diff options
| author | Thomas Gleixner <tglx@linutronix.de> | 2009-03-23 09:50:03 -0400 |
|---|---|---|
| committer | Thomas Gleixner <tglx@linutronix.de> | 2009-03-23 16:20:20 -0400 |
| commit | 80c5520811d3805adcb15c570ea5e2d489fa5d0b (patch) | |
| tree | ae797a7f4af39f80e77526533d06ac23b439f0ab /arch/x86/xen | |
| parent | b3e3b302cf6dc8d60b67f0e84d1fa5648889c038 (diff) | |
| parent | 8c083f081d0014057901c68a0a3e0f8ca7ac8d23 (diff) | |
Merge branch 'cpus4096' into irq/threaded
Conflicts:
arch/parisc/kernel/irq.c
kernel/irq/handle.c
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Diffstat (limited to 'arch/x86/xen')
| -rw-r--r-- | arch/x86/xen/Kconfig | 2 | ||||
| -rw-r--r-- | arch/x86/xen/Makefile | 3 | ||||
| -rw-r--r-- | arch/x86/xen/enlighten.c | 816 | ||||
| -rw-r--r-- | arch/x86/xen/irq.c | 39 | ||||
| -rw-r--r-- | arch/x86/xen/mmu.c | 757 | ||||
| -rw-r--r-- | arch/x86/xen/mmu.h | 3 | ||||
| -rw-r--r-- | arch/x86/xen/multicalls.c | 15 | ||||
| -rw-r--r-- | arch/x86/xen/multicalls.h | 2 | ||||
| -rw-r--r-- | arch/x86/xen/smp.c | 53 | ||||
| -rw-r--r-- | arch/x86/xen/suspend.c | 1 | ||||
| -rw-r--r-- | arch/x86/xen/xen-asm.S | 142 | ||||
| -rw-r--r-- | arch/x86/xen/xen-asm.h | 12 | ||||
| -rw-r--r-- | arch/x86/xen/xen-asm_32.S | 343 | ||||
| -rw-r--r-- | arch/x86/xen/xen-asm_64.S | 252 | ||||
| -rw-r--r-- | arch/x86/xen/xen-head.S | 2 | ||||
| -rw-r--r-- | arch/x86/xen/xen-ops.h | 10 |
16 files changed, 1207 insertions, 1245 deletions
diff --git a/arch/x86/xen/Kconfig b/arch/x86/xen/Kconfig index 87b9ab16642..b83e119fbeb 100644 --- a/arch/x86/xen/Kconfig +++ b/arch/x86/xen/Kconfig | |||
| @@ -6,7 +6,7 @@ config XEN | |||
| 6 | bool "Xen guest support" | 6 | bool "Xen guest support" |
| 7 | select PARAVIRT | 7 | select PARAVIRT |
| 8 | select PARAVIRT_CLOCK | 8 | select PARAVIRT_CLOCK |
| 9 | depends on X86_64 || (X86_32 && X86_PAE && !(X86_VISWS || X86_VOYAGER)) | 9 | depends on X86_64 || (X86_32 && X86_PAE && !X86_VISWS) |
| 10 | depends on X86_CMPXCHG && X86_TSC | 10 | depends on X86_CMPXCHG && X86_TSC |
| 11 | help | 11 | help |
| 12 | This is the Linux Xen port. Enabling this will allow the | 12 | This is the Linux Xen port. Enabling this will allow the |
diff --git a/arch/x86/xen/Makefile b/arch/x86/xen/Makefile index 6dcefba7836..3b767d03fd6 100644 --- a/arch/x86/xen/Makefile +++ b/arch/x86/xen/Makefile | |||
| @@ -6,7 +6,8 @@ CFLAGS_REMOVE_irq.o = -pg | |||
| 6 | endif | 6 | endif |
| 7 | 7 | ||
| 8 | obj-y := enlighten.o setup.o multicalls.o mmu.o irq.o \ | 8 | obj-y := enlighten.o setup.o multicalls.o mmu.o irq.o \ |
| 9 | time.o xen-asm_$(BITS).o grant-table.o suspend.o | 9 | time.o xen-asm.o xen-asm_$(BITS).o \ |
| 10 | grant-table.o suspend.o | ||
| 10 | 11 | ||
| 11 | obj-$(CONFIG_SMP) += smp.o spinlock.o | 12 | obj-$(CONFIG_SMP) += smp.o spinlock.o |
| 12 | obj-$(CONFIG_XEN_DEBUG_FS) += debugfs.o \ No newline at end of file | 13 | obj-$(CONFIG_XEN_DEBUG_FS) += debugfs.o \ No newline at end of file |
diff --git a/arch/x86/xen/enlighten.c b/arch/x86/xen/enlighten.c index b58e9633814..82cd39a6cbd 100644 --- a/arch/x86/xen/enlighten.c +++ b/arch/x86/xen/enlighten.c | |||
