diff options
| author | Ingo Molnar <mingo@elte.hu> | 2011-01-05 08:14:42 -0500 |
|---|---|---|
| committer | Ingo Molnar <mingo@elte.hu> | 2011-01-05 08:14:46 -0500 |
| commit | 27066fd484a32c80630136aa2b91c980f3198f9d (patch) | |
| tree | 78ddabdedbfd7525d13ecd62a745525843f1d0e8 /kernel/sched.c | |
| parent | 101e5f77bf35679809586e250b6c62193d2ed179 (diff) | |
| parent | 3c0eee3fe6a3a1c745379547c7e7c904aa64f6d5 (diff) | |
Merge commit 'v2.6.37' into sched/core
Merge reason: Merge the final .37 tree.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel/sched.c')
| -rw-r--r-- | kernel/sched.c | 287 |
1 files changed, 236 insertions, 51 deletions
diff --git a/kernel/sched.c b/kernel/sched.c index 9f9dd8dda53..f2f914e0c47 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
| @@ -642,22 +642,18 @@ static inline struct task_group *task_group(struct task_struct *p) | |||
| 642 | 642 | ||
| 643 | #endif /* CONFIG_CGROUP_SCHED */ | 643 | #endif /* CONFIG_CGROUP_SCHED */ |
| 644 | 644 | ||
| 645 | static u64 irq_time_cpu(int cpu); | 645 | static void update_rq_clock_task(struct rq *rq, s64 delta); |
| 646 | static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time); | ||
| 647 | 646 | ||
| 648 | inline void update_rq_clock(struct rq *rq) | 647 | static void update_rq_clock(struct rq *rq) |
| 649 | { | 648 | { |
| 650 | if (!rq->skip_clock_update) { | 649 | s64 delta; |
| 651 | int cpu = cpu_of(rq); | ||
| 652 | u64 irq_time; | ||
| 653 | 650 | ||
| 654 | rq->clock = sched_clock_cpu(cpu); | 651 | if (rq->skip_clock_update) |
| 655 | irq_time = irq_time_cpu(cpu); | 652 | return; |
| 656 | if (rq->clock - irq_time > rq->clock_task) | ||
| 657 | rq->clock_task = rq->clock - irq_time; | ||
| 658 | 653 | ||
| 659 | sched_irq_time_avg_update(rq, irq_time); | 654 | delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; |
| 660 | } | 655 | rq->clock += delta; |
| 656 | update_rq_clock_task(rq, delta); | ||
| 661 | } | 657 | } |
| 662 | 658 | ||
| 663 | /* | 659 | /* |
| @@ -1795,10 +1791,9 @@ static void deactivate_task(struct rq *rq, struct task_struct *p, int flags) | |||
| 1795 | * They are read and saved off onto struct rq in update_rq_clock(). | 1791 | * They are read and saved off onto struct rq in update_rq_clock(). |
| 1796 | * This may result in other CPU reading this CPU's irq time and can | 1792 | * This may result in other CPU reading this CPU's irq time and can |
| 1797 | * race with irq/account_system_vtime on this CPU. We would either get old | 1793 | * race with irq/account_system_vtime on this CPU. We would either get old |
| 1798 | * or new value (or semi updated value on 32 bit) with a side effect of | 1794 | * or new value with a side effect of accounting a slice of irq time to wrong |
| 1799 | * accounting a slice of irq time to wrong task when irq is in progress | 1795 | * task when irq is in progress while we read rq->clock. That is a worthy |
| 1800 | * while we read rq->clock. That is a worthy compromise in place of having | 1796 | * compromise in place of having locks on each irq in account_system_time. |
| 1801 | * locks on each irq in account_system_time. | ||
| 1802 | */ | 1797 | */ |
| 1803 | static DEFINE_PER_CPU(u64, cpu_hardirq_time); | 1798 | static DEFINE_PER_CPU(u64, cpu_hardirq_time); |
