aboutsummaryrefslogtreecommitdiffstats
path: root/net/unix/garbage.c
blob: b6f4b994eb356a0cd9c05851d49fff16bece3eb0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/*
 * NET3:	Garbage Collector For AF_UNIX sockets
 *
 * Garbage Collector:
 *	Copyright (C) Barak A. Pearlmutter.
 *	Released under the GPL version 2 or later.
 *
 * Chopped about by Alan Cox 22/3/96 to make it fit the AF_UNIX socket problem.
 * If it doesn't work blame me, it worked when Barak sent it.
 *
 * Assumptions:
 *
 *  - object w/ a bit
 *  - free list
 *
 * Current optimizations:
 *
 *  - explicit stack instead of recursion
 *  - tail recurse on first born instead of immediate push/pop
 *  - we gather the stuff that should not be killed into tree
 *    and stack is just a path from root to the current pointer.
 *
 *  Future optimizations:
 *
 *  - don't just push entire root set; process in place
 *
 *	This program is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU General Public License
 *	as published by the Free Software Foundation; either version
 *	2 of the License, or (at your option) any later version.
 *
 *  Fixes:
 *	Alan Cox	07 Sept	1997	Vmalloc internal stack as needed.
 *					Cope with changing max_files.
 *	Al Viro		11 Oct 1998
 *		Graph may have cycles. That is, we can send the descriptor
 *		of foo to bar and vice versa. Current code chokes on that.
 *		Fix: move SCM_RIGHTS ones into the separate list and then
 *		skb_free() them all instead of doing explicit fput's.
 *		Another problem: since fput() may block somebody may
 *		create a new unix_socket when we are in the middle of sweep
 *		phase. Fix: revert the logic wrt MARKED. Mark everything
 *		upon the beginning and unmark non-junk ones.
 *
 *		[12 Oct 1998] AAARGH! New code purges all SCM_RIGHTS
 *		sent to connect()'ed but still not accept()'ed sockets.
 *		Fixed. Old code had slightly different problem here:
 *		extra fput() in situation when we passed the descriptor via
 *		such socket and closed it (descriptor). That would happen on
 *		each unix_gc() until the accept(). Since the struct file in
 *		question would go to the free list and might be reused...
 *		That might be the reason of random oopses on filp_close()
 *		in unrelated processes.
 *
 *	AV		28 Feb 1999
 *		Kill the explicit allocation of stack. Now we keep the tree
 *		with root in dummy + pointer (gc_current) to one of the nodes.
 *		Stack is represented as path from gc_current to dummy. Unmark
 *		now means "add to tree". Push == "make it a son of gc_current".
 *		Pop == "move gc_current to parent". We keep only pointers to
 *		parents (->gc_tree).
 *	AV		1 Mar 1999
 *		Damn. Added missing check for ->dead in listen queues scanning.
 *
 *	Miklos Szeredi 25 Jun 2007
 *		Reimplement with a cycle collecting algorithm. This should
 *		solve several problems with the previous code, like being racy
 *		wrt receive and holding up unrelated socket operations.
 */

#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/un.h>
#include <linux/net.h>
#include <linux/fs.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/file.h>
#include <linux/proc_fs.h>
#include <linux/mutex.h>
#include <linux/wait.h>

#include <net/sock.h>
#include <net/af_unix.h>
#include <net/scm.h>
#include <net/tcp_states.h>

/* Internal data structures and random procedures: */

static LIST_HEAD(gc_inflight_list);
static LIST_HEAD(gc_candidates);
static DEFINE_SPINLOCK(unix_gc_lock);
static DECLARE_WAIT_QUEUE_HEAD(unix_gc_wait);

unsigned int unix_tot_inflight;


struct sock *unix_get_socket(struct file *filp)
{
	struct sock *u_sock = NULL;
	struct inode *inode = filp->f_path.dentry->d_inode;

	/*
	 *	Socket ?
	 */
	if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) {
		struct socket *sock = SOCKET_I(inode);
		struct sock *s = sock->sk;

		/*
		 *	PF_UNIX ?
		 */
		if (s && sock->ops && sock->ops->family == PF_UNIX)
			u_sock = s;
	}
	return u_sock;
}

