diff options
author | Rusty Russell <rusty@rustcorp.com.au> | 2007-10-25 01:02:50 -0400 |
---|---|---|
committer | Rusty Russell <rusty@rustcorp.com.au> | 2007-10-25 01:02:50 -0400 |
commit | e1e72965ec2c02db99b415cd06c17ea90767e3a4 (patch) | |
tree | 94e43aac35bdc33220e64f285b72b3b2b787fd57 /drivers/lguest/x86/core.c | |
parent | 568a17ffce2eeceae0cd9fc37e97cbad12f70278 (diff) |
lguest: documentation update
Went through the documentation doing typo and content fixes. This
patch contains only comment and whitespace changes.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Diffstat (limited to 'drivers/lguest/x86/core.c')
-rw-r--r-- | drivers/lguest/x86/core.c | 120 |
1 files changed, 62 insertions, 58 deletions
diff --git a/drivers/lguest/x86/core.c b/drivers/lguest/x86/core.c index 09d9207420d..482aec2a963 100644 --- a/drivers/lguest/x86/core.c +++ b/drivers/lguest/x86/core.c | |||
@@ -63,7 +63,7 @@ static struct lguest_pages *lguest_pages(unsigned int cpu) | |||
63 | static DEFINE_PER_CPU(struct lguest *, last_guest); | 63 | static DEFINE_PER_CPU(struct lguest *, last_guest); |
64 | 64 | ||
65 | /*S:010 | 65 | /*S:010 |
66 | * We are getting close to the Switcher. | 66 | * We approach the Switcher. |
67 | * | 67 | * |
68 | * Remember that each CPU has two pages which are visible to the Guest when it | 68 | * Remember that each CPU has two pages which are visible to the Guest when it |
69 | * runs on that CPU. This has to contain the state for that Guest: we copy the | 69 | * runs on that CPU. This has to contain the state for that Guest: we copy the |
@@ -134,7 +134,7 @@ static void run_guest_once(struct lguest *lg, struct lguest_pages *pages) | |||
134 | * | 134 | * |
135 | * The lcall also pushes the old code segment (KERNEL_CS) onto the | 135 | * The lcall also pushes the old code segment (KERNEL_CS) onto the |
136 | * stack, then the address of this call. This stack layout happens to | 136 | * stack, then the address of this call. This stack layout happens to |
137 | * exactly match the stack of an interrupt... */ | 137 | * exactly match the stack layout created by an interrupt... */ |
138 | asm volatile("pushf; lcall *lguest_entry" | 138 | asm volatile("pushf; lcall *lguest_entry" |
139 | /* This is how we tell GCC that %eax ("a") and %ebx ("b") | 139 | /* This is how we tell GCC that %eax ("a") and %ebx ("b") |
140 | * are changed by this routine. The "=" means output. */ | 140 | * are changed by this routine. The "=" means output. */ |
@@ -151,40 +151,46 @@ static void run_guest_once(struct lguest *lg, struct lguest_pages *pages) | |||
151 | } | 151 | } |
152 | /*:*/ | 152 | /*:*/ |
153 | 153 | ||
154 | /*M:002 There are hooks in the scheduler which we can register to tell when we | ||
155 | * get kicked off the CPU (preempt_notifier_register()). This would allow us | ||
156 | * to lazily disable SYSENTER which would regain some performance, and should | ||
157 | * also simplify copy_in_guest_info(). Note that we'd still need to restore | ||
158 | * things when we exit to Launcher userspace, but that's fairly easy. | ||
159 | * | ||
160 | * The hooks were designed for KVM, but we can also put them to good use. :*/ | ||
161 | |||
154 | /*H:040 This is the i386-specific code to setup and run the Guest. Interrupts | 162 | /*H:040 This is the i386-specific code to setup and run the Guest. Interrupts |
155 | * are disabled: we own the CPU. */ | 163 | * are disabled: we own the CPU. */ |
156 | void lguest_arch_run_guest(struct lguest *lg) | 164 | void lguest_arch_run_guest(struct lguest *lg) |
157 | { | 165 | { |
158 | /* Remember the awfully-named TS bit? If the Guest has asked | 166 | /* Remember the awfully-named TS bit? If the Guest has asked to set it |
159 | * to set it we set it now, so we can trap and pass that trap | 167 | * we set it now, so we can trap and pass that trap to the Guest if it |
160 | * to the Guest if it uses the FPU. */ | 168 | * uses the FPU. */ |
161 | if (lg->ts) | 169 | if (lg->ts) |
162 | lguest_set_ts(); | 170 | lguest_set_ts(); |
163 | 171 | ||
164 | /* SYSENTER is an optimized way of doing system calls. We | 172 | /* SYSENTER is an optimized way of doing system calls. We can't allow |
165 | * can't allow it because it always jumps to privilege level 0. | 173 | * it because it always jumps to privilege level 0. A normal Guest |
166 | * A normal Guest won't try it because we don't advertise it in | 174 | * won't try it because we don't advertise it in CPUID, but a malicious |
