diff options
author | Tony Lindgren <tony@atomide.com> | 2010-05-20 14:37:23 -0400 |
---|---|---|
committer | Tony Lindgren <tony@atomide.com> | 2010-05-20 14:37:23 -0400 |
commit | f6304f5804f228b6c2fea9e3dfac25c5b2db9b38 (patch) | |
tree | 362b9b6a3bd32b868e5917a32d448ac75c5854df /arch/x86/kernel/tlb_uv.c | |
parent | 4fa73a1bf89ebea4eba8a9982b5f64d266d8b5e9 (diff) | |
parent | 6daa642d9b8ec762b3c5641cd5e5fa855a5405bf (diff) |
Merge branch 'omap4-i2c-init' into omap-for-linus
Diffstat (limited to 'arch/x86/kernel/tlb_uv.c')
-rw-r--r-- | arch/x86/kernel/tlb_uv.c | 1280 |
1 files changed, 906 insertions, 374 deletions
diff --git a/arch/x86/kernel/tlb_uv.c b/arch/x86/kernel/tlb_uv.c index 17b03dd3a6b..7fea555929e 100644 --- a/arch/x86/kernel/tlb_uv.c +++ b/arch/x86/kernel/tlb_uv.c | |||
@@ -1,7 +1,7 @@ | |||
1 | /* | 1 | /* |
2 | * SGI UltraViolet TLB flush routines. | 2 | * SGI UltraViolet TLB flush routines. |
3 | * | 3 | * |
4 | * (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI. | 4 | * (c) 2008-2010 Cliff Wickman <cpw@sgi.com>, SGI. |
5 | * | 5 | * |
6 | * This code is released under the GNU General Public License version 2 or | 6 | * This code is released under the GNU General Public License version 2 or |
7 | * later. | 7 | * later. |
@@ -20,42 +20,67 @@ | |||
20 | #include <asm/idle.h> | 20 | #include <asm/idle.h> |
21 | #include <asm/tsc.h> | 21 | #include <asm/tsc.h> |
22 | #include <asm/irq_vectors.h> | 22 | #include <asm/irq_vectors.h> |
23 | #include <asm/timer.h> | ||
23 | 24 | ||
24 | static struct bau_control **uv_bau_table_bases __read_mostly; | 25 | struct msg_desc { |
25 | static int uv_bau_retry_limit __read_mostly; | 26 | struct bau_payload_queue_entry *msg; |
27 | int msg_slot; | ||
28 | int sw_ack_slot; | ||
29 | struct bau_payload_queue_entry *va_queue_first; | ||
30 | struct bau_payload_queue_entry *va_queue_last; | ||
31 | }; | ||
26 | 32 | ||
27 | /* base pnode in this partition */ | 33 | #define UV_INTD_SOFT_ACK_TIMEOUT_PERIOD 0x000000000bUL |
28 | static int uv_partition_base_pnode __read_mostly; | 34 | |
35 | static int uv_bau_max_concurrent __read_mostly; | ||
36 | |||
37 | static int nobau; | ||
38 | static int __init setup_nobau(char *arg) | ||
39 | { | ||
40 | nobau = 1; | ||
41 | return 0; | ||
42 | } | ||
43 | early_param("nobau", setup_nobau); | ||
29 | 44 | ||
30 | static unsigned long uv_mmask __read_mostly; | 45 | /* base pnode in this partition */ |
46 | static int uv_partition_base_pnode __read_mostly; | ||
47 | /* position of pnode (which is nasid>>1): */ | ||
48 | static int uv_nshift __read_mostly; | ||
49 | static unsigned long uv_mmask __read_mostly; | ||
31 | 50 | ||
32 | static DEFINE_PER_CPU(struct ptc_stats, ptcstats); | 51 | static DEFINE_PER_CPU(struct ptc_stats, ptcstats); |
33 | static DEFINE_PER_CPU(struct bau_control, bau_control); | 52 | static DEFINE_PER_CPU(struct bau_control, bau_control); |
53 | static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask); | ||
54 | |||
55 | struct reset_args { | ||
56 | int sender; | ||
57 | }; | ||
34 | 58 | ||
35 | /* | 59 | /* |
36 | * Determine the first node on a blade. | 60 | * Determine the first node on a uvhub. 'Nodes' are used for kernel |
61 | * memory allocation. | ||
37 | */ | 62 | */ |
38 | static int __init blade_to_first_node(int blade) | 63 | static int __init uvhub_to_first_node(int uvhub) |
39 | { | 64 | { |
40 | int node, b; | 65 | int node, b; |
41 | 66 | ||
42 | for_each_online_node(node) { | 67 | for_each_online_node(node) { |
43 | b = uv_node_to_blade_id(node); | 68 | b = uv_node_to_blade_id(node); |
44 | if (blade == b) | 69 | if (uvhub == b) |
45 | return node; | 70 | return node; |
46 | } | 71 | } |
47 | return -1; /* shouldn't happen */ | 72 | return -1; |
48 | } | 73 | } |
49 | 74 | ||
50 | /* | 75 | /* |
51 | * Determine the apicid of the first cpu on a blade. | 76 | * Determine the apicid of the first cpu on a uvhub. |
52 | */ | 77 | */ |
53 | static int __init blade_to_first_apicid(int blade) | 78 | static int __init uvhub_to_first_apicid(int uvhub) |
54 | { | 79 | { |
55 | int cpu; | 80 | int cpu; |
56 | 81 | ||
57 | for_each_present_cpu(cpu) | 82 | for_each_present_cpu(cpu) |
58 | if (blade == uv_cpu_to_blade_id(cpu)) | 83 | if (uvhub == uv_cpu_to_blade_id(cpu)) |
59 | return per_cpu(x86_cpu_to_apicid, cpu); | 84 | return per_cpu(x86_cpu_to_apicid, cpu); |
60 | return -1; | 85 | return -1; |
61 | } | 86 | } |
@@ -68,195 +93,459 @@ static int __init blade_to_first_apicid(int blade) | |||
68 | * clear of the Timeout bit (as well) will free the resource. No reply will | 93 | * clear of the Timeout bit (as well) will free the resource. No reply will |
69 | * be sent (the hardware will only do one reply per message). | 94 | * be sent (the hardware will only do one reply per message). |
70 | */ | 95 | */ |
71 | static void uv_reply_to_message(int resource, | 96 | static inline void uv_reply_to_message(struct msg_desc *mdp, |
72 | struct bau_payload_queue_entry *msg, | 97 | struct bau_control *bcp) |
73 | struct bau_msg_status *msp) | ||
74 | { | 98 | { |
75 | unsigned long dw; | 99 | unsigned long dw; |
100 | struct bau_payload_queue_entry *msg; | ||
76 | 101 | ||
77 | dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource); | 102 | msg = mdp->msg; |
103 | if (!msg->canceled) { | ||
104 | dw = (msg->sw_ack_vector << UV_SW_ACK_NPENDING) | | ||
105 | msg->sw_ack_vector; | ||
106 | uv_write_local_mmr( | ||
107 | UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw); | ||
108 | } | ||
78 | msg->replied_to = 1; | 109 | msg->replied_to = 1; |
79 | msg->sw_ack_vector = 0; | 110 | msg->sw_ack_vector = 0; |
80 | if (msp) | ||
81 | msp->seen_by.bits = 0; | ||
82 | uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw); | ||
83 | } | 111 | } |
84 | 112 | ||
85 | /* | 113 | /* |
86 | * Do all the things a cpu should do for a TLB shootdown message. | 114 | * Process the receipt of a RETRY message |
87 | * Other cpu's may come here at the same time for this message. | ||
88 | */ | 115 | */ |
89 | static void uv_bau_process_message(struct bau_payload_queue_entry *msg, | 116 | static inline void uv_bau_process_retry_msg(struct msg_desc *mdp, |
90 | int msg_slot, int sw_ack_slot) | 117 | struct bau_control *bcp) |
91 | { | 118 | { |
92 | unsigned long this_cpu_mask; | 119 | int i; |
93 | struct bau_msg_status *msp; | 120 | int cancel_count = 0; |
94 | int cpu; | 121 | int slot2; |
122 | unsigned long msg_res; | ||
123 | unsigned long mmr = 0; | ||
124 | struct bau_payload_queue_entry *msg; | ||
125 | struct bau_payload_queue_entry *msg2; | ||
126 | struct ptc_stats *stat; | ||
95 | 127 | ||
96 | msp = __get_cpu_var(bau_control).msg_statuses + msg_slot; | 128 | msg = mdp->msg; |
97 | cpu = uv_blade_processor_id(); | 129 | stat = &per_cpu(ptcstats, bcp->cpu); |
98 | msg->number_of_cpus = | 130 | stat->d_retries++; |
99 | uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id())); | 131 | /* |
100 | this_cpu_mask = 1UL << cpu; | 132 | * cancel any message from msg+1 to the retry itself |
101 | if (msp->seen_by.bits & this_cpu_mask) | 133 | */ |
102 | return; | 134 | for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) { |
103 | atomic_or_long(&msp->seen_by.bits, this_cpu_mask); | 135 | if (msg2 > mdp->va_queue_last) |
136 | msg2 = mdp->va_queue_first; | ||
137 | if (msg2 == msg) | ||
138 | break; | ||
139 | |||
140 | /* same conditions for cancellation as uv_do_reset */ | ||
141 | if ((msg2->replied_to == 0) && (msg2->canceled == 0) && | ||
142 | (msg2->sw_ack_vector) && ((msg2->sw_ack_vector & | ||
143 | msg->sw_ack_vector) == 0) && | ||
144 | (msg2->sending_cpu == msg->sending_cpu) && | ||
145 | (msg2->msg_type != MSG_NOOP)) { | ||
146 | slot2 = msg2 - mdp->va_queue_first; | ||
147 | mmr = uv_read_local_mmr | ||
148 | (UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE); | ||
149 | msg_res = ((msg2->sw_ack_vector << 8) | | ||
150 | msg2->sw_ack_vector); | ||
151 | /* | ||
152 | * This is a message retry; clear the resources held | ||
153 | * by the previous message only if they timed out. | ||
154 | * If it has not timed out we have an unexpected | ||
155 | * situation to report. | ||
156 | */ | ||
157 | if (mmr & (msg_res << 8)) { | ||
158 | /* | ||
159 | * is the resource timed out? | ||
160 | * make everyone ignore the cancelled message. | ||
161 | */ | ||
162 | msg2->canceled = 1; | ||
163 | stat->d_canceled++; | ||
164 | cancel_count++; | ||
165 | uv_write_local_mmr( | ||
166 | UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, | ||
167 | (msg_res << 8) | msg_res); | ||
168 | } else | ||
169 | printk(KERN_INFO "note bau retry: no effect\n"); | ||
170 | } | ||
171 | } | ||
172 | if (!cancel_count) | ||
173 | stat->d_nocanceled++; | ||
174 | } | ||
104 | 175 | ||
105 | if (msg->replied_to == 1) | 176 | /* |
106 | return; | 177 | * Do all the things a cpu should do for a TLB shootdown message. |
178 | * Other cpu's may come here at the same time for this message. | ||
179 | */ | ||
180 | static void uv_bau_process_message(struct msg_desc *mdp, | ||
181 | struct bau_control *bcp) | ||
182 | { | ||
183 | int msg_ack_count; | ||
