diff options
| author | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
|---|---|---|
| committer | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
| commit | fcc9d2e5a6c89d22b8b773a64fb4ad21ac318446 (patch) | |
| tree | a57612d1888735a2ec7972891b68c1ac5ec8faea /Documentation/virtual/lguest | |
| parent | 8dea78da5cee153b8af9c07a2745f6c55057fe12 (diff) | |
Diffstat (limited to 'Documentation/virtual/lguest')
| -rw-r--r-- | Documentation/virtual/lguest/Makefile | 8 | ||||
| -rw-r--r-- | Documentation/virtual/lguest/extract | 58 | ||||
| -rw-r--r-- | Documentation/virtual/lguest/lguest.c | 2065 | ||||
| -rw-r--r-- | Documentation/virtual/lguest/lguest.txt | 129 |
4 files changed, 2260 insertions, 0 deletions
diff --git a/Documentation/virtual/lguest/Makefile b/Documentation/virtual/lguest/Makefile new file mode 100644 index 00000000000..0ac34206f7a --- /dev/null +++ b/Documentation/virtual/lguest/Makefile | |||
| @@ -0,0 +1,8 @@ | |||
| 1 | # This creates the demonstration utility "lguest" which runs a Linux guest. | ||
| 2 | # Missing headers? Add "-I../../../include -I../../../arch/x86/include" | ||
| 3 | CFLAGS:=-m32 -Wall -Wmissing-declarations -Wmissing-prototypes -O3 -U_FORTIFY_SOURCE | ||
| 4 | |||
| 5 | all: lguest | ||
| 6 | |||
| 7 | clean: | ||
| 8 | rm -f lguest | ||
diff --git a/Documentation/virtual/lguest/extract b/Documentation/virtual/lguest/extract new file mode 100644 index 00000000000..7730bb6e4b9 --- /dev/null +++ b/Documentation/virtual/lguest/extract | |||
| @@ -0,0 +1,58 @@ | |||
| 1 | #! /bin/sh | ||
| 2 | |||
| 3 | set -e | ||
| 4 | |||
| 5 | PREFIX=$1 | ||
| 6 | shift | ||
| 7 | |||
| 8 | trap 'rm -r $TMPDIR' 0 | ||
| 9 | TMPDIR=`mktemp -d` | ||
| 10 | |||
| 11 | exec 3>/dev/null | ||
| 12 | for f; do | ||
| 13 | while IFS=" | ||
| 14 | " read -r LINE; do | ||
| 15 | case "$LINE" in | ||
| 16 | *$PREFIX:[0-9]*:\**) | ||
| 17 | NUM=`echo "$LINE" | sed "s/.*$PREFIX:\([0-9]*\).*/\1/"` | ||
| 18 | if [ -f $TMPDIR/$NUM ]; then | ||
| 19 | echo "$TMPDIR/$NUM already exits prior to $f" | ||
| 20 | exit 1 | ||
| 21 | fi | ||
| 22 | exec 3>>$TMPDIR/$NUM | ||
| 23 | echo $f | sed 's,\.\./,,g' > $TMPDIR/.$NUM | ||
| 24 | /bin/echo "$LINE" | sed -e "s/$PREFIX:[0-9]*//" -e "s/:\*/*/" >&3 | ||
| 25 | ;; | ||
| 26 | *$PREFIX:[0-9]*) | ||
| 27 | NUM=`echo "$LINE" | sed "s/.*$PREFIX:\([0-9]*\).*/\1/"` | ||
| 28 | if [ -f $TMPDIR/$NUM ]; then | ||
| 29 | echo "$TMPDIR/$NUM already exits prior to $f" | ||
| 30 | exit 1 | ||
| 31 | fi | ||
| 32 | exec 3>>$TMPDIR/$NUM | ||
| 33 | echo $f | sed 's,\.\./,,g' > $TMPDIR/.$NUM | ||
| 34 | /bin/echo "$LINE" | sed "s/$PREFIX:[0-9]*//" >&3 | ||
| 35 | ;; | ||
| 36 | *:\**) | ||
| 37 | /bin/echo "$LINE" | sed -e "s/:\*/*/" -e "s,/\*\*/,," >&3 | ||
| 38 | echo >&3 | ||
| 39 | exec 3>/dev/null | ||
| 40 | ;; | ||
| 41 | *) | ||
| 42 | /bin/echo "$LINE" >&3 | ||
| 43 | ;; | ||
| 44 | esac | ||
| 45 | done < $f | ||
| 46 | echo >&3 | ||
| 47 | exec 3>/dev/null | ||
| 48 | done | ||
| 49 | |||
| 50 | LASTFILE="" | ||
| 51 | for f in $TMPDIR/*; do | ||
| 52 | if [ "$LASTFILE" != $(cat $TMPDIR/.$(basename $f) ) ]; then | ||
| 53 | LASTFILE=$(cat $TMPDIR/.$(basename $f) ) | ||
| 54 | echo "[ $LASTFILE ]" | ||
| 55 | fi | ||
| 56 | cat $f | ||
| 57 | done | ||
| 58 | |||
diff --git a/Documentation/virtual/lguest/lguest.c b/Documentation/virtual/lguest/lguest.c new file mode 100644 index 00000000000..d928c134dee --- /dev/null +++ b/Documentation/virtual/lguest/lguest.c | |||
| @@ -0,0 +1,2065 @@ | |||
| 1 | /*P:100 | ||
| 2 | * This is the Launcher code, a simple program which lays out the "physical" | ||
| 3 | * memory for the new Guest by mapping the kernel image and the virtual | ||
| 4 | * devices, then opens /dev/lguest to tell the kernel about the Guest and | ||
| 5 | * control it. | ||
| 6 | :*/ | ||
| 7 | #define _LARGEFILE64_SOURCE | ||
| 8 | #define _GNU_SOURCE | ||
| 9 | #include <stdio.h> | ||
| 10 | #include <string.h> | ||
| 11 | #include <unistd.h> | ||
| 12 | #include <err.h> | ||
| 13 | #include <stdint.h> | ||
| 14 | #include <stdlib.h> | ||
| 15 | #include <elf.h> | ||
| 16 | #include <sys/mman.h> | ||
| 17 | #include <sys/param.h> | ||
| 18 | #include <sys/types.h> | ||
| 19 | #include <sys/stat.h> | ||
| 20 | #include <sys/wait.h> | ||
| 21 | #include <sys/eventfd.h> | ||
| 22 | #include <fcntl.h> | ||
| 23 | #include <stdbool.h> | ||
| 24 | #include <errno.h> | ||
| 25 | #include <ctype.h> | ||
| 26 | #include <sys/socket.h> | ||
| 27 | #include <sys/ioctl.h> | ||
| 28 | #include <sys/time.h> | ||
| 29 | #include <time.h> | ||
| 30 | #include <netinet/in.h> | ||
| 31 | #include <net/if.h> | ||
| 32 | #include <linux/sockios.h> | ||
| 33 | #include <linux/if_tun.h> | ||
| 34 | #include <sys/uio.h> | ||
| 35 | #include <termios.h> | ||
| 36 | #include <getopt.h> | ||
| 37 | #include <assert.h> | ||
| 38 | #include <sched.h> | ||
| 39 | #include <limits.h> | ||
| 40 | #include <stddef.h> | ||
| 41 | #include <signal.h> | ||
| 42 | #include <pwd.h> | ||
| 43 | #include <grp.h> | ||
| 44 | |||
| 45 | #include <linux/virtio_config.h> | ||
| 46 | #include <linux/virtio_net.h> | ||
| 47 | #include <linux/virtio_blk.h> | ||
| 48 | #include <linux/virtio_console.h> | ||
| 49 | #include <linux/virtio_rng.h> | ||
| 50 | #include <linux/virtio_ring.h> | ||
| 51 | #include <asm/bootparam.h> | ||
| 52 | #include "../../../include/linux/lguest_launcher.h" | ||
| 53 | /*L:110 | ||
| 54 | * We can ignore the 43 include files we need for this program, but I do want | ||
| 55 | * to draw attention to the use of kernel-style types. | ||
| 56 | * | ||
| 57 | * As Linus said, "C is a Spartan language, and so should your naming be." I | ||
| 58 | * like these abbreviations, so we define them here. Note that u64 is always | ||
| 59 | * unsigned long long, which works on all Linux systems: this means that we can | ||
| 60 | * use %llu in printf for any u64. | ||
| 61 | */ | ||
| 62 | typedef unsigned long long u64; | ||
| 63 | typedef uint32_t u32; | ||
| 64 | typedef uint16_t u16; | ||
| 65 | typedef uint8_t u8; | ||
| 66 | /*:*/ | ||
| 67 | |||
| 68 | #define BRIDGE_PFX "bridge:" | ||
| 69 | #ifndef SIOCBRADDIF | ||
| 70 | #define SIOCBRADDIF 0x89a2 /* add interface to bridge */ | ||
| 71 | #endif | ||
| 72 | /* We can have up to 256 pages for devices. */ | ||
| 73 | #define DEVICE_PAGES 256 | ||
| 74 | /* This will occupy 3 pages: it must be a power of 2. */ | ||
| 75 | #define VIRTQUEUE_NUM 256 | ||
| 76 | |||
| 77 | /*L:120 | ||
| 78 | * verbose is both a global flag and a macro. The C preprocessor allows | ||
| 79 | * this, and although I wouldn't recommend it, it works quite nicely here. | ||
| 80 | */ | ||
| 81 | static bool verbose; | ||
| 82 | #define verbose(args...) \ | ||
| 83 | do { if (verbose) printf(args); } while(0) | ||
| 84 | /*:*/ | ||
| 85 | |||
| 86 | /* The pointer to the start of guest memory. */ | ||
| 87 | static void *guest_base; | ||
| 88 | /* The maximum guest physical address allowed, and maximum possible. */ | ||
| 89 | static unsigned long guest_limit, guest_max; | ||
| 90 | /* The /dev/lguest file descriptor. */ | ||
| 91 | static int lguest_fd; | ||
| 92 | |||
| 93 | /* a per-cpu variable indicating whose vcpu is currently running */ | ||
| 94 | static unsigned int __thread cpu_id; | ||
| 95 | |||
| 96 | /* This is our list of devices. */ | ||
| 97 | struct device_list { | ||
| 98 | /* Counter to assign interrupt numbers. */ | ||
| 99 | unsigned int next_irq; | ||
| 100 | |||
| 101 | /* Counter to print out convenient device numbers. */ | ||
| 102 | unsigned int device_num; | ||
| 103 | |||
| 104 | /* The descriptor page for the devices. */ | ||
| 105 | u8 *descpage; | ||
| 106 | |||
| 107 | /* A single linked list of devices. */ | ||
| 108 | struct device *dev; | ||
| 109 | /* And a pointer to the last device for easy append. */ | ||
| 110 | struct device *lastdev; | ||
| 111 | }; | ||
| 112 | |||
| 113 | /* The list of Guest devices, based on command line arguments. */ | ||
| 114 | static struct device_list devices; | ||
| 115 | |||
| 116 | /* The device structure describes a single device. */ | ||
| 117 | struct device { | ||
| 118 | /* The linked-list pointer. */ | ||
| 119 | struct device *next; | ||
| 120 | |||
| 121 | /* The device's descriptor, as mapped into the Guest. */ | ||
| 122 | struct lguest_device_desc *desc; | ||
| 123 | |||
| 124 | /* We can't trust desc values once Guest has booted: we use these. */ | ||
| 125 | unsigned int feature_len; | ||
| 126 | unsigned int num_vq; | ||
| 127 | |||
| 128 | /* The name of this device, for --verbose. */ | ||
| 129 | const char *name; | ||
| 130 | |||
| 131 | /* Any queues attached to this device */ | ||
| 132 | struct virtqueue *vq; | ||
| 133 | |||
| 134 | /* Is it operational */ | ||
| 135 | bool running; | ||
| 136 | |||
| 137 | /* Device-specific data. */ | ||
| 138 | void *priv; | ||
| 139 | }; | ||
| 140 | |||
| 141 | /* The virtqueue structure describes a queue attached to a device. */ | ||
| 142 | struct virtqueue { | ||
| 143 | struct virtqueue *next; | ||
| 144 | |||
| 145 | /* Which device owns me. */ | ||
| 146 | struct device *dev; | ||
| 147 | |||
| 148 | /* The configuration for this queue. */ | ||
| 149 | struct lguest_vqconfig config; | ||
| 150 | |||
| 151 | /* The actual ring of buffers. */ | ||
| 152 | struct vring vring; | ||
| 153 | |||
| 154 | /* Last available index we saw. */ | ||
| 155 | u16 last_avail_idx; | ||
| 156 | |||
| 157 | /* How many are used since we sent last irq? */ | ||
| 158 | unsigned int pending_used; | ||
| 159 | |||
| 160 | /* Eventfd where Guest notifications arrive. */ | ||
| 161 | int eventfd; | ||
| 162 | |||
| 163 | /* Function for the thread which is servicing this virtqueue. */ | ||
| 164 | void (*service)(struct virtqueue *vq); | ||
| 165 | pid_t thread; | ||
| 166 | }; | ||
| 167 | |||
| 168 | /* Remember the arguments to the program so we can "reboot" */ | ||
| 169 | static char **main_args; | ||
| 170 | |||
| 171 | /* The original tty settings to restore on exit. */ | ||
| 172 | static struct termios orig_term; | ||
| 173 | |||
| 174 | /* | ||
| 175 | * We have to be careful with barriers: our devices are all run in separate | ||
| 176 | * threads and so we need to make sure that changes visible to the Guest happen | ||
| 177 | * in precise order. | ||
| 178 | */ | ||
| 179 | #define wmb() __asm__ __volatile__("" : : : "memory") | ||
| 180 | #define mb() __asm__ __volatile__("" : : : "memory") | ||
| 181 | |||
| 182 | /* | ||
| 183 | * Convert an iovec element to the given type. | ||
| 184 | * | ||
| 185 | * This is a fairly ugly trick: we need to know the size of the type and | ||
| 186 | * alignment requirement to check the pointer is kosher. It's also nice to | ||
| 187 | * have the name of the type in case we report failure. | ||
| 188 | * | ||
| 189 | * Typing those three things all the time is cumbersome and error prone, so we | ||
| 190 | * have a macro which sets them all up and passes to the real function. | ||
| 191 | */ | ||
| 192 | #define convert(iov, type) \ | ||
| 193 | ((type *)_convert((iov), sizeof(type), __alignof__(type), #type)) | ||
| 194 | |||
| 195 | static void *_convert(struct iovec *iov, size_t size, size_t align, | ||
| 196 | const char *name) | ||
| 197 | { | ||
| 198 | if (iov->iov_len != size) | ||
| 199 | errx(1, "Bad iovec size %zu for %s", iov->iov_len, name); | ||
| 200 | if ((unsigned long)iov->iov_base % align != 0) | ||
| 201 | errx(1, "Bad alignment %p for %s", iov->iov_base, name); | ||
| 202 | return iov->iov_base; | ||
| 203 | } | ||
| 204 | |||
| 205 | /* Wrapper for the last available index. Makes it easier to change. */ | ||
