diff options
Diffstat (limited to 'kernel')
| -rw-r--r-- | kernel/fork.c | 1 | ||||
| -rw-r--r-- | kernel/sched.c | 288 | ||||
| -rw-r--r-- | kernel/timer.c | 8 |
3 files changed, 245 insertions, 52 deletions
diff --git a/kernel/fork.c b/kernel/fork.c index 3b159c5991b..5447dc7defa 100644 --- a/kernel/fork.c +++ b/kernel/fork.c | |||
| @@ -273,6 +273,7 @@ static struct task_struct *dup_task_struct(struct task_struct *orig) | |||
| 273 | 273 | ||
| 274 | setup_thread_stack(tsk, orig); | 274 | setup_thread_stack(tsk, orig); |
| 275 | clear_user_return_notifier(tsk); | 275 | clear_user_return_notifier(tsk); |
| 276 | clear_tsk_need_resched(tsk); | ||
| 276 | stackend = end_of_stack(tsk); | 277 | stackend = end_of_stack(tsk); |
| 277 | *stackend = STACK_END_MAGIC; /* for overflow detection */ | 278 | *stackend = STACK_END_MAGIC; /* for overflow detection */ |
| 278 | 279 | ||
diff --git a/kernel/sched.c b/kernel/sched.c index dc91a4d09ac..456c9905416 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
| @@ -636,22 +636,18 @@ static inline struct task_group *task_group(struct task_struct *p) | |||
| 636 | 636 | ||
| 637 | #endif /* CONFIG_CGROUP_SCHED */ | 637 | #endif /* CONFIG_CGROUP_SCHED */ |
| 638 | 638 | ||
| 639 | static u64 irq_time_cpu(int cpu); | 639 | static void update_rq_clock_task(struct rq *rq, s64 delta); |
| 640 | static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time); | ||
| 641 | 640 | ||
| 642 | inline void update_rq_clock(struct rq *rq) | 641 | static void update_rq_clock(struct rq *rq) |
| 643 | { | 642 | { |
| 644 | if (!rq->skip_clock_update) { | 643 | s64 delta; |
| 645 | int cpu = cpu_of(rq); | ||
| 646 | u64 irq_time; | ||
| 647 | 644 | ||
| 648 | rq->clock = sched_clock_cpu(cpu); | 645 | if (rq->skip_clock_update) |
| 649 | irq_time = irq_time_cpu(cpu); | 646 | return; |
| 650 | if (rq->clock - irq_time > rq->clock_task) | ||
| 651 | rq->clock_task = rq->clock - irq_time; | ||
| 652 | 647 | ||
| 653 | sched_irq_time_avg_update(rq, irq_time); | 648 | delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; |
| 654 | } | 649 | rq->clock += delta; |
| 650 | update_rq_clock_task(rq, delta); | ||
| 655 | } | 651 | } |
| 656 | 652 | ||
| 657 | /* | 653 | /* |
| @@ -1924,10 +1920,9 @@ static void deactivate_task(struct rq *rq, struct task_struct *p, int flags) | |||
| 1924 | * They are read and saved off onto struct rq in update_rq_clock(). | 1920 | * They are read and saved off onto struct rq in update_rq_clock(). |
| 1925 | * This may result in other CPU reading this CPU's irq time and can | 1921 | * This may result in other CPU reading this CPU's irq time and can |
| 1926 | * race with irq/account_system_vtime on this CPU. We would either get old | 1922 | * race with irq/account_system_vtime on this CPU. We would either get old |
| 1927 | * or new value (or semi updated value on 32 bit) with a side effect of | 1923 | * or new value with a side effect of accounting a slice of irq time to wrong |
| 1928 | * accounting a slice of irq time to wrong task when irq is in progress | 1924 | * task when irq is in progress while we read rq->clock. That is a worthy |