184 | short socket_ack_count = 0; | ||
185 | struct ptc_stats *stat; | ||
186 | struct bau_payload_queue_entry *msg; | ||
187 | struct bau_control *smaster = bcp->socket_master; | ||
107 | 188 | ||
189 | /* | ||
190 | * This must be a normal message, or retry of a normal message | ||
191 | */ | ||
192 | msg = mdp->msg; | ||
193 | stat = &per_cpu(ptcstats, bcp->cpu); | ||
108 | if (msg->address == TLB_FLUSH_ALL) { | 194 | if (msg->address == TLB_FLUSH_ALL) { |
109 | local_flush_tlb(); | 195 | local_flush_tlb(); |
110 | __get_cpu_var(ptcstats).alltlb++; | 196 | stat->d_alltlb++; |
111 | } else { | 197 | } else { |
112 | __flush_tlb_one(msg->address); | 198 | __flush_tlb_one(msg->address); |
113 | __get_cpu_var(ptcstats).onetlb++; | 199 | stat->d_onetlb++; |
114 | } | 200 | } |
201 | stat->d_requestee++; | ||
202 | |||
203 | /* | ||
204 | * One cpu on each uvhub has the additional job on a RETRY | ||
205 | * of releasing the resource held by the message that is | ||
206 | * being retried. That message is identified by sending | ||
207 | * cpu number. | ||
208 | */ | ||
209 | if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master) | ||
210 | uv_bau_process_retry_msg(mdp, bcp); | ||
115 | 211 | ||
116 | __get_cpu_var(ptcstats).requestee++; | 212 | /* |
213 | * This is a sw_ack message, so we have to reply to it. | ||
214 | * Count each responding cpu on the socket. This avoids | ||
215 | * pinging the count's cache line back and forth between | ||
216 | * the sockets. | ||
217 | */ | ||
218 | socket_ack_count = atomic_add_short_return(1, (struct atomic_short *) | ||
219 | &smaster->socket_acknowledge_count[mdp->msg_slot]); | ||
220 | if (socket_ack_count == bcp->cpus_in_socket) { | ||
221 | /* | ||
222 | * Both sockets dump their completed count total into | ||
223 | * the message's count. | ||
224 | */ | ||
225 | smaster->socket_acknowledge_count[mdp->msg_slot] = 0; | ||
226 | msg_ack_count = atomic_add_short_return(socket_ack_count, | ||
227 | (struct atomic_short *)&msg->acknowledge_count); | ||
228 | |||
229 | if (msg_ack_count == bcp->cpus_in_uvhub) { | ||
230 | /* | ||
231 | * All cpus in uvhub saw it; reply | ||
232 | */ | ||
233 | uv_reply_to_message(mdp, bcp); | ||
234 | } | ||
235 | } | ||
117 | 236 | ||
118 | atomic_inc_short(&msg->acknowledge_count); | 237 | return; |
119 | if (msg->number_of_cpus == msg->acknowledge_count) | ||
120 | uv_reply_to_message(sw_ack_slot, msg, msp); | ||
121 | } | 238 | } |
122 | 239 | ||
123 | /* | 240 | /* |
124 | * Examine the payload queue on one distribution node to see | 241 | * Determine the first cpu on a uvhub. |
125 | * which messages have not been seen, and which cpu(s) have not seen them. | 242 | */ |
243 | static int uvhub_to_first_cpu(int uvhub) | ||
244 | { | ||
245 | int cpu; | ||
246 | for_each_present_cpu(cpu) | ||
247 | if (uvhub == uv_cpu_to_blade_id(cpu)) | ||
248 | return cpu; | ||
249 | return -1; | ||
250 | } | ||
251 | |||
252 | /* | ||
253 | * Last resort when we get a large number of destination timeouts is | ||
254 | * to clear resources held by a given cpu. | ||
255 | * Do this with IPI so that all messages in the BAU message queue | ||
256 | * can be identified by their nonzero sw_ack_vector field. | ||
126 | * | 257 | * |
127 | * Returns the number of cpu's that have not responded. | 258 | * This is entered for a single cpu on the uvhub. |
259 | * The sender want's this uvhub to free a specific message's | ||
260 | * sw_ack resources. | ||
128 | */ | 261 | */ |
129 | static int uv_examine_destination(struct bau_control *bau_tablesp, int sender) | 262 | static void |
263 | uv_do_reset(void *ptr) | ||
130 | { | 264 | { |
131 | struct bau_payload_queue_entry *msg; | ||
132 | struct bau_msg_status *msp; | ||
133 | int count = 0; | ||
134 | int i; | 265 | int i; |
135 | int j; | 266 | int slot; |
267 | int count = 0; | ||
268 | unsigned long mmr; | ||
269 | unsigned long msg_res; | ||
270 | struct bau_control *bcp; | ||
271 | struct reset_args *rap; | ||
272 | struct bau_payload_queue_entry *msg; | ||
273 | struct ptc_stats *stat; | ||
136 | 274 | ||
137 | for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE; | 275 | bcp = &per_cpu(bau_control, smp_processor_id()); |
138 | msg++, i++) { | 276 | rap = (struct reset_args *)ptr; |
139 | if ((msg->sending_cpu == sender) && (!msg->replied_to)) { | 277 | stat = &per_cpu(ptcstats, bcp->cpu); |
140 | msp = bau_tablesp->msg_statuses + i; | 278 | stat->d_resets++; |
141 | printk(KERN_DEBUG | 279 | |
142 | "blade %d: address:%#lx %d of %d, not cpu(s): ", | 280 | /* |
143 | i, msg->address, msg->acknowledge_count, | 281 | * We're looking for the given sender, and |
144 | msg->number_of_cpus); | 282 | * will free its sw_ack resource. |
145 | for (j = 0; j < msg->number_of_cpus; j++) { | 283 | * If all cpu's finally responded after the timeout, its |
146 | if (!((1L << j) & msp->seen_by.bits)) { | 284 | * message 'replied_to' was set. |
147 | count++; | 285 | */ |
148 | printk("%d ", j); | 286 | for (msg = bcp->va_queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) { |
149 | } | 287 | /* uv_do_reset: same conditions for cancellation as |
288 | uv_bau_process_retry_msg() */ | ||
289 | if ((msg->replied_to == 0) && | ||
290 | (msg->canceled == 0) && | ||
291 | (msg->sending_cpu == rap->sender) && | ||
292 | (msg->sw_ack_vector) && | ||
293 | (msg->msg_type != MSG_NOOP)) { | ||
294 | /* | ||
295 | * make everyone else ignore this message | ||
296 | */ | ||
297 | msg->canceled = 1; | ||
298 | slot = msg - bcp->va_queue_first; | ||
299 | count++; | ||
300 | /* | ||
301 | * only reset the resource if it is still pending | ||
302 | */ | ||
303 | mmr = uv_read_local_mmr | ||
304 | (UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE); | ||
305 | msg_res = ((msg->sw_ack_vector << 8) | | ||
306 | msg->sw_ack_vector); | ||
307 | if (mmr & msg_res) { | ||
308 | stat->d_rcanceled++; | ||
309 | uv_write_local_mmr( | ||
310 | UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, | ||
311 | msg_res); | ||
150 | } | 312 | } |
151 | printk("\n"); | ||
152 | } | 313 | } |
153 | } | 314 | } |
154 | return count; | 315 | return; |
155 | } | 316 | } |
156 | 317 | ||
157 | /* | 318 | /* |
158 | * Examine the payload queue on all the distribution nodes to see | 319 | * Use IPI to get all target uvhubs to release resources held by |
159 | * which messages have not been seen, and which cpu(s) have not seen them. | 320 | * a given sending cpu number. |
160 | * | ||
161 | * Returns the number of cpu's that have not responded. | ||
162 | */ | 321 | */ |
163 | static int uv_examine_destinations(struct bau_target_nodemask *distribution) | 322 | static void uv_reset_with_ipi(struct bau_target_uvhubmask *distribution, |
323 | int sender) | ||
164 | { | 324 | { |
165 | int sender; | 325 | int uvhub; |
166 | int i; | 326 | int cpu; |
167 | int count = 0; | 327 | cpumask_t mask; |
328 | struct reset_args reset_args; | ||
329 | |||
330 | reset_args.sender = sender; | ||
168 | 331 | ||
169 | sender = smp_processor_id(); | 332 | cpus_clear(mask); |
170 | for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) { | 333 | /* find a single cpu for each uvhub in this distribution mask */ |
171 | if (!bau_node_isset(i, distribution)) | 334 | for (uvhub = 0; |
335 | uvhub < sizeof(struct bau_target_uvhubmask) * BITSPERBYTE; | ||
336 | uvhub++) { | ||
337 | if (!bau_uvhub_isset(uvhub, distribution)) | ||
172 | continue; | 338 | continue; |
173 | count += uv_examine_destination(uv_bau_table_bases[i], sender); | 339 | /* find a cpu for this uvhub */ |
340 | cpu = uvhub_to_first_cpu(uvhub); | ||
341 | cpu_set(cpu, mask); | ||
174 | } | 342 | } |
175 | return count; | 343 | /* IPI all cpus; Preemption is already disabled */ |
344 | smp_call_function_many(&mask, uv_do_reset, (void *)&reset_args, 1); | ||
345 | return; | ||
346 | } | ||
347 | |||
348 | static inline unsigned long | ||
349 | cycles_2_us(unsigned long long cyc) | ||
350 | { | ||
351 | unsigned long long ns; | ||
352 | unsigned long us; | ||
353 | ns = (cyc * per_cpu(cyc2ns, smp_processor_id())) | ||
354 | >> CYC2NS_SCALE_FACTOR; | ||
355 | us = ns / 1000; | ||
356 | return us; | ||
176 | } | 357 | } |
177 | 358 | ||
178 | /* | 359 | /* |
179 | * wait for completion of a broadcast message | 360 | * wait for all cpus on this hub to finish their sends and go quiet |
180 | * | 361 | * leaves uvhub_quiesce set so that no new broadcasts are started by |
181 | * return COMPLETE, RETRY or GIVEUP | 362 | * bau_flush_send_and_wait() |
363 | */ | ||
364 | static inline void | ||
365 | quiesce_local_uvhub(struct bau_control *hmaster) | ||
366 | { | ||
367 | atomic_add_short_return(1, (struct atomic_short *) | ||
368 | &hmaster->uvhub_quiesce); | ||
369 | } | ||
370 | |||
371 | /* | ||
372 | * mark this quiet-requestor as done | ||
373 | */ | ||
374 | static inline void | ||
375 | end_uvhub_quiesce(struct bau_control *hmaster) | ||
376 | { | ||
377 | atomic_add_short_return(-1, (struct atomic_short *) | ||
378 | &hmaster->uvhub_quiesce); | ||
379 | } | ||
380 | |||
381 | /* | ||
382 | * Wait for completion of a broadcast software ack message | ||
