diff options
author | Ohad Ben-Cohen <ohad@wizery.com> | 2011-06-10 14:42:27 -0400 |
---|---|---|
committer | Joerg Roedel <joerg.roedel@amd.com> | 2011-06-21 04:49:30 -0400 |
commit | 166e9278a3f98bab29ebb3d685a81cfb11b98be0 (patch) | |
tree | f8f3e8a28c5d96d9053567d6a9ef8e04e7b298dd /drivers/iommu | |
parent | 29b68415e335ba9e0eb6057f9405aa4d9c23efe4 (diff) |
x86/ia64: intel-iommu: move to drivers/iommu/
This should ease finding similarities with different platforms,
with the intention of solving problems once in a generic framework
which everyone can use.
Note: to move intel-iommu.c, the declaration of pci_find_upstream_pcie_bridge()
has to move from drivers/pci/pci.h to include/linux/pci.h. This is handled
in this patch, too.
As suggested, also drop DMAR's EXPERIMENTAL tag while we're at it.
Compile-tested on x86_64.
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Diffstat (limited to 'drivers/iommu')
-rw-r--r-- | drivers/iommu/Kconfig | 49 | ||||
-rw-r--r-- | drivers/iommu/Makefile | 2 | ||||
-rw-r--r-- | drivers/iommu/dmar.c | 1461 | ||||
-rw-r--r-- | drivers/iommu/intel-iommu.c | 4016 | ||||
-rw-r--r-- | drivers/iommu/intr_remapping.c | 797 | ||||
-rw-r--r-- | drivers/iommu/intr_remapping.h | 17 | ||||
-rw-r--r-- | drivers/iommu/iova.c | 435 |
7 files changed, 6777 insertions, 0 deletions
diff --git a/drivers/iommu/Kconfig b/drivers/iommu/Kconfig index 9246c5bf25a..e2a5f141ae2 100644 --- a/drivers/iommu/Kconfig +++ b/drivers/iommu/Kconfig | |||
@@ -46,3 +46,52 @@ config AMD_IOMMU_STATS | |||
46 | statistics about whats happening in the driver and exports that | 46 | statistics about whats happening in the driver and exports that |
47 | information to userspace via debugfs. | 47 | information to userspace via debugfs. |
48 | If unsure, say N. | 48 | If unsure, say N. |
49 | |||
50 | # Intel IOMMU support | ||
51 | config DMAR | ||
52 | bool "Support for DMA Remapping Devices" | ||
53 | depends on PCI_MSI && ACPI && (X86 || IA64_GENERIC) | ||
54 | select IOMMU_API | ||
55 | help | ||
56 | DMA remapping (DMAR) devices support enables independent address | ||
57 | translations for Direct Memory Access (DMA) from devices. | ||
58 | These DMA remapping devices are reported via ACPI tables | ||
59 | and include PCI device scope covered by these DMA | ||
60 | remapping devices. | ||
61 | |||
62 | config DMAR_DEFAULT_ON | ||
63 | def_bool y | ||
64 | prompt "Enable DMA Remapping Devices by default" | ||
65 | depends on DMAR | ||
66 | help | ||
67 | Selecting this option will enable a DMAR device at boot time if | ||
68 | one is found. If this option is not selected, DMAR support can | ||
69 | be enabled by passing intel_iommu=on to the kernel. | ||
70 | |||
71 | config DMAR_BROKEN_GFX_WA | ||
72 | bool "Workaround broken graphics drivers (going away soon)" | ||
73 | depends on DMAR && BROKEN && X86 | ||
74 | ---help--- | ||
75 | Current Graphics drivers tend to use physical address | ||
76 | for DMA and avoid using DMA APIs. Setting this config | ||
77 | option permits the IOMMU driver to set a unity map for | ||
78 | all the OS-visible memory. Hence the driver can continue | ||
79 | to use physical addresses for DMA, at least until this | ||
80 | option is removed in the 2.6.32 kernel. | ||
81 | |||
82 | config DMAR_FLOPPY_WA | ||
83 | def_bool y | ||
84 | depends on DMAR && X86 | ||
85 | ---help--- | ||
86 | Floppy disk drivers are known to bypass DMA API calls | ||
87 | thereby failing to work when IOMMU is enabled. This | ||
88 | workaround will setup a 1:1 mapping for the first | ||
89 | 16MiB to make floppy (an ISA device) work. | ||
90 | |||
91 | config INTR_REMAP | ||
92 | bool "Support for Interrupt Remapping (EXPERIMENTAL)" | ||
93 | depends on X86_64 && X86_IO_APIC && PCI_MSI && ACPI && EXPERIMENTAL | ||
94 | ---help--- | ||
95 | Supports Interrupt remapping for IO-APIC and MSI devices. | ||
96 | To use x2apic mode in the CPU's which support x2APIC enhancements or | ||
97 | to support platforms with CPU's having > 8 bit APIC ID, say Y. | ||
diff --git a/drivers/iommu/Makefile b/drivers/iommu/Makefile index 4237eaf8460..49e9c0f46bd 100644 --- a/drivers/iommu/Makefile +++ b/drivers/iommu/Makefile | |||
@@ -1,3 +1,5 @@ | |||
1 | obj-$(CONFIG_IOMMU_API) += iommu.o | 1 | obj-$(CONFIG_IOMMU_API) += iommu.o |
2 | obj-$(CONFIG_MSM_IOMMU) += msm_iommu.o msm_iommu_dev.o | 2 | obj-$(CONFIG_MSM_IOMMU) += msm_iommu.o msm_iommu_dev.o |
3 | obj-$(CONFIG_AMD_IOMMU) += amd_iommu.o | 3 | obj-$(CONFIG_AMD_IOMMU) += amd_iommu.o |
4 | obj-$(CONFIG_DMAR) += dmar.o iova.o intel-iommu.o | ||
5 | obj-$(CONFIG_INTR_REMAP) += dmar.o intr_remapping.o | ||
diff --git a/drivers/iommu/dmar.c b/drivers/iommu/dmar.c new file mode 100644 index 00000000000..3dc9befa5ae --- /dev/null +++ b/drivers/iommu/dmar.c | |||
@@ -0,0 +1,1461 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2006, Intel Corporation. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify it | ||
5 | * under the terms and conditions of the GNU General Public License, | ||
6 | * version 2, as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope it will be useful, but WITHOUT | ||
9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
11 | * more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public License along with | ||
14 | * this program; if not, write to the Free Software Foundation, Inc., 59 Temple | ||
15 | * Place - Suite 330, Boston, MA 02111-1307 USA. | ||
16 | * | ||
17 | * Copyright (C) 2006-2008 Intel Corporation | ||
18 | * Author: Ashok Raj <ashok.raj@intel.com> | ||
19 | * Author: Shaohua Li <shaohua.li@intel.com> | ||
20 | * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> | ||
21 | * | ||
22 | * This file implements early detection/parsing of Remapping Devices | ||
23 | * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI | ||
24 | * tables. | ||
25 | * | ||
26 | * These routines are used by both DMA-remapping and Interrupt-remapping | ||
27 | */ | ||
28 | |||
29 | #include <linux/pci.h> | ||
30 | #include <linux/dmar.h> | ||
31 | #include <linux/iova.h> | ||
32 | #include <linux/intel-iommu.h> | ||
33 | #include <linux/timer.h> | ||
34 | #include <linux/irq.h> | ||
35 | #include <linux/interrupt.h> | ||
36 | #include <linux/tboot.h> | ||
37 | #include <linux/dmi.h> | ||
38 | #include <linux/slab.h> | ||
39 | #include <asm/iommu_table.h> | ||
40 | |||
41 | #define PREFIX "DMAR: " | ||
42 | |||
43 | /* No locks are needed as DMA remapping hardware unit | ||
44 | * list is constructed at boot time and hotplug of | ||
45 | * these units are not supported by the architecture. | ||
46 | */ | ||
47 | LIST_HEAD(dmar_drhd_units); | ||
48 | |||
49 | static struct acpi_table_header * __initdata dmar_tbl; | ||
50 | static acpi_size dmar_tbl_size; | ||
51 | |||
52 | static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd) | ||
53 | { | ||
54 | /* | ||
55 | * add INCLUDE_ALL at the tail, so scan the list will find it at | ||
56 | * the very end. | ||
57 | */ | ||
58 | if (drhd->include_all) | ||
59 | list_add_tail(&drhd->list, &dmar_drhd_units); | ||
60 | else | ||
61 | list_add(&drhd->list, &dmar_drhd_units); | ||
62 | } | ||
63 | |||
64 | static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope, | ||
65 | struct pci_dev **dev, u16 segment) | ||
66 | { | ||
67 | struct pci_bus *bus; | ||
68 | struct pci_dev *pdev = NULL; | ||
69 | struct acpi_dmar_pci_path *path; | ||
70 | int count; | ||
71 | |||
72 | bus = pci_find_bus(segment, scope->bus); | ||
73 | path = (struct acpi_dmar_pci_path *)(scope + 1); | ||
74 | count = (scope->length - sizeof(struct acpi_dmar_device_scope)) | ||
75 | / sizeof(struct acpi_dmar_pci_path); | ||
76 | |||
77 | while (count) { | ||
78 | if (pdev) | ||
79 | pci_dev_put(pdev); | ||
80 | /* | ||
81 | * Some BIOSes list non-exist devices in DMAR table, just | ||
82 | * ignore it | ||
83 | */ | ||
84 | if (!bus) { | ||
85 | printk(KERN_WARNING | ||
86 | PREFIX "Device scope bus [%d] not found\n", | ||
87 | scope->bus); | ||
88 | break; | ||
89 | } | ||
90 | pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn)); | ||
91 | if (!pdev) { | ||
92 | printk(KERN_WARNING PREFIX | ||
93 | "Device scope device [%04x:%02x:%02x.%02x] not found\n", | ||
94 | segment, bus->number, path->dev, path->fn); | ||
95 | break; | ||
96 | } | ||
97 | path ++; | ||
98 | count --; | ||
99 | bus = pdev->subordinate; | ||
100 | } | ||
101 | if (!pdev) { | ||
102 | printk(KERN_WARNING PREFIX | ||
103 | "Device scope device [%04x:%02x:%02x.%02x] not found\n", | ||
104 | segment, scope->bus, path->dev, path->fn); | ||
105 | *dev = NULL; | ||
106 | return 0; | ||
107 | } | ||
108 | if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \ | ||
109 | pdev->subordinate) || (scope->entry_type == \ | ||
110 | ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) { | ||
111 | pci_dev_put(pdev); | ||
112 | printk(KERN_WARNING PREFIX | ||
113 | "Device scope type does not match for %s\n", | ||
114 | pci_name(pdev)); | ||
115 | return -EINVAL; | ||
116 | } | ||
117 | *dev = pdev; | ||
118 | return 0; | ||
119 | } | ||
120 | |||
121 | static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt, | ||
122 | struct pci_dev ***devices, u16 segment) | ||
123 | { | ||
124 | struct acpi_dmar_device_scope *scope; | ||
125 | void * tmp = start; | ||
126 | int index; | ||
127 | int ret; | ||
128 | |||
129 | *cnt = 0; | ||
130 | while (start < end) { | ||
131 | scope = start; | ||
132 | if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || | ||
133 | scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) | ||
134 | (*cnt)++; | ||
135 | else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC) { | ||
136 | printk(KERN_WARNING PREFIX | ||
137 | "Unsupported device scope\n"); | ||
138 | } | ||
139 | start += scope->length; | ||
140 | } | ||
141 | if (*cnt == 0) | ||
142 | return 0; | ||
143 | |||
144 | *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL); | ||
145 | if (!*devices) | ||
146 | return -ENOMEM; | ||
147 | |||
148 | start = tmp; | ||
149 | index = 0; | ||
150 | while (start < end) { | ||
151 | scope = start; | ||
152 | if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || | ||
153 | scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) { | ||
154 | ret = dmar_parse_one_dev_scope(scope, | ||
155 | &(*devices)[index], segment); | ||
156 | if (ret) { | ||
157 | kfree(*devices); | ||
158 | return ret; | ||
159 | } | ||
160 | index ++; | ||
161 | } | ||
162 | start += scope->length; | ||
163 | } | ||
164 | |||
165 | return 0; | ||
166 | } | ||
167 | |||
168 | /** | ||
169 | * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition | ||
170 | * structure which uniquely represent one DMA remapping hardware unit | ||
171 | * present in the platform | ||
172 | */ | ||
173 | static int __init | ||
174 | dmar_parse_one_drhd(struct acpi_dmar_header *header) | ||
175 | { | ||
176 | struct acpi_dmar_hardware_unit *drhd; | ||
177 | struct dmar_drhd_unit *dmaru; | ||
178 | int ret = 0; | ||
179 | |||
180 | drhd = (struct acpi_dmar_hardware_unit *)header; | ||
181 | dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL); | ||
182 | if (!dmaru) | ||
183 | return -ENOMEM; | ||
184 | |||
185 | dmaru->hdr = header; | ||
186 | dmaru->reg_base_addr = drhd->address; | ||
187 | dmaru->segment = drhd->segment; | ||
188 | dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */ | ||
189 | |||
190 | ret = alloc_iommu(dmaru); | ||
191 | if (ret) { | ||
192 | kfree(dmaru); | ||
193 | return ret; | ||
194 | } | ||
195 | dmar_register_drhd_unit(dmaru); | ||
196 | return 0; | ||
197 | } | ||
198 | |||
199 | static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru) | ||
200 | { | ||
201 | struct acpi_dmar_hardware_unit *drhd; | ||
202 | int ret = 0; | ||
203 | |||
204 | drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr; | ||
205 | |||
206 | if (dmaru->include_all) | ||
207 | return 0; | ||
208 | |||
209 | ret = dmar_parse_dev_scope((void *)(drhd + 1), | ||
210 | ((void *)drhd) + drhd->header.length, | ||
211 | &dmaru->devices_cnt, &dmaru->devices, | ||
212 | drhd->segment); | ||
213 | if (ret) { | ||
214 | list_del(&dmaru->list); | ||
215 | kfree(dmaru); | ||
216 | } | ||
217 | return ret; | ||
218 | } | ||
219 | |||
220 | #ifdef CONFIG_DMAR | ||
221 | LIST_HEAD(dmar_rmrr_units); | ||
222 | |||
223 | static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr) | ||
224 | { | ||
225 | list_add(&rmrr->list, &dmar_rmrr_units); | ||
226 | } | ||
227 | |||
228 | |||
229 | static int __init | ||
230 | dmar_parse_one_rmrr(struct acpi_dmar_header *header) | ||
231 | { | ||
232 | struct acpi_dmar_reserved_memory *rmrr; | ||
233 | struct dmar_rmrr_unit *rmrru; | ||
234 | |||
235 | rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL); | ||
236 | if (!rmrru) | ||
237 | return -ENOMEM; | ||
238 | |||
239 | rmrru->hdr = header; | ||
240 | rmrr = (struct acpi_dmar_reserved_memory *)header; | ||
241 | rmrru->base_address = rmrr->base_address; | ||
242 | rmrru->end_address = rmrr->end_address; | ||
243 | |||
244 | dmar_register_rmrr_unit(rmrru); | ||
245 | return 0; | ||
246 | } | ||
247 | |||
248 | static int __init | ||
249 | rmrr_parse_dev(struct dmar_rmrr_unit *rmrru) | ||
250 | { | ||
251 | struct acpi_dmar_reserved_memory *rmrr; | ||
252 | int ret; | ||
253 | |||
254 | rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr; | ||
255 | ret = dmar_parse_dev_scope((void *)(rmrr + 1), | ||
256 | ((void *)rmrr) + rmrr->header.length, | ||
257 | &rmrru->devices_cnt, &rmrru->devices, rmrr->segment); | ||
258 | |||
259 | if (ret || (rmrru->devices_cnt == 0)) { | ||
260 | list_del(&rmrru->list); | ||
261 | kfree(rmrru); | ||
262 | } | ||
263 | return ret; | ||
264 | } | ||
265 | |||
266 | static LIST_HEAD(dmar_atsr_units); | ||
267 | |||
268 | static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr) | ||
269 | { | ||
270 | struct acpi_dmar_atsr *atsr; | ||
271 | struct dmar_atsr_unit *atsru; | ||
272 | |||
273 | atsr = container_of(hdr, struct acpi_dmar_atsr, header); | ||
274 | atsru = kzalloc(sizeof(*atsru), GFP_KERNEL); | ||
275 | if (!atsru) | ||
276 | return -ENOMEM; | ||
277 | |||
278 | atsru->hdr = hdr; | ||
279 | atsru->include_all = atsr->flags & 0x1; | ||
280 | |||
281 | list_add(&atsru->list, &dmar_atsr_units); | ||
282 | |||
283 | return 0; | ||
284 | } | ||
285 | |||
286 | static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru) | ||
287 | { | ||
288 | int rc; | ||
289 | struct acpi_dmar_atsr *atsr; | ||
290 | |||
291 | if (atsru->include_all) | ||
292 | return 0; | ||
293 | |||
294 | atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); | ||
295 | rc = dmar_parse_dev_scope((void *)(atsr + 1), | ||
296 | (void *)atsr + atsr->header.length, | ||
297 | &atsru->devices_cnt, &atsru->devices, | ||
298 | atsr->segment); | ||
299 | if (rc || !atsru->devices_cnt) { | ||
300 | list_del(&atsru->list); | ||
301 | kfree(atsru); | ||
302 | } | ||
303 | |||
304 | return rc; | ||
305 | } | ||
306 | |||
307 | int dmar_find_matched_atsr_unit(struct pci_dev *dev) | ||
308 | { | ||
309 | int i; | ||
310 | struct pci_bus *bus; | ||
311 | struct acpi_dmar_atsr *atsr; | ||
312 | struct dmar_atsr_unit *atsru; | ||
313 | |||
314 | dev = pci_physfn(dev); | ||
315 | |||
316 | list_for_each_entry(atsru, &dmar_atsr_units, list) { | ||
317 | atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); | ||
318 | if (atsr->segment == pci_domain_nr(dev->bus)) | ||
319 | goto found; | ||
320 | } | ||
321 | |||
322 | return 0; | ||
323 | |||
324 | found: | ||
325 | for (bus = dev->bus; bus; bus = bus->parent) { | ||
326 | struct pci_dev *bridge = bus->self; | ||
327 | |||
328 | if (!bridge || !pci_is_pcie(bridge) || | ||
329 | bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE) | ||
330 | return 0; | ||
331 | |||
332 | if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) { | ||
333 | for (i = 0; i < atsru->devices_cnt; i++) | ||
334 | if (atsru->devices[i] == bridge) | ||
335 | return 1; | ||
336 | break; | ||
337 | } | ||
338 | } | ||
339 | |||
340 | if (atsru->include_all) | ||
341 | return 1; | ||
342 | |||
343 | return 0; | ||
344 | } | ||
345 | #endif | ||
346 | |||
347 | #ifdef CONFIG_ACPI_NUMA | ||
348 | static int __init | ||
349 | dmar_parse_one_rhsa(struct acpi_dmar_header *header) | ||
350 | { | ||
351 | struct acpi_dmar_rhsa *rhsa; | ||
352 | struct dmar_drhd_unit *drhd; | ||
353 | |||
354 | rhsa = (struct acpi_dmar_rhsa *)header; | ||
355 | for_each_drhd_unit(drhd) { | ||
356 | if (drhd->reg_base_addr == rhsa->base_address) { | ||
357 | int node = acpi_map_pxm_to_node(rhsa->proximity_domain); | ||
358 | |||
359 | if (!node_online(node)) | ||
360 | node = -1; | ||
361 | drhd->iommu->node = node; | ||
362 | return 0; | ||
363 | } | ||
364 | } | ||
365 | WARN_TAINT( | ||
366 | 1, TAINT_FIRMWARE_WORKAROUND, | ||
367 | "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n" | ||
368 | "BIOS vendor: %s; Ver: %s; Product Version: %s\n", | ||
369 | drhd->reg_base_addr, | ||
370 | dmi_get_system_info(DMI_BIOS_VENDOR), | ||
371 | dmi_get_system_info(DMI_BIOS_VERSION), | ||
372 | dmi_get_system_info(DMI_PRODUCT_VERSION)); | ||
373 | |||
374 | return 0; | ||
375 | } | ||
376 | #endif | ||
377 | |||
378 | static void __init | ||
379 | dmar_table_print_dmar_entry(struct acpi_dmar_header *header) | ||
380 | { | ||
381 | struct acpi_dmar_hardware_unit *drhd; | ||
382 | struct acpi_dmar_reserved_memory *rmrr; | ||
383 | struct acpi_dmar_atsr *atsr; | ||
384 | struct acpi_dmar_rhsa *rhsa; | ||
385 | |||
386 | switch (header->type) { | ||
387 | case ACPI_DMAR_TYPE_HARDWARE_UNIT: | ||
388 | drhd = container_of(header, struct acpi_dmar_hardware_unit, | ||
389 | header); | ||
390 | printk (KERN_INFO PREFIX | ||
391 | "DRHD base: %#016Lx flags: %#x\n", | ||
392 | (unsigned long long)drhd->address, drhd->flags); | ||
393 | break; | ||
394 | case ACPI_DMAR_TYPE_RESERVED_MEMORY: | ||
395 | rmrr = container_of(header, struct acpi_dmar_reserved_memory, | ||
396 | header); | ||
397 | printk (KERN_INFO PREFIX | ||
398 | "RMRR base: %#016Lx end: %#016Lx\n", | ||
399 | (unsigned long long)rmrr->base_address, | ||
400 | (unsigned long long)rmrr->end_address); | ||
401 | break; | ||
402 | case ACPI_DMAR_TYPE_ATSR: | ||
403 | atsr = container_of(header, struct acpi_dmar_atsr, header); | ||
404 | printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags); | ||
405 | break; | ||
406 | case ACPI_DMAR_HARDWARE_AFFINITY: | ||
407 | rhsa = container_of(header, struct acpi_dmar_rhsa, header); | ||
408 | printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n", | ||
409 | (unsigned long long)rhsa->base_address, | ||
410 | rhsa->proximity_domain); | ||
411 | break; | ||
412 | } | ||
413 | } | ||
414 | |||
415 | /** | ||
416 | * dmar_table_detect - checks to see if the platform supports DMAR devices | ||
417 | */ | ||
418 | static int __init dmar_table_detect(void) | ||
419 | { | ||
420 | acpi_status status = AE_OK; | ||
421 | |||
422 | /* if we could find DMAR table, then there are DMAR devices */ | ||
423 | status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0, | ||
424 | (struct acpi_table_header **)&dmar_tbl, | ||
425 | &dmar_tbl_size); | ||
426 | |||
427 | if (ACPI_SUCCESS(status) && !dmar_tbl) { | ||
428 | printk (KERN_WARNING PREFIX "Unable to map DMAR\n"); | ||
429 | status = AE_NOT_FOUND; | ||
430 | } | ||
431 | |||
432 | return (ACPI_SUCCESS(status) ? 1 : 0); | ||
433 | } | ||
434 | |||
435 | /** | ||
436 | * parse_dmar_table - parses the DMA reporting table | ||
437 | */ | ||
438 | static int __init | ||
439 | parse_dmar_table(void) | ||
440 | { | ||
441 | struct acpi_table_dmar *dmar; | ||
442 | struct acpi_dmar_header *entry_header; | ||
443 | int ret = 0; | ||
444 | |||
445 | /* | ||
446 | * Do it again, earlier dmar_tbl mapping could be mapped with | ||
447 | * fixed map. | ||
448 | */ | ||
449 | dmar_table_detect(); | ||
450 | |||
451 | /* | ||
452 | * ACPI tables may not be DMA protected by tboot, so use DMAR copy | ||
453 | * SINIT saved in SinitMleData in TXT heap (which is DMA protected) | ||
454 | */ | ||
455 | dmar_tbl = tboot_get_dmar_table(dmar_tbl); | ||
456 | |||
457 | dmar = (struct acpi_table_dmar *)dmar_tbl; | ||
458 | if (!dmar) | ||
459 | return -ENODEV; | ||
460 | |||
461 | if (dmar->width < PAGE_SHIFT - 1) { | ||
462 | printk(KERN_WARNING PREFIX "Invalid DMAR haw\n"); | ||
463 | return -EINVAL; | ||
464 | } | ||
465 | |||
466 | printk (KERN_INFO PREFIX "Host address width %d\n", | ||
467 | dmar->width + 1); | ||
468 | |||
469 | entry_header = (struct acpi_dmar_header *)(dmar + 1); | ||
470 | while (((unsigned long)entry_header) < | ||
471 | (((unsigned long)dmar) + dmar_tbl->length)) { | ||
472 | /* Avoid looping forever on bad ACPI tables */ | ||
473 | if (entry_header->length == 0) { | ||
474 | printk(KERN_WARNING PREFIX | ||
475 | "Invalid 0-length structure\n"); | ||
476 | ret = -EINVAL; | ||
477 | break; | ||
478 | } | ||
479 | |||
480 | dmar_table_print_dmar_entry(entry_header); | ||
481 | |||
482 | switch (entry_header->type) { | ||
483 | case ACPI_DMAR_TYPE_HARDWARE_UNIT: | ||
484 | ret = dmar_parse_one_drhd(entry_header); | ||
485 | break; | ||
486 | case ACPI_DMAR_TYPE_RESERVED_MEMORY: | ||
487 | #ifdef CONFIG_DMAR | ||
488 | ret = dmar_parse_one_rmrr(entry_header); | ||
489 | #endif | ||
490 | break; | ||
491 | case ACPI_DMAR_TYPE_ATSR: | ||
492 | #ifdef CONFIG_DMAR | ||
493 | ret = dmar_parse_one_atsr(entry_header); | ||
494 | #endif | ||
495 | break; | ||
496 | case ACPI_DMAR_HARDWARE_AFFINITY: | ||
497 | #ifdef CONFIG_ACPI_NUMA | ||
498 | ret = dmar_parse_one_rhsa(entry_header); | ||
499 | #endif | ||
500 | break; | ||
501 | default: | ||
502 | printk(KERN_WARNING PREFIX | ||
503 | "Unknown DMAR structure type %d\n", | ||
504 | entry_header->type); | ||
505 | ret = 0; /* for forward compatibility */ | ||
506 | break; | ||
507 | } | ||
508 | if (ret) | ||
509 | break; | ||
510 | |||
511 | entry_header = ((void *)entry_header + entry_header->length); | ||
512 | } | ||
513 | return ret; | ||
514 | } | ||
515 | |||
516 | static int dmar_pci_device_match(struct pci_dev *devices[], int cnt, | ||
517 | struct pci_dev *dev) | ||
518 | { | ||
519 | int index; | ||
520 | |||
521 | while (dev) { | ||
522 | for (index = 0; index < cnt; index++) | ||
523 | if (dev == devices[index]) | ||
524 | return 1; | ||
525 | |||
526 | /* Check our parent */ | ||
527 | dev = dev->bus->self; | ||
528 | } | ||
529 | |||
530 | return 0; | ||
531 | } | ||
532 | |||
533 | struct dmar_drhd_unit * | ||
534 | dmar_find_matched_drhd_unit(struct pci_dev *dev) | ||
535 | { | ||
536 | struct dmar_drhd_unit *dmaru = NULL; | ||
537 | struct acpi_dmar_hardware_unit *drhd; | ||
538 | |||
539 | dev = pci_physfn(dev); | ||
540 | |||
541 | list_for_each_entry(dmaru, &dmar_drhd_units, list) { | ||
542 | drhd = container_of(dmaru->hdr, | ||
543 | struct acpi_dmar_hardware_unit, | ||
544 | header); | ||
545 | |||
546 | if (dmaru->include_all && | ||
547 | drhd->segment == pci_domain_nr(dev->bus)) | ||
548 | return dmaru; | ||
549 | |||
550 | if (dmar_pci_device_match(dmaru->devices, | ||
551 | dmaru->devices_cnt, dev)) | ||
552 | return dmaru; | ||
553 | } | ||
554 | |||
555 | return NULL; | ||
556 | } | ||
557 | |||
558 | int __init dmar_dev_scope_init(void) | ||
559 | { | ||
560 | struct dmar_drhd_unit *drhd, *drhd_n; | ||
561 | int ret = -ENODEV; | ||
562 | |||
563 | list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) { | ||
564 | ret = dmar_parse_dev(drhd); | ||
565 | if (ret) | ||
566 | return ret; | ||
567 | } | ||
568 | |||
569 | #ifdef CONFIG_DMAR | ||
570 | { | ||
571 | struct dmar_rmrr_unit *rmrr, *rmrr_n; | ||
572 | struct dmar_atsr_unit *atsr, *atsr_n; | ||
573 | |||
574 | list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) { | ||
575 | ret = rmrr_parse_dev(rmrr); | ||
576 | if (ret) | ||
577 | return ret; | ||
578 | } | ||
579 | |||
580 | list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) { | ||
581 | ret = atsr_parse_dev(atsr); | ||
582 | if (ret) | ||
583 | return ret; | ||
584 | } | ||
585 | } | ||
586 | #endif | ||
587 | |||
588 | return ret; | ||
589 | } | ||
590 | |||
591 | |||
592 | int __init dmar_table_init(void) | ||
593 | { | ||
594 | static int dmar_table_initialized; | ||
595 | int ret; | ||
596 | |||
597 | if (dmar_table_initialized) | ||
598 | return 0; | ||
599 | |||
600 | dmar_table_initialized = 1; | ||
601 | |||
602 | ret = parse_dmar_table(); | ||
603 | if (ret) { | ||
604 | if (ret != -ENODEV) | ||
605 | printk(KERN_INFO PREFIX "parse DMAR table failure.\n"); | ||
606 | return ret; | ||
607 | } | ||
608 | |||
609 | if (list_empty(&dmar_drhd_units)) { | ||
610 | printk(KERN_INFO PREFIX "No DMAR devices found\n"); | ||
611 | return -ENODEV; | ||
612 | } | ||
613 | |||
614 | #ifdef CONFIG_DMAR | ||
615 | if (list_empty(&dmar_rmrr_units)) | ||
616 | printk(KERN_INFO PREFIX "No RMRR found\n"); | ||
617 | |||
618 | if (list_empty(&dmar_atsr_units)) | ||
619 | printk(KERN_INFO PREFIX "No ATSR found\n"); | ||
620 | #endif | ||
621 | |||
622 | return 0; | ||
623 | } | ||
624 | |||
625 | static void warn_invalid_dmar(u64 addr, const char *message) | ||
626 | { | ||
627 | WARN_TAINT_ONCE( | ||
628 | 1, TAINT_FIRMWARE_WORKAROUND, | ||
629 | "Your BIOS is broken; DMAR reported at address %llx%s!\n" | ||
630 | "BIOS vendor: %s; Ver: %s; Product Version: %s\n", | ||
631 | addr, message, | ||
632 | dmi_get_system_info(DMI_BIOS_VENDOR), | ||
633 | dmi_get_system_info(DMI_BIOS_VERSION), | ||
634 | dmi_get_system_info(DMI_PRODUCT_VERSION)); | ||
635 | } | ||
636 | |||
637 | int __init check_zero_address(void) | ||
638 | { | ||
639 | struct acpi_table_dmar *dmar; | ||
640 | struct acpi_dmar_header *entry_header; | ||
641 | struct acpi_dmar_hardware_unit *drhd; | ||
642 | |||
643 | dmar = (struct acpi_table_dmar *)dmar_tbl; | ||
644 | entry_header = (struct acpi_dmar_header *)(dmar + 1); | ||
645 | |||
646 | while (((unsigned long)entry_header) < | ||
647 | (((unsigned long)dmar) + dmar_tbl->length)) { | ||
648 | /* Avoid looping forever on bad ACPI tables */ | ||
649 | if (entry_header->length == 0) { | ||
650 | printk(KERN_WARNING PREFIX | ||
651 | "Invalid 0-length structure\n"); | ||
652 | return 0; | ||
653 | } | ||
654 | |||
655 | if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) { | ||
656 | void __iomem *addr; | ||
657 | u64 cap, ecap; | ||
658 | |||
659 | drhd = (void *)entry_header; | ||
660 | if (!drhd->address) { | ||
661 | warn_invalid_dmar(0, ""); | ||
662 | goto failed; | ||
663 | } | ||
664 | |||
665 | addr = early_ioremap(drhd->address, VTD_PAGE_SIZE); | ||
666 | if (!addr ) { | ||
667 | printk("IOMMU: can't validate: %llx\n", drhd->address); | ||
668 | goto failed; | ||
669 | } | ||
670 | cap = dmar_readq(addr + DMAR_CAP_REG); | ||
671 | ecap = dmar_readq(addr + DMAR_ECAP_REG); | ||
672 | early_iounmap(addr, VTD_PAGE_SIZE); | ||
673 | if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) { | ||
674 | warn_invalid_dmar(drhd->address, | ||
675 | " returns all ones"); | ||
676 | goto failed; | ||
677 | } | ||
678 | } | ||
679 | |||
680 | entry_header = ((void *)entry_header + entry_header->length); | ||
681 | } | ||
682 | return 1; | ||
683 | |||
684 | failed: | ||
685 | #ifdef CONFIG_DMAR | ||
686 | dmar_disabled = 1; | ||
687 | #endif | ||
688 | return 0; | ||
689 | } | ||
690 | |||
691 | int __init detect_intel_iommu(void) | ||
692 | { | ||
693 | int ret; | ||
694 | |||
695 | ret = dmar_table_detect(); | ||
696 | if (ret) | ||
697 | ret = check_zero_address(); | ||
698 | { | ||
699 | #ifdef CONFIG_INTR_REMAP | ||
700 | struct acpi_table_dmar *dmar; | ||
701 | |||
702 | dmar = (struct acpi_table_dmar *) dmar_tbl; | ||
703 | if (ret && cpu_has_x2apic && dmar->flags & 0x1) | ||
704 | printk(KERN_INFO | ||
705 | "Queued invalidation will be enabled to support " | ||
706 | "x2apic and Intr-remapping.\n"); | ||
707 | #endif | ||
708 | #ifdef CONFIG_DMAR | ||
709 | if (ret && !no_iommu && !iommu_detected && !dmar_disabled) { | ||
710 | iommu_detected = 1; | ||
711 | /* Make sure ACS will be enabled */ | ||
712 | pci_request_acs(); | ||
713 | } | ||
714 | #endif | ||
715 | #ifdef CONFIG_X86 | ||
716 | if (ret) | ||
717 | x86_init.iommu.iommu_init = intel_iommu_init; | ||
718 | #endif | ||
719 | } | ||
720 | early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size); | ||
721 | dmar_tbl = NULL; | ||
722 | |||
723 | return ret ? 1 : -ENODEV; | ||
724 | } | ||
725 | |||
726 | |||
727 | int alloc_iommu(struct dmar_drhd_unit *drhd) | ||
728 | { | ||
729 | struct intel_iommu *iommu; | ||
730 | int map_size; | ||
731 | u32 ver; | ||
732 | static int iommu_allocated = 0; | ||
733 | int agaw = 0; | ||
734 | int msagaw = 0; | ||
735 | |||
736 | if (!drhd->reg_base_addr) { | ||
737 | warn_invalid_dmar(0, ""); | ||
738 | return -EINVAL; | ||
739 | } | ||
740 | |||
741 | iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); | ||
742 | if (!iommu) | ||
743 | return -ENOMEM; | ||
744 | |||
745 | iommu->seq_id = iommu_allocated++; | ||
746 | sprintf (iommu->name, "dmar%d", iommu->seq_id); | ||
747 | |||
748 | iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE); | ||
749 | if (!iommu->reg) { | ||
750 | printk(KERN_ERR "IOMMU: can't map the region\n"); | ||
751 | goto error; | ||
752 | } | ||
753 | iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); | ||
754 | iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); | ||
755 | |||
756 | if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) { | ||
