/*
* arch/arm/mach-tegra/latency_allowance.c
*
* Copyright (C) 2011 NVIDIA Corporation
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/types.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/err.h>
#include <linux/spinlock_types.h>
#include <linux/spinlock.h>
#include <linux/stringify.h>
#include <asm/bug.h>
#include <asm/io.h>
#include <asm/string.h>
#include <mach/iomap.h>
#include <mach/io.h>
#include <mach/latency_allowance.h>
#define MC_ARB_OVERRIDE 0xe8
#define GLOBAL_LATENCY_SCALING_ENABLE_BIT 7
#define MC_LA_AFI_0 0x2e0
#define MC_LA_AVPC_ARM7_0 0x2e4
#define MC_LA_DC_0 0x2e8
#define MC_LA_DC_1 0x2ec
#define MC_LA_DC_2 0x2f0
#define MC_LA_DCB_0 0x2f4
#define MC_LA_DCB_1 0x2f8
#define MC_LA_DCB_2 0x2fc
#define MC_LA_EPP_0 0x300
#define MC_LA_EPP_1 0x304
#define MC_LA_G2_0 0x308
#define MC_LA_G2_1 0x30c
#define MC_LA_HC_0 0x310
#define MC_LA_HC_1 0x314
#define MC_LA_HDA_0 0x318
#define MC_LA_ISP_0 0x31C
#define MC_LA_MPCORE_0 0x320
#define MC_LA_MPCORELP_0 0x324
#define MC_LA_MPE_0 0x328
#define MC_LA_MPE_1 0x32c
#define MC_LA_MPE_2 0x330
#define MC_LA_NV_0 0x334
#define MC_LA_NV_1 0x338
#define MC_LA_NV2_0 0x33c
#define MC_LA_NV2_1 0x340
#define MC_LA_PPCS_0 0x344
#define MC_LA_PPCS_1 0x348
#define MC_LA_PTC_0 0x34c
#define MC_LA_SATA_0 0x350
#define MC_LA_VDE_0 0x354
#define MC_LA_VDE_1 0x358
#define MC_LA_VDE_2 0x35c
#define MC_LA_VDE_3 0x360
#define MC_LA_VI_0 0x364
#define MC_LA_VI_1 0x368
#define MC_LA_VI_2 0x36c
#define DS_DISP_MCCIF_DISPLAY0A_HYST (0x481 * 4)
#define DS_DISP_MCCIF_DISPLAY0B_HYST (0x482 * 4)
#define DS_DISP_MCCIF_DISPLAY0C_HYST (0x483 * 4)
#define DS_DISP_MCCIF_DISPLAY1B_HYST (0x484 * 4)
#define DS_DISP_MCCIF_DISPLAY0AB_HYST (0x481 * 4)
#define DS_DISP_MCCIF_DISPLAY0BB_HYST (0x482 * 4)
#define DS_DISP_MCCIF_DISPLAY0CB_HYST (0x483 * 4)
#define DS_DISP_MCCIF_DISPLAY1BB_HYST (0x484 * 4)
#define VI_MCCIF_VIWSB_HYST (0x9a * 4)
#define VI_MCCIF_VIWU_HYST (0x9b * 4)
#define VI_MCCIF_VIWV_HYST (0x9c * 4)
#define VI_MCCIF_VIWY_HYST (0x9d * 4)
#define VI_TIMEOUT_WOCAL_VI (0x70 * 4)
#define VI_RESERVE_3 (0x97 * 4)
#define VI_RESERVE_4 (0x98 * 4)
/* maximum valid value for latency allowance */
#define MC_LA_MAX_VALUE 255
#define ENABLE_LA_DEBUG 0
#define TEST_LA_CODE 0
#define la_debug(fmt, ...) \
if (ENABLE_LA_DEBUG) { \
printk(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__); \
}
static struct dentry *latency_debug_dir;
struct la_client_info {
unsigned int fifo_size_in_atoms;
unsigned int expiration_in_ns; /* worst case expiration value */
unsigned long reg_addr;
unsigned long mask;
unsigned long shift;
enum tegra_la_id id;
char *name;
bool scaling_supported;
};
static DEFINE_SPINLOCK(safety_lock);
static const int ns_per_tick = 30;
/* fifo atom size in bytes for non-fdc clients*/
static const int normal_atom_size = 16;
/* fifo atom size in bytes for fdc clients*/
static const int fdc_atom_size = 32;
#define MC_RA(r) \
((u32)IO_ADDRESS(TEGRA_MC_BASE) + (MC_##r))
#define RA(r) \
((u32)IO_ADDRESS(TEGRA_MC_BASE) + (MC_LA_##r))
#define MASK(x) \
((0xFFFFFFFFUL >> (31 - (1 ? x) + (0 ? x))) << (0 ? x))
#define SHIFT(x) \
(0 ? x)
#define ID(id) \
TEGRA_LA_##id
#define LA_INFO(f, e, a, r, id, ss) \
{f, e, RA(a), MASK(r), SHIFT(r), ID(id), __stringify(id), ss}
/*
* The rule for getting the fifo_size_in_atoms is:
* 1.If REORDER_DEPTH exists, use it(default is overridden).
