/*
* Copyright (c) 2011 Synaptics Incorporated
* Copyright (c) 2011 Unixphere
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/input.h>
#include <linux/rmi.h>
#define F11_MAX_NUM_OF_SENSORS 8
#define F11_MAX_NUM_OF_FINGERS 10
#define F11_MAX_NUM_OF_TOUCH_SHAPES 16
#define F11_REL_POS_MIN -128
#define F11_REL_POS_MAX 127
#define F11_FINGER_STATE_MASK 0x03
#define F11_FINGER_STATE_SIZE 0x02
#define F11_FINGER_STATE_MASK_N(i) \
(F11_FINGER_STATE_MASK << (i%4 * F11_FINGER_STATE_SIZE))
#define F11_FINGER_STATE_VAL_N(f_state, i) \
(f_state >> (i%4 * F11_FINGER_STATE_SIZE))
#define F11_CTRL_SENSOR_MAX_X_POS_OFFSET 6
#define F11_CTRL_SENSOR_MAX_Y_POS_OFFSET 8
#define F11_CEIL(x, y) (((x) + ((y)-1)) / (y))
/* By default, we'll support two fingers if we can't figure out how many we
* really need to handle.
*/
#define DEFAULT_NR_OF_FINGERS 2
#define DEFAULT_XY_MAX 9999
#define DEFAULT_MAX_ABS_MT_PRESSURE 255
#define DEFAULT_MAX_ABS_MT_TOUCH 15
#define DEFAULT_MAX_ABS_MT_ORIENTATION 1
#define DEFAULT_MIN_ABS_MT_TRACKING_ID 1
#define DEFAULT_MAX_ABS_MT_TRACKING_ID 10
#define MAX_LEN 256
static ssize_t rmi_fn_11_flip_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t rmi_fn_11_flip_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count);
static ssize_t rmi_fn_11_clip_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t rmi_fn_11_clip_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count);
static ssize_t rmi_fn_11_offset_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t rmi_fn_11_offset_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count);
static ssize_t rmi_fn_11_swap_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t rmi_fn_11_swap_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count);
static ssize_t rmi_fn_11_relreport_show(struct device *dev,
struct device_attribute *attr,
char *buf);
static ssize_t rmi_fn_11_relreport_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count);
static ssize_t rmi_fn_11_maxPos_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t rmi_f11_rezero_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count);
static struct device_attribute attrs[] = {
__ATTR(flip, RMI_RW_ATTR, rmi_fn_11_flip_show, rmi_fn_11_flip_store),
__ATTR(clip, RMI_RW_ATTR, rmi_fn_11_clip_show, rmi_fn_11_clip_store),
__ATTR(offset, RMI_RW_ATTR,
rmi_fn_11_offset_show, rmi_fn_11_offset_store),
__ATTR(swap, RMI_RW_ATTR, rmi_fn_11_swap_show, rmi_fn_11_swap_store),
__ATTR(relreport, RMI_RW_ATTR,
rmi_fn_11_relreport_show, rmi_fn_11_relreport_store),
__ATTR(maxPos, RMI_RO_ATTR, rmi_fn_11_maxPos_show, rmi_store_error),
__ATTR(rezero, RMI_WO_ATTR, rmi_show_error, rmi_f11_rezero_store)
};
union f11_2d_commands {
struct {
u8 rezero:1;
};
u8 reg;
};
struct f11_2d_device_query {
union {
struct {
u8 nbr_of_sensors:3;
u8 has_query9:1;
u8 has_query11:1;
};
u8 f11_2d_query0;
};
u8 f11_2d_query9;
union {
struct {
u8 has_z_tuning:1;
u8 has_pos_interpolation_tuning:1;
u8 has_w_tuning:1;
u8 has_pitch_info:1;
u8 has_default_finger_width:1;
u8 has_segmentation_aggressiveness:1;
u8 has_tx_rw_clip:1;
u8 has_drumming_correction:1;
};
u8 f11_2d_query11;
};
};
struct f11_2d_sensor_query {
union {
struct {
/* query1 */
u8 number_of_fingers:3;
u8 has_rel:1;
u8 has_abs:1;
u8 has_gestures:1;
u8 has_sensitivity_adjust:1;
u8 configurable:1;
/* query2 */
u8 num_of_x_electrodes:7;
/* query3 */
u8 num_of_y_electrodes:7;
/* query4 */
u8 max_electrodes:7;
};
u8 f11_2d_query1__4[4];
};
union {
struct {
u8 abs_data_size:3;
u8 has_anchored_finger:1;
u8 has_adj_hyst:1;
u8 has_dribble:1;
};
u8 f11_2d_query5;
};
u8 f11_2d_query6;
union {
struct {
u8 has_single_tap:1;
u8 has_tap_n_hold:1;
u8 has_double_tap:1;
u8 has_early_tap:1;
u8 has_flick:1;
u8 has_press:1;
u8 has_pinch:1;
u8 padding:1;
u8 has_palm_det:1;
u8 has_rotate:1;
u8 has_touch_shapes:1;
u8 has_scroll_zones:1;
u8 has_individual_scroll_zones:1;
