aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/crypto
diff options
context:
space:
mode:
authorAndreas Westin <andreas.westin@stericsson.com>2012-04-30 04:11:18 -0400
committerHerbert Xu <herbert@gondor.apana.org.au>2012-05-04 05:04:51 -0400
commit8a63b1994c500d4825ee73dc71502deffe5b135b (patch)
tree8495959cd99fba4c8a4a173b016a1cabdd1fe865 /drivers/crypto
parent2789c08fffeae270820dda5d096634aecc810af5 (diff)
crypto: ux500 - Add driver for HASH hardware
This adds a driver for the ST-Ericsson ux500 hash hardware module. The driver implements support for SHA-1 and SHA-2. Acked-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Andreas Westin <andreas.westin@stericsson.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to 'drivers/crypto')
-rw-r--r--drivers/crypto/ux500/Kconfig9
-rw-r--r--drivers/crypto/ux500/Makefile1
-rw-r--r--drivers/crypto/ux500/hash/Makefile11
-rw-r--r--drivers/crypto/ux500/hash/hash_alg.h395
-rw-r--r--drivers/crypto/ux500/hash/hash_core.c2019
5 files changed, 2435 insertions, 0 deletions
diff --git a/drivers/crypto/ux500/Kconfig b/drivers/crypto/ux500/Kconfig
index b893fa061da..b35e5c4b025 100644
--- a/drivers/crypto/ux500/Kconfig
+++ b/drivers/crypto/ux500/Kconfig
@@ -12,6 +12,15 @@ config CRYPTO_DEV_UX500_CRYP
12 This selects the crypto driver for the UX500_CRYP hardware. It supports 12 This selects the crypto driver for the UX500_CRYP hardware. It supports
13 AES-ECB, CBC and CTR with keys sizes of 128, 192 and 256 bit sizes. 13 AES-ECB, CBC and CTR with keys sizes of 128, 192 and 256 bit sizes.
14 14
15config CRYPTO_DEV_UX500_HASH
16 tristate "UX500 crypto driver for HASH block"
17 depends on CRYPTO_DEV_UX500
18 select CRYPTO_HASH
19 select CRYPTO_HMAC
20 help
21 This selects the hash driver for the UX500_HASH hardware.
22 Depends on UX500/STM DMA if running in DMA mode.
23
15config CRYPTO_DEV_UX500_DEBUG 24config CRYPTO_DEV_UX500_DEBUG
16 bool "Activate ux500 platform debug-mode for crypto and hash block" 25 bool "Activate ux500 platform debug-mode for crypto and hash block"
17 depends on CRYPTO_DEV_UX500_CRYP || CRYPTO_DEV_UX500_HASH 26 depends on CRYPTO_DEV_UX500_CRYP || CRYPTO_DEV_UX500_HASH
diff --git a/drivers/crypto/ux500/Makefile b/drivers/crypto/ux500/Makefile
index beb4d37db7b..b9a365bade8 100644
--- a/drivers/crypto/ux500/Makefile
+++ b/drivers/crypto/ux500/Makefile
@@ -4,4 +4,5 @@
4# License terms: GNU General Public License (GPL) version 2 4# License terms: GNU General Public License (GPL) version 2
5# 5#
6 6
7obj-$(CONFIG_CRYPTO_DEV_UX500_HASH) += hash/
7obj-$(CONFIG_CRYPTO_DEV_UX500_CRYP) += cryp/ 8obj-$(CONFIG_CRYPTO_DEV_UX500_CRYP) += cryp/
diff --git a/drivers/crypto/ux500/hash/Makefile b/drivers/crypto/ux500/hash/Makefile
new file mode 100644
index 00000000000..b2f90d9bac7
--- /dev/null
+++ b/drivers/crypto/ux500/hash/Makefile
@@ -0,0 +1,11 @@
1#
2# Copyright (C) ST-Ericsson SA 2010
3# Author: Shujuan Chen (shujuan.chen@stericsson.com)
4# License terms: GNU General Public License (GPL) version 2
5#
6ifdef CONFIG_CRYPTO_DEV_UX500_DEBUG
7CFLAGS_hash_core.o := -DDEBUG -O0
8endif
9
10obj-$(CONFIG_CRYPTO_DEV_UX500_HASH) += ux500_hash.o
11ux500_hash-objs := hash_core.o
diff --git a/drivers/crypto/ux500/hash/hash_alg.h b/drivers/crypto/ux500/hash/hash_alg.h
new file mode 100644
index 00000000000..cd9351cb24d
--- /dev/null
+++ b/drivers/crypto/ux500/hash/hash_alg.h
@@ -0,0 +1,395 @@
1/*
2 * Copyright (C) ST-Ericsson SA 2010
3 * Author: Shujuan Chen (shujuan.chen@stericsson.com)
4 * Author: Joakim Bech (joakim.xx.bech@stericsson.com)
5 * Author: Berne Hebark (berne.hebark@stericsson.com))
6 * License terms: GNU General Public License (GPL) version 2
7 */
8#ifndef _HASH_ALG_H
9#define _HASH_ALG_H
10
11#include <linux/bitops.h>
12
13#define HASH_BLOCK_SIZE 64
14#define HASH_DMA_ALIGN_SIZE 4
15#define HASH_DMA_PERFORMANCE_MIN_SIZE 1024
16#define HASH_BYTES_PER_WORD 4
17
18/* Maximum value of the length's high word */
19#define HASH_HIGH_WORD_MAX_VAL 0xFFFFFFFFUL
20
21/* Power on Reset values HASH registers */
22#define HASH_RESET_CR_VALUE 0x0
23#define HASH_RESET_STR_VALUE 0x0
24
25/* Number of context swap registers */
26#define HASH_CSR_COUNT 52
27
28#define HASH_RESET_CSRX_REG_VALUE 0x0
29#define HASH_RESET_CSFULL_REG_VALUE 0x0
30#define HASH_RESET_CSDATAIN_REG_VALUE 0x0
31
32#define HASH_RESET_INDEX_VAL 0x0
33#define HASH_RESET_BIT_INDEX_VAL 0x0
34#define HASH_RESET_BUFFER_VAL 0x0
35#define HASH_RESET_LEN_HIGH_VAL 0x0
36#define HASH_RESET_LEN_LOW_VAL 0x0
37
38/* Control register bitfields */
39#define HASH_CR_RESUME_MASK 0x11FCF
40
41#define HASH_CR_SWITCHON_POS 31
42#define HASH_CR_SWITCHON_MASK BIT(31)
43
44#define HASH_CR_EMPTYMSG_POS 20
45#define HASH_CR_EMPTYMSG_MASK BIT(20)
46
47#define HASH_CR_DINF_POS 12
48#define HASH_CR_DINF_MASK BIT(12)
49
50#define HASH_CR_NBW_POS 8
51#define HASH_CR_NBW_MASK 0x00000F00UL
52
53#define HASH_CR_LKEY_POS 16
54#define HASH_CR_LKEY_MASK BIT(16)
55
56#define HASH_CR_ALGO_POS 7
57#define HASH_CR_ALGO_MASK BIT(7)
58
59#define HASH_CR_MODE_POS 6
60#define HASH_CR_MODE_MASK BIT(6)
61
62#define HASH_CR_DATAFORM_POS 4
63#define HASH_CR_DATAFORM_MASK (BIT(4) | BIT(5))
64
65#define HASH_CR_DMAE_POS 3
66#define HASH_CR_DMAE_MASK BIT(3)
67
68#define HASH_CR_INIT_POS 2
69#define HASH_CR_INIT_MASK BIT(2)
70
71#define HASH_CR_PRIVN_POS 1
72#define HASH_CR_PRIVN_MASK BIT(1)
73
74#define HASH_CR_SECN_POS 0
75#define HASH_CR_SECN_MASK BIT(0)
76
77/* Start register bitfields */
78#define HASH_STR_DCAL_POS 8
79#define HASH_STR_DCAL_MASK BIT(8)
80#define HASH_STR_DEFAULT 0x0
81
82#define HASH_STR_NBLW_POS 0
83#define HASH_STR_NBLW_MASK 0x0000001FUL
84
85#define HASH_NBLW_MAX_VAL 0x1F
86
87/* PrimeCell IDs */
88#define HASH_P_ID0 0xE0
89#define HASH_P_ID1 0x05
90#define HASH_P_ID2 0x38
91#define HASH_P_ID3 0x00
92#define HASH_CELL_ID0 0x0D
93#define HASH_CELL_ID1 0xF0
94#define HASH_CELL_ID2 0x05
95#define HASH_CELL_ID3 0xB1
96
97#define HASH_SET_BITS(reg_name, mask) \
98 writel_relaxed((readl_relaxed(reg_name) | mask), reg_name)
99
100#define HASH_CLEAR_BITS(reg_name, mask) \
101 writel_relaxed((readl_relaxed(reg_name) & ~mask), reg_name)
102
103#define HASH_PUT_BITS(reg, val, shift, mask) \
104 writel_relaxed(((readl(reg) & ~(mask)) | \
105 (((u32)val << shift) & (mask))), reg)
106
107#define HASH_SET_DIN(val, len) writesl(&device_data->base->din, (val), (len))
108
109#define HASH_INITIALIZE \
110 HASH_PUT_BITS( \
111 &device_data->base->cr, \
112 0x01, HASH_CR_INIT_POS, \
113 HASH_CR_INIT_MASK)
114
115#define HASH_SET_DATA_FORMAT(data_format) \
116 HASH_PUT_BITS( \
117 &device_data->base->cr, \
118 (u32) (data_format), HASH_CR_DATAFORM_POS, \
119 HASH_CR_DATAFORM_MASK)
120#define HASH_SET_NBLW(val) \
121 HASH_PUT_BITS( \
122 &device_data->base->str, \
123 (u32) (val), HASH_STR_NBLW_POS, \
124 HASH_STR_NBLW_MASK)
125#define HASH_SET_DCAL \
126 HASH_PUT_BITS( \
127 &device_data->base->str, \
128 0x01, HASH_STR_DCAL_POS, \
129 HASH_STR_DCAL_MASK)
130
131/* Hardware access method */
132enum hash_mode {
133 HASH_MODE_CPU,
134 HASH_MODE_DMA
135};
136
137/**
138 * struct uint64 - Structure to handle 64 bits integers.