* 2.Else if (write_client) use RFIFO_DEPTH.
* 3.Else (read client) use RDFIFO_DEPTH.
* Refer to project.h file.
*/
struct la_client_info la_info[] = {
LA_INFO(32, 150, AFI_0, 7 : 0, AFIR, false),
LA_INFO(32, 150, AFI_0, 23 : 16, AFIW, false),
LA_INFO(2, 150, AVPC_ARM7_0, 7 : 0, AVPC_ARM7R, false),
LA_INFO(2, 150, AVPC_ARM7_0, 23 : 16, AVPC_ARM7W, false),
LA_INFO(128, 1050, DC_0, 7 : 0, DISPLAY_0A, true),
LA_INFO(64, 1050, DC_0, 23 : 16, DISPLAY_0B, true),
LA_INFO(128, 1050, DC_1, 7 : 0, DISPLAY_0C, true),
LA_INFO(64, 1050, DC_1, 23 : 16, DISPLAY_1B, true),
LA_INFO(2, 1050, DC_2, 7 : 0, DISPLAY_HC, false),
LA_INFO(128, 1050, DCB_0, 7 : 0, DISPLAY_0AB, true),
LA_INFO(64, 1050, DCB_0, 23 : 16, DISPLAY_0BB, true),
LA_INFO(128, 1050, DCB_1, 7 : 0, DISPLAY_0CB, true),
LA_INFO(64, 1050, DCB_1, 23 : 16, DISPLAY_1BB, true),
LA_INFO(2, 1050, DCB_2, 7 : 0, DISPLAY_HCB, false),
LA_INFO(8, 150, EPP_0, 7 : 0, EPPUP, false),
LA_INFO(64, 150, EPP_0, 23 : 16, EPPU, false),
LA_INFO(64, 150, EPP_1, 7 : 0, EPPV, false),
LA_INFO(64, 150, EPP_1, 23 : 16, EPPY, false),
LA_INFO(64, 150, G2_0, 7 : 0, G2PR, false),
LA_INFO(64, 150, G2_0, 23 : 16, G2SR, false),
LA_INFO(48, 150, G2_1, 7 : 0, G2DR, false),
LA_INFO(128, 150, G2_1, 23 : 16, G2DW, false),
LA_INFO(16, 150, HC_0, 7 : 0, HOST1X_DMAR, false),
LA_INFO(8, 150, HC_0, 23 : 16, HOST1XR, false),
LA_INFO(32, 150, HC_1, 7 : 0, HOST1XW, false),
LA_INFO(16, 150, HDA_0, 7 : 0, HDAR, false),
LA_INFO(16, 150, HDA_0, 23 : 16, HDAW, false),
LA_INFO(64, 150, ISP_0, 7 : 0, ISPW, false),
LA_INFO(14, 150, MPCORE_0, 7 : 0, MPCORER, false),
LA_INFO(24, 150, MPCORE_0, 23 : 16, MPCOREW, false),
LA_INFO(14, 150, MPCORELP_0, 7 : 0, MPCORE_LPR, false),
LA_INFO(24, 150, MPCORELP_0, 23 : 16, MPCORE_LPW, false),
LA_INFO(8, 150, MPE_0, 7 : 0, MPE_UNIFBR, false),
LA_INFO(2, 150, MPE_0, 23 : 16, MPE_IPRED, false),
LA_INFO(64, 150, MPE_1, 7 : 0, MPE_AMEMRD, false),
LA_INFO(8, 150, MPE_1, 23 : 16, MPE_CSRD, false),
LA_INFO(8, 150, MPE_2, 7 : 0, MPE_UNIFBW, false),
LA_INFO(8, 150, MPE_2, 23 : 16, MPE_CSWR, false),
LA_INFO(48, 150, NV_0, 7 : 0, FDCDRD, false),
LA_INFO(64, 150, NV_0, 23 : 16, IDXSRD, false),
LA_INFO(64, 150, NV_1, 7 : 0, TEXSRD, false),
LA_INFO(48, 150, NV_1, 23 : 16, FDCDWR, false),
LA_INFO(48, 150, NV2_0, 7 : 0, FDCDRD2, false),
LA_INFO(64, 150, NV2_0, 23 : 16, IDXSRD2, false),
LA_INFO(64, 150, NV2_1, 7 : 0, TEXSRD2, false),
LA_INFO(48, 150, NV2_1, 23 : 16, FDCDWR2, false),
LA_INFO(2, 150, PPCS_0, 7 : 0, PPCS_AHBDMAR, false),
LA_INFO(8, 150, PPCS_0, 23 : 16, PPCS_AHBSLVR, false),
LA_INFO(2, 150, PPCS_1, 7 : 0, PPCS_AHBDMAW, false),
LA_INFO(4, 150, PPCS_1, 23 : 16, PPCS_AHBSLVW, false),
LA_INFO(2, 150, PTC_0, 7 : 0, PTCR, false),