757 | warn_invalid_dmar(drhd->reg_base_addr, " returns all ones"); | ||
758 | goto err_unmap; | ||
759 | } | ||
760 | |||
761 | #ifdef CONFIG_DMAR | ||
762 | agaw = iommu_calculate_agaw(iommu); | ||
763 | if (agaw < 0) { | ||
764 | printk(KERN_ERR | ||
765 | "Cannot get a valid agaw for iommu (seq_id = %d)\n", | ||
766 | iommu->seq_id); | ||
767 | goto err_unmap; | ||
768 | } | ||
769 | msagaw = iommu_calculate_max_sagaw(iommu); | ||
770 | if (msagaw < 0) { | ||
771 | printk(KERN_ERR | ||
772 | "Cannot get a valid max agaw for iommu (seq_id = %d)\n", | ||
773 | iommu->seq_id); | ||
774 | goto err_unmap; | ||
775 | } | ||
776 | #endif | ||
777 | iommu->agaw = agaw; | ||
778 | iommu->msagaw = msagaw; | ||
779 | |||
780 | iommu->node = -1; | ||
781 | |||
782 | /* the registers might be more than one page */ | ||
783 | map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), | ||
784 | cap_max_fault_reg_offset(iommu->cap)); | ||
785 | map_size = VTD_PAGE_ALIGN(map_size); | ||
786 | if (map_size > VTD_PAGE_SIZE) { | ||
787 | iounmap(iommu->reg); | ||
788 | iommu->reg = ioremap(drhd->reg_base_addr, map_size); | ||
789 | if (!iommu->reg) { | ||
790 | printk(KERN_ERR "IOMMU: can't map the region\n"); | ||
791 | goto error; | ||
792 | } | ||
793 | } | ||
794 | |||
795 | ver = readl(iommu->reg + DMAR_VER_REG); | ||
796 | pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n", | ||
797 | iommu->seq_id, | ||
798 | (unsigned long long)drhd->reg_base_addr, | ||
799 | DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), | ||
800 | (unsigned long long)iommu->cap, | ||
801 | (unsigned long long)iommu->ecap); | ||
802 | |||
803 | spin_lock_init(&iommu->register_lock); | ||
804 | |||
805 | drhd->iommu = iommu; | ||
806 | return 0; | ||
807 | |||
808 | err_unmap: | ||
809 | iounmap(iommu->reg); | ||
810 | error: | ||
811 | kfree(iommu); | ||
812 | return -1; | ||
813 | } | ||
814 | |||
815 | void free_iommu(struct intel_iommu *iommu) | ||
816 | { | ||
817 | if (!iommu) | ||
818 | return; | ||
819 | |||
820 | #ifdef CONFIG_DMAR | ||
821 | free_dmar_iommu(iommu); | ||
822 | #endif | ||
823 | |||
824 | if (iommu->reg) | ||
825 | iounmap(iommu->reg); | ||
826 | kfree(iommu); | ||
827 | } | ||
828 | |||
829 | /* | ||
830 | * Reclaim all the submitted descriptors which have completed its work. | ||
831 | */ | ||
832 | static inline void reclaim_free_desc(struct q_inval *qi) | ||
833 | { | ||
834 | while (qi->desc_status[qi->free_tail] == QI_DONE || | ||
835 | qi->desc_status[qi->free_tail] == QI_ABORT) { | ||
836 | qi->desc_status[qi->free_tail] = QI_FREE; | ||
837 | qi->free_tail = (qi->free_tail + 1) % QI_LENGTH; | ||
838 | qi->free_cnt++; | ||
839 | } | ||
840 | } | ||
841 | |||
842 | static int qi_check_fault(struct intel_iommu *iommu, int index) | ||
843 | { | ||
844 | u32 fault; | ||
845 | int head, tail; | ||
846 | struct q_inval *qi = iommu->qi; | ||
847 | int wait_index = (index + 1) % QI_LENGTH; | ||
848 | |||
849 | if (qi->desc_status[wait_index] == QI_ABORT) | ||
850 | return -EAGAIN; | ||
851 | |||
852 | fault = readl(iommu->reg + DMAR_FSTS_REG); | ||
853 | |||
854 | /* | ||
855 | * If IQE happens, the head points to the descriptor associated | ||
856 | * with the error. No new descriptors are fetched until the IQE | ||
857 | * is cleared. | ||
858 | */ | ||
859 | if (fault & DMA_FSTS_IQE) { | ||
860 | head = readl(iommu->reg + DMAR_IQH_REG); | ||
861 | if ((head >> DMAR_IQ_SHIFT) == index) { | ||
862 | printk(KERN_ERR "VT-d detected invalid descriptor: " | ||
863 | "low=%llx, high=%llx\n", | ||
864 | (unsigned long long)qi->desc[index].low, | ||
865 | (unsigned long long)qi->desc[index].high); | ||
866 | memcpy(&qi->desc[index], &qi->desc[wait_index], | ||
867 | sizeof(struct qi_desc)); | ||
868 | __iommu_flush_cache(iommu, &qi->desc[index], | ||
869 | sizeof(struct qi_desc)); | ||
870 | writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG); | ||
871 | return -EINVAL; | ||
872 | } | ||
873 | } | ||
874 | |||
875 | /* | ||
876 | * If ITE happens, all pending wait_desc commands are aborted. | ||
877 | * No new descriptors are fetched until the ITE is cleared. | ||
878 | */ | ||
879 | if (fault & DMA_FSTS_ITE) { | ||
880 | head = readl(iommu->reg + DMAR_IQH_REG); | ||
881 | head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH; | ||
882 | head |= 1; | ||
883 | tail = readl(iommu->reg + DMAR_IQT_REG); | ||
884 | tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH; | ||
885 | |||
886 | writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG); | ||
887 | |||
888 | do { | ||
889 | if (qi->desc_status[head] == QI_IN_USE) | ||
890 | qi->desc_status[head] = QI_ABORT; | ||
891 | head = (head - 2 + QI_LENGTH) % QI_LENGTH; | ||
892 | } while (head != tail); | ||
893 | |||
894 | if (qi->desc_status[wait_index] == QI_ABORT) | ||
895 | return -EAGAIN; | ||
896 | } | ||
897 | |||
898 | if (fault & DMA_FSTS_ICE) | ||
899 | writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG); | ||
900 | |||
901 | return 0; | ||
902 | } | ||
903 | |||
904 | /* | ||
905 | * Submit the queued invalidation descriptor to the remapping | ||
906 | * hardware unit and wait for its completion. | ||
907 | */ | ||
908 | int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu) | ||
909 | { | ||
910 | int rc; | ||
911 | struct q_inval *qi = iommu->qi; | ||
912 | struct qi_desc *hw, wait_desc; | ||
913 | int wait_index, index; | ||
914 | unsigned long flags; | ||
915 | |||
916 | if (!qi) | ||
917 | return 0; | ||
918 | |||
919 | hw = qi->desc; | ||
920 | |||
921 | restart: | ||
922 | rc = 0; | ||
923 | |||
924 | spin_lock_irqsave(&qi->q_lock, flags); | ||
925 | while (qi->free_cnt < 3) { | ||
926 | spin_unlock_irqrestore(&qi->q_lock, flags); | ||
927 | cpu_relax(); | ||
928 | spin_lock_irqsave(&qi->q_lock, flags); | ||
929 | } | ||
930 | |||
931 | index = qi->free_head; | ||
932 | wait_index = (index + 1) % QI_LENGTH; | ||
933 | |||
934 | qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE; | ||
935 | |||
936 | hw[index] = *desc; | ||
937 | |||
938 | wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) | | ||
939 | QI_IWD_STATUS_WRITE | QI_IWD_TYPE; | ||
940 | wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]); | ||
941 | |||
942 | hw[wait_index] = wait_desc; | ||
943 | |||
944 | __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc)); | ||
945 | __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc)); | ||
946 | |||
947 | qi->free_head = (qi->free_head + 2) % QI_LENGTH; | ||
948 | qi->free_cnt -= 2; | ||
949 | |||
950 | /* | ||
951 | * update the HW tail register indicating the presence of | ||
952 | * new descriptors. | ||
953 | */ | ||
954 | writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG); | ||
955 | |||
956 | while (qi->desc_status[wait_index] != QI_DONE) { | ||
957 | /* | ||
958 | * We will leave the interrupts disabled, to prevent interrupt | ||
959 | * context to queue another cmd while a cmd is already submitted | ||
960 | * and waiting for completion on this cpu. This is to avoid | ||
961 | * a deadlock where the interrupt context can wait indefinitely | ||
962 | * for free slots in the queue. | ||
963 | */ | ||
964 | rc = qi_check_fault(iommu, index); | ||
965 | if (rc) | ||
966 | break; | ||
967 | |||
968 | spin_unlock(&qi->q_lock); | ||
969 | cpu_relax(); | ||
970 | spin_lock(&qi->q_lock); | ||
971 | } | ||
972 | |||
973 | qi->desc_status[index] = QI_DONE; | ||
974 | |||
975 | reclaim_free_desc(qi); | ||
976 | spin_unlock_irqrestore(&qi->q_lock, flags); | ||
977 | |||
978 | if (rc == -EAGAIN) | ||
979 | goto restart; | ||
980 | |||
981 | return rc; | ||
982 | } | ||
983 | |||
984 | /* | ||
985 | * Flush the global interrupt entry cache. | ||
986 | */ | ||
987 | void qi_global_iec(struct intel_iommu *iommu) | ||
988 | { | ||
989 | struct qi_desc desc; | ||
990 | |||
991 | desc.low = QI_IEC_TYPE; | ||
992 | desc.high = 0; | ||
993 | |||
994 | /* should never fail */ | ||
995 | qi_submit_sync(&desc, iommu); | ||
996 | } | ||
997 | |||
998 | void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm, | ||
999 | u64 type) | ||
1000 | { | ||
1001 | struct qi_desc desc; | ||
1002 | |||
1003 | desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did) | ||
1004 | | QI_CC_GRAN(type) | QI_CC_TYPE; | ||
1005 | desc.high = 0; | ||
1006 | |||
1007 | qi_submit_sync(&desc, iommu); | ||
1008 | } | ||
1009 | |||
1010 | void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr, | ||
1011 | unsigned int size_order, u64 type) | ||
1012 | { | ||
1013 | u8 dw = 0, dr = 0; | ||
1014 | |||
1015 | struct qi_desc desc; | ||
1016 | int ih = 0; | ||
1017 | |||
1018 | if (cap_write_drain(iommu->cap)) | ||
1019 | dw = 1; | ||
1020 | |||
1021 | if (cap_read_drain(iommu->cap)) | ||
1022 | dr = 1; | ||
1023 | |||
1024 | desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw) | ||
1025 | | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE; | ||
1026 | desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih) | ||
1027 | | QI_IOTLB_AM(size_order); | ||
1028 | |||
1029 | qi_submit_sync(&desc, iommu); | ||
1030 | } | ||
1031 | |||
1032 | void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep, | ||
1033 | u64 addr, unsigned mask) | ||
1034 | { | ||
1035 | struct qi_desc desc; | ||
1036 | |||
1037 | if (mask) { | ||
1038 | BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1)); | ||
1039 | addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1; | ||
1040 | desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE; | ||
1041 | } else | ||
1042 | desc.high = QI_DEV_IOTLB_ADDR(addr); | ||
1043 | |||
1044 | if (qdep >= QI_DEV_IOTLB_MAX_INVS) | ||
1045 | qdep = 0; | ||
1046 | |||
1047 | desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) | | ||
1048 | QI_DIOTLB_TYPE; | ||
1049 | |||
1050 | qi_submit_sync(&desc, iommu); | ||
1051 | } | ||
1052 | |||
1053 | /* | ||
1054 | * Disable Queued Invalidation interface. | ||
1055 | */ | ||
1056 | void dmar_disable_qi(struct intel_iommu *iommu) | ||
1057 | { | ||
1058 | unsigned long flags; | ||
1059 | u32 sts; | ||
1060 | cycles_t start_time = get_cycles(); | ||
1061 | |||
1062 | if (!ecap_qis(iommu->ecap)) | ||
1063 | return; | ||
1064 | |||
1065 | spin_lock_irqsave(&iommu->register_lock, flags); | ||
1066 | |||
1067 | sts = dmar_readq(iommu->reg + DMAR_GSTS_REG); | ||
1068 | if (!(sts & DMA_GSTS_QIES)) | ||
1069 | goto end; | ||
1070 | |||
1071 | /* | ||
1072 | * Give a chance to HW to complete the pending invalidation requests. | ||
1073 | */ | ||
1074 | while ((readl(iommu->reg + DMAR_IQT_REG) != | ||
1075 | readl(iommu->reg + DMAR_IQH_REG)) && | ||
1076 | (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time))) | ||
1077 | cpu_relax(); | ||
1078 | |||
1079 | iommu->gcmd &= ~DMA_GCMD_QIE; | ||
1080 | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); | ||
1081 | |||
1082 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, | ||
1083 | !(sts & DMA_GSTS_QIES), sts); | ||
1084 | end: | ||
1085 | spin_unlock_irqrestore(&iommu->register_lock, flags); | ||
1086 | } | ||
1087 | |||
1088 | /* | ||
1089 | * Enable queued invalidation. | ||
1090 | */ | ||
1091 | static void __dmar_enable_qi(struct intel_iommu *iommu) | ||
1092 | { | ||
1093 | u32 sts; | ||
1094 | unsigned long flags; | ||
1095 | struct q_inval *qi = iommu->qi; | ||
1096 | |||
1097 | qi->free_head = qi->free_tail = 0; | ||
1098 | qi->free_cnt = QI_LENGTH; | ||
1099 | |||
1100 | spin_lock_irqsave(&iommu->register_lock, flags); | ||
1101 | |||
1102 | /* write zero to the tail reg */ | ||
1103 | writel(0, iommu->reg + DMAR_IQT_REG); | ||
1104 | |||
1105 | dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc)); | ||
1106 | |||
1107 | iommu->gcmd |= DMA_GCMD_QIE; | ||
1108 | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); | ||
1109 | |||
1110 | /* Make sure hardware complete it */ | ||
1111 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts); | ||
1112 | |||
1113 | spin_unlock_irqrestore(&iommu->register_lock, flags); | ||
1114 | } | ||
1115 | |||
1116 | /* | ||
1117 | * Enable Queued Invalidation interface. This is a must to support | ||
1118 | * interrupt-remapping. Also used by DMA-remapping, which replaces | ||
1119 | * register based IOTLB invalidation. | ||
1120 | */ | ||
1121 | int dmar_enable_qi(struct intel_iommu *iommu) | ||
1122 | { | ||
1123 | struct q_inval *qi; | ||
1124 | struct page *desc_page; | ||
1125 | |||
1126 | if (!ecap_qis(iommu->ecap)) | ||
1127 | return -ENOENT; | ||
1128 | |||
1129 | /* | ||
1130 | * queued invalidation is already setup and enabled. | ||
1131 | */ | ||
1132 | if (iommu->qi) | ||
1133 | return 0; | ||
1134 | |||
1135 | iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC); | ||
1136 | if (!iommu->qi) | ||
1137 | return -ENOMEM; | ||
1138 | |||
1139 | qi = iommu->qi; | ||
1140 | |||
1141 | |||
1142 | desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0); | ||
1143 | if (!desc_page) { | ||
1144 | kfree(qi); | ||
1145 | iommu->qi = 0; | ||
1146 | return -ENOMEM; | ||
1147 | } | ||
1148 | |||
1149 | qi->desc = page_address(desc_page); | ||
1150 | |||
1151 | qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC); | ||
1152 | if (!qi->desc_status) { | ||
1153 | free_page((unsigned long) qi->desc); | ||
1154 | kfree(qi); | ||
1155 | iommu->qi = 0; | ||
1156 | return -ENOMEM; | ||
1157 | } | ||
1158 | |||
1159 | qi->free_head = qi->free_tail = 0; | ||
1160 | qi->free_cnt = QI_LENGTH; | ||
1161 | |||
1162 | spin_lock_init(&qi->q_lock); | ||
1163 | |||
1164 | __dmar_enable_qi(iommu); | ||
1165 | |||
1166 | return 0; | ||
1167 | } | ||
1168 | |||
1169 | /* iommu interrupt handling. Most stuff are MSI-like. */ | ||
1170 | |||
1171 | enum faulttype { | ||
1172 | DMA_REMAP, | ||
1173 | INTR_REMAP, | ||
1174 | UNKNOWN, | ||
1175 | }; | ||
1176 | |||
1177 | static const char *dma_remap_fault_reasons[] = | ||
1178 | { | ||
1179 | "Software", | ||
1180 | "Present bit in root entry is clear", | ||
1181 | "Present bit in context entry is clear", | ||
1182 | "Invalid context entry", | ||
1183 | "Access beyond MGAW", | ||
1184 | "PTE Write access is not set", | ||
1185 | "PTE Read access is not set", | ||
1186 | "Next page table ptr is invalid", | ||
1187 | "Root table address invalid", | ||
1188 | "Context table ptr is invalid", | ||
1189 | "non-zero reserved fields in RTP", | ||
1190 | "non-zero reserved fields in CTP", | ||
1191 | "non-zero reserved fields in PTE", | ||
1192 | }; | ||
1193 | |||
1194 | static const char *intr_remap_fault_reasons[] = | ||
1195 | { | ||
1196 | "Detected reserved fields in the decoded interrupt-remapped request", | ||
1197 | "Interrupt index exceeded the interrupt-remapping table size", | ||
1198 | "Present field in the IRTE entry is clear", | ||
1199 | "Error accessing interrupt-remapping table pointed by IRTA_REG", | ||
1200 | "Detected reserved fields in the IRTE entry", | ||
1201 | "Blocked a compatibility format interrupt request", | ||
1202 | "Blocked an interrupt request due to source-id verification failure", | ||
1203 | }; | ||
1204 | |||
1205 | #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1) | ||
1206 | |||
1207 | const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type) | ||
1208 | { | ||
1209 | if (fault_reason >= 0x20 && (fault_reason <= 0x20 + | ||
1210 | ARRAY_SIZE(intr_remap_fault_reasons))) { | ||
1211 | *fault_type = INTR_REMAP; | ||
1212 | return intr_remap_fault_reasons[fault_reason - 0x20]; | ||
1213 | } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) { | ||
1214 | *fault_type = DMA_REMAP; | ||
1215 | return dma_remap_fault_reasons[fault_reason]; | ||
1216 | } else { | ||
1217 | *fault_type = UNKNOWN; | ||
1218 | return "Unknown"; | ||
1219 | } | ||
1220 | } | ||
1221 | |||
1222 | void dmar_msi_unmask(struct irq_data *data) | ||
1223 | { | ||
1224 | struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); | ||
1225 | unsigned long flag; | ||
1226 | |||
1227 | /* unmask it */ | ||
1228 | spin_lock_irqsave(&iommu->register_lock, flag); | ||
1229 | writel(0, iommu->reg + DMAR_FECTL_REG); | ||
1230 | /* Read a reg to force flush the post write */ | ||
1231 | readl(iommu->reg + DMAR_FECTL_REG); | ||
1232 | spin_unlock_irqrestore(&iommu->register_lock, flag); | ||
1233 | } | ||
1234 | |||
1235 | void dmar_msi_mask(struct irq_data *data) | ||
1236 | { | ||
1237 | unsigned long flag; | ||
1238 | struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); | ||
1239 | |||
1240 | /* mask it */ | ||
1241 | spin_lock_irqsave(&iommu->register_lock, flag); | ||
1242 | writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG); | ||
1243 | /* Read a reg to force flush the post write */ | ||
1244 | readl(iommu->reg + DMAR_FECTL_REG); | ||
1245 | spin_unlock_irqrestore(&iommu->register_lock, flag); | ||
1246 | } | ||
1247 | |||
1248 | void dmar_msi_write(int irq, struct msi_msg *msg) | ||
1249 | { | ||
1250 | struct intel_iommu *iommu = irq_get_handler_data(irq); | ||
1251 | unsigned long flag; | ||
1252 | |||
1253 | spin_lock_irqsave(&iommu->register_lock, flag); | ||
1254 | writel(msg->data, iommu->reg + DMAR_FEDATA_REG); | ||
1255 | writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG); | ||
1256 | writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG); | ||
1257 | spin_unlock_irqrestore(&iommu->register_lock, flag); | ||
1258 | } | ||
1259 | |||
1260 | void dmar_msi_read(int irq, struct msi_msg *msg) | ||
1261 | { | ||
1262 | struct intel_iommu *iommu = irq_get_handler_data(irq); | ||
1263 | unsigned long flag; | ||
1264 | |||
1265 | spin_lock_irqsave(&iommu->register_lock, flag); | ||
1266 | msg->data = readl(iommu->reg + DMAR_FEDATA_REG); | ||
1267 | msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG); | ||
1268 | msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG); | ||
1269 | spin_unlock_irqrestore(&iommu->register_lock, flag); | ||
1270 | } | ||
1271 | |||
1272 | static int dmar_fault_do_one(struct intel_iommu *iommu, int type, | ||
1273 | u8 fault_reason, u16 source_id, unsigned long long addr) | ||
1274 | { | ||
1275 | const char *reason; | ||
1276 | int fault_type; | ||
1277 | |||
1278 | reason = dmar_get_fault_reason(fault_reason, &fault_type); | ||
1279 | |||
1280 | if (fault_type == INTR_REMAP) | ||
1281 | printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] " | ||
1282 | "fault index %llx\n" | ||
1283 | "INTR-REMAP:[fault reason %02d] %s\n", | ||
1284 | (source_id >> 8), PCI_SLOT(source_id & 0xFF), | ||
1285 | PCI_FUNC(source_id & 0xFF), addr >> 48, | ||
1286 | fault_reason, reason); | ||
1287 | else | ||
1288 | printk(KERN_ERR | ||
1289 | "DMAR:[%s] Request device [%02x:%02x.%d] " | ||
1290 | "fault addr %llx \n" | ||
1291 | "DMAR:[fault reason %02d] %s\n", | ||
1292 | (type ? "DMA Read" : "DMA Write"), | ||
1293 | (source_id >> 8), PCI_SLOT(source_id & 0xFF), | ||
1294 | PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason); | ||
1295 | return 0; | ||
1296 | } | ||
1297 | |||
1298 | #define PRIMARY_FAULT_REG_LEN (16) | ||
1299 | irqreturn_t dmar_fault(int irq, void *dev_id) | ||
1300 | { | ||
1301 | struct intel_iommu *iommu = dev_id; | ||
1302 | int reg, fault_index; | ||
1303 | u32 fault_status; | ||
1304 | unsigned long flag; | ||
1305 | |||
1306 | spin_lock_irqsave(&iommu->register_lock, flag); | ||
1307 | fault_status = readl(iommu->reg + DMAR_FSTS_REG); | ||
1308 | if (fault_status) | ||
1309 | printk(KERN_ERR "DRHD: handling fault status reg %x\n", | ||
1310 | fault_status); | ||
1311 | |||
1312 | /* TBD: ignore advanced fault log currently */ | ||
1313 | if (!(fault_status & DMA_FSTS_PPF)) | ||
1314 | goto clear_rest; | ||
1315 | |||
1316 | fault_index = dma_fsts_fault_record_index(fault_status); | ||
1317 | reg = cap_fault_reg_offset(iommu->cap); | ||
1318 | while (1) { | ||
1319 | u8 fault_reason; | ||
1320 | u16 source_id; | ||
1321 | u64 guest_addr; | ||
1322 | int type; | ||
1323 | u32 data; | ||
1324 | |||
1325 | /* highest 32 bits */ | ||
1326 | data = readl(iommu->reg + reg + | ||
1327 | fault_index * PRIMARY_FAULT_REG_LEN + 12); | ||
1328 | if (!(data & DMA_FRCD_F)) | ||
1329 | break; | ||
1330 | |||
1331 | fault_reason = dma_frcd_fault_reason(data); | ||
1332 | type = dma_frcd_type(data); | ||
1333 | |||
1334 | data = readl(iommu->reg + reg + | ||
1335 | fault_index * PRIMARY_FAULT_REG_LEN + 8); | ||
1336 | source_id = dma_frcd_source_id(data); | ||
1337 | |||
1338 | guest_addr = dmar_readq(iommu->reg + reg + | ||
1339 | fault_index * PRIMARY_FAULT_REG_LEN); | ||
1340 | guest_addr = dma_frcd_page_addr(guest_addr); | ||
1341 | /* clear the fault */ | ||
1342 | writel(DMA_FRCD_F, iommu->reg + reg + | ||
1343 | fault_index * PRIMARY_FAULT_REG_LEN + 12); | ||
1344 | |||
1345 | spin_unlock_irqrestore(&iommu->register_lock, flag); | ||
1346 | |||
1347 | dmar_fault_do_one(iommu, type, fault_reason, | ||
1348 | source_id, guest_addr); | ||
1349 | |||
1350 | fault_index++; | ||
1351 | if (fault_index >= cap_num_fault_regs(iommu->cap)) | ||
1352 | fault_index = 0; | ||
1353 | spin_lock_irqsave(&iommu->register_lock, flag); | ||
1354 | } | ||
1355 | clear_rest: | ||
1356 | /* clear all the other faults */ | ||
1357 | fault_status = readl(iommu->reg + DMAR_FSTS_REG); | ||
1358 | writel(fault_status, iommu->reg + DMAR_FSTS_REG); | ||
1359 | |||
1360 | spin_unlock_irqrestore(&iommu->register_lock, flag); | ||
1361 | return IRQ_HANDLED; | ||
1362 | } | ||
1363 | |||
1364 | int dmar_set_interrupt(struct intel_iommu *iommu) | ||
1365 | { | ||
1366 | int irq, ret; | ||
1367 | |||
1368 | /* | ||
1369 | * Check if the fault interrupt is already initialized. | ||
1370 | */ | ||
1371 | if (iommu->irq) | ||
1372 | return 0; | ||
1373 | |||
1374 | irq = create_irq(); | ||
1375 | if (!irq) { | ||
1376 | printk(KERN_ERR "IOMMU: no free vectors\n"); | ||
1377 | return -EINVAL; | ||
1378 | } | ||
1379 | |||
1380 | irq_set_handler_data(irq, iommu); | ||
1381 | iommu->irq = irq; | ||
1382 | |||
1383 | ret = arch_setup_dmar_msi(irq); | ||
1384 | if (ret) { | ||
1385 | irq_set_handler_data(irq, NULL); | ||
1386 | iommu->irq = 0; | ||
1387 | destroy_irq(irq); | ||
1388 | return ret; | ||
1389 | } | ||
1390 | |||
1391 | ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu); | ||
1392 | if (ret) | ||
1393 | printk(KERN_ERR "IOMMU: can't request irq\n"); | ||
1394 | return ret; | ||
1395 | } | ||
1396 | |||
1397 | int __init enable_drhd_fault_handling(void) | ||
1398 | { | ||
1399 | struct dmar_drhd_unit *drhd; | ||
1400 | |||
1401 | /* | ||
1402 | * Enable fault control interrupt. | ||
1403 | */ | ||
1404 | for_each_drhd_unit(drhd) { | ||
1405 | int ret; | ||
1406 | struct intel_iommu *iommu = drhd->iommu; | ||
1407 | ret = dmar_set_interrupt(iommu); | ||
1408 | |||
1409 | if (ret) { | ||
1410 | printk(KERN_ERR "DRHD %Lx: failed to enable fault, " | ||
1411 | " interrupt, ret %d\n", | ||
1412 | (unsigned long long)drhd->reg_base_addr, ret); | ||
1413 | return -1; | ||
1414 | } | ||
1415 | |||
1416 | /* | ||
1417 | * Clear any previous faults. | ||
1418 | */ | ||
1419 | dmar_fault(iommu->irq, iommu); | ||
1420 | } | ||
1421 | |||
1422 | return 0; | ||
1423 | } | ||
1424 | |||
1425 | /* | ||
1426 | * Re-enable Queued Invalidation interface. | ||
1427 | */ | ||
1428 | int dmar_reenable_qi(struct intel_iommu *iommu) | ||
1429 | { | ||
1430 | if (!ecap_qis(iommu->ecap)) | ||
1431 | return -ENOENT; | ||
1432 | |||
1433 | if (!iommu->qi) | ||
1434 | return -ENOENT; | ||
1435 | |||
1436 | /* | ||
1437 | * First disable queued invalidation. | ||
1438 | */ | ||
1439 | dmar_disable_qi(iommu); | ||
1440 | /* | ||
1441 | * Then enable queued invalidation again. Since there is no pending | ||
1442 | * invalidation requests now, it's safe to re-enable queued | ||
1443 | * invalidation. | ||
1444 | */ | ||
1445 | __dmar_enable_qi(iommu); | ||
1446 | |||
1447 | return 0; | ||
1448 | } | ||
1449 | |||
1450 | /* | ||
1451 | * Check interrupt remapping support in DMAR table description. | ||
1452 | */ | ||
1453 | int __init dmar_ir_support(void) | ||
1454 | { | ||
1455 | struct acpi_table_dmar *dmar; | ||
1456 | dmar = (struct acpi_table_dmar *)dmar_tbl; | ||
1457 | if (!dmar) | ||
1458 | return 0; | ||
1459 | return dmar->flags & 0x1; | ||
1460 | } | ||
1461 | IOMMU_INIT_POST(detect_intel_iommu); | ||
diff --git a/drivers/iommu/intel-iommu.c b/drivers/iommu/intel-iommu.c new file mode 100644 index 00000000000..c621c98c99d --- /dev/null +++ b/drivers/iommu/intel-iommu.c | |||
@@ -0,0 +1,4016 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2006, Intel Corporation. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify it | ||
5 | * under the terms and conditions of the GNU General Public License, | ||
6 | * version 2, as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope it will be useful, but WITHOUT | ||
9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
11 | * more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public License along with | ||
14 | * this program; if not, write to the Free Software Foundation, Inc., 59 Temple | ||
15 | * Place - Suite 330, Boston, MA 02111-1307 USA. | ||
16 | * | ||
17 | * Copyright (C) 2006-2008 Intel Corporation | ||
18 | * Author: Ashok Raj <ashok.raj@intel.com> | ||
19 | * Author: Shaohua Li <shaohua.li@intel.com> | ||
20 | * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> | ||
21 | * Author: Fenghua Yu <fenghua.yu@intel.com> | ||
22 | */ | ||
23 | |||
24 | #include <linux/init.h> | ||
25 | #include <linux/bitmap.h> | ||
26 | #include <linux/debugfs.h> | ||
27 | #include <linux/slab.h> | ||
28 | #include <linux/irq.h> | ||
29 | #include <linux/interrupt.h> | ||
30 | #include <linux/spinlock.h> | ||
31 | #include <linux/pci.h> | ||
32 | #include <linux/dmar.h> | ||
33 | #include <linux/dma-mapping.h> | ||
34 | #include <linux/mempool.h> | ||
35 | #include <linux/timer.h> | ||
36 | #include <linux/iova.h> | ||
37 | #include <linux/iommu.h> | ||
38 | #include <linux/intel-iommu.h> | ||
39 | #include <linux/syscore_ops.h> | ||
40 | #include <linux/tboot.h> | ||
41 | #include <linux/dmi.h> | ||
42 | #include <linux/pci-ats.h> | ||
43 | #include <asm/cacheflush.h> | ||
44 | #include <asm/iommu.h> | ||
45 | |||
46 | #define ROOT_SIZE VTD_PAGE_SIZE | ||
47 | #define CONTEXT_SIZE VTD_PAGE_SIZE | ||
48 | |||
49 | #define IS_BRIDGE_HOST_DEVICE(pdev) \ | ||
50 | ((pdev->class >> 8) == PCI_CLASS_BRIDGE_HOST) | ||
51 | #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) | ||
52 | #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) | ||
53 | #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e) | ||
54 | |||
55 | #define IOAPIC_RANGE_START (0xfee00000) | ||
56 | #define IOAPIC_RANGE_END (0xfeefffff) | ||
57 | #define IOVA_START_ADDR (0x1000) | ||
58 | |||
59 | #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48 | ||
60 | |||
61 | #define MAX_AGAW_WIDTH 64 | ||
62 | |||
63 | #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1) | ||
64 | #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1) | ||
65 | |||
66 | /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR | ||
67 | to match. That way, we can use 'unsigned long' for PFNs with impunity. */ | ||
68 | #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \ | ||
69 | __DOMAIN_MAX_PFN(gaw), (unsigned long)-1)) | ||
70 | #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT) | ||
71 | |||
72 | #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) | ||
73 | #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32)) | ||
74 | #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64)) | ||
75 | |||
76 | /* page table handling */ | ||
77 | #define LEVEL_STRIDE (9) | ||
78 | #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1) | ||
79 | |||
80 | static inline int agaw_to_level(int agaw) | ||
81 | { | ||
82 | return agaw + 2; | ||
83 | } | ||
84 | |||
85 | static inline int agaw_to_width(int agaw) | ||
86 | { | ||
87 | return 30 + agaw * LEVEL_STRIDE; | ||
88 | } | ||
89 | |||
90 | static inline int width_to_agaw(int width) | ||
91 | { | ||
92 | return (width - 30) / LEVEL_STRIDE; | ||
93 | } | ||
94 | |||
95 | static inline unsigned int level_to_offset_bits(int level) | ||
96 | { | ||
97 | return (level - 1) * LEVEL_STRIDE; | ||
98 | } | ||
99 | |||
100 | static inline int pfn_level_offset(unsigned long pfn, int level) | ||
101 | { | ||
102 | return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK; | ||
103 | } | ||
104 | |||
105 | static inline unsigned long level_mask(int level) | ||
106 | { | ||
107 | return -1UL << level_to_offset_bits(level); | ||
108 | } | ||
109 | |||
110 | static inline unsigned long level_size(int level) | ||
111 | { | ||
112 | return 1UL << level_to_offset_bits(level); | ||
113 | } | ||
114 | |||
115 | static inline unsigned long align_to_level(unsigned long pfn, int level) | ||
116 | { | ||
117 | return (pfn + level_size(level) - 1) & level_mask(level); | ||
118 | } | ||
119 | |||
120 | static inline unsigned long lvl_to_nr_pages(unsigned int lvl) | ||
121 | { | ||
122 | return 1 << ((lvl - 1) * LEVEL_STRIDE); | ||
123 | } | ||
124 | |||
125 | /* VT-d pages must always be _smaller_ than MM pages. Otherwise things | ||
126 | are never going to work. */ | ||
127 | static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn) | ||
128 | { | ||
129 | return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT); | ||
130 | } | ||
131 | |||
132 | static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn) | ||
133 | { | ||
134 | return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT); | ||
135 | } | ||