| 206 | #define lg_last_avail(vq) ((vq)->last_avail_idx) | ||
| 207 | |||
| 208 | /* | ||
| 209 | * The virtio configuration space is defined to be little-endian. x86 is | ||
| 210 | * little-endian too, but it's nice to be explicit so we have these helpers. | ||
| 211 | */ | ||
| 212 | #define cpu_to_le16(v16) (v16) | ||
| 213 | #define cpu_to_le32(v32) (v32) | ||
| 214 | #define cpu_to_le64(v64) (v64) | ||
| 215 | #define le16_to_cpu(v16) (v16) | ||
| 216 | #define le32_to_cpu(v32) (v32) | ||
| 217 | #define le64_to_cpu(v64) (v64) | ||
| 218 | |||
| 219 | /* Is this iovec empty? */ | ||
| 220 | static bool iov_empty(const struct iovec iov[], unsigned int num_iov) | ||
| 221 | { | ||
| 222 | unsigned int i; | ||
| 223 | |||
| 224 | for (i = 0; i < num_iov; i++) | ||
| 225 | if (iov[i].iov_len) | ||
| 226 | return false; | ||
| 227 | return true; | ||
| 228 | } | ||
| 229 | |||
| 230 | /* Take len bytes from the front of this iovec. */ | ||
| 231 | static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len) | ||
| 232 | { | ||
| 233 | unsigned int i; | ||
| 234 | |||
| 235 | for (i = 0; i < num_iov; i++) { | ||
| 236 | unsigned int used; | ||
| 237 | |||
| 238 | used = iov[i].iov_len < len ? iov[i].iov_len : len; | ||
| 239 | iov[i].iov_base += used; | ||
| 240 | iov[i].iov_len -= used; | ||
| 241 | len -= used; | ||
| 242 | } | ||
| 243 | assert(len == 0); | ||
| 244 | } | ||
| 245 | |||
| 246 | /* The device virtqueue descriptors are followed by feature bitmasks. */ | ||
| 247 | static u8 *get_feature_bits(struct device *dev) | ||
| 248 | { | ||
| 249 | return (u8 *)(dev->desc + 1) | ||
| 250 | + dev->num_vq * sizeof(struct lguest_vqconfig); | ||
| 251 | } | ||
| 252 | |||
| 253 | /*L:100 | ||
| 254 | * The Launcher code itself takes us out into userspace, that scary place where | ||
| 255 | * pointers run wild and free! Unfortunately, like most userspace programs, | ||
| 256 | * it's quite boring (which is why everyone likes to hack on the kernel!). | ||
| 257 | * Perhaps if you make up an Lguest Drinking Game at this point, it will get | ||
| 258 | * you through this section. Or, maybe not. | ||
| 259 | * | ||
| 260 | * The Launcher sets up a big chunk of memory to be the Guest's "physical" | ||
| 261 | * memory and stores it in "guest_base". In other words, Guest physical == | ||
| 262 | * Launcher virtual with an offset. | ||
| 263 | * | ||
| 264 | * This can be tough to get your head around, but usually it just means that we | ||
| 265 | * use these trivial conversion functions when the Guest gives us its | ||
| 266 | * "physical" addresses: | ||
| 267 | */ | ||
| 268 | static void *from_guest_phys(unsigned long addr) | ||
| 269 | { | ||
| 270 | return guest_base + addr; | ||
| 271 | } | ||
| 272 | |||
| 273 | static unsigned long to_guest_phys(const void *addr) | ||
| 274 | { | ||
| 275 | return (addr - guest_base); | ||
| 276 | } | ||
| 277 | |||
| 278 | /*L:130 | ||
| 279 | * Loading the Kernel. | ||
| 280 | * | ||
| 281 | * We start with couple of simple helper routines. open_or_die() avoids | ||
| 282 | * error-checking code cluttering the callers: | ||
| 283 | */ | ||
| 284 | static int open_or_die(const char *name, int flags) | ||
| 285 | { | ||
| 286 | int fd = open(name, flags); | ||
| 287 | if (fd < 0) | ||
| 288 | err(1, "Failed to open %s", name); | ||
| 289 | return fd; | ||
| 290 | } | ||
| 291 | |||
| 292 | /* map_zeroed_pages() takes a number of pages. */ | ||
| 293 | static void *map_zeroed_pages(unsigned int num) | ||
| 294 | { | ||
| 295 | int fd = open_or_die("/dev/zero", O_RDONLY); | ||
| 296 | void *addr; | ||
| 297 | |||
| 298 | /* | ||
| 299 | * We use a private mapping (ie. if we write to the page, it will be | ||
| 300 | * copied). We allocate an extra two pages PROT_NONE to act as guard | ||
| 301 | * pages against read/write attempts that exceed allocated space. | ||
| 302 | */ | ||
| 303 | addr = mmap(NULL, getpagesize() * (num+2), | ||
| 304 | PROT_NONE, MAP_PRIVATE, fd, 0); | ||
| 305 | |||
| 306 | if (addr == MAP_FAILED) | ||
| 307 | err(1, "Mmapping %u pages of /dev/zero", num); | ||
| 308 | |||
| 309 | if (mprotect(addr + getpagesize(), getpagesize() * num, | ||
| 310 | PROT_READ|PROT_WRITE) == -1) | ||
| 311 | err(1, "mprotect rw %u pages failed", num); | ||
| 312 | |||
| 313 | /* | ||
| 314 | * One neat mmap feature is that you can close the fd, and it | ||
| 315 | * stays mapped. | ||
| 316 | */ | ||
| 317 | close(fd); | ||
| 318 | |||
| 319 | /* Return address after PROT_NONE page */ | ||
| 320 | return addr + getpagesize(); | ||
| 321 | } | ||
| 322 | |||
| 323 | /* Get some more pages for a device. */ | ||
| 324 | static void *get_pages(unsigned int num) | ||
| 325 | { | ||
| 326 | void *addr = from_guest_phys(guest_limit); | ||
| 327 | |||
| 328 | guest_limit += num * getpagesize(); | ||
| 329 | if (guest_limit > guest_max) | ||
| 330 | errx(1, "Not enough memory for devices"); | ||
| 331 | return addr; | ||
| 332 | } | ||
| 333 | |||
| 334 | /* | ||
| 335 | * This routine is used to load the kernel or initrd. It tries mmap, but if | ||
| 336 | * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries), | ||
| 337 | * it falls back to reading the memory in. | ||
| 338 | */ | ||
| 339 | static void map_at(int fd, void *addr, unsigned long offset, unsigned long len) | ||
| 340 | { | ||
| 341 | ssize_t r; | ||
| 342 | |||
| 343 | /* | ||
| 344 | * We map writable even though for some segments are marked read-only. | ||
| 345 | * The kernel really wants to be writable: it patches its own | ||
| 346 | * instructions. | ||
| 347 | * | ||
| 348 | * MAP_PRIVATE means that the page won't be copied until a write is | ||
| 349 | * done to it. This allows us to share untouched memory between | ||
| 350 | * Guests. | ||
| 351 | */ | ||
| 352 | if (mmap(addr, len, PROT_READ|PROT_WRITE, | ||
| 353 | MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED) | ||
| 354 | return; | ||
| 355 | |||
| 356 | /* pread does a seek and a read in one shot: saves a few lines. */ | ||
| 357 | r = pread(fd, addr, len, offset); | ||
| 358 | if (r != len) | ||
| 359 | err(1, "Reading offset %lu len %lu gave %zi", offset, len, r); | ||
| 360 | } | ||
| 361 | |||
| 362 | /* | ||
| 363 | * This routine takes an open vmlinux image, which is in ELF, and maps it into | ||
| 364 | * the Guest memory. ELF = Embedded Linking Format, which is the format used | ||
| 365 | * by all modern binaries on Linux including the kernel. | ||
| 366 | * | ||
| 367 | * The ELF headers give *two* addresses: a physical address, and a virtual | ||
| 368 | * address. We use the physical address; the Guest will map itself to the | ||
| 369 | * virtual address. | ||
| 370 | * | ||
| 371 | * We return the starting address. | ||
| 372 | */ | ||
| 373 | static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr) | ||
| 374 | { | ||
| 375 | Elf32_Phdr phdr[ehdr->e_phnum]; | ||
| 376 | unsigned int i; | ||
| 377 | |||
| 378 | /* | ||
| 379 | * Sanity checks on the main ELF header: an x86 executable with a | ||
| 380 | * reasonable number of correctly-sized program headers. | ||
| 381 | */ | ||
| 382 | if (ehdr->e_type != ET_EXEC | ||
| 383 | || ehdr->e_machine != EM_386 | ||
| 384 | || ehdr->e_phentsize != sizeof(Elf32_Phdr) | ||
| 385 | || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr)) | ||
| 386 | errx(1, "Malformed elf header"); | ||
| 387 | |||
| 388 | /* | ||
| 389 | * An ELF executable contains an ELF header and a number of "program" | ||
| 390 | * headers which indicate which parts ("segments") of the program to | ||
| 391 | * load where. | ||
| 392 | */ | ||
| 393 | |||
| 394 | /* We read in all the program headers at once: */ | ||
| 395 | if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0) | ||
| 396 | err(1, "Seeking to program headers"); | ||
| 397 | if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr)) | ||
| 398 | err(1, "Reading program headers"); | ||
| 399 | |||
| 400 | /* | ||
| 401 | * Try all the headers: there are usually only three. A read-only one, | ||
| 402 | * a read-write one, and a "note" section which we don't load. | ||
| 403 | */ | ||
| 404 | for (i = 0; i < ehdr->e_phnum; i++) { | ||
| 405 | /* If this isn't a loadable segment, we ignore it */ | ||
| 406 | if (phdr[i].p_type != PT_LOAD) | ||
| 407 | continue; | ||
| 408 | |||
| 409 | verbose("Section %i: size %i addr %p\n", | ||
| 410 | i, phdr[i].p_memsz, (void *)phdr[i].p_paddr); | ||
| 411 | |||
| 412 | /* We map this section of the file at its physical address. */ | ||
| 413 | map_at(elf_fd, from_guest_phys(phdr[i].p_paddr), | ||
| 414 | phdr[i].p_offset, phdr[i].p_filesz); | ||
| 415 | } | ||
| 416 | |||
| 417 | /* The entry point is given in the ELF header. */ | ||
| 418 | return ehdr->e_entry; | ||
| 419 | } | ||
| 420 | |||
| 421 | /*L:150 | ||
| 422 | * A bzImage, unlike an ELF file, is not meant to be loaded. You're supposed | ||
| 423 | * to jump into it and it will unpack itself. We used to have to perform some | ||
| 424 | * hairy magic because the unpacking code scared me. | ||
| 425 | * | ||
| 426 | * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote | ||
| 427 | * a small patch to jump over the tricky bits in the Guest, so now we just read | ||
| 428 | * the funky header so we know where in the file to load, and away we go! | ||
| 429 | */ | ||
| 430 | static unsigned long load_bzimage(int fd) | ||
| 431 | { | ||
| 432 | struct boot_params boot; | ||
| 433 | int r; | ||
| 434 | /* Modern bzImages get loaded at 1M. */ | ||
| 435 | void *p = from_guest_phys(0x100000); | ||
| 436 | |||
| 437 | /* | ||
| 438 | * Go back to the start of the file and read the header. It should be | ||
| 439 | * a Linux boot header (see Documentation/x86/i386/boot.txt) | ||
| 440 | */ | ||
| 441 | lseek(fd, 0, SEEK_SET); | ||
| 442 | read(fd, &boot, sizeof(boot)); | ||
| 443 | |||
| 444 | /* Inside the setup_hdr, we expect the magic "HdrS" */ | ||
| 445 | if (memcmp(&boot.hdr.header, "HdrS", 4) != 0) | ||
| 446 | errx(1, "This doesn't look like a bzImage to me"); | ||
| 447 | |||
| 448 | /* Skip over the extra sectors of the header. */ | ||
| 449 | lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET); | ||
| 450 | |||
| 451 | /* Now read everything into memory. in nice big chunks. */ | ||
| 452 | while ((r = read(fd, p, 65536)) > 0) | ||
| 453 | p += r; | ||
| 454 | |||
| 455 | /* Finally, code32_start tells us where to enter the kernel. */ | ||
| 456 | return boot.hdr.code32_start; | ||
| 457 | } | ||
| 458 | |||
| 459 | /*L:140 | ||
| 460 | * Loading the kernel is easy when it's a "vmlinux", but most kernels | ||
| 461 | * come wrapped up in the self-decompressing "bzImage" format. With a little | ||
| 462 | * work, we can load those, too. | ||
| 463 | */ | ||
| 464 | static unsigned long load_kernel(int fd) | ||
| 465 | { | ||
| 466 | Elf32_Ehdr hdr; | ||
| 467 | |||
| 468 | /* Read in the first few bytes. */ | ||
| 469 | if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr)) | ||
| 470 | err(1, "Reading kernel"); | ||
| 471 | |||
| 472 | /* If it's an ELF file, it starts with "\177ELF" */ | ||
| 473 | if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0) | ||
| 474 | return map_elf(fd, &hdr); | ||
| 475 | |||
| 476 | /* Otherwise we assume it's a bzImage, and try to load it. */ | ||
| 477 | return load_bzimage(fd); | ||
| 478 | } | ||
| 479 | |||
| 480 | /* | ||
| 481 | * This is a trivial little helper to align pages. Andi Kleen hated it because | ||
| 482 | * it calls getpagesize() twice: "it's dumb code." | ||
| 483 | * | ||
| 484 | * Kernel guys get really het up about optimization, even when it's not | ||