LA_INFO(32, 150, SATA_0, 7 : 0, SATAR, false),
LA_INFO(32, 150, SATA_0, 23 : 16, SATAW, false),
LA_INFO(8, 150, VDE_0, 7 : 0, VDE_BSEVR, false),
LA_INFO(4, 150, VDE_0, 23 : 16, VDE_MBER, false),
LA_INFO(16, 150, VDE_1, 7 : 0, VDE_MCER, false),
LA_INFO(16, 150, VDE_1, 23 : 16, VDE_TPER, false),
LA_INFO(4, 150, VDE_2, 7 : 0, VDE_BSEVW, false),
LA_INFO(16, 150, VDE_2, 23 : 16, VDE_DBGW, false),
LA_INFO(2, 150, VDE_3, 7 : 0, VDE_MBEW, false),
LA_INFO(16, 150, VDE_3, 23 : 16, VDE_TPMW, false),
LA_INFO(8, 1050, VI_0, 7 : 0, VI_RUV, false),
LA_INFO(64, 1050, VI_0, 23 : 16, VI_WSB, true),
LA_INFO(64, 1050, VI_1, 7 : 0, VI_WU, true),
LA_INFO(64, 1050, VI_1, 23 : 16, VI_WV, true),
LA_INFO(64, 1050, VI_2, 7 : 0, VI_WY, true),
/* end of list. */
LA_INFO(0, 0, AFI_0, 0 : 0, MAX_ID, false)
};
struct la_scaling_info {
unsigned int threshold_low;
unsigned int threshold_mid;
unsigned int threshold_high;
int scaling_ref_count;
int actual_la_to_set;
int la_set;
};
struct la_scaling_reg_info {
enum tegra_la_id id;
unsigned int tl_reg_addr;
unsigned int tl_mask;
unsigned int tl_shift;
unsigned int tm_reg_addr;
unsigned int tm_mask;
unsigned int tm_shift;
unsigned int th_reg_addr;
unsigned int th_mask;
unsigned int th_shift;
};
#define DISP1_RA(r) \
((u32)IO_ADDRESS(TEGRA_DISPLAY_BASE) + DS_DISP_MCCIF_##r##_HYST)
#define DISP2_RA(r) \
((u32)IO_ADDRESS(TEGRA_DISPLAY2_BASE) + DS_DISP_MCCIF_##r##_HYST)
#define DISP_SCALING_REG_INFO(id, r, ra) \
{ \
ID(id), \
ra(r), MASK(15 : 8), SHIFT(15 : 8), \
ra(r), MASK(23 : 16), SHIFT(15 : 8), \
ra(r), MASK(7 : 0), SHIFT(15 : 8) \
}
struct la_scaling_reg_info disp_info[] = {
DISP_SCALING_REG_INFO(DISPLAY_0A, DISPLAY0A, DISP1_RA),
DISP_SCALING_REG_INFO(DISPLAY_0B, DISPLAY0B, DISP1_RA),
DISP_SCALING_REG_INFO(DISPLAY_0C, DISPLAY0C, DISP1_RA),
DISP_SCALING_REG_INFO(DISPLAY_1B, DISPLAY1B, DISP1_RA),
DISP_SCALING_REG_INFO(MAX_ID, DISPLAY1B, DISP1_RA), /*dummy entry*/
DISP_SCALING_REG_INFO(DISPLAY_0AB, DISPLAY0AB, DISP2_RA),
DISP_SCALING_REG_INFO(DISPLAY_0BB, DISPLAY0BB, DISP2_RA),
DISP_SCALING_REG_INFO(DISPLAY_0CB, DISPLAY0CB, DISP2_RA),
DISP_SCALING_REG_INFO(DISPLAY_1BB, DISPLAY1BB, DISP2_RA),
};
#define VI_TH_RA(r) \
((u32)IO_ADDRESS(TEGRA_VI_BASE) + VI_MCCIF_##r##_HYST)
#define VI_TM_RA(r) \
((u32)IO_ADDRESS(TEGRA_VI_BASE) + VI_TIMEOUT_WOCAL_VI)
#define VI_TL_RA(r) \
((u32)IO_ADDRESS(TEGRA_VI_BASE) + VI_RESERVE_##r)
struct la_scaling_reg_info vi_info[] = {
{
ID(VI_WSB),
VI_TL_RA(4), MASK(7 : 0), SHIFT(7 : 0),
VI_TM_RA(0), MASK(7 : 0), SHIFT(7 : 0),
VI_TH_RA(VIWSB), MASK(7 : 0), SHIFT(7 : 0)
},
{
ID(VI_WU),
VI_TL_RA(3), MASK(15 : 8), SHIFT(15 : 8),
VI_TM_RA(0), MASK(15 : 8), SHIFT(15 : 8),
