if (result != XC_RESULT_SUCCESS) | ||
477 | return result; | ||
478 | |||
479 | (*hw_majorversion) = (data >> 12) & 0x0F; | ||
480 | (*hw_minorversion) = (data >> 8) & 0x0F; | ||
481 | (*fw_majorversion) = (data >> 4) & 0x0F; | ||
482 | (*fw_minorversion) = data & 0x0F; | ||
483 | |||
484 | return 0; | ||
485 | } | ||
486 | |||
487 | static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev) | ||
488 | { | ||
489 | return xc5000_readreg(priv, XREG_BUILD, buildrev); | ||
490 | } | ||
491 | |||
492 | static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz) | ||
493 | { | ||
494 | u16 regData; | ||
495 | int result; | ||
496 | |||
497 | result = xc5000_readreg(priv, XREG_HSYNC_FREQ, ®Data); | ||
498 | if (result != XC_RESULT_SUCCESS) | ||
499 | return result; | ||
500 | |||
501 | (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100; | ||
502 | return result; | ||
503 | } | ||
504 | |||
505 | static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines) | ||
506 | { | ||
507 | return xc5000_readreg(priv, XREG_FRAME_LINES, frame_lines); | ||
508 | } | ||
509 | |||
510 | static int xc_get_quality(struct xc5000_priv *priv, u16 *quality) | ||
511 | { | ||
512 | return xc5000_readreg(priv, XREG_QUALITY, quality); | ||
513 | } | ||
514 | |||
515 | static u16 WaitForLock(struct xc5000_priv *priv) | ||
516 | { | ||
517 | u16 lockState = 0; | ||
518 | int watchDogCount = 40; | ||
519 | |||
520 | while ((lockState == 0) && (watchDogCount > 0)) { | ||
521 | xc_get_lock_status(priv, &lockState); | ||
522 | if (lockState != 1) { | ||
523 | xc_wait(5); | ||
524 | watchDogCount--; | ||
525 | } | ||
526 | } | ||
527 | return lockState; | ||
528 | } | ||
529 | |||
530 | #define XC_TUNE_ANALOG 0 | ||
531 | #define XC_TUNE_DIGITAL 1 | ||
532 | static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode) | ||
533 | { | ||
534 | int found = 0; | ||
535 | |||
536 | dprintk(1, "%s(%u)\n", __func__, freq_hz); | ||
537 | |||
538 | if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS) | ||
539 | return 0; | ||
540 | |||
541 | if (mode == XC_TUNE_ANALOG) { | ||
542 | if (WaitForLock(priv) == 1) | ||
543 | found = 1; | ||
544 | } | ||
545 | |||
546 | return found; | ||
547 | } | ||
548 | |||
549 | |||
550 | static int xc5000_fwupload(struct dvb_frontend *fe) | ||
551 | { | ||
552 | struct xc5000_priv *priv = fe->tuner_priv; | ||
553 | const struct firmware *fw; | ||
554 | int ret; | ||
555 | |||
556 | /* request the firmware, this will block and timeout */ | ||
557 | printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n", | ||
558 | XC5000_DEFAULT_FIRMWARE); | ||
559 | |||
560 | ret = request_firmware(&fw, XC5000_DEFAULT_FIRMWARE, | ||
561 | priv->i2c_props.adap->dev.parent); | ||
562 | if (ret) { | ||
563 | printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n"); | ||
564 | ret = XC_RESULT_RESET_FAILURE; | ||
565 | goto out; | ||
566 | } else { | ||
567 | printk(KERN_DEBUG "xc5000: firmware read %Zu bytes.\n", | ||
568 | fw->size); | ||
569 | ret = XC_RESULT_SUCCESS; | ||
570 | } | ||
571 | |||
572 | if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) { | ||