| 485 | * necessary. I leave this code as a reaction against that. | ||
| 486 | */ | ||
| 487 | static inline unsigned long page_align(unsigned long addr) | ||
| 488 | { | ||
| 489 | /* Add upwards and truncate downwards. */ | ||
| 490 | return ((addr + getpagesize()-1) & ~(getpagesize()-1)); | ||
| 491 | } | ||
| 492 | |||
| 493 | /*L:180 | ||
| 494 | * An "initial ram disk" is a disk image loaded into memory along with the | ||
| 495 | * kernel which the kernel can use to boot from without needing any drivers. | ||
| 496 | * Most distributions now use this as standard: the initrd contains the code to | ||
| 497 | * load the appropriate driver modules for the current machine. | ||
| 498 | * | ||
| 499 | * Importantly, James Morris works for RedHat, and Fedora uses initrds for its | ||
| 500 | * kernels. He sent me this (and tells me when I break it). | ||
| 501 | */ | ||
| 502 | static unsigned long load_initrd(const char *name, unsigned long mem) | ||
| 503 | { | ||
| 504 | int ifd; | ||
| 505 | struct stat st; | ||
| 506 | unsigned long len; | ||
| 507 | |||
| 508 | ifd = open_or_die(name, O_RDONLY); | ||
| 509 | /* fstat() is needed to get the file size. */ | ||
| 510 | if (fstat(ifd, &st) < 0) | ||
| 511 | err(1, "fstat() on initrd '%s'", name); | ||
| 512 | |||
| 513 | /* | ||
| 514 | * We map the initrd at the top of memory, but mmap wants it to be | ||
| 515 | * page-aligned, so we round the size up for that. | ||
| 516 | */ | ||
| 517 | len = page_align(st.st_size); | ||
| 518 | map_at(ifd, from_guest_phys(mem - len), 0, st.st_size); | ||
| 519 | /* | ||
| 520 | * Once a file is mapped, you can close the file descriptor. It's a | ||
| 521 | * little odd, but quite useful. | ||
| 522 | */ | ||
| 523 | close(ifd); | ||
| 524 | verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len); | ||
| 525 | |||
| 526 | /* We return the initrd size. */ | ||
| 527 | return len; | ||
| 528 | } | ||
| 529 | /*:*/ | ||
| 530 | |||
| 531 | /* | ||
| 532 | * Simple routine to roll all the commandline arguments together with spaces | ||
| 533 | * between them. | ||
| 534 | */ | ||
| 535 | static void concat(char *dst, char *args[]) | ||
| 536 | { | ||
| 537 | unsigned int i, len = 0; | ||
| 538 | |||
| 539 | for (i = 0; args[i]; i++) { | ||
| 540 | if (i) { | ||
| 541 | strcat(dst+len, " "); | ||
| 542 | len++; | ||
| 543 | } | ||
| 544 | strcpy(dst+len, args[i]); | ||
| 545 | len += strlen(args[i]); | ||
| 546 | } | ||
| 547 | /* In case it's empty. */ | ||
| 548 | dst[len] = '\0'; | ||
| 549 | } | ||
| 550 | |||
| 551 | /*L:185 | ||
| 552 | * This is where we actually tell the kernel to initialize the Guest. We | ||
| 553 | * saw the arguments it expects when we looked at initialize() in lguest_user.c: | ||
| 554 | * the base of Guest "physical" memory, the top physical page to allow and the | ||
| 555 | * entry point for the Guest. | ||
| 556 | */ | ||
| 557 | static void tell_kernel(unsigned long start) | ||
| 558 | { | ||
| 559 | unsigned long args[] = { LHREQ_INITIALIZE, | ||
| 560 | (unsigned long)guest_base, | ||
| 561 | guest_limit / getpagesize(), start }; | ||
| 562 | verbose("Guest: %p - %p (%#lx)\n", | ||
| 563 | guest_base, guest_base + guest_limit, guest_limit); | ||
| 564 | lguest_fd = open_or_die("/dev/lguest", O_RDWR); | ||
| 565 | if (write(lguest_fd, args, sizeof(args)) < 0) | ||
| 566 | err(1, "Writing to /dev/lguest"); | ||
| 567 | } | ||
| 568 | /*:*/ | ||
| 569 | |||
| 570 | /*L:200 | ||
| 571 | * Device Handling. | ||
| 572 | * | ||
| 573 | * When the Guest gives us a buffer, it sends an array of addresses and sizes. | ||
| 574 | * We need to make sure it's not trying to reach into the Launcher itself, so | ||
| 575 | * we have a convenient routine which checks it and exits with an error message | ||
| 576 | * if something funny is going on: | ||
| 577 | */ | ||
| 578 | static void *_check_pointer(unsigned long addr, unsigned int size, | ||
| 579 | unsigned int line) | ||
| 580 | { | ||
| 581 | /* | ||
| 582 | * Check if the requested address and size exceeds the allocated memory, | ||
| 583 | * or addr + size wraps around. | ||
| 584 | */ | ||
| 585 | if ((addr + size) > guest_limit || (addr + size) < addr) | ||
| 586 | errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr); | ||
| 587 | /* | ||
| 588 | * We return a pointer for the caller's convenience, now we know it's | ||
| 589 | * safe to use. | ||
| 590 | */ | ||
| 591 | return from_guest_phys(addr); | ||
| 592 | } | ||
| 593 | /* A macro which transparently hands the line number to the real function. */ | ||
| 594 | #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__) | ||
| 595 | |||
| 596 | /* | ||
| 597 | * Each buffer in the virtqueues is actually a chain of descriptors. This | ||
| 598 | * function returns the next descriptor in the chain, or vq->vring.num if we're | ||
| 599 | * at the end. | ||
| 600 | */ | ||
| 601 | static unsigned next_desc(struct vring_desc *desc, | ||
| 602 | unsigned int i, unsigned int max) | ||
| 603 | { | ||
| 604 | unsigned int next; | ||
| 605 | |||
| 606 | /* If this descriptor says it doesn't chain, we're done. */ | ||
| 607 | if (!(desc[i].flags & VRING_DESC_F_NEXT)) | ||
| 608 | return max; | ||
| 609 | |||
| 610 | /* Check they're not leading us off end of descriptors. */ | ||
| 611 | next = desc[i].next; | ||
| 612 | /* Make sure compiler knows to grab that: we don't want it changing! */ | ||
| 613 | wmb(); | ||
| 614 | |||
| 615 | if (next >= max) | ||
| 616 | errx(1, "Desc next is %u", next); | ||
| 617 | |||
| 618 | return next; | ||
| 619 | } | ||
| 620 | |||
| 621 | /* | ||
| 622 | * This actually sends the interrupt for this virtqueue, if we've used a | ||
| 623 | * buffer. | ||
| 624 | */ | ||
| 625 | static void trigger_irq(struct virtqueue *vq) | ||
| 626 | { | ||
| 627 | unsigned long buf[] = { LHREQ_IRQ, vq->config.irq }; | ||
| 628 | |||
| 629 | /* Don't inform them if nothing used. */ | ||
| 630 | if (!vq->pending_used) | ||
| 631 | return; | ||
| 632 | vq->pending_used = 0; | ||
| 633 | |||
| 634 | /* If they don't want an interrupt, don't send one... */ | ||
| 635 | if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) { | ||
| 636 | return; | ||
| 637 | } | ||
| 638 | |||
| 639 | /* Send the Guest an interrupt tell them we used something up. */ | ||
| 640 | if (write(lguest_fd, buf, sizeof(buf)) != 0) | ||
| 641 | err(1, "Triggering irq %i", vq->config.irq); | ||
| 642 | } | ||
| 643 | |||
| 644 | /* | ||
| 645 | * This looks in the virtqueue for the first available buffer, and converts | ||
| 646 | * it to an iovec for convenient access. Since descriptors consist of some | ||
| 647 | * number of output then some number of input descriptors, it's actually two | ||
| 648 | * iovecs, but we pack them into one and note how many of each there were. | ||
| 649 | * | ||
| 650 | * This function waits if necessary, and returns the descriptor number found. | ||
| 651 | */ | ||
| 652 | static unsigned wait_for_vq_desc(struct virtqueue *vq, | ||
| 653 | struct iovec iov[], | ||
| 654 | unsigned int *out_num, unsigned int *in_num) | ||
| 655 | { | ||
| 656 | unsigned int i, head, max; | ||
| 657 | struct vring_desc *desc; | ||
| 658 | u16 last_avail = lg_last_avail(vq); | ||
| 659 | |||
| 660 | /* There's nothing available? */ | ||
| 661 | while (last_avail == vq->vring.avail->idx) { | ||
| 662 | u64 event; | ||
| 663 | |||
| 664 | /* | ||
| 665 | * Since we're about to sleep, now is a good time to tell the | ||
| 666 | * Guest about what we've used up to now. | ||
| 667 | */ | ||
| 668 | trigger_irq(vq); | ||
| 669 | |||
| 670 | /* OK, now we need to know about added descriptors. */ | ||
| 671 | vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY; | ||
| 672 | |||
| 673 | /* | ||
| 674 | * They could have slipped one in as we were doing that: make | ||
| 675 | * sure it's written, then check again. | ||
| 676 | */ | ||
| 677 | mb(); | ||
| 678 | if (last_avail != vq->vring.avail->idx) { | ||
| 679 | vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY; | ||
| 680 | break; | ||
| 681 | } | ||
| 682 | |||
| 683 | /* Nothing new? Wait for eventfd to tell us they refilled. */ | ||
| 684 | if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event)) | ||
| 685 | errx(1, "Event read failed?"); | ||
| 686 | |||
| 687 | /* We don't need to be notified again. */ | ||
| 688 | vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY; | ||
| 689 | } | ||
| 690 | |||
| 691 | /* Check it isn't doing very strange things with descriptor numbers. */ | ||
| 692 | if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num) | ||
| 693 | errx(1, "Guest moved used index from %u to %u", | ||
| 694 | last_avail, vq->vring.avail->idx); | ||
| 695 | |||
| 696 | /* | ||
| 697 | * Grab the next descriptor number they're advertising, and increment | ||
| 698 | * the index we've seen. | ||
| 699 | */ | ||
| 700 | head = vq->vring.avail->ring[last_avail % vq->vring.num]; | ||
| 701 | lg_last_avail(vq)++; | ||
| 702 | |||
| 703 | /* If their number is silly, that's a fatal mistake. */ | ||
| 704 | if (head >= vq->vring.num) | ||
| 705 | errx(1, "Guest says index %u is available", head); | ||
| 706 | |||
| 707 | /* When we start there are none of either input nor output. */ | ||
| 708 | *out_num = *in_num = 0; | ||
| 709 | |||
| 710 | max = vq->vring.num; | ||
| 711 | desc = vq->vring.desc; | ||
| 712 | i = head; | ||
| 713 | |||
| 714 | /* | ||
| 715 | * If this is an indirect entry, then this buffer contains a descriptor | ||
| 716 | * table which we handle as if it's any normal descriptor chain. | ||
| 717 | */ | ||
| 718 | if (desc[i].flags & VRING_DESC_F_INDIRECT) { | ||
| 719 | if (desc[i].len % sizeof(struct vring_desc)) | ||
| 720 | errx(1, "Invalid size for indirect buffer table"); | ||
| 721 | |||
| 722 | max = desc[i].len / sizeof(struct vring_desc); | ||
| 723 | desc = check_pointer(desc[i].addr, desc[i].len); | ||
| 724 | i = 0; | ||
| 725 | } | ||
| 726 | |||
| 727 | do { | ||
| 728 | /* Grab the first descriptor, and check it's OK. */ | ||
| 729 | iov[*out_num + *in_num].iov_len = desc[i].len; | ||
| 730 | iov[*out_num + *in_num].iov_base | ||
| 731 | = check_pointer(desc[i].addr, desc[i].len); | ||
| 732 | /* If this is an input descriptor, increment that count. */ | ||
| 733 | if (desc[i].flags & VRING_DESC_F_WRITE) | ||
| 734 | (*in_num)++; | ||
| 735 | else { | ||
| 736 | /* | ||
| 737 | * If it's an output descriptor, they're all supposed | ||
| 738 | * to come before any input descriptors. | ||
| 739 | */ | ||
| 740 | if (*in_num) | ||
| 741 | errx(1, "Descriptor has out after in"); | ||
| 742 | (*out_num)++; | ||
| 743 | } | ||
| 744 | |||
| 745 | /* If we've got too many, that implies a descriptor loop. */ | ||
| 746 | if (*out_num + *in_num > max) | ||
| 747 | errx(1, "Looped descriptor"); | ||
| 748 | } while ((i = next_desc(desc, i, max)) != max); | ||
| 749 | |||
| 750 | return head; | ||
| 751 | } | ||
| 752 | |||
| 753 | /* | ||
| 754 | * After we've used one of their buffers, we tell the Guest about it. Sometime | ||
| 755 | * later we'll want to send them an interrupt using trigger_irq(); note that | ||
| 756 | * wait_for_vq_desc() does that for us if it has to wait. | ||
| 757 | */ | ||
| 758 | static void add_used(struct virtqueue *vq, unsigned int head, int len) | ||
| 759 | { | ||
| 760 | struct vring_used_elem *used; | ||
| 761 | |||
| 762 | /* | ||
| 763 | * The virtqueue contains a ring of used buffers. Get a pointer to the | ||
| 764 | * next entry in that used ring. | ||
| 765 | */ | ||
| 766 | used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num]; | ||
| 767 | used->id = head; | ||
| 768 | used->len = len; | ||
