aboutsummaryrefslogtreecommitdiffstats
path: root/arch/powerpc
diff options
context:
space:
mode:
authorMatt Evans <matt@ozlabs.org>2011-07-20 11:51:00 -0400
committerDavid S. Miller <davem@davemloft.net>2011-07-21 15:38:32 -0400
commit0ca87f05ba8bdc6791c14878464efc901ad71e99 (patch)
treec37e25b30c22adae633dcacb2236e83086887418 /arch/powerpc
parent3aeb7d2243e55ddcad3c0b402e7b09619a67f5da (diff)
net: filter: BPF 'JIT' compiler for PPC64
An implementation of a code generator for BPF programs to speed up packet filtering on PPC64, inspired by Eric Dumazet's x86-64 version. Filter code is generated as an ABI-compliant function in module_alloc()'d mem with stackframe & prologue/epilogue generated if required (simple filters don't need anything more than an li/blr). The filter's local variables, M[], live in registers. Supports all BPF opcodes, although "complicated" loads from negative packet offsets (e.g. SKF_LL_OFF) are not yet supported. There are a couple of further optimisations left for future work; many-pass assembly with branch-reach reduction and a register allocator to push M[] variables into volatile registers would improve the code quality further. This currently supports big-endian 64-bit PowerPC only (but is fairly simple to port to PPC32 or LE!). Enabled in the same way as x86-64: echo 1 > /proc/sys/net/core/bpf_jit_enable Or, enabled with extra debug output: echo 2 > /proc/sys/net/core/bpf_jit_enable Signed-off-by: Matt Evans <matt@ozlabs.org> Acked-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'arch/powerpc')
-rw-r--r--arch/powerpc/Kconfig1
-rw-r--r--arch/powerpc/Makefile3
-rw-r--r--arch/powerpc/include/asm/ppc-opcode.h40
-rw-r--r--arch/powerpc/net/Makefile4
-rw-r--r--arch/powerpc/net/bpf_jit.h227
-rw-r--r--arch/powerpc/net/bpf_jit_64.S138
-rw-r--r--arch/powerpc/net/bpf_jit_comp.c694
7 files changed, 1106 insertions, 1 deletions
diff --git a/arch/powerpc/Kconfig b/arch/powerpc/Kconfig
index 2729c6663d8..39860fce97d 100644
--- a/arch/powerpc/Kconfig
+++ b/arch/powerpc/Kconfig
@@ -134,6 +134,7 @@ config PPC
134 select GENERIC_IRQ_SHOW_LEVEL 134 select GENERIC_IRQ_SHOW_LEVEL
135 select HAVE_RCU_TABLE_FREE if SMP 135 select HAVE_RCU_TABLE_FREE if SMP
136 select HAVE_SYSCALL_TRACEPOINTS 136 select HAVE_SYSCALL_TRACEPOINTS
137 select HAVE_BPF_JIT if PPC64
137 138
138config EARLY_PRINTK 139config EARLY_PRINTK
139 bool 140 bool
diff --git a/arch/powerpc/Makefile b/arch/powerpc/Makefile
index b7212b619c5..b94740f36b1 100644
--- a/arch/powerpc/Makefile
+++ b/arch/powerpc/Makefile
@@ -154,7 +154,8 @@ core-y += arch/powerpc/kernel/ \
154 arch/powerpc/lib/ \ 154 arch/powerpc/lib/ \
155 arch/powerpc/sysdev/ \ 155 arch/powerpc/sysdev/ \
156 arch/powerpc/platforms/ \ 156 arch/powerpc/platforms/ \
157 arch/powerpc/math-emu/ 157 arch/powerpc/math-emu/ \
158 arch/powerpc/net/
158core-$(CONFIG_XMON) += arch/powerpc/xmon/ 159core-$(CONFIG_XMON) += arch/powerpc/xmon/
159core-$(CONFIG_KVM) += arch/powerpc/kvm/ 160core-$(CONFIG_KVM) += arch/powerpc/kvm/
160 161
diff --git a/arch/powerpc/include/asm/ppc-opcode.h b/arch/powerpc/include/asm/ppc-opcode.h
index e472659d906..e980faae422 100644
--- a/arch/powerpc/include/asm/ppc-opcode.h
+++ b/arch/powerpc/include/asm/ppc-opcode.h
@@ -71,6 +71,42 @@
71#define PPC_INST_ERATSX 0x7c000126 71#define PPC_INST_ERATSX 0x7c000126
72#define PPC_INST_ERATSX_DOT 0x7c000127 72#define PPC_INST_ERATSX_DOT 0x7c000127
73 73
74/* Misc instructions for BPF compiler */
75#define PPC_INST_LD 0xe8000000
76#define PPC_INST_LHZ 0xa0000000
77#define PPC_INST_LWZ 0x80000000
78#define PPC_INST_STD 0xf8000000
79#define PPC_INST_STDU 0xf8000001
80#define PPC_INST_MFLR 0x7c0802a6
81#define PPC_INST_MTLR 0x7c0803a6
82#define PPC_INST_CMPWI 0x2c000000
83#define PPC_INST_CMPDI 0x2c200000
84#define PPC_INST_CMPLW 0x7c000040
85#define PPC_INST_CMPLWI 0x28000000
86#define PPC_INST_ADDI 0x38000000
87#define PPC_INST_ADDIS 0x3c000000
88#define PPC_INST_ADD 0x7c000214
89#define PPC_INST_SUB 0x7c000050
90#define PPC_INST_BLR 0x4e800020
91#define PPC_INST_BLRL 0x4e800021
92#define PPC_INST_MULLW 0x7c0001d6
93#define PPC_INST_MULHWU 0x7c000016
94#define PPC_INST_MULLI 0x1c000000
95#define PPC_INST_DIVWU 0x7c0003d6
96#define PPC_INST_RLWINM 0x54000000
97#define PPC_INST_RLDICR 0x78000004
98#define PPC_INST_SLW 0x7c000030