/*
 *	Keep the number of times in flight count for the file
 *	descriptor if it is for an AF_UNIX socket.
 */

void unix_inflight(struct file *fp)
{
	struct sock *s = unix_get_socket(fp);
	if (s) {
		struct unix_sock *u = unix_sk(s);
		spin_lock(&unix_gc_lock);
		if (atomic_long_inc_return(&u->inflight) == 1) {
			BUG_ON(!list_empty(&u->link));
			list_add_tail(&u->link, &gc_inflight_list);
		} else {
			BUG_ON(list_empty(&u->link));
		}
		unix_tot_inflight++;
		spin_unlock(&unix_gc_lock);
	}
}

void unix_notinflight(struct file *fp)
{
	struct sock *s = unix_get_socket(fp);
	if (s) {
		struct unix_sock *u = unix_sk(s);
		spin_lock(&unix_gc_lock);
		BUG_ON(list_empty(&u->link));
		if (atomic_long_dec_and_test(&u->inflight))
			list_del_init(&u->link);
		unix_tot_inflight--;
		spin_unlock(&unix_gc_lock);
	}
}

static void scan_inflight(struct sock *x, void (*func)(struct unix_sock *),
			  struct sk_buff_head *hitlist)
{
	struct sk_buff *skb;
	struct sk_buff *next;

	spin_lock(&x->sk_receive_queue.lock);
	skb_queue_walk_safe(&x->sk_receive_queue, skb, next) {
		/*
		 *	Do we have file descriptors ?
		 */
		if (UNIXCB(skb).fp) {
			bool hit = false;
			/*
			 *	Process the descriptors of this socket
			 */
			int nfd = UNIXCB(skb).fp->count;
			struct file **fp = UNIXCB(skb).fp->fp;
			while (nfd--) {
				/*
				 *	Get the socket the fd matches
				 *	if it indeed does so
				 */
				struct sock *sk = unix_get_socket(*fp++);
				if (sk) {
					struct unix_sock *u = unix_sk(sk);

					/*
					 * Ignore non-candidates, they could
					 * have been added to the queues after
					 * starting the garbage collection
					 */
					if (u->gc_candidate) {
						hit = true;
						func(u);
					}
				}
			}
			if (hit && hitlist != NULL) {
				__skb_unlink(skb, &x->sk_receive_queue);
				__skb_queue_tail(hitlist, skb);
			}
		}
	}
	spin_unlock(&x->sk_receive_queue.lock);
}

static void scan_children(struct sock *x, void (*func)(struct unix_sock *),
			  struct sk_buff_head *hitlist)
{
	if (x->sk_state != TCP_LISTEN)
		scan_inflight(x, func, hitlist);
	else {
		struct sk_buff *skb;
		struct sk_buff *next;
		struct unix_sock *u;
		LIST_HEAD(embryos);

		/*
		 * For a listening socket collect the queued embryos
		 * and perform a scan on them as well.
		 */
		spin_lock(&x->sk_receive_queue.lock);
		skb_queue_walk_safe(&x->sk_receive_queue, skb, next) {
			u = unix_sk(skb->sk);

			/*
			 * An embryo cannot be in-flight, so it's safe
			 * to use the list link.
			 */
			BUG_ON(!list_empty(&u->link));
			list_add_tail(&u->link, &embryos);
		}
		spin_unlock(&x->sk_receive_queue.lock);

		while (!list_empty(&embryos)) {
			u = list_entry(embryos.next, struct unix_sock, link);
			scan_inflight(&u->sk, func, hitlist);
			list_del_init(&u->link);
		}
	}
}

static void dec_inflight(struct unix_sock *usk)
{
	atomic_long_dec(&usk->inflight);
}

static void inc_inflight(struct unix_sock *usk)
{
	atomic_long_inc(&usk->inflight);
}

static void inc_inflight_move_tail(struct unix_sock *u)
{
	atomic_long_inc(&u->inflight);
	/*
	 * If this still might be part of a cycle, move it to the end
	 * of the list, so that it's checked even if it was already
	 * passed over
	 */
	if (u->gc_maybe_cycle)
		list_move_tail(&u->link, &gc_candidates);
}

static bool gc_in_progress = false;
#define UNIX_INFLIGHT_TRIGGER_GC 16000

void wait_for_unix_gc(void)
{
	/*
	 * If number of inflight sockets is insane,
	 * force a garbage collect right now.
	 */
	if (unix_tot_inflight > UNIX_INFLIGHT_TRIGGER_GC && !gc_in_progress)
		unix_gc();
	wait_event(unix_gc_wait, gc_in_progress == false);
}