u8 has_multi_finger_scroll:1;
};
u8 f11_2d_query7__8[2];
};
/* Empty */
u8 f11_2d_query9;
union {
struct {
u8 nbr_touch_shapes:5;
};
u8 f11_2d_query10;
};
};
struct f11_2d_data_0 {
u8 finger_n;
};
struct f11_2d_data_1_5 {
u8 x_msb;
u8 y_msb;
u8 x_lsb:4;
u8 y_lsb:4;
u8 w_y:4;
u8 w_x:4;
u8 z;
};
struct f11_2d_data_6_7 {
s8 delta_x;
s8 delta_y;
};
struct f11_2d_data_8 {
u8 single_tap:1;
u8 tap_and_hold:1;
u8 double_tap:1;
u8 early_tap:1;
u8 flick:1;
u8 press:1;
u8 pinch:1;
};
struct f11_2d_data_9 {
u8 palm_detect:1;
u8 rotate:1;
u8 shape:1;
u8 scrollzone:1;
u8 finger_count:3;
};
struct f11_2d_data_10 {
u8 pinch_motion;
};
struct f11_2d_data_10_12 {
u8 x_flick_dist;
u8 y_flick_dist;
u8 flick_time;
};
struct f11_2d_data_11_12 {
u8 motion;
u8 finger_separation;
};
struct f11_2d_data_13 {
u8 shape_n;
};
struct f11_2d_data_14_15 {
u8 horizontal;
u8 vertical;
};
struct f11_2d_data_14_17 {
u8 x_low;
u8 y_right;
u8 x_upper;
u8 y_left;
};
struct f11_2d_data {
const struct f11_2d_data_0 *f_state;
const struct f11_2d_data_1_5 *abs_pos;
const struct f11_2d_data_6_7 *rel_pos;
const struct f11_2d_data_8 *gest_1;
const struct f11_2d_data_9 *gest_2;
const struct f11_2d_data_10 *pinch;
const struct f11_2d_data_10_12 *flick;
const struct f11_2d_data_11_12 *rotate;
const struct f11_2d_data_13 *shapes;
const struct f11_2d_data_14_15 *multi_scroll;
const struct f11_2d_data_14_17 *scroll_zones;
};
struct f11_2d_sensor {
struct rmi_f11_2d_axis_alignment axis_align;
struct f11_2d_sensor_query sens_query;
struct f11_2d_data data;
u16 max_x;
u16 max_y;
u8 nbr_fingers;
u8 finger_tracker[F11_MAX_NUM_OF_FINGERS];
u8 *data_pkt;
int pkt_size;
u8 sensor_index;
char input_name[MAX_LEN];
char input_phys[MAX_LEN];
struct input_dev *input;
struct input_dev *mouse_input;
};
struct f11_data {
struct f11_2d_device_query dev_query;
struct rmi_f11_2d_ctrl dev_controls;
struct f11_2d_sensor sensors[F11_MAX_NUM_OF_SENSORS];
};
enum finger_state_values {
F11_NO_FINGER = 0x00,
F11_PRESENT = 0x01,
F11_INACCURATE = 0x02,
F11_RESERVED = 0x03
};
static void rmi_f11_rel_pos_report(struct f11_2d_sensor *sensor, u8 n_finger)
{
struct f11_2d_data *data = &sensor->data;
struct rmi_f11_2d_axis_alignment *axis_align = &sensor->axis_align;
s8 x, y;
s8 temp;
x = data->rel_pos[n_finger].delta_x;
y = data->rel_pos[n_finger].delta_y;
x = min(F11_REL_POS_MAX, max(F11_REL_POS_MIN, (int)x));
y = min(F11_REL_POS_MAX, max(F11_REL_POS_MIN, (int)y));
if (axis_align->swap_axes) {
temp = x;
x = y;
y = temp;
}
if (axis_align->flip_x)
x = min(F11_REL_POS_MAX, -x);
if (axis_align->flip_y)
y = min(F11_REL_POS_MAX, -y);
if (x || y) {
input_report_rel(sensor->input, REL_X, x);
input_report_rel(sensor->input, REL_Y, y);
input_report_rel(sensor->mouse_input, REL_X, x);
input_report_rel(sensor->mouse_input, REL_Y, y);
}
input_sync(sensor->mouse_input);
}
static void rmi_f11_abs_pos_report(struct f11_2d_sensor *sensor,
u8 finger_state, u8 n_finger)
{
struct f11_2d_data *data = &sensor->data;
struct rmi_f11_2d_axis_alignment *axis_align = &sensor->axis_align;
int prev_state = sensor->finger_tracker[n_finger];
int x, y, z;
int w_x, w_y, w_max, w_min, orient;
int temp;
if (prev_state && !finger_state) {
/* this is a release */
x = y = z = w_max = w_min = orient = 0;
} else if (!prev_state && !finger_state) {
/* nothing to report */
return;
} else {
x = ((data->abs_pos[n_finger].x_msb << 4) |
data->abs_pos[n_finger].x_lsb);
y = ((data->abs_pos[n_finger].y_msb << 4) |
data->abs_pos[n_finger].y_lsb);
z = data->abs_pos[n_finger].z;
w_x = data->abs_pos[n_finger].w_x;
w_y = data->abs_pos[n_finger].w_y;
w_max = max(w_x, w_y);
w_min = min(w_x, w_y);
if (axis_align->swap_axes) {
temp = x;
x = y;
y = temp;
temp = w_x;
w_x = w_y;
w_y = temp;
}
orient = w_x > w_y ? 1 : 0;
if (axis_align->flip_x)
x = max(sensor->max_x - x, 0);
if (axis_align->flip_y)
y = max(sensor->max_y - y, 0);