383 | * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP | ||
182 | */ | 384 | */ |
183 | static int uv_wait_completion(struct bau_desc *bau_desc, | 385 | static int uv_wait_completion(struct bau_desc *bau_desc, |
184 | unsigned long mmr_offset, int right_shift) | 386 | unsigned long mmr_offset, int right_shift, int this_cpu, |
387 | struct bau_control *bcp, struct bau_control *smaster, long try) | ||
185 | { | 388 | { |
186 | int exams = 0; | 389 | int relaxes = 0; |
187 | long destination_timeouts = 0; | ||
188 | long source_timeouts = 0; | ||
189 | unsigned long descriptor_status; | 390 | unsigned long descriptor_status; |
391 | unsigned long mmr; | ||
392 | unsigned long mask; | ||
393 | cycles_t ttime; | ||
394 | cycles_t timeout_time; | ||
395 | struct ptc_stats *stat = &per_cpu(ptcstats, this_cpu); | ||
396 | struct bau_control *hmaster; | ||
397 | |||
398 | hmaster = bcp->uvhub_master; | ||
399 | timeout_time = get_cycles() + bcp->timeout_interval; | ||
190 | 400 | ||
401 | /* spin on the status MMR, waiting for it to go idle */ | ||
191 | while ((descriptor_status = (((unsigned long) | 402 | while ((descriptor_status = (((unsigned long) |
192 | uv_read_local_mmr(mmr_offset) >> | 403 | uv_read_local_mmr(mmr_offset) >> |
193 | right_shift) & UV_ACT_STATUS_MASK)) != | 404 | right_shift) & UV_ACT_STATUS_MASK)) != |
194 | DESC_STATUS_IDLE) { | 405 | DESC_STATUS_IDLE) { |
195 | if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) { | ||
196 | source_timeouts++; | ||
197 | if (source_timeouts > SOURCE_TIMEOUT_LIMIT) | ||
198 | source_timeouts = 0; | ||
199 | __get_cpu_var(ptcstats).s_retry++; | ||
200 | return FLUSH_RETRY; | ||
201 | } | ||
202 | /* | 406 | /* |
203 | * spin here looking for progress at the destinations | 407 | * Our software ack messages may be blocked because there are |
408 | * no swack resources available. As long as none of them | ||
409 | * has timed out hardware will NACK our message and its | ||
410 | * state will stay IDLE. | ||
204 | */ | 411 | */ |
205 | if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) { | 412 | if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) { |
206 | destination_timeouts++; | 413 | stat->s_stimeout++; |
207 | if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) { | 414 | return FLUSH_GIVEUP; |
208 | /* | 415 | } else if (descriptor_status == |
209 | * returns number of cpus not responding | 416 | DESC_STATUS_DESTINATION_TIMEOUT) { |
210 | */ | 417 | stat->s_dtimeout++; |
211 | if (uv_examine_destinations | 418 | ttime = get_cycles(); |
212 | (&bau_desc->distribution) == 0) { | 419 | |
213 | __get_cpu_var(ptcstats).d_retry++; | 420 | /* |
214 | return FLUSH_RETRY; | 421 | * Our retries may be blocked by all destination |
215 | } | 422 | * swack resources being consumed, and a timeout |
216 | exams++; | 423 | * pending. In that case hardware returns the |
217 | if (exams >= uv_bau_retry_limit) { | 424 | * ERROR that looks like a destination timeout. |
218 | printk(KERN_DEBUG | 425 | */ |
219 | "uv_flush_tlb_others"); | 426 | if (cycles_2_us(ttime - bcp->send_message) < BIOS_TO) { |
220 | printk("giving up on cpu %d\n", | 427 | bcp->conseccompletes = 0; |
221 | smp_processor_id()); | 428 | return FLUSH_RETRY_PLUGGED; |
429 | } | ||
430 | |||
431 | bcp->conseccompletes = 0; | ||
432 | return FLUSH_RETRY_TIMEOUT; | ||
433 | } else { | ||
434 | /* | ||
435 | * descriptor_status is still BUSY | ||
436 | */ | ||
437 | cpu_relax(); | ||
438 | relaxes++; | ||
439 | if (relaxes >= 10000) { | ||
440 | relaxes = 0; | ||
441 | if (get_cycles() > timeout_time) { | ||
442 | quiesce_local_uvhub(hmaster); | ||
443 | |||
444 | /* single-thread the register change */ | ||
445 | spin_lock(&hmaster->masks_lock); | ||
446 | mmr = uv_read_local_mmr(mmr_offset); | ||
447 | mask = 0UL; | ||
448 | mask |= (3UL < right_shift); | ||
449 | mask = ~mask; | ||
450 | mmr &= mask; | ||
451 | uv_write_local_mmr(mmr_offset, mmr); | ||
452 | spin_unlock(&hmaster->masks_lock); | ||
453 | end_uvhub_quiesce(hmaster); | ||
454 | stat->s_busy++; | ||
222 | return FLUSH_GIVEUP; | 455 | return FLUSH_GIVEUP; |
223 | } | 456 | } |
224 | /* | ||
225 | * delays can hang the simulator | ||
226 | udelay(1000); | ||
227 | */ | ||
228 | destination_timeouts = 0; | ||
229 | } | 457 | } |
230 | } | 458 | } |
231 | cpu_relax(); | ||
232 | } | 459 | } |
460 | bcp->conseccompletes++; | ||
233 | return FLUSH_COMPLETE; | 461 | return FLUSH_COMPLETE; |
234 | } | 462 | } |
235 | 463 | ||
464 | static inline cycles_t | ||
465 | sec_2_cycles(unsigned long sec) | ||
466 | { | ||
467 | unsigned long ns; | ||
468 | cycles_t cyc; | ||
469 | |||
470 | ns = sec * 1000000000; | ||
471 | cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id())); | ||
472 | return cyc; | ||
473 | } | ||
474 | |||
475 | /* | ||
476 | * conditionally add 1 to *v, unless *v is >= u | ||
477 | * return 0 if we cannot add 1 to *v because it is >= u | ||
478 | * return 1 if we can add 1 to *v because it is < u | ||
479 | * the add is atomic | ||
480 | * | ||
481 | * This is close to atomic_add_unless(), but this allows the 'u' value | ||
482 | * to be lowered below the current 'v'. atomic_add_unless can only stop | ||
483 | * on equal. | ||
484 | */ | ||
485 | static inline int atomic_inc_unless_ge(spinlock_t *lock, atomic_t *v, int u) | ||
486 | { | ||
487 | spin_lock(lock); | ||
488 | if (atomic_read(v) >= u) { | ||
489 | spin_unlock(lock); | ||
490 | return 0; | ||
491 | } | ||
492 | atomic_inc(v); | ||
493 | spin_unlock(lock); | ||
494 | return 1; | ||
495 | } | ||
496 | |||
236 | /** | 497 | /** |
237 | * uv_flush_send_and_wait | 498 | * uv_flush_send_and_wait |
238 | * | 499 | * |
239 | * Send a broadcast and wait for a broadcast message to complete. | 500 | * Send a broadcast and wait for it to complete. |
240 | * | 501 | * |
241 | * The flush_mask contains the cpus the broadcast was sent to. | 502 | * The flush_mask contains the cpus the broadcast is to be sent to, plus |
503 | * cpus that are on the local uvhub. | ||
242 | * | 504 | * |
243 | * Returns NULL if all remote flushing was done. The mask is zeroed. | 505 | * Returns NULL if all flushing represented in the mask was done. The mask |
506 | * is zeroed. | ||
244 | * Returns @flush_mask if some remote flushing remains to be done. The | 507 | * Returns @flush_mask if some remote flushing remains to be done. The |
245 | * mask will have some bits still set. | 508 | * mask will have some bits still set, representing any cpus on the local |
509 | * uvhub (not current cpu) and any on remote uvhubs if the broadcast failed. | ||
246 | */ | 510 | */ |
247 | const struct cpumask *uv_flush_send_and_wait(int cpu, int this_pnode, | 511 | const struct cpumask *uv_flush_send_and_wait(struct bau_desc *bau_desc, |
248 | struct bau_desc *bau_desc, | 512 | struct cpumask *flush_mask, |
249 | struct cpumask *flush_mask) | 513 | struct bau_control *bcp) |
250 | { | 514 | { |
251 | int completion_status = 0; | ||
252 | int right_shift; | 515 | int right_shift; |
253 | int tries = 0; | 516 | int uvhub; |
254 | int pnode; | ||
255 | int bit; | 517 | int bit; |
518 | int completion_status = 0; | ||
519 | int seq_number = 0; | ||
520 | long try = 0; | ||
521 | int cpu = bcp->uvhub_cpu; | ||
522 | int this_cpu = bcp->cpu; | ||
523 | int this_uvhub = bcp->uvhub; | ||
256 | unsigned long mmr_offset; | 524 | unsigned long mmr_offset; |
257 | unsigned long index; | 525 | unsigned long index; |
258 | cycles_t time1; | 526 | cycles_t time1; |
259 | cycles_t time2; | 527 | cycles_t time2; |
528 | struct ptc_stats *stat = &per_cpu(ptcstats, bcp->cpu); | ||
529 | struct bau_control *smaster = bcp->socket_master; | ||
530 | struct bau_control *hmaster = bcp->uvhub_master; | ||
531 | |||
532 | /* | ||
533 | * Spin here while there are hmaster->max_concurrent or more active | ||
534 | * descriptors. This is the per-uvhub 'throttle'. | ||
535 | */ | ||
536 | if (!atomic_inc_unless_ge(&hmaster->uvhub_lock, | ||
537 | &hmaster->active_descriptor_count, | ||
538 | hmaster->max_concurrent)) { | ||
539 | stat->s_throttles++; | ||
540 | do { | ||
541 | cpu_relax(); | ||
542 | } while (!atomic_inc_unless_ge(&hmaster->uvhub_lock, | ||
543 | &hmaster->active_descriptor_count, | ||
544 | hmaster->max_concurrent)); | ||
545 | } | ||
546 | |||
547 | while (hmaster->uvhub_quiesce) | ||
548 | cpu_relax(); | ||
260 | 549 | ||
261 | if (cpu < UV_CPUS_PER_ACT_STATUS) { | 550 | if (cpu < UV_CPUS_PER_ACT_STATUS) { |
262 | mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0; | 551 | mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0; |
@@ -268,24 +557,108 @@ const struct cpumask *uv_flush_send_and_wait(int cpu, int this_pnode, | |||
268 | } | 557 | } |
269 | time1 = get_cycles(); | 558 | time1 = get_cycles(); |
270 | do { | 559 | do { |
271 | tries++; | 560 | /* |
561 | * Every message from any given cpu gets a unique message | ||
562 | * sequence number. But retries use that same number. | ||
563 | * Our message may have timed out at the destination because | ||
564 | * all sw-ack resources are in use and there is a timeout | ||
565 | * pending there. In that case, our last send never got | ||