| @@ -61,40 +61,13 @@ DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info); | |||
| 61 | enum xen_domain_type xen_domain_type = XEN_NATIVE; | 61 | enum xen_domain_type xen_domain_type = XEN_NATIVE; |
| 62 | EXPORT_SYMBOL_GPL(xen_domain_type); | 62 | EXPORT_SYMBOL_GPL(xen_domain_type); |
| 63 | 63 | ||
| 64 | /* | ||
| 65 | * Identity map, in addition to plain kernel map. This needs to be | ||
| 66 | * large enough to allocate page table pages to allocate the rest. | ||
| 67 | * Each page can map 2MB. | ||
| 68 | */ | ||
| 69 | static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss; | ||
| 70 | |||
| 71 | #ifdef CONFIG_X86_64 | ||
| 72 | /* l3 pud for userspace vsyscall mapping */ | ||
| 73 | static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; | ||
| 74 | #endif /* CONFIG_X86_64 */ | ||
| 75 | |||
| 76 | /* | ||
| 77 | * Note about cr3 (pagetable base) values: | ||
| 78 | * | ||
| 79 | * xen_cr3 contains the current logical cr3 value; it contains the | ||
| 80 | * last set cr3. This may not be the current effective cr3, because | ||
| 81 | * its update may be being lazily deferred. However, a vcpu looking | ||
| 82 | * at its own cr3 can use this value knowing that it everything will | ||
| 83 | * be self-consistent. | ||
| 84 | * | ||
| 85 | * xen_current_cr3 contains the actual vcpu cr3; it is set once the | ||
| 86 | * hypercall to set the vcpu cr3 is complete (so it may be a little | ||
| 87 | * out of date, but it will never be set early). If one vcpu is | ||
| 88 | * looking at another vcpu's cr3 value, it should use this variable. | ||
| 89 | */ | ||
| 90 | DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ | ||
| 91 | DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ | ||
| 92 | |||
| 93 | struct start_info *xen_start_info; | 64 | struct start_info *xen_start_info; |
| 94 | EXPORT_SYMBOL_GPL(xen_start_info); | 65 | EXPORT_SYMBOL_GPL(xen_start_info); |
| 95 | 66 | ||
| 96 | struct shared_info xen_dummy_shared_info; | 67 | struct shared_info xen_dummy_shared_info; |
| 97 | 68 | ||
| 69 | void *xen_initial_gdt; | ||
| 70 | |||
| 98 | /* | 71 | /* |
| 99 | * Point at some empty memory to start with. We map the real shared_info | 72 | * Point at some empty memory to start with. We map the real shared_info |
| 100 | * page as soon as fixmap is up and running. | 73 | * page as soon as fixmap is up and running. |
| @@ -114,14 +87,7 @@ struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info; | |||
| 114 | * | 87 | * |
| 115 | * 0: not available, 1: available | 88 | * 0: not available, 1: available |
| 116 | */ | 89 | */ |
| 117 | static int have_vcpu_info_placement = | 90 | static int have_vcpu_info_placement = 1; |
| 118 | #ifdef CONFIG_X86_32 | ||
| 119 | 1 | ||
| 120 | #else | ||
| 121 | 0 | ||
| 122 | #endif | ||
| 123 | ; | ||
| 124 | |||
| 125 | 91 | ||
| 126 | static void xen_vcpu_setup(int cpu) | 92 | static void xen_vcpu_setup(int cpu) |
| 127 | { | 93 | { |
| @@ -137,7 +103,7 @@ static void xen_vcpu_setup(int cpu) | |||
| 137 | 103 | ||
| 138 | vcpup = &per_cpu(xen_vcpu_info, cpu); | 104 | vcpup = &per_cpu(xen_vcpu_info, cpu); |
| 139 | 105 | ||