139 * @high_word: Most significant bits.
140 * @low_word: Least significant bits.
141 *
142 * Used to handle 64 bits integers.
143 */
144struct uint64 {
145 u32 high_word;
146 u32 low_word;
147};
148
149/**
150 * struct hash_register - Contains all registers in ux500 hash hardware.
151 * @cr: HASH control register (0x000).
152 * @din: HASH data input register (0x004).
153 * @str: HASH start register (0x008).
154 * @hx: HASH digest register 0..7 (0x00c-0x01C).
155 * @padding0: Reserved (0x02C).
156 * @itcr: Integration test control register (0x080).
157 * @itip: Integration test input register (0x084).
158 * @itop: Integration test output register (0x088).
159 * @padding1: Reserved (0x08C).
160 * @csfull: HASH context full register (0x0F8).
161 * @csdatain: HASH context swap data input register (0x0FC).
162 * @csrx: HASH context swap register 0..51 (0x100-0x1CC).
163 * @padding2: Reserved (0x1D0).
164 * @periphid0: HASH peripheral identification register 0 (0xFE0).
165 * @periphid1: HASH peripheral identification register 1 (0xFE4).
166 * @periphid2: HASH peripheral identification register 2 (0xFE8).
167 * @periphid3: HASH peripheral identification register 3 (0xFEC).
168 * @cellid0: HASH PCell identification register 0 (0xFF0).
169 * @cellid1: HASH PCell identification register 1 (0xFF4).
170 * @cellid2: HASH PCell identification register 2 (0xFF8).
171 * @cellid3: HASH PCell identification register 3 (0xFFC).
172 *
173 * The device communicates to the HASH via 32-bit-wide control registers
174 * accessible via the 32-bit width AMBA rev. 2.0 AHB Bus. Below is a structure
175 * with the registers used.
176 */
177struct hash_register {
178 u32 cr;
179 u32 din;
180 u32 str;
181 u32 hx[8];
182
183 u32 padding0[(0x080 - 0x02C) / sizeof(u32)];
184
185 u32 itcr;
186 u32 itip;
187 u32 itop;
188
189 u32 padding1[(0x0F8 - 0x08C) / sizeof(u32)];
190
191 u32 csfull;
192 u32 csdatain;
193 u32 csrx[HASH_CSR_COUNT];
194
195 u32 padding2[(0xFE0 - 0x1D0) / sizeof(u32)];
196
197 u32 periphid0;
198 u32 periphid1;
199 u32 periphid2;
200 u32 periphid3;
201
202 u32 cellid0;
203 u32 cellid1;
204 u32 cellid2;
205 u32 cellid3;
206};
207
208/**
209 * struct hash_state - Hash context state.
210 * @temp_cr: Temporary HASH Control Register.
211 * @str_reg: HASH Start Register.
212 * @din_reg: HASH Data Input Register.
213 * @csr[52]: HASH Context Swap Registers 0-39.
214 * @csfull: HASH Context Swap Registers 40 ie Status flags.
215 * @csdatain: HASH Context Swap Registers 41 ie Input data.
216 * @buffer: Working buffer for messages going to the hardware.
217 * @length: Length of the part of message hashed so far (floor(N/64) * 64).
218 * @index: Valid number of bytes in buffer (N % 64).
219 * @bit_index: Valid number of bits in buffer (N % 8).
220 *
221 * This structure is used between context switches, i.e. when ongoing jobs are
222 * interupted with new jobs. When this happens we need to store intermediate
223 * results in software.
224 *
225 * WARNING: "index" is the member of the structure, to be sure that "buffer"
226 * is aligned on a 4-bytes boundary. This is highly implementation dependent
227 * and MUST be checked whenever this code is ported on new platforms.
228 */
229struct hash_state {
230 u32 temp_cr;
231 u32 str_reg;
232 u32 din_reg;
233 u32 csr[52];
234 u32 csfull;
235 u32 csdatain;
236 u32 buffer[HASH_BLOCK_SIZE / sizeof(u32)];
237 struct uint64 length;
238 u8 index;
239 u8 bit_index;
240};
241
242/**
243 * enum hash_device_id - HASH device ID.
244 * @HASH_DEVICE_ID_0: Hash hardware with ID 0
245 * @HASH_DEVICE_ID_1: Hash hardware with ID 1
246 */
247enum hash_device_id {
248 HASH_DEVICE_ID_0 = 0,
249 HASH_DEVICE_ID_1 = 1
250};
251
252/**
253 * enum hash_data_format - HASH data format.
254 * @HASH_DATA_32_BITS: 32 bits data format
255 * @HASH_DATA_16_BITS: 16 bits data format
256 * @HASH_DATA_8_BITS: 8 bits data format.
257 * @HASH_DATA_1_BITS: 1 bit data format.
258 */
259enum hash_data_format {
260 HASH_DATA_32_BITS = 0x0,
261 HASH_DATA_16_BITS = 0x1,
262 HASH_DATA_8_BITS = 0x2,
263 HASH_DATA_1_BIT = 0x3
264};
265
266/**
267 * enum hash_algo - Enumeration for selecting between SHA1 or SHA2 algorithm.
268 * @HASH_ALGO_SHA1: Indicates that SHA1 is used.
269 * @HASH_ALGO_SHA2: Indicates that SHA2 (SHA256) is used.
270 */
271enum hash_algo {
272 HASH_ALGO_SHA1 = 0x0,
273 HASH_ALGO_SHA256 = 0x1
274};
275
276/**
277 * enum hash_op - Enumeration for selecting between HASH or HMAC mode.
278 * @HASH_OPER_MODE_HASH: Indicates usage of normal HASH mode.
279 * @HASH_OPER_MODE_HMAC: Indicates usage of HMAC.
280 */
281enum hash_op {
282 HASH_OPER_MODE_HASH = 0x0,
283 HASH_OPER_MODE_HMAC = 0x1
284};
285
286/**
287 * struct hash_config - Configuration data for the hardware.
288 * @data_format: Format of data entered into the hash data in register.
289 * @algorithm: Algorithm selection bit.
290 * @oper_mode: Operating mode selection bit.
291 */
292struct hash_config {
293 int data_format;
294 int algorithm;
295 int oper_mode;
296};
297
298/**
299 * struct hash_dma - Structure used for dma.
300 * @mask: DMA capabilities bitmap mask.
301 * @complete: Used to maintain state for a "completion".
302 * @chan_mem2hash: DMA channel.
303 * @cfg_mem2hash: DMA channel configuration.
304 * @sg_len: Scatterlist length.
305 * @sg: Scatterlist.
306 * @nents: Number of sg entries.
307 */
308struct hash_dma {
309 dma_cap_mask_t mask;
310 struct completion complete;
311 struct dma_chan *chan_mem2hash;
312 void *cfg_mem2hash;
313 int sg_len;
314 struct scatterlist *sg;
315 int nents;
316};
317
318/**
319 * struct hash_ctx - The context used for hash calculations.
320 * @key: The key used in the operation.
321 * @keylen: The length of the key.
322 * @state: The state of the current calculations.
323 * @config: The current configuration.
324 * @digestsize: The size of current digest.
325 * @device: Pointer to the device structure.
326 */
327struct hash_ctx {
328 u8 *key;
329 u32 keylen;
330 struct hash_config config;
331 int digestsize;
332 struct hash_device_data *device;
333};
334
335/**
336 * struct hash_ctx - The request context used for hash calculations.
337 * @state: The state of the current calculations.
338 * @dma_mode: Used in special cases (workaround), e.g. need to change to
339 * cpu mode, if not supported/working in dma mode.
340 * @updated: Indicates if hardware is initialized for new operations.
341 */
342struct hash_req_ctx {
343 struct hash_state state;
344 bool dma_mode;
345 u8 updated;
346};
347
348/**
349 * struct hash_device_data - structure for a hash device.
350 * @base: Pointer to the hardware base address.
351 * @list_node: For inclusion in klist.
352 * @dev: Pointer to the device dev structure.
353 * @ctx_lock: Spinlock for current_ctx.
354 * @current_ctx: Pointer to the currently allocated context.
355 * @power_state: TRUE = power state on, FALSE = power state off.
356 * @power_state_lock: Spinlock for power_state.
357 * @regulator: Pointer to the device's power control.
358 * @clk: Pointer to the device's clock control.
359 * @restore_dev_state: TRUE = saved state, FALSE = no saved state.
360 * @dma: Structure used for dma.
361 */
362struct hash_device_data {
363 struct hash_register __iomem *base;
364 struct klist_node list_node;
365 struct device *dev;
366 struct spinlock ctx_lock;
367 struct hash_ctx *current_ctx;
368 bool power_state;
369 struct spinlock power_state_lock;
370 struct regulator *regulator;
371 struct clk *clk;
372 bool restore_dev_state;
373 struct hash_state state; /* Used for saving and resuming state */
374 struct hash_dma dma;
375};
376
377int hash_check_hw(struct hash_device_data *device_data);
378
379int hash_setconfiguration(struct hash_device_data *device_data,
380 struct hash_config *config);
381
382void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx);
383
384void hash_get_digest(struct hash_device_data *device_data,
385 u8 *digest, int algorithm);
386
387int hash_hw_update(struct ahash_request *req);
388
389int hash_save_state(struct hash_device_data *device_data,
390 struct hash_state *state);
391
392int hash_resume_state(struct hash_device_data *device_data,
393 const struct hash_state *state);
394
395#endif
diff --git a/drivers/crypto/ux500/hash/hash_core.c b/drivers/crypto/ux500/hash/hash_core.c
new file mode 100644
index 00000000000..cc6a371a270
--- /dev/null
+++ b/drivers/crypto/ux500/hash/hash_core.c
@@ -0,0 +1,2019 @@
1/*
2 * Cryptographic API.
3 * Support for Nomadik hardware crypto engine.