VI_TH_RA(VIWU), MASK(7 : 0), SHIFT(7 : 0)
},
{
ID(VI_WV),
VI_TL_RA(3), MASK(7 : 0), SHIFT(7 : 0),
VI_TM_RA(0), MASK(23 : 16), SHIFT(23 : 16),
VI_TH_RA(VIWV), MASK(7 : 0), SHIFT(7 : 0)
},
{
ID(VI_WY),
VI_TL_RA(4), MASK(15 : 8), SHIFT(15 : 8),
VI_TM_RA(0), MASK(31 : 24), SHIFT(31 : 24),
VI_TH_RA(VIWY), MASK(7 : 0), SHIFT(7 : 0)
}
};
static struct la_scaling_info scaling_info[TEGRA_LA_MAX_ID];
static int la_scaling_enable_count;
#define VALIDATE_ID(id) \
do { \
if (id >= TEGRA_LA_MAX_ID) \
return -EINVAL; \
BUG_ON(la_info[id].id != id); \
} while (0)
#define VALIDATE_BW(bw_in_mbps) \
do { \
if (bw_in_mbps >= 4096) \
return -EINVAL; \
} while (0)
#define VALIDATE_THRESHOLDS(tl, tm, th) \
do { \
if (tl > 100 || tm > 100 || th > 100) \
return -EINVAL; \
} while (0)
static void set_thresholds(struct la_scaling_reg_info *info,
enum tegra_la_id id)
{
unsigned long reg_read;
unsigned long reg_write;
unsigned int thresh_low;
unsigned int thresh_mid;
unsigned int thresh_high;
int la_set;
reg_read = readl(la_info[id].reg_addr);
la_set = (reg_read & la_info[id].mask) >> la_info[id].shift;
/* la should be set before enabling scaling. */
BUG_ON(la_set != scaling_info[id].la_set);
thresh_low = (scaling_info[id].threshold_low * la_set) / 100;
thresh_mid = (scaling_info[id].threshold_mid * la_set) / 100;
thresh_high = (scaling_info[id].threshold_high * la_set) / 100;
la_debug("%s: la_set=%d, thresh_low=%d(%d%%), thresh_mid=%d(%d%%),"
" thresh_high=%d(%d%%) ", __func__, la_set,
thresh_low, scaling_info[id].threshold_low,
thresh_mid, scaling_info[id].threshold_mid,
thresh_high, scaling_info[id].threshold_high);
reg_read = readl(info->tl_reg_addr);
reg_write = (reg_read & ~info->tl_mask) |
(thresh_low << info->tl_shift);
writel(reg_write, info->tl_reg_addr);
la_debug("reg_addr=0x%x, read=0x%x, write=0x%x",
(u32)info->tl_reg_addr, (u32)reg_read, (u32)reg_write);
reg_read = readl(info->tm_reg_addr);
reg_write = (reg_read & ~info->tm_mask) |
(thresh_mid << info->tm_shift);
writel(reg_write, info->tm_reg_addr);
la_debug("reg_addr=0x%x, read=0x%x, write=0x%x",
(u32)info->tm_reg_addr, (u32)reg_read, (u32)reg_write);
reg_read = readl(info->th_reg_addr);
reg_write = (reg_read & ~info->th_mask) |
(thresh_high << info->th_shift);
writel(reg_write, info->th_reg_addr);
la_debug("reg_addr=0x%x, read=0x%x, write=0x%x",
(u32)info->th_reg_addr, (u32)reg_read, (u32)reg_write);
}
static void set_disp_latency_thresholds(enum tegra_la_id id)
{
set_thresholds(&disp_info[id - ID(DISPLAY_0A)], id);
}
static void set_vi_latency_thresholds(enum tegra_la_id id)
{
set_thresholds(&vi_info[id - ID(VI_WSB)], id);
}
/* Sets latency allowance based on clients memory bandwitdh requirement.