| 1804 | static DEFINE_PER_CPU(u64, cpu_softirq_time); | 1799 | static DEFINE_PER_CPU(u64, cpu_softirq_time); |
| @@ -1816,19 +1811,58 @@ void disable_sched_clock_irqtime(void) | |||
| 1816 | sched_clock_irqtime = 0; | 1811 | sched_clock_irqtime = 0; |
| 1817 | } | 1812 | } |
| 1818 | 1813 | ||
| 1819 | static u64 irq_time_cpu(int cpu) | 1814 | #ifndef CONFIG_64BIT |
| 1815 | static DEFINE_PER_CPU(seqcount_t, irq_time_seq); | ||
| 1816 | |||
| 1817 | static inline void irq_time_write_begin(void) | ||
| 1820 | { | 1818 | { |
| 1821 | if (!sched_clock_irqtime) | 1819 | __this_cpu_inc(irq_time_seq.sequence); |
| 1822 | return 0; | 1820 | smp_wmb(); |
| 1821 | } | ||
| 1822 | |||
| 1823 | static inline void irq_time_write_end(void) | ||
| 1824 | { | ||
| 1825 | smp_wmb(); | ||
| 1826 | __this_cpu_inc(irq_time_seq.sequence); | ||
| 1827 | } | ||
| 1828 | |||
| 1829 | static inline u64 irq_time_read(int cpu) | ||
| 1830 | { | ||
| 1831 | u64 irq_time; | ||
| 1832 | unsigned seq; | ||
| 1823 | 1833 | ||
| 1834 | do { | ||
| 1835 | seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); | ||
| 1836 | irq_time = per_cpu(cpu_softirq_time, cpu) + | ||
| 1837 | per_cpu(cpu_hardirq_time, cpu); | ||
| 1838 | } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); | ||
| 1839 | |||
| 1840 | return irq_time; | ||
| 1841 | } | ||
| 1842 | #else /* CONFIG_64BIT */ | ||
| 1843 | static inline void irq_time_write_begin(void) | ||
| 1844 | { | ||
| 1845 | } | ||
| 1846 | |||
| 1847 | static inline void irq_time_write_end(void) | ||
| 1848 | { | ||
| 1849 | } | ||
| 1850 | |||
| 1851 | static inline u64 irq_time_read(int cpu) | ||
| 1852 | { | ||
| 1824 | return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); | 1853 | return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); |
| 1825 | } | 1854 | } |
| 1855 | #endif /* CONFIG_64BIT */ | ||
| 1826 | 1856 | ||
| 1857 | /* | ||
| 1858 | * Called before incrementing preempt_count on {soft,}irq_enter | ||
| 1859 | * and before decrementing preempt_count on {soft,}irq_exit. | ||
| 1860 | */ | ||
| 1827 | void account_system_vtime(struct task_struct *curr) | 1861 | void account_system_vtime(struct task_struct *curr) |
| 1828 | { | 1862 | { |
| 1829 | unsigned long flags; | 1863 | unsigned long flags; |
| 1864 | s64 delta; | ||
| 1830 | int cpu; | 1865 | int cpu; |
| 1831 | u64 now, delta; | ||
| 1832 | 1866 | ||
| 1833 | if (!sched_clock_irqtime) | 1867 | if (!sched_clock_irqtime) |
| 1834 | return; | 1868 | return; |
| @@ -1836,9 +1870,10 @@ void account_system_vtime(struct task_struct *curr) | |||
| 1836 | local_irq_save(flags); | 1870 | local_irq_save(flags); |
| 1837 | 1871 | ||
| 1838 | cpu = smp_processor_id(); | 1872 | cpu = smp_processor_id(); |
| 1839 | now = sched_clock_cpu(cpu); | 1873 | delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); |
| 1840 | delta = now - per_cpu(irq_start_time, cpu); | 1874 | __this_cpu_add(irq_start_time, delta); |
| 1841 | per_cpu(irq_start_time, cpu) = now; | 1875 | |
| 1876 | irq_time_write_begin(); | ||
| 1842 | /* | 1877 | /* |
| 1843 | * We do not account for softirq time from ksoftirqd here. | 1878 | * We do not account for softirq time from ksoftirqd here. |