4
5 * Copyright (C) ST-Ericsson SA 2010
6 * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
7 * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
8 * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
9 * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
10 * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
11 * License terms: GNU General Public License (GPL) version 2
12 */
13
14#include <linux/clk.h>
15#include <linux/device.h>
16#include <linux/err.h>
17#include <linux/init.h>
18#include <linux/io.h>
19#include <linux/klist.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/platform_device.h>
23#include <linux/crypto.h>
24
25#include <linux/regulator/consumer.h>
26#include <linux/dmaengine.h>
27#include <linux/bitops.h>
28
29#include <crypto/internal/hash.h>
30#include <crypto/sha.h>
31#include <crypto/scatterwalk.h>
32#include <crypto/algapi.h>
33
34#include <mach/crypto-ux500.h>
35#include <mach/hardware.h>
36
37#include "hash_alg.h"
38
39#define DEV_DBG_NAME "hashX hashX:"
40
41static int hash_mode;
42module_param(hash_mode, int, 0);
43MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
44
45/**
46 * Pre-calculated empty message digests.
47 */
48static u8 zero_message_hash_sha1[SHA1_DIGEST_SIZE] = {
49 0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d,
50 0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90,
51 0xaf, 0xd8, 0x07, 0x09
52};
53
54static u8 zero_message_hash_sha256[SHA256_DIGEST_SIZE] = {
55 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14,
56 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24,
57 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
58 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55
59};
60
61/* HMAC-SHA1, no key */
62static u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
63 0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
64 0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
65 0x70, 0x69, 0x0e, 0x1d
66};
67
68/* HMAC-SHA256, no key */
69static u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
70 0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
71 0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
72 0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
73 0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
74};
75
76/**
77 * struct hash_driver_data - data specific to the driver.
78 *
79 * @device_list: A list of registered devices to choose from.
80 * @device_allocation: A semaphore initialized with number of devices.
81 */
82struct hash_driver_data {
83 struct klist device_list;
84 struct semaphore device_allocation;
85};
86
87static struct hash_driver_data driver_data;
88
89/* Declaration of functions */
90/**
91 * hash_messagepad - Pads a message and write the nblw bits.
92 * @device_data: Structure for the hash device.
93 * @message: Last word of a message
94 * @index_bytes: The number of bytes in the last message
95 *
96 * This function manages the final part of the digest calculation, when less
97 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
98 *
99 */
100static void hash_messagepad(struct hash_device_data *device_data,
101 const u32 *message, u8 index_bytes);
102
103/**
104 * release_hash_device - Releases a previously allocated hash device.
105 * @device_data: Structure for the hash device.
106 *
107 */
108static void release_hash_device(struct hash_device_data *device_data)
109{
110 spin_lock(&device_data->ctx_lock);
111 device_data->current_ctx->device = NULL;
112 device_data->current_ctx = NULL;
113 spin_unlock(&device_data->ctx_lock);
114
115 /*
116 * The down_interruptible part for this semaphore is called in
117 * cryp_get_device_data.
118 */
119 up(&driver_data.device_allocation);
120}
121
122static void hash_dma_setup_channel(struct hash_device_data *device_data,
123 struct device *dev)
124{
125 struct hash_platform_data *platform_data = dev->platform_data;
126 dma_cap_zero(device_data->dma.mask);
127 dma_cap_set(DMA_SLAVE, device_data->dma.mask);
128
129 device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
130 device_data->dma.chan_mem2hash =
131 dma_request_channel(device_data->dma.mask,
132 platform_data->dma_filter,
133 device_data->dma.cfg_mem2hash);
134
135 init_completion(&device_data->dma.complete);
136}
137
138static void hash_dma_callback(void *data)
139{
140 struct hash_ctx *ctx = (struct hash_ctx *) data;
141
142 complete(&ctx->device->dma.complete);
143}
144
145static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
146 int len, enum dma_data_direction direction)
147{
148 struct dma_async_tx_descriptor *desc = NULL;
149 struct dma_chan *channel = NULL;
150 dma_cookie_t cookie;
151
152 if (direction != DMA_TO_DEVICE) {
153 dev_err(ctx->device->dev, "[%s] Invalid DMA direction",
154 __func__);
155 return -EFAULT;
156 }
157
158 sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
159
160 channel = ctx->device->dma.chan_mem2hash;
161 ctx->device->dma.sg = sg;
162 ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
163 ctx->device->dma.sg, ctx->device->dma.nents,
164 direction);
165
166 if (!ctx->device->dma.sg_len) {
167 dev_err(ctx->device->dev,
168 "[%s]: Could not map the sg list (TO_DEVICE)",
169 __func__);
170 return -EFAULT;
171 }
172
173 dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
174 "(TO_DEVICE)", __func__);
175 desc = channel->device->device_prep_slave_sg(channel,
176 ctx->device->dma.sg, ctx->device->dma.sg_len,
177 direction, DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
178 if (!desc) {
179 dev_err(ctx->device->dev,
180 "[%s]: device_prep_slave_sg() failed!", __func__);
181 return -EFAULT;
182 }
183
184 desc->callback = hash_dma_callback;
185 desc->callback_param = ctx;
186
187 cookie = desc->tx_submit(desc);
188 dma_async_issue_pending(channel);
189
190 return 0;
191}
192
193static void hash_dma_done(struct hash_ctx *ctx)
194{
195 struct dma_chan *chan;
196
197 chan = ctx->device->dma.chan_mem2hash;
198 chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
199 dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
200 ctx->device->dma.sg_len, DMA_TO_DEVICE);
201
202}
203
204static int hash_dma_write(struct hash_ctx *ctx,
205 struct scatterlist *sg, int len)
206{
207 int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
208 if (error) {
209 dev_dbg(ctx->device->dev, "[%s]: hash_set_dma_transfer() "
210 "failed", __func__);
211 return error;
212 }
213
214 return len;
215}
216
217/**
218 * get_empty_message_digest - Returns a pre-calculated digest for
219 * the empty message.
220 * @device_data: Structure for the hash device.
221 * @zero_hash: Buffer to return the empty message digest.
222 * @zero_hash_size: Hash size of the empty message digest.
223 * @zero_digest: True if zero_digest returned.
224 */
225static int get_empty_message_digest(
226 struct hash_device_data *device_data,
227 u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
228{
229 int ret = 0;
230 struct hash_ctx *ctx = device_data->current_ctx;
231 *zero_digest = false;
232
233 /**
234 * Caller responsible for ctx != NULL.
235 */
236
237 if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
238 if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
239 memcpy(zero_hash, &zero_message_hash_sha1[0],
240 SHA1_DIGEST_SIZE);
241 *zero_hash_size = SHA1_DIGEST_SIZE;
242 *zero_digest = true;
243 } else if (HASH_ALGO_SHA256 ==
244 ctx->config.algorithm) {
245 memcpy(zero_hash, &zero_message_hash_sha256[0],
246 SHA256_DIGEST_SIZE);
247 *zero_hash_size = SHA256_DIGEST_SIZE;
248 *zero_digest = true;
249 } else {
250 dev_err(device_data->dev, "[%s] "
251 "Incorrect algorithm!"
252 , __func__);
253 ret = -EINVAL;
254 goto out;
255 }
256 } else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
257 if (!ctx->keylen) {
258 if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
259 memcpy(zero_hash, &zero_message_hmac_sha1[0],
260 SHA1_DIGEST_SIZE);
261 *zero_hash_size = SHA1_DIGEST_SIZE;
262 *zero_digest = true;
263 } else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
264 memcpy(zero_hash, &zero_message_hmac_sha256[0],
265 SHA256_DIGEST_SIZE);
266 *zero_hash_size = SHA256_DIGEST_SIZE;
267 *zero_digest = true;
268 } else {
269 dev_err(device_data->dev, "[%s] "
270 "Incorrect algorithm!"
271 , __func__);
272 ret = -EINVAL;
273 goto out;
274 }
275 } else {
276 dev_dbg(device_data->dev, "[%s] Continue hash "
277 "calculation, since hmac key avalable",
278 __func__);
279 }
280 }
281out:
282
283 return ret;
284}
285
286/**
287 * hash_disable_power - Request to disable power and clock.
288 * @device_data: Structure for the hash device.
289 * @save_device_state: If true, saves the current hw state.
290 *
291 * This function request for disabling power (regulator) and clock,
292 * and could also save current hw state.
293 */
294static int hash_disable_power(
295 struct hash_device_data *device_data,
296 bool save_device_state)
297{
298 int ret = 0;
299 struct device *dev = device_data->dev;
300
301 spin_lock(&device_data->power_state_lock);
302 if (!device_data->power_state)
303 goto out;
304
305 if (save_device_state) {
306 hash_save_state(device_data,
307 &device_data->state);
308 device_data->restore_dev_state = true;
309 }
310
311 clk_disable(device_data->clk);
312 ret = regulator_disable(device_data->regulator);
313 if (ret)
314 dev_err(dev, "[%s] regulator_disable() failed!", __func__);
315
316 device_data->power_state = false;
317
318out:
319 spin_unlock(&device_data->power_state_lock);
320
321 return ret;
322}
323
324/**
325 * hash_enable_power - Request to enable power and clock.
326 * @device_data: Structure for the hash device.
327 * @restore_device_state: If true, restores a previous saved hw state.
328 *
329 * This function request for enabling power (regulator) and clock,
330 * and could also restore a previously saved hw state.
331 */
332static int hash_enable_power(
333 struct hash_device_data *device_data,
334 bool restore_device_state)
335{
336 int ret = 0;
337 struct device *dev = device_data->dev;
338
339 spin_lock(&device_data->power_state_lock);
340 if (!device_data->power_state) {
341 ret = regulator_enable(device_data->regulator);
342 if (ret) {
343 dev_err(dev, "[%s]: regulator_enable() failed!",
344 __func__);
345 goto out;
346 }
347 ret = clk_enable(device_data->clk);
348 if (ret) {
349 dev_err(dev, "[%s]: clk_enable() failed!",
350 __func__);
351 ret = regulator_disable(
352 device_data->regulator);
353 goto out;
354 }
355 device_data->power_state = true;
356 }
357
358 if (device_data->restore_dev_state) {
359 if (restore_device_state) {
360 device_data->restore_dev_state = false;
361 hash_resume_state(device_data,
362 &device_data->state);
363 }
364 }
365out:
366 spin_unlock(&device_data->power_state_lock);
367
368 return ret;
369}
370
371/**
372 * hash_get_device_data - Checks for an available hash device and return it.
373 * @hash_ctx: Structure for the hash context.
374 * @device_data: Structure for the hash device.
375 *
376 * This function check for an available hash device and return it to
377 * the caller.