* Bandwidth passed is in mega bytes per second.
*/
int tegra_set_latency_allowance(enum tegra_la_id id,
unsigned int bandwidth_in_mbps)
{
int ideal_la;
int la_to_set;
unsigned long reg_read;
unsigned long reg_write;
int bytes_per_atom = normal_atom_size;
struct la_client_info *ci;
VALIDATE_ID(id);
VALIDATE_BW(bandwidth_in_mbps);
if (id == ID(FDCDRD) || id == ID(FDCDWR) ||
id == ID(FDCDRD2) || id == ID(FDCDWR2))
bytes_per_atom = fdc_atom_size;
ci = &la_info[id];
if (bandwidth_in_mbps == 0) {
la_to_set = MC_LA_MAX_VALUE;
} else {
ideal_la = (ci->fifo_size_in_atoms * bytes_per_atom * 1000) /
(bandwidth_in_mbps * ns_per_tick);
la_to_set = ideal_la - (ci->expiration_in_ns/ns_per_tick) - 1;
}
la_debug("\n%s:id=%d,bw=%dmbps, la_to_set=%d",
__func__, id, bandwidth_in_mbps, la_to_set);
la_to_set = (la_to_set < 0) ? 0 : la_to_set;
la_to_set = (la_to_set > MC_LA_MAX_VALUE) ? MC_LA_MAX_VALUE : la_to_set;
scaling_info[id].actual_la_to_set = la_to_set;
/* until display can use latency allowance scaling, use a more
* aggressive LA setting. Bug 862709 */
if (id >= ID(DISPLAY_0A) && id <= ID(DISPLAY_HCB))
la_to_set /= 3;
spin_lock(&safety_lock);
reg_read = readl(ci->reg_addr);
reg_write = (reg_read & ~ci->mask) |
(la_to_set << ci->shift);
writel(reg_write, ci->reg_addr);
scaling_info[id].la_set = la_to_set;
la_debug("reg_addr=0x%x, read=0x%x, write=0x%x",
(u32)ci->reg_addr, (u32)reg_read, (u32)reg_write);
spin_unlock(&safety_lock);
return 0;
}
/* Thresholds for scaling are specified in % of fifo freeness.
* If threshold_low is specified as 20%, it means when the fifo free
* between 0 to 20%, use la as programmed_la.
* If threshold_mid is specified as 50%, it means when the fifo free
* between 20 to 50%, use la as programmed_la/2 .
* If threshold_high is specified as 80%, it means when the fifo free
* between 50 to 80%, use la as programmed_la/4.
* When the fifo is free between 80 to 100%, use la as 0(highest priority).