99#define PPC_INST_SRW 0x7c000430
100#define PPC_INST_AND 0x7c000038
101#define PPC_INST_ANDDOT 0x7c000039
102#define PPC_INST_OR 0x7c000378
103#define PPC_INST_ANDI 0x70000000
104#define PPC_INST_ORI 0x60000000
105#define PPC_INST_ORIS 0x64000000
106#define PPC_INST_NEG 0x7c0000d0
107#define PPC_INST_BRANCH 0x48000000
108#define PPC_INST_BRANCH_COND 0x40800000
109
74/* macros to insert fields into opcodes */ 110/* macros to insert fields into opcodes */
75#define __PPC_RA(a) (((a) & 0x1f) << 16) 111#define __PPC_RA(a) (((a) & 0x1f) << 16)
76#define __PPC_RB(b) (((b) & 0x1f) << 11) 112#define __PPC_RB(b) (((b) & 0x1f) << 11)
@@ -83,6 +119,10 @@
83#define __PPC_T_TLB(t) (((t) & 0x3) << 21) 119#define __PPC_T_TLB(t) (((t) & 0x3) << 21)
84#define __PPC_WC(w) (((w) & 0x3) << 21) 120#define __PPC_WC(w) (((w) & 0x3) << 21)
85#define __PPC_WS(w) (((w) & 0x1f) << 11) 121#define __PPC_WS(w) (((w) & 0x1f) << 11)
122#define __PPC_SH(s) __PPC_WS(s)
123#define __PPC_MB(s) (((s) & 0x1f) << 6)
124#define __PPC_ME(s) (((s) & 0x1f) << 1)
125#define __PPC_BI(s) (((s) & 0x1f) << 16)
86 126
87/* 127/*
88 * Only use the larx hint bit on 64bit CPUs. e500v1/v2 based CPUs will treat a 128 * Only use the larx hint bit on 64bit CPUs. e500v1/v2 based CPUs will treat a
diff --git a/arch/powerpc/net/Makefile b/arch/powerpc/net/Makefile
new file mode 100644
index 00000000000..266b3950c3a
--- /dev/null
+++ b/arch/powerpc/net/Makefile
@@ -0,0 +1,4 @@
1#
2# Arch-specific network modules
3#
4obj-$(CONFIG_BPF_JIT) += bpf_jit_64.o bpf_jit_comp.o
diff --git a/arch/powerpc/net/bpf_jit.h b/arch/powerpc/net/bpf_jit.h
new file mode 100644
index 00000000000..af1ab5e9a69
--- /dev/null
+++ b/arch/powerpc/net/bpf_jit.h
@@ -0,0 +1,227 @@
1/* bpf_jit.h: BPF JIT compiler for PPC64
2 *
3 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; version 2
8 * of the License.
9 */
10#ifndef _BPF_JIT_H
11#define _BPF_JIT_H
12
13#define BPF_PPC_STACK_LOCALS 32
14#define BPF_PPC_STACK_BASIC (48+64)
15#define BPF_PPC_STACK_SAVE (18*8)
16#define BPF_PPC_STACKFRAME (BPF_PPC_STACK_BASIC+BPF_PPC_STACK_LOCALS+ \
17 BPF_PPC_STACK_SAVE)
18#define BPF_PPC_SLOWPATH_FRAME (48+64)
19
20/*
21 * Generated code register usage:
22 *
23 * As normal PPC C ABI (e.g. r1=sp, r2=TOC), with:
24 *
25 * skb r3 (Entry parameter)
26 * A register r4
27 * X register r5
28 * addr param r6
29 * r7-r10 scratch
30 * skb->data r14
31 * skb headlen r15 (skb->len - skb->data_len)
32 * m[0] r16
33 * m[...] ...
34 * m[15] r31
35 */
36#define r_skb 3
37#define r_ret 3
38#define r_A 4
39#define r_X 5
40#define r_addr 6
41#define r_scratch1 7
42#define r_D 14
43#define r_HL 15
44#define r_M 16
45
46#ifndef __ASSEMBLY__
47
48/*
49 * Assembly helpers from arch/powerpc/net/bpf_jit.S:
50 */
51extern u8 sk_load_word[], sk_load_half[], sk_load_byte[], sk_load_byte_msh[];
52
53#define FUNCTION_DESCR_SIZE 24
54
55/*
56 * 16-bit immediate helper macros: HA() is for use with sign-extending instrs
57 * (e.g. LD, ADDI). If the bottom 16 bits is "-ve", add another bit into the
58 * top half to negate the effect (i.e. 0xffff + 1 = 0x(1)0000).
59 */
60#define IMM_H(i) ((uintptr_t)(i)>>16)
61#define IMM_HA(i) (((uintptr_t)(i)>>16) + \
62 (((uintptr_t)(i) & 0x8000) >> 15))
63#define IMM_L(i) ((uintptr_t)(i) & 0xffff)
64
65#define PLANT_INSTR(d, idx, instr) \
66 do { if (d) { (d)[idx] = instr; } idx++; } while (0)
67#define EMIT(instr) PLANT_INSTR(image, ctx->idx, instr)
68
69#define PPC_NOP() EMIT(PPC_INST_NOP)
70#define PPC_BLR() EMIT(PPC_INST_BLR)
71#define PPC_BLRL() EMIT(PPC_INST_BLRL)
72#define PPC_MTLR(r) EMIT(PPC_INST_MTLR | __PPC_RT(r))
73#define PPC_ADDI(d, a, i) EMIT(PPC_INST_ADDI | __PPC_RT(d) | \
74 __PPC_RA(a) | IMM_L(i))
75#define PPC_MR(d, a) PPC_OR(d, a, a)
76#define PPC_LI(r, i) PPC_ADDI(r, 0, i)
77#define PPC_ADDIS(d, a, i) EMIT(PPC_INST_ADDIS | \
78 __PPC_RS(d) | __PPC_RA(a) | IMM_L(i))
79#define PPC_LIS(r, i) PPC_ADDIS(r, 0, i)
80#define PPC_STD(r, base, i) EMIT(PPC_INST_STD | __PPC_RS(r) | \
81 __PPC_RA(base) | ((i) & 0xfffc))
82
83#define PPC_LD(r, base, i) EMIT(PPC_INST_LD | __PPC_RT(r) | \
84 __PPC_RA(base) | IMM_L(i))
85#define PPC_LWZ(r, base, i) EMIT(PPC_INST_LWZ | __PPC_RT(r) | \
86 __PPC_RA(base) | IMM_L(i))
87#define PPC_LHZ(r, base, i) EMIT(PPC_INST_LHZ | __PPC_RT(r) | \
88 __PPC_RA(base) | IMM_L(i))