136 | static inline unsigned long page_to_dma_pfn(struct page *pg) | ||
137 | { | ||
138 | return mm_to_dma_pfn(page_to_pfn(pg)); | ||
139 | } | ||
140 | static inline unsigned long virt_to_dma_pfn(void *p) | ||
141 | { | ||
142 | return page_to_dma_pfn(virt_to_page(p)); | ||
143 | } | ||
144 | |||
145 | /* global iommu list, set NULL for ignored DMAR units */ | ||
146 | static struct intel_iommu **g_iommus; | ||
147 | |||
148 | static void __init check_tylersburg_isoch(void); | ||
149 | static int rwbf_quirk; | ||
150 | |||
151 | /* | ||
152 | * set to 1 to panic kernel if can't successfully enable VT-d | ||
153 | * (used when kernel is launched w/ TXT) | ||
154 | */ | ||
155 | static int force_on = 0; | ||
156 | |||
157 | /* | ||
158 | * 0: Present | ||
159 | * 1-11: Reserved | ||
160 | * 12-63: Context Ptr (12 - (haw-1)) | ||
161 | * 64-127: Reserved | ||
162 | */ | ||
163 | struct root_entry { | ||
164 | u64 val; | ||
165 | u64 rsvd1; | ||
166 | }; | ||
167 | #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry)) | ||
168 | static inline bool root_present(struct root_entry *root) | ||
169 | { | ||
170 | return (root->val & 1); | ||
171 | } | ||
172 | static inline void set_root_present(struct root_entry *root) | ||
173 | { | ||
174 | root->val |= 1; | ||
175 | } | ||
176 | static inline void set_root_value(struct root_entry *root, unsigned long value) | ||
177 | { | ||
178 | root->val |= value & VTD_PAGE_MASK; | ||
179 | } | ||
180 | |||
181 | static inline struct context_entry * | ||
182 | get_context_addr_from_root(struct root_entry *root) | ||
183 | { | ||
184 | return (struct context_entry *) | ||
185 | (root_present(root)?phys_to_virt( | ||
186 | root->val & VTD_PAGE_MASK) : | ||
187 | NULL); | ||
188 | } | ||
189 | |||
190 | /* | ||
191 | * low 64 bits: | ||
192 | * 0: present | ||
193 | * 1: fault processing disable | ||
194 | * 2-3: translation type | ||
195 | * 12-63: address space root | ||
196 | * high 64 bits: | ||
197 | * 0-2: address width | ||
198 | * 3-6: aval | ||
199 | * 8-23: domain id | ||
200 | */ | ||
201 | struct context_entry { | ||
202 | u64 lo; | ||
203 | u64 hi; | ||
204 | }; | ||
205 | |||
206 | static inline bool context_present(struct context_entry *context) | ||
207 | { | ||
208 | return (context->lo & 1); | ||
209 | } | ||
210 | static inline void context_set_present(struct context_entry *context) | ||
211 | { | ||
212 | context->lo |= 1; | ||
213 | } | ||
214 | |||
215 | static inline void context_set_fault_enable(struct context_entry *context) | ||
216 | { | ||
217 | context->lo &= (((u64)-1) << 2) | 1; | ||
218 | } | ||
219 | |||
220 | static inline void context_set_translation_type(struct context_entry *context, | ||
221 | unsigned long value) | ||
222 | { | ||
223 | context->lo &= (((u64)-1) << 4) | 3; | ||
224 | context->lo |= (value & 3) << 2; | ||
225 | } | ||
226 | |||
227 | static inline void context_set_address_root(struct context_entry *context, | ||
228 | unsigned long value) | ||
229 | { | ||
230 | context->lo |= value & VTD_PAGE_MASK; | ||
231 | } | ||
232 | |||
233 | static inline void context_set_address_width(struct context_entry *context, | ||
234 | unsigned long value) | ||
235 | { | ||
236 | context->hi |= value & 7; | ||
237 | } | ||
238 | |||
239 | static inline void context_set_domain_id(struct context_entry *context, | ||
240 | unsigned long value) | ||
241 | { | ||
242 | context->hi |= (value & ((1 << 16) - 1)) << 8; | ||
243 | } | ||
244 | |||
245 | static inline void context_clear_entry(struct context_entry *context) | ||
246 | { | ||
247 | context->lo = 0; | ||
248 | context->hi = 0; | ||
249 | } | ||
250 | |||
251 | /* | ||
252 | * 0: readable | ||
253 | * 1: writable | ||
254 | * 2-6: reserved | ||
255 | * 7: super page | ||
256 | * 8-10: available | ||
257 | * 11: snoop behavior | ||
258 | * 12-63: Host physcial address | ||
259 | */ | ||
260 | struct dma_pte { | ||
261 | u64 val; | ||
262 | }; | ||
263 | |||
264 | static inline void dma_clear_pte(struct dma_pte *pte) | ||
265 | { | ||
266 | pte->val = 0; | ||
267 | } | ||
268 | |||
269 | static inline void dma_set_pte_readable(struct dma_pte *pte) | ||
270 | { | ||
271 | pte->val |= DMA_PTE_READ; | ||
272 | } | ||
273 | |||
274 | static inline void dma_set_pte_writable(struct dma_pte *pte) | ||
275 | { | ||
276 | pte->val |= DMA_PTE_WRITE; | ||
277 | } | ||
278 | |||
279 | static inline void dma_set_pte_snp(struct dma_pte *pte) | ||
280 | { | ||
281 | pte->val |= DMA_PTE_SNP; | ||
282 | } | ||
283 | |||
284 | static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot) | ||
285 | { | ||
286 | pte->val = (pte->val & ~3) | (prot & 3); | ||
287 | } | ||
288 | |||
289 | static inline u64 dma_pte_addr(struct dma_pte *pte) | ||
290 | { | ||
291 | #ifdef CONFIG_64BIT | ||
292 | return pte->val & VTD_PAGE_MASK; | ||
293 | #else | ||
294 | /* Must have a full atomic 64-bit read */ | ||
295 | return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK; | ||
296 | #endif | ||
297 | } | ||
298 | |||
299 | static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn) | ||
300 | { | ||
301 | pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT; | ||
302 | } | ||
303 | |||
304 | static inline bool dma_pte_present(struct dma_pte *pte) | ||
305 | { | ||
306 | return (pte->val & 3) != 0; | ||
307 | } | ||
308 | |||
309 | static inline int first_pte_in_page(struct dma_pte *pte) | ||
310 | { | ||
311 | return !((unsigned long)pte & ~VTD_PAGE_MASK); | ||
312 | } | ||
313 | |||
314 | /* | ||
315 | * This domain is a statically identity mapping domain. | ||
316 | * 1. This domain creats a static 1:1 mapping to all usable memory. | ||
317 | * 2. It maps to each iommu if successful. | ||
318 | * 3. Each iommu mapps to this domain if successful. | ||
319 | */ | ||
320 | static struct dmar_domain *si_domain; | ||
321 | static int hw_pass_through = 1; | ||
322 | |||
323 | /* devices under the same p2p bridge are owned in one domain */ | ||
324 | #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0) | ||
325 | |||
326 | /* domain represents a virtual machine, more than one devices | ||
327 | * across iommus may be owned in one domain, e.g. kvm guest. | ||
328 | */ | ||
329 | #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1) | ||
330 | |||
331 | /* si_domain contains mulitple devices */ | ||
332 | #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2) | ||
333 | |||
334 | struct dmar_domain { | ||
335 | int id; /* domain id */ | ||
336 | int nid; /* node id */ | ||
337 | unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/ | ||
338 | |||
339 | struct list_head devices; /* all devices' list */ | ||
340 | struct iova_domain iovad; /* iova's that belong to this domain */ | ||
341 | |||
342 | struct dma_pte *pgd; /* virtual address */ | ||
343 | int gaw; /* max guest address width */ | ||
344 | |||
345 | /* adjusted guest address width, 0 is level 2 30-bit */ | ||
346 | int agaw; | ||
347 | |||
348 | int flags; /* flags to find out type of domain */ | ||
349 | |||
350 | int iommu_coherency;/* indicate coherency of iommu access */ | ||
351 | int iommu_snooping; /* indicate snooping control feature*/ | ||
352 | int iommu_count; /* reference count of iommu */ | ||
353 | int iommu_superpage;/* Level of superpages supported: | ||
354 | 0 == 4KiB (no superpages), 1 == 2MiB, | ||
355 | 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */ | ||
356 | spinlock_t iommu_lock; /* protect iommu set in domain */ | ||
357 | u64 max_addr; /* maximum mapped address */ | ||
358 | }; | ||
359 | |||
360 | /* PCI domain-device relationship */ | ||
361 | struct device_domain_info { | ||
362 | struct list_head link; /* link to domain siblings */ | ||
363 | struct list_head global; /* link to global list */ | ||
364 | int segment; /* PCI domain */ | ||
365 | u8 bus; /* PCI bus number */ | ||
366 | u8 devfn; /* PCI devfn number */ | ||
367 | struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */ | ||
368 | struct intel_iommu *iommu; /* IOMMU used by this device */ | ||
369 | struct dmar_domain *domain; /* pointer to domain */ | ||
370 | }; | ||
371 | |||
372 | static void flush_unmaps_timeout(unsigned long data); | ||
373 | |||
374 | DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0); | ||
375 | |||
376 | #define HIGH_WATER_MARK 250 | ||
377 | struct deferred_flush_tables { | ||
378 | int next; | ||
379 | struct iova *iova[HIGH_WATER_MARK]; | ||
380 | struct dmar_domain *domain[HIGH_WATER_MARK]; | ||
381 | }; | ||
382 | |||
383 | static struct deferred_flush_tables *deferred_flush; | ||
384 | |||
385 | /* bitmap for indexing intel_iommus */ | ||
386 | static int g_num_of_iommus; | ||
387 | |||
388 | static DEFINE_SPINLOCK(async_umap_flush_lock); | ||
389 | static LIST_HEAD(unmaps_to_do); | ||
390 | |||
391 | static int timer_on; | ||
392 | static long list_size; | ||
393 | |||
394 | static void domain_remove_dev_info(struct dmar_domain *domain); | ||
395 | |||
396 | #ifdef CONFIG_DMAR_DEFAULT_ON | ||
397 | int dmar_disabled = 0; | ||
398 | #else | ||
399 | int dmar_disabled = 1; | ||
400 | #endif /*CONFIG_DMAR_DEFAULT_ON*/ | ||
401 | |||
402 | static int dmar_map_gfx = 1; | ||
403 | static int dmar_forcedac; | ||
404 | static int intel_iommu_strict; | ||
405 | static int intel_iommu_superpage = 1; | ||
406 | |||
407 | #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1)) | ||
408 | static DEFINE_SPINLOCK(device_domain_lock); | ||
409 | static LIST_HEAD(device_domain_list); | ||
410 | |||
411 | static struct iommu_ops intel_iommu_ops; | ||
412 | |||
413 | static int __init intel_iommu_setup(char *str) | ||
414 | { | ||
415 | if (!str) | ||
416 | return -EINVAL; | ||
417 | while (*str) { | ||
418 | if (!strncmp(str, "on", 2)) { | ||
419 | dmar_disabled = 0; | ||
420 | printk(KERN_INFO "Intel-IOMMU: enabled\n"); | ||
421 | } else if (!strncmp(str, "off", 3)) { | ||
422 | dmar_disabled = 1; | ||
423 | printk(KERN_INFO "Intel-IOMMU: disabled\n"); | ||
424 | } else if (!strncmp(str, "igfx_off", 8)) { | ||
425 | dmar_map_gfx = 0; | ||
426 | printk(KERN_INFO | ||
427 | "Intel-IOMMU: disable GFX device mapping\n"); | ||
428 | } else if (!strncmp(str, "forcedac", 8)) { | ||
429 | printk(KERN_INFO | ||
430 | "Intel-IOMMU: Forcing DAC for PCI devices\n"); | ||
431 | dmar_forcedac = 1; | ||
432 | } else if (!strncmp(str, "strict", 6)) { | ||
433 | printk(KERN_INFO | ||
434 | "Intel-IOMMU: disable batched IOTLB flush\n"); | ||
435 | intel_iommu_strict = 1; | ||
436 | } else if (!strncmp(str, "sp_off", 6)) { | ||
437 | printk(KERN_INFO | ||
438 | "Intel-IOMMU: disable supported super page\n"); | ||
439 | intel_iommu_superpage = 0; | ||
440 | } | ||
441 | |||
442 | str += strcspn(str, ","); | ||
443 | while (*str == ',') | ||
444 | str++; | ||
445 | } | ||
446 | return 0; | ||
447 | } | ||
448 | __setup("intel_iommu=", intel_iommu_setup); | ||
449 | |||
450 | static struct kmem_cache *iommu_domain_cache; | ||
451 | static struct kmem_cache *iommu_devinfo_cache; | ||
452 | static struct kmem_cache *iommu_iova_cache; | ||
453 | |||
454 | static inline void *alloc_pgtable_page(int node) | ||
455 | { | ||
456 | struct page *page; | ||
457 | void *vaddr = NULL; | ||
458 | |||
459 | page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0); | ||
460 | if (page) | ||
461 | vaddr = page_address(page); | ||
462 | return vaddr; | ||
463 | } | ||
464 | |||
465 | static inline void free_pgtable_page(void *vaddr) | ||
466 | { | ||
467 | free_page((unsigned long)vaddr); | ||
468 | } | ||
469 | |||
470 | static inline void *alloc_domain_mem(void) | ||
471 | { | ||
472 | return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC); | ||
473 | } | ||
474 | |||
475 | static void free_domain_mem(void *vaddr) | ||
476 | { | ||
477 | kmem_cache_free(iommu_domain_cache, vaddr); | ||
478 | } | ||
479 | |||
480 | static inline void * alloc_devinfo_mem(void) | ||
481 | { | ||
482 | return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC); | ||
483 | } | ||
484 | |||
485 | static inline void free_devinfo_mem(void *vaddr) | ||
486 | { | ||
487 | kmem_cache_free(iommu_devinfo_cache, vaddr); | ||
488 | } | ||
489 | |||
490 | struct iova *alloc_iova_mem(void) | ||
491 | { | ||
492 | return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC); | ||
493 | } | ||
494 | |||
495 | void free_iova_mem(struct iova *iova) | ||
496 | { | ||
497 | kmem_cache_free(iommu_iova_cache, iova); | ||
498 | } | ||
499 | |||
500 | |||
501 | static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw) | ||
502 | { | ||
503 | unsigned long sagaw; | ||
504 | int agaw = -1; | ||
505 | |||
506 | sagaw = cap_sagaw(iommu->cap); | ||
507 | for (agaw = width_to_agaw(max_gaw); | ||
508 | agaw >= 0; agaw--) { | ||
509 | if (test_bit(agaw, &sagaw)) | ||
510 | break; | ||
511 | } | ||
512 | |||
513 | return agaw; | ||
514 | } | ||
515 | |||
516 | /* | ||
517 | * Calculate max SAGAW for each iommu. | ||
518 | */ | ||
519 | int iommu_calculate_max_sagaw(struct intel_iommu *iommu) | ||
520 | { | ||
521 | return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH); | ||
522 | } | ||
523 | |||
524 | /* | ||
525 | * calculate agaw for each iommu. | ||
526 | * "SAGAW" may be different across iommus, use a default agaw, and | ||
527 | * get a supported less agaw for iommus that don't support the default agaw. | ||
528 | */ | ||
529 | int iommu_calculate_agaw(struct intel_iommu *iommu) | ||
530 | { | ||
531 | return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH); | ||
532 | } | ||
533 | |||
534 | /* This functionin only returns single iommu in a domain */ | ||
535 | static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain) | ||
536 | { | ||
537 | int iommu_id; | ||
538 | |||
539 | /* si_domain and vm domain should not get here. */ | ||
540 | BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE); | ||
541 | BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY); | ||
542 | |||
543 | iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus); | ||
544 | if (iommu_id < 0 || iommu_id >= g_num_of_iommus) | ||
545 | return NULL; | ||
546 | |||
547 | return g_iommus[iommu_id]; | ||
548 | } | ||
549 | |||
550 | static void domain_update_iommu_coherency(struct dmar_domain *domain) | ||
551 | { | ||
552 | int i; | ||
553 | |||
554 | domain->iommu_coherency = 1; | ||
555 | |||
556 | for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) { | ||
557 | if (!ecap_coherent(g_iommus[i]->ecap)) { | ||
558 | domain->iommu_coherency = 0; | ||
559 | break; | ||
560 | } | ||
561 | } | ||
562 | } | ||
563 | |||
564 | static void domain_update_iommu_snooping(struct dmar_domain *domain) | ||
565 | { | ||
566 | int i; | ||
567 | |||
568 | domain->iommu_snooping = 1; | ||
569 | |||
570 | for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) { | ||
571 | if (!ecap_sc_support(g_iommus[i]->ecap)) { | ||
572 | domain->iommu_snooping = 0; | ||
573 | break; | ||
574 | } | ||
575 | } | ||
576 | } | ||
577 | |||
578 | static void domain_update_iommu_superpage(struct dmar_domain *domain) | ||
579 | { | ||
580 | int i, mask = 0xf; | ||
581 | |||
582 | if (!intel_iommu_superpage) { | ||
583 | domain->iommu_superpage = 0; | ||
584 | return; | ||
585 | } | ||
586 | |||
587 | domain->iommu_superpage = 4; /* 1TiB */ | ||
588 | |||
589 | for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) { | ||
590 | mask |= cap_super_page_val(g_iommus[i]->cap); | ||
591 | if (!mask) { | ||
592 | break; | ||
593 | } | ||
594 | } | ||
595 | domain->iommu_superpage = fls(mask); | ||
596 | } | ||
597 | |||
598 | /* Some capabilities may be different across iommus */ | ||
599 | static void domain_update_iommu_cap(struct dmar_domain *domain) | ||
600 | { | ||
601 | domain_update_iommu_coherency(domain); | ||
602 | domain_update_iommu_snooping(domain); | ||
603 | domain_update_iommu_superpage(domain); | ||
604 | } | ||
605 | |||
606 | static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn) | ||
607 | { | ||
608 | struct dmar_drhd_unit *drhd = NULL; | ||
609 | int i; | ||
610 | |||
611 | for_each_drhd_unit(drhd) { | ||
612 | if (drhd->ignored) | ||
613 | continue; | ||
614 | if (segment != drhd->segment) | ||
615 | continue; | ||
616 | |||
617 | for (i = 0; i < drhd->devices_cnt; i++) { | ||
618 | if (drhd->devices[i] && | ||
619 | drhd->devices[i]->bus->number == bus && | ||
620 | drhd->devices[i]->devfn == devfn) | ||
621 | return drhd->iommu; | ||
622 | if (drhd->devices[i] && | ||
623 | drhd->devices[i]->subordinate && | ||
624 | drhd->devices[i]->subordinate->number <= bus && | ||
625 | drhd->devices[i]->subordinate->subordinate >= bus) | ||
626 | return drhd->iommu; | ||
627 | } | ||
628 | |||
629 | if (drhd->include_all) | ||
630 | return drhd->iommu; | ||
631 | } | ||
632 | |||
633 | return NULL; | ||
634 | } | ||
635 | |||
636 | static void domain_flush_cache(struct dmar_domain *domain, | ||
637 | void *addr, int size) | ||
638 | { | ||
639 | if (!domain->iommu_coherency) | ||
640 | clflush_cache_range(addr, size); | ||
641 | } | ||
642 | |||
643 | /* Gets context entry for a given bus and devfn */ | ||
644 | static struct context_entry * device_to_context_entry(struct intel_iommu *iommu, | ||
645 | u8 bus, u8 devfn) | ||
646 | { | ||
647 | struct root_entry *root; | ||
648 | struct context_entry *context; | ||
649 | unsigned long phy_addr; | ||
650 | unsigned long flags; | ||
651 | |||
652 | spin_lock_irqsave(&iommu->lock, flags); | ||
653 | root = &iommu->root_entry[bus]; | ||
654 | context = get_context_addr_from_root(root); | ||
655 | if (!context) { | ||
656 | context = (struct context_entry *) | ||
657 | alloc_pgtable_page(iommu->node); | ||
658 | if (!context) { | ||
659 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
660 | return NULL; | ||
661 | } | ||
662 | __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE); | ||
663 | phy_addr = virt_to_phys((void *)context); | ||
664 | set_root_value(root, phy_addr); | ||
665 | set_root_present(root); | ||
666 | __iommu_flush_cache(iommu, root, sizeof(*root)); | ||
667 | } | ||
668 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
669 | return &context[devfn]; | ||
670 | } | ||
671 | |||
672 | static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) | ||
673 | { | ||
674 | struct root_entry *root; | ||
675 | struct context_entry *context; | ||
676 | int ret; | ||
677 | unsigned long flags; | ||
678 | |||
679 | spin_lock_irqsave(&iommu->lock, flags); | ||
680 | root = &iommu->root_entry[bus]; | ||
681 | context = get_context_addr_from_root(root); | ||
682 | if (!context) { | ||
683 | ret = 0; | ||
684 | goto out; | ||
685 | } | ||
686 | ret = context_present(&context[devfn]); | ||
687 | out: | ||
688 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
689 | return ret; | ||
690 | } | ||
691 | |||
692 | static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn) | ||
693 | { | ||
694 | struct root_entry *root; | ||
695 | struct context_entry *context; | ||
696 | unsigned long flags; | ||
697 | |||
698 | spin_lock_irqsave(&iommu->lock, flags); | ||
699 | root = &iommu->root_entry[bus]; | ||
700 | context = get_context_addr_from_root(root); | ||
701 | if (context) { | ||
702 | context_clear_entry(&context[devfn]); | ||
703 | __iommu_flush_cache(iommu, &context[devfn], \ | ||
704 | sizeof(*context)); | ||
705 | } | ||
706 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
707 | } | ||
708 | |||
709 | static void free_context_table(struct intel_iommu *iommu) | ||
710 | { | ||
711 | struct root_entry *root; | ||
712 | int i; | ||
713 | unsigned long flags; | ||
714 | struct context_entry *context; | ||
715 | |||
716 | spin_lock_irqsave(&iommu->lock, flags); | ||
717 | if (!iommu->root_entry) { | ||
718 | goto out; | ||
719 | } | ||
720 | for (i = 0; i < ROOT_ENTRY_NR; i++) { | ||
721 | root = &iommu->root_entry[i]; | ||
722 | context = get_context_addr_from_root(root); | ||
723 | if (context) | ||
724 | free_pgtable_page(context); | ||
725 | } | ||
726 | free_pgtable_page(iommu->root_entry); | ||
727 | iommu->root_entry = NULL; | ||
728 | out: | ||
729 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
730 | } | ||
731 | |||
732 | static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain, | ||
733 | unsigned long pfn, int large_level) | ||
734 | { | ||
735 | int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; | ||
736 | struct dma_pte *parent, *pte = NULL; | ||
737 | int level = agaw_to_level(domain->agaw); | ||
738 | int offset, target_level; | ||
739 | |||
740 | BUG_ON(!domain->pgd); | ||
741 | BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width); | ||
742 | parent = domain->pgd; | ||
743 | |||
744 | /* Search pte */ | ||
745 | if (!large_level) | ||
746 | target_level = 1; | ||
747 | else | ||
748 | target_level = large_level; | ||
749 | |||
750 | while (level > 0) { | ||
751 | void *tmp_page; | ||
752 | |||
753 | offset = pfn_level_offset(pfn, level); | ||
754 | pte = &parent[offset]; | ||
755 | if (!large_level && (pte->val & DMA_PTE_LARGE_PAGE)) | ||
756 | break; | ||
757 | if (level == target_level) | ||
758 | break; | ||
759 | |||
760 | if (!dma_pte_present(pte)) { | ||
761 | uint64_t pteval; | ||
762 | |||
763 | tmp_page = alloc_pgtable_page(domain->nid); | ||
764 | |||
765 | if (!tmp_page) | ||
766 | return NULL; | ||
767 | |||
768 | domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE); | ||
769 | pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE; | ||
770 | if (cmpxchg64(&pte->val, 0ULL, pteval)) { | ||
771 | /* Someone else set it while we were thinking; use theirs. */ | ||
772 | free_pgtable_page(tmp_page); | ||
773 | } else { | ||
774 | dma_pte_addr(pte); | ||
775 | domain_flush_cache(domain, pte, sizeof(*pte)); | ||
776 | } | ||
777 | } | ||
778 | parent = phys_to_virt(dma_pte_addr(pte)); | ||
779 | level--; | ||
780 | } | ||
781 | |||
782 | return pte; | ||
783 | } | ||
784 | |||
785 | |||
786 | /* return address's pte at specific level */ | ||
787 | static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain, | ||
788 | unsigned long pfn, | ||
789 | int level, int *large_page) | ||
790 | { | ||
791 | struct dma_pte *parent, *pte = NULL; | ||
792 | int total = agaw_to_level(domain->agaw); | ||
793 | int offset; | ||
794 | |||
795 | parent = domain->pgd; | ||
796 | while (level <= total) { | ||
797 | offset = pfn_level_offset(pfn, total); | ||
798 | pte = &parent[offset]; | ||
799 | if (level == total) | ||
800 | return pte; | ||
801 | |||
802 | if (!dma_pte_present(pte)) { | ||
803 | *large_page = total; | ||
804 | break; | ||
805 | } | ||
806 | |||
807 | if (pte->val & DMA_PTE_LARGE_PAGE) { | ||
808 | *large_page = total; | ||
809 | return pte; | ||
810 | } | ||
811 | |||
812 | parent = phys_to_virt(dma_pte_addr(pte)); | ||
813 | total--; | ||
814 | } | ||
815 | return NULL; | ||
816 | } | ||
817 | |||
818 | /* clear last level pte, a tlb flush should be followed */ | ||
819 | static void dma_pte_clear_range(struct dmar_domain *domain, | ||
820 | unsigned long start_pfn, | ||
821 | unsigned long last_pfn) | ||
822 | { | ||
823 | int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; | ||
824 | unsigned int large_page = 1; | ||
825 | struct dma_pte *first_pte, *pte; | ||
826 | |||
827 | BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width); | ||
828 | BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width); | ||
829 | BUG_ON(start_pfn > last_pfn); | ||
830 | |||
831 | /* we don't need lock here; nobody else touches the iova range */ | ||
832 | do { | ||
833 | large_page = 1; | ||
834 | first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page); | ||
835 | if (!pte) { | ||
836 | start_pfn = align_to_level(start_pfn + 1, large_page + 1); | ||
837 | continue; | ||
838 | } | ||
839 | do { | ||
840 | dma_clear_pte(pte); | ||
841 | start_pfn += lvl_to_nr_pages(large_page); | ||
842 | pte++; | ||
843 | } while (start_pfn <= last_pfn && !first_pte_in_page(pte)); | ||
844 | |||
845 | domain_flush_cache(domain, first_pte, | ||
846 | (void *)pte - (void *)first_pte); | ||
847 | |||
848 | } while (start_pfn && start_pfn <= last_pfn); | ||
849 | } | ||
850 | |||
851 | /* free page table pages. last level pte should already be cleared */ | ||
852 | static void dma_pte_free_pagetable(struct dmar_domain *domain, | ||
853 | unsigned long start_pfn, | ||
854 | unsigned long last_pfn) | ||
855 | { | ||
856 | int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; | ||
857 | struct dma_pte *first_pte, *pte; | ||
858 | int total = agaw_to_level(domain->agaw); | ||
859 | int level; | ||
860 | unsigned long tmp; | ||
861 | int large_page = 2; | ||
862 | |||
863 | BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width); | ||
864 | BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width); | ||
865 | BUG_ON(start_pfn > last_pfn); | ||
866 | |||
867 | /* We don't need lock here; nobody else touches the iova range */ | ||
868 | level = 2; | ||
869 | while (level <= total) { | ||
870 | tmp = align_to_level(start_pfn, level); | ||
871 | |||
872 | /* If we can't even clear one PTE at this level, we're done */ | ||
873 | if (tmp + level_size(level) - 1 > last_pfn) | ||
874 | return; | ||
875 | |||
876 | do { | ||
877 | large_page = level; | ||
878 | first_pte = pte = dma_pfn_level_pte(domain, tmp, level, &large_page); | ||
879 | if (large_page > level) | ||
880 | level = large_page + 1; | ||
881 | if (!pte) { | ||
882 | tmp = align_to_level(tmp + 1, level + 1); | ||
883 | continue; | ||
884 | } | ||
885 | do { | ||
886 | if (dma_pte_present(pte)) { | ||
887 | free_pgtable_page(phys_to_virt(dma_pte_addr(pte))); | ||
888 | dma_clear_pte(pte); | ||
889 | } | ||
890 | pte++; | ||
891 | tmp += level_size(level); | ||
892 | } while (!first_pte_in_page(pte) && | ||
893 | tmp + level_size(level) - 1 <= last_pfn); | ||
894 | |||
895 | domain_flush_cache(domain, first_pte, | ||
896 | (void *)pte - (void *)first_pte); | ||
897 | |||
898 | } while (tmp && tmp + level_size(level) - 1 <= last_pfn); | ||
899 | level++; | ||
900 | } | ||
901 | /* free pgd */ | ||
902 | if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { | ||
903 | free_pgtable_page(domain->pgd); | ||
904 | domain->pgd = NULL; | ||
905 | } | ||
906 | } | ||
907 | |||
908 | /* iommu handling */ | ||
909 | static int iommu_alloc_root_entry(struct intel_iommu *iommu) | ||
910 | { | ||
911 | struct root_entry *root; | ||
912 | unsigned long flags; | ||
913 | |||
914 | root = (struct root_entry *)alloc_pgtable_page(iommu->node); | ||
915 | if (!root) | ||
916 | return -ENOMEM; | ||
917 | |||
918 | __iommu_flush_cache(iommu, root, ROOT_SIZE); | ||
919 | |||
920 | spin_lock_irqsave(&iommu->lock, flags); | ||
921 | iommu->root_entry = root; | ||
922 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
923 | |||
924 | return 0; | ||
925 | } | ||
926 | |||
927 | static void iommu_set_root_entry(struct intel_iommu *iommu) | ||
928 | { | ||
929 | void *addr; | ||
930 | u32 sts; | ||
931 | unsigned long flag; | ||
932 | |||
933 | addr = iommu->root_entry; | ||
934 | |||
935 | spin_lock_irqsave(&iommu->register_lock, flag); | ||
936 | dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr)); | ||
937 | |||
938 | writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG); | ||
939 | |||
940 | /* Make sure hardware complete it */ | ||
941 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | ||
942 | readl, (sts & DMA_GSTS_RTPS), sts); | ||
943 | |||
944 | spin_unlock_irqrestore(&iommu->register_lock, flag); | ||
945 | } | ||
946 | |||
947 | static void iommu_flush_write_buffer(struct intel_iommu *iommu) | ||
948 | { | ||
949 | u32 val; | ||
950 | unsigned long flag; | ||
951 | |||
952 | if (!rwbf_quirk && !cap_rwbf(iommu->cap)) | ||
953 | return; | ||
954 | |||
955 | spin_lock_irqsave(&iommu->register_lock, flag); | ||
956 | writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG); | ||
957 | |||
958 | /* Make sure hardware complete it */ | ||
959 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | ||
960 | readl, (!(val & DMA_GSTS_WBFS)), val); | ||
961 | |||
962 | spin_unlock_irqrestore(&iommu->register_lock, flag); | ||
963 | } | ||
964 | |||
965 | /* return value determine if we need a write buffer flush */ | ||
966 | static void __iommu_flush_context(struct intel_iommu *iommu, | ||
967 | u16 did, u16 source_id, u8 function_mask, | ||
968 | u64 type) | ||
969 | { | ||
970 | u64 val = 0; | ||
971 | unsigned long flag; | ||
972 | |||
973 | switch (type) { | ||
974 | case DMA_CCMD_GLOBAL_INVL: | ||
975 | val = DMA_CCMD_GLOBAL_INVL; | ||
976 | break; | ||
977 | case DMA_CCMD_DOMAIN_INVL: | ||
978 | val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); | ||
979 | break; | ||
980 | case DMA_CCMD_DEVICE_INVL: | ||
981 | val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) | ||
982 | | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); | ||
983 | break; | ||
984 | default: | ||
985 | BUG(); | ||
986 | } | ||
987 | val |= DMA_CCMD_ICC; | ||
988 | |||
989 | spin_lock_irqsave(&iommu->register_lock, flag); | ||
990 | dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); | ||
991 | |||
992 | /* Make sure hardware complete it */ | ||
993 | IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, | ||
994 | dmar_readq, (!(val & DMA_CCMD_ICC)), val); | ||
995 | |||
996 | spin_unlock_irqrestore(&iommu->register_lock, flag); | ||
997 | } | ||
998 | |||
999 | /* return value determine if we need a write buffer flush */ | ||
1000 | static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, | ||
1001 | u64 addr, unsigned int size_order, u64 type) | ||