/*
** here checking if X offset or y offset are specified is
** redundant. We just add the offsets or, clip the values
**
** note: offsets need to be done before clipping occurs,
** or we could get funny values that are outside
** clipping boundaries.
*/
x += axis_align->offset_X;
y += axis_align->offset_Y;
x = max(axis_align->clip_X_low, x);
y = max(axis_align->clip_Y_low, y);
if (axis_align->clip_X_high)
x = min(axis_align->clip_X_high, x);
if (axis_align->clip_Y_high)
y = min(axis_align->clip_Y_high, y);
}
pr_debug("%s: f_state[%d]:%d - x:%d y:%d z:%d w_max:%d w_min:%d\n",
__func__, n_finger, finger_state, x, y, z, w_max, w_min);
#ifdef ABS_MT_PRESSURE
input_report_abs(sensor->input, ABS_MT_PRESSURE, z);
#endif
input_report_abs(sensor->input, ABS_MT_TOUCH_MAJOR, w_max);
input_report_abs(sensor->input, ABS_MT_TOUCH_MINOR, w_min);
input_report_abs(sensor->input, ABS_MT_ORIENTATION, orient);
input_report_abs(sensor->input, ABS_MT_POSITION_X, x);
input_report_abs(sensor->input, ABS_MT_POSITION_Y, y);
input_report_abs(sensor->input, ABS_MT_TRACKING_ID, n_finger);
/* MT sync between fingers */
input_mt_sync(sensor->input);
sensor->finger_tracker[n_finger] = finger_state;
}
static void rmi_f11_finger_handler(struct f11_2d_sensor *sensor)
{
const struct f11_2d_data_0 *f_state = sensor->data.f_state;
u8 finger_state;
u8 finger_pressed_count;
u8 i;
for (i = 0, finger_pressed_count = 0; i < sensor->nbr_fingers; i++) {
/* Possible of having 4 fingers per f_statet register */
finger_state = (f_state[i >> 2].finger_n &
F11_FINGER_STATE_MASK_N(i));
finger_state = F11_FINGER_STATE_VAL_N(finger_state, i);
if (finger_state == F11_RESERVED) {
pr_err("%s: Invalid finger state[%d]:0x%02x.", __func__,
i, finger_state);
continue;
} else if ((finger_state == F11_PRESENT) ||
(finger_state == F11_INACCURATE)) {
finger_pressed_count++;
}
if (sensor->data.abs_pos)
rmi_f11_abs_pos_report(sensor, finger_state, i);
if (sensor->data.rel_pos)
rmi_f11_rel_pos_report(sensor, i);
}
input_report_key(sensor->input, BTN_TOUCH, finger_pressed_count);
input_sync(sensor->input);
}
static inline int rmi_f11_2d_construct_data(struct f11_2d_sensor *sensor)
{
struct f11_2d_sensor_query *query = &sensor->sens_query;
struct f11_2d_data *data = &sensor->data;
int i;
sensor->nbr_fingers = (query->number_of_fingers == 5 ? 10 :
query->number_of_fingers + 1);
sensor->pkt_size = F11_CEIL(sensor->nbr_fingers, 4);
if (query->has_abs)
sensor->pkt_size += (sensor->nbr_fingers * 5);
if (query->has_rel)
sensor->pkt_size += (sensor->nbr_fingers * 2);
/* Check if F11_2D_Query7 is non-zero */
if (query->f11_2d_query7__8[0])
sensor->pkt_size += sizeof(u8);
/* Check if F11_2D_Query7 or F11_2D_Query8 is non-zero */
if (query->f11_2d_query7__8[0] || query->f11_2d_query7__8[1])
sensor->pkt_size += sizeof(u8);
if (query->has_pinch || query->has_flick || query->has_rotate) {
sensor->pkt_size += 3;
if (!query->has_flick)
sensor->pkt_size--;
if (!query->has_rotate)
sensor->pkt_size--;
}
if (query->has_touch_shapes)
sensor->pkt_size += F11_CEIL(query->nbr_touch_shapes + 1, 8);
sensor->data_pkt = kzalloc(sensor->pkt_size, GFP_KERNEL);
if (!sensor->data_pkt)
return -ENOMEM;
data->f_state = (struct f11_2d_data_0 *)sensor->data_pkt;
i = F11_CEIL(sensor->nbr_fingers, 4);
if (query->has_abs) {
data->abs_pos = (struct f11_2d_data_1_5 *)
&sensor->data_pkt[i];
i += (sensor->nbr_fingers * 5);
}
if (query->has_rel) {
data->rel_pos = (struct f11_2d_data_6_7 *)
&sensor->data_pkt[i];
i += (sensor->nbr_fingers * 2);
}
if (query->f11_2d_query7__8[0]) {
data->gest_1 = (struct f11_2d_data_8 *)&sensor->data_pkt[i];
i++;
}
if (query->f11_2d_query7__8[0] || query->f11_2d_query7__8[1]) {
data->gest_2 = (struct f11_2d_data_9 *)&sensor->data_pkt[i];
i++;
}
if (query->has_pinch) {
data->pinch = (struct f11_2d_data_10 *)&sensor->data_pkt[i];
i++;
}
if (query->has_flick) {
if (query->has_pinch) {
data->flick = (struct f11_2d_data_10_12 *)data->pinch;
i += 2;
} else {
data->flick = (struct f11_2d_data_10_12 *)
&sensor->data_pkt[i];
i += 3;
}
}
if (query->has_rotate) {
if (query->has_flick) {
data->rotate = (struct f11_2d_data_11_12 *)
(data->flick + 1);
} else {
data->rotate = (struct f11_2d_data_11_12 *)
&sensor->data_pkt[i];
i += 2;
}
}
if (query->has_touch_shapes)