89/* Convenience helpers for the above with 'far' offsets: */
90#define PPC_LD_OFFS(r, base, i) do { if ((i) < 32768) PPC_LD(r, base, i); \
91 else { PPC_ADDIS(r, base, IMM_HA(i)); \
92 PPC_LD(r, r, IMM_L(i)); } } while(0)
93
94#define PPC_LWZ_OFFS(r, base, i) do { if ((i) < 32768) PPC_LWZ(r, base, i); \
95 else { PPC_ADDIS(r, base, IMM_HA(i)); \
96 PPC_LWZ(r, r, IMM_L(i)); } } while(0)
97
98#define PPC_LHZ_OFFS(r, base, i) do { if ((i) < 32768) PPC_LHZ(r, base, i); \
99 else { PPC_ADDIS(r, base, IMM_HA(i)); \
100 PPC_LHZ(r, r, IMM_L(i)); } } while(0)
101
102#define PPC_CMPWI(a, i) EMIT(PPC_INST_CMPWI | __PPC_RA(a) | IMM_L(i))
103#define PPC_CMPDI(a, i) EMIT(PPC_INST_CMPDI | __PPC_RA(a) | IMM_L(i))
104#define PPC_CMPLWI(a, i) EMIT(PPC_INST_CMPLWI | __PPC_RA(a) | IMM_L(i))
105#define PPC_CMPLW(a, b) EMIT(PPC_INST_CMPLW | __PPC_RA(a) | __PPC_RB(b))
106
107#define PPC_SUB(d, a, b) EMIT(PPC_INST_SUB | __PPC_RT(d) | \
108 __PPC_RB(a) | __PPC_RA(b))
109#define PPC_ADD(d, a, b) EMIT(PPC_INST_ADD | __PPC_RT(d) | \
110 __PPC_RA(a) | __PPC_RB(b))
111#define PPC_MUL(d, a, b) EMIT(PPC_INST_MULLW | __PPC_RT(d) | \
112 __PPC_RA(a) | __PPC_RB(b))
113#define PPC_MULHWU(d, a, b) EMIT(PPC_INST_MULHWU | __PPC_RT(d) | \
114 __PPC_RA(a) | __PPC_RB(b))
115#define PPC_MULI(d, a, i) EMIT(PPC_INST_MULLI | __PPC_RT(d) | \
116 __PPC_RA(a) | IMM_L(i))
117#define PPC_DIVWU(d, a, b) EMIT(PPC_INST_DIVWU | __PPC_RT(d) | \
118 __PPC_RA(a) | __PPC_RB(b))
119#define PPC_AND(d, a, b) EMIT(PPC_INST_AND | __PPC_RA(d) | \
120 __PPC_RS(a) | __PPC_RB(b))
121#define PPC_ANDI(d, a, i) EMIT(PPC_INST_ANDI | __PPC_RA(d) | \
122 __PPC_RS(a) | IMM_L(i))
123#define PPC_AND_DOT(d, a, b) EMIT(PPC_INST_ANDDOT | __PPC_RA(d) | \
124 __PPC_RS(a) | __PPC_RB(b))
125#define PPC_OR(d, a, b) EMIT(PPC_INST_OR | __PPC_RA(d) | \
126 __PPC_RS(a) | __PPC_RB(b))
127#define PPC_ORI(d, a, i) EMIT(PPC_INST_ORI | __PPC_RA(d) | \
128 __PPC_RS(a) | IMM_L(i))
129#define PPC_ORIS(d, a, i) EMIT(PPC_INST_ORIS | __PPC_RA(d) | \
130 __PPC_RS(a) | IMM_L(i))
131#define PPC_SLW(d, a, s) EMIT(PPC_INST_SLW | __PPC_RA(d) | \
132 __PPC_RS(a) | __PPC_RB(s))
133#define PPC_SRW(d, a, s) EMIT(PPC_INST_SRW | __PPC_RA(d) | \
134 __PPC_RS(a) | __PPC_RB(s))
135/* slwi = rlwinm Rx, Ry, n, 0, 31-n */
136#define PPC_SLWI(d, a, i) EMIT(PPC_INST_RLWINM | __PPC_RA(d) | \
137 __PPC_RS(a) | __PPC_SH(i) | \
138 __PPC_MB(0) | __PPC_ME(31-(i)))
139/* srwi = rlwinm Rx, Ry, 32-n, n, 31 */
140#define PPC_SRWI(d, a, i) EMIT(PPC_INST_RLWINM | __PPC_RA(d) | \
141 __PPC_RS(a) | __PPC_SH(32-(i)) | \
142 __PPC_MB(i) | __PPC_ME(31))
143/* sldi = rldicr Rx, Ry, n, 63-n */
144#define PPC_SLDI(d, a, i) EMIT(PPC_INST_RLDICR | __PPC_RA(d) | \
145 __PPC_RS(a) | __PPC_SH(i) | \
146 __PPC_MB(63-(i)) | (((i) & 0x20) >> 4))
147#define PPC_NEG(d, a) EMIT(PPC_INST_NEG | __PPC_RT(d) | __PPC_RA(a))
148
149/* Long jump; (unconditional 'branch') */
150#define PPC_JMP(dest) EMIT(PPC_INST_BRANCH | \
151 (((dest) - (ctx->idx * 4)) & 0x03fffffc))
152/* "cond" here covers BO:BI fields. */
153#define PPC_BCC_SHORT(cond, dest) EMIT(PPC_INST_BRANCH_COND | \
154 (((cond) & 0x3ff) << 16) | \
155 (((dest) - (ctx->idx * 4)) & \
156 0xfffc))
157#define PPC_LI32(d, i) do { PPC_LI(d, IMM_L(i)); \
158 if ((u32)(uintptr_t)(i) >= 32768) { \
159 PPC_ADDIS(d, d, IMM_HA(i)); \
160 } } while(0)
161#define PPC_LI64(d, i) do { \
162 if (!((uintptr_t)(i) & 0xffffffff00000000ULL)) \
163 PPC_LI32(d, i); \
164 else { \
165 PPC_LIS(d, ((uintptr_t)(i) >> 48)); \
166 if ((uintptr_t)(i) & 0x0000ffff00000000ULL) \
167 PPC_ORI(d, d, \
168 ((uintptr_t)(i) >> 32) & 0xffff); \
169 PPC_SLDI(d, d, 32); \
170 if ((uintptr_t)(i) & 0x00000000ffff0000ULL) \
171 PPC_ORIS(d, d, \
172 ((uintptr_t)(i) >> 16) & 0xffff); \
173 if ((uintptr_t)(i) & 0x000000000000ffffULL) \
174 PPC_ORI(d, d, (uintptr_t)(i) & 0xffff); \
175 } } while (0);
176
177static inline bool is_nearbranch(int offset)
178{
179 return (offset < 32768) && (offset >= -32768);
180}
181
182/*
183 * The fly in the ointment of code size changing from pass to pass is
184 * avoided by padding the short branch case with a NOP. If code size differs
185 * with different branch reaches we will have the issue of code moving from
186 * one pass to the next and will need a few passes to converge on a stable
187 * state.