| 1929 | * while we read rq->clock. That is a worthy compromise in place of having | 1925 | * compromise in place of having locks on each irq in account_system_time. |
| 1930 | * locks on each irq in account_system_time. | ||
| 1931 | */ | 1926 | */ |
| 1932 | static DEFINE_PER_CPU(u64, cpu_hardirq_time); | 1927 | static DEFINE_PER_CPU(u64, cpu_hardirq_time); |
| 1933 | static DEFINE_PER_CPU(u64, cpu_softirq_time); | 1928 | static DEFINE_PER_CPU(u64, cpu_softirq_time); |
| @@ -1945,19 +1940,58 @@ void disable_sched_clock_irqtime(void) | |||
| 1945 | sched_clock_irqtime = 0; | 1940 | sched_clock_irqtime = 0; |
| 1946 | } | 1941 | } |
| 1947 | 1942 | ||
| 1948 | static u64 irq_time_cpu(int cpu) | 1943 | #ifndef CONFIG_64BIT |
| 1944 | static DEFINE_PER_CPU(seqcount_t, irq_time_seq); | ||
| 1945 | |||
| 1946 | static inline void irq_time_write_begin(void) | ||
| 1949 | { | 1947 | { |
| 1950 | if (!sched_clock_irqtime) | 1948 | __this_cpu_inc(irq_time_seq.sequence); |
| 1951 | return 0; | 1949 | smp_wmb(); |
| 1950 | } | ||
| 1951 | |||
| 1952 | static inline void irq_time_write_end(void) | ||
| 1953 | { | ||
| 1954 | smp_wmb(); | ||
| 1955 | __this_cpu_inc(irq_time_seq.sequence); | ||
| 1956 | } | ||
| 1957 | |||
| 1958 | static inline u64 irq_time_read(int cpu) | ||
| 1959 | { | ||
| 1960 | u64 irq_time; | ||
| 1961 | unsigned seq; | ||
| 1952 | 1962 | ||
| 1963 | do { | ||
| 1964 | seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); | ||
| 1965 | irq_time = per_cpu(cpu_softirq_time, cpu) + | ||
| 1966 | per_cpu(cpu_hardirq_time, cpu); | ||
| 1967 | } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); | ||
| 1968 | |||
| 1969 | return irq_time; | ||
| 1970 | } | ||
| 1971 | #else /* CONFIG_64BIT */ | ||
| 1972 | static inline void irq_time_write_begin(void) | ||
| 1973 | { | ||
| 1974 | } | ||
| 1975 | |||
| 1976 | static inline void irq_time_write_end(void) | ||
| 1977 | { | ||
| 1978 | } | ||
| 1979 | |||
| 1980 | static inline u64 irq_time_read(int cpu) | ||
| 1981 | { | ||
| 1953 | return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); | 1982 | return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); |
| 1954 | } | 1983 | } |
| 1984 | #endif /* CONFIG_64BIT */ | ||
| 1955 | 1985 | ||
| 1986 | /* | ||
| 1987 | * Called before incrementing preempt_count on {soft,}irq_enter | ||
| 1988 | * and before decrementing preempt_count on {soft,}irq_exit. | ||
| 1989 | */ | ||
| 1956 | void account_system_vtime(struct task_struct *curr) | 1990 | void account_system_vtime(struct task_struct *curr) |
| 1957 | { | 1991 | { |
| 1958 | unsigned long flags; | 1992 | unsigned long flags; |
| 1993 | s64 delta; | ||
| 1959 | int cpu; | 1994 | int cpu; |
| 1960 | u64 now, delta; | ||
| 1961 | 1995 | ||
| 1962 | if (!sched_clock_irqtime) | 1996 | if (!sched_clock_irqtime) |
| 1963 | return; | 1997 | return; |
| @@ -1965,9 +1999,10 @@ void account_system_vtime(struct task_struct *curr) | |||
| 1965 | local_irq_save(flags); | 1999 | local_irq_save(flags); |
| 1966 | 2000 | ||
| 1967 | cpu = smp_processor_id(); | 2001 | cpu = smp_processor_id(); |
