/*
* drivers/crypto/tegra-aes.c
*
* aes driver for NVIDIA tegra aes hardware
*
* Copyright (c) 2010-2011, NVIDIA Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/mutex.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <mach/arb_sema.h>
#include <mach/clk.h>
#include "../video/tegra/nvmap/nvmap.h"
#include <crypto/scatterwalk.h>
#include <crypto/aes.h>
#include <crypto/internal/rng.h>
#include "tegra-aes.h"
#define FLAGS_MODE_MASK 0x00ff
#define FLAGS_ENCRYPT BIT(0)
#define FLAGS_CBC BIT(1)
#define FLAGS_GIV BIT(2)
#define FLAGS_RNG BIT(3)
#define FLAGS_OFB BIT(4)
#define FLAGS_INIT BIT(5)
#define FLAGS_BUSY 1
/*
* Defines AES engine Max process bytes size in one go, which takes 1 msec.
* AES engine spends about 176 cycles/16-bytes or 11 cycles/byte
* The duration CPU can use the BSE to 1 msec, then the number of available
* cycles of AVP/BSE is 216K. In this duration, AES can process 216/11 ~= 19KB
* Based on this AES_HW_DMA_BUFFER_SIZE_BYTES is configured to 16KB.
*/
#define AES_HW_DMA_BUFFER_SIZE_BYTES 0x4000
/*
* The key table length is 64 bytes
* (This includes first upto 32 bytes key + 16 bytes original initial vector
* and 16 bytes updated initial vector)
*/
#define AES_HW_KEY_TABLE_LENGTH_BYTES 64
#define AES_HW_IV_SIZE 16
#define AES_HW_KEYSCHEDULE_LEN 256
#define ARB_SEMA_TIMEOUT 500
/*
* The memory being used is divides as follows:
* 1. Key - 32 bytes
* 2. Original IV - 16 bytes
* 3. Updated IV - 16 bytes
* 4. Key schedule - 256 bytes
*
* 1+2+3 constitute the hw key table.
*/
#define AES_IVKEY_SIZE (AES_HW_KEY_TABLE_LENGTH_BYTES + AES_HW_KEYSCHEDULE_LEN)
#define DEFAULT_RNG_BLK_SZ 16
/* As of now only 5 commands are USED for AES encryption/Decryption */
#define AES_HW_MAX_ICQ_LENGTH 4
#define ICQBITSHIFT_BLKCNT 0
/* memdma_vd command */
#define MEMDMA_DIR_DTOVRAM 0
#define MEMDMA_DIR_VTODRAM 1
#define MEMDMABITSHIFT_DIR 25
#define MEMDMABITSHIFT_NUM_WORDS 12
/* Define AES Interactive command Queue commands Bit positions */
enum {
ICQBITSHIFT_KEYTABLEADDR = 0,
ICQBITSHIFT_KEYTABLEID = 17,
ICQBITSHIFT_VRAMSEL = 23,
ICQBITSHIFT_TABLESEL = 24,
ICQBITSHIFT_OPCODE = 26,
};
/* Define Ucq opcodes required for AES operation */
enum {
UCQOPCODE_BLKSTARTENGINE = 0x0E,
UCQOPCODE_DMASETUP = 0x10,
UCQOPCODE_DMACOMPLETE = 0x11,
UCQOPCODE_SETTABLE = 0x15,
UCQOPCODE_MEMDMAVD = 0x22,
};
/* Define Aes command values */
enum {
UCQCMD_VRAM_SEL = 0x1,
UCQCMD_CRYPTO_TABLESEL = 0x3,
UCQCMD_KEYSCHEDTABLESEL = 0x4,
UCQCMD_KEYTABLESEL = 0x8,
};
#define UCQCMD_KEYTABLEADDRMASK 0x1FFFF
#define AES_NR_KEYSLOTS 8
#define SSK_SLOT_NUM 4
struct tegra_aes_slot {
struct list_head node;
int slot_num;
bool available;
};
struct tegra_aes_reqctx {
unsigned long mode;
};
#define TEGRA_AES_QUEUE_LENGTH 500
struct tegra_aes_engine {
struct tegra_aes_dev *dd;
struct tegra_aes_ctx *ctx;
struct clk *iclk;
struct clk *pclk;
struct ablkcipher_request *req;
struct scatterlist *in_sg;
struct completion op_complete;
struct scatterlist *out_sg;
void __iomem *io_base;
void __iomem *ivkey_base;
unsigned long phys_base;
unsigned long iram_phys;
void *iram_virt;
dma_addr_t ivkey_phys_base;
dma_addr_t dma_buf_in;
dma_addr_t dma_buf_out;
size_t total;
size_t in_offset;
size_t out_offset;
u32 engine_offset;
u32 *buf_in;
u32 *buf_out;
int res_id;
unsigned long busy;
u8 irq;
u32 status;
};
struct tegra_aes_dev {
struct device *dev;
struct tegra_aes_slot *slots;
struct tegra_aes_engine bsev;
struct tegra_aes_engine bsea;
struct nvmap_client *client;
struct nvmap_handle_ref *h_ref;
struct crypto_queue queue;
spinlock_t lock;
u64 ctr;
unsigned long flags;
u8 dt[DEFAULT_RNG_BLK_SZ];
};
static struct tegra_aes_dev *aes_dev;
struct tegra_aes_ctx {
struct tegra_aes_dev *dd;
struct tegra_aes_engine *eng;
struct tegra_aes_slot *slot;
int key[AES_MAX_KEY_SIZE];
int keylen;
bool use_ssk;
u8 dt[DEFAULT_RNG_BLK_SZ];
};
static struct tegra_aes_ctx rng_ctx;
/* keep registered devices data here */
static LIST_HEAD(slot_list);
static DEFINE_SPINLOCK(list_lock);
/* Engine specific work queues */
static void bsev_workqueue_handler(struct work_struct *work);
static void bsea_workqueue_handler(struct work_struct *work);
static DECLARE_WORK(bsev_work, bsev_workqueue_handler);
static DECLARE_WORK(bsea_work, bsea_workqueue_handler);
static struct workqueue_struct *bsev_wq;
static struct workqueue_struct *bsea_wq;
extern unsigned long long tegra_chip_uid(void);