188 */
189#define PPC_BCC(cond, dest) do { \
190 if (is_nearbranch((dest) - (ctx->idx * 4))) { \
191 PPC_BCC_SHORT(cond, dest); \
192 PPC_NOP(); \
193 } else { \
194 /* Flip the 'T or F' bit to invert comparison */ \
195 PPC_BCC_SHORT(cond ^ COND_CMP_TRUE, (ctx->idx+2)*4); \
196 PPC_JMP(dest); \
197 } } while(0)
198
199/* To create a branch condition, select a bit of cr0... */
200#define CR0_LT 0
201#define CR0_GT 1
202#define CR0_EQ 2
203/* ...and modify BO[3] */
204#define COND_CMP_TRUE 0x100
205#define COND_CMP_FALSE 0x000
206/* Together, they make all required comparisons: */
207#define COND_GT (CR0_GT | COND_CMP_TRUE)
208#define COND_GE (CR0_LT | COND_CMP_FALSE)
209#define COND_EQ (CR0_EQ | COND_CMP_TRUE)
210#define COND_NE (CR0_EQ | COND_CMP_FALSE)
211#define COND_LT (CR0_LT | COND_CMP_TRUE)
212
213#define SEEN_DATAREF 0x10000 /* might call external helpers */
214#define SEEN_XREG 0x20000 /* X reg is used */
215#define SEEN_MEM 0x40000 /* SEEN_MEM+(1<<n) = use mem[n] for temporary
216 * storage */
217#define SEEN_MEM_MSK 0x0ffff
218
219struct codegen_context {
220 unsigned int seen;
221 unsigned int idx;
222 int pc_ret0; /* bpf index of first RET #0 instruction (if any) */
223};
224
225#endif
226
227#endif
diff --git a/arch/powerpc/net/bpf_jit_64.S b/arch/powerpc/net/bpf_jit_64.S
new file mode 100644
index 00000000000..ff4506e85cc
--- /dev/null
+++ b/arch/powerpc/net/bpf_jit_64.S
@@ -0,0 +1,138 @@
1/* bpf_jit.S: Packet/header access helper functions
2 * for PPC64 BPF compiler.
3 *
4 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; version 2
9 * of the License.
10 */
11
12#include <asm/ppc_asm.h>
13#include "bpf_jit.h"
14
15/*
16 * All of these routines are called directly from generated code,
17 * whose register usage is:
18 *
19 * r3 skb
20 * r4,r5 A,X
21 * r6 *** address parameter to helper ***
22 * r7-r10 scratch
23 * r14 skb->data
24 * r15 skb headlen
25 * r16-31 M[]
26 */
27
28/*
29 * To consider: These helpers are so small it could be better to just
30 * generate them inline. Inline code can do the simple headlen check
31 * then branch directly to slow_path_XXX if required. (In fact, could
32 * load a spare GPR with the address of slow_path_generic and pass size
33 * as an argument, making the call site a mtlr, li and bllr.)
34 *
35 * Technically, the "is addr < 0" check is unnecessary & slowing down
36 * the ABS path, as it's statically checked on generation.
37 */
38 .globl sk_load_word
39sk_load_word:
40 cmpdi r_addr, 0
41 blt bpf_error
42 /* Are we accessing past headlen? */
43 subi r_scratch1, r_HL, 4
44 cmpd r_scratch1, r_addr
45 blt bpf_slow_path_word
46 /* Nope, just hitting the header. cr0 here is eq or gt! */
47 lwzx r_A, r_D, r_addr
48 /* When big endian we don't need to byteswap. */
49 blr /* Return success, cr0 != LT */
50
51 .globl sk_load_half
52sk_load_half:
53 cmpdi r_addr, 0
54 blt bpf_error
55 subi r_scratch1, r_HL, 2
56 cmpd r_scratch1, r_addr
57 blt bpf_slow_path_half
58 lhzx r_A, r_D, r_addr
59 blr
60
61 .globl sk_load_byte
62sk_load_byte:
63 cmpdi r_addr, 0
64 blt bpf_error
65 cmpd r_HL, r_addr
66 ble bpf_slow_path_byte
67 lbzx r_A, r_D, r_addr
68 blr
69
70/*
71 * BPF_S_LDX_B_MSH: ldxb 4*([offset]&0xf)
72 * r_addr is the offset value, already known positive
73 */
74 .globl sk_load_byte_msh
75sk_load_byte_msh:
76 cmpd r_HL, r_addr
77 ble bpf_slow_path_byte_msh
78 lbzx r_X, r_D, r_addr
79 rlwinm r_X, r_X, 2, 32-4-2, 31-2
80 blr
81
82bpf_error:
83 /* Entered with cr0 = lt */
84 li r3, 0
85 /* Generated code will 'blt epilogue', returning 0. */
86 blr
87
88/* Call out to skb_copy_bits:
89 * We'll need to back up our volatile regs first; we have
90 * local variable space at r1+(BPF_PPC_STACK_BASIC).
91 * Allocate a new stack frame here to remain ABI-compliant in
92 * stashing LR.