| 140 | info.mfn = virt_to_mfn(vcpup); | 106 | info.mfn = arbitrary_virt_to_mfn(vcpup); |
| 141 | info.offset = offset_in_page(vcpup); | 107 | info.offset = offset_in_page(vcpup); |
| 142 | 108 | ||
| 143 | printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n", | 109 | printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n", |
| @@ -237,7 +203,7 @@ static unsigned long xen_get_debugreg(int reg) | |||
| 237 | return HYPERVISOR_get_debugreg(reg); | 203 | return HYPERVISOR_get_debugreg(reg); |
| 238 | } | 204 | } |
| 239 | 205 | ||
| 240 | static void xen_leave_lazy(void) | 206 | void xen_leave_lazy(void) |
| 241 | { | 207 | { |
| 242 | paravirt_leave_lazy(paravirt_get_lazy_mode()); | 208 | paravirt_leave_lazy(paravirt_get_lazy_mode()); |
| 243 | xen_mc_flush(); | 209 | xen_mc_flush(); |
| @@ -335,8 +301,10 @@ static void xen_load_gdt(const struct desc_ptr *dtr) | |||
| 335 | frames = mcs.args; | 301 | frames = mcs.args; |
| 336 | 302 | ||
| 337 | for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { | 303 | for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { |
| 338 | frames[f] = virt_to_mfn(va); | 304 | frames[f] = arbitrary_virt_to_mfn((void *)va); |
| 305 | |||
| 339 | make_lowmem_page_readonly((void *)va); | 306 | make_lowmem_page_readonly((void *)va); |
| 307 | make_lowmem_page_readonly(mfn_to_virt(frames[f])); | ||
| 340 | } | 308 | } |
| 341 | 309 | ||
| 342 | MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct)); | 310 | MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct)); |
| @@ -348,7 +316,7 @@ static void load_TLS_descriptor(struct thread_struct *t, | |||
| 348 | unsigned int cpu, unsigned int i) | 316 | unsigned int cpu, unsigned int i) |
| 349 | { | 317 | { |
| 350 | struct desc_struct *gdt = get_cpu_gdt_table(cpu); | 318 | struct desc_struct *gdt = get_cpu_gdt_table(cpu); |
| 351 | xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); | 319 | xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); |
| 352 | struct multicall_space mc = __xen_mc_entry(0); | 320 | struct multicall_space mc = __xen_mc_entry(0); |
| 353 | 321 | ||
| 354 | MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]); | 322 | MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]); |
| @@ -357,13 +325,14 @@ static void load_TLS_descriptor(struct thread_struct *t, | |||
| 357 | static void xen_load_tls(struct thread_struct *t, unsigned int cpu) | 325 | static void xen_load_tls(struct thread_struct *t, unsigned int cpu) |
| 358 | { | 326 | { |
| 359 | /* | 327 | /* |
| 360 | * XXX sleazy hack: If we're being called in a lazy-cpu zone, | 328 | * XXX sleazy hack: If we're being called in a lazy-cpu zone |
| 361 | * it means we're in a context switch, and %gs has just been | 329 | * and lazy gs handling is enabled, it means we're in a |
| 362 | * saved. This means we can zero it out to prevent faults on | 330 | * context switch, and %gs has just been saved. This means we |
| 363 | * exit from the hypervisor if the next process has no %gs. | 331 | * can zero it out to prevent faults on exit from the |
| 364 | * Either way, it has been saved, and the new value will get | 332 | * hypervisor if the next process has no %gs. Either way, it |
