aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/pci-gart_64.c
diff options
context:
space:
mode:
authorFUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>2008-09-24 07:48:37 -0400
committerIngo Molnar <mingo@elte.hu>2008-09-25 05:02:26 -0400
commit1d990882153f36723f9e8717c4401689e64c7a36 (patch)
treee0e09333cf42756d90bf6e8a0e1ae588a852babe /arch/x86/kernel/pci-gart_64.c
parentecef533ea68b2fb3baaf459beb2f802a240bdb16 (diff)
x86: restore old GART alloc_coherent behavior
Currently, GART alloc_coherent tries to allocate pages with GFP_DMA32 for a device having dma_masks > 24bit < 32bits. If GART gets an address that a device can't access to, GART try to map the address to a virtual I/O address that the device can access to. But Andi pointed out, "The GART is somewhere in the 4GB range so you cannot use it to map anything < 4GB. Also GART is pretty small." http://lkml.org/lkml/2008/9/12/43 That is, it's possible that GART doesn't have virtual I/O address space that a device can access to. The above behavior doesn't work for a device having dma_masks > 24bit < 32bits. This patch restores old GART alloc_coherent behavior (before the alloc_coherent rewrite). Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch/x86/kernel/pci-gart_64.c')
-rw-r--r--arch/x86/kernel/pci-gart_64.c43
1 files changed, 20 insertions, 23 deletions
diff --git a/arch/x86/kernel/pci-gart_64.c b/arch/x86/kernel/pci-gart_64.c
index 7e08e466b8a..25c94fb96d7 100644
--- a/arch/x86/kernel/pci-gart_64.c
+++ b/arch/x86/kernel/pci-gart_64.c
@@ -487,31 +487,28 @@ static void *
487gart_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_addr, 487gart_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_addr,
488 gfp_t flag) 488 gfp_t flag)
489{ 489{
490 void *vaddr;
491 dma_addr_t paddr; 490 dma_addr_t paddr;
492 unsigned long align_mask; 491 unsigned long align_mask;
493 u64 dma_mask = dma_alloc_coherent_mask(dev, flag); 492 struct page *page;
494 493
495 vaddr = (void *)__get_free_pages(flag | __GFP_ZERO, get_order(size)); 494 if (force_iommu && !(flag & GFP_DMA)) {
496 if (!vaddr) 495 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
497 return NULL; 496 page = alloc_pages(flag | __GFP_ZERO, get_order(size));
498 497 if (!page)
499 paddr = virt_to_phys(vaddr); 498 return NULL;
500 if (is_buffer_dma_capable(dma_mask, paddr, size)) { 499
501 *dma_addr = paddr; 500 align_mask = (1UL << get_order(size)) - 1;
502 return vaddr; 501 paddr = dma_map_area(dev, page_to_phys(page), size,
503 } 502 DMA_BIDIRECTIONAL, align_mask);
504 503
505 align_mask = (1UL << get_order(size)) - 1; 504 flush_gart();
506 505 if (paddr != bad_dma_address) {
507 *dma_addr = dma_map_area(dev, paddr, size, DMA_BIDIRECTIONAL, 506 *dma_addr = paddr;
508 align_mask); 507 return page_address(page);
509 flush_gart(); 508 }
510 509 __free_pages(page, get_order(size));
511 if (*dma_addr != bad_dma_address) 510 } else
512 return vaddr; 511 return dma_generic_alloc_coherent(dev, size, dma_addr, flag);
513
514 free_pages((unsigned long)vaddr, get_order(size));
515 512
516 return NULL; 513 return NULL;
517} 514}