93 */
94#define bpf_slow_path_common(SIZE) \
95 mflr r0; \
96 std r0, 16(r1); \
97 /* R3 goes in parameter space of caller's frame */ \
98 std r_skb, (BPF_PPC_STACKFRAME+48)(r1); \
99 std r_A, (BPF_PPC_STACK_BASIC+(0*8))(r1); \
100 std r_X, (BPF_PPC_STACK_BASIC+(1*8))(r1); \
101 addi r5, r1, BPF_PPC_STACK_BASIC+(2*8); \
102 stdu r1, -BPF_PPC_SLOWPATH_FRAME(r1); \
103 /* R3 = r_skb, as passed */ \
104 mr r4, r_addr; \
105 li r6, SIZE; \
106 bl skb_copy_bits; \
107 /* R3 = 0 on success */ \
108 addi r1, r1, BPF_PPC_SLOWPATH_FRAME; \
109 ld r0, 16(r1); \
110 ld r_A, (BPF_PPC_STACK_BASIC+(0*8))(r1); \
111 ld r_X, (BPF_PPC_STACK_BASIC+(1*8))(r1); \
112 mtlr r0; \
113 cmpdi r3, 0; \
114 blt bpf_error; /* cr0 = LT */ \
115 ld r_skb, (BPF_PPC_STACKFRAME+48)(r1); \
116 /* Great success! */
117
118bpf_slow_path_word:
119 bpf_slow_path_common(4)
120 /* Data value is on stack, and cr0 != LT */
121 lwz r_A, BPF_PPC_STACK_BASIC+(2*8)(r1)
122 blr
123
124bpf_slow_path_half:
125 bpf_slow_path_common(2)
126 lhz r_A, BPF_PPC_STACK_BASIC+(2*8)(r1)
127 blr
128
129bpf_slow_path_byte:
130 bpf_slow_path_common(1)
131 lbz r_A, BPF_PPC_STACK_BASIC+(2*8)(r1)
132 blr
133
134bpf_slow_path_byte_msh:
135 bpf_slow_path_common(1)
136 lbz r_X, BPF_PPC_STACK_BASIC+(2*8)(r1)
137 rlwinm r_X, r_X, 2, 32-4-2, 31-2
138 blr
diff --git a/arch/powerpc/net/bpf_jit_comp.c b/arch/powerpc/net/bpf_jit_comp.c
new file mode 100644
index 00000000000..73619d3aeb6
--- /dev/null
+++ b/arch/powerpc/net/bpf_jit_comp.c
@@ -0,0 +1,694 @@
1/* bpf_jit_comp.c: BPF JIT compiler for PPC64
2 *
3 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
4 *
5 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12#include <linux/moduleloader.h>
13#include <asm/cacheflush.h>
14#include <linux/netdevice.h>
15#include <linux/filter.h>
16#include "bpf_jit.h"
17
18#ifndef __BIG_ENDIAN
19/* There are endianness assumptions herein. */
20#error "Little-endian PPC not supported in BPF compiler"
21#endif
22
23int bpf_jit_enable __read_mostly;
24
25
26static inline void bpf_flush_icache(void *start, void *end)
27{
28 smp_wmb();
29 flush_icache_range((unsigned long)start, (unsigned long)end);
30}
31
32static void bpf_jit_build_prologue(struct sk_filter *fp, u32 *image,
33 struct codegen_context *ctx)
34{
35 int i;
36 const struct sock_filter *filter = fp->insns;
37
38 if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
39 /* Make stackframe */
40 if (ctx->seen & SEEN_DATAREF) {
41 /* If we call any helpers (for loads), save LR */
42 EMIT(PPC_INST_MFLR | __PPC_RT(0));
43 PPC_STD(0, 1, 16);
44
45 /* Back up non-volatile regs. */
46 PPC_STD(r_D, 1, -(8*(32-r_D)));
47 PPC_STD(r_HL, 1, -(8*(32-r_HL)));
48 }
49 if (ctx->seen & SEEN_MEM) {
50 /*
51 * Conditionally save regs r15-r31 as some will be used
52 * for M[] data.
53 */
54 for (i = r_M; i < (r_M+16); i++) {
55 if (ctx->seen & (1 << (i-r_M)))
56 PPC_STD(i, 1, -(8*(32-i)));
57 }
58 }
59 EMIT(PPC_INST_STDU | __PPC_RS(1) | __PPC_RA(1) |
60 (-BPF_PPC_STACKFRAME & 0xfffc));
61 }
62
63 if (ctx->seen & SEEN_DATAREF) {
64 /*
65 * If this filter needs to access skb data,
66 * prepare r_D and r_HL:
67 * r_HL = skb->len - skb->data_len
68 * r_D = skb->data
69 */
70 PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
71 data_len));
72 PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
73 PPC_SUB(r_HL, r_HL, r_scratch1);
74 PPC_LD_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
75 }
76
77 if (ctx->seen & SEEN_XREG) {
78 /*
79 * TODO: Could also detect whether first instr. sets X and
80 * avoid this (as below, with A).
81 */
82 PPC_LI(r_X, 0);
83 }
84
85 switch (filter[0].code) {
86 case BPF_S_RET_K:
87 case BPF_S_LD_W_LEN:
88 case BPF_S_ANC_PROTOCOL:
89 case BPF_S_ANC_IFINDEX:
90 case BPF_S_ANC_MARK:
91 case BPF_S_ANC_RXHASH:
92 case BPF_S_ANC_CPU:
93 case BPF_S_ANC_QUEUE:
94 case BPF_S_LD_W_ABS:
95 case BPF_S_LD_H_ABS:
96 case BPF_S_LD_B_ABS:
97 /* first instruction sets A register (or is RET 'constant') */
98 break;
99 default:
100 /* make sure we dont leak kernel information to user */
101 PPC_LI(r_A, 0);
102 }
103}
104
105static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
106{
107 int i;
108
109 if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
110 PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
111 if (ctx->seen & SEEN_DATAREF) {
112 PPC_LD(0, 1, 16);
113 PPC_MTLR(0);
114 PPC_LD(r_D, 1, -(8*(32-r_D)));
115 PPC_LD(r_HL, 1, -(8*(32-r_HL)));
116 }
117 if (ctx->seen & SEEN_MEM) {
118 /* Restore any saved non-vol registers */
119 for (i = r_M; i < (r_M+16); i++) {
120 if (ctx->seen & (1 << (i-r_M)))
121 PPC_LD(i, 1, -(8*(32-i)));
122 }
123 }
124 }
125 /* The RETs have left a return value in R3. */
126
127 PPC_BLR();
128}
129
130/* Assemble the body code between the prologue & epilogue. */
131static int bpf_jit_build_body(struct sk_filter *fp, u32 *image,
132 struct codegen_context *ctx,
133 unsigned int *addrs)
134{
135 const struct sock_filter *filter = fp->insns;
136 int flen = fp->len;
137 u8 *func;
138 unsigned int true_cond;
139 int i;
140
141 /* Start of epilogue code */
142 unsigned int exit_addr = addrs[flen];
143
144 for (i = 0; i < flen; i++) {
145 unsigned int K = filter[i].k;
146
147 /*
148 * addrs[] maps a BPF bytecode address into a real offset from
149 * the start of the body code.