| 1968 | now = sched_clock_cpu(cpu); | 2002 | delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); |
| 1969 | delta = now - per_cpu(irq_start_time, cpu); | 2003 | __this_cpu_add(irq_start_time, delta); |
| 1970 | per_cpu(irq_start_time, cpu) = now; | 2004 | |
| 2005 | irq_time_write_begin(); | ||
| 1971 | /* | 2006 | /* |
| 1972 | * We do not account for softirq time from ksoftirqd here. | 2007 | * We do not account for softirq time from ksoftirqd here. |
| 1973 | * We want to continue accounting softirq time to ksoftirqd thread | 2008 | * We want to continue accounting softirq time to ksoftirqd thread |
| @@ -1975,33 +2010,55 @@ void account_system_vtime(struct task_struct *curr) | |||
| 1975 | * that do not consume any time, but still wants to run. | 2010 | * that do not consume any time, but still wants to run. |
| 1976 | */ | 2011 | */ |
| 1977 | if (hardirq_count()) | 2012 | if (hardirq_count()) |
| 1978 | per_cpu(cpu_hardirq_time, cpu) += delta; | 2013 | __this_cpu_add(cpu_hardirq_time, delta); |
| 1979 | else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD)) | 2014 | else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD)) |
| 1980 | per_cpu(cpu_softirq_time, cpu) += delta; | 2015 | __this_cpu_add(cpu_softirq_time, delta); |
| 1981 | 2016 | ||
| 2017 | irq_time_write_end(); | ||
| 1982 | local_irq_restore(flags); | 2018 | local_irq_restore(flags); |
| 1983 | } | 2019 | } |
| 1984 | EXPORT_SYMBOL_GPL(account_system_vtime); | 2020 | EXPORT_SYMBOL_GPL(account_system_vtime); |
| 1985 | 2021 | ||
| 1986 | static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) | 2022 | static void update_rq_clock_task(struct rq *rq, s64 delta) |
| 1987 | { | 2023 | { |
| 1988 | if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) { | 2024 | s64 irq_delta; |
| 1989 | u64 delta_irq = curr_irq_time - rq->prev_irq_time; | 2025 | |
| 1990 | rq->prev_irq_time = curr_irq_time; | 2026 | irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; |
| 1991 | sched_rt_avg_update(rq, delta_irq); | 2027 | |
| 1992 | } | 2028 | /* |
| 2029 | * Since irq_time is only updated on {soft,}irq_exit, we might run into | ||
| 2030 | * this case when a previous update_rq_clock() happened inside a | ||
| 2031 | * {soft,}irq region. | ||
| 2032 | * | ||
| 2033 | * When this happens, we stop ->clock_task and only update the | ||
| 2034 | * prev_irq_time stamp to account for the part that fit, so that a next | ||
| 2035 | * update will consume the rest. This ensures ->clock_task is | ||
| 2036 | * monotonic. | ||
| 2037 | * | ||
| 2038 | * It does however cause some slight miss-attribution of {soft,}irq | ||
| 2039 | * time, a more accurate solution would be to update the irq_time using | ||
| 2040 | * the current rq->clock timestamp, except that would require using | ||
| 2041 | * atomic ops. | ||
| 2042 | */ | ||
| 2043 | if (irq_delta > delta) | ||
| 2044 | irq_delta = delta; | ||
| 2045 | |||
| 2046 | rq->prev_irq_time += irq_delta; | ||
| 2047 | delta -= irq_delta; | ||
| 2048 | rq->clock_task += delta; | ||
| 2049 | |||