| 1844 | * We want to continue accounting softirq time to ksoftirqd thread | 1879 | * We want to continue accounting softirq time to ksoftirqd thread |
| @@ -1846,33 +1881,55 @@ void account_system_vtime(struct task_struct *curr) | |||
| 1846 | * that do not consume any time, but still wants to run. | 1881 | * that do not consume any time, but still wants to run. |
| 1847 | */ | 1882 | */ |
| 1848 | if (hardirq_count()) | 1883 | if (hardirq_count()) |
| 1849 | per_cpu(cpu_hardirq_time, cpu) += delta; | 1884 | __this_cpu_add(cpu_hardirq_time, delta); |
| 1850 | else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD)) | 1885 | else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD)) |
| 1851 | per_cpu(cpu_softirq_time, cpu) += delta; | 1886 | __this_cpu_add(cpu_softirq_time, delta); |
| 1852 | 1887 | ||
| 1888 | irq_time_write_end(); | ||
| 1853 | local_irq_restore(flags); | 1889 | local_irq_restore(flags); |
| 1854 | } | 1890 | } |
| 1855 | EXPORT_SYMBOL_GPL(account_system_vtime); | 1891 | EXPORT_SYMBOL_GPL(account_system_vtime); |
| 1856 | 1892 | ||
| 1857 | static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) | 1893 | static void update_rq_clock_task(struct rq *rq, s64 delta) |
| 1858 | { | 1894 | { |
| 1859 | if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) { | 1895 | s64 irq_delta; |
| 1860 | u64 delta_irq = curr_irq_time - rq->prev_irq_time; | 1896 | |
| 1861 | rq->prev_irq_time = curr_irq_time; | 1897 | irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; |
| 1862 | sched_rt_avg_update(rq, delta_irq); | 1898 | |
| 1863 | } | 1899 | /* |
| 1900 | * Since irq_time is only updated on {soft,}irq_exit, we might run into | ||
| 1901 | * this case when a previous update_rq_clock() happened inside a | ||
| 1902 | * {soft,}irq region. | ||
| 1903 | * | ||
| 1904 | * When this happens, we stop ->clock_task and only update the | ||
| 1905 | * prev_irq_time stamp to account for the part that fit, so that a next | ||
| 1906 | * update will consume the rest. This ensures ->clock_task is | ||
| 1907 | * monotonic. | ||
| 1908 | * | ||
| 1909 | * It does however cause some slight miss-attribution of {soft,}irq | ||
| 1910 | * time, a more accurate solution would be to update the irq_time using | ||
| 1911 | * the current rq->clock timestamp, except that would require using | ||
| 1912 | * atomic ops. | ||
| 1913 | */ | ||
| 1914 | if (irq_delta > delta) | ||
| 1915 | irq_delta = delta; | ||
| 1916 | |||
| 1917 | rq->prev_irq_time += irq_delta; | ||
| 1918 | delta -= irq_delta; | ||
| 1919 | rq->clock_task += delta; | ||
| 1920 | |||
| 1921 | if (irq_delta && sched_feat(NONIRQ_POWER)) | ||
| 1922 | sched_rt_avg_update(rq, irq_delta); | ||
| 1864 | } | 1923 | } |
| 1865 | 1924 | ||
| 1866 | #else | 1925 | #else /* CONFIG_IRQ_TIME_ACCOUNTING */ |
| 1867 | 1926 | ||
| 1868 | static u64 irq_time_cpu(int cpu) | 1927 | static void update_rq_clock_task(struct rq *rq, s64 delta) |
| 1869 | { | 1928 | { |
| 1870 | return 0; | 1929 | rq->clock_task += delta; |
| 1871 | } | 1930 | } |
| 1872 | 1931 | ||
| 1873 | static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { } | 1932 | #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ |
| 1874 | |||
| 1875 | #endif | ||
| 1876 | 1933 | ||
| 1877 | #include "sched_idletask.c" | 1934 | #include "sched_idletask.c" |