static inline u32 aes_readl(struct tegra_aes_engine *engine, u32 offset)
{
return readl(engine->io_base + offset);
}
static inline void aes_writel(struct tegra_aes_engine *engine,
u32 val, u32 offset)
{
writel(val, engine->io_base + offset);
}
static int alloc_iram(struct tegra_aes_dev *dd)
{
size_t size;
int err;
dd->h_ref = NULL;
/* [key+iv+u-iv=64B] * 8 = 512Bytes */
size = AES_MAX_KEY_SIZE;
dd->client = nvmap_create_client(nvmap_dev, "aes_bsea");
if (IS_ERR(dd->client)) {
dev_err(dd->dev, "nvmap_create_client failed\n");
goto out;
}
dd->h_ref = nvmap_create_handle(dd->client, size);
if (IS_ERR(dd->h_ref)) {
dev_err(dd->dev, "nvmap_create_handle failed\n");
goto out;
}
/* Allocate memory in the iram */
err = nvmap_alloc_handle_id(dd->client, nvmap_ref_to_id(dd->h_ref),
NVMAP_HEAP_CARVEOUT_IRAM, size, 0);
if (err) {
dev_err(dd->dev, "nvmap_alloc_handle_id failed\n");
nvmap_free_handle_id(dd->client, nvmap_ref_to_id(dd->h_ref));
goto out;
}
dd->bsea.iram_phys = nvmap_handle_address(dd->client,
nvmap_ref_to_id(dd->h_ref));
dd->bsea.iram_virt = nvmap_mmap(dd->h_ref); /* get virtual address */
if (!dd->bsea.iram_virt) {
dev_err(dd->dev, "%s: no mem, BSEA IRAM alloc failure\n",
__func__);
goto out;
}
memset(dd->bsea.iram_virt, 0, size);
return 0;
out:
if (dd->bsea.iram_virt)
nvmap_munmap(dd->h_ref, dd->bsea.iram_virt);
if (dd->client) {
nvmap_free_handle_id(dd->client, nvmap_ref_to_id(dd->h_ref));
nvmap_client_put(dd->client);
}
return -ENOMEM;
}
static void free_iram(struct tegra_aes_dev *dd)
{
if (dd->bsea.iram_virt)
nvmap_munmap(dd->h_ref, dd->bsea.iram_virt);
if (dd->client) {
nvmap_free_handle_id(dd->client, nvmap_ref_to_id(dd->h_ref));
nvmap_client_put(dd->client);
}
}
static int aes_hw_init(struct tegra_aes_engine *engine)
{
struct tegra_aes_dev *dd = aes_dev;
int ret = 0;
if (engine->pclk) {
ret = clk_enable(engine->pclk);
if (ret < 0) {
dev_err(dd->dev, "%s: pclock enable fail(%d)\n",
__func__, ret);
return ret;
}
}
if (engine->iclk) {
ret = clk_enable(engine->iclk);
if (ret < 0) {
dev_err(dd->dev, "%s: iclock enable fail(%d)\n",
__func__, ret);
if (engine->pclk)
clk_disable(engine->pclk);
return ret;
}
}
return ret;
}
static void aes_hw_deinit(struct tegra_aes_engine *engine)
{
if (engine->pclk)
clk_disable(engine->pclk);
if (engine->iclk)
clk_disable(engine->iclk);
}
#define MIN_RETRIES 3
static int aes_start_crypt(struct tegra_aes_engine *eng, u32 in_addr,
u32 out_addr, int nblocks, int mode, bool upd_iv)
{
u32 cmdq[AES_HW_MAX_ICQ_LENGTH];
int qlen = 0, i, eng_busy, icq_empty, ret;
u32 value;
int retries = MIN_RETRIES;
start:
do {
value = aes_readl(eng, INTR_STATUS);
eng_busy = value & BIT(0);
icq_empty = value & BIT(3);
} while (eng_busy || (!icq_empty));
aes_writel(eng, 0xFFFFFFFF, INTR_STATUS);
/* error, dma xfer complete */
aes_writel(eng, 0x33, INT_ENB);
enable_irq(eng->irq);
cmdq[qlen++] = UCQOPCODE_DMASETUP << ICQBITSHIFT_OPCODE;
cmdq[qlen++] = in_addr;
cmdq[qlen++] = UCQOPCODE_BLKSTARTENGINE << ICQBITSHIFT_OPCODE |
(nblocks-1) << ICQBITSHIFT_BLKCNT;
cmdq[qlen++] = UCQOPCODE_DMACOMPLETE << ICQBITSHIFT_OPCODE;
value = aes_readl(eng, CMDQUE_CONTROL);
/* access SDRAM through AHB */
value &= (~CMDQ_CTRL_SRC_STM_SEL_FIELD & ~CMDQ_CTRL_DST_STM_SEL_FIELD);
value |= (CMDQ_CTRL_SRC_STM_SEL_FIELD | CMDQ_CTRL_DST_STM_SEL_FIELD |
CMDQ_CTRL_ICMDQEN_FIELD | CMDQ_CTRL_ERROR_FLUSH_ENB);
aes_writel(eng, value, CMDQUE_CONTROL);
value = 0;
if (mode & FLAGS_CBC) {
value = ((0x1 << SECURE_INPUT_ALG_SEL_SHIFT) |
((eng->ctx->keylen * 8) << SECURE_INPUT_KEY_LEN_SHIFT) |
((u32)upd_iv << SECURE_IV_SELECT_SHIFT) |
(((mode & FLAGS_ENCRYPT) ? 2 : 3)
<< SECURE_XOR_POS_SHIFT) |
(0 << SECURE_INPUT_SEL_SHIFT) |
(((mode & FLAGS_ENCRYPT) ? 2 : 3)
<< SECURE_VCTRAM_SEL_SHIFT) |
((mode & FLAGS_ENCRYPT) ? 1 : 0)
<< SECURE_CORE_SEL_SHIFT |
(0 << SECURE_RNG_ENB_SHIFT) |
(0 << SECURE_HASH_ENB_SHIFT));
} else if (mode & FLAGS_OFB) {
value = ((0x1 << SECURE_INPUT_ALG_SEL_SHIFT) |
((eng->ctx->keylen * 8) << SECURE_INPUT_KEY_LEN_SHIFT) |
((u32)upd_iv << SECURE_IV_SELECT_SHIFT) |
((u32)0 << SECURE_IV_SELECT_SHIFT) |
(SECURE_XOR_POS_FIELD) |
(2 << SECURE_INPUT_SEL_SHIFT) |
(0 << SECURE_VCTRAM_SEL_SHIFT) |
(SECURE_CORE_SEL_FIELD) |
(0 << SECURE_RNG_ENB_SHIFT) |
(0 << SECURE_HASH_ENB_SHIFT));
} else if (mode & FLAGS_RNG){
value = ((0x1 << SECURE_INPUT_ALG_SEL_SHIFT) |
((eng->ctx->keylen * 8) << SECURE_INPUT_KEY_LEN_SHIFT) |