378 * Note! Caller need to release the device, calling up().
379 */
380static int hash_get_device_data(struct hash_ctx *ctx,
381 struct hash_device_data **device_data)
382{
383 int ret;
384 struct klist_iter device_iterator;
385 struct klist_node *device_node;
386 struct hash_device_data *local_device_data = NULL;
387
388 /* Wait until a device is available */
389 ret = down_interruptible(&driver_data.device_allocation);
390 if (ret)
391 return ret; /* Interrupted */
392
393 /* Select a device */
394 klist_iter_init(&driver_data.device_list, &device_iterator);
395 device_node = klist_next(&device_iterator);
396 while (device_node) {
397 local_device_data = container_of(device_node,
398 struct hash_device_data, list_node);
399 spin_lock(&local_device_data->ctx_lock);
400 /* current_ctx allocates a device, NULL = unallocated */
401 if (local_device_data->current_ctx) {
402 device_node = klist_next(&device_iterator);
403 } else {
404 local_device_data->current_ctx = ctx;
405 ctx->device = local_device_data;
406 spin_unlock(&local_device_data->ctx_lock);
407 break;
408 }
409 spin_unlock(&local_device_data->ctx_lock);
410 }
411 klist_iter_exit(&device_iterator);
412
413 if (!device_node) {
414 /**
415 * No free device found.
416 * Since we allocated a device with down_interruptible, this
417 * should not be able to happen.
418 * Number of available devices, which are contained in
419 * device_allocation, is therefore decremented by not doing
420 * an up(device_allocation).
421 */
422 return -EBUSY;
423 }
424
425 *device_data = local_device_data;
426
427 return 0;
428}
429
430/**
431 * hash_hw_write_key - Writes the key to the hardware registries.
432 *
433 * @device_data: Structure for the hash device.
434 * @key: Key to be written.
435 * @keylen: The lengt of the key.
436 *
437 * Note! This function DOES NOT write to the NBLW registry, even though
438 * specified in the the hw design spec. Either due to incorrect info in the
439 * spec or due to a bug in the hw.
440 */
441static void hash_hw_write_key(struct hash_device_data *device_data,
442 const u8 *key, unsigned int keylen)
443{
444 u32 word = 0;
445 int nwords = 1;
446
447 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
448
449 while (keylen >= 4) {
450 u32 *key_word = (u32 *)key;
451
452 HASH_SET_DIN(key_word, nwords);
453 keylen -= 4;
454 key += 4;
455 }
456
457 /* Take care of the remaining bytes in the last word */
458 if (keylen) {
459 word = 0;
460 while (keylen) {
461 word |= (key[keylen - 1] << (8 * (keylen - 1)));
462 keylen--;
463 }
464
465 HASH_SET_DIN(&word, nwords);
466 }
467
468 while (device_data->base->str & HASH_STR_DCAL_MASK)
469 cpu_relax();
470
471 HASH_SET_DCAL;
472
473 while (device_data->base->str & HASH_STR_DCAL_MASK)
474 cpu_relax();
475}
476
477/**
478 * init_hash_hw - Initialise the hash hardware for a new calculation.
479 * @device_data: Structure for the hash device.
480 * @ctx: The hash context.
481 *
482 * This function will enable the bits needed to clear and start a new
483 * calculation.
484 */
485static int init_hash_hw(struct hash_device_data *device_data,
486 struct hash_ctx *ctx)
487{
488 int ret = 0;
489
490 ret = hash_setconfiguration(device_data, &ctx->config);
491 if (ret) {
492 dev_err(device_data->dev, "[%s] hash_setconfiguration() "
493 "failed!", __func__);
494 return ret;
495 }
496
497 hash_begin(device_data, ctx);
498
499 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
500 hash_hw_write_key(device_data, ctx->key, ctx->keylen);
501
502 return ret;
503}
504
505/**
506 * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
507 *
508 * @sg: Scatterlist.
509 * @size: Size in bytes.
510 * @aligned: True if sg data aligned to work in DMA mode.
511 *
512 */
513static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
514{
515 int nents = 0;
516 bool aligned_data = true;
517
518 while (size > 0 && sg) {
519 nents++;
520 size -= sg->length;
521
522 /* hash_set_dma_transfer will align last nent */
523 if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE))
524 || (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) &&
525 size > 0))
526 aligned_data = false;
527
528 sg = sg_next(sg);
529 }
530
531 if (aligned)
532 *aligned = aligned_data;
533
534 if (size != 0)
535 return -EFAULT;
536
537 return nents;
538}
539
540/**
541 * hash_dma_valid_data - checks for dma valid sg data.
542 * @sg: Scatterlist.
543 * @datasize: Datasize in bytes.
544 *
545 * NOTE! This function checks for dma valid sg data, since dma
546 * only accept datasizes of even wordsize.
547 */
548static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
549{
550 bool aligned;
551
552 /* Need to include at least one nent, else error */
553 if (hash_get_nents(sg, datasize, &aligned) < 1)
554 return false;
555
556 return aligned;
557}
558
559/**
560 * hash_init - Common hash init function for SHA1/SHA2 (SHA256).
561 * @req: The hash request for the job.
562 *
563 * Initialize structures.
564 */
565static int hash_init(struct ahash_request *req)
566{
567 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
568 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
569 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
570
571 if (!ctx->key)
572 ctx->keylen = 0;
573
574 memset(&req_ctx->state, 0, sizeof(struct hash_state));
575 req_ctx->updated = 0;
576 if (hash_mode == HASH_MODE_DMA) {
577 if ((ctx->config.oper_mode == HASH_OPER_MODE_HMAC) &&
578 cpu_is_u5500()) {
579 pr_debug(DEV_DBG_NAME " [%s] HMAC and DMA not working "
580 "on u5500, directing to CPU mode.",
581 __func__);
582 req_ctx->dma_mode = false; /* Don't use DMA */
583 goto out;
584 }
585
586 if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
587 req_ctx->dma_mode = false; /* Don't use DMA */
588
589 pr_debug(DEV_DBG_NAME " [%s] DMA mode, but direct "
590 "to CPU mode for data size < %d",
591 __func__, HASH_DMA_ALIGN_SIZE);
592 } else {
593 if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
594 hash_dma_valid_data(req->src,
595 req->nbytes)) {
596 req_ctx->dma_mode = true;
597 } else {
598 req_ctx->dma_mode = false;
599 pr_debug(DEV_DBG_NAME " [%s] DMA mode, but use"
600 " CPU mode for datalength < %d"
601 " or non-aligned data, except "
602 "in last nent", __func__,
603 HASH_DMA_PERFORMANCE_MIN_SIZE);
604 }
605 }
606 }
607out:
608 return 0;
609}
610
611/**
612 * hash_processblock - This function processes a single block of 512 bits (64
613 * bytes), word aligned, starting at message.
614 * @device_data: Structure for the hash device.
615 * @message: Block (512 bits) of message to be written to
616 * the HASH hardware.
617 *
618 */
619static void hash_processblock(
620 struct hash_device_data *device_data,
621 const u32 *message, int length)
622{
623 int len = length / HASH_BYTES_PER_WORD;
624 /*
625 * NBLW bits. Reset the number of bits in last word (NBLW).
626 */
627 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
628
629 /*
630 * Write message data to the HASH_DIN register.
631 */
632 HASH_SET_DIN(message, len);
633}
634
635/**
636 * hash_messagepad - Pads a message and write the nblw bits.
637 * @device_data: Structure for the hash device.
638 * @message: Last word of a message.
639 * @index_bytes: The number of bytes in the last message.
640 *
641 * This function manages the final part of the digest calculation, when less
642 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
643 *
644 */
645static void hash_messagepad(struct hash_device_data *device_data,
646 const u32 *message, u8 index_bytes)
647{
648 int nwords = 1;
649
650 /*
651 * Clear hash str register, only clear NBLW
652 * since DCAL will be reset by hardware.
653 */
654 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
655
656 /* Main loop */
657 while (index_bytes >= 4) {
658 HASH_SET_DIN(message, nwords);
659 index_bytes -= 4;
660 message++;
661 }
662
663 if (index_bytes)
664 HASH_SET_DIN(message, nwords);
665
666 while (device_data->base->str & HASH_STR_DCAL_MASK)
667 cpu_relax();
668
669 /* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
670 HASH_SET_NBLW(index_bytes * 8);
671 dev_dbg(device_data->dev, "[%s] DIN=0x%08x NBLW=%d", __func__,
672 readl_relaxed(&device_data->base->din),
673 (int)(readl_relaxed(&device_data->base->str) &
674 HASH_STR_NBLW_MASK));
675 HASH_SET_DCAL;
676 dev_dbg(device_data->dev, "[%s] after dcal -> DIN=0x%08x NBLW=%d",
677 __func__, readl_relaxed(&device_data->base->din),
678 (int)(readl_relaxed(&device_data->base->str) &
679 HASH_STR_NBLW_MASK));
680
681 while (device_data->base->str & HASH_STR_DCAL_MASK)
682 cpu_relax();
683}
684
685/**
686 * hash_incrementlength - Increments the length of the current message.
687 * @ctx: Hash context
688 * @incr: Length of message processed already
689 *
690 * Overflow cannot occur, because conditions for overflow are checked in
691 * hash_hw_update.
692 */
693static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
694{
695 ctx->state.length.low_word += incr;
696
697 /* Check for wrap-around */
698 if (ctx->state.length.low_word < incr)
699 ctx->state.length.high_word++;
700}
701
702/**
703 * hash_setconfiguration - Sets the required configuration for the hash
704 * hardware.
705 * @device_data: Structure for the hash device.
706 * @config: Pointer to a configuration structure.
707 */
708int hash_setconfiguration(struct hash_device_data *device_data,
709 struct hash_config *config)
710{
711 int ret = 0;
712
713 if (config->algorithm != HASH_ALGO_SHA1 &&
714 config->algorithm != HASH_ALGO_SHA256)
715 return -EPERM;
716
717 /*
718 * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
719 * to be written to HASH_DIN is considered as 32 bits.