/* The external entry point: unix_gc() */
void unix_gc(void)
{
	struct unix_sock *u;
	struct unix_sock *next;
	struct sk_buff_head hitlist;
	struct list_head cursor;
	LIST_HEAD(not_cycle_list);

	spin_lock(&unix_gc_lock);

	/* Avoid a recursive GC. */
	if (gc_in_progress)
		goto out;

	gc_in_progress = true;
	/*
	 * First, select candidates for garbage collection.  Only
	 * in-flight sockets are considered, and from those only ones
	 * which don't have any external reference.
	 *
	 * Holding unix_gc_lock will protect these candidates from
	 * being detached, and hence from gaining an external
	 * reference.  Since there are no possible receivers, all
	 * buffers currently on the candidates' queues stay there
	 * during the garbage collection.
	 *
	 * We also know that no new candidate can be added onto the
	 * receive queues.  Other, non candidate sockets _can_ be
	 * added to queue, so we must make sure only to touch
	 * candidates.
	 */
	list_for_each_entry_safe(u, next, &gc_inflight_list, link) {
		long total_refs;
		long inflight_refs;

		total_refs = file_count(u->sk.sk_socket->file);
		inflight_refs = atomic_long_read(&u->inflight);

		BUG_ON(inflight_refs < 1);
		BUG_ON(total_refs < inflight_refs);
		if (total_refs == inflight_refs) {
			list_move_tail(&u->link, &gc_candidates);
			u->gc_candidate = 1;
			u->gc_maybe_cycle = 1;
		}
	}

	/*
	 * Now remove all internal in-flight reference to children of
	 * the candidates.
	 */
	list_for_each_entry(u, &gc_candidates, link)
		scan_children(&u->sk, dec_inflight, NULL);

	/*
	 * Restore the references for children of all candidates,
	 * which have remaining references.  Do this recursively, so
	 * only those remain, which form cyclic references.
	 *
	 * Use a "cursor" link, to make the list traversal safe, even
	 * though elements might be moved about.
	 */
	list_add(&cursor, &gc_candidates);
	while (cursor.next != &gc_candidates) {
		u = list_entry(cursor.next, struct unix_sock, link);

		/* Move cursor to after the current position. */
		list_move(&cursor, &u->link);

		if (atomic_long_read(&u->inflight) > 0) {
			list_move_tail(&u->link, &not_cycle_list);
			u->gc_maybe_cycle = 0;
			scan_children(&u->sk, inc_inflight_move_tail, NULL);
		}
	}
	list_del(&cursor);

	/*
	 * not_cycle_list contains those sockets which do not make up a
	 * cycle.  Restore these to the inflight list.
	 */
	while (!list_empty(&not_cycle_list)) {
		u = list_entry(not_cycle_list.next, struct unix_sock, link);
		u->gc_candidate = 0;
		list_move_tail(&u->link, &gc_inflight_list);
	}

	/*
	 * Now gc_candidates contains only garbage.  Restore original
	 * inflight counters for these as well, and remove the skbuffs
	 * which are creating the cycle(s).
	 */
	skb_queue_head_init(&hitlist);
	list_for_each_entry(u, &gc_candidates, link)
	scan_children(&u->sk, inc_inflight, &hitlist);

	spin_unlock(&unix_gc_lock);

	/* Here we are. Hitlist is filled. Die. */
	__skb_queue_purge(&hitlist);

	spin_lock(&unix_gc_lock);