1002 | { | ||
1003 | int tlb_offset = ecap_iotlb_offset(iommu->ecap); | ||
1004 | u64 val = 0, val_iva = 0; | ||
1005 | unsigned long flag; | ||
1006 | |||
1007 | switch (type) { | ||
1008 | case DMA_TLB_GLOBAL_FLUSH: | ||
1009 | /* global flush doesn't need set IVA_REG */ | ||
1010 | val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; | ||
1011 | break; | ||
1012 | case DMA_TLB_DSI_FLUSH: | ||
1013 | val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); | ||
1014 | break; | ||
1015 | case DMA_TLB_PSI_FLUSH: | ||
1016 | val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); | ||
1017 | /* Note: always flush non-leaf currently */ | ||
1018 | val_iva = size_order | addr; | ||
1019 | break; | ||
1020 | default: | ||
1021 | BUG(); | ||
1022 | } | ||
1023 | /* Note: set drain read/write */ | ||
1024 | #if 0 | ||
1025 | /* | ||
1026 | * This is probably to be super secure.. Looks like we can | ||
1027 | * ignore it without any impact. | ||
1028 | */ | ||
1029 | if (cap_read_drain(iommu->cap)) | ||
1030 | val |= DMA_TLB_READ_DRAIN; | ||
1031 | #endif | ||
1032 | if (cap_write_drain(iommu->cap)) | ||
1033 | val |= DMA_TLB_WRITE_DRAIN; | ||
1034 | |||
1035 | spin_lock_irqsave(&iommu->register_lock, flag); | ||
1036 | /* Note: Only uses first TLB reg currently */ | ||
1037 | if (val_iva) | ||
1038 | dmar_writeq(iommu->reg + tlb_offset, val_iva); | ||
1039 | dmar_writeq(iommu->reg + tlb_offset + 8, val); | ||
1040 | |||
1041 | /* Make sure hardware complete it */ | ||
1042 | IOMMU_WAIT_OP(iommu, tlb_offset + 8, | ||
1043 | dmar_readq, (!(val & DMA_TLB_IVT)), val); | ||
1044 | |||
1045 | spin_unlock_irqrestore(&iommu->register_lock, flag); | ||
1046 | |||
1047 | /* check IOTLB invalidation granularity */ | ||
1048 | if (DMA_TLB_IAIG(val) == 0) | ||
1049 | printk(KERN_ERR"IOMMU: flush IOTLB failed\n"); | ||
1050 | if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) | ||
1051 | pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n", | ||
1052 | (unsigned long long)DMA_TLB_IIRG(type), | ||
1053 | (unsigned long long)DMA_TLB_IAIG(val)); | ||
1054 | } | ||
1055 | |||
1056 | static struct device_domain_info *iommu_support_dev_iotlb( | ||
1057 | struct dmar_domain *domain, int segment, u8 bus, u8 devfn) | ||
1058 | { | ||
1059 | int found = 0; | ||
1060 | unsigned long flags; | ||
1061 | struct device_domain_info *info; | ||
1062 | struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn); | ||
1063 | |||
1064 | if (!ecap_dev_iotlb_support(iommu->ecap)) | ||
1065 | return NULL; | ||
1066 | |||
1067 | if (!iommu->qi) | ||
1068 | return NULL; | ||
1069 | |||
1070 | spin_lock_irqsave(&device_domain_lock, flags); | ||
1071 | list_for_each_entry(info, &domain->devices, link) | ||
1072 | if (info->bus == bus && info->devfn == devfn) { | ||
1073 | found = 1; | ||
1074 | break; | ||
1075 | } | ||
1076 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
1077 | |||
1078 | if (!found || !info->dev) | ||
1079 | return NULL; | ||
1080 | |||
1081 | if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS)) | ||
1082 | return NULL; | ||
1083 | |||
1084 | if (!dmar_find_matched_atsr_unit(info->dev)) | ||
1085 | return NULL; | ||
1086 | |||
1087 | info->iommu = iommu; | ||
1088 | |||
1089 | return info; | ||
1090 | } | ||
1091 | |||
1092 | static void iommu_enable_dev_iotlb(struct device_domain_info *info) | ||
1093 | { | ||
1094 | if (!info) | ||
1095 | return; | ||
1096 | |||
1097 | pci_enable_ats(info->dev, VTD_PAGE_SHIFT); | ||
1098 | } | ||
1099 | |||
1100 | static void iommu_disable_dev_iotlb(struct device_domain_info *info) | ||
1101 | { | ||
1102 | if (!info->dev || !pci_ats_enabled(info->dev)) | ||
1103 | return; | ||
1104 | |||
1105 | pci_disable_ats(info->dev); | ||
1106 | } | ||
1107 | |||
1108 | static void iommu_flush_dev_iotlb(struct dmar_domain *domain, | ||
1109 | u64 addr, unsigned mask) | ||
1110 | { | ||
1111 | u16 sid, qdep; | ||
1112 | unsigned long flags; | ||
1113 | struct device_domain_info *info; | ||
1114 | |||
1115 | spin_lock_irqsave(&device_domain_lock, flags); | ||
1116 | list_for_each_entry(info, &domain->devices, link) { | ||
1117 | if (!info->dev || !pci_ats_enabled(info->dev)) | ||
1118 | continue; | ||
1119 | |||
1120 | sid = info->bus << 8 | info->devfn; | ||
1121 | qdep = pci_ats_queue_depth(info->dev); | ||
1122 | qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask); | ||
1123 | } | ||
1124 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
1125 | } | ||
1126 | |||
1127 | static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did, | ||
1128 | unsigned long pfn, unsigned int pages, int map) | ||
1129 | { | ||
1130 | unsigned int mask = ilog2(__roundup_pow_of_two(pages)); | ||
1131 | uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT; | ||
1132 | |||
1133 | BUG_ON(pages == 0); | ||
1134 | |||
1135 | /* | ||
1136 | * Fallback to domain selective flush if no PSI support or the size is | ||
1137 | * too big. | ||
1138 | * PSI requires page size to be 2 ^ x, and the base address is naturally | ||
1139 | * aligned to the size | ||
1140 | */ | ||
1141 | if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap)) | ||
1142 | iommu->flush.flush_iotlb(iommu, did, 0, 0, | ||
1143 | DMA_TLB_DSI_FLUSH); | ||
1144 | else | ||
1145 | iommu->flush.flush_iotlb(iommu, did, addr, mask, | ||
1146 | DMA_TLB_PSI_FLUSH); | ||
1147 | |||
1148 | /* | ||
1149 | * In caching mode, changes of pages from non-present to present require | ||
1150 | * flush. However, device IOTLB doesn't need to be flushed in this case. | ||
1151 | */ | ||
1152 | if (!cap_caching_mode(iommu->cap) || !map) | ||
1153 | iommu_flush_dev_iotlb(iommu->domains[did], addr, mask); | ||
1154 | } | ||
1155 | |||
1156 | static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) | ||
1157 | { | ||
1158 | u32 pmen; | ||
1159 | unsigned long flags; | ||
1160 | |||
1161 | spin_lock_irqsave(&iommu->register_lock, flags); | ||
1162 | pmen = readl(iommu->reg + DMAR_PMEN_REG); | ||
1163 | pmen &= ~DMA_PMEN_EPM; | ||
1164 | writel(pmen, iommu->reg + DMAR_PMEN_REG); | ||
1165 | |||
1166 | /* wait for the protected region status bit to clear */ | ||
1167 | IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, | ||
1168 | readl, !(pmen & DMA_PMEN_PRS), pmen); | ||
1169 | |||
1170 | spin_unlock_irqrestore(&iommu->register_lock, flags); | ||
1171 | } | ||
1172 | |||
1173 | static int iommu_enable_translation(struct intel_iommu *iommu) | ||
1174 | { | ||
1175 | u32 sts; | ||
1176 | unsigned long flags; | ||
1177 | |||
1178 | spin_lock_irqsave(&iommu->register_lock, flags); | ||
1179 | iommu->gcmd |= DMA_GCMD_TE; | ||
1180 | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); | ||
1181 | |||
1182 | /* Make sure hardware complete it */ | ||
1183 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | ||
1184 | readl, (sts & DMA_GSTS_TES), sts); | ||
1185 | |||
1186 | spin_unlock_irqrestore(&iommu->register_lock, flags); | ||
1187 | return 0; | ||
1188 | } | ||
1189 | |||
1190 | static int iommu_disable_translation(struct intel_iommu *iommu) | ||
1191 | { | ||
1192 | u32 sts; | ||
1193 | unsigned long flag; | ||
1194 | |||
1195 | spin_lock_irqsave(&iommu->register_lock, flag); | ||
1196 | iommu->gcmd &= ~DMA_GCMD_TE; | ||
1197 | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); | ||
1198 | |||
1199 | /* Make sure hardware complete it */ | ||
1200 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | ||
1201 | readl, (!(sts & DMA_GSTS_TES)), sts); | ||
1202 | |||
1203 | spin_unlock_irqrestore(&iommu->register_lock, flag); | ||
1204 | return 0; | ||
1205 | } | ||
1206 | |||
1207 | |||
1208 | static int iommu_init_domains(struct intel_iommu *iommu) | ||
1209 | { | ||
1210 | unsigned long ndomains; | ||
1211 | unsigned long nlongs; | ||
1212 | |||
1213 | ndomains = cap_ndoms(iommu->cap); | ||
1214 | pr_debug("IOMMU %d: Number of Domains supportd <%ld>\n", iommu->seq_id, | ||
1215 | ndomains); | ||
1216 | nlongs = BITS_TO_LONGS(ndomains); | ||
1217 | |||
1218 | spin_lock_init(&iommu->lock); | ||
1219 | |||
1220 | /* TBD: there might be 64K domains, | ||
1221 | * consider other allocation for future chip | ||
1222 | */ | ||
1223 | iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL); | ||
1224 | if (!iommu->domain_ids) { | ||
1225 | printk(KERN_ERR "Allocating domain id array failed\n"); | ||
1226 | return -ENOMEM; | ||
1227 | } | ||
1228 | iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *), | ||
1229 | GFP_KERNEL); | ||
1230 | if (!iommu->domains) { | ||
1231 | printk(KERN_ERR "Allocating domain array failed\n"); | ||
1232 | return -ENOMEM; | ||
1233 | } | ||
1234 | |||
1235 | /* | ||
1236 | * if Caching mode is set, then invalid translations are tagged | ||
1237 | * with domainid 0. Hence we need to pre-allocate it. | ||
1238 | */ | ||
1239 | if (cap_caching_mode(iommu->cap)) | ||
1240 | set_bit(0, iommu->domain_ids); | ||
1241 | return 0; | ||
1242 | } | ||
1243 | |||
1244 | |||
1245 | static void domain_exit(struct dmar_domain *domain); | ||
1246 | static void vm_domain_exit(struct dmar_domain *domain); | ||
1247 | |||
1248 | void free_dmar_iommu(struct intel_iommu *iommu) | ||
1249 | { | ||
1250 | struct dmar_domain *domain; | ||
1251 | int i; | ||
1252 | unsigned long flags; | ||
1253 | |||
1254 | if ((iommu->domains) && (iommu->domain_ids)) { | ||
1255 | for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) { | ||
1256 | domain = iommu->domains[i]; | ||
1257 | clear_bit(i, iommu->domain_ids); | ||
1258 | |||
1259 | spin_lock_irqsave(&domain->iommu_lock, flags); | ||
1260 | if (--domain->iommu_count == 0) { | ||
1261 | if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) | ||
1262 | vm_domain_exit(domain); | ||
1263 | else | ||
1264 | domain_exit(domain); | ||
1265 | } | ||
1266 | spin_unlock_irqrestore(&domain->iommu_lock, flags); | ||
1267 | } | ||
1268 | } | ||
1269 | |||
1270 | if (iommu->gcmd & DMA_GCMD_TE) | ||
1271 | iommu_disable_translation(iommu); | ||
1272 | |||
1273 | if (iommu->irq) { | ||
1274 | irq_set_handler_data(iommu->irq, NULL); | ||
1275 | /* This will mask the irq */ | ||
1276 | free_irq(iommu->irq, iommu); | ||
1277 | destroy_irq(iommu->irq); | ||
1278 | } | ||
1279 | |||
1280 | kfree(iommu->domains); | ||
1281 | kfree(iommu->domain_ids); | ||
1282 | |||
1283 | g_iommus[iommu->seq_id] = NULL; | ||
1284 | |||
1285 | /* if all iommus are freed, free g_iommus */ | ||
1286 | for (i = 0; i < g_num_of_iommus; i++) { | ||
1287 | if (g_iommus[i]) | ||
1288 | break; | ||
1289 | } | ||
1290 | |||
1291 | if (i == g_num_of_iommus) | ||
1292 | kfree(g_iommus); | ||
1293 | |||
1294 | /* free context mapping */ | ||
1295 | free_context_table(iommu); | ||
1296 | } | ||
1297 | |||
1298 | static struct dmar_domain *alloc_domain(void) | ||
1299 | { | ||
1300 | struct dmar_domain *domain; | ||
1301 | |||
1302 | domain = alloc_domain_mem(); | ||
1303 | if (!domain) | ||
1304 | return NULL; | ||
1305 | |||
1306 | domain->nid = -1; | ||
1307 | memset(&domain->iommu_bmp, 0, sizeof(unsigned long)); | ||
1308 | domain->flags = 0; | ||
1309 | |||
1310 | return domain; | ||
1311 | } | ||
1312 | |||
1313 | static int iommu_attach_domain(struct dmar_domain *domain, | ||
1314 | struct intel_iommu *iommu) | ||
1315 | { | ||
1316 | int num; | ||
1317 | unsigned long ndomains; | ||
1318 | unsigned long flags; | ||
1319 | |||
1320 | ndomains = cap_ndoms(iommu->cap); | ||
1321 | |||
1322 | spin_lock_irqsave(&iommu->lock, flags); | ||
1323 | |||
1324 | num = find_first_zero_bit(iommu->domain_ids, ndomains); | ||
1325 | if (num >= ndomains) { | ||
1326 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
1327 | printk(KERN_ERR "IOMMU: no free domain ids\n"); | ||
1328 | return -ENOMEM; | ||
1329 | } | ||
1330 | |||
1331 | domain->id = num; | ||
1332 | set_bit(num, iommu->domain_ids); | ||
1333 | set_bit(iommu->seq_id, &domain->iommu_bmp); | ||
1334 | iommu->domains[num] = domain; | ||
1335 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
1336 | |||
1337 | return 0; | ||
1338 | } | ||
1339 | |||
1340 | static void iommu_detach_domain(struct dmar_domain *domain, | ||
1341 | struct intel_iommu *iommu) | ||
1342 | { | ||
1343 | unsigned long flags; | ||
1344 | int num, ndomains; | ||
1345 | int found = 0; | ||
1346 | |||
1347 | spin_lock_irqsave(&iommu->lock, flags); | ||
1348 | ndomains = cap_ndoms(iommu->cap); | ||
1349 | for_each_set_bit(num, iommu->domain_ids, ndomains) { | ||
1350 | if (iommu->domains[num] == domain) { | ||
1351 | found = 1; | ||
1352 | break; | ||
1353 | } | ||
1354 | } | ||
1355 | |||
1356 | if (found) { | ||
1357 | clear_bit(num, iommu->domain_ids); | ||
1358 | clear_bit(iommu->seq_id, &domain->iommu_bmp); | ||
1359 | iommu->domains[num] = NULL; | ||
1360 | } | ||
1361 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
1362 | } | ||
1363 | |||
1364 | static struct iova_domain reserved_iova_list; | ||
1365 | static struct lock_class_key reserved_rbtree_key; | ||
1366 | |||
1367 | static int dmar_init_reserved_ranges(void) | ||
1368 | { | ||
1369 | struct pci_dev *pdev = NULL; | ||
1370 | struct iova *iova; | ||
1371 | int i; | ||
1372 | |||
1373 | init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN); | ||
1374 | |||
1375 | lockdep_set_class(&reserved_iova_list.iova_rbtree_lock, | ||
1376 | &reserved_rbtree_key); | ||
1377 | |||
1378 | /* IOAPIC ranges shouldn't be accessed by DMA */ | ||
1379 | iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START), | ||
1380 | IOVA_PFN(IOAPIC_RANGE_END)); | ||
1381 | if (!iova) { | ||
1382 | printk(KERN_ERR "Reserve IOAPIC range failed\n"); | ||
1383 | return -ENODEV; | ||
1384 | } | ||
1385 | |||
1386 | /* Reserve all PCI MMIO to avoid peer-to-peer access */ | ||
1387 | for_each_pci_dev(pdev) { | ||
1388 | struct resource *r; | ||
1389 | |||
1390 | for (i = 0; i < PCI_NUM_RESOURCES; i++) { | ||
1391 | r = &pdev->resource[i]; | ||
1392 | if (!r->flags || !(r->flags & IORESOURCE_MEM)) | ||
1393 | continue; | ||
1394 | iova = reserve_iova(&reserved_iova_list, | ||
1395 | IOVA_PFN(r->start), | ||
1396 | IOVA_PFN(r->end)); | ||
1397 | if (!iova) { | ||
1398 | printk(KERN_ERR "Reserve iova failed\n"); | ||
1399 | return -ENODEV; | ||
1400 | } | ||
1401 | } | ||
1402 | } | ||
1403 | return 0; | ||
1404 | } | ||
1405 | |||
1406 | static void domain_reserve_special_ranges(struct dmar_domain *domain) | ||
1407 | { | ||
1408 | copy_reserved_iova(&reserved_iova_list, &domain->iovad); | ||
1409 | } | ||
1410 | |||
1411 | static inline int guestwidth_to_adjustwidth(int gaw) | ||
1412 | { | ||
1413 | int agaw; | ||
1414 | int r = (gaw - 12) % 9; | ||
1415 | |||
1416 | if (r == 0) | ||
1417 | agaw = gaw; | ||
1418 | else | ||
1419 | agaw = gaw + 9 - r; | ||
1420 | if (agaw > 64) | ||
1421 | agaw = 64; | ||
1422 | return agaw; | ||
1423 | } | ||
1424 | |||
1425 | static int domain_init(struct dmar_domain *domain, int guest_width) | ||
1426 | { | ||
1427 | struct intel_iommu *iommu; | ||
1428 | int adjust_width, agaw; | ||
1429 | unsigned long sagaw; | ||
1430 | |||
1431 | init_iova_domain(&domain->iovad, DMA_32BIT_PFN); | ||
1432 | spin_lock_init(&domain->iommu_lock); | ||
1433 | |||
1434 | domain_reserve_special_ranges(domain); | ||
1435 | |||
1436 | /* calculate AGAW */ | ||
1437 | iommu = domain_get_iommu(domain); | ||
1438 | if (guest_width > cap_mgaw(iommu->cap)) | ||
1439 | guest_width = cap_mgaw(iommu->cap); | ||
1440 | domain->gaw = guest_width; | ||
1441 | adjust_width = guestwidth_to_adjustwidth(guest_width); | ||
1442 | agaw = width_to_agaw(adjust_width); | ||
1443 | sagaw = cap_sagaw(iommu->cap); | ||
1444 | if (!test_bit(agaw, &sagaw)) { | ||
1445 | /* hardware doesn't support it, choose a bigger one */ | ||
1446 | pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw); | ||
1447 | agaw = find_next_bit(&sagaw, 5, agaw); | ||
1448 | if (agaw >= 5) | ||
1449 | return -ENODEV; | ||
1450 | } | ||
1451 | domain->agaw = agaw; | ||
1452 | INIT_LIST_HEAD(&domain->devices); | ||
1453 | |||
1454 | if (ecap_coherent(iommu->ecap)) | ||
1455 | domain->iommu_coherency = 1; | ||
1456 | else | ||
1457 | domain->iommu_coherency = 0; | ||
1458 | |||
1459 | if (ecap_sc_support(iommu->ecap)) | ||
1460 | domain->iommu_snooping = 1; | ||
1461 | else | ||
1462 | domain->iommu_snooping = 0; | ||
1463 | |||
1464 | domain->iommu_superpage = fls(cap_super_page_val(iommu->cap)); | ||
1465 | domain->iommu_count = 1; | ||
1466 | domain->nid = iommu->node; | ||
1467 | |||
1468 | /* always allocate the top pgd */ | ||
1469 | domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid); | ||
1470 | if (!domain->pgd) | ||
1471 | return -ENOMEM; | ||
1472 | __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE); | ||
1473 | return 0; | ||
1474 | } | ||
1475 | |||
1476 | static void domain_exit(struct dmar_domain *domain) | ||
1477 | { | ||
1478 | struct dmar_drhd_unit *drhd; | ||
1479 | struct intel_iommu *iommu; | ||
1480 | |||
1481 | /* Domain 0 is reserved, so dont process it */ | ||
1482 | if (!domain) | ||
1483 | return; | ||
1484 | |||
1485 | /* Flush any lazy unmaps that may reference this domain */ | ||
1486 | if (!intel_iommu_strict) | ||
1487 | flush_unmaps_timeout(0); | ||
1488 | |||
1489 | domain_remove_dev_info(domain); | ||
1490 | /* destroy iovas */ | ||
1491 | put_iova_domain(&domain->iovad); | ||
1492 | |||
1493 | /* clear ptes */ | ||
1494 | dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); | ||
1495 | |||
1496 | /* free page tables */ | ||
1497 | dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); | ||
1498 | |||
1499 | for_each_active_iommu(iommu, drhd) | ||
1500 | if (test_bit(iommu->seq_id, &domain->iommu_bmp)) | ||
1501 | iommu_detach_domain(domain, iommu); | ||
1502 | |||
1503 | free_domain_mem(domain); | ||
1504 | } | ||
1505 | |||
1506 | static int domain_context_mapping_one(struct dmar_domain *domain, int segment, | ||
1507 | u8 bus, u8 devfn, int translation) | ||
1508 | { | ||
1509 | struct context_entry *context; | ||
1510 | unsigned long flags; | ||
1511 | struct intel_iommu *iommu; | ||
1512 | struct dma_pte *pgd; | ||
1513 | unsigned long num; | ||
1514 | unsigned long ndomains; | ||
1515 | int id; | ||
1516 | int agaw; | ||
1517 | struct device_domain_info *info = NULL; | ||
1518 | |||
1519 | pr_debug("Set context mapping for %02x:%02x.%d\n", | ||
1520 | bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); | ||
1521 | |||
1522 | BUG_ON(!domain->pgd); | ||
1523 | BUG_ON(translation != CONTEXT_TT_PASS_THROUGH && | ||
1524 | translation != CONTEXT_TT_MULTI_LEVEL); | ||
1525 | |||
1526 | iommu = device_to_iommu(segment, bus, devfn); | ||
1527 | if (!iommu) | ||
1528 | return -ENODEV; | ||
1529 | |||
1530 | context = device_to_context_entry(iommu, bus, devfn); | ||
1531 | if (!context) | ||
1532 | return -ENOMEM; | ||
1533 | spin_lock_irqsave(&iommu->lock, flags); | ||
1534 | if (context_present(context)) { | ||
1535 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
1536 | return 0; | ||
1537 | } | ||
1538 | |||
1539 | id = domain->id; | ||
1540 | pgd = domain->pgd; | ||
1541 | |||
1542 | if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE || | ||
1543 | domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) { | ||
1544 | int found = 0; | ||
1545 | |||
1546 | /* find an available domain id for this device in iommu */ | ||
1547 | ndomains = cap_ndoms(iommu->cap); | ||
1548 | for_each_set_bit(num, iommu->domain_ids, ndomains) { | ||
1549 | if (iommu->domains[num] == domain) { | ||
1550 | id = num; | ||
1551 | found = 1; | ||
1552 | break; | ||
1553 | } | ||
1554 | } | ||
1555 | |||
1556 | if (found == 0) { | ||
1557 | num = find_first_zero_bit(iommu->domain_ids, ndomains); | ||
1558 | if (num >= ndomains) { | ||
1559 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
1560 | printk(KERN_ERR "IOMMU: no free domain ids\n"); | ||
1561 | return -EFAULT; | ||
1562 | } | ||
1563 | |||
1564 | set_bit(num, iommu->domain_ids); | ||
1565 | iommu->domains[num] = domain; | ||
1566 | id = num; | ||
1567 | } | ||
1568 | |||
1569 | /* Skip top levels of page tables for | ||
1570 | * iommu which has less agaw than default. | ||
1571 | * Unnecessary for PT mode. | ||
1572 | */ | ||
1573 | if (translation != CONTEXT_TT_PASS_THROUGH) { | ||
1574 | for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) { | ||
1575 | pgd = phys_to_virt(dma_pte_addr(pgd)); | ||
1576 | if (!dma_pte_present(pgd)) { | ||
1577 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
1578 | return -ENOMEM; | ||
1579 | } | ||
1580 | } | ||
1581 | } | ||
1582 | } | ||
1583 | |||
1584 | context_set_domain_id(context, id); | ||
1585 | |||
1586 | if (translation != CONTEXT_TT_PASS_THROUGH) { | ||
1587 | info = iommu_support_dev_iotlb(domain, segment, bus, devfn); | ||
1588 | translation = info ? CONTEXT_TT_DEV_IOTLB : | ||
1589 | CONTEXT_TT_MULTI_LEVEL; | ||
1590 | } | ||
1591 | /* | ||
1592 | * In pass through mode, AW must be programmed to indicate the largest | ||
1593 | * AGAW value supported by hardware. And ASR is ignored by hardware. | ||
1594 | */ | ||
1595 | if (unlikely(translation == CONTEXT_TT_PASS_THROUGH)) | ||
1596 | context_set_address_width(context, iommu->msagaw); | ||
1597 | else { | ||
1598 | context_set_address_root(context, virt_to_phys(pgd)); | ||
1599 | context_set_address_width(context, iommu->agaw); | ||
1600 | } | ||
1601 | |||
1602 | context_set_translation_type(context, translation); | ||
1603 | context_set_fault_enable(context); | ||
1604 | context_set_present(context); | ||
1605 | domain_flush_cache(domain, context, sizeof(*context)); | ||
1606 | |||
1607 | /* | ||
1608 | * It's a non-present to present mapping. If hardware doesn't cache | ||
1609 | * non-present entry we only need to flush the write-buffer. If the | ||
1610 | * _does_ cache non-present entries, then it does so in the special | ||
1611 | * domain #0, which we have to flush: | ||
1612 | */ | ||
1613 | if (cap_caching_mode(iommu->cap)) { | ||
1614 | iommu->flush.flush_context(iommu, 0, | ||
1615 | (((u16)bus) << 8) | devfn, | ||
1616 | DMA_CCMD_MASK_NOBIT, | ||
1617 | DMA_CCMD_DEVICE_INVL); | ||
1618 | iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH); | ||
1619 | } else { | ||
1620 | iommu_flush_write_buffer(iommu); | ||
1621 | } | ||
1622 | iommu_enable_dev_iotlb(info); | ||
1623 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
1624 | |||
1625 | spin_lock_irqsave(&domain->iommu_lock, flags); | ||
1626 | if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) { | ||
1627 | domain->iommu_count++; | ||
1628 | if (domain->iommu_count == 1) | ||
1629 | domain->nid = iommu->node; | ||
1630 | domain_update_iommu_cap(domain); | ||
1631 | } | ||
1632 | spin_unlock_irqrestore(&domain->iommu_lock, flags); | ||
1633 | return 0; | ||
1634 | } | ||
1635 | |||
1636 | static int | ||
1637 | domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev, | ||
1638 | int translation) | ||
1639 | { | ||
1640 | int ret; | ||
1641 | struct pci_dev *tmp, *parent; | ||
1642 | |||
1643 | ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus), | ||
1644 | pdev->bus->number, pdev->devfn, | ||
1645 | translation); | ||
1646 | if (ret) | ||
1647 | return ret; | ||
1648 | |||
1649 | /* dependent device mapping */ | ||
1650 | tmp = pci_find_upstream_pcie_bridge(pdev); | ||
1651 | if (!tmp) | ||
1652 | return 0; | ||
1653 | /* Secondary interface's bus number and devfn 0 */ | ||
1654 | parent = pdev->bus->self; | ||
1655 | while (parent != tmp) { | ||
1656 | ret = domain_context_mapping_one(domain, | ||
1657 | pci_domain_nr(parent->bus), | ||
1658 | parent->bus->number, | ||
1659 | parent->devfn, translation); | ||
1660 | if (ret) | ||
1661 | return ret; | ||
1662 | parent = parent->bus->self; | ||
1663 | } | ||
1664 | if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */ | ||
1665 | return domain_context_mapping_one(domain, | ||
1666 | pci_domain_nr(tmp->subordinate), | ||
1667 | tmp->subordinate->number, 0, | ||
1668 | translation); | ||
1669 | else /* this is a legacy PCI bridge */ | ||
1670 | return domain_context_mapping_one(domain, | ||
1671 | pci_domain_nr(tmp->bus), | ||
1672 | tmp->bus->number, | ||
1673 | tmp->devfn, | ||
1674 | translation); | ||
1675 | } | ||
1676 | |||
1677 | static int domain_context_mapped(struct pci_dev *pdev) | ||
1678 | { | ||
1679 | int ret; | ||
1680 | struct pci_dev *tmp, *parent; | ||
1681 | struct intel_iommu *iommu; | ||
1682 | |||
1683 | iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number, | ||
1684 | pdev->devfn); | ||
1685 | if (!iommu) | ||
1686 | return -ENODEV; | ||
1687 | |||
1688 | ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn); | ||
1689 | if (!ret) | ||
1690 | return ret; | ||
1691 | /* dependent device mapping */ | ||
1692 | tmp = pci_find_upstream_pcie_bridge(pdev); | ||
1693 | if (!tmp) | ||
1694 | return ret; | ||
1695 | /* Secondary interface's bus number and devfn 0 */ | ||
1696 | parent = pdev->bus->self; | ||
1697 | while (parent != tmp) { | ||
1698 | ret = device_context_mapped(iommu, parent->bus->number, | ||
1699 | parent->devfn); | ||
1700 | if (!ret) | ||
1701 | return ret; | ||
1702 | parent = parent->bus->self; | ||
1703 | } | ||
1704 | if (pci_is_pcie(tmp)) | ||
1705 | return device_context_mapped(iommu, tmp->subordinate->number, | ||
1706 | 0); | ||
1707 | else | ||
1708 | return device_context_mapped(iommu, tmp->bus->number, | ||
1709 | tmp->devfn); | ||
1710 | } | ||
1711 | |||
1712 | /* Returns a number of VTD pages, but aligned to MM page size */ | ||
1713 | static inline unsigned long aligned_nrpages(unsigned long host_addr, | ||
1714 | size_t size) | ||
1715 | { | ||
1716 | host_addr &= ~PAGE_MASK; | ||
1717 | return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT; | ||
1718 | } | ||
1719 | |||
1720 | /* Return largest possible superpage level for a given mapping */ | ||
1721 | static inline int hardware_largepage_caps(struct dmar_domain *domain, | ||
1722 | unsigned long iov_pfn, | ||
1723 | unsigned long phy_pfn, | ||
1724 | unsigned long pages) | ||
1725 | { | ||
1726 | int support, level = 1; | ||
1727 | unsigned long pfnmerge; | ||
1728 | |||
1729 | support = domain->iommu_superpage; | ||
1730 | |||
1731 | /* To use a large page, the virtual *and* physical addresses | ||
1732 | must be aligned to 2MiB/1GiB/etc. Lower bits set in either | ||
1733 | of them will mean we have to use smaller pages. So just | ||
1734 | merge them and check both at once. */ | ||
1735 | pfnmerge = iov_pfn | phy_pfn; | ||
1736 | |||
1737 | while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) { | ||
1738 | pages >>= VTD_STRIDE_SHIFT; | ||
1739 | if (!pages) | ||
1740 | break; | ||
1741 | pfnmerge >>= VTD_STRIDE_SHIFT; | ||
1742 | level++; | ||
1743 | support--; | ||
1744 | } | ||
1745 | return level; | ||
1746 | } | ||
1747 | |||
1748 | static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn, | ||
1749 | struct scatterlist *sg, unsigned long phys_pfn, | ||
1750 | unsigned long nr_pages, int prot) | ||
1751 | { | ||
1752 | struct dma_pte *first_pte = NULL, *pte = NULL; | ||
1753 | phys_addr_t uninitialized_var(pteval); | ||
1754 | int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; | ||
1755 | unsigned long sg_res; | ||
1756 | unsigned int largepage_lvl = 0; | ||
1757 | unsigned long lvl_pages = 0; | ||
1758 | |||
1759 | BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width); | ||
1760 | |||
1761 | if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) | ||
1762 | return -EINVAL; | ||
1763 | |||
1764 | prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP; | ||
1765 | |||
1766 | if (sg) | ||
1767 | sg_res = 0; | ||
1768 | else { | ||
1769 | sg_res = nr_pages + 1; | ||
1770 | pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot; | ||
1771 | } | ||
1772 | |||
1773 | while (nr_pages > 0) { | ||
1774 | uint64_t tmp; | ||
1775 | |||
1776 | if (!sg_res) { | ||
1777 | sg_res = aligned_nrpages(sg->offset, sg->length); | ||
1778 | sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset; | ||
1779 | sg->dma_length = sg->length; | ||
1780 | pteval = page_to_phys(sg_page(sg)) | prot; | ||
1781 | phys_pfn = pteval >> VTD_PAGE_SHIFT; | ||
1782 | } | ||
1783 | |||
1784 | if (!pte) { | ||
1785 | largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res); | ||
1786 | |||
1787 | first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl); | ||
1788 | if (!pte) | ||
1789 | return -ENOMEM; | ||
1790 | /* It is large page*/ | ||
1791 | if (largepage_lvl > 1) | ||
1792 | pteval |= DMA_PTE_LARGE_PAGE; | ||
1793 | else | ||
1794 | pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE; | ||
1795 | |||
1796 | } | ||
1797 | /* We don't need lock here, nobody else | ||
1798 | * touches the iova range | ||
1799 | */ | ||
1800 | tmp = cmpxchg64_local(&pte->val, 0ULL, pteval); | ||
1801 | if (tmp) { | ||
1802 | static int dumps = 5; | ||
1803 | printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n", | ||
1804 | iov_pfn, tmp, (unsigned long long)pteval); | ||
1805 | if (dumps) { | ||
1806 | dumps--; | ||
1807 | debug_dma_dump_mappings(NULL); | ||
1808 | } | ||
1809 | WARN_ON(1); | ||
1810 | } | ||
1811 | |||
1812 | lvl_pages = lvl_to_nr_pages(largepage_lvl); | ||
1813 | |||
1814 | BUG_ON(nr_pages < lvl_pages); | ||
1815 | BUG_ON(sg_res < lvl_pages); | ||
1816 | |||
1817 | nr_pages -= lvl_pages; | ||
1818 | iov_pfn += lvl_pages; | ||
1819 | phys_pfn += lvl_pages; | ||
1820 | pteval += lvl_pages * VTD_PAGE_SIZE; | ||
1821 | sg_res -= lvl_pages; | ||
1822 | |||
1823 | /* If the next PTE would be the first in a new page, then we | ||