| 365 | * loaded properly. This will go away as soon as Xen has been | 333 | * has been saved, and the new value will get loaded properly. |
| 366 | * modified to not save/restore %gs for normal hypercalls. | 334 | * This will go away as soon as Xen has been modified to not |
| 335 | * save/restore %gs for normal hypercalls. | ||
| 367 | * | 336 | * |
| 368 | * On x86_64, this hack is not used for %gs, because gs points | 337 | * On x86_64, this hack is not used for %gs, because gs points |
| 369 | * to KERNEL_GS_BASE (and uses it for PDA references), so we | 338 | * to KERNEL_GS_BASE (and uses it for PDA references), so we |
| @@ -375,7 +344,7 @@ static void xen_load_tls(struct thread_struct *t, unsigned int cpu) | |||
| 375 | */ | 344 | */ |
| 376 | if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) { | 345 | if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) { |
| 377 | #ifdef CONFIG_X86_32 | 346 | #ifdef CONFIG_X86_32 |
| 378 | loadsegment(gs, 0); | 347 | lazy_load_gs(0); |
| 379 | #else | 348 | #else |
| 380 | loadsegment(fs, 0); | 349 | loadsegment(fs, 0); |
| 381 | #endif | 350 | #endif |
| @@ -521,7 +490,7 @@ static void xen_write_gdt_entry(struct desc_struct *dt, int entry, | |||
| 521 | break; | 490 | break; |
| 522 | 491 | ||
| 523 | default: { | 492 | default: { |
| 524 | xmaddr_t maddr = virt_to_machine(&dt[entry]); | 493 | xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]); |
| 525 | 494 | ||
| 526 | xen_mc_flush(); | 495 | xen_mc_flush(); |
| 527 | if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) | 496 | if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) |
| @@ -587,94 +556,18 @@ static u32 xen_safe_apic_wait_icr_idle(void) | |||
| 587 | return 0; | 556 | return 0; |
| 588 | } | 557 | } |
| 589 | 558 | ||
| 590 | static struct apic_ops xen_basic_apic_ops = { | 559 | static void set_xen_basic_apic_ops(void) |
| 591 | .read = xen_apic_read, | ||
| 592 | .write = xen_apic_write, | ||
| 593 | .icr_read = xen_apic_icr_read, | ||
| 594 | .icr_write = xen_apic_icr_write, | ||
| 595 | .wait_icr_idle = xen_apic_wait_icr_idle, | ||
| 596 | .safe_wait_icr_idle = xen_safe_apic_wait_icr_idle, | ||
| 597 | }; | ||
| 598 | |||
| 599 | #endif | ||
| 600 | |||
| 601 | static void xen_flush_tlb(void) | ||
| 602 | { | ||
| 603 | struct mmuext_op *op; | ||
| 604 | struct multicall_space mcs; | ||
| 605 | |||
| 606 | preempt_disable(); | ||
| 607 | |||
| 608 | mcs = xen_mc_entry(sizeof(*op)); | ||
| 609 | |||
| 610 | op = mcs.args; | ||
| 611 | op->cmd = MMUEXT_TLB_FLUSH_LOCAL; | ||
| 612 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | ||
| 613 | |||
| 614 | xen_mc_issue(PARAVIRT_LAZY_MMU); | ||
| 615 | |||
| 616 | preempt_enable(); | ||
| 617 | } | ||
| 618 | |||
| 619 | static void xen_flush_tlb_single(unsigned long addr) | ||
| 620 | { | 560 | { |
| 621 | struct mmuext_op *op; | 561 | apic->read = xen_apic_read; |
| 622 | struct multicall_space mcs; | 562 | apic->write = xen_apic_write; |
| 623 | 563 | apic->icr_read = xen_apic_icr_read; | |
| 624 | preempt_disable(); | 564 | apic->icr_write = xen_apic_icr_write; |
| 625 | 565 | apic->wait_icr_idle = xen_apic_wait_icr_idle; | |