573 | printk(KERN_ERR "xc5000: firmware incorrect size\n"); | ||
574 | ret = XC_RESULT_RESET_FAILURE; | ||
575 | } else { | ||
576 | printk(KERN_INFO "xc5000: firmware uploading...\n"); | ||
577 | ret = xc_load_i2c_sequence(fe, fw->data); | ||
578 | printk(KERN_INFO "xc5000: firmware upload complete...\n"); | ||
579 | } | ||
580 | |||
581 | out: | ||
582 | release_firmware(fw); | ||
583 | return ret; | ||
584 | } | ||
585 | |||
586 | static void xc_debug_dump(struct xc5000_priv *priv) | ||
587 | { | ||
588 | u16 adc_envelope; | ||
589 | u32 freq_error_hz = 0; | ||
590 | u16 lock_status; | ||
591 | u32 hsync_freq_hz = 0; | ||
592 | u16 frame_lines; | ||
593 | u16 quality; | ||
594 | u8 hw_majorversion = 0, hw_minorversion = 0; | ||
595 | u8 fw_majorversion = 0, fw_minorversion = 0; | ||
596 | u16 fw_buildversion = 0; | ||
597 | |||
598 | /* Wait for stats to stabilize. | ||
599 | * Frame Lines needs two frame times after initial lock | ||
600 | * before it is valid. | ||
601 | */ | ||
602 | xc_wait(100); | ||
603 | |||
604 | xc_get_ADC_Envelope(priv, &adc_envelope); | ||
605 | dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope); | ||
606 | |||
607 | xc_get_frequency_error(priv, &freq_error_hz); | ||
608 | dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz); | ||
609 | |||
610 | xc_get_lock_status(priv, &lock_status); | ||
611 | dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n", | ||
612 | lock_status); | ||
613 | |||
614 | xc_get_version(priv, &hw_majorversion, &hw_minorversion, | ||
615 | &fw_majorversion, &fw_minorversion); | ||
616 | xc_get_buildversion(priv, &fw_buildversion); | ||
617 | dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x.%04x\n", | ||
618 | hw_majorversion, hw_minorversion, | ||
619 | fw_majorversion, fw_minorversion, fw_buildversion); | ||
620 | |||
621 | xc_get_hsync_freq(priv, &hsync_freq_hz); | ||
622 | dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz); | ||
623 | |||
624 | xc_get_frame_lines(priv, &frame_lines); | ||
625 | dprintk(1, "*** Frame lines = %d\n", frame_lines); | ||
626 | |||
627 | xc_get_quality(priv, &quality); | ||
628 | dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality); | ||
629 | } | ||
630 | |||
631 | /* | ||
632 | * As defined on EN 300 429, the DVB-C roll-off factor is 0.15. | ||
633 | * So, the amount of the needed bandwith is given by: | ||
634 | * Bw = Symbol_rate * (1 + 0.15) | ||
635 | * As such, the maximum symbol rate supported by 6 MHz is given by: | ||
636 | * max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds | ||
637 | */ | ||
638 | #define MAX_SYMBOL_RATE_6MHz 5217391 | ||
639 | |||
640 | static int xc5000_set_params(struct dvb_frontend *fe, | ||
641 | struct dvb_frontend_parameters *params) | ||
642 | { | ||
643 | struct xc5000_priv *priv = fe->tuner_priv; | ||
644 | int ret; | ||
645 | |||
646 | if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) { | ||
647 | if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) { | ||
648 | dprintk(1, "Unable to load firmware and init tuner\n"); | ||
649 | return -EINVAL; | ||
650 | } | ||
651 | } | ||
652 | |||