566 | * placed into the queue and we need to persist until it | ||
567 | * does. | ||
568 | * | ||
569 | * Make any retry a type MSG_RETRY so that the destination will | ||
570 | * free any resource held by a previous message from this cpu. | ||
571 | */ | ||
572 | if (try == 0) { | ||
573 | /* use message type set by the caller the first time */ | ||
574 | seq_number = bcp->message_number++; | ||
575 | } else { | ||
576 | /* use RETRY type on all the rest; same sequence */ | ||
577 | bau_desc->header.msg_type = MSG_RETRY; | ||
578 | stat->s_retry_messages++; | ||
579 | } | ||
580 | bau_desc->header.sequence = seq_number; | ||
272 | index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) | | 581 | index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) | |
273 | cpu; | 582 | bcp->uvhub_cpu; |
583 | bcp->send_message = get_cycles(); | ||
584 | |||
274 | uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index); | 585 | uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index); |
586 | |||
587 | try++; | ||
275 | completion_status = uv_wait_completion(bau_desc, mmr_offset, | 588 | completion_status = uv_wait_completion(bau_desc, mmr_offset, |
276 | right_shift); | 589 | right_shift, this_cpu, bcp, smaster, try); |
277 | } while (completion_status == FLUSH_RETRY); | 590 | |
591 | if (completion_status == FLUSH_RETRY_PLUGGED) { | ||
592 | /* | ||
593 | * Our retries may be blocked by all destination swack | ||
594 | * resources being consumed, and a timeout pending. In | ||
595 | * that case hardware immediately returns the ERROR | ||
596 | * that looks like a destination timeout. | ||
597 | */ | ||
598 | udelay(TIMEOUT_DELAY); | ||
599 | bcp->plugged_tries++; | ||
600 | if (bcp->plugged_tries >= PLUGSB4RESET) { | ||
601 | bcp->plugged_tries = 0; | ||
602 | quiesce_local_uvhub(hmaster); | ||
603 | spin_lock(&hmaster->queue_lock); | ||
604 | uv_reset_with_ipi(&bau_desc->distribution, | ||
605 | this_cpu); | ||
606 | spin_unlock(&hmaster->queue_lock); | ||
607 | end_uvhub_quiesce(hmaster); | ||
608 | bcp->ipi_attempts++; | ||
609 | stat->s_resets_plug++; | ||
610 | } | ||
611 | } else if (completion_status == FLUSH_RETRY_TIMEOUT) { | ||
612 | hmaster->max_concurrent = 1; | ||
613 | bcp->timeout_tries++; | ||
614 | udelay(TIMEOUT_DELAY); | ||
615 | if (bcp->timeout_tries >= TIMEOUTSB4RESET) { | ||
616 | bcp->timeout_tries = 0; | ||
617 | quiesce_local_uvhub(hmaster); | ||
618 | spin_lock(&hmaster->queue_lock); | ||
619 | uv_reset_with_ipi(&bau_desc->distribution, | ||
620 | this_cpu); | ||
621 | spin_unlock(&hmaster->queue_lock); | ||
622 | end_uvhub_quiesce(hmaster); | ||
623 | bcp->ipi_attempts++; | ||
624 | stat->s_resets_timeout++; | ||
625 | } | ||
626 | } | ||
627 | if (bcp->ipi_attempts >= 3) { | ||
628 | bcp->ipi_attempts = 0; | ||
629 | completion_status = FLUSH_GIVEUP; | ||
630 | break; | ||
631 | } | ||
632 | cpu_relax(); | ||
633 | } while ((completion_status == FLUSH_RETRY_PLUGGED) || | ||
634 | (completion_status == FLUSH_RETRY_TIMEOUT)); | ||
278 | time2 = get_cycles(); | 635 | time2 = get_cycles(); |
279 | __get_cpu_var(ptcstats).sflush += (time2 - time1); | ||
280 | if (tries > 1) | ||
281 | __get_cpu_var(ptcstats).retriesok++; | ||
282 | 636 | ||
283 | if (completion_status == FLUSH_GIVEUP) { | 637 | if ((completion_status == FLUSH_COMPLETE) && (bcp->conseccompletes > 5) |
638 | && (hmaster->max_concurrent < hmaster->max_concurrent_constant)) | ||
639 | hmaster->max_concurrent++; | ||
640 | |||
641 | /* | ||
642 | * hold any cpu not timing out here; no other cpu currently held by | ||
643 | * the 'throttle' should enter the activation code | ||
644 | */ | ||
645 | while (hmaster->uvhub_quiesce) | ||
646 | cpu_relax(); | ||
647 | atomic_dec(&hmaster->active_descriptor_count); | ||
648 | |||
649 | /* guard against cycles wrap */ | ||
650 | if (time2 > time1) | ||
651 | stat->s_time += (time2 - time1); | ||
652 | else | ||
653 | stat->s_requestor--; /* don't count this one */ | ||
654 | if (completion_status == FLUSH_COMPLETE && try > 1) | ||
655 | stat->s_retriesok++; | ||
656 | else if (completion_status == FLUSH_GIVEUP) { | ||
284 | /* | 657 | /* |
285 | * Cause the caller to do an IPI-style TLB shootdown on | 658 | * Cause the caller to do an IPI-style TLB shootdown on |
286 | * the cpu's, all of which are still in the mask. | 659 | * the target cpu's, all of which are still in the mask. |
287 | */ | 660 | */ |
288 | __get_cpu_var(ptcstats).ptc_i++; | 661 | stat->s_giveup++; |
289 | return flush_mask; | 662 | return flush_mask; |
290 | } | 663 | } |
291 | 664 | ||
@@ -294,18 +667,17 @@ const struct cpumask *uv_flush_send_and_wait(int cpu, int this_pnode, | |||
294 | * use the IPI method of shootdown on them. | 667 | * use the IPI method of shootdown on them. |
295 | */ | 668 | */ |
296 | for_each_cpu(bit, flush_mask) { | 669 | for_each_cpu(bit, flush_mask) { |
297 | pnode = uv_cpu_to_pnode(bit); | 670 | uvhub = uv_cpu_to_blade_id(bit); |
298 | if (pnode == this_pnode) | 671 | if (uvhub == this_uvhub) |
299 | continue; | 672 | continue; |
300 | cpumask_clear_cpu(bit, flush_mask); | 673 | cpumask_clear_cpu(bit, flush_mask); |
301 | } | 674 | } |
302 | if (!cpumask_empty(flush_mask)) | 675 | if (!cpumask_empty(flush_mask)) |
303 | return flush_mask; | 676 | return flush_mask; |
677 | |||
304 | return NULL; | 678 | return NULL; |
305 | } | 679 | } |
306 | 680 | ||
307 | static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask); | ||
308 | |||
309 | /** | 681 | /** |
310 | * uv_flush_tlb_others - globally purge translation cache of a virtual | 682 | * uv_flush_tlb_others - globally purge translation cache of a virtual |
311 | * address or all TLB's | 683 | * address or all TLB's |
@@ -322,8 +694,8 @@ static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask); | |||
322 | * The caller has derived the cpumask from the mm_struct. This function | 694 | * The caller has derived the cpumask from the mm_struct. This function |
323 | * is called only if there are bits set in the mask. (e.g. flush_tlb_page()) | 695 | * is called only if there are bits set in the mask. (e.g. flush_tlb_page()) |
324 | * | 696 | * |
325 | * The cpumask is converted into a nodemask of the nodes containing | 697 | * The cpumask is converted into a uvhubmask of the uvhubs containing |
326 | * the cpus. | 698 | * those cpus. |
327 | * | 699 | * |
328 | * Note that this function should be called with preemption disabled. | 700 | * Note that this function should be called with preemption disabled. |
329 | * | 701 | * |
@@ -335,52 +707,82 @@ const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask, | |||
335 | struct mm_struct *mm, | 707 | struct mm_struct *mm, |
336 | unsigned long va, unsigned int cpu) | 708 | unsigned long va, unsigned int cpu) |
337 | { | 709 | { |
338 | struct cpumask *flush_mask = __get_cpu_var(uv_flush_tlb_mask); | 710 | int remotes; |
339 | int i; | 711 | int tcpu; |
340 | int bit; | 712 | int uvhub; |
341 | int pnode; | ||
342 | int uv_cpu; | ||
343 | int this_pnode; | ||
344 | int locals = 0; | 713 | int locals = 0; |
345 | struct bau_desc *bau_desc; | 714 | struct bau_desc *bau_desc; |
715 | struct cpumask *flush_mask; | ||
716 | struct ptc_stats *stat; | ||
717 | struct bau_control *bcp; | ||
346 | 718 | ||
347 | cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu)); | 719 | if (nobau) |
720 | return cpumask; | ||
348 | 721 | ||
349 | uv_cpu = uv_blade_processor_id(); | 722 | bcp = &per_cpu(bau_control, cpu); |
350 | this_pnode = uv_hub_info->pnode; | 723 | /* |
351 | bau_desc = __get_cpu_var(bau_control).descriptor_base; | 724 | * Each sending cpu has a per-cpu mask which it fills from the caller's |
352 | bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu; | 725 | * cpu mask. Only remote cpus are converted to uvhubs and copied. |
726 | */ | ||
727 | flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu); | ||
728 | /* | ||
729 | * copy cpumask to flush_mask, removing current cpu | ||
730 | * (current cpu should already have been flushed by the caller and | ||
731 | * should never be returned if we return flush_mask) | ||
732 | */ | ||
733 | cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu)); | ||
734 | if (cpu_isset(cpu, *cpumask)) | ||
735 | locals++; /* current cpu was targeted */ | ||
353 | 736 | ||
354 | bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE); | 737 | bau_desc = bcp->descriptor_base; |
738 | bau_desc += UV_ITEMS_PER_DESCRIPTOR * bcp->uvhub_cpu; | ||
355 | 739 | ||
356 | i = 0; | 740 | bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE); |
357 | for_each_cpu(bit, flush_mask) { | 741 | remotes = 0; |
358 | pnode = uv_cpu_to_pnode(bit); | 742 | for_each_cpu(tcpu, flush_mask) { |
359 | BUG_ON(pnode > (UV_DISTRIBUTION_SIZE - 1)); | 743 | uvhub = uv_cpu_to_blade_id(tcpu); |
360 | if (pnode == this_pnode) { | 744 | if (uvhub == bcp->uvhub) { |
361 | locals++; | 745 | locals++; |
362 | continue; | 746 | continue; |
363 | } | 747 | } |
364 | bau_node_set(pnode - uv_partition_base_pnode, | 748 | bau_uvhub_set(uvhub, &bau_desc->distribution); |
365 | &bau_desc->distribution); | 749 | remotes++; |