| 1878 | #include "sched_fair.c" | 1935 | #include "sched_fair.c" |
| @@ -2001,7 +2058,7 @@ static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) | |||
| 2001 | * A queue event has occurred, and we're going to schedule. In | 2058 | * A queue event has occurred, and we're going to schedule. In |
| 2002 | * this case, we can save a useless back to back clock update. | 2059 | * this case, we can save a useless back to back clock update. |
| 2003 | */ | 2060 | */ |
| 2004 | if (test_tsk_need_resched(rq->curr)) | 2061 | if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr)) |
| 2005 | rq->skip_clock_update = 1; | 2062 | rq->skip_clock_update = 1; |
| 2006 | } | 2063 | } |
| 2007 | 2064 | ||
| @@ -2988,6 +3045,15 @@ static long calc_load_fold_active(struct rq *this_rq) | |||
| 2988 | return delta; | 3045 | return delta; |
| 2989 | } | 3046 | } |
| 2990 | 3047 | ||
| 3048 | static unsigned long | ||
| 3049 | calc_load(unsigned long load, unsigned long exp, unsigned long active) | ||
| 3050 | { | ||
| 3051 | load *= exp; | ||
| 3052 | load += active * (FIXED_1 - exp); | ||
| 3053 | load += 1UL << (FSHIFT - 1); | ||
| 3054 | return load >> FSHIFT; | ||
| 3055 | } | ||
| 3056 | |||
| 2991 | #ifdef CONFIG_NO_HZ | 3057 | #ifdef CONFIG_NO_HZ |
| 2992 | /* | 3058 | /* |
| 2993 | * For NO_HZ we delay the active fold to the next LOAD_FREQ update. | 3059 | * For NO_HZ we delay the active fold to the next LOAD_FREQ update. |
| @@ -3017,6 +3083,128 @@ static long calc_load_fold_idle(void) | |||
| 3017 | 3083 | ||
| 3018 | return delta; | 3084 | return delta; |
| 3019 | } | 3085 | } |
| 3086 | |||
| 3087 | /** | ||
| 3088 | * fixed_power_int - compute: x^n, in O(log n) time | ||
| 3089 | * | ||
| 3090 | * @x: base of the power | ||
| 3091 | * @frac_bits: fractional bits of @x | ||
| 3092 | * @n: power to raise @x to. | ||
| 3093 | * | ||
| 3094 | * By exploiting the relation between the definition of the natural power | ||
| 3095 | * function: x^n := x*x*...*x (x multiplied by itself for n times), and | ||
| 3096 | * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, | ||
| 3097 | * (where: n_i \elem {0, 1}, the binary vector representing n), | ||
| 3098 | * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is | ||
| 3099 | * of course trivially computable in O(log_2 n), the length of our binary | ||
| 3100 | * vector. | ||
| 3101 | */ | ||
| 3102 | static unsigned long | ||
| 3103 | fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) | ||
| 3104 | { | ||
| 3105 | unsigned long result = 1UL << frac_bits; | ||
| 3106 | |||
| 3107 | if (n) for (;;) { | ||
| 3108 | if (n & 1) { | ||
| 3109 | result *= x; | ||
| 3110 | result += 1UL << (frac_bits - 1); | ||
| 3111 | result >>= frac_bits; | ||
| 3112 | } | ||
| 3113 | n >>= 1; | ||
| 3114 | if (!n) | ||
| 3115 | break; | ||
| 3116 | x *= x; | ||
| 3117 | x += 1UL << (frac_bits - 1); | ||
| 3118 | x >>= frac_bits; | ||
| 3119 | } | ||
| 3120 | |||
| 3121 | return result; | ||
| 3122 | } | ||
| 3123 | |||
| 3124 | /* | ||
| 3125 | * a1 = a0 * e + a * (1 - e) | ||
| 3126 | * | ||
| 3127 | * a2 = a1 * e + a * (1 - e) | ||
| 3128 | * = (a0 * e + a * (1 - e)) * e + a * (1 - e) | ||
| 3129 | * = a0 * e^2 + a * (1 - e) * (1 + e) | ||
| 3130 | * | ||
| 3131 | * a3 = a2 * e + a * (1 - e) | ||