| 769 | /* Make sure buffer is written before we update index. */ | ||
| 770 | wmb(); | ||
| 771 | vq->vring.used->idx++; | ||
| 772 | vq->pending_used++; | ||
| 773 | } | ||
| 774 | |||
| 775 | /* And here's the combo meal deal. Supersize me! */ | ||
| 776 | static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len) | ||
| 777 | { | ||
| 778 | add_used(vq, head, len); | ||
| 779 | trigger_irq(vq); | ||
| 780 | } | ||
| 781 | |||
| 782 | /* | ||
| 783 | * The Console | ||
| 784 | * | ||
| 785 | * We associate some data with the console for our exit hack. | ||
| 786 | */ | ||
| 787 | struct console_abort { | ||
| 788 | /* How many times have they hit ^C? */ | ||
| 789 | int count; | ||
| 790 | /* When did they start? */ | ||
| 791 | struct timeval start; | ||
| 792 | }; | ||
| 793 | |||
| 794 | /* This is the routine which handles console input (ie. stdin). */ | ||
| 795 | static void console_input(struct virtqueue *vq) | ||
| 796 | { | ||
| 797 | int len; | ||
| 798 | unsigned int head, in_num, out_num; | ||
| 799 | struct console_abort *abort = vq->dev->priv; | ||
| 800 | struct iovec iov[vq->vring.num]; | ||
| 801 | |||
| 802 | /* Make sure there's a descriptor available. */ | ||
| 803 | head = wait_for_vq_desc(vq, iov, &out_num, &in_num); | ||
| 804 | if (out_num) | ||
| 805 | errx(1, "Output buffers in console in queue?"); | ||
| 806 | |||
| 807 | /* Read into it. This is where we usually wait. */ | ||
| 808 | len = readv(STDIN_FILENO, iov, in_num); | ||
| 809 | if (len <= 0) { | ||
| 810 | /* Ran out of input? */ | ||
| 811 | warnx("Failed to get console input, ignoring console."); | ||
| 812 | /* | ||
| 813 | * For simplicity, dying threads kill the whole Launcher. So | ||
| 814 | * just nap here. | ||
| 815 | */ | ||
| 816 | for (;;) | ||
| 817 | pause(); | ||
| 818 | } | ||
| 819 | |||
| 820 | /* Tell the Guest we used a buffer. */ | ||
| 821 | add_used_and_trigger(vq, head, len); | ||
| 822 | |||
| 823 | /* | ||
| 824 | * Three ^C within one second? Exit. | ||
| 825 | * | ||
| 826 | * This is such a hack, but works surprisingly well. Each ^C has to | ||
| 827 | * be in a buffer by itself, so they can't be too fast. But we check | ||
| 828 | * that we get three within about a second, so they can't be too | ||
| 829 | * slow. | ||
| 830 | */ | ||
| 831 | if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) { | ||
| 832 | abort->count = 0; | ||
| 833 | return; | ||
| 834 | } | ||
| 835 | |||
| 836 | abort->count++; | ||
| 837 | if (abort->count == 1) | ||
| 838 | gettimeofday(&abort->start, NULL); | ||
| 839 | else if (abort->count == 3) { | ||
| 840 | struct timeval now; | ||
| 841 | gettimeofday(&now, NULL); | ||
| 842 | /* Kill all Launcher processes with SIGINT, like normal ^C */ | ||
| 843 | if (now.tv_sec <= abort->start.tv_sec+1) | ||
| 844 | kill(0, SIGINT); | ||
| 845 | abort->count = 0; | ||
| 846 | } | ||
| 847 | } | ||
| 848 | |||
| 849 | /* This is the routine which handles console output (ie. stdout). */ | ||
| 850 | static void console_output(struct virtqueue *vq) | ||
| 851 | { | ||
| 852 | unsigned int head, out, in; | ||
| 853 | struct iovec iov[vq->vring.num]; | ||
| 854 | |||
| 855 | /* We usually wait in here, for the Guest to give us something. */ | ||
| 856 | head = wait_for_vq_desc(vq, iov, &out, &in); | ||
| 857 | if (in) | ||
| 858 | errx(1, "Input buffers in console output queue?"); | ||
| 859 | |||
| 860 | /* writev can return a partial write, so we loop here. */ | ||
| 861 | while (!iov_empty(iov, out)) { | ||
| 862 | int len = writev(STDOUT_FILENO, iov, out); | ||
| 863 | if (len <= 0) { | ||
| 864 | warn("Write to stdout gave %i (%d)", len, errno); | ||
| 865 | break; | ||
| 866 | } | ||
| 867 | iov_consume(iov, out, len); | ||
| 868 | } | ||
| 869 | |||
| 870 | /* | ||
| 871 | * We're finished with that buffer: if we're going to sleep, | ||
| 872 | * wait_for_vq_desc() will prod the Guest with an interrupt. | ||
| 873 | */ | ||
| 874 | add_used(vq, head, 0); | ||
| 875 | } | ||
| 876 | |||
| 877 | /* | ||
| 878 | * The Network | ||
| 879 | * | ||
| 880 | * Handling output for network is also simple: we get all the output buffers | ||
| 881 | * and write them to /dev/net/tun. | ||
| 882 | */ | ||
| 883 | struct net_info { | ||
| 884 | int tunfd; | ||
| 885 | }; | ||
| 886 | |||
| 887 | static void net_output(struct virtqueue *vq) | ||
| 888 | { | ||
| 889 | struct net_info *net_info = vq->dev->priv; | ||
| 890 | unsigned int head, out, in; | ||
| 891 | struct iovec iov[vq->vring.num]; | ||
| 892 | |||
| 893 | /* We usually wait in here for the Guest to give us a packet. */ | ||
| 894 | head = wait_for_vq_desc(vq, iov, &out, &in); | ||
| 895 | if (in) | ||
| 896 | errx(1, "Input buffers in net output queue?"); | ||
| 897 | /* | ||
| 898 | * Send the whole thing through to /dev/net/tun. It expects the exact | ||
| 899 | * same format: what a coincidence! | ||
| 900 | */ | ||
| 901 | if (writev(net_info->tunfd, iov, out) < 0) | ||
| 902 | warnx("Write to tun failed (%d)?", errno); | ||
| 903 | |||
| 904 | /* | ||
| 905 | * Done with that one; wait_for_vq_desc() will send the interrupt if | ||
| 906 | * all packets are processed. | ||
| 907 | */ | ||
| 908 | add_used(vq, head, 0); | ||
| 909 | } | ||
| 910 | |||
| 911 | /* | ||
| 912 | * Handling network input is a bit trickier, because I've tried to optimize it. | ||
| 913 | * | ||
| 914 | * First we have a helper routine which tells is if from this file descriptor | ||
| 915 | * (ie. the /dev/net/tun device) will block: | ||
| 916 | */ | ||
| 917 | static bool will_block(int fd) | ||
| 918 | { | ||
| 919 | fd_set fdset; | ||
| 920 | struct timeval zero = { 0, 0 }; | ||
| 921 | FD_ZERO(&fdset); | ||
| 922 | FD_SET(fd, &fdset); | ||
| 923 | return select(fd+1, &fdset, NULL, NULL, &zero) != 1; | ||
| 924 | } | ||
| 925 | |||
| 926 | /* | ||
| 927 | * This handles packets coming in from the tun device to our Guest. Like all | ||
| 928 | * service routines, it gets called again as soon as it returns, so you don't | ||
| 929 | * see a while(1) loop here. | ||
| 930 | */ | ||
| 931 | static void net_input(struct virtqueue *vq) | ||
| 932 | { | ||
| 933 | int len; | ||
| 934 | unsigned int head, out, in; | ||
| 935 | struct iovec iov[vq->vring.num]; | ||
| 936 | struct net_info *net_info = vq->dev->priv; | ||
| 937 | |||
| 938 | /* | ||
| 939 | * Get a descriptor to write an incoming packet into. This will also | ||
| 940 | * send an interrupt if they're out of descriptors. | ||
| 941 | */ | ||
| 942 | head = wait_for_vq_desc(vq, iov, &out, &in); | ||
| 943 | if (out) | ||
| 944 | errx(1, "Output buffers in net input queue?"); | ||
| 945 | |||
| 946 | /* | ||
| 947 | * If it looks like we'll block reading from the tun device, send them | ||
| 948 | * an interrupt. | ||
| 949 | */ | ||
| 950 | if (vq->pending_used && will_block(net_info->tunfd)) | ||
| 951 | trigger_irq(vq); | ||
| 952 | |||
| 953 | /* | ||
| 954 | * Read in the packet. This is where we normally wait (when there's no | ||
| 955 | * incoming network traffic). | ||
| 956 | */ | ||
| 957 | len = readv(net_info->tunfd, iov, in); | ||
| 958 | if (len <= 0) | ||
| 959 | warn("Failed to read from tun (%d).", errno); | ||
| 960 | |||
| 961 | /* | ||
| 962 | * Mark that packet buffer as used, but don't interrupt here. We want | ||
| 963 | * to wait until we've done as much work as we can. | ||
| 964 | */ | ||
| 965 | add_used(vq, head, len); | ||
| 966 | } | ||
| 967 | /*:*/ | ||
| 968 | |||
| 969 | /* This is the helper to create threads: run the service routine in a loop. */ | ||
| 970 | static int do_thread(void *_vq) | ||
| 971 | { | ||
| 972 | struct virtqueue *vq = _vq; | ||
| 973 | |||
| 974 | for (;;) | ||
| 975 | vq->service(vq); | ||
| 976 | return 0; | ||
| 977 | } | ||
| 978 | |||
| 979 | /* | ||
| 980 | * When a child dies, we kill our entire process group with SIGTERM. This | ||
| 981 | * also has the side effect that the shell restores the console for us! | ||
| 982 | */ | ||
| 983 | static void kill_launcher(int signal) | ||
| 984 | { | ||
| 985 | kill(0, SIGTERM); | ||
| 986 | } | ||
| 987 | |||
| 988 | static void reset_device(struct device *dev) | ||
| 989 | { | ||
| 990 | struct virtqueue *vq; | ||
| 991 | |||
| 992 | verbose("Resetting device %s\n", dev->name); | ||
| 993 | |||
| 994 | /* Clear any features they've acked. */ | ||
| 995 | memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len); | ||
| 996 | |||
| 997 | /* We're going to be explicitly killing threads, so ignore them. */ | ||
| 998 | signal(SIGCHLD, SIG_IGN); | ||
| 999 | |||
| 1000 | /* Zero out the virtqueues, get rid of their threads */ | ||
| 1001 | for (vq = dev->vq; vq; vq = vq->next) { | ||
| 1002 | if (vq->thread != (pid_t)-1) { | ||
| 1003 | kill(vq->thread, SIGTERM); | ||
| 1004 | waitpid(vq->thread, NULL, 0); | ||
| 1005 | vq->thread = (pid_t)-1; | ||
| 1006 | } | ||
| 1007 | memset(vq->vring.desc, 0, | ||
| 1008 | vring_size(vq->config.num, LGUEST_VRING_ALIGN)); | ||
| 1009 | lg_last_avail(vq) = 0; | ||
| 1010 | } | ||
| 1011 | dev->running = false; | ||
| 1012 | |||
| 1013 | /* Now we care if threads die. */ | ||
| 1014 | signal(SIGCHLD, (void *)kill_launcher); | ||
| 1015 | } | ||
| 1016 | |||
| 1017 | /*L:216 | ||
| 1018 | * This actually creates the thread which services the virtqueue for a device. | ||
| 1019 | */ | ||
| 1020 | static void create_thread(struct virtqueue *vq) | ||
| 1021 | { | ||
| 1022 | /* | ||
| 1023 | * Create stack for thread. Since the stack grows upwards, we point | ||
| 1024 | * the stack pointer to the end of this region. | ||
| 1025 | */ | ||
| 1026 | char *stack = malloc(32768); | ||
| 1027 | unsigned long args[] = { LHREQ_EVENTFD, | ||
| 1028 | vq->config.pfn*getpagesize(), 0 }; | ||
| 1029 | |||
| 1030 | /* Create a zero-initialized eventfd. */ | ||
| 1031 | vq->eventfd = eventfd(0, 0); | ||
| 1032 | if (vq->eventfd < 0) | ||
| 1033 | err(1, "Creating eventfd"); | ||
| 1034 | args[2] = vq->eventfd; | ||
| 1035 | |||
| 1036 | /* | ||
| 1037 | * Attach an eventfd to this virtqueue: it will go off when the Guest | ||
| 1038 | * does an LHCALL_NOTIFY for this vq. | ||
| 1039 | */ | ||
| 1040 | if (write(lguest_fd, &args, sizeof(args)) != 0) | ||
| 1041 | err(1, "Attaching eventfd"); | ||
| 1042 | |||
| 1043 | /* | ||
| 1044 | * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so | ||
| 1045 | * we get a signal if it dies. | ||
| 1046 | */ | ||
| 1047 | vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq); | ||
| 1048 | if (vq->thread == (pid_t)-1) | ||
| 1049 | err(1, "Creating clone"); | ||
| 1050 | |||
| 1051 | /* We close our local copy now the child has it. */ | ||
| 1052 | close(vq->eventfd); | ||
| 1053 | } | ||
| 1054 | |||
| 1055 | static void start_device(struct device *dev) | ||
| 1056 | { | ||
| 1057 | unsigned int i; | ||
| 1058 | struct virtqueue *vq; | ||
| 1059 | |||
| 1060 | verbose("Device %s OK: offered", dev->name); | ||
| 1061 | for (i = 0; i < dev->feature_len; i++) | ||
| 1062 | verbose(" %02x", get_feature_bits(dev)[i]); | ||
| 1063 | verbose(", accepted"); | ||
| 1064 | for (i = 0; i < dev->feature_len; i++) | ||
| 1065 | verbose(" %02x", get_feature_bits(dev) | ||
| 1066 | [dev->feature_len+i]); | ||
| 1067 | |||
| 1068 | for (vq = dev->vq; vq; vq = vq->next) { | ||
| 1069 | if (vq->service) | ||
| 1070 | create_thread(vq); | ||
| 1071 | } | ||
| 1072 | dev->running = true; | ||
| 1073 | } | ||
| 1074 | |||
| 1075 | static void cleanup_devices(void) | ||
| 1076 | { | ||
| 1077 | struct device *dev; | ||
| 1078 | |||
| 1079 | for (dev = devices.dev; dev; dev = dev->next) | ||
| 1080 | reset_device(dev); | ||
| 1081 | |||