366 | i++; | ||
367 | } | 750 | } |
368 | if (i == 0) { | 751 | if (remotes == 0) { |
369 | /* | 752 | /* |
370 | * no off_node flushing; return status for local node | 753 | * No off_hub flushing; return status for local hub. |
754 | * Return the caller's mask if all were local (the current | ||
755 | * cpu may be in that mask). | ||
371 | */ | 756 | */ |
372 | if (locals) | 757 | if (locals) |
373 | return flush_mask; | 758 | return cpumask; |
374 | else | 759 | else |
375 | return NULL; | 760 | return NULL; |
376 | } | 761 | } |
377 | __get_cpu_var(ptcstats).requestor++; | 762 | stat = &per_cpu(ptcstats, cpu); |
378 | __get_cpu_var(ptcstats).ntargeted += i; | 763 | stat->s_requestor++; |
764 | stat->s_ntargcpu += remotes; | ||
765 | remotes = bau_uvhub_weight(&bau_desc->distribution); | ||
766 | stat->s_ntarguvhub += remotes; | ||
767 | if (remotes >= 16) | ||
768 | stat->s_ntarguvhub16++; | ||
769 | else if (remotes >= 8) | ||
770 | stat->s_ntarguvhub8++; | ||
771 | else if (remotes >= 4) | ||
772 | stat->s_ntarguvhub4++; | ||
773 | else if (remotes >= 2) | ||
774 | stat->s_ntarguvhub2++; | ||
775 | else | ||
776 | stat->s_ntarguvhub1++; | ||
379 | 777 | ||
380 | bau_desc->payload.address = va; | 778 | bau_desc->payload.address = va; |
381 | bau_desc->payload.sending_cpu = cpu; | 779 | bau_desc->payload.sending_cpu = cpu; |
382 | 780 | ||
383 | return uv_flush_send_and_wait(uv_cpu, this_pnode, bau_desc, flush_mask); | 781 | /* |
782 | * uv_flush_send_and_wait returns null if all cpu's were messaged, or | ||
783 | * the adjusted flush_mask if any cpu's were not messaged. | ||
784 | */ | ||
785 | return uv_flush_send_and_wait(bau_desc, flush_mask, bcp); | ||
384 | } | 786 | } |
385 | 787 | ||
386 | /* | 788 | /* |
@@ -389,87 +791,70 @@ const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask, | |||
389 | * | 791 | * |
390 | * We received a broadcast assist message. | 792 | * We received a broadcast assist message. |
391 | * | 793 | * |
392 | * Interrupts may have been disabled; this interrupt could represent | 794 | * Interrupts are disabled; this interrupt could represent |
393 | * the receipt of several messages. | 795 | * the receipt of several messages. |
394 | * | 796 | * |
395 | * All cores/threads on this node get this interrupt. | 797 | * All cores/threads on this hub get this interrupt. |
396 | * The last one to see it does the s/w ack. | 798 | * The last one to see it does the software ack. |
397 | * (the resource will not be freed until noninterruptable cpus see this | 799 | * (the resource will not be freed until noninterruptable cpus see this |
398 | * interrupt; hardware will timeout the s/w ack and reply ERROR) | 800 | * interrupt; hardware may timeout the s/w ack and reply ERROR) |
399 | */ | 801 | */ |
400 | void uv_bau_message_interrupt(struct pt_regs *regs) | 802 | void uv_bau_message_interrupt(struct pt_regs *regs) |
401 | { | 803 | { |
402 | struct bau_payload_queue_entry *va_queue_first; | ||
403 | struct bau_payload_queue_entry *va_queue_last; | ||
404 | struct bau_payload_queue_entry *msg; | ||
405 | struct pt_regs *old_regs = set_irq_regs(regs); | ||
406 | cycles_t time1; | ||
407 | cycles_t time2; | ||
408 | int msg_slot; | ||
409 | int sw_ack_slot; | ||
410 | int fw; | ||
411 | int count = 0; | 804 | int count = 0; |
412 | unsigned long local_pnode; | 805 | cycles_t time_start; |
413 | 806 | struct bau_payload_queue_entry *msg; | |
414 | ack_APIC_irq(); | 807 | struct bau_control *bcp; |
415 | exit_idle(); | 808 | struct ptc_stats *stat; |
416 | irq_enter(); | 809 | struct msg_desc msgdesc; |
417 | 810 | ||
418 | time1 = get_cycles(); | 811 | time_start = get_cycles(); |
419 | 812 | bcp = &per_cpu(bau_control, smp_processor_id()); | |
420 | local_pnode = uv_blade_to_pnode(uv_numa_blade_id()); | 813 | stat = &per_cpu(ptcstats, smp_processor_id()); |
421 | 814 | msgdesc.va_queue_first = bcp->va_queue_first; | |
422 | va_queue_first = __get_cpu_var(bau_control).va_queue_first; | 815 | msgdesc.va_queue_last = bcp->va_queue_last; |
423 | va_queue_last = __get_cpu_var(bau_control).va_queue_last; | 816 | msg = bcp->bau_msg_head; |
424 | |||
425 | msg = __get_cpu_var(bau_control).bau_msg_head; | ||
426 | while (msg->sw_ack_vector) { | 817 | while (msg->sw_ack_vector) { |
427 | count++; | 818 | count++; |
428 | fw = msg->sw_ack_vector; | 819 | msgdesc.msg_slot = msg - msgdesc.va_queue_first; |
429 | msg_slot = msg - va_queue_first; | 820 | msgdesc.sw_ack_slot = ffs(msg->sw_ack_vector) - 1; |
430 | sw_ack_slot = ffs(fw) - 1; | 821 | msgdesc.msg = msg; |
431 | 822 | uv_bau_process_message(&msgdesc, bcp); | |
432 | uv_bau_process_message(msg, msg_slot, sw_ack_slot); | ||
433 | |||
434 | msg++; | 823 | msg++; |
435 | if (msg > va_queue_last) | 824 | if (msg > msgdesc.va_queue_last) |
436 | msg = va_queue_first; | 825 | msg = msgdesc.va_queue_first; |
437 | __get_cpu_var(bau_control).bau_msg_head = msg; | 826 | bcp->bau_msg_head = msg; |
438 | } | 827 | } |
828 | stat->d_time += (get_cycles() - time_start); | ||
439 | if (!count) | 829 | if (!count) |
440 | __get_cpu_var(ptcstats).nomsg++; | 830 | stat->d_nomsg++; |
441 | else if (count > 1) | 831 | else if (count > 1) |
442 | __get_cpu_var(ptcstats).multmsg++; | 832 | stat->d_multmsg++; |
443 | 833 | ack_APIC_irq(); | |
444 | time2 = get_cycles(); | ||
445 | __get_cpu_var(ptcstats).dflush += (time2 - time1); | ||
446 | |||
447 | irq_exit(); | ||
448 | set_irq_regs(old_regs); | ||
449 | } | 834 | } |
450 | 835 | ||
451 | /* | 836 | /* |
452 | * uv_enable_timeouts | 837 | * uv_enable_timeouts |
453 | * | 838 | * |
454 | * Each target blade (i.e. blades that have cpu's) needs to have | 839 | * Each target uvhub (i.e. a uvhub that has no cpu's) needs to have |
455 | * shootdown message timeouts enabled. The timeout does not cause | 840 | * shootdown message timeouts enabled. The timeout does not cause |
456 | * an interrupt, but causes an error message to be returned to | 841 | * an interrupt, but causes an error message to be returned to |
457 | * the sender. | 842 | * the sender. |
458 | */ | 843 | */ |
459 | static void uv_enable_timeouts(void) | 844 | static void uv_enable_timeouts(void) |
460 | { | 845 | { |
461 | int blade; | 846 | int uvhub; |
462 | int nblades; | 847 | int nuvhubs; |
463 | int pnode; | 848 | int pnode; |
464 | unsigned long mmr_image; | 849 | unsigned long mmr_image; |
465 | 850 | ||
466 | nblades = uv_num_possible_blades(); | 851 | nuvhubs = uv_num_possible_blades(); |
467 | 852 | ||
468 | for (blade = 0; blade < nblades; blade++) { | 853 | for (uvhub = 0; uvhub < nuvhubs; uvhub++) { |
469 | if (!uv_blade_nr_possible_cpus(blade)) | 854 | if (!uv_blade_nr_possible_cpus(uvhub)) |
470 | continue; | 855 | continue; |
471 | 856 | ||
472 | pnode = uv_blade_to_pnode(blade); | 857 | pnode = uv_blade_to_pnode(uvhub); |
473 | mmr_image = | 858 | mmr_image = |
474 | uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL); | 859 | uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL); |
475 | /* | 860 | /* |
@@ -479,16 +864,16 @@ static void uv_enable_timeouts(void) | |||
479 | * To program the period, the SOFT_ACK_MODE must be off. | 864 | * To program the period, the SOFT_ACK_MODE must be off. |
480 | */ | 865 | */ |
481 | mmr_image &= ~((unsigned long)1 << | 866 | mmr_image &= ~((unsigned long)1 << |
482 | UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT); | 867 | UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT); |
483 | uv_write_global_mmr64 | 868 | uv_write_global_mmr64 |
484 | (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image); | 869 | (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image); |
485 | /* | 870 | /* |
486 | * Set the 4-bit period. | 871 | * Set the 4-bit period. |
487 | */ | 872 | */ |
488 | mmr_image &= ~((unsigned long)0xf << | 873 | mmr_image &= ~((unsigned long)0xf << |
489 | UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT); | 874 | UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT); |
490 | mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD << | 875 | mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD << |
491 | UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT); | 876 | UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT); |
492 | uv_write_global_mmr64 | 877 | uv_write_global_mmr64 |
493 | (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image); | 878 | (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image); |
494 | /* | 879 | /* |
@@ -497,7 +882,7 @@ static void uv_enable_timeouts(void) | |||
497 | * indicated in bits 2:0 (7 causes all of them to timeout). | 882 | * indicated in bits 2:0 (7 causes all of them to timeout). |
498 | */ | 883 | */ |
499 | mmr_image |= ((unsigned long)1 << | 884 | mmr_image |= ((unsigned long)1 << |
500 | UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT); | 885 | UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT); |
501 | uv_write_global_mmr64 | 886 | uv_write_global_mmr64 |
502 | (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image); | 887 | (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image); |
503 | } | 888 | } |