653 | dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency); | ||
654 | |||
655 | if (fe->ops.info.type == FE_ATSC) { | ||
656 | dprintk(1, "%s() ATSC\n", __func__); | ||
657 | switch (params->u.vsb.modulation) { | ||
658 | case VSB_8: | ||
659 | case VSB_16: | ||
660 | dprintk(1, "%s() VSB modulation\n", __func__); | ||
661 | priv->rf_mode = XC_RF_MODE_AIR; | ||
662 | priv->freq_hz = params->frequency - 1750000; | ||
663 | priv->bandwidth = BANDWIDTH_6_MHZ; | ||
664 | priv->video_standard = DTV6; | ||
665 | break; | ||
666 | case QAM_64: | ||
667 | case QAM_256: | ||
668 | case QAM_AUTO: | ||
669 | dprintk(1, "%s() QAM modulation\n", __func__); | ||
670 | priv->rf_mode = XC_RF_MODE_CABLE; | ||
671 | priv->freq_hz = params->frequency - 1750000; | ||
672 | priv->bandwidth = BANDWIDTH_6_MHZ; | ||
673 | priv->video_standard = DTV6; | ||
674 | break; | ||
675 | default: | ||
676 | return -EINVAL; | ||
677 | } | ||
678 | } else if (fe->ops.info.type == FE_OFDM) { | ||
679 | dprintk(1, "%s() OFDM\n", __func__); | ||
680 | switch (params->u.ofdm.bandwidth) { | ||
681 | case BANDWIDTH_6_MHZ: | ||
682 | priv->bandwidth = BANDWIDTH_6_MHZ; | ||
683 | priv->video_standard = DTV6; | ||
684 | priv->freq_hz = params->frequency - 1750000; | ||
685 | break; | ||
686 | case BANDWIDTH_7_MHZ: | ||
687 | printk(KERN_ERR "xc5000 bandwidth 7MHz not supported\n"); | ||
688 | return -EINVAL; | ||
689 | case BANDWIDTH_8_MHZ: | ||
690 | priv->bandwidth = BANDWIDTH_8_MHZ; | ||
691 | priv->video_standard = DTV8; | ||
692 | priv->freq_hz = params->frequency - 2750000; | ||
693 | break; | ||
694 | default: | ||
695 | printk(KERN_ERR "xc5000 bandwidth not set!\n"); | ||
696 | return -EINVAL; | ||
697 | } | ||
698 | priv->rf_mode = XC_RF_MODE_AIR; | ||
699 | } else if (fe->ops.info.type == FE_QAM) { | ||
700 | switch (params->u.qam.modulation) { | ||
701 | case QAM_256: | ||
702 | case QAM_AUTO: | ||
703 | case QAM_16: | ||
704 | case QAM_32: | ||
705 | case QAM_64: | ||
706 | case QAM_128: | ||
707 | dprintk(1, "%s() QAM modulation\n", __func__); | ||
708 | priv->rf_mode = XC_RF_MODE_CABLE; | ||
709 | /* | ||
710 | * Using a 8MHz bandwidth sometimes fail | ||
711 | * with 6MHz-spaced channels, due to inter-carrier | ||
712 | * interference. So, use DTV6 firmware | ||
713 | */ | ||
714 | if (params->u.qam.symbol_rate <= MAX_SYMBOL_RATE_6MHz) { | ||
715 | priv->bandwidth = BANDWIDTH_6_MHZ; | ||
716 | priv->video_standard = DTV6; | ||
717 | priv->freq_hz = params->frequency - 1750000; | ||
718 | } else { | ||
719 | priv->bandwidth = BANDWIDTH_8_MHZ; | ||
720 | priv->video_standard = DTV7_8; | ||
721 | priv->freq_hz = params->frequency - 2750000; | ||
722 | } | ||
723 | break; | ||
724 | default: | ||
725 | dprintk(1, "%s() Unsupported QAM type\n", __func__); | ||
726 | return -EINVAL; | ||
727 | } | ||
728 | } else { | ||
729 | printk(KERN_ERR "xc5000 modulation type not supported!\n"); | ||
730 | return -EINVAL; | ||
731 | } | ||
732 | |||
733 | dprintk(1, "%s() frequency=%d (compensated)\n", | ||
734 | __func__, priv->freq_hz); | ||
735 | |||
736 | ret = xc_SetSignalSource(priv, priv->rf_mode); | ||