| 1082 | /* If we saved off the original terminal settings, restore them now. */ | ||
| 1083 | if (orig_term.c_lflag & (ISIG|ICANON|ECHO)) | ||
| 1084 | tcsetattr(STDIN_FILENO, TCSANOW, &orig_term); | ||
| 1085 | } | ||
| 1086 | |||
| 1087 | /* When the Guest tells us they updated the status field, we handle it. */ | ||
| 1088 | static void update_device_status(struct device *dev) | ||
| 1089 | { | ||
| 1090 | /* A zero status is a reset, otherwise it's a set of flags. */ | ||
| 1091 | if (dev->desc->status == 0) | ||
| 1092 | reset_device(dev); | ||
| 1093 | else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) { | ||
| 1094 | warnx("Device %s configuration FAILED", dev->name); | ||
| 1095 | if (dev->running) | ||
| 1096 | reset_device(dev); | ||
| 1097 | } else { | ||
| 1098 | if (dev->running) | ||
| 1099 | err(1, "Device %s features finalized twice", dev->name); | ||
| 1100 | start_device(dev); | ||
| 1101 | } | ||
| 1102 | } | ||
| 1103 | |||
| 1104 | /*L:215 | ||
| 1105 | * This is the generic routine we call when the Guest uses LHCALL_NOTIFY. In | ||
| 1106 | * particular, it's used to notify us of device status changes during boot. | ||
| 1107 | */ | ||
| 1108 | static void handle_output(unsigned long addr) | ||
| 1109 | { | ||
| 1110 | struct device *i; | ||
| 1111 | |||
| 1112 | /* Check each device. */ | ||
| 1113 | for (i = devices.dev; i; i = i->next) { | ||
| 1114 | struct virtqueue *vq; | ||
| 1115 | |||
| 1116 | /* | ||
| 1117 | * Notifications to device descriptors mean they updated the | ||
| 1118 | * device status. | ||
| 1119 | */ | ||
| 1120 | if (from_guest_phys(addr) == i->desc) { | ||
| 1121 | update_device_status(i); | ||
| 1122 | return; | ||
| 1123 | } | ||
| 1124 | |||
| 1125 | /* Devices should not be used before features are finalized. */ | ||
| 1126 | for (vq = i->vq; vq; vq = vq->next) { | ||
| 1127 | if (addr != vq->config.pfn*getpagesize()) | ||
| 1128 | continue; | ||
| 1129 | errx(1, "Notification on %s before setup!", i->name); | ||
| 1130 | } | ||
| 1131 | } | ||
| 1132 | |||
| 1133 | /* | ||
| 1134 | * Early console write is done using notify on a nul-terminated string | ||
| 1135 | * in Guest memory. It's also great for hacking debugging messages | ||
| 1136 | * into a Guest. | ||
| 1137 | */ | ||
| 1138 | if (addr >= guest_limit) | ||
| 1139 | errx(1, "Bad NOTIFY %#lx", addr); | ||
| 1140 | |||
| 1141 | write(STDOUT_FILENO, from_guest_phys(addr), | ||
| 1142 | strnlen(from_guest_phys(addr), guest_limit - addr)); | ||
| 1143 | } | ||
| 1144 | |||
| 1145 | /*L:190 | ||
| 1146 | * Device Setup | ||
| 1147 | * | ||
| 1148 | * All devices need a descriptor so the Guest knows it exists, and a "struct | ||
| 1149 | * device" so the Launcher can keep track of it. We have common helper | ||
| 1150 | * routines to allocate and manage them. | ||
| 1151 | */ | ||
| 1152 | |||
| 1153 | /* | ||
| 1154 | * The layout of the device page is a "struct lguest_device_desc" followed by a | ||
| 1155 | * number of virtqueue descriptors, then two sets of feature bits, then an | ||
| 1156 | * array of configuration bytes. This routine returns the configuration | ||
| 1157 | * pointer. | ||
| 1158 | */ | ||
| 1159 | static u8 *device_config(const struct device *dev) | ||
| 1160 | { | ||
| 1161 | return (void *)(dev->desc + 1) | ||
| 1162 | + dev->num_vq * sizeof(struct lguest_vqconfig) | ||
| 1163 | + dev->feature_len * 2; | ||
| 1164 | } | ||
| 1165 | |||
| 1166 | /* | ||
| 1167 | * This routine allocates a new "struct lguest_device_desc" from descriptor | ||
| 1168 | * table page just above the Guest's normal memory. It returns a pointer to | ||
| 1169 | * that descriptor. | ||
| 1170 | */ | ||
| 1171 | static struct lguest_device_desc *new_dev_desc(u16 type) | ||
| 1172 | { | ||
| 1173 | struct lguest_device_desc d = { .type = type }; | ||
| 1174 | void *p; | ||
| 1175 | |||
| 1176 | /* Figure out where the next device config is, based on the last one. */ | ||
| 1177 | if (devices.lastdev) | ||
| 1178 | p = device_config(devices.lastdev) | ||
| 1179 | + devices.lastdev->desc->config_len; | ||
| 1180 | else | ||
| 1181 | p = devices.descpage; | ||
| 1182 | |||
| 1183 | /* We only have one page for all the descriptors. */ | ||
| 1184 | if (p + sizeof(d) > (void *)devices.descpage + getpagesize()) | ||
| 1185 | errx(1, "Too many devices"); | ||
| 1186 | |||
| 1187 | /* p might not be aligned, so we memcpy in. */ | ||
| 1188 | return memcpy(p, &d, sizeof(d)); | ||
| 1189 | } | ||
| 1190 | |||
| 1191 | /* | ||
| 1192 | * Each device descriptor is followed by the description of its virtqueues. We | ||
| 1193 | * specify how many descriptors the virtqueue is to have. | ||
| 1194 | */ | ||
| 1195 | static void add_virtqueue(struct device *dev, unsigned int num_descs, | ||
| 1196 | void (*service)(struct virtqueue *)) | ||
| 1197 | { | ||
| 1198 | unsigned int pages; | ||
| 1199 | struct virtqueue **i, *vq = malloc(sizeof(*vq)); | ||
| 1200 | void *p; | ||
| 1201 | |||
| 1202 | /* First we need some memory for this virtqueue. */ | ||
| 1203 | pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1) | ||
| 1204 | / getpagesize(); | ||
| 1205 | p = get_pages(pages); | ||
| 1206 | |||
| 1207 | /* Initialize the virtqueue */ | ||
| 1208 | vq->next = NULL; | ||
| 1209 | vq->last_avail_idx = 0; | ||
| 1210 | vq->dev = dev; | ||
| 1211 | |||
| 1212 | /* | ||
| 1213 | * This is the routine the service thread will run, and its Process ID | ||
| 1214 | * once it's running. | ||
| 1215 | */ | ||
| 1216 | vq->service = service; | ||
| 1217 | vq->thread = (pid_t)-1; | ||
| 1218 | |||
| 1219 | /* Initialize the configuration. */ | ||
| 1220 | vq->config.num = num_descs; | ||
| 1221 | vq->config.irq = devices.next_irq++; | ||
| 1222 | vq->config.pfn = to_guest_phys(p) / getpagesize(); | ||
| 1223 | |||
| 1224 | /* Initialize the vring. */ | ||
| 1225 | vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN); | ||
| 1226 | |||
| 1227 | /* | ||
| 1228 | * Append virtqueue to this device's descriptor. We use | ||
| 1229 | * device_config() to get the end of the device's current virtqueues; | ||
| 1230 | * we check that we haven't added any config or feature information | ||
| 1231 | * yet, otherwise we'd be overwriting them. | ||
| 1232 | */ | ||
| 1233 | assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0); | ||
| 1234 | memcpy(device_config(dev), &vq->config, sizeof(vq->config)); | ||
| 1235 | dev->num_vq++; | ||
| 1236 | dev->desc->num_vq++; | ||
| 1237 | |||
| 1238 | verbose("Virtqueue page %#lx\n", to_guest_phys(p)); | ||
| 1239 | |||
| 1240 | /* | ||
| 1241 | * Add to tail of list, so dev->vq is first vq, dev->vq->next is | ||
| 1242 | * second. | ||
| 1243 | */ | ||
| 1244 | for (i = &dev->vq; *i; i = &(*i)->next); | ||
| 1245 | *i = vq; | ||
| 1246 | } | ||
| 1247 | |||
| 1248 | /* | ||
| 1249 | * The first half of the feature bitmask is for us to advertise features. The | ||
| 1250 | * second half is for the Guest to accept features. | ||
| 1251 | */ | ||
| 1252 | static void add_feature(struct device *dev, unsigned bit) | ||
| 1253 | { | ||
| 1254 | u8 *features = get_feature_bits(dev); | ||
| 1255 | |||
| 1256 | /* We can't extend the feature bits once we've added config bytes */ | ||
| 1257 | if (dev->desc->feature_len <= bit / CHAR_BIT) { | ||
| 1258 | assert(dev->desc->config_len == 0); | ||
| 1259 | dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1; | ||
| 1260 | } | ||
| 1261 | |||
| 1262 | features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT)); | ||
| 1263 | } | ||
| 1264 | |||
| 1265 | /* | ||
| 1266 | * This routine sets the configuration fields for an existing device's | ||
| 1267 | * descriptor. It only works for the last device, but that's OK because that's | ||
| 1268 | * how we use it. | ||
| 1269 | */ | ||
| 1270 | static void set_config(struct device *dev, unsigned len, const void *conf) | ||
| 1271 | { | ||
| 1272 | /* Check we haven't overflowed our single page. */ | ||
| 1273 | if (device_config(dev) + len > devices.descpage + getpagesize()) | ||
| 1274 | errx(1, "Too many devices"); | ||
| 1275 | |||
| 1276 | /* Copy in the config information, and store the length. */ | ||
| 1277 | memcpy(device_config(dev), conf, len); | ||
| 1278 | dev->desc->config_len = len; | ||
| 1279 | |||
| 1280 | /* Size must fit in config_len field (8 bits)! */ | ||
| 1281 | assert(dev->desc->config_len == len); | ||
| 1282 | } | ||
| 1283 | |||
| 1284 | /* | ||
| 1285 | * This routine does all the creation and setup of a new device, including | ||
| 1286 | * calling new_dev_desc() to allocate the descriptor and device memory. We | ||
| 1287 | * don't actually start the service threads until later. | ||
| 1288 | * | ||
| 1289 | * See what I mean about userspace being boring? | ||
| 1290 | */ | ||
| 1291 | static struct device *new_device(const char *name, u16 type) | ||
| 1292 | { | ||
| 1293 | struct device *dev = malloc(sizeof(*dev)); | ||
| 1294 | |||
| 1295 | /* Now we populate the fields one at a time. */ | ||
| 1296 | dev->desc = new_dev_desc(type); | ||
| 1297 | dev->name = name; | ||
| 1298 | dev->vq = NULL; | ||
| 1299 | dev->feature_len = 0; | ||
| 1300 | dev->num_vq = 0; | ||
| 1301 | dev->running = false; | ||
| 1302 | |||
| 1303 | /* | ||
| 1304 | * Append to device list. Prepending to a single-linked list is | ||
| 1305 | * easier, but the user expects the devices to be arranged on the bus | ||
| 1306 | * in command-line order. The first network device on the command line | ||
| 1307 | * is eth0, the first block device /dev/vda, etc. | ||
| 1308 | */ | ||
| 1309 | if (devices.lastdev) | ||
| 1310 | devices.lastdev->next = dev; | ||
| 1311 | else | ||
| 1312 | devices.dev = dev; | ||
| 1313 | devices.lastdev = dev; | ||
| 1314 | |||
| 1315 | return dev; | ||
| 1316 | } | ||
| 1317 | |||
| 1318 | /* | ||
| 1319 | * Our first setup routine is the console. It's a fairly simple device, but | ||
| 1320 | * UNIX tty handling makes it uglier than it could be. | ||
| 1321 | */ | ||
| 1322 | static void setup_console(void) | ||
| 1323 | { | ||
| 1324 | struct device *dev; | ||
| 1325 | |||
| 1326 | /* If we can save the initial standard input settings... */ | ||
| 1327 | if (tcgetattr(STDIN_FILENO, &orig_term) == 0) { | ||
| 1328 | struct termios term = orig_term; | ||
| 1329 | /* | ||
| 1330 | * Then we turn off echo, line buffering and ^C etc: We want a | ||
| 1331 | * raw input stream to the Guest. | ||
| 1332 | */ | ||
| 1333 | term.c_lflag &= ~(ISIG|ICANON|ECHO); | ||
| 1334 | tcsetattr(STDIN_FILENO, TCSANOW, &term); | ||
| 1335 | } | ||
| 1336 | |||
| 1337 | dev = new_device("console", VIRTIO_ID_CONSOLE); | ||
| 1338 | |||
| 1339 | /* We store the console state in dev->priv, and initialize it. */ | ||
| 1340 | dev->priv = malloc(sizeof(struct console_abort)); | ||
| 1341 | ((struct console_abort *)dev->priv)->count = 0; | ||
| 1342 | |||
| 1343 | /* | ||
| 1344 | * The console needs two virtqueues: the input then the output. When | ||
| 1345 | * they put something the input queue, we make sure we're listening to | ||
| 1346 | * stdin. When they put something in the output queue, we write it to | ||
| 1347 | * stdout. | ||
| 1348 | */ | ||
| 1349 | add_virtqueue(dev, VIRTQUEUE_NUM, console_input); | ||
| 1350 | add_virtqueue(dev, VIRTQUEUE_NUM, console_output); | ||
| 1351 | |||
| 1352 | verbose("device %u: console\n", ++devices.device_num); | ||
| 1353 | } | ||
| 1354 | /*:*/ | ||
| 1355 | |||
| 1356 | /*M:010 | ||
| 1357 | * Inter-guest networking is an interesting area. Simplest is to have a | ||
| 1358 | * --sharenet=<name> option which opens or creates a named pipe. This can be | ||