| 2050 | if (irq_delta && sched_feat(NONIRQ_POWER)) | ||
| 2051 | sched_rt_avg_update(rq, irq_delta); | ||
| 1993 | } | 2052 | } |
| 1994 | 2053 | ||
| 1995 | #else | 2054 | #else /* CONFIG_IRQ_TIME_ACCOUNTING */ |
| 1996 | 2055 | ||
| 1997 | static u64 irq_time_cpu(int cpu) | 2056 | static void update_rq_clock_task(struct rq *rq, s64 delta) |
| 1998 | { | 2057 | { |
| 1999 | return 0; | 2058 | rq->clock_task += delta; |
| 2000 | } | 2059 | } |
| 2001 | 2060 | ||
| 2002 | static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { } | 2061 | #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ |
| 2003 | |||
| 2004 | #endif | ||
| 2005 | 2062 | ||
| 2006 | #include "sched_idletask.c" | 2063 | #include "sched_idletask.c" |
| 2007 | #include "sched_fair.c" | 2064 | #include "sched_fair.c" |
| @@ -2129,7 +2186,7 @@ static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) | |||
| 2129 | * A queue event has occurred, and we're going to schedule. In | 2186 | * A queue event has occurred, and we're going to schedule. In |
| 2130 | * this case, we can save a useless back to back clock update. | 2187 | * this case, we can save a useless back to back clock update. |
| 2131 | */ | 2188 | */ |
| 2132 | if (test_tsk_need_resched(rq->curr)) | 2189 | if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr)) |
| 2133 | rq->skip_clock_update = 1; | 2190 | rq->skip_clock_update = 1; |
| 2134 | } | 2191 | } |
| 2135 | 2192 | ||
| @@ -3119,6 +3176,15 @@ static long calc_load_fold_active(struct rq *this_rq) | |||
| 3119 | return delta; | 3176 | return delta; |
| 3120 | } | 3177 | } |
| 3121 | 3178 | ||
| 3179 | static unsigned long | ||
| 3180 | calc_load(unsigned long load, unsigned long exp, unsigned long active) | ||
| 3181 | { | ||
| 3182 | load *= exp; | ||
| 3183 | load += active * (FIXED_1 - exp); | ||
| 3184 | load += 1UL << (FSHIFT - 1); | ||
| 3185 | return load >> FSHIFT; | ||
| 3186 | } | ||
| 3187 | |||
| 3122 | #ifdef CONFIG_NO_HZ | 3188 | #ifdef CONFIG_NO_HZ |
| 3123 | /* | 3189 | /* |
| 3124 | * For NO_HZ we delay the active fold to the next LOAD_FREQ update. | 3190 | * For NO_HZ we delay the active fold to the next LOAD_FREQ update. |
| @@ -3148,6 +3214,128 @@ static long calc_load_fold_idle(void) | |||
| 3148 | 3214 | ||
| 3149 | return delta; | 3215 | return delta; |
| 3150 | } | 3216 | } |
| 3217 | |||
| 3218 | /** | ||
| 3219 | * fixed_power_int - compute: x^n, in O(log n) time | ||
| 3220 | * | ||
| 3221 | * @x: base of the power | ||
| 3222 | * @frac_bits: fractional bits of @x | ||
| 3223 | * @n: power to raise @x to. | ||
| 3224 | * | ||
| 3225 | * By exploiting the relation between the definition of the natural power | ||
| 3226 | * function: x^n := x*x*...*x (x multiplied by itself for n times), and | ||
| 3227 | * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, | ||
| 3228 | * (where: n_i \elem {0, 1}, the binary vector representing n), | ||
| 3229 | * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is | ||
| 3230 | * of course trivially computable in O(log_2 n), the length of our binary | ||
| 3231 | * vector. | ||
| 3232 | */ | ||
| 3233 | static unsigned long | ||