737 | if (ret != XC_RESULT_SUCCESS) { | ||
738 | printk(KERN_ERR | ||
739 | "xc5000: xc_SetSignalSource(%d) failed\n", | ||
740 | priv->rf_mode); | ||
741 | return -EREMOTEIO; | ||
742 | } | ||
743 | |||
744 | ret = xc_SetTVStandard(priv, | ||
745 | XC5000_Standard[priv->video_standard].VideoMode, | ||
746 | XC5000_Standard[priv->video_standard].AudioMode); | ||
747 | if (ret != XC_RESULT_SUCCESS) { | ||
748 | printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n"); | ||
749 | return -EREMOTEIO; | ||
750 | } | ||
751 | |||
752 | ret = xc_set_IF_frequency(priv, priv->if_khz); | ||
753 | if (ret != XC_RESULT_SUCCESS) { | ||
754 | printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n", | ||
755 | priv->if_khz); | ||
756 | return -EIO; | ||
757 | } | ||
758 | |||
759 | xc_write_reg(priv, XREG_OUTPUT_AMP, 0x8a); | ||
760 | |||
761 | xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL); | ||
762 | |||
763 | if (debug) | ||
764 | xc_debug_dump(priv); | ||
765 | |||
766 | return 0; | ||
767 | } | ||
768 | |||
769 | static int xc5000_is_firmware_loaded(struct dvb_frontend *fe) | ||
770 | { | ||
771 | struct xc5000_priv *priv = fe->tuner_priv; | ||
772 | int ret; | ||
773 | u16 id; | ||
774 | |||
775 | ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id); | ||
776 | if (ret == XC_RESULT_SUCCESS) { | ||
777 | if (id == XC_PRODUCT_ID_FW_NOT_LOADED) | ||
778 | ret = XC_RESULT_RESET_FAILURE; | ||
779 | else | ||
780 | ret = XC_RESULT_SUCCESS; | ||
781 | } | ||
782 | |||
783 | dprintk(1, "%s() returns %s id = 0x%x\n", __func__, | ||
784 | ret == XC_RESULT_SUCCESS ? "True" : "False", id); | ||
785 | return ret; | ||
786 | } | ||
787 | |||
788 | static int xc5000_set_tv_freq(struct dvb_frontend *fe, | ||
789 | struct analog_parameters *params) | ||
790 | { | ||
791 | struct xc5000_priv *priv = fe->tuner_priv; | ||
792 | int ret; | ||
793 | |||
794 | dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n", | ||
795 | __func__, params->frequency); | ||
796 | |||
797 | /* Fix me: it could be air. */ | ||
798 | priv->rf_mode = params->mode; | ||
799 | if (params->mode > XC_RF_MODE_CABLE) | ||
800 | priv->rf_mode = XC_RF_MODE_CABLE; | ||
801 | |||
802 | /* params->frequency is in units of 62.5khz */ | ||
803 | priv->freq_hz = params->frequency * 62500; | ||
804 | |||
805 | /* FIX ME: Some video standards may have several possible audio | ||
806 | standards. We simply default to one of them here. | ||
807 | */ | ||
808 | if (params->std & V4L2_STD_MN) { | ||
809 | /* default to BTSC audio standard */ | ||
810 | priv->video_standard = MN_NTSC_PAL_BTSC; | ||
811 | goto tune_channel; | ||
812 | } | ||
813 | |||
814 | if (params->std & V4L2_STD_PAL_BG) { | ||
815 | /* default to NICAM audio standard */ | ||
816 | priv->video_standard = BG_PAL_NICAM; | ||
817 | goto tune_channel; | ||
818 | } | ||
819 | |||
820 | if (params->std & V4L2_STD_PAL_I) { | ||
821 | /* default to NICAM audio standard */ | ||
822 | priv->video_standard = I_PAL_NICAM; | ||
823 | goto tune_channel; | ||
824 | } | ||
825 | |||
826 | if (params->std & V4L2_STD_PAL_DK) { | ||
827 | /* default to NICAM audio standard */ | ||