((u32)upd_iv << SECURE_IV_SELECT_SHIFT) |
(0 << SECURE_XOR_POS_SHIFT) |
(0 << SECURE_INPUT_SEL_SHIFT) |
((mode & FLAGS_ENCRYPT) ? 1 : 0)
<< SECURE_CORE_SEL_SHIFT |
(1 << SECURE_RNG_ENB_SHIFT) |
(0 << SECURE_HASH_ENB_SHIFT));
} else {
value = ((0x1 << SECURE_INPUT_ALG_SEL_SHIFT) |
((eng->ctx->keylen * 8) << SECURE_INPUT_KEY_LEN_SHIFT) |
((u32)upd_iv << SECURE_IV_SELECT_SHIFT) |
(0 << SECURE_XOR_POS_SHIFT) |
(0 << SECURE_INPUT_SEL_SHIFT) |
(((mode & FLAGS_ENCRYPT) ? 1 : 0)
<< SECURE_CORE_SEL_SHIFT) |
(0 << SECURE_RNG_ENB_SHIFT) |
(0 << SECURE_HASH_ENB_SHIFT));
}
aes_writel(eng, value, SECURE_INPUT_SELECT);
aes_writel(eng, out_addr, SECURE_DEST_ADDR);
INIT_COMPLETION(eng->op_complete);
for (i = 0; i < qlen - 1; i++) {
do {
value = aes_readl(eng, INTR_STATUS);
eng_busy = value & BIT(0);
icq_empty = value & BIT(3);
} while (eng_busy || (!icq_empty));
aes_writel(eng, cmdq[i], ICMDQUE_WR);
}
ret = wait_for_completion_timeout(&eng->op_complete,
msecs_to_jiffies(150));
if (ret == 0) {
dev_err(aes_dev->dev, "engine%d timed out (0x%x)\n",
eng->res_id, aes_readl(eng, INTR_STATUS));
disable_irq(eng->irq);
return -ETIMEDOUT;
}
disable_irq(eng->irq);
aes_writel(eng, cmdq[qlen - 1], ICMDQUE_WR);
if ((eng->status != 0) && (retries-- > 0)) {
qlen = 0;
goto start;
}
return 0;
}
static void aes_release_key_slot(struct tegra_aes_ctx *ctx)
{
spin_lock(&list_lock);
ctx->slot->available = true;
ctx->slot = NULL;
spin_unlock(&list_lock);
}
static struct tegra_aes_slot *aes_find_key_slot(struct tegra_aes_dev *dd)
{
struct tegra_aes_slot *slot = NULL;
bool found = 0;
spin_lock(&list_lock);
list_for_each_entry(slot, &slot_list, node) {
dev_dbg(dd->dev, "empty:%d, num:%d\n", slot->available,
slot->slot_num);
if (slot->available) {
slot->available = false;
found = 1;
break;
}
}
spin_unlock(&list_lock);
return found ? slot : NULL;
}
static int aes_set_key(struct tegra_aes_engine *eng, int slot_num)
{
struct tegra_aes_dev *dd = aes_dev;
u32 value, cmdq[2];
int i, eng_busy, icq_empty, dma_busy;
if (!eng) {
dev_err(dd->dev, "%s: context invalid\n", __func__);
return -EINVAL;
}
/* enable key schedule generation in hardware */
value = aes_readl(eng, SECURE_CONFIG_EXT);
value &= ~SECURE_KEY_SCH_DIS_FIELD;
aes_writel(eng, value, SECURE_CONFIG_EXT);
/* select the key slot */
value = aes_readl(eng, SECURE_CONFIG);
value &= ~SECURE_KEY_INDEX_FIELD;
value |= (slot_num << SECURE_KEY_INDEX_SHIFT);
aes_writel(eng, value, SECURE_CONFIG);
if (slot_num == SSK_SLOT_NUM)
goto out;
if (eng->res_id == TEGRA_ARB_BSEV) {
memset(dd->bsev.ivkey_base, 0, AES_HW_KEY_TABLE_LENGTH_BYTES);
memcpy(dd->bsev.ivkey_base, eng->ctx->key, eng->ctx->keylen);
/* copy the key table from sdram to vram */
cmdq[0] = 0;
cmdq[0] = UCQOPCODE_MEMDMAVD << ICQBITSHIFT_OPCODE |
(MEMDMA_DIR_DTOVRAM << MEMDMABITSHIFT_DIR) |
(AES_HW_KEY_TABLE_LENGTH_BYTES/sizeof(u32))
<< MEMDMABITSHIFT_NUM_WORDS;
cmdq[1] = (u32)eng->ivkey_phys_base;
for (i = 0; i < ARRAY_SIZE(cmdq); i++)
aes_writel(eng, cmdq[i], ICMDQUE_WR);
do {
value = aes_readl(eng, INTR_STATUS);
eng_busy = value & BIT(0);
icq_empty = value & BIT(3);
dma_busy = value & BIT(23);
} while (eng_busy & (!icq_empty) & dma_busy);
/* settable command to get key into internal registers */
value = 0;
value = UCQOPCODE_SETTABLE << ICQBITSHIFT_OPCODE |
UCQCMD_CRYPTO_TABLESEL << ICQBITSHIFT_TABLESEL |
UCQCMD_VRAM_SEL << ICQBITSHIFT_VRAMSEL |
(UCQCMD_KEYTABLESEL | slot_num)
<< ICQBITSHIFT_KEYTABLEID;
aes_writel(eng, value, ICMDQUE_WR);
do {
value = aes_readl(eng, INTR_STATUS);
eng_busy = value & BIT(0);
icq_empty = value & BIT(3);
} while (eng_busy & (!icq_empty));
} else {
memset(dd->bsea.iram_virt, 0, AES_HW_KEY_TABLE_LENGTH_BYTES);
memcpy(dd->bsea.iram_virt, eng->ctx->key, eng->ctx->keylen);
/* set iram access cfg bit 0 if address >128K */
if (dd->bsea.iram_phys > 0x00020000)
aes_writel(eng, BIT(0), IRAM_ACCESS_CFG);
else
aes_writel(eng, 0, IRAM_ACCESS_CFG);
/* settable command to get key into internal registers */
value = 0;
value = UCQOPCODE_SETTABLE << ICQBITSHIFT_OPCODE |
UCQCMD_CRYPTO_TABLESEL << ICQBITSHIFT_TABLESEL |
(UCQCMD_KEYTABLESEL | slot_num)
<< ICQBITSHIFT_KEYTABLEID |
dd->bsea.iram_phys >> 2;
aes_writel(eng, value, ICMDQUE_WR);
do {
value = aes_readl(eng, INTR_STATUS);
eng_busy = value & BIT(0);
icq_empty = value & BIT(3);
} while (eng_busy & (!icq_empty));
}
out:
return 0;
}