@@ -522,9 +907,20 @@ static void uv_ptc_seq_stop(struct seq_file *file, void *data) | |||
522 | { | 907 | { |
523 | } | 908 | } |
524 | 909 | ||
910 | static inline unsigned long long | ||
911 | millisec_2_cycles(unsigned long millisec) | ||
912 | { | ||
913 | unsigned long ns; | ||
914 | unsigned long long cyc; | ||
915 | |||
916 | ns = millisec * 1000; | ||
917 | cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id())); | ||
918 | return cyc; | ||
919 | } | ||
920 | |||
525 | /* | 921 | /* |
526 | * Display the statistics thru /proc | 922 | * Display the statistics thru /proc. |
527 | * data points to the cpu number | 923 | * 'data' points to the cpu number |
528 | */ | 924 | */ |
529 | static int uv_ptc_seq_show(struct seq_file *file, void *data) | 925 | static int uv_ptc_seq_show(struct seq_file *file, void *data) |
530 | { | 926 | { |
@@ -535,78 +931,155 @@ static int uv_ptc_seq_show(struct seq_file *file, void *data) | |||
535 | 931 | ||
536 | if (!cpu) { | 932 | if (!cpu) { |
537 | seq_printf(file, | 933 | seq_printf(file, |
538 | "# cpu requestor requestee one all sretry dretry ptc_i "); | 934 | "# cpu sent stime numuvhubs numuvhubs16 numuvhubs8 "); |
539 | seq_printf(file, | 935 | seq_printf(file, |
540 | "sw_ack sflush dflush sok dnomsg dmult starget\n"); | 936 | "numuvhubs4 numuvhubs2 numuvhubs1 numcpus dto "); |
937 | seq_printf(file, | ||
938 | "retries rok resetp resett giveup sto bz throt "); | ||
939 | seq_printf(file, | ||
940 | "sw_ack recv rtime all "); | ||
941 | seq_printf(file, | ||
942 | "one mult none retry canc nocan reset rcan\n"); | ||
541 | } | 943 | } |
542 | if (cpu < num_possible_cpus() && cpu_online(cpu)) { | 944 | if (cpu < num_possible_cpus() && cpu_online(cpu)) { |
543 | stat = &per_cpu(ptcstats, cpu); | 945 | stat = &per_cpu(ptcstats, cpu); |
544 | seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ", | 946 | /* source side statistics */ |
545 | cpu, stat->requestor, | 947 | seq_printf(file, |
546 | stat->requestee, stat->onetlb, stat->alltlb, | 948 | "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ", |
547 | stat->s_retry, stat->d_retry, stat->ptc_i); | 949 | cpu, stat->s_requestor, cycles_2_us(stat->s_time), |
548 | seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n", | 950 | stat->s_ntarguvhub, stat->s_ntarguvhub16, |
951 | stat->s_ntarguvhub8, stat->s_ntarguvhub4, | ||
952 | stat->s_ntarguvhub2, stat->s_ntarguvhub1, | ||
953 | stat->s_ntargcpu, stat->s_dtimeout); | ||
954 | seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ", | ||
955 | stat->s_retry_messages, stat->s_retriesok, | ||
956 | stat->s_resets_plug, stat->s_resets_timeout, | ||
957 | stat->s_giveup, stat->s_stimeout, | ||
958 | stat->s_busy, stat->s_throttles); | ||
959 | /* destination side statistics */ | ||
960 | seq_printf(file, | ||
961 | "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", | ||
549 | uv_read_global_mmr64(uv_cpu_to_pnode(cpu), | 962 | uv_read_global_mmr64(uv_cpu_to_pnode(cpu), |
550 | UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE), | 963 | UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE), |
551 | stat->sflush, stat->dflush, | 964 | stat->d_requestee, cycles_2_us(stat->d_time), |
552 | stat->retriesok, stat->nomsg, | 965 | stat->d_alltlb, stat->d_onetlb, stat->d_multmsg, |
553 | stat->multmsg, stat->ntargeted); | 966 | stat->d_nomsg, stat->d_retries, stat->d_canceled, |
967 | stat->d_nocanceled, stat->d_resets, | ||
968 | stat->d_rcanceled); | ||
554 | } | 969 | } |
555 | 970 | ||
556 | return 0; | 971 | return 0; |
557 | } | 972 | } |
558 | 973 | ||
559 | /* | 974 | /* |
975 | * -1: resetf the statistics | ||
560 | * 0: display meaning of the statistics | 976 | * 0: display meaning of the statistics |
561 | * >0: retry limit | 977 | * >0: maximum concurrent active descriptors per uvhub (throttle) |
562 | */ | 978 | */ |
563 | static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user, | 979 | static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user, |
564 | size_t count, loff_t *data) | 980 | size_t count, loff_t *data) |
565 | { | 981 | { |
566 | long newmode; | 982 | int cpu; |
983 | long input_arg; | ||
567 | char optstr[64]; | 984 | char optstr[64]; |
985 | struct ptc_stats *stat; | ||
986 | struct bau_control *bcp; | ||
568 | 987 | ||
569 | if (count == 0 || count > sizeof(optstr)) | 988 | if (count == 0 || count > sizeof(optstr)) |
570 | return -EINVAL; | 989 | return -EINVAL; |
571 | if (copy_from_user(optstr, user, count)) | 990 | if (copy_from_user(optstr, user, count)) |
572 | return -EFAULT; | 991 | return -EFAULT; |
573 | optstr[count - 1] = '\0'; | 992 | optstr[count - 1] = '\0'; |
574 | if (strict_strtoul(optstr, 10, &newmode) < 0) { | 993 | if (strict_strtol(optstr, 10, &input_arg) < 0) { |
575 | printk(KERN_DEBUG "%s is invalid\n", optstr); | 994 | printk(KERN_DEBUG "%s is invalid\n", optstr); |
576 | return -EINVAL; | 995 | return -EINVAL; |
577 | } | 996 | } |
578 | 997 | ||
579 | if (newmode == 0) { | 998 | if (input_arg == 0) { |
580 | printk(KERN_DEBUG "# cpu: cpu number\n"); | 999 | printk(KERN_DEBUG "# cpu: cpu number\n"); |
1000 | printk(KERN_DEBUG "Sender statistics:\n"); | ||
1001 | printk(KERN_DEBUG | ||
1002 | "sent: number of shootdown messages sent\n"); | ||
1003 | printk(KERN_DEBUG | ||
1004 | "stime: time spent sending messages\n"); | ||
1005 | printk(KERN_DEBUG | ||
1006 | "numuvhubs: number of hubs targeted with shootdown\n"); | ||
1007 | printk(KERN_DEBUG | ||
1008 | "numuvhubs16: number times 16 or more hubs targeted\n"); | ||
1009 | printk(KERN_DEBUG | ||
1010 | "numuvhubs8: number times 8 or more hubs targeted\n"); | ||
1011 | printk(KERN_DEBUG | ||
1012 | "numuvhubs4: number times 4 or more hubs targeted\n"); | ||
1013 | printk(KERN_DEBUG | ||
1014 | "numuvhubs2: number times 2 or more hubs targeted\n"); | ||
1015 | printk(KERN_DEBUG | ||
1016 | "numuvhubs1: number times 1 hub targeted\n"); | ||
1017 | printk(KERN_DEBUG | ||
1018 | "numcpus: number of cpus targeted with shootdown\n"); | ||
1019 | printk(KERN_DEBUG | ||
1020 | "dto: number of destination timeouts\n"); | ||
1021 | printk(KERN_DEBUG | ||
1022 | "retries: destination timeout retries sent\n"); | ||
1023 | printk(KERN_DEBUG | ||
1024 | "rok: : destination timeouts successfully retried\n"); | ||
1025 | printk(KERN_DEBUG | ||
1026 | "resetp: ipi-style resource resets for plugs\n"); | ||
1027 | printk(KERN_DEBUG | ||
1028 | "resett: ipi-style resource resets for timeouts\n"); | ||
1029 | printk(KERN_DEBUG | ||
1030 | "giveup: fall-backs to ipi-style shootdowns\n"); | ||
1031 | printk(KERN_DEBUG | ||
1032 | "sto: number of source timeouts\n"); | ||
1033 | printk(KERN_DEBUG | ||
1034 | "bz: number of stay-busy's\n"); | ||
1035 | printk(KERN_DEBUG | ||
1036 | "throt: number times spun in throttle\n"); | ||
1037 | printk(KERN_DEBUG "Destination side statistics:\n"); | ||
581 | printk(KERN_DEBUG | 1038 | printk(KERN_DEBUG |
582 | "requestor: times this cpu was the flush requestor\n"); | 1039 | "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n"); |
583 | printk(KERN_DEBUG | 1040 | printk(KERN_DEBUG |
584 | "requestee: times this cpu was requested to flush its TLBs\n"); | 1041 | "recv: shootdown messages received\n"); |
585 | printk(KERN_DEBUG | 1042 | printk(KERN_DEBUG |
586 | "one: times requested to flush a single address\n"); | 1043 | "rtime: time spent processing messages\n"); |
587 | printk(KERN_DEBUG | 1044 | printk(KERN_DEBUG |
588 | "all: times requested to flush all TLB's\n"); | 1045 | "all: shootdown all-tlb messages\n"); |
589 | printk(KERN_DEBUG | 1046 | printk(KERN_DEBUG |
590 | "sretry: number of retries of source-side timeouts\n"); | 1047 | "one: shootdown one-tlb messages\n"); |
591 | printk(KERN_DEBUG | 1048 | printk(KERN_DEBUG |
592 | "dretry: number of retries of destination-side timeouts\n"); | 1049 | "mult: interrupts that found multiple messages\n"); |
593 | printk(KERN_DEBUG | 1050 | printk(KERN_DEBUG |
594 | "ptc_i: times UV fell through to IPI-style flushes\n"); | 1051 | "none: interrupts that found no messages\n"); |
595 | printk(KERN_DEBUG | 1052 | printk(KERN_DEBUG |
596 | "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n"); | 1053 | "retry: number of retry messages processed\n"); |
597 | printk(KERN_DEBUG | 1054 | printk(KERN_DEBUG |
598 | "sflush_us: cycles spent in uv_flush_tlb_others()\n"); | 1055 | "canc: number messages canceled by retries\n"); |
599 | printk(KERN_DEBUG | 1056 | printk(KERN_DEBUG |
600 | "dflush_us: cycles spent in handling flush requests\n"); | 1057 | "nocan: number retries that found nothing to cancel\n"); |
601 | printk(KERN_DEBUG "sok: successes on retry\n"); | ||
602 | printk(KERN_DEBUG "dnomsg: interrupts with no message\n"); | ||
603 | printk(KERN_DEBUG | 1058 | printk(KERN_DEBUG |
604 | "dmult: interrupts with multiple messages\n"); | 1059 | "reset: number of ipi-style reset requests processed\n"); |
605 | printk(KERN_DEBUG "starget: nodes targeted\n"); | 1060 | printk(KERN_DEBUG |
1061 | "rcan: number messages canceled by reset requests\n"); | ||
1062 | } else if (input_arg == -1) { | ||
1063 | for_each_present_cpu(cpu) { | ||
1064 | stat = &per_cpu(ptcstats, cpu); | ||