720 */
721 HASH_SET_DATA_FORMAT(config->data_format);
722
723 /*
724 * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
725 */
726 switch (config->algorithm) {
727 case HASH_ALGO_SHA1:
728 HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
729 break;
730
731 case HASH_ALGO_SHA256:
732 HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
733 break;
734
735 default:
736 dev_err(device_data->dev, "[%s] Incorrect algorithm.",
737 __func__);
738 return -EPERM;
739 }
740
741 /*
742 * MODE bit. This bit selects between HASH or HMAC mode for the
743 * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
744 */
745 if (HASH_OPER_MODE_HASH == config->oper_mode)
746 HASH_CLEAR_BITS(&device_data->base->cr,
747 HASH_CR_MODE_MASK);
748 else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
749 HASH_SET_BITS(&device_data->base->cr,
750 HASH_CR_MODE_MASK);
751 if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
752 /* Truncate key to blocksize */
753 dev_dbg(device_data->dev, "[%s] LKEY set", __func__);
754 HASH_SET_BITS(&device_data->base->cr,
755 HASH_CR_LKEY_MASK);
756 } else {
757 dev_dbg(device_data->dev, "[%s] LKEY cleared",
758 __func__);
759 HASH_CLEAR_BITS(&device_data->base->cr,
760 HASH_CR_LKEY_MASK);
761 }
762 } else { /* Wrong hash mode */
763 ret = -EPERM;
764 dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
765 __func__);
766 }
767 return ret;
768}
769
770/**
771 * hash_begin - This routine resets some globals and initializes the hash
772 * hardware.
773 * @device_data: Structure for the hash device.
774 * @ctx: Hash context.
775 */
776void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
777{
778 /* HW and SW initializations */
779 /* Note: there is no need to initialize buffer and digest members */
780
781 while (device_data->base->str & HASH_STR_DCAL_MASK)
782 cpu_relax();
783
784 /*
785 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
786 * prepare the initialize the HASH accelerator to compute the message
787 * digest of a new message.
788 */
789 HASH_INITIALIZE;
790
791 /*
792 * NBLW bits. Reset the number of bits in last word (NBLW).
793 */
794 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
795}
796
797int hash_process_data(
798 struct hash_device_data *device_data,
799 struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
800 int msg_length, u8 *data_buffer, u8 *buffer, u8 *index)
801{
802 int ret = 0;
803 u32 count;
804
805 do {
806 if ((*index + msg_length) < HASH_BLOCK_SIZE) {
807 for (count = 0; count < msg_length; count++) {
808 buffer[*index + count] =
809 *(data_buffer + count);
810 }
811 *index += msg_length;
812 msg_length = 0;
813 } else {
814 if (req_ctx->updated) {
815
816 ret = hash_resume_state(device_data,
817 &device_data->state);
818 memmove(req_ctx->state.buffer,
819 device_data->state.buffer,
820 HASH_BLOCK_SIZE / sizeof(u32));
821 if (ret) {
822 dev_err(device_data->dev, "[%s] "
823 "hash_resume_state()"
824 " failed!", __func__);
825 goto out;
826 }
827 } else {
828 ret = init_hash_hw(device_data, ctx);
829 if (ret) {
830 dev_err(device_data->dev, "[%s] "
831 "init_hash_hw()"
832 " failed!", __func__);
833 goto out;
834 }
835 req_ctx->updated = 1;
836 }
837 /*
838 * If 'data_buffer' is four byte aligned and
839 * local buffer does not have any data, we can
840 * write data directly from 'data_buffer' to
841 * HW peripheral, otherwise we first copy data
842 * to a local buffer
843 */
844 if ((0 == (((u32)data_buffer) % 4))
845 && (0 == *index))
846 hash_processblock(device_data,
847 (const u32 *)
848 data_buffer, HASH_BLOCK_SIZE);
849 else {
850 for (count = 0; count <
851 (u32)(HASH_BLOCK_SIZE -
852 *index);
853 count++) {
854 buffer[*index + count] =
855 *(data_buffer + count);
856 }
857 hash_processblock(device_data,
858 (const u32 *)buffer,
859 HASH_BLOCK_SIZE);
860 }
861 hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
862 data_buffer += (HASH_BLOCK_SIZE - *index);
863
864 msg_length -= (HASH_BLOCK_SIZE - *index);
865 *index = 0;
866
867 ret = hash_save_state(device_data,
868 &device_data->state);
869
870 memmove(device_data->state.buffer,
871 req_ctx->state.buffer,
872 HASH_BLOCK_SIZE / sizeof(u32));
873 if (ret) {
874 dev_err(device_data->dev, "[%s] "
875 "hash_save_state()"
876 " failed!", __func__);
877 goto out;
878 }
879 }
880 } while (msg_length != 0);
881out:
882
883 return ret;
884}
885
886/**
887 * hash_dma_final - The hash dma final function for SHA1/SHA256.
888 * @req: The hash request for the job.
889 */
890static int hash_dma_final(struct ahash_request *req)
891{
892 int ret = 0;
893 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
894 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
895 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
896 struct hash_device_data *device_data;
897 u8 digest[SHA256_DIGEST_SIZE];
898 int bytes_written = 0;
899
900 ret = hash_get_device_data(ctx, &device_data);
901 if (ret)
902 return ret;
903
904 dev_dbg(device_data->dev, "[%s] (ctx=0x%x)!", __func__, (u32) ctx);
905
906 if (req_ctx->updated) {
907 ret = hash_resume_state(device_data, &device_data->state);
908
909 if (ret) {
910 dev_err(device_data->dev, "[%s] hash_resume_state() "
911 "failed!", __func__);
912 goto out;
913 }
914
915 }
916
917 if (!req_ctx->updated) {
918 ret = hash_setconfiguration(device_data, &ctx->config);
919 if (ret) {
920 dev_err(device_data->dev, "[%s] "
921 "hash_setconfiguration() failed!",
922 __func__);
923 goto out;
924 }
925
926 /* Enable DMA input */
927 if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
928 HASH_CLEAR_BITS(&device_data->base->cr,
929 HASH_CR_DMAE_MASK);
930 } else {
931 HASH_SET_BITS(&device_data->base->cr,
932 HASH_CR_DMAE_MASK);
933 HASH_SET_BITS(&device_data->base->cr,
934 HASH_CR_PRIVN_MASK);
935 }
936
937 HASH_INITIALIZE;
938
939 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
940 hash_hw_write_key(device_data, ctx->key, ctx->keylen);
941
942 /* Number of bits in last word = (nbytes * 8) % 32 */
943 HASH_SET_NBLW((req->nbytes * 8) % 32);
944 req_ctx->updated = 1;
945 }
946
947 /* Store the nents in the dma struct. */
948 ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
949 if (!ctx->device->dma.nents) {
950 dev_err(device_data->dev, "[%s] "
951 "ctx->device->dma.nents = 0", __func__);
952 goto out;
953 }
954
955 bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
956 if (bytes_written != req->nbytes) {
957 dev_err(device_data->dev, "[%s] "
958 "hash_dma_write() failed!", __func__);
959 goto out;
960 }
961
962 wait_for_completion(&ctx->device->dma.complete);
963 hash_dma_done(ctx);
964
965 while (device_data->base->str & HASH_STR_DCAL_MASK)
966 cpu_relax();
967
968 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
969 unsigned int keylen = ctx->keylen;
970 u8 *key = ctx->key;
971
972 dev_dbg(device_data->dev, "[%s] keylen: %d", __func__,
973 ctx->keylen);
974 hash_hw_write_key(device_data, key, keylen);
975 }
976
977 hash_get_digest(device_data, digest, ctx->config.algorithm);
978 memcpy(req->result, digest, ctx->digestsize);
979
980out:
981 release_hash_device(device_data);
982
983 /**
984 * Allocated in setkey, and only used in HMAC.
985 */
986 kfree(ctx->key);
987
988 return ret;
989}
990
991/**
992 * hash_hw_final - The final hash calculation function
993 * @req: The hash request for the job.
994 */
995int hash_hw_final(struct ahash_request *req)
996{
997 int ret = 0;
998 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
999 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1000 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1001 struct hash_device_data *device_data;
1002 u8 digest[SHA256_DIGEST_SIZE];
1003
1004 ret = hash_get_device_data(ctx, &device_data);
1005 if (ret)
1006 return ret;
1007
1008 dev_dbg(device_data->dev, "[%s] (ctx=0x%x)!", __func__, (u32) ctx);
1009
1010 if (req_ctx->updated) {
1011 ret = hash_resume_state(device_data, &device_data->state);
1012
1013 if (ret) {
1014 dev_err(device_data->dev, "[%s] hash_resume_state() "
1015 "failed!", __func__);
1016 goto out;
1017 }
1018 } else if (req->nbytes == 0 && ctx->keylen == 0) {
1019 u8 zero_hash[SHA256_DIGEST_SIZE];
1020 u32 zero_hash_size = 0;
1021 bool zero_digest = false;
1022 /**
1023 * Use a pre-calculated empty message digest
1024 * (workaround since hw return zeroes, hw bug!?)
1025 */
1026 ret = get_empty_message_digest(device_data, &zero_hash[0],
1027 &zero_hash_size, &zero_digest);
1028 if (!ret && likely(zero_hash_size == ctx->digestsize) &&
1029 zero_digest) {
1030 memcpy(req->result, &zero_hash[0], ctx->digestsize);
1031 goto out;
1032 } else if (!ret && !zero_digest) {
1033 dev_dbg(device_data->dev, "[%s] HMAC zero msg with "
1034 "key, continue...", __func__);
1035 } else {
1036 dev_err(device_data->dev, "[%s] ret=%d, or wrong "
1037 "digest size? %s", __func__, ret,
1038 (zero_hash_size == ctx->digestsize) ?