150 */
151 addrs[i] = ctx->idx * 4;
152
153 switch (filter[i].code) {
154 /*** ALU ops ***/
155 case BPF_S_ALU_ADD_X: /* A += X; */
156 ctx->seen |= SEEN_XREG;
157 PPC_ADD(r_A, r_A, r_X);
158 break;
159 case BPF_S_ALU_ADD_K: /* A += K; */
160 if (!K)
161 break;
162 PPC_ADDI(r_A, r_A, IMM_L(K));
163 if (K >= 32768)
164 PPC_ADDIS(r_A, r_A, IMM_HA(K));
165 break;
166 case BPF_S_ALU_SUB_X: /* A -= X; */
167 ctx->seen |= SEEN_XREG;
168 PPC_SUB(r_A, r_A, r_X);
169 break;
170 case BPF_S_ALU_SUB_K: /* A -= K */
171 if (!K)
172 break;
173 PPC_ADDI(r_A, r_A, IMM_L(-K));
174 if (K >= 32768)
175 PPC_ADDIS(r_A, r_A, IMM_HA(-K));
176 break;
177 case BPF_S_ALU_MUL_X: /* A *= X; */
178 ctx->seen |= SEEN_XREG;
179 PPC_MUL(r_A, r_A, r_X);
180 break;
181 case BPF_S_ALU_MUL_K: /* A *= K */
182 if (K < 32768)
183 PPC_MULI(r_A, r_A, K);
184 else {
185 PPC_LI32(r_scratch1, K);
186 PPC_MUL(r_A, r_A, r_scratch1);
187 }
188 break;
189 case BPF_S_ALU_DIV_X: /* A /= X; */
190 ctx->seen |= SEEN_XREG;
191 PPC_CMPWI(r_X, 0);
192 if (ctx->pc_ret0 != -1) {
193 PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
194 } else {
195 /*
196 * Exit, returning 0; first pass hits here
197 * (longer worst-case code size).
198 */
199 PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
200 PPC_LI(r_ret, 0);
201 PPC_JMP(exit_addr);
202 }
203 PPC_DIVWU(r_A, r_A, r_X);
204 break;
205 case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */
206 PPC_LI32(r_scratch1, K);
207 /* Top 32 bits of 64bit result -> A */
208 PPC_MULHWU(r_A, r_A, r_scratch1);
209 break;
210 case BPF_S_ALU_AND_X:
211 ctx->seen |= SEEN_XREG;
212 PPC_AND(r_A, r_A, r_X);
213 break;
214 case BPF_S_ALU_AND_K:
215 if (!IMM_H(K))
216 PPC_ANDI(r_A, r_A, K);
217 else {
218 PPC_LI32(r_scratch1, K);
219 PPC_AND(r_A, r_A, r_scratch1);
220 }
221 break;
222 case BPF_S_ALU_OR_X:
223 ctx->seen |= SEEN_XREG;
224 PPC_OR(r_A, r_A, r_X);
225 break;
226 case BPF_S_ALU_OR_K:
227 if (IMM_L(K))
228 PPC_ORI(r_A, r_A, IMM_L(K));
229 if (K >= 65536)
230 PPC_ORIS(r_A, r_A, IMM_H(K));
231 break;
232 case BPF_S_ALU_LSH_X: /* A <<= X; */
233 ctx->seen |= SEEN_XREG;
234 PPC_SLW(r_A, r_A, r_X);
235 break;
236 case BPF_S_ALU_LSH_K:
237 if (K == 0)
238 break;
239 else
240 PPC_SLWI(r_A, r_A, K);
241 break;
242 case BPF_S_ALU_RSH_X: /* A >>= X; */
243 ctx->seen |= SEEN_XREG;
244 PPC_SRW(r_A, r_A, r_X);
245 break;
246 case BPF_S_ALU_RSH_K: /* A >>= K; */
247 if (K == 0)
248 break;
249 else
250 PPC_SRWI(r_A, r_A, K);
251 break;
252 case BPF_S_ALU_NEG:
253 PPC_NEG(r_A, r_A);
254 break;
255 case BPF_S_RET_K:
256 PPC_LI32(r_ret, K);
257 if (!K) {
258 if (ctx->pc_ret0 == -1)
259 ctx->pc_ret0 = i;
260 }
261 /*
262 * If this isn't the very last instruction, branch to
263 * the epilogue if we've stuff to clean up. Otherwise,
264 * if there's nothing to tidy, just return. If we /are/
265 * the last instruction, we're about to fall through to
266 * the epilogue to return.
267 */
268 if (i != flen - 1) {
269 /*
270 * Note: 'seen' is properly valid only on pass
271 * #2. Both parts of this conditional are the
272 * same instruction size though, meaning the
273 * first pass will still correctly determine the
274 * code size/addresses.
275 */
276 if (ctx->seen)
277 PPC_JMP(exit_addr);
278 else
279 PPC_BLR();
280 }
281 break;
282 case BPF_S_RET_A:
283 PPC_MR(r_ret, r_A);
284 if (i != flen - 1) {
285 if (ctx->seen)
286 PPC_JMP(exit_addr);
287 else
288 PPC_BLR();
289 }
290 break;
291 case BPF_S_MISC_TAX: /* X = A */
292 PPC_MR(r_X, r_A);
293 break;
294 case BPF_S_MISC_TXA: /* A = X */
295 ctx->seen |= SEEN_XREG;
296 PPC_MR(r_A, r_X);
297 break;
298
299 /*** Constant loads/M[] access ***/
300 case BPF_S_LD_IMM: /* A = K */
301 PPC_LI32(r_A, K);
302 break;
303 case BPF_S_LDX_IMM: /* X = K */
304 PPC_LI32(r_X, K);
305 break;
306 case BPF_S_LD_MEM: /* A = mem[K] */
307 PPC_MR(r_A, r_M + (K & 0xf));
308 ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
309 break;
310 case BPF_S_LDX_MEM: /* X = mem[K] */
311 PPC_MR(r_X, r_M + (K & 0xf));
312 ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
313 break;
314 case BPF_S_ST: /* mem[K] = A */
315 PPC_MR(r_M + (K & 0xf), r_A);
316 ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
317 break;
318 case BPF_S_STX: /* mem[K] = X */
319 PPC_MR(r_M + (K & 0xf), r_X);
320 ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
321 break;
322 case BPF_S_LD_W_LEN: /* A = skb->len; */
323 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
324 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
325 break;
326 case BPF_S_LDX_W_LEN: /* X = skb->len; */
327 PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
328 break;
329
330 /*** Ancillary info loads ***/
331
332 /* None of the BPF_S_ANC* codes appear to be passed by
333 * sk_chk_filter(). The interpreter and the x86 BPF
334 * compiler implement them so we do too -- they may be
335 * planted in future.