data->shapes = (struct f11_2d_data_13 *)&sensor->data_pkt[i];
return 0;
}
static int rmi_f11_read_control_parameters(struct rmi_device *rmi_dev,
struct f11_2d_device_query *query,
struct rmi_f11_2d_ctrl *ctrl,
int ctrl_base_addr) {
int read_address = ctrl_base_addr;
int error = 0;
if (ctrl->ctrl0) {
error = rmi_read_block(rmi_dev, read_address, &ctrl->ctrl0->reg,
sizeof(union rmi_f11_2d_ctrl0));
if (error < 0) {
dev_err(&rmi_dev->dev,
"Failed to read F11 ctrl0, code: %d.\n", error);
return error;
}
read_address = read_address + sizeof(union rmi_f11_2d_ctrl0);
}
if (ctrl->ctrl1) {
error = rmi_read_block(rmi_dev, read_address, &ctrl->ctrl1->reg,
sizeof(union rmi_f11_2d_ctrl1));
if (error < 0) {
dev_err(&rmi_dev->dev,
"Failed to read F11 ctrl1, code: %d.\n", error);
return error;
}
read_address = read_address + sizeof(union rmi_f11_2d_ctrl1);
}
if (ctrl->ctrl2__3) {
error = rmi_read_block(rmi_dev, read_address,
ctrl->ctrl2__3->regs,
sizeof(ctrl->ctrl2__3->regs));
if (error < 0) {
dev_err(&rmi_dev->dev,
"Failed to read F11 ctrl2__3, code: %d.\n",
error);
return error;
}
read_address = read_address + sizeof(ctrl->ctrl2__3->regs);
}
if (ctrl->ctrl4) {
error = rmi_read_block(rmi_dev, read_address, &ctrl->ctrl4->reg,
sizeof(ctrl->ctrl4->reg));
if (error < 0) {
dev_err(&rmi_dev->dev,
"Failed to read F11 ctrl4, code: %d.\n", error);
return error;
}
read_address = read_address + sizeof(ctrl->ctrl4->reg);
}
if (ctrl->ctrl5) {
error = rmi_read_block(rmi_dev, read_address, &ctrl->ctrl5->reg,
sizeof(ctrl->ctrl5->reg));
if (error < 0) {
dev_err(&rmi_dev->dev,
"Failed to read F11 ctrl5, code: %d.\n", error);
return error;
}
read_address = read_address + sizeof(ctrl->ctrl5->reg);
}
if (ctrl->ctrl6__7) {
error = rmi_read_block(rmi_dev, read_address,
ctrl->ctrl6__7->regs,
sizeof(ctrl->ctrl6__7->regs));
if (error < 0) {
dev_err(&rmi_dev->dev,
"Failed to read F11 ctrl6__7, code: %d.\n",
error);
return error;
}
read_address = read_address + sizeof(ctrl->ctrl6__7->regs);
}
if (ctrl->ctrl8__9) {
error = rmi_read_block(rmi_dev, read_address,
ctrl->ctrl8__9->regs,
sizeof(ctrl->ctrl8__9->regs));
if (error < 0) {
dev_err(&rmi_dev->dev,
"Failed to read F11 ctrl8__9, code: %d.\n",
error);
return error;
}
read_address = read_address + sizeof(ctrl->ctrl8__9->regs);
}
return 0;
}
static int rmi_f11_initialize_control_parameters(struct rmi_device *rmi_dev,
struct f11_2d_device_query *query,
struct rmi_f11_2d_ctrl *ctrl,
int ctrl_base_addr) {
int error = 0;
ctrl->ctrl0 = kzalloc(sizeof(union rmi_f11_2d_ctrl0), GFP_KERNEL);
if (!ctrl->ctrl0) {
dev_err(&rmi_dev->dev, "Failed to allocate F11 ctrl0.\n");
error = -ENOMEM;
goto error_exit;
}
ctrl->ctrl1 = kzalloc(sizeof(union rmi_f11_2d_ctrl1), GFP_KERNEL);
if (!ctrl->ctrl1) {
dev_err(&rmi_dev->dev, "Failed to allocate F11 ctrl1.\n");
error = -ENOMEM;
goto error_exit;
}
ctrl->ctrl2__3 = kzalloc(sizeof(union rmi_f11_2d_ctrl2__3), GFP_KERNEL);
if (!ctrl->ctrl2__3) {
dev_err(&rmi_dev->dev, "Failed to allocate F11 ctrl2__3.\n");
error = -ENOMEM;
goto error_exit;
}
ctrl->ctrl4 = kzalloc(sizeof(union rmi_f11_2d_ctrl4), GFP_KERNEL);
if (!ctrl->ctrl4) {
dev_err(&rmi_dev->dev, "Failed to allocate F11 ctrl4.\n");
error = -ENOMEM;
goto error_exit;
}
ctrl->ctrl5 = kzalloc(sizeof(union rmi_f11_2d_ctrl5), GFP_KERNEL);
if (!ctrl->ctrl5) {
dev_err(&rmi_dev->dev, "Failed to allocate F11 ctrl5.\n");
error = -ENOMEM;
goto error_exit;
}
ctrl->ctrl6__7 = kzalloc(sizeof(union rmi_f11_2d_ctrl6__7), GFP_KERNEL);
if (!ctrl->ctrl6__7) {
dev_err(&rmi_dev->dev, "Failed to allocate F11 ctrl6__7.\n");
error = -ENOMEM;
goto error_exit;
}
ctrl->ctrl8__9 = kzalloc(sizeof(union rmi_f11_2d_ctrl8__9), GFP_KERNEL);
if (!ctrl->ctrl8__9) {
dev_err(&rmi_dev->dev, "Failed to allocate F11 ctrl8__9.\n");
error = -ENOMEM;
goto error_exit;
}
return rmi_f11_read_control_parameters(rmi_dev, query,
ctrl, ctrl_base_addr);
error_exit:
kfree(ctrl->ctrl0);
kfree(ctrl->ctrl1);
kfree(ctrl->ctrl2__3);
kfree(ctrl->ctrl4);
kfree(ctrl->ctrl5);
kfree(ctrl->ctrl6__7);
kfree(ctrl->ctrl8__9);
return error;
}
static inline int rmi_f11_set_control_parameters(struct rmi_device *rmi_dev,
struct f11_2d_sensor_query *query,
struct rmi_f11_2d_ctrl *ctrl,
int ctrl_base_addr)
{
int write_address = ctrl_base_addr;
int error;
if (ctrl->ctrl0) {
error = rmi_write_block(rmi_dev, write_address,