| 1359 | * used to send packets to another guest in a 1:1 manner. | ||
| 1360 | * | ||
| 1361 | * More sophisticated is to use one of the tools developed for project like UML | ||
| 1362 | * to do networking. | ||
| 1363 | * | ||
| 1364 | * Faster is to do virtio bonding in kernel. Doing this 1:1 would be | ||
| 1365 | * completely generic ("here's my vring, attach to your vring") and would work | ||
| 1366 | * for any traffic. Of course, namespace and permissions issues need to be | ||
| 1367 | * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide | ||
| 1368 | * multiple inter-guest channels behind one interface, although it would | ||
| 1369 | * require some manner of hotplugging new virtio channels. | ||
| 1370 | * | ||
| 1371 | * Finally, we could use a virtio network switch in the kernel, ie. vhost. | ||
| 1372 | :*/ | ||
| 1373 | |||
| 1374 | static u32 str2ip(const char *ipaddr) | ||
| 1375 | { | ||
| 1376 | unsigned int b[4]; | ||
| 1377 | |||
| 1378 | if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4) | ||
| 1379 | errx(1, "Failed to parse IP address '%s'", ipaddr); | ||
| 1380 | return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3]; | ||
| 1381 | } | ||
| 1382 | |||
| 1383 | static void str2mac(const char *macaddr, unsigned char mac[6]) | ||
| 1384 | { | ||
| 1385 | unsigned int m[6]; | ||
| 1386 | if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x", | ||
| 1387 | &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6) | ||
| 1388 | errx(1, "Failed to parse mac address '%s'", macaddr); | ||
| 1389 | mac[0] = m[0]; | ||
| 1390 | mac[1] = m[1]; | ||
| 1391 | mac[2] = m[2]; | ||
| 1392 | mac[3] = m[3]; | ||
| 1393 | mac[4] = m[4]; | ||
| 1394 | mac[5] = m[5]; | ||
| 1395 | } | ||
| 1396 | |||
| 1397 | /* | ||
| 1398 | * This code is "adapted" from libbridge: it attaches the Host end of the | ||
| 1399 | * network device to the bridge device specified by the command line. | ||
| 1400 | * | ||
| 1401 | * This is yet another James Morris contribution (I'm an IP-level guy, so I | ||
| 1402 | * dislike bridging), and I just try not to break it. | ||
| 1403 | */ | ||
| 1404 | static void add_to_bridge(int fd, const char *if_name, const char *br_name) | ||
| 1405 | { | ||
| 1406 | int ifidx; | ||
| 1407 | struct ifreq ifr; | ||
| 1408 | |||
| 1409 | if (!*br_name) | ||
| 1410 | errx(1, "must specify bridge name"); | ||
| 1411 | |||
| 1412 | ifidx = if_nametoindex(if_name); | ||
| 1413 | if (!ifidx) | ||
| 1414 | errx(1, "interface %s does not exist!", if_name); | ||
| 1415 | |||
| 1416 | strncpy(ifr.ifr_name, br_name, IFNAMSIZ); | ||
| 1417 | ifr.ifr_name[IFNAMSIZ-1] = '\0'; | ||
| 1418 | ifr.ifr_ifindex = ifidx; | ||
| 1419 | if (ioctl(fd, SIOCBRADDIF, &ifr) < 0) | ||
| 1420 | err(1, "can't add %s to bridge %s", if_name, br_name); | ||
| 1421 | } | ||
| 1422 | |||
| 1423 | /* | ||
| 1424 | * This sets up the Host end of the network device with an IP address, brings | ||
| 1425 | * it up so packets will flow, the copies the MAC address into the hwaddr | ||
| 1426 | * pointer. | ||
| 1427 | */ | ||
| 1428 | static void configure_device(int fd, const char *tapif, u32 ipaddr) | ||
| 1429 | { | ||
| 1430 | struct ifreq ifr; | ||
| 1431 | struct sockaddr_in sin; | ||
| 1432 | |||
| 1433 | memset(&ifr, 0, sizeof(ifr)); | ||
| 1434 | strcpy(ifr.ifr_name, tapif); | ||
| 1435 | |||
| 1436 | /* Don't read these incantations. Just cut & paste them like I did! */ | ||
| 1437 | sin.sin_family = AF_INET; | ||
| 1438 | sin.sin_addr.s_addr = htonl(ipaddr); | ||
| 1439 | memcpy(&ifr.ifr_addr, &sin, sizeof(sin)); | ||
| 1440 | if (ioctl(fd, SIOCSIFADDR, &ifr) != 0) | ||
| 1441 | err(1, "Setting %s interface address", tapif); | ||
| 1442 | ifr.ifr_flags = IFF_UP; | ||
| 1443 | if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0) | ||
| 1444 | err(1, "Bringing interface %s up", tapif); | ||
| 1445 | } | ||
| 1446 | |||
| 1447 | static int get_tun_device(char tapif[IFNAMSIZ]) | ||
| 1448 | { | ||
| 1449 | struct ifreq ifr; | ||
| 1450 | int netfd; | ||
| 1451 | |||
| 1452 | /* Start with this zeroed. Messy but sure. */ | ||
| 1453 | memset(&ifr, 0, sizeof(ifr)); | ||
| 1454 | |||
| 1455 | /* | ||
| 1456 | * We open the /dev/net/tun device and tell it we want a tap device. A | ||
| 1457 | * tap device is like a tun device, only somehow different. To tell | ||
| 1458 | * the truth, I completely blundered my way through this code, but it | ||
| 1459 | * works now! | ||
| 1460 | */ | ||
| 1461 | netfd = open_or_die("/dev/net/tun", O_RDWR); | ||
| 1462 | ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR; | ||
| 1463 | strcpy(ifr.ifr_name, "tap%d"); | ||
| 1464 | if (ioctl(netfd, TUNSETIFF, &ifr) != 0) | ||
| 1465 | err(1, "configuring /dev/net/tun"); | ||
| 1466 | |||
| 1467 | if (ioctl(netfd, TUNSETOFFLOAD, | ||
| 1468 | TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0) | ||
| 1469 | err(1, "Could not set features for tun device"); | ||
| 1470 | |||
| 1471 | /* | ||
| 1472 | * We don't need checksums calculated for packets coming in this | ||
| 1473 | * device: trust us! | ||
| 1474 | */ | ||
| 1475 | ioctl(netfd, TUNSETNOCSUM, 1); | ||
| 1476 | |||
| 1477 | memcpy(tapif, ifr.ifr_name, IFNAMSIZ); | ||
| 1478 | return netfd; | ||
| 1479 | } | ||
| 1480 | |||
| 1481 | /*L:195 | ||
| 1482 | * Our network is a Host<->Guest network. This can either use bridging or | ||
| 1483 | * routing, but the principle is the same: it uses the "tun" device to inject | ||
| 1484 | * packets into the Host as if they came in from a normal network card. We | ||
| 1485 | * just shunt packets between the Guest and the tun device. | ||
| 1486 | */ | ||
| 1487 | static void setup_tun_net(char *arg) | ||
| 1488 | { | ||
| 1489 | struct device *dev; | ||
| 1490 | struct net_info *net_info = malloc(sizeof(*net_info)); | ||
| 1491 | int ipfd; | ||
| 1492 | u32 ip = INADDR_ANY; | ||
| 1493 | bool bridging = false; | ||
| 1494 | char tapif[IFNAMSIZ], *p; | ||
| 1495 | struct virtio_net_config conf; | ||
| 1496 | |||
| 1497 | net_info->tunfd = get_tun_device(tapif); | ||
| 1498 | |||
| 1499 | /* First we create a new network device. */ | ||
| 1500 | dev = new_device("net", VIRTIO_ID_NET); | ||
| 1501 | dev->priv = net_info; | ||
| 1502 | |||
| 1503 | /* Network devices need a recv and a send queue, just like console. */ | ||
| 1504 | add_virtqueue(dev, VIRTQUEUE_NUM, net_input); | ||
| 1505 | add_virtqueue(dev, VIRTQUEUE_NUM, net_output); | ||
| 1506 | |||
| 1507 | /* | ||
| 1508 | * We need a socket to perform the magic network ioctls to bring up the | ||
| 1509 | * tap interface, connect to the bridge etc. Any socket will do! | ||
| 1510 | */ | ||
| 1511 | ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP); | ||
| 1512 | if (ipfd < 0) | ||
| 1513 | err(1, "opening IP socket"); | ||
| 1514 | |||
| 1515 | /* If the command line was --tunnet=bridge:<name> do bridging. */ | ||
| 1516 | if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) { | ||
| 1517 | arg += strlen(BRIDGE_PFX); | ||
| 1518 | bridging = true; | ||
| 1519 | } | ||
| 1520 | |||
| 1521 | /* A mac address may follow the bridge name or IP address */ | ||
| 1522 | p = strchr(arg, ':'); | ||
| 1523 | if (p) { | ||
| 1524 | str2mac(p+1, conf.mac); | ||
| 1525 | add_feature(dev, VIRTIO_NET_F_MAC); | ||
| 1526 | *p = '\0'; | ||
| 1527 | } | ||
| 1528 | |||
| 1529 | /* arg is now either an IP address or a bridge name */ | ||
| 1530 | if (bridging) | ||
| 1531 | add_to_bridge(ipfd, tapif, arg); | ||
| 1532 | else | ||
| 1533 | ip = str2ip(arg); | ||
| 1534 | |||
| 1535 | /* Set up the tun device. */ | ||
| 1536 | configure_device(ipfd, tapif, ip); | ||
| 1537 | |||
| 1538 | /* Expect Guest to handle everything except UFO */ | ||
| 1539 | add_feature(dev, VIRTIO_NET_F_CSUM); | ||
| 1540 | add_feature(dev, VIRTIO_NET_F_GUEST_CSUM); | ||
| 1541 | add_feature(dev, VIRTIO_NET_F_GUEST_TSO4); | ||
| 1542 | add_feature(dev, VIRTIO_NET_F_GUEST_TSO6); | ||
| 1543 | add_feature(dev, VIRTIO_NET_F_GUEST_ECN); | ||
| 1544 | add_feature(dev, VIRTIO_NET_F_HOST_TSO4); | ||
| 1545 | add_feature(dev, VIRTIO_NET_F_HOST_TSO6); | ||
| 1546 | add_feature(dev, VIRTIO_NET_F_HOST_ECN); | ||
| 1547 | /* We handle indirect ring entries */ | ||
| 1548 | add_feature(dev, VIRTIO_RING_F_INDIRECT_DESC); | ||
| 1549 | set_config(dev, sizeof(conf), &conf); | ||
| 1550 | |||
| 1551 | /* We don't need the socket any more; setup is done. */ | ||
| 1552 | close(ipfd); | ||
| 1553 | |||
| 1554 | devices.device_num++; | ||
| 1555 | |||
| 1556 | if (bridging) | ||
| 1557 | verbose("device %u: tun %s attached to bridge: %s\n", | ||
| 1558 | devices.device_num, tapif, arg); | ||
| 1559 | else | ||
| 1560 | verbose("device %u: tun %s: %s\n", | ||
| 1561 | devices.device_num, tapif, arg); | ||
| 1562 | } | ||
| 1563 | /*:*/ | ||
| 1564 | |||
| 1565 | /* This hangs off device->priv. */ | ||
| 1566 | struct vblk_info { | ||
| 1567 | /* The size of the file. */ | ||
| 1568 | off64_t len; | ||
| 1569 | |||
| 1570 | /* The file descriptor for the file. */ | ||
| 1571 | int fd; | ||
| 1572 | |||
| 1573 | }; | ||
| 1574 | |||
| 1575 | /*L:210 | ||
| 1576 | * The Disk | ||
| 1577 | * | ||
| 1578 | * The disk only has one virtqueue, so it only has one thread. It is really | ||
| 1579 | * simple: the Guest asks for a block number and we read or write that position | ||
| 1580 | * in the file. | ||
| 1581 | * | ||
| 1582 | * Before we serviced each virtqueue in a separate thread, that was unacceptably | ||
| 1583 | * slow: the Guest waits until the read is finished before running anything | ||
| 1584 | * else, even if it could have been doing useful work. | ||
| 1585 | * | ||
| 1586 | * We could have used async I/O, except it's reputed to suck so hard that | ||
| 1587 | * characters actually go missing from your code when you try to use it. | ||
| 1588 | */ | ||
| 1589 | static void blk_request(struct virtqueue *vq) | ||
| 1590 | { | ||
| 1591 | struct vblk_info *vblk = vq->dev->priv; | ||
| 1592 | unsigned int head, out_num, in_num, wlen; | ||
| 1593 | int ret; | ||
| 1594 | u8 *in; | ||
| 1595 | struct virtio_blk_outhdr *out; | ||
| 1596 | struct iovec iov[vq->vring.num]; | ||
| 1597 | off64_t off; | ||
| 1598 | |||
| 1599 | /* | ||
| 1600 | * Get the next request, where we normally wait. It triggers the | ||
| 1601 | * interrupt to acknowledge previously serviced requests (if any). | ||
| 1602 | */ | ||
| 1603 | head = wait_for_vq_desc(vq, iov, &out_num, &in_num); | ||
| 1604 | |||
| 1605 | /* | ||
| 1606 | * Every block request should contain at least one output buffer | ||
| 1607 | * (detailing the location on disk and the type of request) and one | ||
| 1608 | * input buffer (to hold the result). | ||
| 1609 | */ | ||
| 1610 | if (out_num == 0 || in_num == 0) | ||
| 1611 | errx(1, "Bad virtblk cmd %u out=%u in=%u", | ||
| 1612 | head, out_num, in_num); | ||
| 1613 | |||
| 1614 | out = convert(&iov[0], struct virtio_blk_outhdr); | ||
| 1615 | in = convert(&iov[out_num+in_num-1], u8); | ||
| 1616 | /* | ||
| 1617 | * For historical reasons, block operations are expressed in 512 byte | ||
| 1618 | * "sectors". | ||
| 1619 | */ | ||
| 1620 | off = out->sector * 512; | ||
| 1621 | |||
| 1622 | /* | ||
| 1623 | * In general the virtio block driver is allowed to try SCSI commands. | ||
| 1624 | * It'd be nice if we supported eject, for example, but we don't. | ||
| 1625 | */ | ||
| 1626 | if (out->type & VIRTIO_BLK_T_SCSI_CMD) { | ||
| 1627 | fprintf(stderr, "Scsi commands unsupported\n"); | ||
| 1628 | *in = VIRTIO_BLK_S_UNSUPP; | ||
| 1629 | wlen = sizeof(*in); | ||
| 1630 | } else if (out->type & VIRTIO_BLK_T_OUT) { | ||
| 1631 | /* | ||
| 1632 | * Write | ||
| 1633 | * | ||