828 | priv->video_standard = DK_PAL_NICAM; | ||
829 | goto tune_channel; | ||
830 | } | ||
831 | |||
832 | if (params->std & V4L2_STD_SECAM_DK) { | ||
833 | /* default to A2 DK1 audio standard */ | ||
834 | priv->video_standard = DK_SECAM_A2DK1; | ||
835 | goto tune_channel; | ||
836 | } | ||
837 | |||
838 | if (params->std & V4L2_STD_SECAM_L) { | ||
839 | priv->video_standard = L_SECAM_NICAM; | ||
840 | goto tune_channel; | ||
841 | } | ||
842 | |||
843 | if (params->std & V4L2_STD_SECAM_LC) { | ||
844 | priv->video_standard = LC_SECAM_NICAM; | ||
845 | goto tune_channel; | ||
846 | } | ||
847 | |||
848 | tune_channel: | ||
849 | ret = xc_SetSignalSource(priv, priv->rf_mode); | ||
850 | if (ret != XC_RESULT_SUCCESS) { | ||
851 | printk(KERN_ERR | ||
852 | "xc5000: xc_SetSignalSource(%d) failed\n", | ||
853 | priv->rf_mode); | ||
854 | return -EREMOTEIO; | ||
855 | } | ||
856 | |||
857 | ret = xc_SetTVStandard(priv, | ||
858 | XC5000_Standard[priv->video_standard].VideoMode, | ||
859 | XC5000_Standard[priv->video_standard].AudioMode); | ||
860 | if (ret != XC_RESULT_SUCCESS) { | ||
861 | printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n"); | ||
862 | return -EREMOTEIO; | ||
863 | } | ||
864 | |||
865 | xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09); | ||
866 | |||
867 | xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG); | ||
868 | |||
869 | if (debug) | ||
870 | xc_debug_dump(priv); | ||
871 | |||
872 | return 0; | ||
873 | } | ||
874 | |||
875 | static int xc5000_set_radio_freq(struct dvb_frontend *fe, | ||
876 | struct analog_parameters *params) | ||
877 | { | ||
878 | struct xc5000_priv *priv = fe->tuner_priv; | ||
879 | int ret = -EINVAL; | ||
880 | u8 radio_input; | ||
881 | |||
882 | dprintk(1, "%s() frequency=%d (in units of khz)\n", | ||
883 | __func__, params->frequency); | ||
884 | |||
885 | if (priv->radio_input == XC5000_RADIO_NOT_CONFIGURED) { | ||
886 | dprintk(1, "%s() radio input not configured\n", __func__); | ||
887 | return -EINVAL; | ||
888 | } | ||
889 | |||
890 | if (priv->radio_input == XC5000_RADIO_FM1) | ||
891 | radio_input = FM_Radio_INPUT1; | ||
892 | else if (priv->radio_input == XC5000_RADIO_FM2) | ||
893 | radio_input = FM_Radio_INPUT2; | ||
894 | else if (priv->radio_input == XC5000_RADIO_FM1_MONO) | ||
895 | radio_input = FM_Radio_INPUT1_MONO; | ||
896 | else { | ||
897 | dprintk(1, "%s() unknown radio input %d\n", __func__, | ||
898 | priv->radio_input); | ||
899 | return -EINVAL; | ||
900 | } | ||
901 | |||
902 | priv->freq_hz = params->frequency * 125 / 2; | ||
903 | |||
904 | priv->rf_mode = XC_RF_MODE_AIR; | ||
905 | |||
906 | ret = xc_SetTVStandard(priv, XC5000_Standard[radio_input].VideoMode, | ||
907 | XC5000_Standard[radio_input].AudioMode); | ||
908 | |||
909 | if (ret != XC_RESULT_SUCCESS) { | ||
910 | printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n"); | ||
911 | return -EREMOTEIO; | ||
912 | } | ||
913 | |||
914 | ret = xc_SetSignalSource(priv, priv->rf_mode); | ||
915 | if (ret != XC_RESULT_SUCCESS) { | ||
916 | printk(KERN_ERR | ||
917 | "xc5000: xc_SetSignalSource(%d) failed\n", | ||