&ctrl->ctrl0->reg,
1);
if (error < 0)
return error;
write_address++;
}
if (ctrl->ctrl1) {
error = rmi_write_block(rmi_dev, write_address,
&ctrl->ctrl1->reg,
1);
if (error < 0)
return error;
write_address++;
}
if (ctrl->ctrl2__3) {
error = rmi_write_block(rmi_dev, write_address,
ctrl->ctrl2__3->regs,
sizeof(ctrl->ctrl2__3->regs));
if (error < 0)
return error;
write_address += sizeof(ctrl->ctrl2__3->regs);
}
if (ctrl->ctrl4) {
error = rmi_write_block(rmi_dev, write_address,
&ctrl->ctrl4->reg,
1);
if (error < 0)
return error;
write_address++;
}
if (ctrl->ctrl5) {
error = rmi_write_block(rmi_dev, write_address,
&ctrl->ctrl5->reg,
1);
if (error < 0)
return error;
write_address++;
}
if (ctrl->ctrl6__7) {
error = rmi_write_block(rmi_dev, write_address,
&ctrl->ctrl6__7->regs[0],
sizeof(ctrl->ctrl6__7->regs));
if (error < 0)
return error;
write_address += sizeof(ctrl->ctrl6__7->regs);
}
if (ctrl->ctrl8__9) {
error = rmi_write_block(rmi_dev, write_address,
&ctrl->ctrl8__9->regs[0],
sizeof(ctrl->ctrl8__9->regs));
if (error < 0)
return error;
write_address += sizeof(ctrl->ctrl8__9->regs);
}
if (ctrl->ctrl10) {
error = rmi_write_block(rmi_dev, write_address,
&ctrl->ctrl10->reg,
1);
if (error < 0)
return error;
write_address++;
}
if (ctrl->ctrl11) {
error = rmi_write_block(rmi_dev, write_address,
&ctrl->ctrl11->reg,
1);
if (error < 0)
return error;
write_address++;
}
if (ctrl->ctrl12 && ctrl->ctrl12_size && query->configurable) {
if (ctrl->ctrl12_size > query->max_electrodes) {
dev_err(&rmi_dev->dev,
"%s: invalid cfg size:%d, should be < %d.\n",
__func__, ctrl->ctrl12_size,
query->max_electrodes);
return -EINVAL;
}
error = rmi_write_block(rmi_dev, write_address,
&ctrl->ctrl12->reg,
ctrl->ctrl12_size);
if (error < 0)
return error;
write_address += ctrl->ctrl12_size;
}
if (ctrl->ctrl14) {
error = rmi_write_block(rmi_dev,
write_address,
&ctrl->ctrl0->reg,
1);
if (error < 0)
return error;
write_address++;
}
if (ctrl->ctrl15) {
error = rmi_write_block(rmi_dev, write_address,
ctrl->ctrl15,
1);
if (error < 0)
return error;
write_address++;
}
if (ctrl->ctrl16) {
error = rmi_write_block(rmi_dev, write_address,
ctrl->ctrl16,
1);
if (error < 0)
return error;
write_address++;
}
if (ctrl->ctrl17) {
error = rmi_write_block(rmi_dev, write_address,
ctrl->ctrl17,
1);
if (error < 0)
return error;
write_address++;
}
if (ctrl->ctrl18) {
error = rmi_write_block(rmi_dev, write_address,
ctrl->ctrl18,
1);
if (error < 0)
return error;
write_address++;
}
if (ctrl->ctrl19) {
error = rmi_write_block(rmi_dev, write_address,
ctrl->ctrl19,
1);
if (error < 0)
return error;
write_address++;
}
return 0;
}
static inline int rmi_f11_get_query_parameters(struct rmi_device *rmi_dev,
struct f11_2d_sensor_query *query, u8 query_base_addr)
{
int query_size;
int rc;
rc = rmi_read_block(rmi_dev, query_base_addr, query->f11_2d_query1__4,
sizeof(query->f11_2d_query1__4));
if (rc < 0)
return rc;
query_size = rc;
if (query->has_abs) {
rc = rmi_read(rmi_dev, query_base_addr + query_size,
&query->f11_2d_query5);
if (rc < 0)
return rc;
query_size++;
}
if (query->has_rel) {
rc = rmi_read(rmi_dev, query_base_addr + query_size,
&query->f11_2d_query6);
if (rc < 0)
return rc;
query_size++;
}
if (query->has_gestures) {
rc = rmi_read_block(rmi_dev, query_base_addr + query_size,
query->f11_2d_query7__8,
sizeof(query->f11_2d_query7__8));
if (rc < 0)
return rc;
query_size += sizeof(query->f11_2d_query7__8);
}
if (query->has_touch_shapes) {
rc = rmi_read(rmi_dev, query_base_addr + query_size,
&query->f11_2d_query10);
if (rc < 0)
return rc;
query_size++;
}
return query_size;
}
/* This operation is done in a number of places, so we have a handy routine
* for it.
*/
static void f11_set_abs_params(struct rmi_function_container *fc, int index)
{
struct f11_data *instance_data = fc->data;
struct input_dev *input = instance_data->sensors[index].input;
int device_x_max =
instance_data->dev_controls.ctrl6__7->sensor_max_x_pos;
int device_y_max =
instance_data->dev_controls.ctrl8__9->sensor_max_y_pos;
int x_min, x_max, y_min, y_max;
if (instance_data->sensors[index].axis_align.swap_axes) {
int temp = device_x_max;
device_x_max = device_y_max;
device_y_max = temp;
}
/* Use the max X and max Y read from the device, or the clip values,
* whichever is stricter.