1039 "true" : "false");
1040 /* Return error */
1041 goto out;
1042 }
1043 } else if (req->nbytes == 0 && ctx->keylen > 0) {
1044 dev_err(device_data->dev, "[%s] Empty message with "
1045 "keylength > 0, NOT supported.", __func__);
1046 goto out;
1047 }
1048
1049 if (!req_ctx->updated) {
1050 ret = init_hash_hw(device_data, ctx);
1051 if (ret) {
1052 dev_err(device_data->dev, "[%s] init_hash_hw() "
1053 "failed!", __func__);
1054 goto out;
1055 }
1056 }
1057
1058 if (req_ctx->state.index) {
1059 hash_messagepad(device_data, req_ctx->state.buffer,
1060 req_ctx->state.index);
1061 } else {
1062 HASH_SET_DCAL;
1063 while (device_data->base->str & HASH_STR_DCAL_MASK)
1064 cpu_relax();
1065 }
1066
1067 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
1068 unsigned int keylen = ctx->keylen;
1069 u8 *key = ctx->key;
1070
1071 dev_dbg(device_data->dev, "[%s] keylen: %d", __func__,
1072 ctx->keylen);
1073 hash_hw_write_key(device_data, key, keylen);
1074 }
1075
1076 hash_get_digest(device_data, digest, ctx->config.algorithm);
1077 memcpy(req->result, digest, ctx->digestsize);
1078
1079out:
1080 release_hash_device(device_data);
1081
1082 /**
1083 * Allocated in setkey, and only used in HMAC.
1084 */
1085 kfree(ctx->key);
1086
1087 return ret;
1088}
1089
1090/**
1091 * hash_hw_update - Updates current HASH computation hashing another part of
1092 * the message.
1093 * @req: Byte array containing the message to be hashed (caller
1094 * allocated).
1095 */
1096int hash_hw_update(struct ahash_request *req)
1097{
1098 int ret = 0;
1099 u8 index = 0;
1100 u8 *buffer;
1101 struct hash_device_data *device_data;
1102 u8 *data_buffer;
1103 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1104 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1105 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1106 struct crypto_hash_walk walk;
1107 int msg_length = crypto_hash_walk_first(req, &walk);
1108
1109 /* Empty message ("") is correct indata */
1110 if (msg_length == 0)
1111 return ret;
1112
1113 index = req_ctx->state.index;
1114 buffer = (u8 *)req_ctx->state.buffer;
1115
1116 /* Check if ctx->state.length + msg_length
1117 overflows */
1118 if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
1119 HASH_HIGH_WORD_MAX_VAL ==
1120 req_ctx->state.length.high_word) {
1121 pr_err(DEV_DBG_NAME " [%s] HASH_MSG_LENGTH_OVERFLOW!",
1122 __func__);
1123 return -EPERM;
1124 }
1125
1126 ret = hash_get_device_data(ctx, &device_data);
1127 if (ret)
1128 return ret;
1129
1130 /* Main loop */
1131 while (0 != msg_length) {
1132 data_buffer = walk.data;
1133 ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
1134 data_buffer, buffer, &index);
1135
1136 if (ret) {
1137 dev_err(device_data->dev, "[%s] hash_internal_hw_"
1138 "update() failed!", __func__);
1139 goto out;
1140 }
1141
1142 msg_length = crypto_hash_walk_done(&walk, 0);
1143 }
1144
1145 req_ctx->state.index = index;
1146 dev_dbg(device_data->dev, "[%s] indata length=%d, bin=%d))",
1147 __func__, req_ctx->state.index,
1148 req_ctx->state.bit_index);
1149
1150out:
1151 release_hash_device(device_data);
1152
1153 return ret;
1154}
1155
1156/**
1157 * hash_resume_state - Function that resumes the state of an calculation.
1158 * @device_data: Pointer to the device structure.
1159 * @device_state: The state to be restored in the hash hardware
1160 */
1161int hash_resume_state(struct hash_device_data *device_data,
1162 const struct hash_state *device_state)
1163{
1164 u32 temp_cr;
1165 s32 count;
1166 int hash_mode = HASH_OPER_MODE_HASH;
1167
1168 if (NULL == device_state) {
1169 dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
1170 __func__);
1171 return -EPERM;
1172 }
1173
1174 /* Check correctness of index and length members */
1175 if (device_state->index > HASH_BLOCK_SIZE
1176 || (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
1177 dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
1178 __func__);
1179 return -EPERM;
1180 }
1181
1182 /*
1183 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
1184 * prepare the initialize the HASH accelerator to compute the message
1185 * digest of a new message.
1186 */
1187 HASH_INITIALIZE;
1188
1189 temp_cr = device_state->temp_cr;
1190 writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
1191
1192 if (device_data->base->cr & HASH_CR_MODE_MASK)
1193 hash_mode = HASH_OPER_MODE_HMAC;
1194 else
1195 hash_mode = HASH_OPER_MODE_HASH;
1196
1197 for (count = 0; count < HASH_CSR_COUNT; count++) {
1198 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1199 break;
1200
1201 writel_relaxed(device_state->csr[count],
1202 &device_data->base->csrx[count]);
1203 }
1204
1205 writel_relaxed(device_state->csfull, &device_data->base->csfull);
1206 writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
1207
1208 writel_relaxed(device_state->str_reg, &device_data->base->str);
1209 writel_relaxed(temp_cr, &device_data->base->cr);
1210
1211 return 0;
1212}
1213
1214/**
1215 * hash_save_state - Function that saves the state of hardware.
1216 * @device_data: Pointer to the device structure.
1217 * @device_state: The strucure where the hardware state should be saved.
1218 */
1219int hash_save_state(struct hash_device_data *device_data,
1220 struct hash_state *device_state)
1221{
1222 u32 temp_cr;
1223 u32 count;
1224 int hash_mode = HASH_OPER_MODE_HASH;
1225
1226 if (NULL == device_state) {
1227 dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
1228 __func__);
1229 return -ENOTSUPP;
1230 }
1231
1232 /* Write dummy value to force digest intermediate calculation. This
1233 * actually makes sure that there isn't any ongoing calculation in the
1234 * hardware.
1235 */
1236 while (device_data->base->str & HASH_STR_DCAL_MASK)
1237 cpu_relax();
1238
1239 temp_cr = readl_relaxed(&device_data->base->cr);
1240
1241 device_state->str_reg = readl_relaxed(&device_data->base->str);
1242
1243 device_state->din_reg = readl_relaxed(&device_data->base->din);
1244
1245 if (device_data->base->cr & HASH_CR_MODE_MASK)
1246 hash_mode = HASH_OPER_MODE_HMAC;
1247 else
1248 hash_mode = HASH_OPER_MODE_HASH;
1249
1250 for (count = 0; count < HASH_CSR_COUNT; count++) {
1251 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1252 break;
1253
1254 device_state->csr[count] =
1255 readl_relaxed(&device_data->base->csrx[count]);
1256 }
1257
1258 device_state->csfull = readl_relaxed(&device_data->base->csfull);
1259 device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
1260
1261 device_state->temp_cr = temp_cr;
1262
1263 return 0;
1264}
1265
1266/**
1267 * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
1268 * @device_data:
1269 *
1270 */
1271int hash_check_hw(struct hash_device_data *device_data)
1272{
1273 /* Checking Peripheral Ids */
1274 if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0)
1275 && HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1)
1276 && HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2)
1277 && HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3)
1278 && HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0)
1279 && HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1)
1280 && HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2)
1281 && HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)
1282 ) {
1283 return 0;
1284 }
1285
1286 dev_err(device_data->dev, "[%s] HASH_UNSUPPORTED_HW!",
1287 __func__);
1288 return -ENOTSUPP;
1289}
1290
1291/**
1292 * hash_get_digest - Gets the digest.
1293 * @device_data: Pointer to the device structure.
1294 * @digest: User allocated byte array for the calculated digest.
1295 * @algorithm: The algorithm in use.
1296 */
1297void hash_get_digest(struct hash_device_data *device_data,
1298 u8 *digest, int algorithm)
1299{
1300 u32 temp_hx_val, count;
1301 int loop_ctr;
1302
1303 if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
1304 dev_err(device_data->dev, "[%s] Incorrect algorithm %d",
1305 __func__, algorithm);
1306 return;
1307 }
1308
1309 if (algorithm == HASH_ALGO_SHA1)
1310 loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
1311 else
1312 loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
1313
1314 dev_dbg(device_data->dev, "[%s] digest array:(0x%x)",
1315 __func__, (u32) digest);
1316
1317 /* Copy result into digest array */
1318 for (count = 0; count < loop_ctr; count++) {
1319 temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
1320 digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
1321 digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
1322 digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
1323 digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
1324 }
1325}
1326
1327/**
1328 * hash_update - The hash update function for SHA1/SHA2 (SHA256).
1329 * @req: The hash request for the job.
1330 */
1331static int ahash_update(struct ahash_request *req)
1332{
1333 int ret = 0;
1334 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1335
1336 if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
1337 ret = hash_hw_update(req);
1338 /* Skip update for DMA, all data will be passed to DMA in final */
1339
1340 if (ret) {
1341 pr_err(DEV_DBG_NAME " [%s] hash_hw_update() failed!",
1342 __func__);
1343 }
1344
1345 return ret;
1346}
1347
1348/**
1349 * hash_final - The hash final function for SHA1/SHA2 (SHA256).
1350 * @req: The hash request for the job.
1351 */
1352static int ahash_final(struct ahash_request *req)
1353{
1354 int ret = 0;
1355 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1356
1357 pr_debug(DEV_DBG_NAME " [%s] data size: %d", __func__, req->nbytes);
1358
1359 if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
1360 ret = hash_dma_final(req);
1361 else
1362 ret = hash_hw_final(req);
1363
1364 if (ret) {
1365 pr_err(DEV_DBG_NAME " [%s] hash_hw/dma_final() failed",
1366 __func__);
1367 }
1368
1369 return ret;
1370}
1371
1372static int hash_setkey(struct crypto_ahash *tfm,
1373 const u8 *key, unsigned int keylen, int alg)
1374{
1375 int ret = 0;
1376 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1377
1378 /**
1379 * Freed in final.