	/* All candidates should have been detached by now. */
	BUG_ON(!list_empty(&gc_candidates));
	gc_in_progress = false;
	wake_up(&unix_gc_wait);

 out:
	spin_unlock(&unix_gc_lock);
}
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
/*
 * Public API and common code for kernel->userspace relay file support.
 *
 * See Documentation/filesystems/relay.txt for an overview.
 *
 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
 *
 * Moved to kernel/relay.c by Paul Mundt, 2006.
 * November 2006 - CPU hotplug support by Mathieu Desnoyers
 * 	(mathieu.desnoyers@polymtl.ca)
 *
 * This file is released under the GPL.
 */
#include <linux/errno.h>
#include <linux/stddef.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/relay.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
#include <linux/cpu.h>
#include <linux/splice.h>

/* list of open channels, for cpu hotplug */
static DEFINE_MUTEX(relay_channels_mutex);
static LIST_HEAD(relay_channels);

/*
 * close() vm_op implementation for relay file mapping.
 */
static void relay_file_mmap_close(struct vm_area_struct *vma)
{
	struct rchan_buf *buf = vma->vm_private_data;
	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
}

/*
 * fault() vm_op implementation for relay file mapping.
 */
static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct page *page;
	struct rchan_buf *buf = vma->vm_private_data;
	pgoff_t pgoff = vmf->pgoff;

	if (!buf)
		return VM_FAULT_OOM;

	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
	if (!page)
		return VM_FAULT_SIGBUS;
	get_page(page);
	vmf->page = page;

	return 0;
}

/*
 * vm_ops for relay file mappings.
 */
static const struct vm_operations_struct relay_file_mmap_ops = {
	.fault = relay_buf_fault,
	.close = relay_file_mmap_close,
};

/*
 * allocate an array of pointers of struct page
 */
static struct page **relay_alloc_page_array(unsigned int n_pages)
{
	const size_t pa_size = n_pages * sizeof(struct page *);
	if (pa_size > PAGE_SIZE)
		return vzalloc(pa_size);
	return kzalloc(pa_size, GFP_KERNEL);
}

/*
 * free an array of pointers of struct page
 */
static void relay_free_page_array(struct page **array)
{
	if (is_vmalloc_addr(array))
		vfree(array);
	else
		kfree(array);
}

/**
 *	relay_mmap_buf: - mmap channel buffer to process address space
 *	@buf: relay channel buffer
 *	@vma: vm_area_struct describing memory to be mapped
 *
 *	Returns 0 if ok, negative on error
 *
 *	Caller should already have grabbed mmap_sem.
 */
static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
{
	unsigned long length = vma->vm_end - vma->vm_start;
	struct file *filp = vma->vm_file;

	if (!buf)
		return -EBADF;

	if (length != (unsigned long)buf->chan->alloc_size)
		return -EINVAL;

	vma->vm_ops = &relay_file_mmap_ops;
	vma->vm_flags |= VM_DONTEXPAND;
	vma->vm_private_data = buf;
	buf->chan->cb->buf_mapped(buf, filp);

	return 0;
}

/**
 *	relay_alloc_buf - allocate a channel buffer
 *	@buf: the buffer struct
 *	@size: total size of the buffer
 *
 *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
 *	passed in size will get page aligned, if it isn't already.
 */
static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
{
	void *mem;
	unsigned int i, j, n_pages;

	*size = PAGE_ALIGN(*size);
	n_pages = *size >> PAGE_SHIFT;

	buf->page_array = relay_alloc_page_array(n_pages);
	if (!buf->page_array)
		return NULL;

	for (i = 0; i < n_pages; i++) {
		buf->page_array[i] = alloc_page(GFP_KERNEL);
		if (unlikely(!buf->page_array[i]))
			goto depopulate;
		set_page_private(buf->page_array[i], (unsigned long)buf);
	}
	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
	if (!mem)
		goto depopulate;

	memset(mem, 0, *size);
	buf->page_count = n_pages;
	return mem;

depopulate:
	for (j = 0; j < i; j++)
		__free_page(buf->page_array[j]);
	relay_free_page_array(buf->page_array);
	return NULL;
}

/**
 *	relay_create_buf - allocate and initialize a channel buffer
 *	@chan: the relay channel
 *
 *	Returns channel buffer if successful, %NULL otherwise.
 */
static struct rchan_buf *relay_create_buf(struct rchan *chan)
{
	struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
	if (!buf)
		return NULL;

	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
	if (!buf->padding)
		goto free_buf;