1824 | need to flush the cache on the entries we've just written. | ||
1825 | And then we'll need to recalculate 'pte', so clear it and | ||
1826 | let it get set again in the if (!pte) block above. | ||
1827 | |||
1828 | If we're done (!nr_pages) we need to flush the cache too. | ||
1829 | |||
1830 | Also if we've been setting superpages, we may need to | ||
1831 | recalculate 'pte' and switch back to smaller pages for the | ||
1832 | end of the mapping, if the trailing size is not enough to | ||
1833 | use another superpage (i.e. sg_res < lvl_pages). */ | ||
1834 | pte++; | ||
1835 | if (!nr_pages || first_pte_in_page(pte) || | ||
1836 | (largepage_lvl > 1 && sg_res < lvl_pages)) { | ||
1837 | domain_flush_cache(domain, first_pte, | ||
1838 | (void *)pte - (void *)first_pte); | ||
1839 | pte = NULL; | ||
1840 | } | ||
1841 | |||
1842 | if (!sg_res && nr_pages) | ||
1843 | sg = sg_next(sg); | ||
1844 | } | ||
1845 | return 0; | ||
1846 | } | ||
1847 | |||
1848 | static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn, | ||
1849 | struct scatterlist *sg, unsigned long nr_pages, | ||
1850 | int prot) | ||
1851 | { | ||
1852 | return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot); | ||
1853 | } | ||
1854 | |||
1855 | static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn, | ||
1856 | unsigned long phys_pfn, unsigned long nr_pages, | ||
1857 | int prot) | ||
1858 | { | ||
1859 | return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot); | ||
1860 | } | ||
1861 | |||
1862 | static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn) | ||
1863 | { | ||
1864 | if (!iommu) | ||
1865 | return; | ||
1866 | |||
1867 | clear_context_table(iommu, bus, devfn); | ||
1868 | iommu->flush.flush_context(iommu, 0, 0, 0, | ||
1869 | DMA_CCMD_GLOBAL_INVL); | ||
1870 | iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); | ||
1871 | } | ||
1872 | |||
1873 | static void domain_remove_dev_info(struct dmar_domain *domain) | ||
1874 | { | ||
1875 | struct device_domain_info *info; | ||
1876 | unsigned long flags; | ||
1877 | struct intel_iommu *iommu; | ||
1878 | |||
1879 | spin_lock_irqsave(&device_domain_lock, flags); | ||
1880 | while (!list_empty(&domain->devices)) { | ||
1881 | info = list_entry(domain->devices.next, | ||
1882 | struct device_domain_info, link); | ||
1883 | list_del(&info->link); | ||
1884 | list_del(&info->global); | ||
1885 | if (info->dev) | ||
1886 | info->dev->dev.archdata.iommu = NULL; | ||
1887 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
1888 | |||
1889 | iommu_disable_dev_iotlb(info); | ||
1890 | iommu = device_to_iommu(info->segment, info->bus, info->devfn); | ||
1891 | iommu_detach_dev(iommu, info->bus, info->devfn); | ||
1892 | free_devinfo_mem(info); | ||
1893 | |||
1894 | spin_lock_irqsave(&device_domain_lock, flags); | ||
1895 | } | ||
1896 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
1897 | } | ||
1898 | |||
1899 | /* | ||
1900 | * find_domain | ||
1901 | * Note: we use struct pci_dev->dev.archdata.iommu stores the info | ||
1902 | */ | ||
1903 | static struct dmar_domain * | ||
1904 | find_domain(struct pci_dev *pdev) | ||
1905 | { | ||
1906 | struct device_domain_info *info; | ||
1907 | |||
1908 | /* No lock here, assumes no domain exit in normal case */ | ||
1909 | info = pdev->dev.archdata.iommu; | ||
1910 | if (info) | ||
1911 | return info->domain; | ||
1912 | return NULL; | ||
1913 | } | ||
1914 | |||
1915 | /* domain is initialized */ | ||
1916 | static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw) | ||
1917 | { | ||
1918 | struct dmar_domain *domain, *found = NULL; | ||
1919 | struct intel_iommu *iommu; | ||
1920 | struct dmar_drhd_unit *drhd; | ||
1921 | struct device_domain_info *info, *tmp; | ||
1922 | struct pci_dev *dev_tmp; | ||
1923 | unsigned long flags; | ||
1924 | int bus = 0, devfn = 0; | ||
1925 | int segment; | ||
1926 | int ret; | ||
1927 | |||
1928 | domain = find_domain(pdev); | ||
1929 | if (domain) | ||
1930 | return domain; | ||
1931 | |||
1932 | segment = pci_domain_nr(pdev->bus); | ||
1933 | |||
1934 | dev_tmp = pci_find_upstream_pcie_bridge(pdev); | ||
1935 | if (dev_tmp) { | ||
1936 | if (pci_is_pcie(dev_tmp)) { | ||
1937 | bus = dev_tmp->subordinate->number; | ||
1938 | devfn = 0; | ||
1939 | } else { | ||
1940 | bus = dev_tmp->bus->number; | ||
1941 | devfn = dev_tmp->devfn; | ||
1942 | } | ||
1943 | spin_lock_irqsave(&device_domain_lock, flags); | ||
1944 | list_for_each_entry(info, &device_domain_list, global) { | ||
1945 | if (info->segment == segment && | ||
1946 | info->bus == bus && info->devfn == devfn) { | ||
1947 | found = info->domain; | ||
1948 | break; | ||
1949 | } | ||
1950 | } | ||
1951 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
1952 | /* pcie-pci bridge already has a domain, uses it */ | ||
1953 | if (found) { | ||
1954 | domain = found; | ||
1955 | goto found_domain; | ||
1956 | } | ||
1957 | } | ||
1958 | |||
1959 | domain = alloc_domain(); | ||
1960 | if (!domain) | ||
1961 | goto error; | ||
1962 | |||
1963 | /* Allocate new domain for the device */ | ||
1964 | drhd = dmar_find_matched_drhd_unit(pdev); | ||
1965 | if (!drhd) { | ||
1966 | printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n", | ||
1967 | pci_name(pdev)); | ||
1968 | return NULL; | ||
1969 | } | ||
1970 | iommu = drhd->iommu; | ||
1971 | |||
1972 | ret = iommu_attach_domain(domain, iommu); | ||
1973 | if (ret) { | ||
1974 | free_domain_mem(domain); | ||
1975 | goto error; | ||
1976 | } | ||
1977 | |||
1978 | if (domain_init(domain, gaw)) { | ||
1979 | domain_exit(domain); | ||
1980 | goto error; | ||
1981 | } | ||
1982 | |||
1983 | /* register pcie-to-pci device */ | ||
1984 | if (dev_tmp) { | ||
1985 | info = alloc_devinfo_mem(); | ||
1986 | if (!info) { | ||
1987 | domain_exit(domain); | ||
1988 | goto error; | ||
1989 | } | ||
1990 | info->segment = segment; | ||
1991 | info->bus = bus; | ||
1992 | info->devfn = devfn; | ||
1993 | info->dev = NULL; | ||
1994 | info->domain = domain; | ||
1995 | /* This domain is shared by devices under p2p bridge */ | ||
1996 | domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES; | ||
1997 | |||
1998 | /* pcie-to-pci bridge already has a domain, uses it */ | ||
1999 | found = NULL; | ||
2000 | spin_lock_irqsave(&device_domain_lock, flags); | ||
2001 | list_for_each_entry(tmp, &device_domain_list, global) { | ||
2002 | if (tmp->segment == segment && | ||
2003 | tmp->bus == bus && tmp->devfn == devfn) { | ||
2004 | found = tmp->domain; | ||
2005 | break; | ||
2006 | } | ||
2007 | } | ||
2008 | if (found) { | ||
2009 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
2010 | free_devinfo_mem(info); | ||
2011 | domain_exit(domain); | ||
2012 | domain = found; | ||
2013 | } else { | ||
2014 | list_add(&info->link, &domain->devices); | ||
2015 | list_add(&info->global, &device_domain_list); | ||
2016 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
2017 | } | ||
2018 | } | ||
2019 | |||
2020 | found_domain: | ||
2021 | info = alloc_devinfo_mem(); | ||
2022 | if (!info) | ||
2023 | goto error; | ||
2024 | info->segment = segment; | ||
2025 | info->bus = pdev->bus->number; | ||
2026 | info->devfn = pdev->devfn; | ||
2027 | info->dev = pdev; | ||
2028 | info->domain = domain; | ||
2029 | spin_lock_irqsave(&device_domain_lock, flags); | ||
2030 | /* somebody is fast */ | ||
2031 | found = find_domain(pdev); | ||
2032 | if (found != NULL) { | ||
2033 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
2034 | if (found != domain) { | ||
2035 | domain_exit(domain); | ||
2036 | domain = found; | ||
2037 | } | ||
2038 | free_devinfo_mem(info); | ||
2039 | return domain; | ||
2040 | } | ||
2041 | list_add(&info->link, &domain->devices); | ||
2042 | list_add(&info->global, &device_domain_list); | ||
2043 | pdev->dev.archdata.iommu = info; | ||
2044 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
2045 | return domain; | ||
2046 | error: | ||
2047 | /* recheck it here, maybe others set it */ | ||
2048 | return find_domain(pdev); | ||
2049 | } | ||
2050 | |||
2051 | static int iommu_identity_mapping; | ||
2052 | #define IDENTMAP_ALL 1 | ||
2053 | #define IDENTMAP_GFX 2 | ||
2054 | #define IDENTMAP_AZALIA 4 | ||
2055 | |||
2056 | static int iommu_domain_identity_map(struct dmar_domain *domain, | ||
2057 | unsigned long long start, | ||
2058 | unsigned long long end) | ||
2059 | { | ||
2060 | unsigned long first_vpfn = start >> VTD_PAGE_SHIFT; | ||
2061 | unsigned long last_vpfn = end >> VTD_PAGE_SHIFT; | ||
2062 | |||
2063 | if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn), | ||
2064 | dma_to_mm_pfn(last_vpfn))) { | ||
2065 | printk(KERN_ERR "IOMMU: reserve iova failed\n"); | ||
2066 | return -ENOMEM; | ||
2067 | } | ||
2068 | |||
2069 | pr_debug("Mapping reserved region %llx-%llx for domain %d\n", | ||
2070 | start, end, domain->id); | ||
2071 | /* | ||
2072 | * RMRR range might have overlap with physical memory range, | ||
2073 | * clear it first | ||
2074 | */ | ||
2075 | dma_pte_clear_range(domain, first_vpfn, last_vpfn); | ||
2076 | |||
2077 | return domain_pfn_mapping(domain, first_vpfn, first_vpfn, | ||
2078 | last_vpfn - first_vpfn + 1, | ||
2079 | DMA_PTE_READ|DMA_PTE_WRITE); | ||
2080 | } | ||
2081 | |||
2082 | static int iommu_prepare_identity_map(struct pci_dev *pdev, | ||
2083 | unsigned long long start, | ||
2084 | unsigned long long end) | ||
2085 | { | ||
2086 | struct dmar_domain *domain; | ||
2087 | int ret; | ||
2088 | |||
2089 | domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH); | ||
2090 | if (!domain) | ||
2091 | return -ENOMEM; | ||
2092 | |||
2093 | /* For _hardware_ passthrough, don't bother. But for software | ||
2094 | passthrough, we do it anyway -- it may indicate a memory | ||
2095 | range which is reserved in E820, so which didn't get set | ||
2096 | up to start with in si_domain */ | ||
2097 | if (domain == si_domain && hw_pass_through) { | ||
2098 | printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n", | ||
2099 | pci_name(pdev), start, end); | ||
2100 | return 0; | ||
2101 | } | ||
2102 | |||
2103 | printk(KERN_INFO | ||
2104 | "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n", | ||
2105 | pci_name(pdev), start, end); | ||
2106 | |||
2107 | if (end < start) { | ||
2108 | WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n" | ||
2109 | "BIOS vendor: %s; Ver: %s; Product Version: %s\n", | ||
2110 | dmi_get_system_info(DMI_BIOS_VENDOR), | ||
2111 | dmi_get_system_info(DMI_BIOS_VERSION), | ||
2112 | dmi_get_system_info(DMI_PRODUCT_VERSION)); | ||
2113 | ret = -EIO; | ||
2114 | goto error; | ||
2115 | } | ||
2116 | |||
2117 | if (end >> agaw_to_width(domain->agaw)) { | ||
2118 | WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n" | ||
2119 | "BIOS vendor: %s; Ver: %s; Product Version: %s\n", | ||
2120 | agaw_to_width(domain->agaw), | ||
2121 | dmi_get_system_info(DMI_BIOS_VENDOR), | ||
2122 | dmi_get_system_info(DMI_BIOS_VERSION), | ||
2123 | dmi_get_system_info(DMI_PRODUCT_VERSION)); | ||
2124 | ret = -EIO; | ||
2125 | goto error; | ||
2126 | } | ||
2127 | |||
2128 | ret = iommu_domain_identity_map(domain, start, end); | ||
2129 | if (ret) | ||
2130 | goto error; | ||
2131 | |||
2132 | /* context entry init */ | ||
2133 | ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL); | ||
2134 | if (ret) | ||
2135 | goto error; | ||
2136 | |||
2137 | return 0; | ||
2138 | |||
2139 | error: | ||
2140 | domain_exit(domain); | ||
2141 | return ret; | ||
2142 | } | ||
2143 | |||
2144 | static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr, | ||
2145 | struct pci_dev *pdev) | ||
2146 | { | ||
2147 | if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) | ||
2148 | return 0; | ||
2149 | return iommu_prepare_identity_map(pdev, rmrr->base_address, | ||
2150 | rmrr->end_address); | ||
2151 | } | ||
2152 | |||
2153 | #ifdef CONFIG_DMAR_FLOPPY_WA | ||
2154 | static inline void iommu_prepare_isa(void) | ||
2155 | { | ||
2156 | struct pci_dev *pdev; | ||
2157 | int ret; | ||
2158 | |||
2159 | pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL); | ||
2160 | if (!pdev) | ||
2161 | return; | ||
2162 | |||
2163 | printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n"); | ||
2164 | ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1); | ||
2165 | |||
2166 | if (ret) | ||
2167 | printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; " | ||
2168 | "floppy might not work\n"); | ||
2169 | |||
2170 | } | ||
2171 | #else | ||
2172 | static inline void iommu_prepare_isa(void) | ||
2173 | { | ||
2174 | return; | ||
2175 | } | ||
2176 | #endif /* !CONFIG_DMAR_FLPY_WA */ | ||
2177 | |||
2178 | static int md_domain_init(struct dmar_domain *domain, int guest_width); | ||
2179 | |||
2180 | static int __init si_domain_work_fn(unsigned long start_pfn, | ||
2181 | unsigned long end_pfn, void *datax) | ||
2182 | { | ||
2183 | int *ret = datax; | ||
2184 | |||
2185 | *ret = iommu_domain_identity_map(si_domain, | ||
2186 | (uint64_t)start_pfn << PAGE_SHIFT, | ||
2187 | (uint64_t)end_pfn << PAGE_SHIFT); | ||
2188 | return *ret; | ||
2189 | |||
2190 | } | ||
2191 | |||
2192 | static int __init si_domain_init(int hw) | ||
2193 | { | ||
2194 | struct dmar_drhd_unit *drhd; | ||
2195 | struct intel_iommu *iommu; | ||
2196 | int nid, ret = 0; | ||
2197 | |||
2198 | si_domain = alloc_domain(); | ||
2199 | if (!si_domain) | ||
2200 | return -EFAULT; | ||
2201 | |||
2202 | pr_debug("Identity mapping domain is domain %d\n", si_domain->id); | ||
2203 | |||
2204 | for_each_active_iommu(iommu, drhd) { | ||
2205 | ret = iommu_attach_domain(si_domain, iommu); | ||
2206 | if (ret) { | ||
2207 | domain_exit(si_domain); | ||
2208 | return -EFAULT; | ||
2209 | } | ||
2210 | } | ||
2211 | |||
2212 | if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { | ||
2213 | domain_exit(si_domain); | ||
2214 | return -EFAULT; | ||
2215 | } | ||
2216 | |||
2217 | si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY; | ||
2218 | |||
2219 | if (hw) | ||
2220 | return 0; | ||
2221 | |||
2222 | for_each_online_node(nid) { | ||
2223 | work_with_active_regions(nid, si_domain_work_fn, &ret); | ||
2224 | if (ret) | ||
2225 | return ret; | ||
2226 | } | ||
2227 | |||
2228 | return 0; | ||
2229 | } | ||
2230 | |||
2231 | static void domain_remove_one_dev_info(struct dmar_domain *domain, | ||
2232 | struct pci_dev *pdev); | ||
2233 | static int identity_mapping(struct pci_dev *pdev) | ||
2234 | { | ||
2235 | struct device_domain_info *info; | ||
2236 | |||
2237 | if (likely(!iommu_identity_mapping)) | ||
2238 | return 0; | ||
2239 | |||
2240 | info = pdev->dev.archdata.iommu; | ||
2241 | if (info && info != DUMMY_DEVICE_DOMAIN_INFO) | ||
2242 | return (info->domain == si_domain); | ||
2243 | |||
2244 | return 0; | ||
2245 | } | ||
2246 | |||
2247 | static int domain_add_dev_info(struct dmar_domain *domain, | ||
2248 | struct pci_dev *pdev, | ||
2249 | int translation) | ||
2250 | { | ||
2251 | struct device_domain_info *info; | ||
2252 | unsigned long flags; | ||
2253 | int ret; | ||
2254 | |||
2255 | info = alloc_devinfo_mem(); | ||
2256 | if (!info) | ||
2257 | return -ENOMEM; | ||
2258 | |||
2259 | ret = domain_context_mapping(domain, pdev, translation); | ||
2260 | if (ret) { | ||
2261 | free_devinfo_mem(info); | ||
2262 | return ret; | ||
2263 | } | ||
2264 | |||
2265 | info->segment = pci_domain_nr(pdev->bus); | ||
2266 | info->bus = pdev->bus->number; | ||
2267 | info->devfn = pdev->devfn; | ||
2268 | info->dev = pdev; | ||
2269 | info->domain = domain; | ||
2270 | |||
2271 | spin_lock_irqsave(&device_domain_lock, flags); | ||
2272 | list_add(&info->link, &domain->devices); | ||
2273 | list_add(&info->global, &device_domain_list); | ||
2274 | pdev->dev.archdata.iommu = info; | ||
2275 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
2276 | |||
2277 | return 0; | ||
2278 | } | ||
2279 | |||
2280 | static int iommu_should_identity_map(struct pci_dev *pdev, int startup) | ||
2281 | { | ||
2282 | if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev)) | ||
2283 | return 1; | ||
2284 | |||
2285 | if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev)) | ||
2286 | return 1; | ||
2287 | |||
2288 | if (!(iommu_identity_mapping & IDENTMAP_ALL)) | ||
2289 | return 0; | ||
2290 | |||
2291 | /* | ||
2292 | * We want to start off with all devices in the 1:1 domain, and | ||
2293 | * take them out later if we find they can't access all of memory. | ||
2294 | * | ||
2295 | * However, we can't do this for PCI devices behind bridges, | ||
2296 | * because all PCI devices behind the same bridge will end up | ||
2297 | * with the same source-id on their transactions. | ||
2298 | * | ||
2299 | * Practically speaking, we can't change things around for these | ||
2300 | * devices at run-time, because we can't be sure there'll be no | ||
2301 | * DMA transactions in flight for any of their siblings. | ||
2302 | * | ||
2303 | * So PCI devices (unless they're on the root bus) as well as | ||
2304 | * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of | ||
2305 | * the 1:1 domain, just in _case_ one of their siblings turns out | ||
2306 | * not to be able to map all of memory. | ||
2307 | */ | ||
2308 | if (!pci_is_pcie(pdev)) { | ||
2309 | if (!pci_is_root_bus(pdev->bus)) | ||
2310 | return 0; | ||
2311 | if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI) | ||
2312 | return 0; | ||
2313 | } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE) | ||
2314 | return 0; | ||
2315 | |||
2316 | /* | ||
2317 | * At boot time, we don't yet know if devices will be 64-bit capable. | ||
2318 | * Assume that they will -- if they turn out not to be, then we can | ||
2319 | * take them out of the 1:1 domain later. | ||
2320 | */ | ||
2321 | if (!startup) { | ||
2322 | /* | ||
2323 | * If the device's dma_mask is less than the system's memory | ||
2324 | * size then this is not a candidate for identity mapping. | ||
2325 | */ | ||
2326 | u64 dma_mask = pdev->dma_mask; | ||
2327 | |||
2328 | if (pdev->dev.coherent_dma_mask && | ||
2329 | pdev->dev.coherent_dma_mask < dma_mask) | ||
2330 | dma_mask = pdev->dev.coherent_dma_mask; | ||
2331 | |||
2332 | return dma_mask >= dma_get_required_mask(&pdev->dev); | ||
2333 | } | ||
2334 | |||
2335 | return 1; | ||
2336 | } | ||
2337 | |||
2338 | static int __init iommu_prepare_static_identity_mapping(int hw) | ||
2339 | { | ||
2340 | struct pci_dev *pdev = NULL; | ||
2341 | int ret; | ||
2342 | |||
2343 | ret = si_domain_init(hw); | ||
2344 | if (ret) | ||
2345 | return -EFAULT; | ||
2346 | |||
2347 | for_each_pci_dev(pdev) { | ||
2348 | /* Skip Host/PCI Bridge devices */ | ||
2349 | if (IS_BRIDGE_HOST_DEVICE(pdev)) | ||
2350 | continue; | ||
2351 | if (iommu_should_identity_map(pdev, 1)) { | ||
2352 | printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n", | ||
2353 | hw ? "hardware" : "software", pci_name(pdev)); | ||
2354 | |||
2355 | ret = domain_add_dev_info(si_domain, pdev, | ||
2356 | hw ? CONTEXT_TT_PASS_THROUGH : | ||
2357 | CONTEXT_TT_MULTI_LEVEL); | ||
2358 | if (ret) | ||
2359 | return ret; | ||
2360 | } | ||
2361 | } | ||
2362 | |||
2363 | return 0; | ||
2364 | } | ||
2365 | |||
2366 | static int __init init_dmars(void) | ||
2367 | { | ||
2368 | struct dmar_drhd_unit *drhd; | ||
2369 | struct dmar_rmrr_unit *rmrr; | ||
2370 | struct pci_dev *pdev; | ||
2371 | struct intel_iommu *iommu; | ||
2372 | int i, ret; | ||
2373 | |||
2374 | /* | ||
2375 | * for each drhd | ||
2376 | * allocate root | ||
2377 | * initialize and program root entry to not present | ||
2378 | * endfor | ||
2379 | */ | ||
2380 | for_each_drhd_unit(drhd) { | ||
2381 | g_num_of_iommus++; | ||
2382 | /* | ||
2383 | * lock not needed as this is only incremented in the single | ||
2384 | * threaded kernel __init code path all other access are read | ||
2385 | * only | ||
2386 | */ | ||
2387 | } | ||
2388 | |||
2389 | g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *), | ||
2390 | GFP_KERNEL); | ||
2391 | if (!g_iommus) { | ||
2392 | printk(KERN_ERR "Allocating global iommu array failed\n"); | ||
2393 | ret = -ENOMEM; | ||
2394 | goto error; | ||
2395 | } | ||
2396 | |||
2397 | deferred_flush = kzalloc(g_num_of_iommus * | ||
2398 | sizeof(struct deferred_flush_tables), GFP_KERNEL); | ||
2399 | if (!deferred_flush) { | ||
2400 | ret = -ENOMEM; | ||
2401 | goto error; | ||
2402 | } | ||
2403 | |||
2404 | for_each_drhd_unit(drhd) { | ||
2405 | if (drhd->ignored) | ||
2406 | continue; | ||
2407 | |||
2408 | iommu = drhd->iommu; | ||
2409 | g_iommus[iommu->seq_id] = iommu; | ||
2410 | |||
2411 | ret = iommu_init_domains(iommu); | ||
2412 | if (ret) | ||
2413 | goto error; | ||
2414 | |||
2415 | /* | ||
2416 | * TBD: | ||
2417 | * we could share the same root & context tables | ||
2418 | * among all IOMMU's. Need to Split it later. | ||
2419 | */ | ||
2420 | ret = iommu_alloc_root_entry(iommu); | ||
2421 | if (ret) { | ||
2422 | printk(KERN_ERR "IOMMU: allocate root entry failed\n"); | ||
2423 | goto error; | ||
2424 | } | ||
2425 | if (!ecap_pass_through(iommu->ecap)) | ||
2426 | hw_pass_through = 0; | ||
2427 | } | ||
2428 | |||
2429 | /* | ||
2430 | * Start from the sane iommu hardware state. | ||
2431 | */ | ||
2432 | for_each_drhd_unit(drhd) { | ||
2433 | if (drhd->ignored) | ||
2434 | continue; | ||
2435 | |||
2436 | iommu = drhd->iommu; | ||
2437 | |||
2438 | /* | ||
2439 | * If the queued invalidation is already initialized by us | ||
2440 | * (for example, while enabling interrupt-remapping) then | ||
2441 | * we got the things already rolling from a sane state. | ||
2442 | */ | ||
2443 | if (iommu->qi) | ||
2444 | continue; | ||
2445 | |||
2446 | /* | ||
2447 | * Clear any previous faults. | ||
2448 | */ | ||
2449 | dmar_fault(-1, iommu); | ||
2450 | /* | ||
2451 | * Disable queued invalidation if supported and already enabled | ||
2452 | * before OS handover. | ||
2453 | */ | ||
2454 | dmar_disable_qi(iommu); | ||
2455 | } | ||
2456 | |||
2457 | for_each_drhd_unit(drhd) { | ||
2458 | if (drhd->ignored) | ||
2459 | continue; | ||
2460 | |||
2461 | iommu = drhd->iommu; | ||
2462 | |||
2463 | if (dmar_enable_qi(iommu)) { | ||
2464 | /* | ||
2465 | * Queued Invalidate not enabled, use Register Based | ||
2466 | * Invalidate | ||
2467 | */ | ||
2468 | iommu->flush.flush_context = __iommu_flush_context; | ||
2469 | iommu->flush.flush_iotlb = __iommu_flush_iotlb; | ||
2470 | printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based " | ||
2471 | "invalidation\n", | ||
2472 | iommu->seq_id, | ||
2473 | (unsigned long long)drhd->reg_base_addr); | ||
2474 | } else { | ||
2475 | iommu->flush.flush_context = qi_flush_context; | ||
2476 | iommu->flush.flush_iotlb = qi_flush_iotlb; | ||
2477 | printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued " | ||
2478 | "invalidation\n", | ||
2479 | iommu->seq_id, | ||
2480 | (unsigned long long)drhd->reg_base_addr); | ||
2481 | } | ||
2482 | } | ||
2483 | |||
2484 | if (iommu_pass_through) | ||
2485 | iommu_identity_mapping |= IDENTMAP_ALL; | ||
2486 | |||
2487 | #ifdef CONFIG_DMAR_BROKEN_GFX_WA | ||
2488 | iommu_identity_mapping |= IDENTMAP_GFX; | ||
2489 | #endif | ||
2490 | |||
2491 | check_tylersburg_isoch(); | ||
2492 | |||
2493 | /* | ||
2494 | * If pass through is not set or not enabled, setup context entries for | ||
2495 | * identity mappings for rmrr, gfx, and isa and may fall back to static | ||
2496 | * identity mapping if iommu_identity_mapping is set. | ||
2497 | */ | ||
2498 | if (iommu_identity_mapping) { | ||
2499 | ret = iommu_prepare_static_identity_mapping(hw_pass_through); | ||
2500 | if (ret) { | ||
2501 | printk(KERN_CRIT "Failed to setup IOMMU pass-through\n"); | ||
2502 | goto error; | ||
2503 | } | ||
2504 | } | ||
2505 | /* | ||
2506 | * For each rmrr | ||
2507 | * for each dev attached to rmrr | ||
2508 | * do | ||
2509 | * locate drhd for dev, alloc domain for dev | ||
2510 | * allocate free domain | ||
2511 | * allocate page table entries for rmrr | ||
2512 | * if context not allocated for bus | ||
2513 | * allocate and init context | ||
2514 | * set present in root table for this bus | ||
2515 | * init context with domain, translation etc | ||
2516 | * endfor | ||
2517 | * endfor | ||
2518 | */ | ||
2519 | printk(KERN_INFO "IOMMU: Setting RMRR:\n"); | ||
2520 | for_each_rmrr_units(rmrr) { | ||
2521 | for (i = 0; i < rmrr->devices_cnt; i++) { | ||
2522 | pdev = rmrr->devices[i]; | ||
2523 | /* | ||
2524 | * some BIOS lists non-exist devices in DMAR | ||
2525 | * table. | ||
2526 | */ | ||
2527 | if (!pdev) | ||
2528 | continue; | ||
2529 | ret = iommu_prepare_rmrr_dev(rmrr, pdev); | ||
2530 | if (ret) | ||
2531 | printk(KERN_ERR | ||
2532 | "IOMMU: mapping reserved region failed\n"); | ||
2533 | } | ||
2534 | } | ||
2535 | |||
2536 | iommu_prepare_isa(); | ||
2537 | |||
2538 | /* | ||
2539 | * for each drhd | ||
2540 | * enable fault log | ||
2541 | * global invalidate context cache | ||
2542 | * global invalidate iotlb | ||
2543 | * enable translation | ||
2544 | */ | ||
2545 | for_each_drhd_unit(drhd) { | ||
2546 | if (drhd->ignored) { | ||
2547 | /* | ||
2548 | * we always have to disable PMRs or DMA may fail on | ||
2549 | * this device | ||
2550 | */ | ||
2551 | if (force_on) | ||
2552 | iommu_disable_protect_mem_regions(drhd->iommu); | ||
2553 | continue; | ||
2554 | } | ||
2555 | iommu = drhd->iommu; | ||
2556 | |||
2557 | iommu_flush_write_buffer(iommu); | ||
2558 | |||
2559 | ret = dmar_set_interrupt(iommu); | ||
2560 | if (ret) | ||
2561 | goto error; | ||
2562 | |||
2563 | iommu_set_root_entry(iommu); | ||
2564 | |||
2565 | iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); | ||
2566 | iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); | ||
2567 | |||
2568 | ret = iommu_enable_translation(iommu); | ||
2569 | if (ret) | ||
2570 | goto error; | ||
2571 | |||
2572 | iommu_disable_protect_mem_regions(iommu); | ||
2573 | } | ||
2574 | |||
2575 | return 0; | ||
2576 | error: | ||
2577 | for_each_drhd_unit(drhd) { | ||
2578 | if (drhd->ignored) | ||
2579 | continue; | ||
2580 | iommu = drhd->iommu; | ||
2581 | free_iommu(iommu); | ||
2582 | } | ||
2583 | kfree(g_iommus); | ||
2584 | return ret; | ||
2585 | } | ||
2586 | |||
2587 | /* This takes a number of _MM_ pages, not VTD pages */ | ||
2588 | static struct iova *intel_alloc_iova(struct device *dev, | ||
2589 | struct dmar_domain *domain, | ||
2590 | unsigned long nrpages, uint64_t dma_mask) | ||
2591 | { | ||
2592 | struct pci_dev *pdev = to_pci_dev(dev); | ||
2593 | struct iova *iova = NULL; | ||
2594 | |||
2595 | /* Restrict dma_mask to the width that the iommu can handle */ | ||
2596 | dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask); | ||
2597 | |||
2598 | if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) { | ||
2599 | /* | ||
2600 | * First try to allocate an io virtual address in | ||
2601 | * DMA_BIT_MASK(32) and if that fails then try allocating | ||
2602 | * from higher range | ||
2603 | */ | ||
2604 | iova = alloc_iova(&domain->iovad, nrpages, | ||
2605 | IOVA_PFN(DMA_BIT_MASK(32)), 1); | ||
2606 | if (iova) | ||
2607 | return iova; | ||
2608 | } | ||
2609 | iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1); | ||
2610 | if (unlikely(!iova)) { | ||
2611 | printk(KERN_ERR "Allocating %ld-page iova for %s failed", | ||
2612 | nrpages, pci_name(pdev)); | ||
2613 | return NULL; | ||
2614 | } | ||
2615 | |||
2616 | return iova; | ||
2617 | } | ||
2618 | |||
2619 | static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev) | ||
2620 | { | ||
2621 | struct dmar_domain *domain; | ||
2622 | int ret; | ||
2623 | |||
2624 | domain = get_domain_for_dev(pdev, | ||
2625 | DEFAULT_DOMAIN_ADDRESS_WIDTH); | ||
2626 | if (!domain) { | ||
2627 | printk(KERN_ERR | ||
2628 | "Allocating domain for %s failed", pci_name(pdev)); | ||
2629 | return NULL; | ||
2630 | } | ||
2631 | |||
2632 | /* make sure context mapping is ok */ | ||
2633 | if (unlikely(!domain_context_mapped(pdev))) { | ||
2634 | ret = domain_context_mapping(domain, pdev, | ||
2635 | CONTEXT_TT_MULTI_LEVEL); | ||
2636 | if (ret) { | ||
2637 | printk(KERN_ERR | ||
2638 | "Domain context map for %s failed", | ||
2639 | pci_name(pdev)); | ||
2640 | return NULL; | ||
2641 | } | ||
2642 | } | ||
2643 | |||
2644 | return domain; | ||
2645 | } | ||
2646 | |||
2647 | static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev) | ||
2648 | { | ||
2649 | struct device_domain_info *info; | ||
2650 | |||
2651 | /* No lock here, assumes no domain exit in normal case */ | ||
2652 | info = dev->dev.archdata.iommu; | ||
2653 | if (likely(info)) | ||
2654 | return info->domain; | ||
2655 | |||
2656 | return __get_valid_domain_for_dev(dev); | ||
2657 | } | ||
2658 | |||
2659 | static int iommu_dummy(struct pci_dev *pdev) | ||
2660 | { | ||
2661 | return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO; | ||
2662 | } | ||
2663 | |||
2664 | /* Check if the pdev needs to go through non-identity map and unmap process.*/ | ||
2665 | static int iommu_no_mapping(struct device *dev) | ||
2666 | { | ||
2667 | struct pci_dev *pdev; | ||
2668 | int found; | ||
2669 | |||
2670 | if (unlikely(dev->bus != &pci_bus_type)) | ||
2671 | return 1; | ||
2672 | |||
2673 | pdev = to_pci_dev(dev); | ||
2674 | if (iommu_dummy(pdev)) | ||
2675 | return 1; | ||
2676 | |||
2677 | if (!iommu_identity_mapping) | ||
2678 | return 0; | ||
2679 | |||
2680 | found = identity_mapping(pdev); | ||
2681 | if (found) { | ||