1065 | memset(stat, 0, sizeof(struct ptc_stats)); | ||
1066 | } | ||
606 | } else { | 1067 | } else { |
607 | uv_bau_retry_limit = newmode; | 1068 | uv_bau_max_concurrent = input_arg; |
608 | printk(KERN_DEBUG "timeout retry limit:%d\n", | 1069 | bcp = &per_cpu(bau_control, smp_processor_id()); |
609 | uv_bau_retry_limit); | 1070 | if (uv_bau_max_concurrent < 1 || |
1071 | uv_bau_max_concurrent > bcp->cpus_in_uvhub) { | ||
1072 | printk(KERN_DEBUG | ||
1073 | "Error: BAU max concurrent %d; %d is invalid\n", | ||
1074 | bcp->max_concurrent, uv_bau_max_concurrent); | ||
1075 | return -EINVAL; | ||
1076 | } | ||
1077 | printk(KERN_DEBUG "Set BAU max concurrent:%d\n", | ||
1078 | uv_bau_max_concurrent); | ||
1079 | for_each_present_cpu(cpu) { | ||
1080 | bcp = &per_cpu(bau_control, cpu); | ||
1081 | bcp->max_concurrent = uv_bau_max_concurrent; | ||
1082 | } | ||
610 | } | 1083 | } |
611 | 1084 | ||
612 | return count; | 1085 | return count; |
@@ -650,79 +1123,30 @@ static int __init uv_ptc_init(void) | |||
650 | } | 1123 | } |
651 | 1124 | ||
652 | /* | 1125 | /* |
653 | * begin the initialization of the per-blade control structures | ||
654 | */ | ||
655 | static struct bau_control * __init uv_table_bases_init(int blade, int node) | ||
656 | { | ||
657 | int i; | ||
658 | struct bau_msg_status *msp; | ||
659 | struct bau_control *bau_tabp; | ||
660 | |||
661 | bau_tabp = | ||
662 | kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node); | ||
663 | BUG_ON(!bau_tabp); | ||
664 | |||
665 | bau_tabp->msg_statuses = | ||
666 | kmalloc_node(sizeof(struct bau_msg_status) * | ||
667 | DEST_Q_SIZE, GFP_KERNEL, node); | ||
668 | BUG_ON(!bau_tabp->msg_statuses); | ||
669 | |||
670 | for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++) | ||
671 | bau_cpubits_clear(&msp->seen_by, (int) | ||
672 | uv_blade_nr_possible_cpus(blade)); | ||
673 | |||
674 | uv_bau_table_bases[blade] = bau_tabp; | ||
675 | |||
676 | return bau_tabp; | ||
677 | } | ||
678 | |||
679 | /* | ||
680 | * finish the initialization of the per-blade control structures | ||
681 | */ | ||
682 | static void __init | ||
683 | uv_table_bases_finish(int blade, | ||
684 | struct bau_control *bau_tablesp, | ||
685 | struct bau_desc *adp) | ||
686 | { | ||
687 | struct bau_control *bcp; | ||
688 | int cpu; | ||
689 | |||
690 | for_each_present_cpu(cpu) { | ||
691 | if (blade != uv_cpu_to_blade_id(cpu)) | ||
692 | continue; | ||
693 | |||
694 | bcp = (struct bau_control *)&per_cpu(bau_control, cpu); | ||
695 | bcp->bau_msg_head = bau_tablesp->va_queue_first; | ||
696 | bcp->va_queue_first = bau_tablesp->va_queue_first; | ||
697 | bcp->va_queue_last = bau_tablesp->va_queue_last; | ||
698 | bcp->msg_statuses = bau_tablesp->msg_statuses; | ||
699 | bcp->descriptor_base = adp; | ||
700 | } | ||
701 | } | ||
702 | |||
703 | /* | ||
704 | * initialize the sending side's sending buffers | 1126 | * initialize the sending side's sending buffers |
705 | */ | 1127 | */ |
706 | static struct bau_desc * __init | 1128 | static void |
707 | uv_activation_descriptor_init(int node, int pnode) | 1129 | uv_activation_descriptor_init(int node, int pnode) |
708 | { | 1130 | { |
709 | int i; | 1131 | int i; |
1132 | int cpu; | ||
710 | unsigned long pa; | 1133 | unsigned long pa; |
711 | unsigned long m; | 1134 | unsigned long m; |
712 | unsigned long n; | 1135 | unsigned long n; |
713 | struct bau_desc *adp; | 1136 | struct bau_desc *bau_desc; |
714 | struct bau_desc *ad2; | 1137 | struct bau_desc *bd2; |
1138 | struct bau_control *bcp; | ||
715 | 1139 | ||
716 | /* | 1140 | /* |
717 | * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR) | 1141 | * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR) |
718 | * per cpu; and up to 32 (UV_ADP_SIZE) cpu's per blade | 1142 | * per cpu; and up to 32 (UV_ADP_SIZE) cpu's per uvhub |
719 | */ | 1143 | */ |
720 | adp = (struct bau_desc *)kmalloc_node(sizeof(struct bau_desc)* | 1144 | bau_desc = (struct bau_desc *)kmalloc_node(sizeof(struct bau_desc)* |
721 | UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node); | 1145 | UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node); |
722 | BUG_ON(!adp); | 1146 | BUG_ON(!bau_desc); |
723 | 1147 | ||
724 | pa = uv_gpa(adp); /* need the real nasid*/ | 1148 | pa = uv_gpa(bau_desc); /* need the real nasid*/ |
725 | n = uv_gpa_to_pnode(pa); | 1149 | n = pa >> uv_nshift; |
726 | m = pa & uv_mmask; | 1150 | m = pa & uv_mmask; |
727 | 1151 | ||
728 | uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE, | 1152 | uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE, |
@@ -731,96 +1155,188 @@ uv_activation_descriptor_init(int node, int pnode) | |||
731 | /* | 1155 | /* |
732 | * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each | 1156 | * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each |
733 | * cpu even though we only use the first one; one descriptor can | 1157 | * cpu even though we only use the first one; one descriptor can |
734 | * describe a broadcast to 256 nodes. | 1158 | * describe a broadcast to 256 uv hubs. |
735 | */ | 1159 | */ |
736 | for (i = 0, ad2 = adp; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR); | 1160 | for (i = 0, bd2 = bau_desc; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR); |
737 | i++, ad2++) { | 1161 | i++, bd2++) { |
738 | memset(ad2, 0, sizeof(struct bau_desc)); | 1162 | memset(bd2, 0, sizeof(struct bau_desc)); |
739 | ad2->header.sw_ack_flag = 1; | 1163 | bd2->header.sw_ack_flag = 1; |
740 | /* | 1164 | /* |
741 | * base_dest_nodeid is the first node in the partition, so | 1165 | * base_dest_nodeid is the nasid (pnode<<1) of the first uvhub |
742 | * the bit map will indicate partition-relative node numbers. | 1166 | * in the partition. The bit map will indicate uvhub numbers, |
743 | * note that base_dest_nodeid is actually a nasid. | 1167 | * which are 0-N in a partition. Pnodes are unique system-wide. |
744 | */ | 1168 | */ |
745 | ad2->header.base_dest_nodeid = uv_partition_base_pnode << 1; | 1169 | bd2->header.base_dest_nodeid = uv_partition_base_pnode << 1; |
746 | ad2->header.dest_subnodeid = 0x10; /* the LB */ | 1170 | bd2->header.dest_subnodeid = 0x10; /* the LB */ |
747 | ad2->header.command = UV_NET_ENDPOINT_INTD; | 1171 | bd2->header.command = UV_NET_ENDPOINT_INTD; |
748 | ad2->header.int_both = 1; | 1172 | bd2->header.int_both = 1; |
749 | /* | 1173 | /* |
750 | * all others need to be set to zero: | 1174 | * all others need to be set to zero: |
751 | * fairness chaining multilevel count replied_to | 1175 | * fairness chaining multilevel count replied_to |
752 | */ | 1176 | */ |
753 | } | 1177 | } |
754 | return adp; | 1178 | for_each_present_cpu(cpu) { |
1179 | if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu))) | ||
1180 | continue; | ||
1181 | bcp = &per_cpu(bau_control, cpu); | ||
1182 | bcp->descriptor_base = bau_desc; | ||
1183 | } | ||
755 | } | 1184 | } |
756 | 1185 | ||
757 | /* | 1186 | /* |
758 | * initialize the destination side's receiving buffers | 1187 | * initialize the destination side's receiving buffers |
1188 | * entered for each uvhub in the partition | ||
1189 | * - node is first node (kernel memory notion) on the uvhub | ||
1190 | * - pnode is the uvhub's physical identifier | ||
759 | */ | 1191 | */ |
760 | static struct bau_payload_queue_entry * __init | 1192 | static void |
761 | uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp) | 1193 | uv_payload_queue_init(int node, int pnode) |
762 | { | 1194 | { |
763 | struct bau_payload_queue_entry *pqp; | ||
764 | unsigned long pa; | ||
765 | int pn; | 1195 | int pn; |
1196 | int cpu; | ||
766 | char *cp; | 1197 | char *cp; |
1198 | unsigned long pa; | ||
1199 | struct bau_payload_queue_entry *pqp; | ||
1200 | struct bau_payload_queue_entry *pqp_malloc; | ||
1201 | struct bau_control *bcp; | ||
767 | 1202 | ||
768 | pqp = (struct bau_payload_queue_entry *) kmalloc_node( | 1203 | pqp = (struct bau_payload_queue_entry *) kmalloc_node( |
769 | (DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry), | 1204 | (DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry), |
770 | GFP_KERNEL, node); | 1205 | GFP_KERNEL, node); |
771 | BUG_ON(!pqp); | 1206 | BUG_ON(!pqp); |
1207 | pqp_malloc = pqp; | ||
772 | 1208 | ||
773 | cp = (char *)pqp + 31; | 1209 | cp = (char *)pqp + 31; |
774 | pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5); | 1210 | pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5); |
775 | bau_tablesp->va_queue_first = pqp; | 1211 | |
1212 | for_each_present_cpu(cpu) { | ||
1213 | if (pnode != uv_cpu_to_pnode(cpu)) | ||
1214 | continue; | ||
1215 | /* for every cpu on this pnode: */ | ||
1216 | bcp = &per_cpu(bau_control, cpu); | ||
1217 | bcp->va_queue_first = pqp; | ||
1218 | bcp->bau_msg_head = pqp; | ||
1219 | bcp->va_queue_last = pqp + (DEST_Q_SIZE - 1); | ||
1220 | } | ||
776 | /* | 1221 | /* |
777 | * need the pnode of where the memory was really allocated | 1222 | * need the pnode of where the memory was really allocated |
778 | */ | 1223 | */ |
779 | pa = uv_gpa(pqp); | 1224 | pa = uv_gpa(pqp); |
780 | pn = uv_gpa_to_pnode(pa); | 1225 | pn = pa >> uv_nshift; |