	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
	if (!buf->start)
		goto free_buf;

	buf->chan = chan;
	kref_get(&buf->chan->kref);
	return buf;

free_buf:
	kfree(buf->padding);
	kfree(buf);
	return NULL;
}

/**
 *	relay_destroy_channel - free the channel struct
 *	@kref: target kernel reference that contains the relay channel
 *
 *	Should only be called from kref_put().
 */
static void relay_destroy_channel(struct kref *kref)
{
	struct rchan *chan = container_of(kref, struct rchan, kref);
	kfree(chan);
}

/**
 *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
 *	@buf: the buffer struct
 */
static void relay_destroy_buf(struct rchan_buf *buf)
{
	struct rchan *chan = buf->chan;
	unsigned int i;

	if (likely(buf->start)) {
		vunmap(buf->start);
		for (i = 0; i < buf->page_count; i++)
			__free_page(buf->page_array[i]);
		relay_free_page_array(buf->page_array);
	}
	chan->buf[buf->cpu] = NULL;
	kfree(buf->padding);
	kfree(buf);
	kref_put(&chan->kref, relay_destroy_channel);
}

/**
 *	relay_remove_buf - remove a channel buffer
 *	@kref: target kernel reference that contains the relay buffer
 *
 *	Removes the file from the fileystem, which also frees the
 *	rchan_buf_struct and the channel buffer.  Should only be called from
 *	kref_put().
 */
static void relay_remove_buf(struct kref *kref)
{
	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
	buf->chan->cb->remove_buf_file(buf->dentry);
	relay_destroy_buf(buf);
}

/**
 *	relay_buf_empty - boolean, is the channel buffer empty?
 *	@buf: channel buffer
 *
 *	Returns 1 if the buffer is empty, 0 otherwise.
 */
static int relay_buf_empty(struct rchan_buf *buf)
{
	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
}

/**
 *	relay_buf_full - boolean, is the channel buffer full?
 *	@buf: channel buffer
 *
 *	Returns 1 if the buffer is full, 0 otherwise.
 */
int relay_buf_full(struct rchan_buf *buf)
{
	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
}
EXPORT_SYMBOL_GPL(relay_buf_full);

/*
 * High-level relay kernel API and associated functions.
 */

/*
 * rchan_callback implementations defining default channel behavior.  Used
 * in place of corresponding NULL values in client callback struct.
 */

/*
 * subbuf_start() default callback.  Does nothing.
 */
static int subbuf_start_default_callback (struct rchan_buf *buf,
					  void *subbuf,
					  void *prev_subbuf,
					  size_t prev_padding)
{
	if (relay_buf_full(buf))
		return 0;

	return 1;
}

/*
 * buf_mapped() default callback.  Does nothing.
 */
static void buf_mapped_default_callback(struct rchan_buf *buf,
					struct file *filp)
{
}

/*
 * buf_unmapped() default callback.  Does nothing.
 */
static void buf_unmapped_default_callback(struct rchan_buf *buf,
					  struct file *filp)
{
}

/*
 * create_buf_file_create() default callback.  Does nothing.
 */
static struct dentry *create_buf_file_default_callback(const char *filename,
						       struct dentry *parent,
						       int mode,
						       struct rchan_buf *buf,
						       int *is_global)
{
	return NULL;
}

/*
 * remove_buf_file() default callback.  Does nothing.
 */
static int remove_buf_file_default_callback(struct dentry *dentry)
{
	return -EINVAL;
}

/* relay channel default callbacks */
static struct rchan_callbacks default_channel_callbacks = {
	.subbuf_start = subbuf_start_default_callback,
	.buf_mapped = buf_mapped_default_callback,
	.buf_unmapped = buf_unmapped_default_callback,
	.create_buf_file = create_buf_file_default_callback,
	.remove_buf_file = remove_buf_file_default_callback,
};

/**
 *	wakeup_readers - wake up readers waiting on a channel
 *	@data: contains the channel buffer
 *
 *	This is the timer function used to defer reader waking.
 */
static void wakeup_readers(unsigned long data)
{
	struct rchan_buf *buf = (struct rchan_buf *)data;
	wake_up_interruptible(&buf->read_wait);
}