1380 */
1381 ctx->key = kmalloc(keylen, GFP_KERNEL);
1382 if (!ctx->key) {
1383 pr_err(DEV_DBG_NAME " [%s] Failed to allocate ctx->key "
1384 "for %d\n", __func__, alg);
1385 return -ENOMEM;
1386 }
1387
1388 memcpy(ctx->key, key, keylen);
1389 ctx->keylen = keylen;
1390
1391 return ret;
1392}
1393
1394static int ahash_sha1_init(struct ahash_request *req)
1395{
1396 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1397 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1398
1399 ctx->config.data_format = HASH_DATA_8_BITS;
1400 ctx->config.algorithm = HASH_ALGO_SHA1;
1401 ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1402 ctx->digestsize = SHA1_DIGEST_SIZE;
1403
1404 return hash_init(req);
1405}
1406
1407static int ahash_sha256_init(struct ahash_request *req)
1408{
1409 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1410 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1411
1412 ctx->config.data_format = HASH_DATA_8_BITS;
1413 ctx->config.algorithm = HASH_ALGO_SHA256;
1414 ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1415 ctx->digestsize = SHA256_DIGEST_SIZE;
1416
1417 return hash_init(req);
1418}
1419
1420static int ahash_sha1_digest(struct ahash_request *req)
1421{
1422 int ret2, ret1;
1423
1424 ret1 = ahash_sha1_init(req);
1425 if (ret1)
1426 goto out;
1427
1428 ret1 = ahash_update(req);
1429 ret2 = ahash_final(req);
1430
1431out:
1432 return ret1 ? ret1 : ret2;
1433}
1434
1435static int ahash_sha256_digest(struct ahash_request *req)
1436{
1437 int ret2, ret1;
1438
1439 ret1 = ahash_sha256_init(req);
1440 if (ret1)
1441 goto out;
1442
1443 ret1 = ahash_update(req);
1444 ret2 = ahash_final(req);
1445
1446out:
1447 return ret1 ? ret1 : ret2;
1448}
1449
1450static int hmac_sha1_init(struct ahash_request *req)
1451{
1452 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1453 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1454
1455 ctx->config.data_format = HASH_DATA_8_BITS;
1456 ctx->config.algorithm = HASH_ALGO_SHA1;
1457 ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
1458 ctx->digestsize = SHA1_DIGEST_SIZE;
1459
1460 return hash_init(req);
1461}
1462
1463static int hmac_sha256_init(struct ahash_request *req)
1464{
1465 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1466 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1467
1468 ctx->config.data_format = HASH_DATA_8_BITS;
1469 ctx->config.algorithm = HASH_ALGO_SHA256;
1470 ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
1471 ctx->digestsize = SHA256_DIGEST_SIZE;
1472
1473 return hash_init(req);
1474}
1475
1476static int hmac_sha1_digest(struct ahash_request *req)
1477{
1478 int ret2, ret1;
1479
1480 ret1 = hmac_sha1_init(req);
1481 if (ret1)
1482 goto out;
1483
1484 ret1 = ahash_update(req);
1485 ret2 = ahash_final(req);
1486
1487out:
1488 return ret1 ? ret1 : ret2;
1489}
1490
1491static int hmac_sha256_digest(struct ahash_request *req)
1492{
1493 int ret2, ret1;
1494
1495 ret1 = hmac_sha256_init(req);
1496 if (ret1)
1497 goto out;
1498
1499 ret1 = ahash_update(req);
1500 ret2 = ahash_final(req);
1501
1502out:
1503 return ret1 ? ret1 : ret2;
1504}
1505
1506static int hmac_sha1_setkey(struct crypto_ahash *tfm,
1507 const u8 *key, unsigned int keylen)
1508{
1509 return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
1510}
1511
1512static int hmac_sha256_setkey(struct crypto_ahash *tfm,
1513 const u8 *key, unsigned int keylen)
1514{
1515 return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
1516}
1517
1518struct hash_algo_template {
1519 struct hash_config conf;
1520 struct ahash_alg hash;
1521};
1522
1523static int hash_cra_init(struct crypto_tfm *tfm)
1524{
1525 struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
1526 struct crypto_alg *alg = tfm->__crt_alg;
1527 struct hash_algo_template *hash_alg;
1528
1529 hash_alg = container_of(__crypto_ahash_alg(alg),
1530 struct hash_algo_template,
1531 hash);
1532
1533 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1534 sizeof(struct hash_req_ctx));
1535
1536 ctx->config.data_format = HASH_DATA_8_BITS;
1537 ctx->config.algorithm = hash_alg->conf.algorithm;
1538 ctx->config.oper_mode = hash_alg->conf.oper_mode;
1539
1540 ctx->digestsize = hash_alg->hash.halg.digestsize;
1541
1542 return 0;
1543}
1544
1545static struct hash_algo_template hash_algs[] = {
1546 {
1547 .conf.algorithm = HASH_ALGO_SHA1,
1548 .conf.oper_mode = HASH_OPER_MODE_HASH,
1549 .hash = {
1550 .init = hash_init,
1551 .update = ahash_update,
1552 .final = ahash_final,
1553 .digest = ahash_sha1_digest,
1554 .halg.digestsize = SHA1_DIGEST_SIZE,
1555 .halg.statesize = sizeof(struct hash_ctx),
1556 .halg.base = {
1557 .cra_name = "sha1",
1558 .cra_driver_name = "sha1-ux500",
1559 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1560 CRYPTO_ALG_ASYNC,
1561 .cra_blocksize = SHA1_BLOCK_SIZE,
1562 .cra_ctxsize = sizeof(struct hash_ctx),
1563 .cra_init = hash_cra_init,
1564 .cra_module = THIS_MODULE,
1565 }
1566 }
1567 },
1568 {
1569 .conf.algorithm = HASH_ALGO_SHA256,
1570 .conf.oper_mode = HASH_OPER_MODE_HASH,
1571 .hash = {
1572 .init = hash_init,
1573 .update = ahash_update,
1574 .final = ahash_final,
1575 .digest = ahash_sha256_digest,
1576 .halg.digestsize = SHA256_DIGEST_SIZE,
1577 .halg.statesize = sizeof(struct hash_ctx),
1578 .halg.base = {
1579 .cra_name = "sha256",
1580 .cra_driver_name = "sha256-ux500",
1581 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1582 CRYPTO_ALG_ASYNC,
1583 .cra_blocksize = SHA256_BLOCK_SIZE,
1584 .cra_ctxsize = sizeof(struct hash_ctx),
1585 .cra_type = &crypto_ahash_type,
1586 .cra_init = hash_cra_init,
1587 .cra_module = THIS_MODULE,
1588 }
1589 }
1590
1591 },
1592 {
1593 .conf.algorithm = HASH_ALGO_SHA1,
1594 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1595 .hash = {
1596 .init = hash_init,
1597 .update = ahash_update,
1598 .final = ahash_final,
1599 .digest = hmac_sha1_digest,
1600 .setkey = hmac_sha1_setkey,
1601 .halg.digestsize = SHA1_DIGEST_SIZE,
1602 .halg.statesize = sizeof(struct hash_ctx),
1603 .halg.base = {
1604 .cra_name = "hmac(sha1)",
1605 .cra_driver_name = "hmac-sha1-ux500",
1606 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1607 CRYPTO_ALG_ASYNC,
1608 .cra_blocksize = SHA1_BLOCK_SIZE,
1609 .cra_ctxsize = sizeof(struct hash_ctx),
1610 .cra_type = &crypto_ahash_type,
1611 .cra_init = hash_cra_init,
1612 .cra_module = THIS_MODULE,
1613 }
1614 }
1615 },
1616 {
1617 .conf.algorithm = HASH_ALGO_SHA256,
1618 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1619 .hash = {
1620 .init = hash_init,
1621 .update = ahash_update,
1622 .final = ahash_final,
1623 .digest = hmac_sha256_digest,
1624 .setkey = hmac_sha256_setkey,
1625 .halg.digestsize = SHA256_DIGEST_SIZE,
1626 .halg.statesize = sizeof(struct hash_ctx),
1627 .halg.base = {
1628 .cra_name = "hmac(sha256)",
1629 .cra_driver_name = "hmac-sha256-ux500",
1630 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1631 CRYPTO_ALG_ASYNC,
1632 .cra_blocksize = SHA256_BLOCK_SIZE,
1633 .cra_ctxsize = sizeof(struct hash_ctx),
1634 .cra_type = &crypto_ahash_type,
1635 .cra_init = hash_cra_init,
1636 .cra_module = THIS_MODULE,
1637 }
1638 }
1639 }
1640};
1641
1642/**
1643 * hash_algs_register_all -
1644 */
1645static int ahash_algs_register_all(struct hash_device_data *device_data)
1646{
1647 int ret;
1648 int i;
1649 int count;
1650
1651 for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
1652 ret = crypto_register_ahash(&hash_algs[i].hash);
1653 if (ret) {
1654 count = i;
1655 dev_err(device_data->dev, "[%s] alg registration failed",
1656 hash_algs[i].hash.halg.base.cra_driver_name);
1657 goto unreg;
1658 }
1659 }
1660 return 0;
1661unreg:
1662 for (i = 0; i < count; i++)
1663 crypto_unregister_ahash(&hash_algs[i].hash);
1664 return ret;
1665}
1666
1667/**
1668 * hash_algs_unregister_all -
1669 */
1670static void ahash_algs_unregister_all(struct hash_device_data *device_data)
1671{
1672 int i;
1673
1674 for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
1675 crypto_unregister_ahash(&hash_algs[i].hash);
1676}
1677
1678/**
1679 * ux500_hash_probe - Function that probes the hash hardware.
1680 * @pdev: The platform device.