918 | priv->rf_mode); | ||
919 | return -EREMOTEIO; | ||
920 | } | ||
921 | |||
922 | if ((priv->radio_input == XC5000_RADIO_FM1) || | ||
923 | (priv->radio_input == XC5000_RADIO_FM2)) | ||
924 | xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09); | ||
925 | else if (priv->radio_input == XC5000_RADIO_FM1_MONO) | ||
926 | xc_write_reg(priv, XREG_OUTPUT_AMP, 0x06); | ||
927 | |||
928 | xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG); | ||
929 | |||
930 | return 0; | ||
931 | } | ||
932 | |||
933 | static int xc5000_set_analog_params(struct dvb_frontend *fe, | ||
934 | struct analog_parameters *params) | ||
935 | { | ||
936 | struct xc5000_priv *priv = fe->tuner_priv; | ||
937 | int ret = -EINVAL; | ||
938 | |||
939 | if (priv->i2c_props.adap == NULL) | ||
940 | return -EINVAL; | ||
941 | |||
942 | if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) { | ||
943 | if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) { | ||
944 | dprintk(1, "Unable to load firmware and init tuner\n"); | ||
945 | return -EINVAL; | ||
946 | } | ||
947 | } | ||
948 | |||
949 | switch (params->mode) { | ||
950 | case V4L2_TUNER_RADIO: | ||
951 | ret = xc5000_set_radio_freq(fe, params); | ||
952 | break; | ||
953 | case V4L2_TUNER_ANALOG_TV: | ||
954 | case V4L2_TUNER_DIGITAL_TV: | ||
955 | ret = xc5000_set_tv_freq(fe, params); | ||
956 | break; | ||
957 | } | ||
958 | |||
959 | return ret; | ||
960 | } | ||
961 | |||
962 | |||
963 | static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq) | ||
964 | { | ||
965 | struct xc5000_priv *priv = fe->tuner_priv; | ||
966 | dprintk(1, "%s()\n", __func__); | ||
967 | *freq = priv->freq_hz; | ||
968 | return 0; | ||
969 | } | ||
970 | |||
971 | static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw) | ||
972 | { | ||
973 | struct xc5000_priv *priv = fe->tuner_priv; | ||
974 | dprintk(1, "%s()\n", __func__); | ||
975 | |||
976 | *bw = priv->bandwidth; | ||
977 | return 0; | ||
978 | } | ||
979 | |||
980 | static int xc5000_get_status(struct dvb_frontend *fe, u32 *status) | ||
981 | { | ||
982 | struct xc5000_priv *priv = fe->tuner_priv; | ||
983 | u16 lock_status = 0; | ||
984 | |||
985 | xc_get_lock_status(priv, &lock_status); | ||
986 | |||
987 | dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status); | ||
988 | |||
989 | *status = lock_status; | ||
990 | |||
991 | return 0; | ||
992 | } | ||
993 | |||
994 | static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe) | ||
995 | { | ||
996 | struct xc5000_priv *priv = fe->tuner_priv; | ||
997 | int ret = 0; | ||
998 | |||
999 | if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) { | ||
1000 | ret = xc5000_fwupload(fe); | ||
1001 | if (ret != XC_RESULT_SUCCESS) | ||
1002 | return ret; | ||
1003 | } | ||
1004 | |||
1005 | /* Start the tuner self-calibration process */ | ||
1006 | ret |= xc_initialize(priv); | ||
1007 | |||
1008 | /* Wait for calibration to complete. | ||
1009 | * We could continue but XC5000 will clock stretch subsequent | ||
1010 | * I2C transactions until calibration is complete. This way we | ||
1011 | * don't have to rely on clock stretching working. | ||