2682 | if (iommu_should_identity_map(pdev, 0)) | ||
2683 | return 1; | ||
2684 | else { | ||
2685 | /* | ||
2686 | * 32 bit DMA is removed from si_domain and fall back | ||
2687 | * to non-identity mapping. | ||
2688 | */ | ||
2689 | domain_remove_one_dev_info(si_domain, pdev); | ||
2690 | printk(KERN_INFO "32bit %s uses non-identity mapping\n", | ||
2691 | pci_name(pdev)); | ||
2692 | return 0; | ||
2693 | } | ||
2694 | } else { | ||
2695 | /* | ||
2696 | * In case of a detached 64 bit DMA device from vm, the device | ||
2697 | * is put into si_domain for identity mapping. | ||
2698 | */ | ||
2699 | if (iommu_should_identity_map(pdev, 0)) { | ||
2700 | int ret; | ||
2701 | ret = domain_add_dev_info(si_domain, pdev, | ||
2702 | hw_pass_through ? | ||
2703 | CONTEXT_TT_PASS_THROUGH : | ||
2704 | CONTEXT_TT_MULTI_LEVEL); | ||
2705 | if (!ret) { | ||
2706 | printk(KERN_INFO "64bit %s uses identity mapping\n", | ||
2707 | pci_name(pdev)); | ||
2708 | return 1; | ||
2709 | } | ||
2710 | } | ||
2711 | } | ||
2712 | |||
2713 | return 0; | ||
2714 | } | ||
2715 | |||
2716 | static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr, | ||
2717 | size_t size, int dir, u64 dma_mask) | ||
2718 | { | ||
2719 | struct pci_dev *pdev = to_pci_dev(hwdev); | ||
2720 | struct dmar_domain *domain; | ||
2721 | phys_addr_t start_paddr; | ||
2722 | struct iova *iova; | ||
2723 | int prot = 0; | ||
2724 | int ret; | ||
2725 | struct intel_iommu *iommu; | ||
2726 | unsigned long paddr_pfn = paddr >> PAGE_SHIFT; | ||
2727 | |||
2728 | BUG_ON(dir == DMA_NONE); | ||
2729 | |||
2730 | if (iommu_no_mapping(hwdev)) | ||
2731 | return paddr; | ||
2732 | |||
2733 | domain = get_valid_domain_for_dev(pdev); | ||
2734 | if (!domain) | ||
2735 | return 0; | ||
2736 | |||
2737 | iommu = domain_get_iommu(domain); | ||
2738 | size = aligned_nrpages(paddr, size); | ||
2739 | |||
2740 | iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask); | ||
2741 | if (!iova) | ||
2742 | goto error; | ||
2743 | |||
2744 | /* | ||
2745 | * Check if DMAR supports zero-length reads on write only | ||
2746 | * mappings.. | ||
2747 | */ | ||
2748 | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ | ||
2749 | !cap_zlr(iommu->cap)) | ||
2750 | prot |= DMA_PTE_READ; | ||
2751 | if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) | ||
2752 | prot |= DMA_PTE_WRITE; | ||
2753 | /* | ||
2754 | * paddr - (paddr + size) might be partial page, we should map the whole | ||
2755 | * page. Note: if two part of one page are separately mapped, we | ||
2756 | * might have two guest_addr mapping to the same host paddr, but this | ||
2757 | * is not a big problem | ||
2758 | */ | ||
2759 | ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo), | ||
2760 | mm_to_dma_pfn(paddr_pfn), size, prot); | ||
2761 | if (ret) | ||
2762 | goto error; | ||
2763 | |||
2764 | /* it's a non-present to present mapping. Only flush if caching mode */ | ||
2765 | if (cap_caching_mode(iommu->cap)) | ||
2766 | iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1); | ||
2767 | else | ||
2768 | iommu_flush_write_buffer(iommu); | ||
2769 | |||
2770 | start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT; | ||
2771 | start_paddr += paddr & ~PAGE_MASK; | ||
2772 | return start_paddr; | ||
2773 | |||
2774 | error: | ||
2775 | if (iova) | ||
2776 | __free_iova(&domain->iovad, iova); | ||
2777 | printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n", | ||
2778 | pci_name(pdev), size, (unsigned long long)paddr, dir); | ||
2779 | return 0; | ||
2780 | } | ||
2781 | |||
2782 | static dma_addr_t intel_map_page(struct device *dev, struct page *page, | ||
2783 | unsigned long offset, size_t size, | ||
2784 | enum dma_data_direction dir, | ||
2785 | struct dma_attrs *attrs) | ||
2786 | { | ||
2787 | return __intel_map_single(dev, page_to_phys(page) + offset, size, | ||
2788 | dir, to_pci_dev(dev)->dma_mask); | ||
2789 | } | ||
2790 | |||
2791 | static void flush_unmaps(void) | ||
2792 | { | ||
2793 | int i, j; | ||
2794 | |||
2795 | timer_on = 0; | ||
2796 | |||
2797 | /* just flush them all */ | ||
2798 | for (i = 0; i < g_num_of_iommus; i++) { | ||
2799 | struct intel_iommu *iommu = g_iommus[i]; | ||
2800 | if (!iommu) | ||
2801 | continue; | ||
2802 | |||
2803 | if (!deferred_flush[i].next) | ||
2804 | continue; | ||
2805 | |||
2806 | /* In caching mode, global flushes turn emulation expensive */ | ||
2807 | if (!cap_caching_mode(iommu->cap)) | ||
2808 | iommu->flush.flush_iotlb(iommu, 0, 0, 0, | ||
2809 | DMA_TLB_GLOBAL_FLUSH); | ||
2810 | for (j = 0; j < deferred_flush[i].next; j++) { | ||
2811 | unsigned long mask; | ||
2812 | struct iova *iova = deferred_flush[i].iova[j]; | ||
2813 | struct dmar_domain *domain = deferred_flush[i].domain[j]; | ||
2814 | |||
2815 | /* On real hardware multiple invalidations are expensive */ | ||
2816 | if (cap_caching_mode(iommu->cap)) | ||
2817 | iommu_flush_iotlb_psi(iommu, domain->id, | ||
2818 | iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0); | ||
2819 | else { | ||
2820 | mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1)); | ||
2821 | iommu_flush_dev_iotlb(deferred_flush[i].domain[j], | ||
2822 | (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask); | ||
2823 | } | ||
2824 | __free_iova(&deferred_flush[i].domain[j]->iovad, iova); | ||
2825 | } | ||
2826 | deferred_flush[i].next = 0; | ||
2827 | } | ||
2828 | |||
2829 | list_size = 0; | ||
2830 | } | ||
2831 | |||
2832 | static void flush_unmaps_timeout(unsigned long data) | ||
2833 | { | ||
2834 | unsigned long flags; | ||
2835 | |||
2836 | spin_lock_irqsave(&async_umap_flush_lock, flags); | ||
2837 | flush_unmaps(); | ||
2838 | spin_unlock_irqrestore(&async_umap_flush_lock, flags); | ||
2839 | } | ||
2840 | |||
2841 | static void add_unmap(struct dmar_domain *dom, struct iova *iova) | ||
2842 | { | ||
2843 | unsigned long flags; | ||
2844 | int next, iommu_id; | ||
2845 | struct intel_iommu *iommu; | ||
2846 | |||
2847 | spin_lock_irqsave(&async_umap_flush_lock, flags); | ||
2848 | if (list_size == HIGH_WATER_MARK) | ||
2849 | flush_unmaps(); | ||
2850 | |||
2851 | iommu = domain_get_iommu(dom); | ||
2852 | iommu_id = iommu->seq_id; | ||
2853 | |||
2854 | next = deferred_flush[iommu_id].next; | ||
2855 | deferred_flush[iommu_id].domain[next] = dom; | ||
2856 | deferred_flush[iommu_id].iova[next] = iova; | ||
2857 | deferred_flush[iommu_id].next++; | ||
2858 | |||
2859 | if (!timer_on) { | ||
2860 | mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10)); | ||
2861 | timer_on = 1; | ||
2862 | } | ||
2863 | list_size++; | ||
2864 | spin_unlock_irqrestore(&async_umap_flush_lock, flags); | ||
2865 | } | ||
2866 | |||
2867 | static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr, | ||
2868 | size_t size, enum dma_data_direction dir, | ||
2869 | struct dma_attrs *attrs) | ||
2870 | { | ||
2871 | struct pci_dev *pdev = to_pci_dev(dev); | ||
2872 | struct dmar_domain *domain; | ||
2873 | unsigned long start_pfn, last_pfn; | ||
2874 | struct iova *iova; | ||
2875 | struct intel_iommu *iommu; | ||
2876 | |||
2877 | if (iommu_no_mapping(dev)) | ||
2878 | return; | ||
2879 | |||
2880 | domain = find_domain(pdev); | ||
2881 | BUG_ON(!domain); | ||
2882 | |||
2883 | iommu = domain_get_iommu(domain); | ||
2884 | |||
2885 | iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr)); | ||
2886 | if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n", | ||
2887 | (unsigned long long)dev_addr)) | ||
2888 | return; | ||
2889 | |||
2890 | start_pfn = mm_to_dma_pfn(iova->pfn_lo); | ||
2891 | last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1; | ||
2892 | |||
2893 | pr_debug("Device %s unmapping: pfn %lx-%lx\n", | ||
2894 | pci_name(pdev), start_pfn, last_pfn); | ||
2895 | |||
2896 | /* clear the whole page */ | ||
2897 | dma_pte_clear_range(domain, start_pfn, last_pfn); | ||
2898 | |||
2899 | /* free page tables */ | ||
2900 | dma_pte_free_pagetable(domain, start_pfn, last_pfn); | ||
2901 | |||
2902 | if (intel_iommu_strict) { | ||
2903 | iommu_flush_iotlb_psi(iommu, domain->id, start_pfn, | ||
2904 | last_pfn - start_pfn + 1, 0); | ||
2905 | /* free iova */ | ||
2906 | __free_iova(&domain->iovad, iova); | ||
2907 | } else { | ||
2908 | add_unmap(domain, iova); | ||
2909 | /* | ||
2910 | * queue up the release of the unmap to save the 1/6th of the | ||
2911 | * cpu used up by the iotlb flush operation... | ||
2912 | */ | ||
2913 | } | ||
2914 | } | ||
2915 | |||
2916 | static void *intel_alloc_coherent(struct device *hwdev, size_t size, | ||
2917 | dma_addr_t *dma_handle, gfp_t flags) | ||
2918 | { | ||
2919 | void *vaddr; | ||
2920 | int order; | ||
2921 | |||
2922 | size = PAGE_ALIGN(size); | ||
2923 | order = get_order(size); | ||
2924 | |||
2925 | if (!iommu_no_mapping(hwdev)) | ||
2926 | flags &= ~(GFP_DMA | GFP_DMA32); | ||
2927 | else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) { | ||
2928 | if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32)) | ||
2929 | flags |= GFP_DMA; | ||
2930 | else | ||
2931 | flags |= GFP_DMA32; | ||
2932 | } | ||
2933 | |||
2934 | vaddr = (void *)__get_free_pages(flags, order); | ||
2935 | if (!vaddr) | ||
2936 | return NULL; | ||
2937 | memset(vaddr, 0, size); | ||
2938 | |||
2939 | *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size, | ||
2940 | DMA_BIDIRECTIONAL, | ||
2941 | hwdev->coherent_dma_mask); | ||
2942 | if (*dma_handle) | ||
2943 | return vaddr; | ||
2944 | free_pages((unsigned long)vaddr, order); | ||
2945 | return NULL; | ||
2946 | } | ||
2947 | |||
2948 | static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr, | ||
2949 | dma_addr_t dma_handle) | ||
2950 | { | ||
2951 | int order; | ||
2952 | |||
2953 | size = PAGE_ALIGN(size); | ||
2954 | order = get_order(size); | ||
2955 | |||
2956 | intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL); | ||
2957 | free_pages((unsigned long)vaddr, order); | ||
2958 | } | ||
2959 | |||
2960 | static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist, | ||
2961 | int nelems, enum dma_data_direction dir, | ||
2962 | struct dma_attrs *attrs) | ||
2963 | { | ||
2964 | struct pci_dev *pdev = to_pci_dev(hwdev); | ||
2965 | struct dmar_domain *domain; | ||
2966 | unsigned long start_pfn, last_pfn; | ||
2967 | struct iova *iova; | ||
2968 | struct intel_iommu *iommu; | ||
2969 | |||
2970 | if (iommu_no_mapping(hwdev)) | ||
2971 | return; | ||
2972 | |||
2973 | domain = find_domain(pdev); | ||
2974 | BUG_ON(!domain); | ||
2975 | |||
2976 | iommu = domain_get_iommu(domain); | ||
2977 | |||
2978 | iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address)); | ||
2979 | if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n", | ||
2980 | (unsigned long long)sglist[0].dma_address)) | ||
2981 | return; | ||
2982 | |||
2983 | start_pfn = mm_to_dma_pfn(iova->pfn_lo); | ||
2984 | last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1; | ||
2985 | |||
2986 | /* clear the whole page */ | ||
2987 | dma_pte_clear_range(domain, start_pfn, last_pfn); | ||
2988 | |||
2989 | /* free page tables */ | ||
2990 | dma_pte_free_pagetable(domain, start_pfn, last_pfn); | ||
2991 | |||
2992 | if (intel_iommu_strict) { | ||
2993 | iommu_flush_iotlb_psi(iommu, domain->id, start_pfn, | ||
2994 | last_pfn - start_pfn + 1, 0); | ||
2995 | /* free iova */ | ||
2996 | __free_iova(&domain->iovad, iova); | ||
2997 | } else { | ||
2998 | add_unmap(domain, iova); | ||
2999 | /* | ||
3000 | * queue up the release of the unmap to save the 1/6th of the | ||
3001 | * cpu used up by the iotlb flush operation... | ||
3002 | */ | ||
3003 | } | ||
3004 | } | ||
3005 | |||
3006 | static int intel_nontranslate_map_sg(struct device *hddev, | ||
3007 | struct scatterlist *sglist, int nelems, int dir) | ||
3008 | { | ||
3009 | int i; | ||
3010 | struct scatterlist *sg; | ||
3011 | |||
3012 | for_each_sg(sglist, sg, nelems, i) { | ||
3013 | BUG_ON(!sg_page(sg)); | ||
3014 | sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset; | ||
3015 | sg->dma_length = sg->length; | ||
3016 | } | ||
3017 | return nelems; | ||
3018 | } | ||
3019 | |||
3020 | static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems, | ||
3021 | enum dma_data_direction dir, struct dma_attrs *attrs) | ||
3022 | { | ||
3023 | int i; | ||
3024 | struct pci_dev *pdev = to_pci_dev(hwdev); | ||
3025 | struct dmar_domain *domain; | ||
3026 | size_t size = 0; | ||
3027 | int prot = 0; | ||
3028 | struct iova *iova = NULL; | ||
3029 | int ret; | ||
3030 | struct scatterlist *sg; | ||
3031 | unsigned long start_vpfn; | ||
3032 | struct intel_iommu *iommu; | ||
3033 | |||
3034 | BUG_ON(dir == DMA_NONE); | ||
3035 | if (iommu_no_mapping(hwdev)) | ||
3036 | return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir); | ||
3037 | |||
3038 | domain = get_valid_domain_for_dev(pdev); | ||
3039 | if (!domain) | ||
3040 | return 0; | ||
3041 | |||
3042 | iommu = domain_get_iommu(domain); | ||
3043 | |||
3044 | for_each_sg(sglist, sg, nelems, i) | ||
3045 | size += aligned_nrpages(sg->offset, sg->length); | ||
3046 | |||
3047 | iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), | ||
3048 | pdev->dma_mask); | ||
3049 | if (!iova) { | ||
3050 | sglist->dma_length = 0; | ||
3051 | return 0; | ||
3052 | } | ||
3053 | |||
3054 | /* | ||
3055 | * Check if DMAR supports zero-length reads on write only | ||
3056 | * mappings.. | ||
3057 | */ | ||
3058 | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ | ||
3059 | !cap_zlr(iommu->cap)) | ||
3060 | prot |= DMA_PTE_READ; | ||
3061 | if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) | ||
3062 | prot |= DMA_PTE_WRITE; | ||
3063 | |||
3064 | start_vpfn = mm_to_dma_pfn(iova->pfn_lo); | ||
3065 | |||
3066 | ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot); | ||
3067 | if (unlikely(ret)) { | ||
3068 | /* clear the page */ | ||
3069 | dma_pte_clear_range(domain, start_vpfn, | ||
3070 | start_vpfn + size - 1); | ||
3071 | /* free page tables */ | ||
3072 | dma_pte_free_pagetable(domain, start_vpfn, | ||
3073 | start_vpfn + size - 1); | ||
3074 | /* free iova */ | ||
3075 | __free_iova(&domain->iovad, iova); | ||
3076 | return 0; | ||
3077 | } | ||
3078 | |||
3079 | /* it's a non-present to present mapping. Only flush if caching mode */ | ||
3080 | if (cap_caching_mode(iommu->cap)) | ||
3081 | iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1); | ||
3082 | else | ||
3083 | iommu_flush_write_buffer(iommu); | ||
3084 | |||
3085 | return nelems; | ||
3086 | } | ||
3087 | |||
3088 | static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr) | ||
3089 | { | ||
3090 | return !dma_addr; | ||
3091 | } | ||
3092 | |||
3093 | struct dma_map_ops intel_dma_ops = { | ||
3094 | .alloc_coherent = intel_alloc_coherent, | ||
3095 | .free_coherent = intel_free_coherent, | ||
3096 | .map_sg = intel_map_sg, | ||
3097 | .unmap_sg = intel_unmap_sg, | ||
3098 | .map_page = intel_map_page, | ||
3099 | .unmap_page = intel_unmap_page, | ||
3100 | .mapping_error = intel_mapping_error, | ||
3101 | }; | ||
3102 | |||
3103 | static inline int iommu_domain_cache_init(void) | ||
3104 | { | ||
3105 | int ret = 0; | ||
3106 | |||
3107 | iommu_domain_cache = kmem_cache_create("iommu_domain", | ||
3108 | sizeof(struct dmar_domain), | ||
3109 | 0, | ||
3110 | SLAB_HWCACHE_ALIGN, | ||
3111 | |||
3112 | NULL); | ||
3113 | if (!iommu_domain_cache) { | ||
3114 | printk(KERN_ERR "Couldn't create iommu_domain cache\n"); | ||
3115 | ret = -ENOMEM; | ||
3116 | } | ||
3117 | |||
3118 | return ret; | ||
3119 | } | ||
3120 | |||
3121 | static inline int iommu_devinfo_cache_init(void) | ||
3122 | { | ||
3123 | int ret = 0; | ||
3124 | |||
3125 | iommu_devinfo_cache = kmem_cache_create("iommu_devinfo", | ||
3126 | sizeof(struct device_domain_info), | ||
3127 | 0, | ||
3128 | SLAB_HWCACHE_ALIGN, | ||
3129 | NULL); | ||
3130 | if (!iommu_devinfo_cache) { | ||
3131 | printk(KERN_ERR "Couldn't create devinfo cache\n"); | ||
3132 | ret = -ENOMEM; | ||
3133 | } | ||
3134 | |||
3135 | return ret; | ||
3136 | } | ||
3137 | |||
3138 | static inline int iommu_iova_cache_init(void) | ||
3139 | { | ||
3140 | int ret = 0; | ||
3141 | |||
3142 | iommu_iova_cache = kmem_cache_create("iommu_iova", | ||
3143 | sizeof(struct iova), | ||
3144 | 0, | ||
3145 | SLAB_HWCACHE_ALIGN, | ||
3146 | NULL); | ||
3147 | if (!iommu_iova_cache) { | ||
3148 | printk(KERN_ERR "Couldn't create iova cache\n"); | ||
3149 | ret = -ENOMEM; | ||
3150 | } | ||
3151 | |||
3152 | return ret; | ||
3153 | } | ||
3154 | |||
3155 | static int __init iommu_init_mempool(void) | ||
3156 | { | ||
3157 | int ret; | ||
3158 | ret = iommu_iova_cache_init(); | ||
3159 | if (ret) | ||
3160 | return ret; | ||
3161 | |||
3162 | ret = iommu_domain_cache_init(); | ||
3163 | if (ret) | ||
3164 | goto domain_error; | ||
3165 | |||
3166 | ret = iommu_devinfo_cache_init(); | ||
3167 | if (!ret) | ||
3168 | return ret; | ||
3169 | |||
3170 | kmem_cache_destroy(iommu_domain_cache); | ||
3171 | domain_error: | ||
3172 | kmem_cache_destroy(iommu_iova_cache); | ||
3173 | |||
3174 | return -ENOMEM; | ||
3175 | } | ||
3176 | |||
3177 | static void __init iommu_exit_mempool(void) | ||
3178 | { | ||
3179 | kmem_cache_destroy(iommu_devinfo_cache); | ||
3180 | kmem_cache_destroy(iommu_domain_cache); | ||
3181 | kmem_cache_destroy(iommu_iova_cache); | ||
3182 | |||
3183 | } | ||
3184 | |||
3185 | static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev) | ||
3186 | { | ||
3187 | struct dmar_drhd_unit *drhd; | ||
3188 | u32 vtbar; | ||
3189 | int rc; | ||
3190 | |||
3191 | /* We know that this device on this chipset has its own IOMMU. | ||
3192 | * If we find it under a different IOMMU, then the BIOS is lying | ||
3193 | * to us. Hope that the IOMMU for this device is actually | ||
3194 | * disabled, and it needs no translation... | ||
3195 | */ | ||
3196 | rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar); | ||
3197 | if (rc) { | ||
3198 | /* "can't" happen */ | ||
3199 | dev_info(&pdev->dev, "failed to run vt-d quirk\n"); | ||
3200 | return; | ||
3201 | } | ||
3202 | vtbar &= 0xffff0000; | ||
3203 | |||
3204 | /* we know that the this iommu should be at offset 0xa000 from vtbar */ | ||
3205 | drhd = dmar_find_matched_drhd_unit(pdev); | ||
3206 | if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000, | ||
3207 | TAINT_FIRMWARE_WORKAROUND, | ||
3208 | "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n")) | ||
3209 | pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO; | ||
3210 | } | ||
3211 | DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu); | ||
3212 | |||
3213 | static void __init init_no_remapping_devices(void) | ||
3214 | { | ||
3215 | struct dmar_drhd_unit *drhd; | ||
3216 | |||
3217 | for_each_drhd_unit(drhd) { | ||
3218 | if (!drhd->include_all) { | ||
3219 | int i; | ||
3220 | for (i = 0; i < drhd->devices_cnt; i++) | ||
3221 | if (drhd->devices[i] != NULL) | ||
3222 | break; | ||
3223 | /* ignore DMAR unit if no pci devices exist */ | ||
3224 | if (i == drhd->devices_cnt) | ||
3225 | drhd->ignored = 1; | ||
3226 | } | ||
3227 | } | ||
3228 | |||
3229 | if (dmar_map_gfx) | ||
3230 | return; | ||
3231 | |||
3232 | for_each_drhd_unit(drhd) { | ||
3233 | int i; | ||
3234 | if (drhd->ignored || drhd->include_all) | ||
3235 | continue; | ||
3236 | |||
3237 | for (i = 0; i < drhd->devices_cnt; i++) | ||
3238 | if (drhd->devices[i] && | ||
3239 | !IS_GFX_DEVICE(drhd->devices[i])) | ||
3240 | break; | ||
3241 | |||
3242 | if (i < drhd->devices_cnt) | ||
3243 | continue; | ||
3244 | |||
3245 | /* bypass IOMMU if it is just for gfx devices */ | ||
3246 | drhd->ignored = 1; | ||
3247 | for (i = 0; i < drhd->devices_cnt; i++) { | ||
3248 | if (!drhd->devices[i]) | ||
3249 | continue; | ||
3250 | drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO; | ||
3251 | } | ||
3252 | } | ||
3253 | } | ||
3254 | |||
3255 | #ifdef CONFIG_SUSPEND | ||
3256 | static int init_iommu_hw(void) | ||
3257 | { | ||
3258 | struct dmar_drhd_unit *drhd; | ||
3259 | struct intel_iommu *iommu = NULL; | ||
3260 | |||
3261 | for_each_active_iommu(iommu, drhd) | ||
3262 | if (iommu->qi) | ||
3263 | dmar_reenable_qi(iommu); | ||
3264 | |||
3265 | for_each_iommu(iommu, drhd) { | ||
3266 | if (drhd->ignored) { | ||
3267 | /* | ||
3268 | * we always have to disable PMRs or DMA may fail on | ||
3269 | * this device | ||
3270 | */ | ||
3271 | if (force_on) | ||
3272 | iommu_disable_protect_mem_regions(iommu); | ||
3273 | continue; | ||
3274 | } | ||
3275 | |||
3276 | iommu_flush_write_buffer(iommu); | ||
3277 | |||
3278 | iommu_set_root_entry(iommu); | ||
3279 | |||
3280 | iommu->flush.flush_context(iommu, 0, 0, 0, | ||
3281 | DMA_CCMD_GLOBAL_INVL); | ||
3282 | iommu->flush.flush_iotlb(iommu, 0, 0, 0, | ||
3283 | DMA_TLB_GLOBAL_FLUSH); | ||
3284 | if (iommu_enable_translation(iommu)) | ||
3285 | return 1; | ||
3286 | iommu_disable_protect_mem_regions(iommu); | ||
3287 | } | ||
3288 | |||
3289 | return 0; | ||
3290 | } | ||
3291 | |||
3292 | static void iommu_flush_all(void) | ||
3293 | { | ||
3294 | struct dmar_drhd_unit *drhd; | ||
3295 | struct intel_iommu *iommu; | ||
3296 | |||
3297 | for_each_active_iommu(iommu, drhd) { | ||
3298 | iommu->flush.flush_context(iommu, 0, 0, 0, | ||
3299 | DMA_CCMD_GLOBAL_INVL); | ||
3300 | iommu->flush.flush_iotlb(iommu, 0, 0, 0, | ||
3301 | DMA_TLB_GLOBAL_FLUSH); | ||
3302 | } | ||
3303 | } | ||
3304 | |||
3305 | static int iommu_suspend(void) | ||
3306 | { | ||
3307 | struct dmar_drhd_unit *drhd; | ||
3308 | struct intel_iommu *iommu = NULL; | ||
3309 | unsigned long flag; | ||
3310 | |||
3311 | for_each_active_iommu(iommu, drhd) { | ||
3312 | iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS, | ||
3313 | GFP_ATOMIC); | ||
3314 | if (!iommu->iommu_state) | ||
3315 | goto nomem; | ||
3316 | } | ||
3317 | |||
3318 | iommu_flush_all(); | ||
3319 | |||
3320 | for_each_active_iommu(iommu, drhd) { | ||
3321 | iommu_disable_translation(iommu); | ||
3322 | |||
3323 | spin_lock_irqsave(&iommu->register_lock, flag); | ||
3324 | |||
3325 | iommu->iommu_state[SR_DMAR_FECTL_REG] = | ||
3326 | readl(iommu->reg + DMAR_FECTL_REG); | ||
3327 | iommu->iommu_state[SR_DMAR_FEDATA_REG] = | ||
3328 | readl(iommu->reg + DMAR_FEDATA_REG); | ||
3329 | iommu->iommu_state[SR_DMAR_FEADDR_REG] = | ||
3330 | readl(iommu->reg + DMAR_FEADDR_REG); | ||
3331 | iommu->iommu_state[SR_DMAR_FEUADDR_REG] = | ||
3332 | readl(iommu->reg + DMAR_FEUADDR_REG); | ||
3333 | |||
3334 | spin_unlock_irqrestore(&iommu->register_lock, flag); | ||
3335 | } | ||
3336 | return 0; | ||
3337 | |||
3338 | nomem: | ||
3339 | for_each_active_iommu(iommu, drhd) | ||
3340 | kfree(iommu->iommu_state); | ||
3341 | |||
3342 | return -ENOMEM; | ||
3343 | } | ||
3344 | |||
3345 | static void iommu_resume(void) | ||
3346 | { | ||
3347 | struct dmar_drhd_unit *drhd; | ||
3348 | struct intel_iommu *iommu = NULL; | ||
3349 | unsigned long flag; | ||
3350 | |||
3351 | if (init_iommu_hw()) { | ||
3352 | if (force_on) | ||
3353 | panic("tboot: IOMMU setup failed, DMAR can not resume!\n"); | ||
3354 | else | ||
3355 | WARN(1, "IOMMU setup failed, DMAR can not resume!\n"); | ||
3356 | return; | ||
3357 | } | ||
3358 | |||
3359 | for_each_active_iommu(iommu, drhd) { | ||
3360 | |||
3361 | spin_lock_irqsave(&iommu->register_lock, flag); | ||
3362 | |||
3363 | writel(iommu->iommu_state[SR_DMAR_FECTL_REG], | ||
3364 | iommu->reg + DMAR_FECTL_REG); | ||
3365 | writel(iommu->iommu_state[SR_DMAR_FEDATA_REG], | ||
3366 | iommu->reg + DMAR_FEDATA_REG); | ||
3367 | writel(iommu->iommu_state[SR_DMAR_FEADDR_REG], | ||
3368 | iommu->reg + DMAR_FEADDR_REG); | ||
3369 | writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG], | ||
3370 | iommu->reg + DMAR_FEUADDR_REG); | ||
3371 | |||
3372 | spin_unlock_irqrestore(&iommu->register_lock, flag); | ||
3373 | } | ||
3374 | |||
3375 | for_each_active_iommu(iommu, drhd) | ||
3376 | kfree(iommu->iommu_state); | ||
3377 | } | ||
3378 | |||
3379 | static struct syscore_ops iommu_syscore_ops = { | ||
3380 | .resume = iommu_resume, | ||
3381 | .suspend = iommu_suspend, | ||
3382 | }; | ||
3383 | |||
3384 | static void __init init_iommu_pm_ops(void) | ||
3385 | { | ||
3386 | register_syscore_ops(&iommu_syscore_ops); | ||
3387 | } | ||
3388 | |||
3389 | #else | ||
3390 | static inline void init_iommu_pm_ops(void) {} | ||
3391 | #endif /* CONFIG_PM */ | ||
3392 | |||
3393 | /* | ||
3394 | * Here we only respond to action of unbound device from driver. | ||
3395 | * | ||
3396 | * Added device is not attached to its DMAR domain here yet. That will happen | ||
3397 | * when mapping the device to iova. | ||
3398 | */ | ||
3399 | static int device_notifier(struct notifier_block *nb, | ||
3400 | unsigned long action, void *data) | ||
3401 | { | ||
3402 | struct device *dev = data; | ||
3403 | struct pci_dev *pdev = to_pci_dev(dev); | ||
3404 | struct dmar_domain *domain; | ||
3405 | |||
3406 | if (iommu_no_mapping(dev)) | ||
3407 | return 0; | ||
3408 | |||
3409 | domain = find_domain(pdev); | ||
3410 | if (!domain) | ||
3411 | return 0; | ||
3412 | |||
3413 | if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) { | ||
3414 | domain_remove_one_dev_info(domain, pdev); | ||
3415 | |||
3416 | if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) && | ||
3417 | !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) && | ||
3418 | list_empty(&domain->devices)) | ||
3419 | domain_exit(domain); | ||
3420 | } | ||
3421 | |||
3422 | return 0; | ||
3423 | } | ||
3424 | |||
3425 | static struct notifier_block device_nb = { | ||
3426 | .notifier_call = device_notifier, | ||
3427 | }; | ||
3428 | |||
3429 | int __init intel_iommu_init(void) | ||
3430 | { | ||
3431 | int ret = 0; | ||
3432 | |||
3433 | /* VT-d is required for a TXT/tboot launch, so enforce that */ | ||
3434 | force_on = tboot_force_iommu(); | ||
3435 | |||
3436 | if (dmar_table_init()) { | ||
3437 | if (force_on) | ||
3438 | panic("tboot: Failed to initialize DMAR table\n"); | ||
3439 | return -ENODEV; | ||
3440 | } | ||
3441 | |||
3442 | if (dmar_dev_scope_init()) { | ||
3443 | if (force_on) | ||
3444 | panic("tboot: Failed to initialize DMAR device scope\n"); | ||
3445 | return -ENODEV; | ||
3446 | } | ||
3447 | |||
3448 | /* | ||
3449 | * Check the need for DMA-remapping initialization now. | ||
3450 | * Above initialization will also be used by Interrupt-remapping. | ||
3451 | */ | ||
3452 | if (no_iommu || dmar_disabled) | ||
3453 | return -ENODEV; | ||
3454 | |||
3455 | if (iommu_init_mempool()) { | ||
3456 | if (force_on) | ||
3457 | panic("tboot: Failed to initialize iommu memory\n"); | ||
3458 | return -ENODEV; | ||
3459 | } | ||
3460 | |||
3461 | if (dmar_init_reserved_ranges()) { | ||
3462 | if (force_on) | ||
3463 | panic("tboot: Failed to reserve iommu ranges\n"); | ||
3464 | return -ENODEV; | ||
3465 | } | ||
3466 | |||
3467 | init_no_remapping_devices(); | ||
3468 | |||
3469 | ret = init_dmars(); | ||
3470 | if (ret) { | ||
3471 | if (force_on) | ||
3472 | panic("tboot: Failed to initialize DMARs\n"); | ||
3473 | printk(KERN_ERR "IOMMU: dmar init failed\n"); | ||
3474 | put_iova_domain(&reserved_iova_list); | ||
3475 | iommu_exit_mempool(); | ||
3476 | return ret; | ||
3477 | } | ||
3478 | printk(KERN_INFO | ||
3479 | "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n"); | ||
3480 | |||
3481 | init_timer(&unmap_timer); | ||
3482 | #ifdef CONFIG_SWIOTLB | ||
3483 | swiotlb = 0; | ||
3484 | #endif | ||
3485 | dma_ops = &intel_dma_ops; | ||
3486 | |||
3487 | init_iommu_pm_ops(); | ||
3488 | |||
3489 | register_iommu(&intel_iommu_ops); | ||
3490 | |||
3491 | bus_register_notifier(&pci_bus_type, &device_nb); | ||
3492 | |||
3493 | return 0; | ||
3494 | } | ||
3495 | |||
3496 | static void iommu_detach_dependent_devices(struct intel_iommu *iommu, | ||
3497 | struct pci_dev *pdev) | ||
3498 | { | ||
3499 | struct pci_dev *tmp, *parent; | ||
3500 | |||
3501 | if (!iommu || !pdev) | ||
3502 | return; | ||
3503 | |||
3504 | /* dependent device detach */ | ||
3505 | tmp = pci_find_upstream_pcie_bridge(pdev); | ||
3506 | /* Secondary interface's bus number and devfn 0 */ | ||
3507 | if (tmp) { | ||
3508 | parent = pdev->bus->self; | ||
3509 | while (parent != tmp) { | ||
3510 | iommu_detach_dev(iommu, parent->bus->number, | ||
3511 | parent->devfn); | ||
3512 | parent = parent->bus->self; | ||
3513 | } | ||
3514 | if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */ | ||
3515 | iommu_detach_dev(iommu, | ||
3516 | tmp->subordinate->number, 0); | ||
3517 | else /* this is a legacy PCI bridge */ | ||
3518 | iommu_detach_dev(iommu, tmp->bus->number, | ||
3519 | tmp->devfn); | ||
3520 | } | ||
3521 | } | ||
3522 | |||
3523 | static void domain_remove_one_dev_info(struct dmar_domain *domain, | ||
3524 | struct pci_dev *pdev) | ||
3525 | { | ||
3526 | struct device_domain_info *info; | ||
3527 | struct intel_iommu *iommu; | ||
3528 | unsigned long flags; | ||
3529 | int found = 0; | ||
3530 | struct list_head *entry, *tmp; | ||
3531 | |||
3532 | iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number, | ||
3533 | pdev->devfn); | ||
3534 | if (!iommu) | ||
3535 | return; | ||
3536 | |||
3537 | spin_lock_irqsave(&device_domain_lock, flags); | ||
3538 | list_for_each_safe(entry, tmp, &domain->devices) { | ||
3539 | info = list_entry(entry, struct device_domain_info, link); | ||
3540 | if (info->segment == pci_domain_nr(pdev->bus) && | ||
3541 | info->bus == pdev->bus->number && | ||
3542 | info->devfn == pdev->devfn) { | ||