static int tegra_aes_handle_req(struct tegra_aes_engine *eng)
{
struct tegra_aes_dev *dd = aes_dev;
struct tegra_aes_ctx *ctx;
struct crypto_async_request *async_req, *backlog;
struct tegra_aes_reqctx *rctx;
struct ablkcipher_request *req;
unsigned long irq_flags;
int dma_max = AES_HW_DMA_BUFFER_SIZE_BYTES;
int nblocks, total, ret = 0, count = 0;
dma_addr_t addr_in, addr_out;
struct scatterlist *in_sg, *out_sg;
spin_lock_irqsave(&dd->lock, irq_flags);
backlog = crypto_get_backlog(&dd->queue);
async_req = crypto_dequeue_request(&dd->queue);
if (!async_req)
clear_bit(FLAGS_BUSY, &eng->busy);
spin_unlock_irqrestore(&dd->lock, irq_flags);
if (!async_req)
return -ENODATA;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
req = ablkcipher_request_cast(async_req);
dev_dbg(dd->dev, "%s: get new req (engine #%d)\n", __func__,
eng->res_id);
if (!req->src || !req->dst)
return -EINVAL;
/* take the hardware semaphore */
if (tegra_arb_mutex_lock_timeout(eng->res_id, ARB_SEMA_TIMEOUT) < 0) {
dev_err(dd->dev, "aes hardware (%d) not available\n",
eng->res_id);
return -EBUSY;
}
/* assign new request to device */
eng->req = req;
eng->total = req->nbytes;
eng->in_offset = 0;
eng->in_sg = req->src;
eng->out_offset = 0;
eng->out_sg = req->dst;
in_sg = eng->in_sg;
out_sg = eng->out_sg;
total = eng->total;
rctx = ablkcipher_request_ctx(req);
ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
rctx->mode &= FLAGS_MODE_MASK;
dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode;
eng->ctx = ctx;
if (((dd->flags & FLAGS_CBC) || (dd->flags & FLAGS_OFB)) && req->info) {
/* set iv to the aes hw slot
* Hw generates updated iv only after iv is set in slot.
* So key and iv is passed asynchronously.
*/
memcpy(eng->buf_in, (u8 *)req->info, AES_BLOCK_SIZE);
ret = aes_start_crypt(eng, (u32)eng->dma_buf_in,
(u32)eng->dma_buf_out, 1, FLAGS_CBC, false);
if (ret < 0) {
dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
goto out;
}
}
while (total) {
dev_dbg(dd->dev, "remain: %d\n", total);
ret = dma_map_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE);
if (!ret) {
dev_err(dd->dev, "dma_map_sg() error\n");
goto out;
}
ret = dma_map_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE);
if (!ret) {
dev_err(dd->dev, "dma_map_sg() error\n");
dma_unmap_sg(dd->dev, eng->in_sg,
1, DMA_TO_DEVICE);
goto out;
}
addr_in = sg_dma_address(in_sg);
addr_out = sg_dma_address(out_sg);
count = min((int)sg_dma_len(in_sg), (int)dma_max);
WARN_ON(sg_dma_len(in_sg) != sg_dma_len(out_sg));
nblocks = DIV_ROUND_UP(count, AES_BLOCK_SIZE);
ret = aes_start_crypt(eng, addr_in, addr_out, nblocks,
dd->flags, true);
dma_unmap_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE);
dma_unmap_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE);
if (ret < 0) {
dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
goto out;
}
dev_dbg(dd->dev, "out: copied %d\n", count);
total -= count;
in_sg = sg_next(in_sg);
out_sg = sg_next(out_sg);
WARN_ON(((total != 0) && (!in_sg || !out_sg)));
}
out:
/* release the hardware semaphore */
tegra_arb_mutex_unlock(eng->res_id);
eng->total = total;
if (eng->req->base.complete)
eng->req->base.complete(&eng->req->base, ret);
dev_dbg(dd->dev, "%s: exit\n", __func__);
return ret;
}
static int tegra_aes_key_save(struct tegra_aes_ctx *ctx)
{
struct tegra_aes_dev *dd = aes_dev;
int retry_count, eng_busy, ret, eng_no;
struct tegra_aes_engine *eng[2] = {&dd->bsev, &dd->bsea};
unsigned long flags;
/* check for engine free state */
for (eng_no = 0; eng_no < ARRAY_SIZE(eng); eng_no++) {
for (retry_count = 0; retry_count <= 10; retry_count++) {
spin_lock_irqsave(&dd->lock, flags);
eng_busy = test_and_set_bit(FLAGS_BUSY,
&eng[eng_no]->busy);
spin_unlock_irqrestore(&dd->lock, flags);
if (!eng_busy)
break;
if (retry_count == 10) {
dev_err(dd->dev,
"%s: eng=%d busy, wait timeout\n",
__func__, eng[eng_no]->res_id);
ret = -EBUSY;
goto out;
}
mdelay(5);
}
}
/* save key in the engine */
for (eng_no = 0; eng_no < ARRAY_SIZE(eng); eng_no++) {
ret = aes_hw_init(eng[eng_no]);
if (ret < 0) {
dev_err(dd->dev, "%s: eng=%d hw init fail(%d)\n",
__func__, eng[eng_no]->res_id, ret);
goto out;
}
eng[eng_no]->ctx = ctx;
if (ctx->use_ssk)
aes_set_key(eng[eng_no], SSK_SLOT_NUM);
else
aes_set_key(eng[eng_no], ctx->slot->slot_num);
aes_hw_deinit(eng[eng_no]);
}
out:
spin_lock_irqsave(&dd->lock, flags);
while (--eng_no >= 0)
clear_bit(FLAGS_BUSY, &eng[eng_no]->busy);