1012 | */ | ||
1013 | xc_wait(100); | ||
1014 | |||
1015 | /* Default to "CABLE" mode */ | ||
1016 | ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE); | ||
1017 | |||
1018 | return ret; | ||
1019 | } | ||
1020 | |||
1021 | static int xc5000_sleep(struct dvb_frontend *fe) | ||
1022 | { | ||
1023 | int ret; | ||
1024 | |||
1025 | dprintk(1, "%s()\n", __func__); | ||
1026 | |||
1027 | /* Avoid firmware reload on slow devices */ | ||
1028 | if (no_poweroff) | ||
1029 | return 0; | ||
1030 | |||
1031 | /* According to Xceive technical support, the "powerdown" register | ||
1032 | was removed in newer versions of the firmware. The "supported" | ||
1033 | way to sleep the tuner is to pull the reset pin low for 10ms */ | ||
1034 | ret = xc5000_TunerReset(fe); | ||
1035 | if (ret != XC_RESULT_SUCCESS) { | ||
1036 | printk(KERN_ERR | ||
1037 | "xc5000: %s() unable to shutdown tuner\n", | ||
1038 | __func__); | ||
1039 | return -EREMOTEIO; | ||
1040 | } else | ||
1041 | return XC_RESULT_SUCCESS; | ||
1042 | } | ||
1043 | |||
1044 | static int xc5000_init(struct dvb_frontend *fe) | ||
1045 | { | ||
1046 | struct xc5000_priv *priv = fe->tuner_priv; | ||
1047 | dprintk(1, "%s()\n", __func__); | ||
1048 | |||
1049 | if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) { | ||
1050 | printk(KERN_ERR "xc5000: Unable to initialise tuner\n"); | ||
1051 | return -EREMOTEIO; | ||
1052 | } | ||
1053 | |||
1054 | if (debug) | ||
1055 | xc_debug_dump(priv); | ||
1056 | |||
1057 | return 0; | ||
1058 | } | ||
1059 | |||
1060 | static int xc5000_release(struct dvb_frontend *fe) | ||
1061 | { | ||
1062 | struct xc5000_priv *priv = fe->tuner_priv; | ||
1063 | |||
1064 | dprintk(1, "%s()\n", __func__); | ||
1065 | |||
1066 | mutex_lock(&xc5000_list_mutex); | ||
1067 | |||
1068 | if (priv) | ||
1069 | hybrid_tuner_release_state(priv); | ||
1070 | |||
1071 | mutex_unlock(&xc5000_list_mutex); | ||
1072 | |||
1073 | fe->tuner_priv = NULL; | ||
1074 | |||
1075 | return 0; | ||
1076 | } | ||
1077 | |||
1078 | static int xc5000_set_config(struct dvb_frontend *fe, void *priv_cfg) | ||
1079 | { | ||
1080 | struct xc5000_priv *priv = fe->tuner_priv; | ||
1081 | struct xc5000_config *p = priv_cfg; | ||
1082 | |||
1083 | dprintk(1, "%s()\n", __func__); | ||
1084 | |||
1085 | if (p->if_khz) | ||
1086 | priv->if_khz = p->if_khz; | ||
1087 | |||
1088 | if (p->radio_input) | ||
1089 | priv->radio_input = p->radio_input; | ||
1090 | |||
1091 | return 0; | ||
1092 | } | ||
1093 | |||
1094 | |||
1095 | static const struct dvb_tuner_ops xc5000_tuner_ops = { | ||
1096 | .info = { | ||
1097 | .name = "Xceive XC5000", | ||
1098 | .frequency_min = 1000000, | ||
1099 | .frequency_max = 1023000000, | ||
1100 | .frequency_step = 50000, | ||
1101 | }, | ||
1102 | |||
1103 | .release = xc5000_release, | ||
1104 | .init = xc5000_init, | ||
1105 | .sleep = xc5000_sleep, | ||
1106 | |||
1107 | .set_config = xc5000_set_config, | ||
1108 | .set_params = xc5000_set_params, | ||
1109 | .set_analog_params = xc5000_set_analog_params, | ||
1110 | .get_frequency = xc5000_get_frequency, | ||
1111 | .get_bandwidth = xc5000_get_bandwidth, | ||