| 3132 | * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) | ||
| 3133 | * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) | ||
| 3134 | * | ||
| 3135 | * ... | ||
| 3136 | * | ||
| 3137 | * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] | ||
| 3138 | * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) | ||
| 3139 | * = a0 * e^n + a * (1 - e^n) | ||
| 3140 | * | ||
| 3141 | * [1] application of the geometric series: | ||
| 3142 | * | ||
| 3143 | * n 1 - x^(n+1) | ||
| 3144 | * S_n := \Sum x^i = ------------- | ||
| 3145 | * i=0 1 - x | ||
| 3146 | */ | ||
| 3147 | static unsigned long | ||
| 3148 | calc_load_n(unsigned long load, unsigned long exp, | ||
| 3149 | unsigned long active, unsigned int n) | ||
| 3150 | { | ||
| 3151 | |||
| 3152 | return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); | ||
| 3153 | } | ||
| 3154 | |||
| 3155 | /* | ||
| 3156 | * NO_HZ can leave us missing all per-cpu ticks calling | ||
| 3157 | * calc_load_account_active(), but since an idle CPU folds its delta into | ||
| 3158 | * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold | ||
| 3159 | * in the pending idle delta if our idle period crossed a load cycle boundary. | ||
| 3160 | * | ||
| 3161 | * Once we've updated the global active value, we need to apply the exponential | ||
| 3162 | * weights adjusted to the number of cycles missed. | ||
| 3163 | */ | ||
| 3164 | static void calc_global_nohz(unsigned long ticks) | ||
| 3165 | { | ||
| 3166 | long delta, active, n; | ||
| 3167 | |||
| 3168 | if (time_before(jiffies, calc_load_update)) | ||
| 3169 | return; | ||
| 3170 | |||
| 3171 | /* | ||
| 3172 | * If we crossed a calc_load_update boundary, make sure to fold | ||
| 3173 | * any pending idle changes, the respective CPUs might have | ||
| 3174 | * missed the tick driven calc_load_account_active() update | ||
| 3175 | * due to NO_HZ. | ||
| 3176 | */ | ||
| 3177 | delta = calc_load_fold_idle(); | ||
| 3178 | if (delta) | ||
| 3179 | atomic_long_add(delta, &calc_load_tasks); | ||
| 3180 | |||
| 3181 | /* | ||
| 3182 | * If we were idle for multiple load cycles, apply them. | ||
| 3183 | */ | ||
| 3184 | if (ticks >= LOAD_FREQ) { | ||
| 3185 | n = ticks / LOAD_FREQ; | ||
| 3186 | |||
| 3187 | active = atomic_long_read(&calc_load_tasks); | ||
| 3188 | active = active > 0 ? active * FIXED_1 : 0; | ||
| 3189 | |||
| 3190 | avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); | ||
| 3191 | avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); | ||
| 3192 | avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); | ||
| 3193 | |||
| 3194 | calc_load_update += n * LOAD_FREQ; | ||
| 3195 | } | ||
| 3196 | |||
| 3197 | /* | ||
| 3198 | * Its possible the remainder of the above division also crosses | ||
| 3199 | * a LOAD_FREQ period, the regular check in calc_global_load() | ||
| 3200 | * which comes after this will take care of that. | ||
| 3201 | * | ||
| 3202 | * Consider us being 11 ticks before a cycle completion, and us | ||
| 3203 | * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will | ||
| 3204 | * age us 4 cycles, and the test in calc_global_load() will | ||
| 3205 | * pick up the final one. | ||
| 3206 | */ | ||
| 3207 | } | ||
| 3020 | #else | 3208 | #else |