spin_unlock_irqrestore(&dd->lock, flags);
return ret;
}
static int tegra_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct tegra_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
struct tegra_aes_dev *dd = aes_dev;
struct tegra_aes_slot *key_slot;
int ret = 0;
if (!ctx || !dd) {
pr_err("ctx=0x%x, dd=0x%x\n",
(unsigned int)ctx, (unsigned int)dd);
return -EINVAL;
}
if ((keylen != AES_KEYSIZE_128) && (keylen != AES_KEYSIZE_192) &&
(keylen != AES_KEYSIZE_256)) {
dev_err(dd->dev, "unsupported key size\n");
return -EINVAL;
}
/* take the hardware semaphore */
if (tegra_arb_mutex_lock_timeout(dd->bsev.res_id, ARB_SEMA_TIMEOUT) < 0) {
dev_err(dd->dev, "aes hardware (%d) not available\n", dd->bsev.res_id);
return -EBUSY;
}
if (tegra_arb_mutex_lock_timeout(dd->bsea.res_id, ARB_SEMA_TIMEOUT) < 0) {
dev_err(dd->dev, "aes hardware (%d) not available\n", dd->bsea.res_id);
tegra_arb_mutex_unlock(dd->bsev.res_id);
return -EBUSY;
}
dev_dbg(dd->dev, "keylen: %d\n", keylen);
ctx->dd = dd;
if (key) {
if (!ctx->slot) {
key_slot = aes_find_key_slot(dd);
if (!key_slot) {
dev_err(dd->dev, "no empty slot\n");
ret = -EBUSY;
goto out;
}
ctx->slot = key_slot;
}
/* copy the key to the proper slot */
memset(ctx->key, 0, AES_MAX_KEY_SIZE);
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
ctx->use_ssk = false;
} else {
ctx->use_ssk = true;
ctx->keylen = AES_KEYSIZE_128;
}
ret = tegra_aes_key_save(ctx);
if (ret != 0)
dev_err(dd->dev, "%s failed\n", __func__);
out:
tegra_arb_mutex_unlock(dd->bsev.res_id);
tegra_arb_mutex_unlock(dd->bsea.res_id);
dev_dbg(dd->dev, "done\n");
return ret;
}
static void bsev_workqueue_handler(struct work_struct *work)
{
struct tegra_aes_dev *dd = aes_dev;
struct tegra_aes_engine *engine = &dd->bsev;
int ret;
aes_hw_init(engine);
/* empty the crypto queue and then return */
do {
ret = tegra_aes_handle_req(engine);
} while (!ret);
aes_hw_deinit(engine);
}
static void bsea_workqueue_handler(struct work_struct *work)
{
struct tegra_aes_dev *dd = aes_dev;
struct tegra_aes_engine *engine = &dd->bsea;
int ret;
aes_hw_init(engine);
/* empty the crypto queue and then return */
do {
ret = tegra_aes_handle_req(engine);
} while (!ret);
aes_hw_deinit(engine);
}
#define INT_ERROR_MASK 0xFFF000
static irqreturn_t aes_bsev_irq(int irq, void *dev_id)
{
struct tegra_aes_dev *dd = (struct tegra_aes_dev *)dev_id;
u32 value = aes_readl(&dd->bsev, INTR_STATUS);
dev_dbg(dd->dev, "bsev irq_stat: 0x%x", value);
dd->bsev.status = 0;
if (value & INT_ERROR_MASK) {
aes_writel(&dd->bsev, INT_ERROR_MASK, INTR_STATUS);
dd->bsev.status = value & INT_ERROR_MASK;
}
value = aes_readl(&dd->bsev, INTR_STATUS);
if (!(value & ENGINE_BUSY_FIELD))
complete(&dd->bsev.op_complete);
return IRQ_HANDLED;
}
static irqreturn_t aes_bsea_irq(int irq, void *dev_id)
{
struct tegra_aes_dev *dd = (struct tegra_aes_dev *)dev_id;
u32 value = aes_readl(&dd->bsea, INTR_STATUS);
dev_dbg(dd->dev, "bsea irq_stat: 0x%x", value);
dd->bsea.status = 0;
if (value & INT_ERROR_MASK) {
aes_writel(&dd->bsea, INT_ERROR_MASK, INTR_STATUS);
dd->bsea.status = value & INT_ERROR_MASK;
}
value = aes_readl(&dd->bsea, INTR_STATUS);
if (!(value & ENGINE_BUSY_FIELD))
complete(&dd->bsea.op_complete);
return IRQ_HANDLED;
}
static int tegra_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
{
struct tegra_aes_reqctx *rctx = ablkcipher_request_ctx(req);
struct tegra_aes_dev *dd = aes_dev;
unsigned long flags;
int err = 0;
int bsev_busy;
int bsea_busy;
dev_dbg(dd->dev, "nbytes: %d, enc: %d, cbc: %d, ofb: %d\n", req->nbytes,
!!(mode & FLAGS_ENCRYPT),
!!(mode & FLAGS_CBC),
!!(mode & FLAGS_OFB));
rctx->mode = mode;
spin_lock_irqsave(&dd->lock, flags);
err = ablkcipher_enqueue_request(&dd->queue, req);
bsev_busy = test_and_set_bit(FLAGS_BUSY, &dd->bsev.busy);
bsea_busy = test_and_set_bit(FLAGS_BUSY, &dd->bsea.busy);
spin_unlock_irqrestore(&dd->lock, flags);
if (!bsev_busy)
queue_work(bsev_wq, &bsev_work);
if (!bsea_busy)
queue_work(bsea_wq, &bsea_work);
return err;
}
static int tegra_aes_ecb_encrypt(struct ablkcipher_request *req)
{
return tegra_aes_crypt(req, FLAGS_ENCRYPT);
}
static int tegra_aes_ecb_decrypt(struct ablkcipher_request *req)
{
return tegra_aes_crypt(req, 0);
}
static int tegra_aes_cbc_encrypt(struct ablkcipher_request *req)
{
return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC);
}
static int tegra_aes_cbc_decrypt(struct ablkcipher_request *req)