| 1634 | * Move to the right location in the block file. This can fail | ||
| 1635 | * if they try to write past end. | ||
| 1636 | */ | ||
| 1637 | if (lseek64(vblk->fd, off, SEEK_SET) != off) | ||
| 1638 | err(1, "Bad seek to sector %llu", out->sector); | ||
| 1639 | |||
| 1640 | ret = writev(vblk->fd, iov+1, out_num-1); | ||
| 1641 | verbose("WRITE to sector %llu: %i\n", out->sector, ret); | ||
| 1642 | |||
| 1643 | /* | ||
| 1644 | * Grr... Now we know how long the descriptor they sent was, we | ||
| 1645 | * make sure they didn't try to write over the end of the block | ||
| 1646 | * file (possibly extending it). | ||
| 1647 | */ | ||
| 1648 | if (ret > 0 && off + ret > vblk->len) { | ||
| 1649 | /* Trim it back to the correct length */ | ||
| 1650 | ftruncate64(vblk->fd, vblk->len); | ||
| 1651 | /* Die, bad Guest, die. */ | ||
| 1652 | errx(1, "Write past end %llu+%u", off, ret); | ||
| 1653 | } | ||
| 1654 | |||
| 1655 | wlen = sizeof(*in); | ||
| 1656 | *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR); | ||
| 1657 | } else if (out->type & VIRTIO_BLK_T_FLUSH) { | ||
| 1658 | /* Flush */ | ||
| 1659 | ret = fdatasync(vblk->fd); | ||
| 1660 | verbose("FLUSH fdatasync: %i\n", ret); | ||
| 1661 | wlen = sizeof(*in); | ||
| 1662 | *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR); | ||
| 1663 | } else { | ||
| 1664 | /* | ||
| 1665 | * Read | ||
| 1666 | * | ||
| 1667 | * Move to the right location in the block file. This can fail | ||
| 1668 | * if they try to read past end. | ||
| 1669 | */ | ||
| 1670 | if (lseek64(vblk->fd, off, SEEK_SET) != off) | ||
| 1671 | err(1, "Bad seek to sector %llu", out->sector); | ||
| 1672 | |||
| 1673 | ret = readv(vblk->fd, iov+1, in_num-1); | ||
| 1674 | verbose("READ from sector %llu: %i\n", out->sector, ret); | ||
| 1675 | if (ret >= 0) { | ||
| 1676 | wlen = sizeof(*in) + ret; | ||
| 1677 | *in = VIRTIO_BLK_S_OK; | ||
| 1678 | } else { | ||
| 1679 | wlen = sizeof(*in); | ||
| 1680 | *in = VIRTIO_BLK_S_IOERR; | ||
| 1681 | } | ||
| 1682 | } | ||
| 1683 | |||
| 1684 | /* Finished that request. */ | ||
| 1685 | add_used(vq, head, wlen); | ||
| 1686 | } | ||
| 1687 | |||
| 1688 | /*L:198 This actually sets up a virtual block device. */ | ||
| 1689 | static void setup_block_file(const char *filename) | ||
| 1690 | { | ||
| 1691 | struct device *dev; | ||
| 1692 | struct vblk_info *vblk; | ||
| 1693 | struct virtio_blk_config conf; | ||
| 1694 | |||
| 1695 | /* Creat the device. */ | ||
| 1696 | dev = new_device("block", VIRTIO_ID_BLOCK); | ||
| 1697 | |||
| 1698 | /* The device has one virtqueue, where the Guest places requests. */ | ||
| 1699 | add_virtqueue(dev, VIRTQUEUE_NUM, blk_request); | ||
| 1700 | |||
| 1701 | /* Allocate the room for our own bookkeeping */ | ||
| 1702 | vblk = dev->priv = malloc(sizeof(*vblk)); | ||
| 1703 | |||
| 1704 | /* First we open the file and store the length. */ | ||
| 1705 | vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE); | ||
| 1706 | vblk->len = lseek64(vblk->fd, 0, SEEK_END); | ||
| 1707 | |||
| 1708 | /* We support FLUSH. */ | ||
| 1709 | add_feature(dev, VIRTIO_BLK_F_FLUSH); | ||
| 1710 | |||
| 1711 | /* Tell Guest how many sectors this device has. */ | ||
| 1712 | conf.capacity = cpu_to_le64(vblk->len / 512); | ||
| 1713 | |||
| 1714 | /* | ||
| 1715 | * Tell Guest not to put in too many descriptors at once: two are used | ||
| 1716 | * for the in and out elements. | ||
| 1717 | */ | ||
| 1718 | add_feature(dev, VIRTIO_BLK_F_SEG_MAX); | ||
| 1719 | conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2); | ||
| 1720 | |||
| 1721 | /* Don't try to put whole struct: we have 8 bit limit. */ | ||
| 1722 | set_config(dev, offsetof(struct virtio_blk_config, geometry), &conf); | ||
| 1723 | |||
| 1724 | verbose("device %u: virtblock %llu sectors\n", | ||
| 1725 | ++devices.device_num, le64_to_cpu(conf.capacity)); | ||
| 1726 | } | ||
| 1727 | |||
| 1728 | /*L:211 | ||
| 1729 | * Our random number generator device reads from /dev/random into the Guest's | ||
| 1730 | * input buffers. The usual case is that the Guest doesn't want random numbers | ||
| 1731 | * and so has no buffers although /dev/random is still readable, whereas | ||
| 1732 | * console is the reverse. | ||
| 1733 | * | ||
| 1734 | * The same logic applies, however. | ||
| 1735 | */ | ||
| 1736 | struct rng_info { | ||
| 1737 | int rfd; | ||
| 1738 | }; | ||
| 1739 | |||
| 1740 | static void rng_input(struct virtqueue *vq) | ||
| 1741 | { | ||
| 1742 | int len; | ||
| 1743 | unsigned int head, in_num, out_num, totlen = 0; | ||
| 1744 | struct rng_info *rng_info = vq->dev->priv; | ||
| 1745 | struct iovec iov[vq->vring.num]; | ||
| 1746 | |||
| 1747 | /* First we need a buffer from the Guests's virtqueue. */ | ||
| 1748 | head = wait_for_vq_desc(vq, iov, &out_num, &in_num); | ||
| 1749 | if (out_num) | ||
| 1750 | errx(1, "Output buffers in rng?"); | ||
| 1751 | |||
| 1752 | /* | ||
| 1753 | * Just like the console write, we loop to cover the whole iovec. | ||
| 1754 | * In this case, short reads actually happen quite a bit. | ||
| 1755 | */ | ||
| 1756 | while (!iov_empty(iov, in_num)) { | ||
| 1757 | len = readv(rng_info->rfd, iov, in_num); | ||
| 1758 | if (len <= 0) | ||
| 1759 | err(1, "Read from /dev/random gave %i", len); | ||
| 1760 | iov_consume(iov, in_num, len); | ||
| 1761 | totlen += len; | ||
| 1762 | } | ||
| 1763 | |||
| 1764 | /* Tell the Guest about the new input. */ | ||
| 1765 | add_used(vq, head, totlen); | ||
| 1766 | } | ||
| 1767 | |||
| 1768 | /*L:199 | ||
| 1769 | * This creates a "hardware" random number device for the Guest. | ||
| 1770 | */ | ||
| 1771 | static void setup_rng(void) | ||
| 1772 | { | ||
| 1773 | struct device *dev; | ||
| 1774 | struct rng_info *rng_info = malloc(sizeof(*rng_info)); | ||
| 1775 | |||
| 1776 | /* Our device's privat info simply contains the /dev/random fd. */ | ||
| 1777 | rng_info->rfd = open_or_die("/dev/random", O_RDONLY); | ||
| 1778 | |||
| 1779 | /* Create the new device. */ | ||
| 1780 | dev = new_device("rng", VIRTIO_ID_RNG); | ||
| 1781 | dev->priv = rng_info; | ||
| 1782 | |||
| 1783 | /* The device has one virtqueue, where the Guest places inbufs. */ | ||
| 1784 | add_virtqueue(dev, VIRTQUEUE_NUM, rng_input); | ||
| 1785 | |||
| 1786 | verbose("device %u: rng\n", devices.device_num++); | ||
| 1787 | } | ||
| 1788 | /* That's the end of device setup. */ | ||
| 1789 | |||
| 1790 | /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */ | ||
| 1791 | static void __attribute__((noreturn)) restart_guest(void) | ||
| 1792 | { | ||
| 1793 | unsigned int i; | ||
| 1794 | |||
| 1795 | /* | ||
| 1796 | * Since we don't track all open fds, we simply close everything beyond | ||
| 1797 | * stderr. | ||
| 1798 | */ | ||
| 1799 | for (i = 3; i < FD_SETSIZE; i++) | ||
| 1800 | close(i); | ||
| 1801 | |||
| 1802 | /* Reset all the devices (kills all threads). */ | ||
| 1803 | cleanup_devices(); | ||
| 1804 | |||
| 1805 | execv(main_args[0], main_args); | ||
| 1806 | err(1, "Could not exec %s", main_args[0]); | ||
| 1807 | } | ||
| 1808 | |||
| 1809 | /*L:220 | ||
| 1810 | * Finally we reach the core of the Launcher which runs the Guest, serves | ||
| 1811 | * its input and output, and finally, lays it to rest. | ||
| 1812 | */ | ||
| 1813 | static void __attribute__((noreturn)) run_guest(void) | ||
| 1814 | { | ||
| 1815 | for (;;) { | ||
| 1816 | unsigned long notify_addr; | ||
| 1817 | int readval; | ||
| 1818 | |||
| 1819 | /* We read from the /dev/lguest device to run the Guest. */ | ||
| 1820 | readval = pread(lguest_fd, ¬ify_addr, | ||
| 1821 | sizeof(notify_addr), cpu_id); | ||
| 1822 | |||
| 1823 | /* One unsigned long means the Guest did HCALL_NOTIFY */ | ||
| 1824 | if (readval == sizeof(notify_addr)) { | ||
| 1825 | verbose("Notify on address %#lx\n", notify_addr); | ||
| 1826 | handle_output(notify_addr); | ||
| 1827 | /* ENOENT means the Guest died. Reading tells us why. */ | ||
| 1828 | } else if (errno == ENOENT) { | ||
| 1829 | char reason[1024] = { 0 }; | ||
| 1830 | pread(lguest_fd, reason, sizeof(reason)-1, cpu_id); | ||
| 1831 | errx(1, "%s", reason); | ||
| 1832 | /* ERESTART means that we need to reboot the guest */ | ||
| 1833 | } else if (errno == ERESTART) { | ||
| 1834 | restart_guest(); | ||
| 1835 | /* Anything else means a bug or incompatible change. */ | ||
| 1836 | } else | ||
| 1837 | err(1, "Running guest failed"); | ||
| 1838 | } | ||
| 1839 | } | ||
| 1840 | /*L:240 | ||
| 1841 | * This is the end of the Launcher. The good news: we are over halfway | ||
| 1842 | * through! The bad news: the most fiendish part of the code still lies ahead | ||
| 1843 | * of us. | ||
| 1844 | * | ||
| 1845 | * Are you ready? Take a deep breath and join me in the core of the Host, in | ||
| 1846 | * "make Host". | ||
| 1847 | :*/ | ||
| 1848 | |||
| 1849 | static struct option opts[] = { | ||
| 1850 | { "verbose", 0, NULL, 'v' }, | ||
| 1851 | { "tunnet", 1, NULL, 't' }, | ||
| 1852 | { "block", 1, NULL, 'b' }, | ||
| 1853 | { "rng", 0, NULL, 'r' }, | ||
| 1854 | { "initrd", 1, NULL, 'i' }, | ||
| 1855 | { "username", 1, NULL, 'u' }, | ||
| 1856 | { "chroot", 1, NULL, 'c' }, | ||
| 1857 | { NULL }, | ||
| 1858 | }; | ||
| 1859 | static void usage(void) | ||
| 1860 | { | ||
| 1861 | errx(1, "Usage: lguest [--verbose] " | ||
| 1862 | "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n" | ||
| 1863 | "|--block=<filename>|--initrd=<filename>]...\n" | ||
| 1864 | "<mem-in-mb> vmlinux [args...]"); | ||
| 1865 | } | ||
| 1866 | |||
| 1867 | /*L:105 The main routine is where the real work begins: */ | ||
| 1868 | int main(int argc, char *argv[]) | ||
| 1869 | { | ||
| 1870 | /* Memory, code startpoint and size of the (optional) initrd. */ | ||
| 1871 | unsigned long mem = 0, start, initrd_size = 0; | ||
| 1872 | /* Two temporaries. */ | ||
| 1873 | int i, c; | ||
| 1874 | /* The boot information for the Guest. */ | ||
| 1875 | struct boot_params *boot; | ||
| 1876 | /* If they specify an initrd file to load. */ | ||
| 1877 | const char *initrd_name = NULL; | ||
| 1878 | |||
| 1879 | /* Password structure for initgroups/setres[gu]id */ | ||
| 1880 | struct passwd *user_details = NULL; | ||
| 1881 | |||
| 1882 | /* Directory to chroot to */ | ||
| 1883 | char *chroot_path = NULL; | ||
| 1884 | |||
| 1885 | /* Save the args: we "reboot" by execing ourselves again. */ | ||
| 1886 | main_args = argv; | ||
| 1887 | |||
| 1888 | /* | ||
| 1889 | * First we initialize the device list. We keep a pointer to the last | ||
| 1890 | * device, and the next interrupt number to use for devices (1: | ||
| 1891 | * remember that 0 is used by the timer). | ||
| 1892 | */ | ||
| 1893 | devices.lastdev = NULL; | ||
| 1894 | devices.next_irq = 1; | ||
| 1895 | |||
| 1896 | /* We're CPU 0. In fact, that's the only CPU possible right now. */ | ||
| 1897 | cpu_id = 0; | ||
| 1898 | |||
| 1899 | /* | ||
| 1900 | * We need to know how much memory so we can set up the device | ||
| 1901 | * descriptor and memory pages for the devices as we parse the command | ||
| 1902 | * line. So we quickly look through the arguments to find the amount | ||
| 1903 | * of memory now. | ||
| 1904 | */ | ||
| 1905 | for (i = 1; i < argc; i++) { | ||
| 1906 | if (argv[i][0] != '-') { | ||
| 1907 | mem = atoi(argv[i]) * 1024 * 1024; | ||
| 1908 | /* | ||
| 1909 | * We start by mapping anonymous pages over all of | ||
| 1910 | * guest-physical memory range. This fills it with 0, | ||
| 1911 | * and ensures that the Guest won't be killed when it | ||
| 1912 | * tries to access it. | ||
| 1913 | */ | ||
| 1914 | guest_base = map_zeroed_pages(mem / getpagesize() | ||