/**
 *	__relay_reset - reset a channel buffer
 *	@buf: the channel buffer
 *	@init: 1 if this is a first-time initialization
 *
 *	See relay_reset() for description of effect.
 */
static void __relay_reset(struct rchan_buf *buf, unsigned int init)
{
	size_t i;

	if (init) {
		init_waitqueue_head(&buf->read_wait);
		kref_init(&buf->kref);
		setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
	} else
		del_timer_sync(&buf->timer);

	buf->subbufs_produced = 0;
	buf->subbufs_consumed = 0;
	buf->bytes_consumed = 0;
	buf->finalized = 0;
	buf->data = buf->start;
	buf->offset = 0;

	for (i = 0; i < buf->chan->n_subbufs; i++)
		buf->padding[i] = 0;

	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
}

/**
 *	relay_reset - reset the channel
 *	@chan: the channel
 *
 *	This has the effect of erasing all data from all channel buffers
 *	and restarting the channel in its initial state.  The buffers
 *	are not freed, so any mappings are still in effect.
 *
 *	NOTE. Care should be taken that the channel isn't actually
 *	being used by anything when this call is made.
 */
void relay_reset(struct rchan *chan)
{
	unsigned int i;

	if (!chan)
		return;

	if (chan->is_global && chan->buf[0]) {
		__relay_reset(chan->buf[0], 0);
		return;
	}

	mutex_lock(&relay_channels_mutex);
	for_each_possible_cpu(i)
		if (chan->buf[i])
			__relay_reset(chan->buf[i], 0);
	mutex_unlock(&relay_channels_mutex);
}
EXPORT_SYMBOL_GPL(relay_reset);

static inline void relay_set_buf_dentry(struct rchan_buf *buf,
					struct dentry *dentry)
{
	buf->dentry = dentry;
	buf->dentry->d_inode->i_size = buf->early_bytes;
}

static struct dentry *relay_create_buf_file(struct rchan *chan,
					    struct rchan_buf *buf,
					    unsigned int cpu)
{
	struct dentry *dentry;
	char *tmpname;

	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
	if (!tmpname)
		return NULL;
	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);

	/* Create file in fs */
	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
					   S_IRUSR, buf,
					   &chan->is_global);

	kfree(tmpname);

	return dentry;
}

/*
 *	relay_open_buf - create a new relay channel buffer
 *
 *	used by relay_open() and CPU hotplug.
 */
static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
{
 	struct rchan_buf *buf = NULL;
	struct dentry *dentry;

 	if (chan->is_global)
		return chan->buf[0];

	buf = relay_create_buf(chan);
	if (!buf)
		return NULL;

	if (chan->has_base_filename) {
		dentry = relay_create_buf_file(chan, buf, cpu);
		if (!dentry)
			goto free_buf;
		relay_set_buf_dentry(buf, dentry);
	}

 	buf->cpu = cpu;
 	__relay_reset(buf, 1);

 	if(chan->is_global) {
 		chan->buf[0] = buf;
 		buf->cpu = 0;
  	}

	return buf;

free_buf:
 	relay_destroy_buf(buf);
	return NULL;
}

/**
 *	relay_close_buf - close a channel buffer
 *	@buf: channel buffer
 *
 *	Marks the buffer finalized and restores the default callbacks.
 *	The channel buffer and channel buffer data structure are then freed
 *	automatically when the last reference is given up.
 */
static void relay_close_buf(struct rchan_buf *buf)
{
	buf->finalized = 1;
	del_timer_sync(&buf->timer);
	kref_put(&buf->kref, relay_remove_buf);
}

static void setup_callbacks(struct rchan *chan,
				   struct rchan_callbacks *cb)
{
	if (!cb) {
		chan->cb = &default_channel_callbacks;
		return;
	}

	if (!cb->subbuf_start)
		cb->subbuf_start = subbuf_start_default_callback;
	if (!cb->buf_mapped)
		cb->buf_mapped = buf_mapped_default_callback;
	if (!cb->buf_unmapped)
		cb->buf_unmapped = buf_unmapped_default_callback;
	if (!cb->create_buf_file)
		cb->create_buf_file = create_buf_file_default_callback;
	if (!cb->remove_buf_file)
		cb->remove_buf_file = remove_buf_file_default_callback;
	chan->cb = cb;
}