336 */
337 case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
338 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
339 protocol) != 2);
340 PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
341 protocol));
342 /* ntohs is a NOP with BE loads. */
343 break;
344 case BPF_S_ANC_IFINDEX:
345 PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
346 dev));
347 PPC_CMPDI(r_scratch1, 0);
348 if (ctx->pc_ret0 != -1) {
349 PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
350 } else {
351 /* Exit, returning 0; first pass hits here. */
352 PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
353 PPC_LI(r_ret, 0);
354 PPC_JMP(exit_addr);
355 }
356 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
357 ifindex) != 4);
358 PPC_LWZ_OFFS(r_A, r_scratch1,
359 offsetof(struct net_device, ifindex));
360 break;
361 case BPF_S_ANC_MARK:
362 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
363 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
364 mark));
365 break;
366 case BPF_S_ANC_RXHASH:
367 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
368 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
369 rxhash));
370 break;
371 case BPF_S_ANC_QUEUE:
372 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
373 queue_mapping) != 2);
374 PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
375 queue_mapping));
376 break;
377 case BPF_S_ANC_CPU:
378#ifdef CONFIG_SMP
379 /*
380 * PACA ptr is r13:
381 * raw_smp_processor_id() = local_paca->paca_index
382 */
383 BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct,
384 paca_index) != 2);
385 PPC_LHZ_OFFS(r_A, 13,
386 offsetof(struct paca_struct, paca_index));
387#else
388 PPC_LI(r_A, 0);
389#endif
390 break;
391
392 /*** Absolute loads from packet header/data ***/
393 case BPF_S_LD_W_ABS:
394 func = sk_load_word;
395 goto common_load;
396 case BPF_S_LD_H_ABS:
397 func = sk_load_half;
398 goto common_load;
399 case BPF_S_LD_B_ABS:
400 func = sk_load_byte;
401 common_load:
402 /*
403 * Load from [K]. Reference with the (negative)
404 * SKF_NET_OFF/SKF_LL_OFF offsets is unsupported.
405 */
406 ctx->seen |= SEEN_DATAREF;
407 if ((int)K < 0)
408 return -ENOTSUPP;
409 PPC_LI64(r_scratch1, func);
410 PPC_MTLR(r_scratch1);
411 PPC_LI32(r_addr, K);
412 PPC_BLRL();
413 /*
414 * Helper returns 'lt' condition on error, and an
415 * appropriate return value in r3
416 */
417 PPC_BCC(COND_LT, exit_addr);
418 break;
419
420 /*** Indirect loads from packet header/data ***/
421 case BPF_S_LD_W_IND:
422 func = sk_load_word;
423 goto common_load_ind;
424 case BPF_S_LD_H_IND:
425 func = sk_load_half;
426 goto common_load_ind;
427 case BPF_S_LD_B_IND:
428 func = sk_load_byte;
429 common_load_ind:
430 /*
431 * Load from [X + K]. Negative offsets are tested for
432 * in the helper functions, and result in a 'ret 0'.
433 */
434 ctx->seen |= SEEN_DATAREF | SEEN_XREG;
435 PPC_LI64(r_scratch1, func);
436 PPC_MTLR(r_scratch1);
437 PPC_ADDI(r_addr, r_X, IMM_L(K));
438 if (K >= 32768)
439 PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
440 PPC_BLRL();
441 /* If error, cr0.LT set */
442 PPC_BCC(COND_LT, exit_addr);
443 break;
444
445 case BPF_S_LDX_B_MSH:
446 /*
447 * x86 version drops packet (RET 0) when K<0, whereas
448 * interpreter does allow K<0 (__load_pointer, special
449 * ancillary data). common_load returns ENOTSUPP if K<0,
450 * so we fall back to interpreter & filter works.
451 */
452 func = sk_load_byte_msh;
453 goto common_load;
454 break;
455
456 /*** Jump and branches ***/
457 case BPF_S_JMP_JA:
458 if (K != 0)
459 PPC_JMP(addrs[i + 1 + K]);
460 break;
461
462 case BPF_S_JMP_JGT_K:
463 case BPF_S_JMP_JGT_X:
464 true_cond = COND_GT;
465 goto cond_branch;
466 case BPF_S_JMP_JGE_K:
467 case BPF_S_JMP_JGE_X:
468 true_cond = COND_GE;
469 goto cond_branch;
470 case BPF_S_JMP_JEQ_K:
471 case BPF_S_JMP_JEQ_X:
472 true_cond = COND_EQ;
473 goto cond_branch;
474 case BPF_S_JMP_JSET_K:
475 case BPF_S_JMP_JSET_X:
476 true_cond = COND_NE;
477 /* Fall through */
478 cond_branch:
479 /* same targets, can avoid doing the test :) */
480 if (filter[i].jt == filter[i].jf) {
481 if (filter[i].jt > 0)
482 PPC_JMP(addrs[i + 1 + filter[i].jt]);
483 break;
484 }
485
486 switch (filter[i].code) {
487 case BPF_S_JMP_JGT_X:
488 case BPF_S_JMP_JGE_X:
489 case BPF_S_JMP_JEQ_X:
490 ctx->seen |= SEEN_XREG;
491 PPC_CMPLW(r_A, r_X);
492 break;
493 case BPF_S_JMP_JSET_X:
494 ctx->seen |= SEEN_XREG;
495 PPC_AND_DOT(r_scratch1, r_A, r_X);
496 break;
497 case BPF_S_JMP_JEQ_K:
498 case BPF_S_JMP_JGT_K:
499 case BPF_S_JMP_JGE_K:
500 if (K < 32768)
501 PPC_CMPLWI(r_A, K);
502 else {
503 PPC_LI32(r_scratch1, K);
504 PPC_CMPLW(r_A, r_scratch1);
505 }
506 break;
507 case BPF_S_JMP_JSET_K:
508 if (K < 32768)
509 /* PPC_ANDI is /only/ dot-form */
510 PPC_ANDI(r_scratch1, r_A, K);
511 else {
512 PPC_LI32(r_scratch1, K);
513 PPC_AND_DOT(r_scratch1, r_A,
514 r_scratch1);
515 }
516 break;
517 }
518 /* Sometimes branches are constructed "backward", with
519 * the false path being the branch and true path being
520 * a fallthrough to the next instruction.