*/
int tegra_enable_latency_scaling(enum tegra_la_id id,
unsigned int threshold_low,
unsigned int threshold_mid,
unsigned int threshold_high)
{
unsigned long reg;
unsigned long scaling_enable_reg = MC_RA(ARB_OVERRIDE);
VALIDATE_ID(id);
VALIDATE_THRESHOLDS(threshold_low, threshold_mid, threshold_high);
if (la_info[id].scaling_supported == false)
goto exit;
spin_lock(&safety_lock);
la_debug("\n%s: id=%d, tl=%d, tm=%d, th=%d", __func__,
id, threshold_low, threshold_mid, threshold_high);
scaling_info[id].threshold_low = threshold_low;
scaling_info[id].threshold_mid = threshold_mid;
scaling_info[id].threshold_high = threshold_high;
scaling_info[id].scaling_ref_count++;
if (id >= ID(DISPLAY_0A) && id <= ID(DISPLAY_1BB))
set_disp_latency_thresholds(id);
else if (id >= ID(VI_WSB) && id <= ID(VI_WY))
set_vi_latency_thresholds(id);
if (!la_scaling_enable_count++) {
reg = readl(scaling_enable_reg);
reg |= (1 << GLOBAL_LATENCY_SCALING_ENABLE_BIT);
writel(reg, scaling_enable_reg);
la_debug("enabled scaling.");
}
spin_unlock(&safety_lock);
exit:
return 0;
}
void tegra_disable_latency_scaling(enum tegra_la_id id)
{
unsigned long reg;
unsigned long scaling_enable_reg = MC_RA(ARB_OVERRIDE);
if (id >= TEGRA_LA_MAX_ID)
return;
BUG_ON(la_info[id].id != id);
if (la_info[id].scaling_supported == false)
return;
spin_lock(&safety_lock);
la_debug("\n%s: id=%d", __func__, id);
scaling_info[id].scaling_ref_count--;
BUG_ON(scaling_info[id].scaling_ref_count < 0);
if (!--la_scaling_enable_count) {
reg = readl(scaling_enable_reg);
reg = reg & ~(1 << GLOBAL_LATENCY_SCALING_ENABLE_BIT);
writel(reg, scaling_enable_reg);
la_debug("disabled scaling.");
}
spin_unlock(&safety_lock);
}
static int la_regs_show(struct seq_file *s, void *unused)
{
unsigned i;
unsigned long la;
/* iterate the list, but don't print MAX_ID */
for (i = 0; i < ARRAY_SIZE(la_info) - 1; i++) {
la = (readl(la_info[i].reg_addr) & la_info[i].mask)
>> la_info[i].shift;
seq_printf(s, "%-16s: %4lu\n", la_info[i].name, la);
}
return 0;
}
static int dbg_la_regs_open(struct inode *inode, struct file *file)
{
return single_open(file, la_regs_show, inode->i_private);
}
static const struct file_operations regs_fops = {
.open = dbg_la_regs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __init tegra_latency_allowance_debugfs_init(void)
{
if (latency_debug_dir)
return 0;
latency_debug_dir = debugfs_create_dir("tegra_latency", NULL);
debugfs_create_file("la_info", S_IRUGO, latency_debug_dir, NULL,
®s_fops);
return 0;
}
late_initcall(tegra_latency_allowance_debugfs_init);
static int __init tegra_latency_allowance_init(void)
{
la_scaling_enable_count = 0;
tegra_set_latency_allowance(TEGRA_LA_G2PR, 20);
tegra_set_latency_allowance(TEGRA_LA_G2SR, 20);
tegra_set_latency_allowance(TEGRA_LA_G2DR, 20);
tegra_set_latency_allowance(TEGRA_LA_G2DW, 20);
return 0;
}
core_initcall(tegra_latency_allowance_init);
#if TEST_LA_CODE
static int __init test_la(void)
{
int err;
enum tegra_la_id id = 0;
int repeat_count = 5;
do {
for (id = 0; id < TEGRA_LA_MAX_ID; id++) {
err = tegra_set_latency_allowance(id, 200);
if (err)
la_debug("\n***tegra_set_latency_allowance,"
" err=%d", err);
}
for (id = 0; id < TEGRA_LA_MAX_ID; id++) {
if (id >= ID(DISPLAY_0AB) && id <= ID(DISPLAY_HCB))
continue;
if (id >= ID(VI_WSB) && id <= ID(VI_WY))
continue;
err = tegra_enable_latency_scaling(id, 20, 50, 80);
if (err)
la_debug("\n***tegra_enable_latency_scaling,"
" err=%d", err);
}
la_debug("la_scaling_enable_count =%d",
la_scaling_enable_count);
for (id = 0; id < TEGRA_LA_MAX_ID; id++) {
if (id >= ID(DISPLAY_0AB) && id <= ID(DISPLAY_HCB))
continue;
if (id >= ID(VI_WSB) && id <= ID(VI_WY))
continue;
tegra_disable_latency_scaling(id);
}
la_debug("la_scaling_enable_count=%d",
la_scaling_enable_count);
} while (--repeat_count);
return 0;
}
late_initcall(test_la);
#endif