| 3234 | fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) | ||
| 3235 | { | ||
| 3236 | unsigned long result = 1UL << frac_bits; | ||
| 3237 | |||
| 3238 | if (n) for (;;) { | ||
| 3239 | if (n & 1) { | ||
| 3240 | result *= x; | ||
| 3241 | result += 1UL << (frac_bits - 1); | ||
| 3242 | result >>= frac_bits; | ||
| 3243 | } | ||
| 3244 | n >>= 1; | ||
| 3245 | if (!n) | ||
| 3246 | break; | ||
| 3247 | x *= x; | ||
| 3248 | x += 1UL << (frac_bits - 1); | ||
| 3249 | x >>= frac_bits; | ||
| 3250 | } | ||
| 3251 | |||
| 3252 | return result; | ||
| 3253 | } | ||
| 3254 | |||
| 3255 | /* | ||
| 3256 | * a1 = a0 * e + a * (1 - e) | ||
| 3257 | * | ||
| 3258 | * a2 = a1 * e + a * (1 - e) | ||
| 3259 | * = (a0 * e + a * (1 - e)) * e + a * (1 - e) | ||
| 3260 | * = a0 * e^2 + a * (1 - e) * (1 + e) | ||
| 3261 | * | ||
| 3262 | * a3 = a2 * e + a * (1 - e) | ||
| 3263 | * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) | ||
| 3264 | * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) | ||
| 3265 | * | ||
| 3266 | * ... | ||
| 3267 | * | ||
| 3268 | * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] | ||
| 3269 | * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) | ||
| 3270 | * = a0 * e^n + a * (1 - e^n) | ||
| 3271 | * | ||
| 3272 | * [1] application of the geometric series: | ||
| 3273 | * | ||
| 3274 | * n 1 - x^(n+1) | ||
| 3275 | * S_n := \Sum x^i = ------------- | ||
| 3276 | * i=0 1 - x | ||
| 3277 | */ | ||
| 3278 | static unsigned long | ||
| 3279 | calc_load_n(unsigned long load, unsigned long exp, | ||
| 3280 | unsigned long active, unsigned int n) | ||
| 3281 | { | ||
| 3282 | |||
| 3283 | return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); | ||
| 3284 | } | ||
| 3285 | |||
| 3286 | /* | ||
| 3287 | * NO_HZ can leave us missing all per-cpu ticks calling | ||
| 3288 | * calc_load_account_active(), but since an idle CPU folds its delta into | ||
| 3289 | * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold | ||
| 3290 | * in the pending idle delta if our idle period crossed a load cycle boundary. | ||
| 3291 | * | ||
| 3292 | * Once we've updated the global active value, we need to apply the exponential | ||
| 3293 | * weights adjusted to the number of cycles missed. | ||
| 3294 | */ | ||
| 3295 | static void calc_global_nohz(unsigned long ticks) | ||
| 3296 | { | ||
| 3297 | long delta, active, n; | ||
| 3298 | |||
| 3299 | if (time_before(jiffies, calc_load_update)) | ||
| 3300 | return; | ||
| 3301 | |||
| 3302 | /* | ||
| 3303 | * If we crossed a calc_load_update boundary, make sure to fold | ||
| 3304 | * any pending idle changes, the respective CPUs might have | ||
| 3305 | * missed the tick driven calc_load_account_active() update | ||
| 3306 | * due to NO_HZ. | ||
| 3307 | */ | ||
| 3308 | delta = calc_load_fold_idle(); | ||
| 3309 | if (delta) | ||
| 3310 | atomic_long_add(delta, &calc_load_tasks); | ||
| 3311 | |||
| 3312 | /* | ||
| 3313 | * If we were idle for multiple load cycles, apply them. | ||
| 3314 | */ | ||
| 3315 | if (ticks >= LOAD_FREQ) { | ||
| 3316 | n = ticks / LOAD_FREQ; | ||