3543 | list_del(&info->link); | ||
3544 | list_del(&info->global); | ||
3545 | if (info->dev) | ||
3546 | info->dev->dev.archdata.iommu = NULL; | ||
3547 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
3548 | |||
3549 | iommu_disable_dev_iotlb(info); | ||
3550 | iommu_detach_dev(iommu, info->bus, info->devfn); | ||
3551 | iommu_detach_dependent_devices(iommu, pdev); | ||
3552 | free_devinfo_mem(info); | ||
3553 | |||
3554 | spin_lock_irqsave(&device_domain_lock, flags); | ||
3555 | |||
3556 | if (found) | ||
3557 | break; | ||
3558 | else | ||
3559 | continue; | ||
3560 | } | ||
3561 | |||
3562 | /* if there is no other devices under the same iommu | ||
3563 | * owned by this domain, clear this iommu in iommu_bmp | ||
3564 | * update iommu count and coherency | ||
3565 | */ | ||
3566 | if (iommu == device_to_iommu(info->segment, info->bus, | ||
3567 | info->devfn)) | ||
3568 | found = 1; | ||
3569 | } | ||
3570 | |||
3571 | if (found == 0) { | ||
3572 | unsigned long tmp_flags; | ||
3573 | spin_lock_irqsave(&domain->iommu_lock, tmp_flags); | ||
3574 | clear_bit(iommu->seq_id, &domain->iommu_bmp); | ||
3575 | domain->iommu_count--; | ||
3576 | domain_update_iommu_cap(domain); | ||
3577 | spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags); | ||
3578 | |||
3579 | if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) && | ||
3580 | !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) { | ||
3581 | spin_lock_irqsave(&iommu->lock, tmp_flags); | ||
3582 | clear_bit(domain->id, iommu->domain_ids); | ||
3583 | iommu->domains[domain->id] = NULL; | ||
3584 | spin_unlock_irqrestore(&iommu->lock, tmp_flags); | ||
3585 | } | ||
3586 | } | ||
3587 | |||
3588 | spin_unlock_irqrestore(&device_domain_lock, flags); | ||
3589 | } | ||
3590 | |||
3591 | static void vm_domain_remove_all_dev_info(struct dmar_domain *domain) | ||
3592 | { | ||
3593 | struct device_domain_info *info; | ||
3594 | struct intel_iommu *iommu; | ||
3595 | unsigned long flags1, flags2; | ||
3596 | |||
3597 | spin_lock_irqsave(&device_domain_lock, flags1); | ||
3598 | while (!list_empty(&domain->devices)) { | ||
3599 | info = list_entry(domain->devices.next, | ||
3600 | struct device_domain_info, link); | ||
3601 | list_del(&info->link); | ||
3602 | list_del(&info->global); | ||
3603 | if (info->dev) | ||
3604 | info->dev->dev.archdata.iommu = NULL; | ||
3605 | |||
3606 | spin_unlock_irqrestore(&device_domain_lock, flags1); | ||
3607 | |||
3608 | iommu_disable_dev_iotlb(info); | ||
3609 | iommu = device_to_iommu(info->segment, info->bus, info->devfn); | ||
3610 | iommu_detach_dev(iommu, info->bus, info->devfn); | ||
3611 | iommu_detach_dependent_devices(iommu, info->dev); | ||
3612 | |||
3613 | /* clear this iommu in iommu_bmp, update iommu count | ||
3614 | * and capabilities | ||
3615 | */ | ||
3616 | spin_lock_irqsave(&domain->iommu_lock, flags2); | ||
3617 | if (test_and_clear_bit(iommu->seq_id, | ||
3618 | &domain->iommu_bmp)) { | ||
3619 | domain->iommu_count--; | ||
3620 | domain_update_iommu_cap(domain); | ||
3621 | } | ||
3622 | spin_unlock_irqrestore(&domain->iommu_lock, flags2); | ||
3623 | |||
3624 | free_devinfo_mem(info); | ||
3625 | spin_lock_irqsave(&device_domain_lock, flags1); | ||
3626 | } | ||
3627 | spin_unlock_irqrestore(&device_domain_lock, flags1); | ||
3628 | } | ||
3629 | |||
3630 | /* domain id for virtual machine, it won't be set in context */ | ||
3631 | static unsigned long vm_domid; | ||
3632 | |||
3633 | static struct dmar_domain *iommu_alloc_vm_domain(void) | ||
3634 | { | ||
3635 | struct dmar_domain *domain; | ||
3636 | |||
3637 | domain = alloc_domain_mem(); | ||
3638 | if (!domain) | ||
3639 | return NULL; | ||
3640 | |||
3641 | domain->id = vm_domid++; | ||
3642 | domain->nid = -1; | ||
3643 | memset(&domain->iommu_bmp, 0, sizeof(unsigned long)); | ||
3644 | domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE; | ||
3645 | |||
3646 | return domain; | ||
3647 | } | ||
3648 | |||
3649 | static int md_domain_init(struct dmar_domain *domain, int guest_width) | ||
3650 | { | ||
3651 | int adjust_width; | ||
3652 | |||
3653 | init_iova_domain(&domain->iovad, DMA_32BIT_PFN); | ||
3654 | spin_lock_init(&domain->iommu_lock); | ||
3655 | |||
3656 | domain_reserve_special_ranges(domain); | ||
3657 | |||
3658 | /* calculate AGAW */ | ||
3659 | domain->gaw = guest_width; | ||
3660 | adjust_width = guestwidth_to_adjustwidth(guest_width); | ||
3661 | domain->agaw = width_to_agaw(adjust_width); | ||
3662 | |||
3663 | INIT_LIST_HEAD(&domain->devices); | ||
3664 | |||
3665 | domain->iommu_count = 0; | ||
3666 | domain->iommu_coherency = 0; | ||
3667 | domain->iommu_snooping = 0; | ||
3668 | domain->iommu_superpage = 0; | ||
3669 | domain->max_addr = 0; | ||
3670 | domain->nid = -1; | ||
3671 | |||
3672 | /* always allocate the top pgd */ | ||
3673 | domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid); | ||
3674 | if (!domain->pgd) | ||
3675 | return -ENOMEM; | ||
3676 | domain_flush_cache(domain, domain->pgd, PAGE_SIZE); | ||
3677 | return 0; | ||
3678 | } | ||
3679 | |||
3680 | static void iommu_free_vm_domain(struct dmar_domain *domain) | ||
3681 | { | ||
3682 | unsigned long flags; | ||
3683 | struct dmar_drhd_unit *drhd; | ||
3684 | struct intel_iommu *iommu; | ||
3685 | unsigned long i; | ||
3686 | unsigned long ndomains; | ||
3687 | |||
3688 | for_each_drhd_unit(drhd) { | ||
3689 | if (drhd->ignored) | ||
3690 | continue; | ||
3691 | iommu = drhd->iommu; | ||
3692 | |||
3693 | ndomains = cap_ndoms(iommu->cap); | ||
3694 | for_each_set_bit(i, iommu->domain_ids, ndomains) { | ||
3695 | if (iommu->domains[i] == domain) { | ||
3696 | spin_lock_irqsave(&iommu->lock, flags); | ||
3697 | clear_bit(i, iommu->domain_ids); | ||
3698 | iommu->domains[i] = NULL; | ||
3699 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
3700 | break; | ||
3701 | } | ||
3702 | } | ||
3703 | } | ||
3704 | } | ||
3705 | |||
3706 | static void vm_domain_exit(struct dmar_domain *domain) | ||
3707 | { | ||
3708 | /* Domain 0 is reserved, so dont process it */ | ||
3709 | if (!domain) | ||
3710 | return; | ||
3711 | |||
3712 | vm_domain_remove_all_dev_info(domain); | ||
3713 | /* destroy iovas */ | ||
3714 | put_iova_domain(&domain->iovad); | ||
3715 | |||
3716 | /* clear ptes */ | ||
3717 | dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); | ||
3718 | |||
3719 | /* free page tables */ | ||
3720 | dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); | ||
3721 | |||
3722 | iommu_free_vm_domain(domain); | ||
3723 | free_domain_mem(domain); | ||
3724 | } | ||
3725 | |||
3726 | static int intel_iommu_domain_init(struct iommu_domain *domain) | ||
3727 | { | ||
3728 | struct dmar_domain *dmar_domain; | ||
3729 | |||
3730 | dmar_domain = iommu_alloc_vm_domain(); | ||
3731 | if (!dmar_domain) { | ||
3732 | printk(KERN_ERR | ||
3733 | "intel_iommu_domain_init: dmar_domain == NULL\n"); | ||
3734 | return -ENOMEM; | ||
3735 | } | ||
3736 | if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { | ||
3737 | printk(KERN_ERR | ||
3738 | "intel_iommu_domain_init() failed\n"); | ||
3739 | vm_domain_exit(dmar_domain); | ||
3740 | return -ENOMEM; | ||
3741 | } | ||
3742 | domain->priv = dmar_domain; | ||
3743 | |||
3744 | return 0; | ||
3745 | } | ||
3746 | |||
3747 | static void intel_iommu_domain_destroy(struct iommu_domain *domain) | ||
3748 | { | ||
3749 | struct dmar_domain *dmar_domain = domain->priv; | ||
3750 | |||
3751 | domain->priv = NULL; | ||
3752 | vm_domain_exit(dmar_domain); | ||
3753 | } | ||
3754 | |||
3755 | static int intel_iommu_attach_device(struct iommu_domain *domain, | ||
3756 | struct device *dev) | ||
3757 | { | ||
3758 | struct dmar_domain *dmar_domain = domain->priv; | ||
3759 | struct pci_dev *pdev = to_pci_dev(dev); | ||
3760 | struct intel_iommu *iommu; | ||
3761 | int addr_width; | ||
3762 | |||
3763 | /* normally pdev is not mapped */ | ||
3764 | if (unlikely(domain_context_mapped(pdev))) { | ||
3765 | struct dmar_domain *old_domain; | ||
3766 | |||
3767 | old_domain = find_domain(pdev); | ||
3768 | if (old_domain) { | ||
3769 | if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE || | ||
3770 | dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) | ||
3771 | domain_remove_one_dev_info(old_domain, pdev); | ||
3772 | else | ||
3773 | domain_remove_dev_info(old_domain); | ||
3774 | } | ||
3775 | } | ||
3776 | |||
3777 | iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number, | ||
3778 | pdev->devfn); | ||
3779 | if (!iommu) | ||
3780 | return -ENODEV; | ||
3781 | |||
3782 | /* check if this iommu agaw is sufficient for max mapped address */ | ||
3783 | addr_width = agaw_to_width(iommu->agaw); | ||
3784 | if (addr_width > cap_mgaw(iommu->cap)) | ||
3785 | addr_width = cap_mgaw(iommu->cap); | ||
3786 | |||
3787 | if (dmar_domain->max_addr > (1LL << addr_width)) { | ||
3788 | printk(KERN_ERR "%s: iommu width (%d) is not " | ||
3789 | "sufficient for the mapped address (%llx)\n", | ||
3790 | __func__, addr_width, dmar_domain->max_addr); | ||
3791 | return -EFAULT; | ||
3792 | } | ||
3793 | dmar_domain->gaw = addr_width; | ||
3794 | |||
3795 | /* | ||
3796 | * Knock out extra levels of page tables if necessary | ||
3797 | */ | ||
3798 | while (iommu->agaw < dmar_domain->agaw) { | ||
3799 | struct dma_pte *pte; | ||
3800 | |||
3801 | pte = dmar_domain->pgd; | ||
3802 | if (dma_pte_present(pte)) { | ||
3803 | dmar_domain->pgd = (struct dma_pte *) | ||
3804 | phys_to_virt(dma_pte_addr(pte)); | ||
3805 | free_pgtable_page(pte); | ||
3806 | } | ||
3807 | dmar_domain->agaw--; | ||
3808 | } | ||
3809 | |||
3810 | return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL); | ||
3811 | } | ||
3812 | |||
3813 | static void intel_iommu_detach_device(struct iommu_domain *domain, | ||
3814 | struct device *dev) | ||
3815 | { | ||
3816 | struct dmar_domain *dmar_domain = domain->priv; | ||
3817 | struct pci_dev *pdev = to_pci_dev(dev); | ||
3818 | |||
3819 | domain_remove_one_dev_info(dmar_domain, pdev); | ||
3820 | } | ||
3821 | |||
3822 | static int intel_iommu_map(struct iommu_domain *domain, | ||
3823 | unsigned long iova, phys_addr_t hpa, | ||
3824 | int gfp_order, int iommu_prot) | ||
3825 | { | ||
3826 | struct dmar_domain *dmar_domain = domain->priv; | ||
3827 | u64 max_addr; | ||
3828 | int prot = 0; | ||
3829 | size_t size; | ||
3830 | int ret; | ||
3831 | |||
3832 | if (iommu_prot & IOMMU_READ) | ||
3833 | prot |= DMA_PTE_READ; | ||
3834 | if (iommu_prot & IOMMU_WRITE) | ||
3835 | prot |= DMA_PTE_WRITE; | ||
3836 | if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping) | ||
3837 | prot |= DMA_PTE_SNP; | ||
3838 | |||
3839 | size = PAGE_SIZE << gfp_order; | ||
3840 | max_addr = iova + size; | ||
3841 | if (dmar_domain->max_addr < max_addr) { | ||
3842 | u64 end; | ||
3843 | |||
3844 | /* check if minimum agaw is sufficient for mapped address */ | ||
3845 | end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1; | ||
3846 | if (end < max_addr) { | ||
3847 | printk(KERN_ERR "%s: iommu width (%d) is not " | ||
3848 | "sufficient for the mapped address (%llx)\n", | ||
3849 | __func__, dmar_domain->gaw, max_addr); | ||
3850 | return -EFAULT; | ||
3851 | } | ||
3852 | dmar_domain->max_addr = max_addr; | ||
3853 | } | ||
3854 | /* Round up size to next multiple of PAGE_SIZE, if it and | ||
3855 | the low bits of hpa would take us onto the next page */ | ||
3856 | size = aligned_nrpages(hpa, size); | ||
3857 | ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT, | ||
3858 | hpa >> VTD_PAGE_SHIFT, size, prot); | ||
3859 | return ret; | ||
3860 | } | ||
3861 | |||
3862 | static int intel_iommu_unmap(struct iommu_domain *domain, | ||
3863 | unsigned long iova, int gfp_order) | ||
3864 | { | ||
3865 | struct dmar_domain *dmar_domain = domain->priv; | ||
3866 | size_t size = PAGE_SIZE << gfp_order; | ||
3867 | |||
3868 | dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT, | ||
3869 | (iova + size - 1) >> VTD_PAGE_SHIFT); | ||
3870 | |||
3871 | if (dmar_domain->max_addr == iova + size) | ||
3872 | dmar_domain->max_addr = iova; | ||
3873 | |||
3874 | return gfp_order; | ||
3875 | } | ||
3876 | |||
3877 | static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, | ||
3878 | unsigned long iova) | ||
3879 | { | ||
3880 | struct dmar_domain *dmar_domain = domain->priv; | ||
3881 | struct dma_pte *pte; | ||
3882 | u64 phys = 0; | ||
3883 | |||
3884 | pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0); | ||
3885 | if (pte) | ||
3886 | phys = dma_pte_addr(pte); | ||
3887 | |||
3888 | return phys; | ||
3889 | } | ||
3890 | |||
3891 | static int intel_iommu_domain_has_cap(struct iommu_domain *domain, | ||
3892 | unsigned long cap) | ||
3893 | { | ||
3894 | struct dmar_domain *dmar_domain = domain->priv; | ||
3895 | |||
3896 | if (cap == IOMMU_CAP_CACHE_COHERENCY) | ||
3897 | return dmar_domain->iommu_snooping; | ||
3898 | if (cap == IOMMU_CAP_INTR_REMAP) | ||
3899 | return intr_remapping_enabled; | ||
3900 | |||
3901 | return 0; | ||
3902 | } | ||
3903 | |||
3904 | static struct iommu_ops intel_iommu_ops = { | ||
3905 | .domain_init = intel_iommu_domain_init, | ||
3906 | .domain_destroy = intel_iommu_domain_destroy, | ||
3907 | .attach_dev = intel_iommu_attach_device, | ||
3908 | .detach_dev = intel_iommu_detach_device, | ||
3909 | .map = intel_iommu_map, | ||
3910 | .unmap = intel_iommu_unmap, | ||
3911 | .iova_to_phys = intel_iommu_iova_to_phys, | ||
3912 | .domain_has_cap = intel_iommu_domain_has_cap, | ||
3913 | }; | ||
3914 | |||
3915 | static void __devinit quirk_iommu_rwbf(struct pci_dev *dev) | ||
3916 | { | ||
3917 | /* | ||
3918 | * Mobile 4 Series Chipset neglects to set RWBF capability, | ||
3919 | * but needs it: | ||
3920 | */ | ||
3921 | printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n"); | ||
3922 | rwbf_quirk = 1; | ||
3923 | |||
3924 | /* https://bugzilla.redhat.com/show_bug.cgi?id=538163 */ | ||
3925 | if (dev->revision == 0x07) { | ||
3926 | printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n"); | ||
3927 | dmar_map_gfx = 0; | ||
3928 | } | ||
3929 | } | ||
3930 | |||
3931 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf); | ||
3932 | |||
3933 | #define GGC 0x52 | ||
3934 | #define GGC_MEMORY_SIZE_MASK (0xf << 8) | ||
3935 | #define GGC_MEMORY_SIZE_NONE (0x0 << 8) | ||
3936 | #define GGC_MEMORY_SIZE_1M (0x1 << 8) | ||
3937 | #define GGC_MEMORY_SIZE_2M (0x3 << 8) | ||
3938 | #define GGC_MEMORY_VT_ENABLED (0x8 << 8) | ||
3939 | #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8) | ||
3940 | #define GGC_MEMORY_SIZE_3M_VT (0xa << 8) | ||
3941 | #define GGC_MEMORY_SIZE_4M_VT (0xb << 8) | ||
3942 | |||
3943 | static void __devinit quirk_calpella_no_shadow_gtt(struct pci_dev *dev) | ||
3944 | { | ||
3945 | unsigned short ggc; | ||
3946 | |||
3947 | if (pci_read_config_word(dev, GGC, &ggc)) | ||
3948 | return; | ||
3949 | |||
3950 | if (!(ggc & GGC_MEMORY_VT_ENABLED)) { | ||
3951 | printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n"); | ||
3952 | dmar_map_gfx = 0; | ||
3953 | } | ||
3954 | } | ||
3955 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt); | ||
3956 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt); | ||
3957 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt); | ||
3958 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt); | ||
3959 | |||
3960 | /* On Tylersburg chipsets, some BIOSes have been known to enable the | ||
3961 | ISOCH DMAR unit for the Azalia sound device, but not give it any | ||
3962 | TLB entries, which causes it to deadlock. Check for that. We do | ||
3963 | this in a function called from init_dmars(), instead of in a PCI | ||
3964 | quirk, because we don't want to print the obnoxious "BIOS broken" | ||
3965 | message if VT-d is actually disabled. | ||
3966 | */ | ||
3967 | static void __init check_tylersburg_isoch(void) | ||
3968 | { | ||
3969 | struct pci_dev *pdev; | ||
3970 | uint32_t vtisochctrl; | ||
3971 | |||
3972 | /* If there's no Azalia in the system anyway, forget it. */ | ||
3973 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL); | ||
3974 | if (!pdev) | ||
3975 | return; | ||
3976 | pci_dev_put(pdev); | ||
3977 | |||
3978 | /* System Management Registers. Might be hidden, in which case | ||
3979 | we can't do the sanity check. But that's OK, because the | ||
3980 | known-broken BIOSes _don't_ actually hide it, so far. */ | ||
3981 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL); | ||
3982 | if (!pdev) | ||
3983 | return; | ||
3984 | |||
3985 | if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) { | ||
3986 | pci_dev_put(pdev); | ||
3987 | return; | ||
3988 | } | ||
3989 | |||
3990 | pci_dev_put(pdev); | ||
3991 | |||
3992 | /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */ | ||
3993 | if (vtisochctrl & 1) | ||
3994 | return; | ||
3995 | |||
3996 | /* Drop all bits other than the number of TLB entries */ | ||
3997 | vtisochctrl &= 0x1c; | ||
3998 | |||
3999 | /* If we have the recommended number of TLB entries (16), fine. */ | ||
4000 | if (vtisochctrl == 0x10) | ||
4001 | return; | ||
4002 | |||
4003 | /* Zero TLB entries? You get to ride the short bus to school. */ | ||
4004 | if (!vtisochctrl) { | ||
4005 | WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n" | ||
4006 | "BIOS vendor: %s; Ver: %s; Product Version: %s\n", | ||
4007 | dmi_get_system_info(DMI_BIOS_VENDOR), | ||
4008 | dmi_get_system_info(DMI_BIOS_VERSION), | ||
4009 | dmi_get_system_info(DMI_PRODUCT_VERSION)); | ||
4010 | iommu_identity_mapping |= IDENTMAP_AZALIA; | ||
4011 | return; | ||
4012 | } | ||
4013 | |||
4014 | printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n", | ||
4015 | vtisochctrl); | ||
4016 | } | ||
diff --git a/drivers/iommu/intr_remapping.c b/drivers/iommu/intr_remapping.c new file mode 100644 index 00000000000..1a89d4a2cad --- /dev/null +++ b/drivers/iommu/intr_remapping.c | |||
@@ -0,0 +1,797 @@ | |||
1 | #include <linux/interrupt.h> | ||
2 | #include <linux/dmar.h> | ||
3 | #include <linux/spinlock.h> | ||
4 | #include <linux/slab.h> | ||
5 | #include <linux/jiffies.h> | ||
6 | #include <linux/hpet.h> | ||
7 | #include <linux/pci.h> | ||
8 | #include <linux/irq.h> | ||
9 | #include <asm/io_apic.h> | ||
10 | #include <asm/smp.h> | ||
11 | #include <asm/cpu.h> | ||
12 | #include <linux/intel-iommu.h> | ||
13 | #include "intr_remapping.h" | ||
14 | #include <acpi/acpi.h> | ||
15 | #include <asm/pci-direct.h> | ||
16 | |||
17 | static struct ioapic_scope ir_ioapic[MAX_IO_APICS]; | ||
18 | static struct hpet_scope ir_hpet[MAX_HPET_TBS]; | ||
19 | static int ir_ioapic_num, ir_hpet_num; | ||
20 | int intr_remapping_enabled; | ||
21 | |||
22 | static int disable_intremap; | ||
23 | static int disable_sourceid_checking; | ||
24 | |||
25 | static __init int setup_nointremap(char *str) | ||
26 | { | ||
27 | disable_intremap = 1; | ||
28 | return 0; | ||
29 | } | ||
30 | early_param("nointremap", setup_nointremap); | ||
31 | |||
32 | static __init int setup_intremap(char *str) | ||
33 | { | ||
34 | if (!str) | ||
35 | return -EINVAL; | ||
36 | |||
37 | if (!strncmp(str, "on", 2)) | ||
38 | disable_intremap = 0; | ||
39 | else if (!strncmp(str, "off", 3)) | ||
40 | disable_intremap = 1; | ||
41 | else if (!strncmp(str, "nosid", 5)) | ||
42 | disable_sourceid_checking = 1; | ||
43 | |||
44 | return 0; | ||
45 | } | ||
46 | early_param("intremap", setup_intremap); | ||
47 | |||
48 | static DEFINE_SPINLOCK(irq_2_ir_lock); | ||
49 | |||
50 | static struct irq_2_iommu *irq_2_iommu(unsigned int irq) | ||
51 | { | ||
52 | struct irq_cfg *cfg = irq_get_chip_data(irq); | ||
53 | return cfg ? &cfg->irq_2_iommu : NULL; | ||
54 | } | ||
55 | |||
56 | int get_irte(int irq, struct irte *entry) | ||
57 | { | ||
58 | struct irq_2_iommu *irq_iommu = irq_2_iommu(irq); | ||
59 | unsigned long flags; | ||
60 | int index; | ||
61 | |||
62 | if (!entry || !irq_iommu) | ||
63 | return -1; | ||
64 | |||
65 | spin_lock_irqsave(&irq_2_ir_lock, flags); | ||
66 | |||
67 | index = irq_iommu->irte_index + irq_iommu->sub_handle; | ||
68 | *entry = *(irq_iommu->iommu->ir_table->base + index); | ||
69 | |||
70 | spin_unlock_irqrestore(&irq_2_ir_lock, flags); | ||
71 | return 0; | ||
72 | } | ||
73 | |||
74 | int alloc_irte(struct intel_iommu *iommu, int irq, u16 count) | ||
75 | { | ||
76 | struct ir_table *table = iommu->ir_table; | ||
77 | struct irq_2_iommu *irq_iommu = irq_2_iommu(irq); | ||
78 | u16 index, start_index; | ||
79 | unsigned int mask = 0; | ||
80 | unsigned long flags; | ||
81 | int i; | ||
82 | |||
83 | if (!count || !irq_iommu) | ||
84 | return -1; | ||
85 | |||
86 | /* | ||
87 | * start the IRTE search from index 0. | ||
88 | */ | ||
89 | index = start_index = 0; | ||
90 | |||
91 | if (count > 1) { | ||
92 | count = __roundup_pow_of_two(count); | ||
93 | mask = ilog2(count); | ||
94 | } | ||
95 | |||
96 | if (mask > ecap_max_handle_mask(iommu->ecap)) { | ||
97 | printk(KERN_ERR | ||
98 | "Requested mask %x exceeds the max invalidation handle" | ||
99 | " mask value %Lx\n", mask, | ||
100 | ecap_max_handle_mask(iommu->ecap)); | ||
101 | return -1; | ||
102 | } | ||
103 | |||
104 | spin_lock_irqsave(&irq_2_ir_lock, flags); | ||
105 | do { | ||
106 | for (i = index; i < index + count; i++) | ||
107 | if (table->base[i].present) | ||
108 | break; | ||
109 | /* empty index found */ | ||
110 | if (i == index + count) | ||
111 | break; | ||
112 | |||
113 | index = (index + count) % INTR_REMAP_TABLE_ENTRIES; | ||
114 | |||
115 | if (index == start_index) { | ||
116 | spin_unlock_irqrestore(&irq_2_ir_lock, flags); | ||
117 | printk(KERN_ERR "can't allocate an IRTE\n"); | ||
118 | return -1; | ||
119 | } | ||
120 | } while (1); | ||
121 | |||
122 | for (i = index; i < index + count; i++) | ||
123 | table->base[i].present = 1; | ||
124 | |||
125 | irq_iommu->iommu = iommu; | ||
126 | irq_iommu->irte_index = index; | ||
127 | irq_iommu->sub_handle = 0; | ||
128 | irq_iommu->irte_mask = mask; | ||
129 | |||
130 | spin_unlock_irqrestore(&irq_2_ir_lock, flags); | ||
131 | |||
132 | return index; | ||
133 | } | ||
134 | |||
135 | static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask) | ||
136 | { | ||
137 | struct qi_desc desc; | ||
138 | |||
139 | desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask) | ||
140 | | QI_IEC_SELECTIVE; | ||
141 | desc.high = 0; | ||
142 | |||
143 | return qi_submit_sync(&desc, iommu); | ||
144 | } | ||
145 | |||
146 | int map_irq_to_irte_handle(int irq, u16 *sub_handle) | ||
147 | { | ||
148 | struct irq_2_iommu *irq_iommu = irq_2_iommu(irq); | ||
149 | unsigned long flags; | ||
150 | int index; | ||
151 | |||
152 | if (!irq_iommu) | ||
153 | return -1; | ||
154 | |||
155 | spin_lock_irqsave(&irq_2_ir_lock, flags); | ||
156 | *sub_handle = irq_iommu->sub_handle; | ||
157 | index = irq_iommu->irte_index; | ||
158 | spin_unlock_irqrestore(&irq_2_ir_lock, flags); | ||
159 | return index; | ||
160 | } | ||
161 | |||
162 | int set_irte_irq(int irq, struct intel_iommu *iommu, u16 index, u16 subhandle) | ||
163 | { | ||
164 | struct irq_2_iommu *irq_iommu = irq_2_iommu(irq); | ||
165 | unsigned long flags; | ||
166 | |||
167 | if (!irq_iommu) | ||
168 | return -1; | ||
169 | |||
170 | spin_lock_irqsave(&irq_2_ir_lock, flags); | ||
171 | |||
172 | irq_iommu->iommu = iommu; | ||
173 | irq_iommu->irte_index = index; | ||
174 | irq_iommu->sub_handle = subhandle; | ||
175 | irq_iommu->irte_mask = 0; | ||
176 | |||
177 | spin_unlock_irqrestore(&irq_2_ir_lock, flags); | ||
178 | |||
179 | return 0; | ||
180 | } | ||
181 | |||
182 | int modify_irte(int irq, struct irte *irte_modified) | ||
183 | { | ||
184 | struct irq_2_iommu *irq_iommu = irq_2_iommu(irq); | ||
185 | struct intel_iommu *iommu; | ||
186 | unsigned long flags; | ||
187 | struct irte *irte; | ||
188 | int rc, index; | ||
189 | |||
190 | if (!irq_iommu) | ||
191 | return -1; | ||
192 | |||
193 | spin_lock_irqsave(&irq_2_ir_lock, flags); | ||
194 | |||
195 | iommu = irq_iommu->iommu; | ||
196 | |||
197 | index = irq_iommu->irte_index + irq_iommu->sub_handle; | ||
198 | irte = &iommu->ir_table->base[index]; | ||
199 | |||
200 | set_64bit(&irte->low, irte_modified->low); | ||
201 | set_64bit(&irte->high, irte_modified->high); | ||
202 | __iommu_flush_cache(iommu, irte, sizeof(*irte)); | ||
203 | |||
204 | rc = qi_flush_iec(iommu, index, 0); | ||
205 | spin_unlock_irqrestore(&irq_2_ir_lock, flags); | ||
206 | |||
207 | return rc; | ||
208 | } | ||
209 | |||
210 | struct intel_iommu *map_hpet_to_ir(u8 hpet_id) | ||
211 | { | ||
212 | int i; | ||
213 | |||
214 | for (i = 0; i < MAX_HPET_TBS; i++) | ||
215 | if (ir_hpet[i].id == hpet_id) | ||
216 | return ir_hpet[i].iommu; | ||
217 | return NULL; | ||
218 | } | ||
219 | |||
220 | struct intel_iommu *map_ioapic_to_ir(int apic) | ||
221 | { | ||
222 | int i; | ||
223 | |||
224 | for (i = 0; i < MAX_IO_APICS; i++) | ||
225 | if (ir_ioapic[i].id == apic) | ||
226 | return ir_ioapic[i].iommu; | ||
227 | return NULL; | ||
228 | } | ||
229 | |||
230 | struct intel_iommu *map_dev_to_ir(struct pci_dev *dev) | ||
231 | { | ||
232 | struct dmar_drhd_unit *drhd; | ||
233 | |||
234 | drhd = dmar_find_matched_drhd_unit(dev); | ||
235 | if (!drhd) | ||
236 | return NULL; | ||
237 | |||
238 | return drhd->iommu; | ||
239 | } | ||
240 | |||
241 | static int clear_entries(struct irq_2_iommu *irq_iommu) | ||
242 | { | ||
243 | struct irte *start, *entry, *end; | ||
244 | struct intel_iommu *iommu; | ||
245 | int index; | ||
246 | |||
247 | if (irq_iommu->sub_handle) | ||
248 | return 0; | ||
249 | |||
250 | iommu = irq_iommu->iommu; | ||
251 | index = irq_iommu->irte_index + irq_iommu->sub_handle; | ||
252 | |||
253 | start = iommu->ir_table->base + index; | ||
254 | end = start + (1 << irq_iommu->irte_mask); | ||
255 | |||
256 | for (entry = start; entry < end; entry++) { | ||
257 | set_64bit(&entry->low, 0); | ||
258 | set_64bit(&entry->high, 0); | ||
259 | } | ||
260 | |||
261 | return qi_flush_iec(iommu, index, irq_iommu->irte_mask); | ||
262 | } | ||
263 | |||
264 | int free_irte(int irq) | ||
265 | { | ||
266 | struct irq_2_iommu *irq_iommu = irq_2_iommu(irq); | ||
267 | unsigned long flags; | ||
268 | int rc; | ||
269 | |||
270 | if (!irq_iommu) | ||
271 | return -1; | ||
272 | |||
273 | spin_lock_irqsave(&irq_2_ir_lock, flags); | ||
274 | |||
275 | rc = clear_entries(irq_iommu); | ||
276 | |||
277 | irq_iommu->iommu = NULL; | ||
278 | irq_iommu->irte_index = 0; | ||
279 | irq_iommu->sub_handle = 0; | ||
280 | irq_iommu->irte_mask = 0; | ||
281 | |||
282 | spin_unlock_irqrestore(&irq_2_ir_lock, flags); | ||
283 | |||
284 | return rc; | ||
285 | } | ||
286 | |||
287 | /* | ||
288 | * source validation type | ||
289 | */ | ||
290 | #define SVT_NO_VERIFY 0x0 /* no verification is required */ | ||
291 | #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */ | ||
292 | #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */ | ||
293 | |||
294 | /* | ||
295 | * source-id qualifier | ||
296 | */ | ||
297 | #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */ | ||
298 | #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore | ||
299 | * the third least significant bit | ||
300 | */ | ||
301 | #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore | ||
302 | * the second and third least significant bits | ||
303 | */ | ||
304 | #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore | ||
305 | * the least three significant bits | ||
306 | */ | ||
307 | |||
308 | /* | ||
309 | * set SVT, SQ and SID fields of irte to verify | ||
310 | * source ids of interrupt requests | ||
311 | */ | ||
312 | static void set_irte_sid(struct irte *irte, unsigned int svt, | ||
313 | unsigned int sq, unsigned int sid) | ||
314 | { | ||
315 | if (disable_sourceid_checking) | ||
316 | svt = SVT_NO_VERIFY; | ||
317 | irte->svt = svt; | ||
318 | irte->sq = sq; | ||
319 | irte->sid = sid; | ||
320 | } | ||
321 | |||
322 | int set_ioapic_sid(struct irte *irte, int apic) | ||
323 | { | ||
324 | int i; | ||
325 | u16 sid = 0; | ||
326 | |||
327 | if (!irte) | ||
328 | return -1; | ||
329 | |||
330 | for (i = 0; i < MAX_IO_APICS; i++) { | ||
331 | if (ir_ioapic[i].id == apic) { | ||
332 | sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn; | ||
333 | break; | ||
334 | } | ||
335 | } | ||
336 | |||
337 | if (sid == 0) { | ||
338 | pr_warning("Failed to set source-id of IOAPIC (%d)\n", apic); | ||
339 | return -1; | ||
340 | } | ||
341 | |||
342 | set_irte_sid(irte, 1, 0, sid); | ||
343 | |||
344 | return 0; | ||
345 | } | ||
346 | |||
347 | int set_hpet_sid(struct irte *irte, u8 id) | ||
348 | { | ||
349 | int i; | ||
350 | u16 sid = 0; | ||
351 | |||
352 | if (!irte) | ||
353 | return -1; | ||
354 | |||
355 | for (i = 0; i < MAX_HPET_TBS; i++) { | ||
356 | if (ir_hpet[i].id == id) { | ||
357 | sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn; | ||
358 | break; | ||
359 | } | ||
360 | } | ||
361 | |||
362 | if (sid == 0) { | ||
363 | pr_warning("Failed to set source-id of HPET block (%d)\n", id); | ||
364 | return -1; | ||
365 | } | ||
366 | |||
367 | /* | ||
368 | * Should really use SQ_ALL_16. Some platforms are broken. | ||
369 | * While we figure out the right quirks for these broken platforms, use | ||
370 | * SQ_13_IGNORE_3 for now. | ||
371 | */ | ||
372 | set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid); | ||
373 | |||
374 | return 0; | ||
375 | } | ||
376 | |||
377 | int set_msi_sid(struct irte *irte, struct pci_dev *dev) | ||
378 | { | ||
379 | struct pci_dev *bridge; | ||