/**
 * 	relay_hotcpu_callback - CPU hotplug callback
 * 	@nb: notifier block
 * 	@action: hotplug action to take
 * 	@hcpu: CPU number
 *
 * 	Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
 */
static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
				unsigned long action,
				void *hcpu)
{
	unsigned int hotcpu = (unsigned long)hcpu;
	struct rchan *chan;

	switch(action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		mutex_lock(&relay_channels_mutex);
		list_for_each_entry(chan, &relay_channels, list) {
			if (chan->buf[hotcpu])
				continue;
			chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
			if(!chan->buf[hotcpu]) {
				printk(KERN_ERR
					"relay_hotcpu_callback: cpu %d buffer "
					"creation failed\n", hotcpu);
				mutex_unlock(&relay_channels_mutex);
				return notifier_from_errno(-ENOMEM);
			}
		}
		mutex_unlock(&relay_channels_mutex);
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		/* No need to flush the cpu : will be flushed upon
		 * final relay_flush() call. */
		break;
	}
	return NOTIFY_OK;
}

/**
 *	relay_open - create a new relay channel
 *	@base_filename: base name of files to create, %NULL for buffering only
 *	@parent: dentry of parent directory, %NULL for root directory or buffer
 *	@subbuf_size: size of sub-buffers
 *	@n_subbufs: number of sub-buffers
 *	@cb: client callback functions
 *	@private_data: user-defined data
 *
 *	Returns channel pointer if successful, %NULL otherwise.
 *
 *	Creates a channel buffer for each cpu using the sizes and
 *	attributes specified.  The created channel buffer files
 *	will be named base_filename0...base_filenameN-1.  File
 *	permissions will be %S_IRUSR.
 */
struct rchan *relay_open(const char *base_filename,
			 struct dentry *parent,
			 size_t subbuf_size,
			 size_t n_subbufs,
			 struct rchan_callbacks *cb,
			 void *private_data)
{
	unsigned int i;
	struct rchan *chan;

	if (!(subbuf_size && n_subbufs))
		return NULL;

	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
	if (!chan)
		return NULL;

	chan->version = RELAYFS_CHANNEL_VERSION;
	chan->n_subbufs = n_subbufs;
	chan->subbuf_size = subbuf_size;
	chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
	chan->parent = parent;
	chan->private_data = private_data;
	if (base_filename) {
		chan->has_base_filename = 1;
		strlcpy(chan->base_filename, base_filename, NAME_MAX);
	}
	setup_callbacks(chan, cb);
	kref_init(&chan->kref);

	mutex_lock(&relay_channels_mutex);
	for_each_online_cpu(i) {
		chan->buf[i] = relay_open_buf(chan, i);
		if (!chan->buf[i])
			goto free_bufs;
	}
	list_add(&chan->list, &relay_channels);
	mutex_unlock(&relay_channels_mutex);

	return chan;

free_bufs:
	for_each_possible_cpu(i) {
		if (chan->buf[i])
			relay_close_buf(chan->buf[i]);
	}

	kref_put(&chan->kref, relay_destroy_channel);
	mutex_unlock(&relay_channels_mutex);
	return NULL;
}
EXPORT_SYMBOL_GPL(relay_open);

struct rchan_percpu_buf_dispatcher {
	struct rchan_buf *buf;
	struct dentry *dentry;
};

/* Called in atomic context. */
static void __relay_set_buf_dentry(void *info)
{
	struct rchan_percpu_buf_dispatcher *p = info;

	relay_set_buf_dentry(p->buf, p->dentry);
}

/**
 *	relay_late_setup_files - triggers file creation
 *	@chan: channel to operate on
 *	@base_filename: base name of files to create
 *	@parent: dentry of parent directory, %NULL for root directory
 *
 *	Returns 0 if successful, non-zero otherwise.
 *
 *	Use to setup files for a previously buffer-only channel.
 *	Useful to do early tracing in kernel, before VFS is up, for example.
 */
int relay_late_setup_files(struct rchan *chan,
			   const char *base_filename,
			   struct dentry *parent)
{
	int err = 0;