1112 | .get_status = xc5000_get_status | ||
1113 | }; | ||
1114 | |||
1115 | struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe, | ||
1116 | struct i2c_adapter *i2c, | ||
1117 | const struct xc5000_config *cfg) | ||
1118 | { | ||
1119 | struct xc5000_priv *priv = NULL; | ||
1120 | int instance; | ||
1121 | u16 id = 0; | ||
1122 | |||
1123 | dprintk(1, "%s(%d-%04x)\n", __func__, | ||
1124 | i2c ? i2c_adapter_id(i2c) : -1, | ||
1125 | cfg ? cfg->i2c_address : -1); | ||
1126 | |||
1127 | mutex_lock(&xc5000_list_mutex); | ||
1128 | |||
1129 | instance = hybrid_tuner_request_state(struct xc5000_priv, priv, | ||
1130 | hybrid_tuner_instance_list, | ||
1131 | i2c, cfg->i2c_address, "xc5000"); | ||
1132 | switch (instance) { | ||
1133 | case 0: | ||
1134 | goto fail; | ||
1135 | break; | ||
1136 | case 1: | ||
1137 | /* new tuner instance */ | ||
1138 | priv->bandwidth = BANDWIDTH_6_MHZ; | ||
1139 | fe->tuner_priv = priv; | ||
1140 | break; | ||
1141 | default: | ||
1142 | /* existing tuner instance */ | ||
1143 | fe->tuner_priv = priv; | ||
1144 | break; | ||
1145 | } | ||
1146 | |||
1147 | if (priv->if_khz == 0) { | ||
1148 | /* If the IF hasn't been set yet, use the value provided by | ||
1149 | the caller (occurs in hybrid devices where the analog | ||
1150 | call to xc5000_attach occurs before the digital side) */ | ||
1151 | priv->if_khz = cfg->if_khz; | ||
1152 | } | ||
1153 | |||
1154 | if (priv->radio_input == 0) | ||
1155 | priv->radio_input = cfg->radio_input; | ||
1156 | |||
1157 | /* Check if firmware has been loaded. It is possible that another | ||
1158 | instance of the driver has loaded the firmware. | ||
1159 | */ | ||
1160 | if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS) | ||
1161 | goto fail; | ||
1162 | |||
1163 | switch (id) { | ||
1164 | case XC_PRODUCT_ID_FW_LOADED: | ||
1165 | printk(KERN_INFO | ||
1166 | "xc5000: Successfully identified at address 0x%02x\n", | ||
1167 | cfg->i2c_address); | ||
1168 | printk(KERN_INFO | ||
1169 | "xc5000: Firmware has been loaded previously\n"); | ||
1170 | break; | ||
1171 | case XC_PRODUCT_ID_FW_NOT_LOADED: | ||
1172 | printk(KERN_INFO | ||
1173 | "xc5000: Successfully identified at address 0x%02x\n", | ||
1174 | cfg->i2c_address); | ||
1175 | printk(KERN_INFO | ||
1176 | "xc5000: Firmware has not been loaded previously\n"); | ||
1177 | break; | ||
1178 | default: | ||
1179 | printk(KERN_ERR | ||
1180 | "xc5000: Device not found at addr 0x%02x (0x%x)\n", | ||
1181 | cfg->i2c_address, id); | ||
1182 | goto fail; | ||
1183 | } | ||
1184 | |||
1185 | mutex_unlock(&xc5000_list_mutex); | ||
1186 | |||
1187 | memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops, | ||
1188 | sizeof(struct dvb_tuner_ops)); | ||
1189 | |||
1190 | return fe; | ||
1191 | fail: | ||
1192 | mutex_unlock(&xc5000_list_mutex); | ||
1193 | |||
1194 | xc5000_release(fe); | ||
1195 | return NULL; | ||
1196 | } | ||
1197 | EXPORT_SYMBOL(xc5000_attach); | ||
1198 | |||
1199 | MODULE_AUTHOR("Steven Toth"); | ||
1200 | MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver"); | ||
1201 | MODULE_LICENSE("GPL"); | ||