| 3317 | |||
| 3318 | active = atomic_long_read(&calc_load_tasks); | ||
| 3319 | active = active > 0 ? active * FIXED_1 : 0; | ||
| 3320 | |||
| 3321 | avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); | ||
| 3322 | avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); | ||
| 3323 | avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); | ||
| 3324 | |||
| 3325 | calc_load_update += n * LOAD_FREQ; | ||
| 3326 | } | ||
| 3327 | |||
| 3328 | /* | ||
| 3329 | * Its possible the remainder of the above division also crosses | ||
| 3330 | * a LOAD_FREQ period, the regular check in calc_global_load() | ||
| 3331 | * which comes after this will take care of that. | ||
| 3332 | * | ||
| 3333 | * Consider us being 11 ticks before a cycle completion, and us | ||
| 3334 | * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will | ||
| 3335 | * age us 4 cycles, and the test in calc_global_load() will | ||
| 3336 | * pick up the final one. | ||
| 3337 | */ | ||
| 3338 | } | ||
| 3151 | #else | 3339 | #else |
| 3152 | static void calc_load_account_idle(struct rq *this_rq) | 3340 | static void calc_load_account_idle(struct rq *this_rq) |
| 3153 | { | 3341 | { |
| @@ -3157,6 +3345,10 @@ static inline long calc_load_fold_idle(void) | |||
| 3157 | { | 3345 | { |
| 3158 | return 0; | 3346 | return 0; |
| 3159 | } | 3347 | } |
| 3348 | |||
| 3349 | static void calc_global_nohz(unsigned long ticks) | ||
| 3350 | { | ||
| 3351 | } | ||
| 3160 | #endif | 3352 | #endif |
| 3161 | 3353 | ||
| 3162 | /** | 3354 | /** |
| @@ -3174,24 +3366,17 @@ void get_avenrun(unsigned long *loads, unsigned long offset, int shift) | |||
| 3174 | loads[2] = (avenrun[2] + offset) << shift; | 3366 | loads[2] = (avenrun[2] + offset) << shift; |
| 3175 | } | 3367 | } |
| 3176 | 3368 | ||
| 3177 | static unsigned long | ||
| 3178 | calc_load(unsigned long load, unsigned long exp, unsigned long active) | ||
| 3179 | { | ||
| 3180 | load *= exp; | ||
| 3181 | load += active * (FIXED_1 - exp); | ||
| 3182 | return load >> FSHIFT; | ||
| 3183 | } | ||
| 3184 | |||
| 3185 | /* | 3369 | /* |
| 3186 | * calc_load - update the avenrun load estimates 10 ticks after the | 3370 | * calc_load - update the avenrun load estimates 10 ticks after the |
| 3187 | * CPUs have updated calc_load_tasks. | 3371 | * CPUs have updated calc_load_tasks. |
| 3188 | */ | 3372 | */ |
| 3189 | void calc_global_load(void) | 3373 | void calc_global_load(unsigned long ticks) |
| 3190 | { | 3374 | { |
| 3191 | unsigned long upd = calc_load_update + 10; | ||
| 3192 | long active; | 3375 | long active; |
| 3193 | 3376 | ||
| 3194 | if (time_before(jiffies, upd)) | 3377 | calc_global_nohz(ticks); |
| 3378 | |||
| 3379 | if (time_before(jiffies, calc_load_update + 10)) | ||
| 3195 | return; | 3380 | return; |
| 3196 | 3381 | ||
| 3197 | active = atomic_long_read(&calc_load_tasks); | 3382 | active = atomic_long_read(&calc_load_tasks); |
| @@ -3845,7 +4030,6 @@ static void put_prev_task(struct rq *rq, struct task_struct *prev) | |||
| 3845 | { | 4030 | { |
| 3846 | if (prev->se.on_rq) | 4031 | if (prev->se.on_rq) |