*/
x_min = instance_data->sensors[index].axis_align.clip_X_low;
if (instance_data->sensors[index].axis_align.clip_X_high)
x_max = min((int) device_x_max,
instance_data->sensors[index].axis_align.clip_X_high);
else
x_max = device_x_max;
y_min = instance_data->sensors[index].axis_align.clip_Y_low;
if (instance_data->sensors[index].axis_align.clip_Y_high)
y_max = min((int) device_y_max,
instance_data->sensors[index].axis_align.clip_Y_high);
else
y_max = device_y_max;
dev_dbg(&fc->dev, "Set ranges X=[%d..%d] Y=[%d..%d].",
x_min, x_max, y_min, y_max);
#ifdef ABS_MT_PRESSURE
input_set_abs_params(input, ABS_MT_PRESSURE, 0,
DEFAULT_MAX_ABS_MT_PRESSURE, 0, 0);
#endif
input_set_abs_params(input, ABS_MT_TOUCH_MAJOR,
0, DEFAULT_MAX_ABS_MT_TOUCH, 0, 0);
input_set_abs_params(input, ABS_MT_TOUCH_MINOR,
0, DEFAULT_MAX_ABS_MT_TOUCH, 0, 0);
input_set_abs_params(input, ABS_MT_ORIENTATION,
0, DEFAULT_MAX_ABS_MT_ORIENTATION, 0, 0);
input_set_abs_params(input, ABS_MT_TRACKING_ID,
DEFAULT_MIN_ABS_MT_TRACKING_ID,
DEFAULT_MAX_ABS_MT_TRACKING_ID, 0, 0);
/* TODO get max_x_pos (and y) from control registers. */
input_set_abs_params(input, ABS_MT_POSITION_X,
x_min, x_max, 0, 0);
input_set_abs_params(input, ABS_MT_POSITION_Y,
y_min, y_max, 0, 0);
}
static int rmi_f11_init(struct rmi_function_container *fc)
{
struct rmi_device *rmi_dev = fc->rmi_dev;
struct rmi_device_platform_data *pdata;
struct f11_data *f11;
struct input_dev *input_dev;
struct input_dev *input_dev_mouse;
u8 query_offset;
u8 query_base_addr;
u8 control_base_addr;
u16 max_x_pos, max_y_pos, temp;
int rc;
int i;
int retval = 0;
int attr_count = 0;
dev_info(&fc->dev, "Intializing F11 values.");
/*
** init instance data, fill in values and create any sysfs files
*/
f11 = kzalloc(sizeof(struct f11_data), GFP_KERNEL);
if (!f11)
return -ENOMEM;
fc->data = f11;
query_base_addr = fc->fd.query_base_addr;
control_base_addr = fc->fd.control_base_addr;
rc = rmi_read(rmi_dev, query_base_addr, &f11->dev_query.f11_2d_query0);
if (rc < 0)
goto err_free_data;
rc = rmi_f11_initialize_control_parameters(rmi_dev, &f11->dev_query,
&f11->dev_controls, control_base_addr);
if (rc < 0) {
dev_err(&fc->dev,
"Failed to initialize F11 control params.\n");
goto err_free_data;
}
query_offset = (query_base_addr + 1);
/* Increase with one since number of sensors is zero based */
for (i = 0; i < (f11->dev_query.nbr_of_sensors + 1); i++) {
f11->sensors[i].sensor_index = i;
rc = rmi_f11_get_query_parameters(rmi_dev,
&f11->sensors[i].sens_query,
query_offset);
if (rc < 0)
goto err_free_data;
query_offset += rc;
pdata = to_rmi_platform_data(rmi_dev);
if (pdata)
f11->sensors[i].axis_align = pdata->axis_align;
if (pdata && pdata->f11_ctrl) {
rc = rmi_f11_set_control_parameters(rmi_dev,
&f11->sensors[i].sens_query,
pdata->f11_ctrl,
control_base_addr);
if (rc < 0)
goto err_free_data;
}
if (pdata && pdata->f11_ctrl &&
pdata->f11_ctrl->ctrl6__7 &&
pdata->f11_ctrl->ctrl8__9) {
max_x_pos = pdata->f11_ctrl->ctrl6__7->sensor_max_x_pos;
max_y_pos = pdata->f11_ctrl->ctrl8__9->sensor_max_y_pos;
} else {
rc = rmi_read_block(rmi_dev,
control_base_addr + F11_CTRL_SENSOR_MAX_X_POS_OFFSET,
(u8 *)&max_x_pos, sizeof(max_x_pos));
if (rc < 0)
goto err_free_data;
rc = rmi_read_block(rmi_dev,
control_base_addr + F11_CTRL_SENSOR_MAX_Y_POS_OFFSET,
(u8 *)&max_y_pos, sizeof(max_y_pos));
if (rc < 0)
goto err_free_data;
}
if (pdata->axis_align.swap_axes) {
temp = max_x_pos;
max_x_pos = max_y_pos;
max_y_pos = temp;
}
f11->sensors[i].max_x = max_x_pos;
f11->sensors[i].max_y = max_y_pos;
rc = rmi_f11_2d_construct_data(&f11->sensors[i]);
if (rc < 0)
goto err_free_data;
input_dev = input_allocate_device();
if (!input_dev) {
rc = -ENOMEM;
goto err_free_data;
}
f11->sensors[i].input = input_dev;
/* TODO how to modify the dev name and
* phys name for input device */
sprintf(f11->sensors[i].input_name, "%sfn%02x",
dev_name(&rmi_dev->dev), fc->fd.function_number);
input_dev->name = f11->sensors[i].input_name;
sprintf(f11->sensors[i].input_phys, "%s/input0",
input_dev->name);
input_dev->phys = f11->sensors[i].input_phys;
input_dev->dev.parent = &rmi_dev->dev;
input_set_drvdata(input_dev, f11);
set_bit(EV_SYN, input_dev->evbit);
set_bit(EV_KEY, input_dev->evbit);
set_bit(EV_ABS, input_dev->evbit);
f11_set_abs_params(fc, i);
dev_dbg(&fc->dev, "%s: Sensor %d hasRel %d.\n",
__func__, i, f11->sensors[i].sens_query.has_rel);
if (f11->sensors[i].sens_query.has_rel) {
set_bit(EV_REL, input_dev->evbit);