| 1915 | + DEVICE_PAGES); | ||
| 1916 | guest_limit = mem; | ||
| 1917 | guest_max = mem + DEVICE_PAGES*getpagesize(); | ||
| 1918 | devices.descpage = get_pages(1); | ||
| 1919 | break; | ||
| 1920 | } | ||
| 1921 | } | ||
| 1922 | |||
| 1923 | /* The options are fairly straight-forward */ | ||
| 1924 | while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) { | ||
| 1925 | switch (c) { | ||
| 1926 | case 'v': | ||
| 1927 | verbose = true; | ||
| 1928 | break; | ||
| 1929 | case 't': | ||
| 1930 | setup_tun_net(optarg); | ||
| 1931 | break; | ||
| 1932 | case 'b': | ||
| 1933 | setup_block_file(optarg); | ||
| 1934 | break; | ||
| 1935 | case 'r': | ||
| 1936 | setup_rng(); | ||
| 1937 | break; | ||
| 1938 | case 'i': | ||
| 1939 | initrd_name = optarg; | ||
| 1940 | break; | ||
| 1941 | case 'u': | ||
| 1942 | user_details = getpwnam(optarg); | ||
| 1943 | if (!user_details) | ||
| 1944 | err(1, "getpwnam failed, incorrect username?"); | ||
| 1945 | break; | ||
| 1946 | case 'c': | ||
| 1947 | chroot_path = optarg; | ||
| 1948 | break; | ||
| 1949 | default: | ||
| 1950 | warnx("Unknown argument %s", argv[optind]); | ||
| 1951 | usage(); | ||
| 1952 | } | ||
| 1953 | } | ||
| 1954 | /* | ||
| 1955 | * After the other arguments we expect memory and kernel image name, | ||
| 1956 | * followed by command line arguments for the kernel. | ||
| 1957 | */ | ||
| 1958 | if (optind + 2 > argc) | ||
| 1959 | usage(); | ||
| 1960 | |||
| 1961 | verbose("Guest base is at %p\n", guest_base); | ||
| 1962 | |||
| 1963 | /* We always have a console device */ | ||
| 1964 | setup_console(); | ||
| 1965 | |||
| 1966 | /* Now we load the kernel */ | ||
| 1967 | start = load_kernel(open_or_die(argv[optind+1], O_RDONLY)); | ||
| 1968 | |||
| 1969 | /* Boot information is stashed at physical address 0 */ | ||
| 1970 | boot = from_guest_phys(0); | ||
| 1971 | |||
| 1972 | /* Map the initrd image if requested (at top of physical memory) */ | ||
| 1973 | if (initrd_name) { | ||
| 1974 | initrd_size = load_initrd(initrd_name, mem); | ||
| 1975 | /* | ||
| 1976 | * These are the location in the Linux boot header where the | ||
| 1977 | * start and size of the initrd are expected to be found. | ||
| 1978 | */ | ||
| 1979 | boot->hdr.ramdisk_image = mem - initrd_size; | ||
| 1980 | boot->hdr.ramdisk_size = initrd_size; | ||
| 1981 | /* The bootloader type 0xFF means "unknown"; that's OK. */ | ||
| 1982 | boot->hdr.type_of_loader = 0xFF; | ||
| 1983 | } | ||
| 1984 | |||
| 1985 | /* | ||
| 1986 | * The Linux boot header contains an "E820" memory map: ours is a | ||
| 1987 | * simple, single region. | ||
| 1988 | */ | ||
| 1989 | boot->e820_entries = 1; | ||
| 1990 | boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM }); | ||
| 1991 | /* | ||
| 1992 | * The boot header contains a command line pointer: we put the command | ||
| 1993 | * line after the boot header. | ||
| 1994 | */ | ||
| 1995 | boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1); | ||
| 1996 | /* We use a simple helper to copy the arguments separated by spaces. */ | ||
| 1997 | concat((char *)(boot + 1), argv+optind+2); | ||
| 1998 | |||
| 1999 | /* Set kernel alignment to 16M (CONFIG_PHYSICAL_ALIGN) */ | ||
| 2000 | boot->hdr.kernel_alignment = 0x1000000; | ||
| 2001 | |||
| 2002 | /* Boot protocol version: 2.07 supports the fields for lguest. */ | ||
| 2003 | boot->hdr.version = 0x207; | ||
| 2004 | |||
| 2005 | /* The hardware_subarch value of "1" tells the Guest it's an lguest. */ | ||
| 2006 | boot->hdr.hardware_subarch = 1; | ||
| 2007 | |||
| 2008 | /* Tell the entry path not to try to reload segment registers. */ | ||
| 2009 | boot->hdr.loadflags |= KEEP_SEGMENTS; | ||
| 2010 | |||
| 2011 | /* We tell the kernel to initialize the Guest. */ | ||
| 2012 | tell_kernel(start); | ||
| 2013 | |||
| 2014 | /* Ensure that we terminate if a device-servicing child dies. */ | ||
| 2015 | signal(SIGCHLD, kill_launcher); | ||
| 2016 | |||
| 2017 | /* If we exit via err(), this kills all the threads, restores tty. */ | ||
| 2018 | atexit(cleanup_devices); | ||
| 2019 | |||
| 2020 | /* If requested, chroot to a directory */ | ||
| 2021 | if (chroot_path) { | ||
| 2022 | if (chroot(chroot_path) != 0) | ||
| 2023 | err(1, "chroot(\"%s\") failed", chroot_path); | ||
| 2024 | |||
| 2025 | if (chdir("/") != 0) | ||
| 2026 | err(1, "chdir(\"/\") failed"); | ||
| 2027 | |||
| 2028 | verbose("chroot done\n"); | ||
| 2029 | } | ||
| 2030 | |||
| 2031 | /* If requested, drop privileges */ | ||
| 2032 | if (user_details) { | ||
| 2033 | uid_t u; | ||
| 2034 | gid_t g; | ||
| 2035 | |||
| 2036 | u = user_details->pw_uid; | ||
| 2037 | g = user_details->pw_gid; | ||
| 2038 | |||
| 2039 | if (initgroups(user_details->pw_name, g) != 0) | ||
| 2040 | err(1, "initgroups failed"); | ||
| 2041 | |||
| 2042 | if (setresgid(g, g, g) != 0) | ||
| 2043 | err(1, "setresgid failed"); | ||
| 2044 | |||
| 2045 | if (setresuid(u, u, u) != 0) | ||
| 2046 | err(1, "setresuid failed"); | ||
| 2047 | |||
| 2048 | verbose("Dropping privileges completed\n"); | ||
| 2049 | } | ||
| 2050 | |||
| 2051 | /* Finally, run the Guest. This doesn't return. */ | ||
| 2052 | run_guest(); | ||
| 2053 | } | ||
| 2054 | /*:*/ | ||
| 2055 | |||
| 2056 | /*M:999 | ||
| 2057 | * Mastery is done: you now know everything I do. | ||
| 2058 | * | ||
| 2059 | * But surely you have seen code, features and bugs in your wanderings which | ||
| 2060 | * you now yearn to attack? That is the real game, and I look forward to you | ||
| 2061 | * patching and forking lguest into the Your-Name-Here-visor. | ||
| 2062 | * | ||
| 2063 | * Farewell, and good coding! | ||
| 2064 | * Rusty Russell. | ||
| 2065 | */ | ||
diff --git a/Documentation/virtual/lguest/lguest.txt b/Documentation/virtual/lguest/lguest.txt new file mode 100644 index 00000000000..bff0c554485 --- /dev/null +++ b/Documentation/virtual/lguest/lguest.txt | |||
| @@ -0,0 +1,129 @@ | |||
| 1 | __ | ||
| 2 | (___()'`; Rusty's Remarkably Unreliable Guide to Lguest | ||
| 3 | /, /` - or, A Young Coder's Illustrated Hypervisor | ||
| 4 | \\"--\\ http://lguest.ozlabs.org | ||
| 5 | |||
| 6 | Lguest is designed to be a minimal 32-bit x86 hypervisor for the Linux kernel, | ||
| 7 | for Linux developers and users to experiment with virtualization with the | ||
| 8 | minimum of complexity. Nonetheless, it should have sufficient features to | ||
| 9 | make it useful for specific tasks, and, of course, you are encouraged to fork | ||
| 10 | and enhance it (see drivers/lguest/README). | ||
| 11 | |||
| 12 | Features: | ||
| 13 | |||
| 14 | - Kernel module which runs in a normal kernel. | ||
| 15 | - Simple I/O model for communication. | ||
| 16 | - Simple program to create new guests. | ||
| 17 | - Logo contains cute puppies: http://lguest.ozlabs.org | ||
| 18 | |||
| 19 | Developer features: | ||
| 20 | |||
| 21 | - Fun to hack on. | ||
| 22 | - No ABI: being tied to a specific kernel anyway, you can change anything. | ||
| 23 | - Many opportunities for improvement or feature implementation. | ||
| 24 | |||
| 25 | Running Lguest: | ||
| 26 | |||
| 27 | - The easiest way to run lguest is to use same kernel as guest and host. | ||
| 28 | You can configure them differently, but usually it's easiest not to. | ||
| 29 | |||
| 30 | You will need to configure your kernel with the following options: | ||
| 31 | |||
| 32 | "General setup": | ||
| 33 | "Prompt for development and/or incomplete code/drivers" = Y | ||
| 34 | (CONFIG_EXPERIMENTAL=y) | ||
| 35 | |||
| 36 | "Processor type and features": | ||
| 37 | "Paravirtualized guest support" = Y | ||
| 38 | "Lguest guest support" = Y | ||
| 39 | "High Memory Support" = off/4GB | ||
| 40 | "Alignment value to which kernel should be aligned" = 0x100000 | ||
| 41 | (CONFIG_PARAVIRT=y, CONFIG_LGUEST_GUEST=y, CONFIG_HIGHMEM64G=n and | ||
| 42 | CONFIG_PHYSICAL_ALIGN=0x100000) | ||
| 43 | |||
| 44 | "Device Drivers": | ||
| 45 | "Block devices" | ||
| 46 | "Virtio block driver (EXPERIMENTAL)" = M/Y | ||
| 47 | "Network device support" | ||
| 48 | "Universal TUN/TAP device driver support" = M/Y | ||
| 49 | "Virtio network driver (EXPERIMENTAL)" = M/Y | ||
| 50 | (CONFIG_VIRTIO_BLK=m, CONFIG_VIRTIO_NET=m and CONFIG_TUN=m) | ||
| 51 | |||
| 52 | "Virtualization" | ||
| 53 | "Linux hypervisor example code" = M/Y | ||
| 54 | (CONFIG_LGUEST=m) | ||
| 55 | |||
| 56 | - A tool called "lguest" is available in this directory: type "make" | ||
| 57 | to build it. If you didn't build your kernel in-tree, use "make | ||
| 58 | O=<builddir>". | ||
| 59 | |||
| 60 | - Create or find a root disk image. There are several useful ones | ||
| 61 | around, such as the xm-test tiny root image at | ||
| 62 | http://xm-test.xensource.com/ramdisks/initrd-1.1-i386.img | ||
| 63 | |||
| 64 | For more serious work, I usually use a distribution ISO image and | ||
| 65 | install it under qemu, then make multiple copies: | ||
| 66 | |||
| 67 | dd if=/dev/zero of=rootfile bs=1M count=2048 | ||
| 68 | qemu -cdrom image.iso -hda rootfile -net user -net nic -boot d | ||
| 69 | |||
| 70 | Make sure that you install a getty on /dev/hvc0 if you want to log in on the | ||
| 71 | console! | ||
| 72 | |||
| 73 | - "modprobe lg" if you built it as a module. | ||
| 74 | |||
| 75 | - Run an lguest as root: | ||
| 76 | |||
| 77 | Documentation/virtual/lguest/lguest 64 vmlinux --tunnet=192.168.19.1 \ | ||
| 78 | --block=rootfile root=/dev/vda | ||
| 79 | |||
| 80 | Explanation: | ||
| 81 | 64: the amount of memory to use, in MB. | ||
| 82 | |||
| 83 | vmlinux: the kernel image found in the top of your build directory. You | ||
| 84 | can also use a standard bzImage. | ||
| 85 | |||
| 86 | --tunnet=192.168.19.1: configures a "tap" device for networking with this | ||
| 87 | IP address. | ||
| 88 | |||
| 89 | --block=rootfile: a file or block device which becomes /dev/vda | ||
| 90 | inside the guest. | ||
| 91 | |||
| 92 | root=/dev/vda: this (and anything else on the command line) are | ||
| 93 | kernel boot parameters. | ||
| 94 | |||
| 95 | - Configuring networking. I usually have the host masquerade, using | ||
| 96 | "iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE" and "echo 1 > | ||
| 97 | /proc/sys/net/ipv4/ip_forward". In this example, I would configure | ||
| 98 | eth0 inside the guest at 192.168.19.2. | ||
| 99 | |||
| 100 | Another method is to bridge the tap device to an external interface | ||
| 101 | using --tunnet=bridge:<bridgename>, and perhaps run dhcp on the guest | ||
| 102 | to obtain an IP address. The bridge needs to be configured first: | ||
| 103 | this option simply adds the tap interface to it. | ||
| 104 | |||
| 105 | A simple example on my system: | ||
| 106 | |||
| 107 | ifconfig eth0 0.0.0.0 | ||
| 108 | brctl addbr lg0 | ||
| 109 | ifconfig lg0 up | ||
| 110 | brctl addif lg0 eth0 | ||
| 111 | dhclient lg0 | ||
| 112 | |||
| 113 | Then use --tunnet=bridge:lg0 when launching the guest. | ||
| 114 | |||
| 115 | See: | ||
| 116 | |||
| 117 | http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge | ||
| 118 | |||
| 119 | for general information on how to get bridging to work. | ||
| 120 | |||
| 121 | - Random number generation. Using the --rng option will provide a | ||
| 122 | /dev/hwrng in the guest that will read from the host's /dev/random. | ||
| 123 | Use this option in conjunction with rng-tools (see ../hw_random.txt) | ||
| 124 | to provide entropy to the guest kernel's /dev/random. | ||
| 125 | |||
| 126 | There is a helpful mailing list at http://ozlabs.org/mailman/listinfo/lguest | ||
| 127 | |||
| 128 | Good luck! | ||
| 129 | Rusty Russell rusty@rustcorp.com.au. | ||