| 3847 | update_rq_clock(rq); | 4032 | update_rq_clock(rq); |
| 3848 | rq->skip_clock_update = 0; | ||
| 3849 | prev->sched_class->put_prev_task(rq, prev); | 4033 | prev->sched_class->put_prev_task(rq, prev); |
| 3850 | } | 4034 | } |
| 3851 | 4035 | ||
| @@ -3903,7 +4087,6 @@ need_resched_nonpreemptible: | |||
| 3903 | hrtick_clear(rq); | 4087 | hrtick_clear(rq); |
| 3904 | 4088 | ||
| 3905 | raw_spin_lock_irq(&rq->lock); | 4089 | raw_spin_lock_irq(&rq->lock); |
| 3906 | clear_tsk_need_resched(prev); | ||
| 3907 | 4090 | ||
| 3908 | switch_count = &prev->nivcsw; | 4091 | switch_count = &prev->nivcsw; |
| 3909 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | 4092 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { |
| @@ -3935,6 +4118,8 @@ need_resched_nonpreemptible: | |||
| 3935 | 4118 | ||
| 3936 | put_prev_task(rq, prev); | 4119 | put_prev_task(rq, prev); |
| 3937 | next = pick_next_task(rq); | 4120 | next = pick_next_task(rq); |
| 4121 | clear_tsk_need_resched(prev); | ||
| 4122 | rq->skip_clock_update = 0; | ||
| 3938 | 4123 | ||
| 3939 | if (likely(prev != next)) { | 4124 | if (likely(prev != next)) { |
| 3940 | sched_info_switch(prev, next); | 4125 | sched_info_switch(prev, next); |
| @@ -3943,6 +4128,7 @@ need_resched_nonpreemptible: | |||
| 3943 | rq->nr_switches++; | 4128 | rq->nr_switches++; |
| 3944 | rq->curr = next; | 4129 | rq->curr = next; |
| 3945 | ++*switch_count; | 4130 | ++*switch_count; |
| 4131 | WARN_ON_ONCE(test_tsk_need_resched(next)); | ||
| 3946 | 4132 | ||
| 3947 | context_switch(rq, prev, next); /* unlocks the rq */ | 4133 | context_switch(rq, prev, next); /* unlocks the rq */ |
| 3948 | /* | 4134 | /* |
diff --git a/kernel/timer.c b/kernel/timer.c index 68a9ae7679b..353b9227c2e 100644 --- a/kernel/timer.c +++ b/kernel/timer.c | |||
| @@ -1252,6 +1252,12 @@ unsigned long get_next_timer_interrupt(unsigned long now) | |||
| 1252 | struct tvec_base *base = __get_cpu_var(tvec_bases); | 1252 | struct tvec_base *base = __get_cpu_var(tvec_bases); |
| 1253 | unsigned long expires; | 1253 | unsigned long expires; |
| 1254 | 1254 | ||
| 1255 | /* | ||
| 1256 | * Pretend that there is no timer pending if the cpu is offline. | ||
| 1257 | * Possible pending timers will be migrated later to an active cpu. | ||
| 1258 | */ | ||
| 1259 | if (cpu_is_offline(smp_processor_id())) | ||
| 1260 | return now + NEXT_TIMER_MAX_DELTA; | ||
| 1255 | spin_lock(&base->lock); | 1261 | spin_lock(&base->lock); |
| 1256 | if (time_before_eq(base->next_timer, base->timer_jiffies)) | 1262 | if (time_before_eq(base->next_timer, base->timer_jiffies)) |
| 1257 | base->next_timer = __next_timer_interrupt(base); | 1263 | base->next_timer = __next_timer_interrupt(base); |
| @@ -1319,7 +1325,7 @@ void do_timer(unsigned long ticks) | |||
| 1319 | { | 1325 | { |
| 1320 | jiffies_64 += ticks; | 1326 | jiffies_64 += ticks; |
| 1321 | update_wall_time(); | 1327 | update_wall_time(); |
| 1322 | calc_global_load(); | 1328 | calc_global_load(ticks); |
| 1323 | } | 1329 | } |
| 1324 | 1330 | ||
| 1325 | #ifdef __ARCH_WANT_SYS_ALARM | 1331 | #ifdef __ARCH_WANT_SYS_ALARM |