1681 */
1682static int ux500_hash_probe(struct platform_device *pdev)
1683{
1684 int ret = 0;
1685 struct resource *res = NULL;
1686 struct hash_device_data *device_data;
1687 struct device *dev = &pdev->dev;
1688
1689 device_data = kzalloc(sizeof(struct hash_device_data), GFP_ATOMIC);
1690 if (!device_data) {
1691 dev_dbg(dev, "[%s] kzalloc() failed!", __func__);
1692 ret = -ENOMEM;
1693 goto out;
1694 }
1695
1696 device_data->dev = dev;
1697 device_data->current_ctx = NULL;
1698
1699 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1700 if (!res) {
1701 dev_dbg(dev, "[%s] platform_get_resource() failed!", __func__);
1702 ret = -ENODEV;
1703 goto out_kfree;
1704 }
1705
1706 res = request_mem_region(res->start, resource_size(res), pdev->name);
1707 if (res == NULL) {
1708 dev_dbg(dev, "[%s] request_mem_region() failed!", __func__);
1709 ret = -EBUSY;
1710 goto out_kfree;
1711 }
1712
1713 device_data->base = ioremap(res->start, resource_size(res));
1714 if (!device_data->base) {
1715 dev_err(dev, "[%s] ioremap() failed!",
1716 __func__);
1717 ret = -ENOMEM;
1718 goto out_free_mem;
1719 }
1720 spin_lock_init(&device_data->ctx_lock);
1721 spin_lock_init(&device_data->power_state_lock);
1722
1723 /* Enable power for HASH1 hardware block */
1724 device_data->regulator = regulator_get(dev, "v-ape");
1725 if (IS_ERR(device_data->regulator)) {
1726 dev_err(dev, "[%s] regulator_get() failed!", __func__);
1727 ret = PTR_ERR(device_data->regulator);
1728 device_data->regulator = NULL;
1729 goto out_unmap;
1730 }
1731
1732 /* Enable the clock for HASH1 hardware block */
1733 device_data->clk = clk_get(dev, NULL);
1734 if (IS_ERR(device_data->clk)) {
1735 dev_err(dev, "[%s] clk_get() failed!", __func__);
1736 ret = PTR_ERR(device_data->clk);
1737 goto out_regulator;
1738 }
1739
1740 /* Enable device power (and clock) */
1741 ret = hash_enable_power(device_data, false);
1742 if (ret) {
1743 dev_err(dev, "[%s]: hash_enable_power() failed!", __func__);
1744 goto out_clk;
1745 }
1746
1747 ret = hash_check_hw(device_data);
1748 if (ret) {
1749 dev_err(dev, "[%s] hash_check_hw() failed!", __func__);
1750 goto out_power;
1751 }
1752
1753 if (hash_mode == HASH_MODE_DMA)
1754 hash_dma_setup_channel(device_data, dev);
1755
1756 platform_set_drvdata(pdev, device_data);
1757
1758 /* Put the new device into the device list... */
1759 klist_add_tail(&device_data->list_node, &driver_data.device_list);
1760 /* ... and signal that a new device is available. */
1761 up(&driver_data.device_allocation);
1762
1763 ret = ahash_algs_register_all(device_data);
1764 if (ret) {
1765 dev_err(dev, "[%s] ahash_algs_register_all() "
1766 "failed!", __func__);
1767 goto out_power;
1768 }
1769
1770 dev_info(dev, "[%s] successfully probed\n", __func__);
1771 return 0;
1772
1773out_power:
1774 hash_disable_power(device_data, false);
1775
1776out_clk:
1777 clk_put(device_data->clk);
1778
1779out_regulator:
1780 regulator_put(device_data->regulator);
1781
1782out_unmap:
1783 iounmap(device_data->base);
1784
1785out_free_mem:
1786 release_mem_region(res->start, resource_size(res));
1787
1788out_kfree:
1789 kfree(device_data);
1790out:
1791 return ret;
1792}
1793
1794/**
1795 * ux500_hash_remove - Function that removes the hash device from the platform.
1796 * @pdev: The platform device.
1797 */
1798static int ux500_hash_remove(struct platform_device *pdev)
1799{
1800 struct resource *res;
1801 struct hash_device_data *device_data;
1802 struct device *dev = &pdev->dev;
1803
1804 device_data = platform_get_drvdata(pdev);
1805 if (!device_data) {
1806 dev_err(dev, "[%s]: platform_get_drvdata() failed!",
1807 __func__);
1808 return -ENOMEM;
1809 }
1810
1811 /* Try to decrease the number of available devices. */
1812 if (down_trylock(&driver_data.device_allocation))
1813 return -EBUSY;
1814
1815 /* Check that the device is free */
1816 spin_lock(&device_data->ctx_lock);
1817 /* current_ctx allocates a device, NULL = unallocated */
1818 if (device_data->current_ctx) {
1819 /* The device is busy */
1820 spin_unlock(&device_data->ctx_lock);
1821 /* Return the device to the pool. */
1822 up(&driver_data.device_allocation);
1823 return -EBUSY;
1824 }
1825
1826 spin_unlock(&device_data->ctx_lock);
1827
1828 /* Remove the device from the list */
1829 if (klist_node_attached(&device_data->list_node))
1830 klist_remove(&device_data->list_node);
1831
1832 /* If this was the last device, remove the services */
1833 if (list_empty(&driver_data.device_list.k_list))
1834 ahash_algs_unregister_all(device_data);
1835
1836 if (hash_disable_power(device_data, false))
1837 dev_err(dev, "[%s]: hash_disable_power() failed",
1838 __func__);
1839
1840 clk_put(device_data->clk);
1841 regulator_put(device_data->regulator);
1842
1843 iounmap(device_data->base);
1844
1845 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1846 if (res)
1847 release_mem_region(res->start, resource_size(res));
1848
1849 kfree(device_data);
1850
1851 return 0;
1852}
1853
1854/**
1855 * ux500_hash_shutdown - Function that shutdown the hash device.
1856 * @pdev: The platform device
1857 */
1858static void ux500_hash_shutdown(struct platform_device *pdev)
1859{
1860 struct resource *res = NULL;
1861 struct hash_device_data *device_data;
1862
1863 device_data = platform_get_drvdata(pdev);
1864 if (!device_data) {
1865 dev_err(&pdev->dev, "[%s] platform_get_drvdata() failed!",
1866 __func__);
1867 return;
1868 }
1869
1870 /* Check that the device is free */
1871 spin_lock(&device_data->ctx_lock);
1872 /* current_ctx allocates a device, NULL = unallocated */
1873 if (!device_data->current_ctx) {
1874 if (down_trylock(&driver_data.device_allocation))
1875 dev_dbg(&pdev->dev, "[%s]: Cryp still in use!"
1876 "Shutting down anyway...", __func__);
1877 /**
1878 * (Allocate the device)
1879 * Need to set this to non-null (dummy) value,
1880 * to avoid usage if context switching.
1881 */
1882 device_data->current_ctx++;
1883 }
1884 spin_unlock(&device_data->ctx_lock);
1885
1886 /* Remove the device from the list */
1887 if (klist_node_attached(&device_data->list_node))
1888 klist_remove(&device_data->list_node);
1889
1890 /* If this was the last device, remove the services */
1891 if (list_empty(&driver_data.device_list.k_list))
1892 ahash_algs_unregister_all(device_data);
1893
1894 iounmap(device_data->base);
1895
1896 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1897 if (res)
1898 release_mem_region(res->start, resource_size(res));
1899
1900 if (hash_disable_power(device_data, false))
1901 dev_err(&pdev->dev, "[%s] hash_disable_power() failed",
1902 __func__);
1903}
1904
1905/**
1906 * ux500_hash_suspend - Function that suspends the hash device.
1907 * @pdev: The platform device.
1908 * @state: -
1909 */
1910static int ux500_hash_suspend(struct platform_device *pdev, pm_message_t state)
1911{
1912 int ret;
1913 struct hash_device_data *device_data;
1914 struct hash_ctx *temp_ctx = NULL;
1915
1916 device_data = platform_get_drvdata(pdev);
1917 if (!device_data) {
1918 dev_err(&pdev->dev, "[%s] platform_get_drvdata() failed!",
1919 __func__);
1920 return -ENOMEM;
1921 }
1922
1923 spin_lock(&device_data->ctx_lock);
1924 if (!device_data->current_ctx)
1925 device_data->current_ctx++;
1926 spin_unlock(&device_data->ctx_lock);
1927
1928 if (device_data->current_ctx == ++temp_ctx) {
1929 if (down_interruptible(&driver_data.device_allocation))
1930 dev_dbg(&pdev->dev, "[%s]: down_interruptible() "
1931 "failed", __func__);
1932 ret = hash_disable_power(device_data, false);
1933
1934 } else
1935 ret = hash_disable_power(device_data, true);
1936
1937 if (ret)
1938 dev_err(&pdev->dev, "[%s]: hash_disable_power()", __func__);
1939
1940 return ret;
1941}
1942
1943/**
1944 * ux500_hash_resume - Function that resume the hash device.
1945 * @pdev: The platform device.
1946 */
1947static int ux500_hash_resume(struct platform_device *pdev)
1948{
1949 int ret = 0;
1950 struct hash_device_data *device_data;
1951 struct hash_ctx *temp_ctx = NULL;
1952
1953 device_data = platform_get_drvdata(pdev);
1954 if (!device_data) {
1955 dev_err(&pdev->dev, "[%s] platform_get_drvdata() failed!",
1956 __func__);
1957 return -ENOMEM;
1958 }
1959
1960 spin_lock(&device_data->ctx_lock);
1961 if (device_data->current_ctx == ++temp_ctx)
1962 device_data->current_ctx = NULL;
1963 spin_unlock(&device_data->ctx_lock);
1964
1965 if (!device_data->current_ctx)
1966 up(&driver_data.device_allocation);
1967 else
1968 ret = hash_enable_power(device_data, true);
1969
1970 if (ret)
1971 dev_err(&pdev->dev, "[%s]: hash_enable_power() failed!",
1972 __func__);
1973
1974 return ret;
1975}
1976
1977static struct platform_driver hash_driver = {
1978 .probe = ux500_hash_probe,
1979 .remove = ux500_hash_remove,
1980 .shutdown = ux500_hash_shutdown,
1981 .suspend = ux500_hash_suspend,
1982 .resume = ux500_hash_resume,
1983 .driver = {
1984 .owner = THIS_MODULE,
1985 .name = "hash1",
1986 }
1987};
1988
1989/**
1990 * ux500_hash_mod_init - The kernel module init function.
1991 */
1992static int __init ux500_hash_mod_init(void)
1993{
1994 klist_init(&driver_data.device_list, NULL, NULL);
1995 /* Initialize the semaphore to 0 devices (locked state) */
1996 sema_init(&driver_data.device_allocation, 0);
1997
1998 return platform_driver_register(&hash_driver);
1999}
2000
2001/**
2002 * ux500_hash_mod_fini - The kernel module exit function.
2003 */
2004static void __exit ux500_hash_mod_fini(void)
2005{
2006 platform_driver_unregister(&hash_driver);
2007 return;
2008}
2009
2010module_init(ux500_hash_mod_init);
2011module_exit(ux500_hash_mod_fini);
2012
2013MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
2014MODULE_LICENSE("GPL");
2015
2016MODULE_ALIAS("sha1-all");
2017MODULE_ALIAS("sha256-all");
2018MODULE_ALIAS("hmac-sha1-all");
2019MODULE_ALIAS("hmac-sha256-all");