set_bit(REL_X, input_dev->relbit);
set_bit(REL_Y, input_dev->relbit);
}
rc = input_register_device(input_dev);
if (rc < 0)
goto err_free_input;
if (f11->sensors[i].sens_query.has_rel) {
/*create input device for mouse events */
input_dev_mouse = input_allocate_device();
if (!input_dev_mouse) {
rc = -ENOMEM;
goto err_free_data;
}
f11->sensors[i].mouse_input = input_dev_mouse;
input_dev_mouse->name = "rmi_mouse";
input_dev_mouse->phys = "rmi_f11/input0";
input_dev_mouse->id.vendor = 0x18d1;
input_dev_mouse->id.product = 0x0210;
input_dev_mouse->id.version = 0x0100;
set_bit(EV_REL, input_dev_mouse->evbit);
set_bit(REL_X, input_dev_mouse->relbit);
set_bit(REL_Y, input_dev_mouse->relbit);
set_bit(BTN_MOUSE, input_dev_mouse->evbit);
/* Register device's buttons and keys */
set_bit(EV_KEY, input_dev_mouse->evbit);
set_bit(BTN_LEFT, input_dev_mouse->keybit);
set_bit(BTN_MIDDLE, input_dev_mouse->keybit);
set_bit(BTN_RIGHT, input_dev_mouse->keybit);
rc = input_register_device(input_dev_mouse);
if (rc < 0)
goto err_free_input;
set_bit(BTN_RIGHT, input_dev_mouse->keybit);
}
}
dev_info(&fc->dev, "Creating sysfs files.");
dev_dbg(&fc->dev, "Creating fn11 sysfs files.");
/* Set up sysfs device attributes. */
for (attr_count = 0; attr_count < ARRAY_SIZE(attrs); attr_count++) {
if (sysfs_create_file
(&fc->dev.kobj, &attrs[attr_count].attr) < 0) {
dev_err(&fc->dev, "Failed to create sysfs file for %s.",
attrs[attr_count].attr.name);
retval = -ENODEV;
goto err_free_input;
}
}
dev_info(&fc->dev, "Done Creating fn11 sysfs files.");
return 0;
err_free_input:
for (i = 0; i < (f11->dev_query.nbr_of_sensors + 1); i++) {
if (f11->sensors[i].input)
input_free_device(f11->sensors[i].input);
if (f11->sensors[i].sens_query.has_rel &&
f11->sensors[i].mouse_input)
input_free_device(f11->sensors[i].mouse_input);
}
err_free_data:
for (attr_count--; attr_count >= 0; attr_count--)
device_remove_file(&fc->rmi_dev->dev, &attrs[attr_count]);
kfree(f11);
return rc;
}
int rmi_f11_attention(struct rmi_function_container *fc, u8 *irq_bits)
{
struct rmi_device *rmi_dev = fc->rmi_dev;
struct f11_data *f11 = fc->data;
u8 data_base_addr = fc->fd.data_base_addr;
int data_base_addr_offset = 0;
int error;
int i;
for (i = 0; i < f11->dev_query.nbr_of_sensors + 1; i++) {
error = rmi_read_block(rmi_dev,
data_base_addr + data_base_addr_offset,
f11->sensors[i].data_pkt,
f11->sensors[i].pkt_size);
if (error < 0)
return error;
rmi_f11_finger_handler(&f11->sensors[i]);
data_base_addr_offset += f11->sensors[i].pkt_size;
}
return 0;
}
static void rmi_f11_remove(struct rmi_function_container *fc)
{
struct f11_data *data = fc->data;
int i;
for (i = 0; i < (data->dev_query.nbr_of_sensors + 1); i++) {
input_unregister_device(data->sensors[i].input);
if (data->sensors[i].sens_query.has_rel)
input_unregister_device(data->sensors[i].mouse_input);
}
kfree(fc->data);
}
static struct rmi_function_handler function_handler = {
.func = 0x11,
.init = rmi_f11_init,
.attention = rmi_f11_attention,
.remove = rmi_f11_remove
};
static int __init rmi_f11_module_init(void)
{
int error;
error = rmi_register_function_driver(&function_handler);
if (error < 0) {
pr_err("%s: register failed!\n", __func__);
return error;
}
return 0;
}
static void __exit rmi_f11_module_exit(void)
{
rmi_unregister_function_driver(&function_handler);
}
static ssize_t rmi_fn_11_maxPos_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct rmi_function_container *fc;
struct f11_data *data;
fc = to_rmi_function_container(dev);
data = fc->data;
return snprintf(buf, PAGE_SIZE, "%u %u\n",
data->sensors[0].max_x, data->sensors[0].max_y);
}
static ssize_t rmi_fn_11_flip_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct rmi_function_container *fc;
struct f11_data *data;
fc = to_rmi_function_container(dev);
data = fc->data;
return snprintf(buf, PAGE_SIZE, "%u %u\n",
data->sensors[0].axis_align.flip_x,
data->sensors[0].axis_align.flip_y);
}
static ssize_t rmi_fn_11_flip_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct rmi_function_container *fc;
struct f11_data *instance_data;
unsigned int new_X, new_Y;
fc = to_rmi_function_container(dev);
instance_data = fc->data;
if (sscanf(buf, "%u %u", &new_X, &new_Y) != 2)
return -EINVAL;
if (new_X < 0 || new_X > 1 || new_Y < 0 || new_Y > 1)
return -EINVAL;
instance_data->sensors[0].axis_align.flip_x = new_X;
instance_data->sensors[0].axis_align.flip_y = new_Y;
return count;
}