521 */
522 if (filter[i].jt == 0)
523 /* Swap the sense of the branch */
524 PPC_BCC(true_cond ^ COND_CMP_TRUE,
525 addrs[i + 1 + filter[i].jf]);
526 else {
527 PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
528 if (filter[i].jf != 0)
529 PPC_JMP(addrs[i + 1 + filter[i].jf]);
530 }
531 break;
532 default:
533 /* The filter contains something cruel & unusual.
534 * We don't handle it, but also there shouldn't be
535 * anything missing from our list.
536 */
537 if (printk_ratelimit())
538 pr_err("BPF filter opcode %04x (@%d) unsupported\n",
539 filter[i].code, i);
540 return -ENOTSUPP;
541 }
542
543 }
544 /* Set end-of-body-code address for exit. */
545 addrs[i] = ctx->idx * 4;
546
547 return 0;
548}
549
550void bpf_jit_compile(struct sk_filter *fp)
551{
552 unsigned int proglen;
553 unsigned int alloclen;
554 u32 *image = NULL;
555 u32 *code_base;
556 unsigned int *addrs;
557 struct codegen_context cgctx;
558 int pass;
559 int flen = fp->len;
560
561 if (!bpf_jit_enable)
562 return;
563
564 addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
565 if (addrs == NULL)
566 return;
567
568 /*
569 * There are multiple assembly passes as the generated code will change
570 * size as it settles down, figuring out the max branch offsets/exit
571 * paths required.
572 *
573 * The range of standard conditional branches is +/- 32Kbytes. Since
574 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
575 * finish with 8 bytes/instruction. Not feasible, so long jumps are
576 * used, distinct from short branches.
577 *
578 * Current:
579 *
580 * For now, both branch types assemble to 2 words (short branches padded
581 * with a NOP); this is less efficient, but assembly will always complete
582 * after exactly 3 passes:
583 *
584 * First pass: No code buffer; Program is "faux-generated" -- no code
585 * emitted but maximum size of output determined (and addrs[] filled
586 * in). Also, we note whether we use M[], whether we use skb data, etc.
587 * All generation choices assumed to be 'worst-case', e.g. branches all
588 * far (2 instructions), return path code reduction not available, etc.
589 *
590 * Second pass: Code buffer allocated with size determined previously.
591 * Prologue generated to support features we have seen used. Exit paths
592 * determined and addrs[] is filled in again, as code may be slightly
593 * smaller as a result.
594 *
595 * Third pass: Code generated 'for real', and branch destinations
596 * determined from now-accurate addrs[] map.
597 *
598 * Ideal:
599 *
600 * If we optimise this, near branches will be shorter. On the
601 * first assembly pass, we should err on the side of caution and
602 * generate the biggest code. On subsequent passes, branches will be
603 * generated short or long and code size will reduce. With smaller
604 * code, more branches may fall into the short category, and code will
605 * reduce more.
606 *
607 * Finally, if we see one pass generate code the same size as the
608 * previous pass we have converged and should now generate code for
609 * real. Allocating at the end will also save the memory that would
610 * otherwise be wasted by the (small) current code shrinkage.
611 * Preferably, we should do a small number of passes (e.g. 5) and if we
612 * haven't converged by then, get impatient and force code to generate
613 * as-is, even if the odd branch would be left long. The chances of a
614 * long jump are tiny with all but the most enormous of BPF filter
615 * inputs, so we should usually converge on the third pass.
616 */
617
618 cgctx.idx = 0;
619 cgctx.seen = 0;
620 cgctx.pc_ret0 = -1;
621 /* Scouting faux-generate pass 0 */
622 if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
623 /* We hit something illegal or unsupported. */
624 goto out;
625
626 /*
627 * Pretend to build prologue, given the features we've seen. This will
628 * update ctgtx.idx as it pretends to output instructions, then we can
629 * calculate total size from idx.
630 */
631 bpf_jit_build_prologue(fp, 0, &cgctx);
632 bpf_jit_build_epilogue(0, &cgctx);
633
634 proglen = cgctx.idx * 4;
635 alloclen = proglen + FUNCTION_DESCR_SIZE;
636 image = module_alloc(max_t(unsigned int, alloclen,
637 sizeof(struct work_struct)));
638 if (!image)
639 goto out;
640
641 code_base = image + (FUNCTION_DESCR_SIZE/4);
642
643 /* Code generation passes 1-2 */
644 for (pass = 1; pass < 3; pass++) {
645 /* Now build the prologue, body code & epilogue for real. */
646 cgctx.idx = 0;
647 bpf_jit_build_prologue(fp, code_base, &cgctx);
648 bpf_jit_build_body(fp, code_base, &cgctx, addrs);
649 bpf_jit_build_epilogue(code_base, &cgctx);
650
651 if (bpf_jit_enable > 1)
652 pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
653 proglen - (cgctx.idx * 4), cgctx.seen);
654 }
655
656 if (bpf_jit_enable > 1)
657 pr_info("flen=%d proglen=%u pass=%d image=%p\n",
658 flen, proglen, pass, image);
659
660 if (image) {
661 if (bpf_jit_enable > 1)
662 print_hex_dump(KERN_ERR, "JIT code: ",
663 DUMP_PREFIX_ADDRESS,
664 16, 1, code_base,
665 proglen, false);
666
667 bpf_flush_icache(code_base, code_base + (proglen/4));
668 /* Function descriptor nastiness: Address + TOC */
669 ((u64 *)image)[0] = (u64)code_base;
670 ((u64 *)image)[1] = local_paca->kernel_toc;
671 fp->bpf_func = (void *)image;
672 }
673out:
674 kfree(addrs);
675 return;
676}
677
678static void jit_free_defer(struct work_struct *arg)
679{
680 module_free(NULL, arg);
681}
682
683/* run from softirq, we must use a work_struct to call
684 * module_free() from process context
685 */
686void bpf_jit_free(struct sk_filter *fp)
687{
688 if (fp->bpf_func != sk_run_filter) {
689 struct work_struct *work = (struct work_struct *)fp->bpf_func;
690
691 INIT_WORK(work, jit_free_defer);
692 schedule_work(work);
693 }
694}