167 | * CPUID, but a malicious Guest (or malicious Guest userspace | 175 | * Guest (or malicious Guest userspace program) could, so we tell the |
168 | * program) could, so we tell the CPU to disable it before | 176 | * CPU to disable it before running the Guest. */ |
169 | * running the Guest. */ | ||
170 | if (boot_cpu_has(X86_FEATURE_SEP)) | 177 | if (boot_cpu_has(X86_FEATURE_SEP)) |
171 | wrmsr(MSR_IA32_SYSENTER_CS, 0, 0); | 178 | wrmsr(MSR_IA32_SYSENTER_CS, 0, 0); |
172 | 179 | ||
173 | /* Now we actually run the Guest. It will pop back out when | 180 | /* Now we actually run the Guest. It will return when something |
174 | * something interesting happens, and we can examine its | 181 | * interesting happens, and we can examine its registers to see what it |
175 | * registers to see what it was doing. */ | 182 | * was doing. */ |
176 | run_guest_once(lg, lguest_pages(raw_smp_processor_id())); | 183 | run_guest_once(lg, lguest_pages(raw_smp_processor_id())); |
177 | 184 | ||
178 | /* The "regs" pointer contains two extra entries which are not | 185 | /* Note that the "regs" pointer contains two extra entries which are |
179 | * really registers: a trap number which says what interrupt or | 186 | * not really registers: a trap number which says what interrupt or |
180 | * trap made the switcher code come back, and an error code | 187 | * trap made the switcher code come back, and an error code which some |
181 | * which some traps set. */ | 188 | * traps set. */ |
182 | 189 | ||
183 | /* If the Guest page faulted, then the cr2 register will tell | 190 | /* If the Guest page faulted, then the cr2 register will tell us the |
184 | * us the bad virtual address. We have to grab this now, | 191 | * bad virtual address. We have to grab this now, because once we |
185 | * because once we re-enable interrupts an interrupt could | 192 | * re-enable interrupts an interrupt could fault and thus overwrite |
186 | * fault and thus overwrite cr2, or we could even move off to a | 193 | * cr2, or we could even move off to a different CPU. */ |
187 | * different CPU. */ | ||
188 | if (lg->regs->trapnum == 14) | 194 | if (lg->regs->trapnum == 14) |
189 | lg->arch.last_pagefault = read_cr2(); | 195 | lg->arch.last_pagefault = read_cr2(); |
190 | /* Similarly, if we took a trap because the Guest used the FPU, | 196 | /* Similarly, if we took a trap because the Guest used the FPU, |
@@ -197,14 +203,15 @@ void lguest_arch_run_guest(struct lguest *lg) | |||
197 | wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0); | 203 | wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0); |
198 | } | 204 | } |
199 | 205 | ||
200 | /*H:130 Our Guest is usually so well behaved; it never tries to do things it | 206 | /*H:130 Now we've examined the hypercall code; our Guest can make requests. |
201 | * isn't allowed to. Unfortunately, Linux's paravirtual infrastructure isn't | 207 | * Our Guest is usually so well behaved; it never tries to do things it isn't |
202 | * quite complete, because it doesn't contain replacements for the Intel I/O | 208 | * allowed to, and uses hypercalls instead. Unfortunately, Linux's paravirtual |
203 | * instructions. As a result, the Guest sometimes fumbles across one during | 209 | * infrastructure isn't quite complete, because it doesn't contain replacements |
204 | * the boot process as it probes for various things which are usually attached | 210 | * for the Intel I/O instructions. As a result, the Guest sometimes fumbles |
205 | * to a PC. | 211 | * across one during the boot process as it probes for various things which are |
212 | * usually attached to a PC. | ||
206 | * | 213 | * |
207 | * When the Guest uses one of these instructions, we get trap #13 (General | 214 | * When the Guest uses one of these instructions, we get a trap (General |
208 | * Protection Fault) and come here. We see if it's one of those troublesome | 215 | * Protection Fault) and come here. We see if it's one of those troublesome |
209 | * instructions and skip over it. We return true if we did. */ | 216 | * instructions and skip over it. We return true if we did. */ |
210 | static int emulate_insn(struct lguest *lg) | 217 | static int emulate_insn(struct lguest *lg) |
@@ -275,43 +282,43 @@ static int emulate_insn(struct lguest *lg) | |||
275 | void lguest_arch_handle_trap(struct lguest *lg) | 282 | void lguest_arch_handle_trap(struct lguest *lg) |
276 | { | 283 | { |
277 | switch (lg->regs->trapnum) { | 284 | switch (lg->regs->trapnum) { |