380 | |||
381 | if (!irte || !dev) | ||
382 | return -1; | ||
383 | |||
384 | /* PCIe device or Root Complex integrated PCI device */ | ||
385 | if (pci_is_pcie(dev) || !dev->bus->parent) { | ||
386 | set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, | ||
387 | (dev->bus->number << 8) | dev->devfn); | ||
388 | return 0; | ||
389 | } | ||
390 | |||
391 | bridge = pci_find_upstream_pcie_bridge(dev); | ||
392 | if (bridge) { | ||
393 | if (pci_is_pcie(bridge))/* this is a PCIe-to-PCI/PCIX bridge */ | ||
394 | set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16, | ||
395 | (bridge->bus->number << 8) | dev->bus->number); | ||
396 | else /* this is a legacy PCI bridge */ | ||
397 | set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, | ||
398 | (bridge->bus->number << 8) | bridge->devfn); | ||
399 | } | ||
400 | |||
401 | return 0; | ||
402 | } | ||
403 | |||
404 | static void iommu_set_intr_remapping(struct intel_iommu *iommu, int mode) | ||
405 | { | ||
406 | u64 addr; | ||
407 | u32 sts; | ||
408 | unsigned long flags; | ||
409 | |||
410 | addr = virt_to_phys((void *)iommu->ir_table->base); | ||
411 | |||
412 | spin_lock_irqsave(&iommu->register_lock, flags); | ||
413 | |||
414 | dmar_writeq(iommu->reg + DMAR_IRTA_REG, | ||
415 | (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE); | ||
416 | |||
417 | /* Set interrupt-remapping table pointer */ | ||
418 | iommu->gcmd |= DMA_GCMD_SIRTP; | ||
419 | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); | ||
420 | |||
421 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | ||
422 | readl, (sts & DMA_GSTS_IRTPS), sts); | ||
423 | spin_unlock_irqrestore(&iommu->register_lock, flags); | ||
424 | |||
425 | /* | ||
426 | * global invalidation of interrupt entry cache before enabling | ||
427 | * interrupt-remapping. | ||
428 | */ | ||
429 | qi_global_iec(iommu); | ||
430 | |||
431 | spin_lock_irqsave(&iommu->register_lock, flags); | ||
432 | |||
433 | /* Enable interrupt-remapping */ | ||
434 | iommu->gcmd |= DMA_GCMD_IRE; | ||
435 | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); | ||
436 | |||
437 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | ||
438 | readl, (sts & DMA_GSTS_IRES), sts); | ||
439 | |||
440 | spin_unlock_irqrestore(&iommu->register_lock, flags); | ||
441 | } | ||
442 | |||
443 | |||
444 | static int setup_intr_remapping(struct intel_iommu *iommu, int mode) | ||
445 | { | ||
446 | struct ir_table *ir_table; | ||
447 | struct page *pages; | ||
448 | |||
449 | ir_table = iommu->ir_table = kzalloc(sizeof(struct ir_table), | ||
450 | GFP_ATOMIC); | ||
451 | |||
452 | if (!iommu->ir_table) | ||
453 | return -ENOMEM; | ||
454 | |||
455 | pages = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, | ||
456 | INTR_REMAP_PAGE_ORDER); | ||
457 | |||
458 | if (!pages) { | ||
459 | printk(KERN_ERR "failed to allocate pages of order %d\n", | ||
460 | INTR_REMAP_PAGE_ORDER); | ||
461 | kfree(iommu->ir_table); | ||
462 | return -ENOMEM; | ||
463 | } | ||
464 | |||
465 | ir_table->base = page_address(pages); | ||
466 | |||
467 | iommu_set_intr_remapping(iommu, mode); | ||
468 | return 0; | ||
469 | } | ||
470 | |||
471 | /* | ||
472 | * Disable Interrupt Remapping. | ||
473 | */ | ||
474 | static void iommu_disable_intr_remapping(struct intel_iommu *iommu) | ||
475 | { | ||
476 | unsigned long flags; | ||
477 | u32 sts; | ||
478 | |||
479 | if (!ecap_ir_support(iommu->ecap)) | ||
480 | return; | ||
481 | |||
482 | /* | ||
483 | * global invalidation of interrupt entry cache before disabling | ||
484 | * interrupt-remapping. | ||
485 | */ | ||
486 | qi_global_iec(iommu); | ||
487 | |||
488 | spin_lock_irqsave(&iommu->register_lock, flags); | ||
489 | |||
490 | sts = dmar_readq(iommu->reg + DMAR_GSTS_REG); | ||
491 | if (!(sts & DMA_GSTS_IRES)) | ||
492 | goto end; | ||
493 | |||
494 | iommu->gcmd &= ~DMA_GCMD_IRE; | ||
495 | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); | ||
496 | |||
497 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | ||
498 | readl, !(sts & DMA_GSTS_IRES), sts); | ||
499 | |||
500 | end: | ||
501 | spin_unlock_irqrestore(&iommu->register_lock, flags); | ||
502 | } | ||
503 | |||
504 | int __init intr_remapping_supported(void) | ||
505 | { | ||
506 | struct dmar_drhd_unit *drhd; | ||
507 | |||
508 | if (disable_intremap) | ||
509 | return 0; | ||
510 | |||
511 | if (!dmar_ir_support()) | ||
512 | return 0; | ||
513 | |||
514 | for_each_drhd_unit(drhd) { | ||
515 | struct intel_iommu *iommu = drhd->iommu; | ||
516 | |||
517 | if (!ecap_ir_support(iommu->ecap)) | ||
518 | return 0; | ||
519 | } | ||
520 | |||
521 | return 1; | ||
522 | } | ||
523 | |||
524 | int __init enable_intr_remapping(int eim) | ||
525 | { | ||
526 | struct dmar_drhd_unit *drhd; | ||
527 | int setup = 0; | ||
528 | |||
529 | if (parse_ioapics_under_ir() != 1) { | ||
530 | printk(KERN_INFO "Not enable interrupt remapping\n"); | ||
531 | return -1; | ||
532 | } | ||
533 | |||
534 | for_each_drhd_unit(drhd) { | ||
535 | struct intel_iommu *iommu = drhd->iommu; | ||
536 | |||
537 | /* | ||
538 | * If the queued invalidation is already initialized, | ||
539 | * shouldn't disable it. | ||
540 | */ | ||
541 | if (iommu->qi) | ||
542 | continue; | ||
543 | |||
544 | /* | ||
545 | * Clear previous faults. | ||
546 | */ | ||
547 | dmar_fault(-1, iommu); | ||
548 | |||
549 | /* | ||
550 | * Disable intr remapping and queued invalidation, if already | ||
551 | * enabled prior to OS handover. | ||
552 | */ | ||
553 | iommu_disable_intr_remapping(iommu); | ||
554 | |||
555 | dmar_disable_qi(iommu); | ||
556 | } | ||
557 | |||
558 | /* | ||
559 | * check for the Interrupt-remapping support | ||
560 | */ | ||
561 | for_each_drhd_unit(drhd) { | ||
562 | struct intel_iommu *iommu = drhd->iommu; | ||
563 | |||
564 | if (!ecap_ir_support(iommu->ecap)) | ||
565 | continue; | ||
566 | |||
567 | if (eim && !ecap_eim_support(iommu->ecap)) { | ||
568 | printk(KERN_INFO "DRHD %Lx: EIM not supported by DRHD, " | ||
569 | " ecap %Lx\n", drhd->reg_base_addr, iommu->ecap); | ||
570 | return -1; | ||
571 | } | ||
572 | } | ||
573 | |||
574 | /* | ||
575 | * Enable queued invalidation for all the DRHD's. | ||
576 | */ | ||
577 | for_each_drhd_unit(drhd) { | ||
578 | int ret; | ||
579 | struct intel_iommu *iommu = drhd->iommu; | ||
580 | ret = dmar_enable_qi(iommu); | ||
581 | |||
582 | if (ret) { | ||
583 | printk(KERN_ERR "DRHD %Lx: failed to enable queued, " | ||
584 | " invalidation, ecap %Lx, ret %d\n", | ||
585 | drhd->reg_base_addr, iommu->ecap, ret); | ||
586 | return -1; | ||
587 | } | ||
588 | } | ||
589 | |||
590 | /* | ||
591 | * Setup Interrupt-remapping for all the DRHD's now. | ||
592 | */ | ||
593 | for_each_drhd_unit(drhd) { | ||
594 | struct intel_iommu *iommu = drhd->iommu; | ||
595 | |||
596 | if (!ecap_ir_support(iommu->ecap)) | ||
597 | continue; | ||
598 | |||
599 | if (setup_intr_remapping(iommu, eim)) | ||
600 | goto error; | ||
601 | |||
602 | setup = 1; | ||
603 | } | ||
604 | |||
605 | if (!setup) | ||
606 | goto error; | ||
607 | |||
608 | intr_remapping_enabled = 1; | ||
609 | |||
610 | return 0; | ||
611 | |||
612 | error: | ||
613 | /* | ||
614 | * handle error condition gracefully here! | ||
615 | */ | ||
616 | return -1; | ||
617 | } | ||
618 | |||
619 | static void ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope, | ||
620 | struct intel_iommu *iommu) | ||
621 | { | ||
622 | struct acpi_dmar_pci_path *path; | ||
623 | u8 bus; | ||
624 | int count; | ||
625 | |||
626 | bus = scope->bus; | ||
627 | path = (struct acpi_dmar_pci_path *)(scope + 1); | ||
628 | count = (scope->length - sizeof(struct acpi_dmar_device_scope)) | ||
629 | / sizeof(struct acpi_dmar_pci_path); | ||
630 | |||
631 | while (--count > 0) { | ||
632 | /* | ||
633 | * Access PCI directly due to the PCI | ||
634 | * subsystem isn't initialized yet. | ||
635 | */ | ||
636 | bus = read_pci_config_byte(bus, path->dev, path->fn, | ||
637 | PCI_SECONDARY_BUS); | ||
638 | path++; | ||
639 | } | ||
640 | ir_hpet[ir_hpet_num].bus = bus; | ||
641 | ir_hpet[ir_hpet_num].devfn = PCI_DEVFN(path->dev, path->fn); | ||
642 | ir_hpet[ir_hpet_num].iommu = iommu; | ||
643 | ir_hpet[ir_hpet_num].id = scope->enumeration_id; | ||
644 | ir_hpet_num++; | ||
645 | } | ||
646 | |||
647 | static void ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope, | ||
648 | struct intel_iommu *iommu) | ||
649 | { | ||
650 | struct acpi_dmar_pci_path *path; | ||
651 | u8 bus; | ||
652 | int count; | ||
653 | |||
654 | bus = scope->bus; | ||
655 | path = (struct acpi_dmar_pci_path *)(scope + 1); | ||
656 | count = (scope->length - sizeof(struct acpi_dmar_device_scope)) | ||
657 | / sizeof(struct acpi_dmar_pci_path); | ||
658 | |||
659 | while (--count > 0) { | ||
660 | /* | ||
661 | * Access PCI directly due to the PCI | ||
662 | * subsystem isn't initialized yet. | ||
663 | */ | ||
664 | bus = read_pci_config_byte(bus, path->dev, path->fn, | ||
665 | PCI_SECONDARY_BUS); | ||
666 | path++; | ||
667 | } | ||
668 | |||
669 | ir_ioapic[ir_ioapic_num].bus = bus; | ||
670 | ir_ioapic[ir_ioapic_num].devfn = PCI_DEVFN(path->dev, path->fn); | ||
671 | ir_ioapic[ir_ioapic_num].iommu = iommu; | ||
672 | ir_ioapic[ir_ioapic_num].id = scope->enumeration_id; | ||
673 | ir_ioapic_num++; | ||
674 | } | ||
675 | |||
676 | static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header, | ||
677 | struct intel_iommu *iommu) | ||
678 | { | ||
679 | struct acpi_dmar_hardware_unit *drhd; | ||
680 | struct acpi_dmar_device_scope *scope; | ||
681 | void *start, *end; | ||
682 | |||
683 | drhd = (struct acpi_dmar_hardware_unit *)header; | ||
684 | |||
685 | start = (void *)(drhd + 1); | ||
686 | end = ((void *)drhd) + header->length; | ||
687 | |||
688 | while (start < end) { | ||
689 | scope = start; | ||
690 | if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) { | ||
691 | if (ir_ioapic_num == MAX_IO_APICS) { | ||
692 | printk(KERN_WARNING "Exceeded Max IO APICS\n"); | ||
693 | return -1; | ||
694 | } | ||
695 | |||
696 | printk(KERN_INFO "IOAPIC id %d under DRHD base " | ||
697 | " 0x%Lx IOMMU %d\n", scope->enumeration_id, | ||
698 | drhd->address, iommu->seq_id); | ||
699 | |||
700 | ir_parse_one_ioapic_scope(scope, iommu); | ||
701 | } else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET) { | ||
702 | if (ir_hpet_num == MAX_HPET_TBS) { | ||
703 | printk(KERN_WARNING "Exceeded Max HPET blocks\n"); | ||
704 | return -1; | ||
705 | } | ||
706 | |||
707 | printk(KERN_INFO "HPET id %d under DRHD base" | ||
708 | " 0x%Lx\n", scope->enumeration_id, | ||
709 | drhd->address); | ||
710 | |||
711 | ir_parse_one_hpet_scope(scope, iommu); | ||
712 | } | ||
713 | start += scope->length; | ||
714 | } | ||
715 | |||
716 | return 0; | ||
717 | } | ||
718 | |||
719 | /* | ||
720 | * Finds the assocaition between IOAPIC's and its Interrupt-remapping | ||
721 | * hardware unit. | ||
722 | */ | ||
723 | int __init parse_ioapics_under_ir(void) | ||
724 | { | ||
725 | struct dmar_drhd_unit *drhd; | ||
726 | int ir_supported = 0; | ||
727 | |||
728 | for_each_drhd_unit(drhd) { | ||
729 | struct intel_iommu *iommu = drhd->iommu; | ||
730 | |||
731 | if (ecap_ir_support(iommu->ecap)) { | ||
732 | if (ir_parse_ioapic_hpet_scope(drhd->hdr, iommu)) | ||
733 | return -1; | ||
734 | |||
735 | ir_supported = 1; | ||
736 | } | ||
737 | } | ||
738 | |||
739 | if (ir_supported && ir_ioapic_num != nr_ioapics) { | ||
740 | printk(KERN_WARNING | ||
741 | "Not all IO-APIC's listed under remapping hardware\n"); | ||
742 | return -1; | ||
743 | } | ||
744 | |||
745 | return ir_supported; | ||
746 | } | ||
747 | |||
748 | void disable_intr_remapping(void) | ||
749 | { | ||
750 | struct dmar_drhd_unit *drhd; | ||
751 | struct intel_iommu *iommu = NULL; | ||
752 | |||
753 | /* | ||
754 | * Disable Interrupt-remapping for all the DRHD's now. | ||
755 | */ | ||
756 | for_each_iommu(iommu, drhd) { | ||
757 | if (!ecap_ir_support(iommu->ecap)) | ||
758 | continue; | ||
759 | |||
760 | iommu_disable_intr_remapping(iommu); | ||
761 | } | ||
762 | } | ||
763 | |||
764 | int reenable_intr_remapping(int eim) | ||
765 | { | ||
766 | struct dmar_drhd_unit *drhd; | ||
767 | int setup = 0; | ||
768 | struct intel_iommu *iommu = NULL; | ||
769 | |||
770 | for_each_iommu(iommu, drhd) | ||
771 | if (iommu->qi) | ||
772 | dmar_reenable_qi(iommu); | ||
773 | |||
774 | /* | ||
775 | * Setup Interrupt-remapping for all the DRHD's now. | ||
776 | */ | ||
777 | for_each_iommu(iommu, drhd) { | ||
778 | if (!ecap_ir_support(iommu->ecap)) | ||
779 | continue; | ||
780 | |||
781 | /* Set up interrupt remapping for iommu.*/ | ||
782 | iommu_set_intr_remapping(iommu, eim); | ||
783 | setup = 1; | ||
784 | } | ||
785 | |||
786 | if (!setup) | ||
787 | goto error; | ||
788 | |||
789 | return 0; | ||
790 | |||
791 | error: | ||
792 | /* | ||
793 | * handle error condition gracefully here! | ||
794 | */ | ||
795 | return -1; | ||
796 | } | ||
797 | |||
diff --git a/drivers/iommu/intr_remapping.h b/drivers/iommu/intr_remapping.h new file mode 100644 index 00000000000..5662fecfee6 --- /dev/null +++ b/drivers/iommu/intr_remapping.h | |||
@@ -0,0 +1,17 @@ | |||
1 | #include <linux/intel-iommu.h> | ||
2 | |||
3 | struct ioapic_scope { | ||
4 | struct intel_iommu *iommu; | ||
5 | unsigned int id; | ||
6 | unsigned int bus; /* PCI bus number */ | ||
7 | unsigned int devfn; /* PCI devfn number */ | ||
8 | }; | ||
9 | |||
10 | struct hpet_scope { | ||
11 | struct intel_iommu *iommu; | ||
12 | u8 id; | ||
13 | unsigned int bus; | ||
14 | unsigned int devfn; | ||
15 | }; | ||
16 | |||
17 | #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0) | ||
diff --git a/drivers/iommu/iova.c b/drivers/iommu/iova.c new file mode 100644 index 00000000000..c5c274ab5c5 --- /dev/null +++ b/drivers/iommu/iova.c | |||
@@ -0,0 +1,435 @@ | |||
1 | /* | ||
2 | * Copyright © 2006-2009, Intel Corporation. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify it | ||
5 | * under the terms and conditions of the GNU General Public License, | ||
6 | * version 2, as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope it will be useful, but WITHOUT | ||
9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
11 | * more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public License along with | ||
14 | * this program; if not, write to the Free Software Foundation, Inc., 59 Temple | ||
15 | * Place - Suite 330, Boston, MA 02111-1307 USA. | ||
16 | * | ||
17 | * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> | ||
18 | */ | ||
19 | |||
20 | #include <linux/iova.h> | ||
21 | |||
22 | void | ||
23 | init_iova_domain(struct iova_domain *iovad, unsigned long pfn_32bit) | ||
24 | { | ||
25 | spin_lock_init(&iovad->iova_rbtree_lock); | ||
26 | iovad->rbroot = RB_ROOT; | ||
27 | iovad->cached32_node = NULL; | ||
28 | iovad->dma_32bit_pfn = pfn_32bit; | ||
29 | } | ||
30 | |||
31 | static struct rb_node * | ||
32 | __get_cached_rbnode(struct iova_domain *iovad, unsigned long *limit_pfn) | ||
33 | { | ||
34 | if ((*limit_pfn != iovad->dma_32bit_pfn) || | ||
35 | (iovad->cached32_node == NULL)) | ||
36 | return rb_last(&iovad->rbroot); | ||
37 | else { | ||
38 | struct rb_node *prev_node = rb_prev(iovad->cached32_node); | ||
39 | struct iova *curr_iova = | ||
40 | container_of(iovad->cached32_node, struct iova, node); | ||
41 | *limit_pfn = curr_iova->pfn_lo - 1; | ||
42 | return prev_node; | ||
43 | } | ||
44 | } | ||
45 | |||
46 | static void | ||
47 | __cached_rbnode_insert_update(struct iova_domain *iovad, | ||
48 | unsigned long limit_pfn, struct iova *new) | ||
49 | { | ||
50 | if (limit_pfn != iovad->dma_32bit_pfn) | ||
51 | return; | ||
52 | iovad->cached32_node = &new->node; | ||
53 | } | ||
54 | |||
55 | static void | ||
56 | __cached_rbnode_delete_update(struct iova_domain *iovad, struct iova *free) | ||
57 | { | ||
58 | struct iova *cached_iova; | ||
59 | struct rb_node *curr; | ||
60 | |||
61 | if (!iovad->cached32_node) | ||
62 | return; | ||
63 | curr = iovad->cached32_node; | ||
64 | cached_iova = container_of(curr, struct iova, node); | ||
65 | |||
66 | if (free->pfn_lo >= cached_iova->pfn_lo) { | ||
67 | struct rb_node *node = rb_next(&free->node); | ||
68 | struct iova *iova = container_of(node, struct iova, node); | ||
69 | |||
70 | /* only cache if it's below 32bit pfn */ | ||
71 | if (node && iova->pfn_lo < iovad->dma_32bit_pfn) | ||
72 | iovad->cached32_node = node; | ||
73 | else | ||
74 | iovad->cached32_node = NULL; | ||
75 | } | ||
76 | } | ||
77 | |||
78 | /* Computes the padding size required, to make the | ||
79 | * the start address naturally aligned on its size | ||
80 | */ | ||
81 | static int | ||
82 | iova_get_pad_size(int size, unsigned int limit_pfn) | ||
83 | { | ||
84 | unsigned int pad_size = 0; | ||
85 | unsigned int order = ilog2(size); | ||
86 | |||
87 | if (order) | ||
88 | pad_size = (limit_pfn + 1) % (1 << order); | ||
89 | |||
90 | return pad_size; | ||
91 | } | ||
92 | |||
93 | static int __alloc_and_insert_iova_range(struct iova_domain *iovad, | ||
94 | unsigned long size, unsigned long limit_pfn, | ||
95 | struct iova *new, bool size_aligned) | ||
96 | { | ||
97 | struct rb_node *prev, *curr = NULL; | ||
98 | unsigned long flags; | ||
99 | unsigned long saved_pfn; | ||
100 | unsigned int pad_size = 0; | ||
101 | |||
102 | /* Walk the tree backwards */ | ||
103 | spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); | ||
104 | saved_pfn = limit_pfn; | ||
105 | curr = __get_cached_rbnode(iovad, &limit_pfn); | ||
106 | prev = curr; | ||
107 | while (curr) { | ||
108 | struct iova *curr_iova = container_of(curr, struct iova, node); | ||
109 | |||
110 | if (limit_pfn < curr_iova->pfn_lo) | ||
111 | goto move_left; | ||
112 | else if (limit_pfn < curr_iova->pfn_hi) | ||
113 | goto adjust_limit_pfn; | ||
114 | else { | ||
115 | if (size_aligned) | ||
116 | pad_size = iova_get_pad_size(size, limit_pfn); | ||
117 | if ((curr_iova->pfn_hi + size + pad_size) <= limit_pfn) | ||
118 | break; /* found a free slot */ | ||
119 | } | ||
120 | adjust_limit_pfn: | ||
121 | limit_pfn = curr_iova->pfn_lo - 1; | ||
122 | move_left: | ||
123 | prev = curr; | ||
124 | curr = rb_prev(curr); | ||
125 | } | ||
126 | |||
127 | if (!curr) { | ||
128 | if (size_aligned) | ||
129 | pad_size = iova_get_pad_size(size, limit_pfn); | ||
130 | if ((IOVA_START_PFN + size + pad_size) > limit_pfn) { | ||
131 | spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); | ||
132 | return -ENOMEM; | ||
133 | } | ||
134 | } | ||
135 | |||
136 | /* pfn_lo will point to size aligned address if size_aligned is set */ | ||
137 | new->pfn_lo = limit_pfn - (size + pad_size) + 1; | ||
138 | new->pfn_hi = new->pfn_lo + size - 1; | ||
139 | |||
140 | /* Insert the new_iova into domain rbtree by holding writer lock */ | ||
141 | /* Add new node and rebalance tree. */ | ||
142 | { | ||
143 | struct rb_node **entry, *parent = NULL; | ||
144 | |||
145 | /* If we have 'prev', it's a valid place to start the | ||
146 | insertion. Otherwise, start from the root. */ | ||
147 | if (prev) | ||
148 | entry = &prev; | ||
149 | else | ||
150 | entry = &iovad->rbroot.rb_node; | ||
151 | |||
152 | /* Figure out where to put new node */ | ||
153 | while (*entry) { | ||
154 | struct iova *this = container_of(*entry, | ||
155 | struct iova, node); | ||
156 | parent = *entry; | ||
157 | |||
158 | if (new->pfn_lo < this->pfn_lo) | ||
159 | entry = &((*entry)->rb_left); | ||
160 | else if (new->pfn_lo > this->pfn_lo) | ||
161 | entry = &((*entry)->rb_right); | ||
162 | else | ||
163 | BUG(); /* this should not happen */ | ||
164 | } | ||
165 | |||
166 | /* Add new node and rebalance tree. */ | ||
167 | rb_link_node(&new->node, parent, entry); | ||
168 | rb_insert_color(&new->node, &iovad->rbroot); | ||
169 | } | ||
170 | __cached_rbnode_insert_update(iovad, saved_pfn, new); | ||
171 | |||
172 | spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); | ||
173 | |||
174 | |||
175 | return 0; | ||
176 | } | ||
177 | |||
178 | static void | ||
179 | iova_insert_rbtree(struct rb_root *root, struct iova *iova) | ||
180 | { | ||
181 | struct rb_node **new = &(root->rb_node), *parent = NULL; | ||
182 | /* Figure out where to put new node */ | ||
183 | while (*new) { | ||
184 | struct iova *this = container_of(*new, struct iova, node); | ||
185 | parent = *new; | ||
186 | |||
187 | if (iova->pfn_lo < this->pfn_lo) | ||
188 | new = &((*new)->rb_left); | ||
189 | else if (iova->pfn_lo > this->pfn_lo) | ||
190 | new = &((*new)->rb_right); | ||
191 | else | ||
192 | BUG(); /* this should not happen */ | ||
193 | } | ||
194 | /* Add new node and rebalance tree. */ | ||
195 | rb_link_node(&iova->node, parent, new); | ||
196 | rb_insert_color(&iova->node, root); | ||
197 | } | ||
198 | |||
199 | /** | ||
200 | * alloc_iova - allocates an iova | ||
201 | * @iovad - iova domain in question | ||
202 | * @size - size of page frames to allocate | ||
203 | * @limit_pfn - max limit address | ||
204 | * @size_aligned - set if size_aligned address range is required | ||
205 | * This function allocates an iova in the range limit_pfn to IOVA_START_PFN | ||
206 | * looking from limit_pfn instead from IOVA_START_PFN. If the size_aligned | ||
207 | * flag is set then the allocated address iova->pfn_lo will be naturally | ||
208 | * aligned on roundup_power_of_two(size). | ||
209 | */ | ||
210 | struct iova * | ||
211 | alloc_iova(struct iova_domain *iovad, unsigned long size, | ||
212 | unsigned long limit_pfn, | ||
213 | bool size_aligned) | ||
214 | { | ||
215 | struct iova *new_iova; | ||
216 | int ret; | ||
217 | |||
218 | new_iova = alloc_iova_mem(); | ||
219 | if (!new_iova) | ||
220 | return NULL; | ||
221 | |||
222 | /* If size aligned is set then round the size to | ||
223 | * to next power of two. | ||
224 | */ | ||
225 | if (size_aligned) | ||
226 | size = __roundup_pow_of_two(size); | ||
227 | |||
228 | ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn, | ||
229 | new_iova, size_aligned); | ||
230 | |||
231 | if (ret) { | ||
232 | free_iova_mem(new_iova); | ||
233 | return NULL; | ||
234 | } | ||
235 | |||
236 | return new_iova; | ||
237 | } | ||
238 | |||
239 | /** | ||
240 | * find_iova - find's an iova for a given pfn | ||
241 | * @iovad - iova domain in question. | ||
242 | * pfn - page frame number | ||
243 | * This function finds and returns an iova belonging to the | ||
244 | * given doamin which matches the given pfn. | ||
245 | */ | ||
246 | struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn) | ||
247 | { | ||
248 | unsigned long flags; | ||
249 | struct rb_node *node; | ||
250 | |||
251 | /* Take the lock so that no other thread is manipulating the rbtree */ | ||
252 | spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); | ||
253 | node = iovad->rbroot.rb_node; | ||
254 | while (node) { | ||
255 | struct iova *iova = container_of(node, struct iova, node); | ||
256 | |||
257 | /* If pfn falls within iova's range, return iova */ | ||
258 | if ((pfn >= iova->pfn_lo) && (pfn <= iova->pfn_hi)) { | ||
259 | spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); | ||
260 | /* We are not holding the lock while this iova | ||
261 | * is referenced by the caller as the same thread | ||
262 | * which called this function also calls __free_iova() | ||
263 | * and it is by desing that only one thread can possibly | ||
264 | * reference a particular iova and hence no conflict. | ||
265 | */ | ||
266 | return iova; | ||
267 | } | ||
268 | |||
269 | if (pfn < iova->pfn_lo) | ||
270 | node = node->rb_left; | ||
271 | else if (pfn > iova->pfn_lo) | ||
272 | node = node->rb_right; | ||
273 | } | ||
274 | |||
275 | spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); | ||
276 | return NULL; | ||
277 | } | ||
278 | |||
279 | /** | ||
280 | * __free_iova - frees the given iova | ||
281 | * @iovad: iova domain in question. | ||
282 | * @iova: iova in question. | ||
283 | * Frees the given iova belonging to the giving domain | ||
284 | */ | ||
285 | void | ||
286 | __free_iova(struct iova_domain *iovad, struct iova *iova) | ||
287 | { | ||
288 | unsigned long flags; | ||
289 | |||
290 | spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); | ||
291 | __cached_rbnode_delete_update(iovad, iova); | ||
292 | rb_erase(&iova->node, &iovad->rbroot); | ||
293 | spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); | ||
294 | free_iova_mem(iova); | ||
295 | } | ||
296 | |||
297 | /** | ||
298 | * free_iova - finds and frees the iova for a given pfn | ||
299 | * @iovad: - iova domain in question. | ||
300 | * @pfn: - pfn that is allocated previously | ||
301 | * This functions finds an iova for a given pfn and then | ||
302 | * frees the iova from that domain. | ||
303 | */ | ||
304 | void | ||
305 | free_iova(struct iova_domain *iovad, unsigned long pfn) | ||
306 | { | ||
307 | struct iova *iova = find_iova(iovad, pfn); | ||
308 | if (iova) | ||
309 | __free_iova(iovad, iova); | ||
310 | |||
311 | } | ||
312 | |||
313 | /** | ||
314 | * put_iova_domain - destroys the iova doamin | ||
315 | * @iovad: - iova domain in question. | ||
316 | * All the iova's in that domain are destroyed. | ||
317 | */ | ||
318 | void put_iova_domain(struct iova_domain *iovad) | ||
319 | { | ||
320 | struct rb_node *node; | ||
321 | unsigned long flags; | ||
322 | |||
323 | spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); | ||
324 | node = rb_first(&iovad->rbroot); | ||
325 | while (node) { | ||
326 | struct iova *iova = container_of(node, struct iova, node); | ||
327 | rb_erase(node, &iovad->rbroot); | ||
328 | free_iova_mem(iova); | ||
329 | node = rb_first(&iovad->rbroot); | ||
330 | } | ||
331 | spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); | ||
332 | } | ||
333 | |||
334 | static int | ||
335 | __is_range_overlap(struct rb_node *node, | ||
336 | unsigned long pfn_lo, unsigned long pfn_hi) | ||
337 | { | ||
338 | struct iova *iova = container_of(node, struct iova, node); | ||
339 | |||
340 | if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo)) | ||
341 | return 1; | ||
342 | return 0; | ||
343 | } | ||
344 | |||
345 | static struct iova * | ||
346 | __insert_new_range(struct iova_domain *iovad, | ||
347 | unsigned long pfn_lo, unsigned long pfn_hi) | ||
348 | { | ||
349 | struct iova *iova; | ||
350 | |||
351 | iova = alloc_iova_mem(); | ||
352 | if (!iova) | ||
353 | return iova; | ||
354 | |||
355 | iova->pfn_hi = pfn_hi; | ||
356 | iova->pfn_lo = pfn_lo; | ||
357 | iova_insert_rbtree(&iovad->rbroot, iova); | ||
358 | return iova; | ||
359 | } | ||
360 | |||
361 | static void | ||
362 | __adjust_overlap_range(struct iova *iova, | ||
363 | unsigned long *pfn_lo, unsigned long *pfn_hi) | ||
364 | { | ||
365 | if (*pfn_lo < iova->pfn_lo) | ||
366 | iova->pfn_lo = *pfn_lo; | ||
367 | if (*pfn_hi > iova->pfn_hi) | ||
368 | *pfn_lo = iova->pfn_hi + 1; | ||
369 | } | ||
370 | |||
371 | /** | ||
372 | * reserve_iova - reserves an iova in the given range | ||
373 | * @iovad: - iova domain pointer | ||
374 | * @pfn_lo: - lower page frame address | ||
375 | * @pfn_hi:- higher pfn adderss | ||
376 | * This function allocates reserves the address range from pfn_lo to pfn_hi so | ||
377 | * that this address is not dished out as part of alloc_iova. | ||
378 | */ | ||
379 | struct iova * | ||
380 | reserve_iova(struct iova_domain *iovad, | ||
381 | unsigned long pfn_lo, unsigned long pfn_hi) | ||
382 | { | ||
383 | struct rb_node *node; | ||
384 | unsigned long flags; | ||
385 | struct iova *iova; | ||
386 | unsigned int overlap = 0; | ||
387 | |||
388 | spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); | ||
389 | for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) { | ||
390 | if (__is_range_overlap(node, pfn_lo, pfn_hi)) { | ||
391 | iova = container_of(node, struct iova, node); | ||
392 | __adjust_overlap_range(iova, &pfn_lo, &pfn_hi); | ||
393 | if ((pfn_lo >= iova->pfn_lo) && | ||
394 | (pfn_hi <= iova->pfn_hi)) | ||
395 | goto finish; | ||
396 | overlap = 1; | ||
397 | |||
398 | } else if (overlap) | ||
399 | break; | ||
400 | } | ||
401 | |||
402 | /* We are here either because this is the first reserver node | ||
403 | * or need to insert remaining non overlap addr range | ||
404 | */ | ||
405 | iova = __insert_new_range(iovad, pfn_lo, pfn_hi); | ||
406 | finish: | ||
407 | |||
408 | spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); | ||
409 | return iova; | ||
410 | } | ||
411 | |||
412 | /** | ||
413 | * copy_reserved_iova - copies the reserved between domains | ||
414 | * @from: - source doamin from where to copy | ||
415 | * @to: - destination domin where to copy | ||
416 | * This function copies reserved iova's from one doamin to | ||
417 | * other. | ||
418 | */ | ||
419 | void | ||
420 | copy_reserved_iova(struct iova_domain *from, struct iova_domain *to) | ||
421 | { | ||
422 | unsigned long flags; | ||
423 | struct rb_node *node; | ||
424 | |||
425 | spin_lock_irqsave(&from->iova_rbtree_lock, flags); | ||
426 | for (node = rb_first(&from->rbroot); node; node = rb_next(node)) { | ||
427 | struct iova *iova = container_of(node, struct iova, node); | ||
428 | struct iova *new_iova; | ||
429 | new_iova = reserve_iova(to, iova->pfn_lo, iova->pfn_hi); | ||
430 | if (!new_iova) | ||
431 | printk(KERN_ERR "Reserve iova range %lx@%lx failed\n", | ||
432 | iova->pfn_lo, iova->pfn_lo); | ||
433 | } | ||
434 | spin_unlock_irqrestore(&from->iova_rbtree_lock, flags); | ||
435 | } | ||