{
return tegra_aes_crypt(req, FLAGS_CBC);
}
static int tegra_aes_ofb_encrypt(struct ablkcipher_request *req)
{
return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_OFB);
}
static int tegra_aes_ofb_decrypt(struct ablkcipher_request *req)
{
return tegra_aes_crypt(req, FLAGS_OFB);
}
static int tegra_aes_get_random(struct crypto_rng *tfm, u8 *rdata,
unsigned int dlen)
{
struct tegra_aes_dev *dd = aes_dev;
struct tegra_aes_engine *eng = rng_ctx.eng;
unsigned long flags;
int ret, i;
u8 *dest = rdata, *dt = rng_ctx.dt;
/* take the hardware semaphore */
if (tegra_arb_mutex_lock_timeout(eng->res_id, ARB_SEMA_TIMEOUT) < 0) {
dev_err(dd->dev, "aes hardware (%d) not available\n",
eng->res_id);
return -EBUSY;
}
ret = aes_hw_init(eng);
if (ret < 0) {
dev_err(dd->dev, "%s: hw init fail(%d)\n", __func__, ret);
dlen = ret;
goto fail;
}
memset(eng->buf_in, 0, AES_BLOCK_SIZE);
memcpy(eng->buf_in, dt, DEFAULT_RNG_BLK_SZ);
ret = aes_start_crypt(eng, (u32)eng->dma_buf_in, (u32)eng->dma_buf_out,
1, FLAGS_ENCRYPT | FLAGS_RNG, true);
if (ret < 0) {
dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
dlen = ret;
goto out;
}
memcpy(dest, eng->buf_out, dlen);
/* update the DT */
for (i = DEFAULT_RNG_BLK_SZ - 1; i >= 0; i--) {
dt[i] += 1;
if (dt[i] != 0)
break;
}
out:
aes_hw_deinit(eng);
spin_lock_irqsave(&dd->lock, flags);
clear_bit(FLAGS_BUSY, &eng->busy);
spin_unlock_irqrestore(&dd->lock, flags);
fail:
/* release the hardware semaphore */
tegra_arb_mutex_unlock(eng->res_id);
dev_dbg(dd->dev, "%s: done\n", __func__);
return dlen;
}
static int tegra_aes_rng_reset(struct crypto_rng *tfm, u8 *seed,
unsigned int slen)
{
struct tegra_aes_dev *dd = aes_dev;
struct tegra_aes_ctx *ctx = &rng_ctx;
struct tegra_aes_engine *eng = NULL;
struct tegra_aes_slot *key_slot;
int bsea_busy = false;
unsigned long flags;
struct timespec ts;
u64 nsec, tmp[2];
int ret = 0;
u8 *dt;
if (!dd)
return -EINVAL;
if (slen < (DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) {
return -ENOMEM;
}
spin_lock_irqsave(&dd->lock, flags);
bsea_busy = test_and_set_bit(FLAGS_BUSY, &dd->bsea.busy);
spin_unlock_irqrestore(&dd->lock, flags);
if (!bsea_busy)
eng = &dd->bsea;
else
return -EBUSY;
ctx->eng = eng;
dd->flags = FLAGS_ENCRYPT | FLAGS_RNG;
if (!ctx->slot) {
key_slot = aes_find_key_slot(dd);
if (!key_slot) {
dev_err(dd->dev, "no empty slot\n");
return -ENOMEM;
}
ctx->slot = key_slot;
}
/* take the hardware semaphore */
if (tegra_arb_mutex_lock_timeout(eng->res_id, ARB_SEMA_TIMEOUT) < 0) {
dev_err(dd->dev, "aes hardware (%d) not available\n",
eng->res_id);
return -EBUSY;
}
ret = aes_hw_init(eng);
if (ret < 0) {
dev_err(dd->dev, "%s: hw init fail(%d)\n", __func__, ret);
goto fail;
}
memcpy(ctx->key, seed + DEFAULT_RNG_BLK_SZ, AES_KEYSIZE_128);
eng->ctx = ctx;
eng->ctx->keylen = AES_KEYSIZE_128;
aes_set_key(eng, ctx->slot->slot_num);
/* set seed to the aes hw slot */
memset(eng->buf_in, 0, AES_BLOCK_SIZE);
memcpy(eng->buf_in, seed, DEFAULT_RNG_BLK_SZ);
ret = aes_start_crypt(eng, (u32)eng->dma_buf_in,
(u32)eng->dma_buf_out, 1, FLAGS_CBC, false);
if (ret < 0) {
dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
goto out;
}
if (slen >= (2 * DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) {
dt = seed + DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128;
} else {
getnstimeofday(&ts);
nsec = timespec_to_ns(&ts);
do_div(nsec, 1000);
nsec ^= dd->ctr << 56;
dd->ctr++;
tmp[0] = nsec;
tmp[1] = tegra_chip_uid();
dt = (u8 *)tmp;
}
memcpy(ctx->dt, dt, DEFAULT_RNG_BLK_SZ);
out:
aes_hw_deinit(eng);
fail:
/* release the hardware semaphore */
tegra_arb_mutex_unlock(eng->res_id);
dev_dbg(dd->dev, "%s: done\n", __func__);
return ret;
}
static int tegra_aes_cra_init(struct crypto_tfm *tfm)
{
tfm->crt_ablkcipher.reqsize = sizeof(struct tegra_aes_reqctx);
return 0;
}
void tegra_aes_cra_exit(struct crypto_tfm *tfm)
{
struct tegra_aes_ctx *ctx = crypto_ablkcipher_ctx((struct crypto_ablkcipher *)tfm);
if (ctx && ctx->slot)
aes_release_key_slot(ctx);
}
static struct crypto_alg algs[] = {
{
.cra_name = "disabled_ecb(aes)",
.cra_driver_name = "ecb-aes-tegra",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct tegra_aes_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = tegra_aes_cra_init,
.cra_exit = tegra_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = tegra_aes_setkey,
.encrypt = tegra_aes_ecb_encrypt,