278 | case 13: /* We've intercepted a GPF. */ | 285 | case 13: /* We've intercepted a General Protection Fault. */ |
279 | /* Check if this was one of those annoying IN or OUT | 286 | /* Check if this was one of those annoying IN or OUT |
280 | * instructions which we need to emulate. If so, we | 287 | * instructions which we need to emulate. If so, we just go |
281 | * just go back into the Guest after we've done it. */ | 288 | * back into the Guest after we've done it. */ |
282 | if (lg->regs->errcode == 0) { | 289 | if (lg->regs->errcode == 0) { |
283 | if (emulate_insn(lg)) | 290 | if (emulate_insn(lg)) |
284 | return; | 291 | return; |
285 | } | 292 | } |
286 | break; | 293 | break; |
287 | case 14: /* We've intercepted a page fault. */ | 294 | case 14: /* We've intercepted a Page Fault. */ |
288 | /* The Guest accessed a virtual address that wasn't | 295 | /* The Guest accessed a virtual address that wasn't mapped. |
289 | * mapped. This happens a lot: we don't actually set | 296 | * This happens a lot: we don't actually set up most of the |
290 | * up most of the page tables for the Guest at all when | 297 | * page tables for the Guest at all when we start: as it runs |
291 | * we start: as it runs it asks for more and more, and | 298 | * it asks for more and more, and we set them up as |
292 | * we set them up as required. In this case, we don't | 299 | * required. In this case, we don't even tell the Guest that |
293 | * even tell the Guest that the fault happened. | 300 | * the fault happened. |
294 | * | 301 | * |
295 | * The errcode tells whether this was a read or a | 302 | * The errcode tells whether this was a read or a write, and |
296 | * write, and whether kernel or userspace code. */ | 303 | * whether kernel or userspace code. */ |
297 | if (demand_page(lg, lg->arch.last_pagefault, lg->regs->errcode)) | 304 | if (demand_page(lg, lg->arch.last_pagefault, lg->regs->errcode)) |
298 | return; | 305 | return; |
299 | 306 | ||
300 | /* OK, it's really not there (or not OK): the Guest | 307 | /* OK, it's really not there (or not OK): the Guest needs to |
301 | * needs to know. We write out the cr2 value so it | 308 | * know. We write out the cr2 value so it knows where the |
302 | * knows where the fault occurred. | 309 | * fault occurred. |
303 | * | 310 | * |
304 | * Note that if the Guest were really messed up, this | 311 | * Note that if the Guest were really messed up, this could |
305 | * could happen before it's done the INITIALIZE | 312 | * happen before it's done the LHCALL_LGUEST_INIT hypercall, so |
306 | * hypercall, so lg->lguest_data will be NULL */ | 313 | * lg->lguest_data could be NULL */ |
307 | if (lg->lguest_data && | 314 | if (lg->lguest_data && |
308 | put_user(lg->arch.last_pagefault, &lg->lguest_data->cr2)) | 315 | put_user(lg->arch.last_pagefault, &lg->lguest_data->cr2)) |
309 | kill_guest(lg, "Writing cr2"); | 316 | kill_guest(lg, "Writing cr2"); |
310 | break; | 317 | break; |
311 | case 7: /* We've intercepted a Device Not Available fault. */ | 318 | case 7: /* We've intercepted a Device Not Available fault. */ |
312 | /* If the Guest doesn't want to know, we already | 319 | /* If the Guest doesn't want to know, we already restored the |
313 | * restored the Floating Point Unit, so we just | 320 | * Floating Point Unit, so we just continue without telling |
314 | * continue without telling it. */ | 321 | * it. */ |
315 | if (!lg->ts) | 322 | if (!lg->ts) |
316 | return; | 323 | return; |
317 | break; | 324 | break; |
@@ -536,9 +543,6 @@ int lguest_arch_init_hypercalls(struct lguest *lg) | |||
536 | 543 | ||
537 | return 0; | 544 | return 0; |
538 | } | 545 | } |
539 | /* Now we've examined the hypercall code; our Guest can make requests. There | ||
540 | * is one other way we can do things for the Guest, as we see in | ||
541 | * emulate_insn(). :*/ | ||
542 | 546 | ||
543 | /*L:030 lguest_arch_setup_regs() | 547 | /*L:030 lguest_arch_setup_regs() |
544 | * | 548 | * |
@@ -570,8 +574,8 @@ void lguest_arch_setup_regs(struct lguest *lg, unsigned long start) | |||
570 | 574 | ||
571 | /* %esi points to our boot information, at physical address 0, so don't | 575 | /* %esi points to our boot information, at physical address 0, so don't |
572 | * touch it. */ | 576 | * touch it. */ |
577 | |||
573 | /* There are a couple of GDT entries the Guest expects when first | 578 | /* There are a couple of GDT entries the Guest expects when first |
574 | * booting. */ | 579 | * booting. */ |
575 | |||
576 | setup_guest_gdt(lg); | 580 | setup_guest_gdt(lg); |
577 | } | 581 | } |