| 3021 | static void calc_load_account_idle(struct rq *this_rq) | 3209 | static void calc_load_account_idle(struct rq *this_rq) |
| 3022 | { | 3210 | { |
| @@ -3026,6 +3214,10 @@ static inline long calc_load_fold_idle(void) | |||
| 3026 | { | 3214 | { |
| 3027 | return 0; | 3215 | return 0; |
| 3028 | } | 3216 | } |
| 3217 | |||
| 3218 | static void calc_global_nohz(unsigned long ticks) | ||
| 3219 | { | ||
| 3220 | } | ||
| 3029 | #endif | 3221 | #endif |
| 3030 | 3222 | ||
| 3031 | /** | 3223 | /** |
| @@ -3043,24 +3235,17 @@ void get_avenrun(unsigned long *loads, unsigned long offset, int shift) | |||
| 3043 | loads[2] = (avenrun[2] + offset) << shift; | 3235 | loads[2] = (avenrun[2] + offset) << shift; |
| 3044 | } | 3236 | } |
| 3045 | 3237 | ||
| 3046 | static unsigned long | ||
| 3047 | calc_load(unsigned long load, unsigned long exp, unsigned long active) | ||
| 3048 | { | ||
| 3049 | load *= exp; | ||
| 3050 | load += active * (FIXED_1 - exp); | ||
| 3051 | return load >> FSHIFT; | ||
| 3052 | } | ||
| 3053 | |||
| 3054 | /* | 3238 | /* |
| 3055 | * calc_load - update the avenrun load estimates 10 ticks after the | 3239 | * calc_load - update the avenrun load estimates 10 ticks after the |
| 3056 | * CPUs have updated calc_load_tasks. | 3240 | * CPUs have updated calc_load_tasks. |
| 3057 | */ | 3241 | */ |
| 3058 | void calc_global_load(void) | 3242 | void calc_global_load(unsigned long ticks) |
| 3059 | { | 3243 | { |
| 3060 | unsigned long upd = calc_load_update + 10; | ||
| 3061 | long active; | 3244 | long active; |
| 3062 | 3245 | ||
| 3063 | if (time_before(jiffies, upd)) | 3246 | calc_global_nohz(ticks); |
| 3247 | |||
| 3248 | if (time_before(jiffies, calc_load_update + 10)) | ||
| 3064 | return; | 3249 | return; |
| 3065 | 3250 | ||
| 3066 | active = atomic_long_read(&calc_load_tasks); | 3251 | active = atomic_long_read(&calc_load_tasks); |
| @@ -3714,7 +3899,6 @@ static void put_prev_task(struct rq *rq, struct task_struct *prev) | |||
| 3714 | { | 3899 | { |
| 3715 | if (prev->se.on_rq) | 3900 | if (prev->se.on_rq) |
| 3716 | update_rq_clock(rq); | 3901 | update_rq_clock(rq); |
| 3717 | rq->skip_clock_update = 0; | ||
| 3718 | prev->sched_class->put_prev_task(rq, prev); | 3902 | prev->sched_class->put_prev_task(rq, prev); |
| 3719 | } | 3903 | } |
| 3720 | 3904 | ||
| @@ -3772,7 +3956,6 @@ need_resched_nonpreemptible: | |||
| 3772 | hrtick_clear(rq); | 3956 | hrtick_clear(rq); |
| 3773 | 3957 | ||
| 3774 | raw_spin_lock_irq(&rq->lock); | 3958 | raw_spin_lock_irq(&rq->lock); |
| 3775 | clear_tsk_need_resched(prev); | ||
| 3776 | 3959 | ||
| 3777 | switch_count = &prev->nivcsw; | 3960 | switch_count = &prev->nivcsw; |
| 3778 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | 3961 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { |
| @@ -3804,6 +3987,8 @@ need_resched_nonpreemptible: | |||
| 3804 | 3987 | ||
| 3805 | put_prev_task(rq, prev); | 3988 | put_prev_task(rq, prev); |
| 3806 | next = pick_next_task(rq); | 3989 | next = pick_next_task(rq); |
| 3990 | clear_tsk_need_resched(prev); | ||
| 3991 | rq->skip_clock_update = 0; | ||
| 3807 | 3992 | ||
| 3808 | if (likely(prev != next)) { | 3993 | if (likely(prev != next)) { |
| 3809 | sched_info_switch(prev, next); | 3994 | sched_info_switch(prev, next); |