.decrypt = tegra_aes_ecb_decrypt,
},
}, {
.cra_name = "disabled_cbc(aes)",
.cra_driver_name = "cbc-aes-tegra",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct tegra_aes_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = tegra_aes_cra_init,
.cra_exit = tegra_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_MIN_KEY_SIZE,
.setkey = tegra_aes_setkey,
.encrypt = tegra_aes_cbc_encrypt,
.decrypt = tegra_aes_cbc_decrypt,
}
}, {
.cra_name = "disabled_ofb(aes)",
.cra_driver_name = "ofb-aes-tegra",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct tegra_aes_ctx),
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = tegra_aes_cra_init,
.cra_exit = tegra_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_MIN_KEY_SIZE,
.setkey = tegra_aes_setkey,
.encrypt = tegra_aes_ofb_encrypt,
.decrypt = tegra_aes_ofb_decrypt,
}
}, {
.cra_name = "disabled_ansi_cprng",
.cra_driver_name = "rng-aes-tegra",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_RNG,
.cra_ctxsize = sizeof(struct tegra_aes_ctx),
.cra_type = &crypto_rng_type,
.cra_module = THIS_MODULE,
.cra_init = tegra_aes_cra_init,
.cra_exit = tegra_aes_cra_exit,
.cra_u.rng = {
.rng_make_random = tegra_aes_get_random,
.rng_reset = tegra_aes_rng_reset,
.seedsize = AES_KEYSIZE_128 + (2 * DEFAULT_RNG_BLK_SZ),
}
}
};
static int tegra_aes_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct tegra_aes_dev *dd;
struct resource *res[2];
int err = -ENOMEM, i = 0, j;
if (aes_dev)
return -EEXIST;
dd = kzalloc(sizeof(struct tegra_aes_dev), GFP_KERNEL);
if (dd == NULL) {
dev_err(dev, "unable to alloc data struct.\n");
return -ENOMEM;;
}
dd->dev = dev;
platform_set_drvdata(pdev, dd);
dd->slots = kzalloc(sizeof(struct tegra_aes_slot) * AES_NR_KEYSLOTS,
GFP_KERNEL);
if (dd->slots == NULL) {
dev_err(dev, "unable to alloc slot struct.\n");
goto out;
}
spin_lock_init(&dd->lock);
crypto_init_queue(&dd->queue, TEGRA_AES_QUEUE_LENGTH);
/* Get the module base address */
res[0] = platform_get_resource(pdev, IORESOURCE_MEM, 0);
res[1] = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!res[0] || !res[1]) {
dev_err(dev, "invalid resource type: base\n");
err = -ENODEV;
goto out;
}
dd->bsev.phys_base = res[0]->start;
dd->bsev.io_base = ioremap(dd->bsev.phys_base, resource_size(res[0]));
dd->bsea.phys_base = res[1]->start;
dd->bsea.io_base = ioremap(dd->bsea.phys_base, resource_size(res[1]));
if (!dd->bsev.io_base || !dd->bsea.io_base) {
dev_err(dev, "can't ioremap phys_base\n");
err = -ENOMEM;
goto out;
}
err = alloc_iram(dd);
if (err < 0) {
dev_err(dev, "Failed to allocate IRAM for BSEA\n");
goto out;
}
dd->bsev.res_id = TEGRA_ARB_BSEV;
dd->bsea.res_id = TEGRA_ARB_BSEA;
dd->bsev.pclk = clk_get(dev, "bsev");
if (IS_ERR(dd->bsev.pclk)) {
dev_err(dev, "v: pclock intialization failed.\n");
err = -ENODEV;
goto out;
}
dd->bsev.iclk = clk_get(dev, "vde");
if (IS_ERR(dd->bsev.iclk)) {
dev_err(dev, "v: iclock intialization failed.\n");
err = -ENODEV;
goto out;
}
dd->bsea.pclk = clk_get(dev, "bsea");
if (IS_ERR(dd->bsea.pclk)) {
dev_err(dev, "a: pclock intialization failed.\n");
err = -ENODEV;
goto out;
}
dd->bsea.iclk = clk_get(dev, "sclk");
if (IS_ERR(dd->bsea.iclk)) {
dev_err(dev, "a: iclock intialization failed.\n");
err = -ENODEV;
goto out;
}
err = clk_set_rate(dd->bsev.iclk, ULONG_MAX);
if (err) {
dev_err(dd->dev, "bsev iclk set_rate fail(%d)\n", err);
goto out;
}
err = clk_set_rate(dd->bsea.iclk, ULONG_MAX);
if (err) {
dev_err(dd->dev, "bsea iclk set_rate fail(%d)\n", err);
goto out;
}
/*
* the foll contiguous memory is allocated as follows -
* - hardware key table
* - key schedule
*/
dd->bsea.ivkey_base = NULL;
dd->bsev.ivkey_base = dma_alloc_coherent(dev, AES_MAX_KEY_SIZE,
&dd->bsev.ivkey_phys_base, GFP_KERNEL);
if (!dd->bsev.ivkey_base) {
dev_err(dev, "can not allocate iv/key buffer for BSEV\n");
err = -ENOMEM;
goto out;
}
memset(dd->bsev.ivkey_base, 0, AES_MAX_KEY_SIZE);
dd->bsev.buf_in = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
&dd->bsev.dma_buf_in, GFP_KERNEL);
dd->bsea.buf_in = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
&dd->bsea.dma_buf_in, GFP_KERNEL);
if (!dd->bsev.buf_in || !dd->bsea.buf_in) {
dev_err(dev, "can not allocate dma-in buffer\n");
err = -ENOMEM;
goto out;
}
dd->bsev.buf_out = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
&dd->bsev.dma_buf_out, GFP_KERNEL);
dd->bsea.buf_out = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