static ssize_t rmi_fn_11_swap_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct rmi_function_container *fc;
struct f11_data *instance_data;
fc = to_rmi_function_container(dev);
instance_data = fc->data;
return snprintf(buf, PAGE_SIZE, "%u\n",
instance_data->sensors[0].axis_align.swap_axes);
}
static ssize_t rmi_fn_11_swap_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct rmi_function_container *fc;
struct f11_data *instance_data;
unsigned int newSwap;
fc = to_rmi_function_container(dev);
instance_data = fc->data;
if (sscanf(buf, "%u", &newSwap) != 1)
return -EINVAL;
if (newSwap < 0 || newSwap > 1)
return -EINVAL;
instance_data->sensors[0].axis_align.swap_axes = newSwap;
f11_set_abs_params(fc, 0);
return count;
}
static ssize_t rmi_fn_11_relreport_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct rmi_function_container *fc;
struct f11_data *instance_data;
fc = to_rmi_function_container(dev);
instance_data = fc->data;
return snprintf(buf, PAGE_SIZE, "%u\n",
instance_data->
sensors[0].axis_align.rel_report_enabled);
}
static ssize_t rmi_fn_11_relreport_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct rmi_function_container *fc;
struct f11_data *instance_data;
unsigned int new_value;
fc = to_rmi_function_container(dev);
instance_data = fc->data;
if (sscanf(buf, "%u", &new_value) != 1)
return -EINVAL;
if (new_value < 0 || new_value > 1)
return -EINVAL;
instance_data->sensors[0].axis_align.rel_report_enabled = new_value;
return count;
}
static ssize_t rmi_fn_11_offset_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct rmi_function_container *fc;
struct f11_data *instance_data;
fc = to_rmi_function_container(dev);
instance_data = fc->data;
return snprintf(buf, PAGE_SIZE, "%d %d\n",
instance_data->sensors[0].axis_align.offset_X,
instance_data->sensors[0].axis_align.offset_Y);
}
static ssize_t rmi_fn_11_offset_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct rmi_function_container *fc;
struct f11_data *instance_data;
int new_X, new_Y;
fc = to_rmi_function_container(dev);
instance_data = fc->data;
if (sscanf(buf, "%d %d", &new_X, &new_Y) != 2)
return -EINVAL;
instance_data->sensors[0].axis_align.offset_X = new_X;
instance_data->sensors[0].axis_align.offset_Y = new_Y;
return count;
}
static ssize_t rmi_fn_11_clip_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct rmi_function_container *fc;
struct f11_data *instance_data;
fc = to_rmi_function_container(dev);
instance_data = fc->data;
return snprintf(buf, PAGE_SIZE, "%u %u %u %u\n",
instance_data->sensors[0].axis_align.clip_X_low,
instance_data->sensors[0].axis_align.clip_X_high,
instance_data->sensors[0].axis_align.clip_Y_low,
instance_data->sensors[0].axis_align.clip_Y_high);
}
static ssize_t rmi_fn_11_clip_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct rmi_function_container *fc;
struct f11_data *instance_data;
unsigned int new_X_low, new_X_high, new_Y_low, new_Y_high;
fc = to_rmi_function_container(dev);
instance_data = fc->data;
if (sscanf(buf, "%u %u %u %u",
&new_X_low, &new_X_high, &new_Y_low, &new_Y_high) != 4)
return -EINVAL;
if (new_X_low < 0 || new_X_low >= new_X_high || new_Y_low < 0
|| new_Y_low >= new_Y_high)
return -EINVAL;
instance_data->sensors[0].axis_align.clip_X_low = new_X_low;
instance_data->sensors[0].axis_align.clip_X_high = new_X_high;
instance_data->sensors[0].axis_align.clip_Y_low = new_Y_low;
instance_data->sensors[0].axis_align.clip_Y_high = new_Y_high;
/*
** for now, we assume this is sensor index 0
*/
f11_set_abs_params(fc, 0);
return count;
}
static ssize_t rmi_f11_rezero_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct rmi_function_container *fc = NULL;
unsigned int rezero;
int retval = 0;
/* Command register always reads as 0, so we can just use a local. */
union f11_2d_commands commands = {};
fc = to_rmi_function_container(dev);
if (sscanf(buf, "%u", &rezero) != 1)
return -EINVAL;
if (rezero < 0 || rezero > 1)
return -EINVAL;
/* Per spec, 0 has no effect, so we skip it entirely. */
if (rezero) {
commands.rezero = 1;
retval = rmi_write_block(fc->rmi_dev, fc->fd.command_base_addr,
&commands.reg, sizeof(commands.reg));
if (retval < 0) {
dev_err(dev, "%s: failed to issue rezero command, "
"error = %d.", __func__, retval);
return retval;
}
}
return count;
}
module_init(rmi_f11_module_init);
module_exit(rmi_f11_module_exit);
MODULE_AUTHOR("Stefan Nilsson <stefan.nilsson@unixphere.com>");
MODULE_DESCRIPTION("RMI F11 module");
MODULE_LICENSE("GPL");