781 | uv_write_global_mmr64(pnode, | 1226 | uv_write_global_mmr64(pnode, |
782 | UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST, | 1227 | UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST, |
783 | ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) | | 1228 | ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) | |
784 | uv_physnodeaddr(pqp)); | 1229 | uv_physnodeaddr(pqp)); |
785 | uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL, | 1230 | uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL, |
786 | uv_physnodeaddr(pqp)); | 1231 | uv_physnodeaddr(pqp)); |
787 | bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1); | ||
788 | uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST, | 1232 | uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST, |
789 | (unsigned long) | 1233 | (unsigned long) |
790 | uv_physnodeaddr(bau_tablesp->va_queue_last)); | 1234 | uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1))); |
1235 | /* in effect, all msg_type's are set to MSG_NOOP */ | ||
791 | memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE); | 1236 | memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE); |
792 | |||
793 | return pqp; | ||
794 | } | 1237 | } |
795 | 1238 | ||
796 | /* | 1239 | /* |
797 | * Initialization of each UV blade's structures | 1240 | * Initialization of each UV hub's structures |
798 | */ | 1241 | */ |
799 | static int __init uv_init_blade(int blade) | 1242 | static void __init uv_init_uvhub(int uvhub, int vector) |
800 | { | 1243 | { |
801 | int node; | 1244 | int node; |
802 | int pnode; | 1245 | int pnode; |
803 | unsigned long pa; | ||
804 | unsigned long apicid; | 1246 | unsigned long apicid; |
805 | struct bau_desc *adp; | 1247 | |
806 | struct bau_payload_queue_entry *pqp; | 1248 | node = uvhub_to_first_node(uvhub); |
807 | struct bau_control *bau_tablesp; | 1249 | pnode = uv_blade_to_pnode(uvhub); |
808 | 1250 | uv_activation_descriptor_init(node, pnode); | |
809 | node = blade_to_first_node(blade); | 1251 | uv_payload_queue_init(node, pnode); |
810 | bau_tablesp = uv_table_bases_init(blade, node); | ||
811 | pnode = uv_blade_to_pnode(blade); | ||
812 | adp = uv_activation_descriptor_init(node, pnode); | ||
813 | pqp = uv_payload_queue_init(node, pnode, bau_tablesp); | ||
814 | uv_table_bases_finish(blade, bau_tablesp, adp); | ||
815 | /* | 1252 | /* |
816 | * the below initialization can't be in firmware because the | 1253 | * the below initialization can't be in firmware because the |
817 | * messaging IRQ will be determined by the OS | 1254 | * messaging IRQ will be determined by the OS |
818 | */ | 1255 | */ |
819 | apicid = blade_to_first_apicid(blade); | 1256 | apicid = uvhub_to_first_apicid(uvhub); |
820 | pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG); | ||
821 | uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG, | 1257 | uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG, |
822 | ((apicid << 32) | UV_BAU_MESSAGE)); | 1258 | ((apicid << 32) | vector)); |
823 | return 0; | 1259 | } |
1260 | |||
1261 | /* | ||
1262 | * initialize the bau_control structure for each cpu | ||
1263 | */ | ||
1264 | static void uv_init_per_cpu(int nuvhubs) | ||
1265 | { | ||
1266 | int i, j, k; | ||
1267 | int cpu; | ||
1268 | int pnode; | ||
1269 | int uvhub; | ||
1270 | short socket = 0; | ||
1271 | struct bau_control *bcp; | ||
1272 | struct uvhub_desc *bdp; | ||
1273 | struct socket_desc *sdp; | ||
1274 | struct bau_control *hmaster = NULL; | ||
1275 | struct bau_control *smaster = NULL; | ||
1276 | struct socket_desc { | ||
1277 | short num_cpus; | ||
1278 | short cpu_number[16]; | ||
1279 | }; | ||
1280 | struct uvhub_desc { | ||
1281 | short num_sockets; | ||
1282 | short num_cpus; | ||
1283 | short uvhub; | ||
1284 | short pnode; | ||
1285 | struct socket_desc socket[2]; | ||
1286 | }; | ||
1287 | struct uvhub_desc *uvhub_descs; | ||
1288 | |||
1289 | uvhub_descs = (struct uvhub_desc *) | ||
1290 | kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL); | ||
1291 | memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc)); | ||
1292 | for_each_present_cpu(cpu) { | ||
1293 | bcp = &per_cpu(bau_control, cpu); | ||
1294 | memset(bcp, 0, sizeof(struct bau_control)); | ||
1295 | spin_lock_init(&bcp->masks_lock); | ||
1296 | bcp->max_concurrent = uv_bau_max_concurrent; | ||
1297 | pnode = uv_cpu_hub_info(cpu)->pnode; | ||
1298 | uvhub = uv_cpu_hub_info(cpu)->numa_blade_id; | ||
1299 | bdp = &uvhub_descs[uvhub]; | ||
1300 | bdp->num_cpus++; | ||
1301 | bdp->uvhub = uvhub; | ||
1302 | bdp->pnode = pnode; | ||
1303 | /* time interval to catch a hardware stay-busy bug */ | ||
1304 | bcp->timeout_interval = millisec_2_cycles(3); | ||
1305 | /* kludge: assume uv_hub.h is constant */ | ||
1306 | socket = (cpu_physical_id(cpu)>>5)&1; | ||
1307 | if (socket >= bdp->num_sockets) | ||
1308 | bdp->num_sockets = socket+1; | ||
1309 | sdp = &bdp->socket[socket]; | ||
1310 | sdp->cpu_number[sdp->num_cpus] = cpu; | ||
1311 | sdp->num_cpus++; | ||
1312 | } | ||
1313 | socket = 0; | ||
1314 | for_each_possible_blade(uvhub) { | ||
1315 | bdp = &uvhub_descs[uvhub]; | ||
1316 | for (i = 0; i < bdp->num_sockets; i++) { | ||
1317 | sdp = &bdp->socket[i]; | ||
1318 | for (j = 0; j < sdp->num_cpus; j++) { | ||
1319 | cpu = sdp->cpu_number[j]; | ||
1320 | bcp = &per_cpu(bau_control, cpu); | ||
1321 | bcp->cpu = cpu; | ||
1322 | if (j == 0) { | ||
1323 | smaster = bcp; | ||
1324 | if (i == 0) | ||
1325 | hmaster = bcp; | ||
1326 | } | ||
1327 | bcp->cpus_in_uvhub = bdp->num_cpus; | ||
1328 | bcp->cpus_in_socket = sdp->num_cpus; | ||
1329 | bcp->socket_master = smaster; | ||
1330 | bcp->uvhub_master = hmaster; | ||
1331 | for (k = 0; k < DEST_Q_SIZE; k++) | ||
1332 | bcp->socket_acknowledge_count[k] = 0; | ||
1333 | bcp->uvhub_cpu = | ||
1334 | uv_cpu_hub_info(cpu)->blade_processor_id; | ||
1335 | } | ||
1336 | socket++; | ||
1337 | } | ||
1338 | } | ||
1339 | kfree(uvhub_descs); | ||
824 | } | 1340 | } |
825 | 1341 | ||
826 | /* | 1342 | /* |
@@ -828,38 +1344,54 @@ static int __init uv_init_blade(int blade) | |||
828 | */ | 1344 | */ |
829 | static int __init uv_bau_init(void) | 1345 | static int __init uv_bau_init(void) |
830 | { | 1346 | { |
831 | int blade; | 1347 | int uvhub; |
832 | int nblades; | 1348 | int pnode; |
1349 | int nuvhubs; | ||
833 | int cur_cpu; | 1350 | int cur_cpu; |
1351 | int vector; | ||
1352 | unsigned long mmr; | ||
834 | 1353 | ||
835 | if (!is_uv_system()) | 1354 | if (!is_uv_system()) |
836 | return 0; | 1355 | return 0; |
837 | 1356 | ||
1357 | if (nobau) | ||
1358 | return 0; | ||
1359 | |||
838 | for_each_possible_cpu(cur_cpu) | 1360 | for_each_possible_cpu(cur_cpu) |
839 | zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu), | 1361 | zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu), |
840 | GFP_KERNEL, cpu_to_node(cur_cpu)); | 1362 | GFP_KERNEL, cpu_to_node(cur_cpu)); |
841 | 1363 | ||
842 | uv_bau_retry_limit = 1; | 1364 | uv_bau_max_concurrent = MAX_BAU_CONCURRENT; |
1365 | uv_nshift = uv_hub_info->m_val; | ||
843 | uv_mmask = (1UL << uv_hub_info->m_val) - 1; | 1366 | uv_mmask = (1UL << uv_hub_info->m_val) - 1; |
844 | nblades = uv_num_possible_blades(); | 1367 | nuvhubs = uv_num_possible_blades(); |
845 | 1368 | ||
846 | uv_bau_table_bases = (struct bau_control **) | 1369 | uv_init_per_cpu(nuvhubs); |
847 | kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL); | ||
848 | BUG_ON(!uv_bau_table_bases); | ||
849 | 1370 | ||
850 | uv_partition_base_pnode = 0x7fffffff; | 1371 | uv_partition_base_pnode = 0x7fffffff; |
851 | for (blade = 0; blade < nblades; blade++) | 1372 | for (uvhub = 0; uvhub < nuvhubs; uvhub++) |
852 | if (uv_blade_nr_possible_cpus(blade) && | 1373 | if (uv_blade_nr_possible_cpus(uvhub) && |
853 | (uv_blade_to_pnode(blade) < uv_partition_base_pnode)) | 1374 | (uv_blade_to_pnode(uvhub) < uv_partition_base_pnode)) |
854 | uv_partition_base_pnode = uv_blade_to_pnode(blade); | 1375 | uv_partition_base_pnode = uv_blade_to_pnode(uvhub); |
855 | for (blade = 0; blade < nblades; blade++) | 1376 | |
856 | if (uv_blade_nr_possible_cpus(blade)) | 1377 | vector = UV_BAU_MESSAGE; |
857 | uv_init_blade(blade); | 1378 | for_each_possible_blade(uvhub) |
858 | 1379 | if (uv_blade_nr_possible_cpus(uvhub)) | |
859 | alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1); | 1380 | uv_init_uvhub(uvhub, vector); |
1381 | |||
860 | uv_enable_timeouts(); | 1382 | uv_enable_timeouts(); |
1383 | alloc_intr_gate(vector, uv_bau_message_intr1); | ||
1384 | |||
1385 | for_each_possible_blade(uvhub) { | ||
1386 | pnode = uv_blade_to_pnode(uvhub); | ||
1387 | /* INIT the bau */ | ||
1388 | uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_ACTIVATION_CONTROL, | ||
1389 | ((unsigned long)1 << 63)); | ||
1390 | mmr = 1; /* should be 1 to broadcast to both sockets */ | ||
1391 | uv_write_global_mmr64(pnode, UVH_BAU_DATA_BROADCAST, mmr); | ||
1392 | } | ||
861 | 1393 | ||
862 | return 0; | 1394 | return 0; |
863 | } | 1395 | } |
864 | __initcall(uv_bau_init); | 1396 | core_initcall(uv_bau_init); |
865 | __initcall(uv_ptc_init); | 1397 | core_initcall(uv_ptc_init); |