&dd->bsea.dma_buf_out, GFP_KERNEL);
if (!dd->bsev.buf_out || !dd->bsea.buf_out) {
dev_err(dev, "can not allocate dma-out buffer\n");
err = -ENOMEM;
goto out;
}
init_completion(&dd->bsev.op_complete);
init_completion(&dd->bsea.op_complete);
bsev_wq = alloc_workqueue("bsev_wq", WQ_HIGHPRI | WQ_UNBOUND, 1);
bsea_wq = alloc_workqueue("bsea_wq", WQ_HIGHPRI | WQ_UNBOUND, 1);
if (!bsev_wq || !bsea_wq) {
dev_err(dev, "alloc_workqueue failed\n");
goto out;
}
/* get the irq */
dd->bsev.irq = INT_VDE_BSE_V;
err = request_irq(dd->bsev.irq, aes_bsev_irq, IRQF_TRIGGER_HIGH,
"tegra-aes", dd);
if (err) {
dev_err(dev, "request_irq failed fir BSEV Engine\n");
goto out;
}
disable_irq(dd->bsev.irq);
dd->bsea.irq = INT_VDE_BSE_A;
err = request_irq(dd->bsea.irq, aes_bsea_irq, IRQF_TRIGGER_HIGH,
"tegra-aes", dd);
if (err) {
dev_err(dev, "request_irq failed for BSEA Engine\n");
goto out;
}
disable_irq(dd->bsea.irq);
spin_lock_init(&list_lock);
spin_lock(&list_lock);
for (i = 0; i < AES_NR_KEYSLOTS; i++) {
if (i == SSK_SLOT_NUM)
continue;
dd->slots[i].available = true;
dd->slots[i].slot_num = i;
INIT_LIST_HEAD(&dd->slots[i].node);
list_add_tail(&dd->slots[i].node, &slot_list);
}
spin_unlock(&list_lock);
aes_dev = dd;
for (i = 0; i < ARRAY_SIZE(algs); i++) {
INIT_LIST_HEAD(&algs[i].cra_list);
err = crypto_register_alg(&algs[i]);
if (err)
goto out;
}
dev_info(dev, "registered");
return 0;
out:
for (j = 0; j < i; j++)
crypto_unregister_alg(&algs[j]);
free_iram(dd);
if (dd->bsev.ivkey_base) {
dma_free_coherent(dev, SZ_512, dd->bsev.ivkey_base,
dd->bsev.ivkey_phys_base);
}
if (dd->bsev.buf_in && dd->bsea.buf_in) {
dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
dd->bsev.buf_in, dd->bsev.dma_buf_in);
dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
dd->bsea.buf_in, dd->bsea.dma_buf_in);
}
if (dd->bsev.buf_out && dd->bsea.buf_out) {
dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
dd->bsev.buf_out, dd->bsev.dma_buf_out);
dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
dd->bsea.buf_out, dd->bsea.dma_buf_out);
}
if (dd->bsev.io_base && dd->bsea.io_base) {
iounmap(dd->bsev.io_base);
iounmap(dd->bsea.io_base);
}
if (dd->bsev.pclk)
clk_put(dd->bsev.pclk);
if (dd->bsev.iclk)
clk_put(dd->bsev.iclk);
if (dd->bsea.pclk)
clk_put(dd->bsea.pclk);
if (bsev_wq)
destroy_workqueue(bsev_wq);
if (bsea_wq)
destroy_workqueue(bsea_wq);
if (dd->bsev.irq)
free_irq(dd->bsev.irq, dd);
if (dd->bsea.irq)
free_irq(dd->bsea.irq, dd);
spin_lock(&list_lock);
list_del(&slot_list);
spin_unlock(&list_lock);
kfree(dd->slots);
kfree(dd);
aes_dev = NULL;
dev_err(dev, "%s: initialization failed.\n", __func__);
return err;
}
static int __devexit tegra_aes_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct tegra_aes_dev *dd = platform_get_drvdata(pdev);
int i;
if (!dd)
return -ENODEV;
cancel_work_sync(&bsev_work);
cancel_work_sync(&bsea_work);
destroy_workqueue(bsev_wq);
destroy_workqueue(bsea_wq);
free_irq(dd->bsev.irq, dd);
free_irq(dd->bsea.irq, dd);
spin_lock(&list_lock);
list_del(&slot_list);
spin_unlock(&list_lock);
for (i = 0; i < ARRAY_SIZE(algs); i++)
crypto_unregister_alg(&algs[i]);
free_iram(dd);
dma_free_coherent(dev, SZ_512, dd->bsev.ivkey_base,
dd->bsev.ivkey_phys_base);
dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, dd->bsev.buf_in,
dd->bsev.dma_buf_in);
dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, dd->bsea.buf_in,
dd->bsea.dma_buf_in);
dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, dd->bsev.buf_out,
dd->bsev.dma_buf_out);
dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, dd->bsea.buf_out,
dd->bsea.dma_buf_out);
iounmap(dd->bsev.io_base);
iounmap(dd->bsea.io_base);
clk_put(dd->bsev.iclk);
clk_put(dd->bsev.pclk);
clk_put(dd->bsea.pclk);
kfree(dd->slots);
kfree(dd);
aes_dev = NULL;
return 0;
}
static struct platform_driver tegra_aes_driver = {
.probe = tegra_aes_probe,
.remove = __devexit_p(tegra_aes_remove),
.driver = {
.name = "tegra-aes",
.owner = THIS_MODULE,
},
};
static int __init tegra_aes_mod_init(void)
{
INIT_LIST_HEAD(&slot_list);
return platform_driver_register(&tegra_aes_driver);
}
static void __exit tegra_aes_mod_exit(void)
{
platform_driver_unregister(&tegra_aes_driver);
}
module_init(tegra_aes_mod_init);
module_exit(tegra_aes_mod_exit);
MODULE_DESCRIPTION("Tegra AES hw acceleration support.");
MODULE_AUTHOR("NVIDIA Corporation");
MODULE_LICENSE("GPL v2");