| 626 | mcs = xen_mc_entry(sizeof(*op)); | 566 | apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle; |
| 627 | op = mcs.args; | ||
| 628 | op->cmd = MMUEXT_INVLPG_LOCAL; | ||
| 629 | op->arg1.linear_addr = addr & PAGE_MASK; | ||
| 630 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | ||
| 631 | |||
| 632 | xen_mc_issue(PARAVIRT_LAZY_MMU); | ||
| 633 | |||
| 634 | preempt_enable(); | ||
| 635 | } | 567 | } |
| 636 | 568 | ||
| 637 | static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm, | 569 | #endif |
| 638 | unsigned long va) | ||
| 639 | { | ||
| 640 | struct { | ||
| 641 | struct mmuext_op op; | ||
| 642 | cpumask_t mask; | ||
| 643 | } *args; | ||
| 644 | cpumask_t cpumask = *cpus; | ||
| 645 | struct multicall_space mcs; | ||
| 646 | |||
| 647 | /* | ||
| 648 | * A couple of (to be removed) sanity checks: | ||
| 649 | * | ||
| 650 | * - current CPU must not be in mask | ||
| 651 | * - mask must exist :) | ||
| 652 | */ | ||
| 653 | BUG_ON(cpus_empty(cpumask)); | ||
| 654 | BUG_ON(cpu_isset(smp_processor_id(), cpumask)); | ||
| 655 | BUG_ON(!mm); | ||
| 656 | |||
| 657 | /* If a CPU which we ran on has gone down, OK. */ | ||
| 658 | cpus_and(cpumask, cpumask, cpu_online_map); | ||
| 659 | if (cpus_empty(cpumask)) | ||
| 660 | return; | ||
| 661 | |||
| 662 | mcs = xen_mc_entry(sizeof(*args)); | ||
| 663 | args = mcs.args; | ||
| 664 | args->mask = cpumask; | ||
| 665 | args->op.arg2.vcpumask = &args->mask; | ||
| 666 | |||
| 667 | if (va == TLB_FLUSH_ALL) { | ||
| 668 | args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; | ||
| 669 | } else { | ||
| 670 | args->op.cmd = MMUEXT_INVLPG_MULTI; | ||
| 671 | args->op.arg1.linear_addr = va; | ||
| 672 | } | ||
| 673 | |||
| 674 | MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); | ||
| 675 | 570 | ||
| 676 | xen_mc_issue(PARAVIRT_LAZY_MMU); | ||
| 677 | } | ||
| 678 | 571 | ||
| 679 | static void xen_clts(void) | 572 | static void xen_clts(void) |
| 680 | { | 573 | { |
| @@ -700,21 +593,6 @@ static void xen_write_cr0(unsigned long cr0) | |||
| 700 | xen_mc_issue(PARAVIRT_LAZY_CPU); | 593 | xen_mc_issue(PARAVIRT_LAZY_CPU); |
| 701 | } | 594 | } |
| 702 | 595 | ||
| 703 | static void xen_write_cr2(unsigned long cr2) | ||
| 704 | { | ||
| 705 | x86_read_percpu(xen_vcpu)->arch.cr2 = cr2; | ||
| 706 | } | ||
| 707 | |||
| 708 | static unsigned long xen_read_cr2(void) | ||
| 709 | { | ||
| 710 | return x86_read_percpu(xen_vcpu)->arch.cr2; | ||
| 711 | } | ||
| 712 | |||
| 713 | static unsigned long xen_read_cr2_direct(void) | ||
| 714 | { | ||
| 715 | return x86_read_percpu(xen_vcpu_info.arch.cr2); | ||
| 716 | } | ||
| 717 | |||
| 718 | static void xen_write_cr4(unsigned long cr4) | 596 | static void xen_write_cr4(unsigned long cr4) |
| 719 | { | 597 | { |
| 720 | cr4 &= ~X86_CR4_PGE; | 598 | cr4 &= ~X86_CR4_PGE; |
| @@ -723,71 +601,6 @@ static void xen_write_cr4(unsigned long cr4) | |||
| 723 | native_write_cr4(cr4); | 601 | native_write_cr4(cr4); |
| 724 | } | 602 | } |
| 725 | 603 | ||
| 726 | static unsigned long xen_read_cr3(void) | ||
| 727 | { | ||
| 728 | return x86_read_percpu(xen_cr3); | ||
| 729 | } | ||
| 730 | |||
| 731 | static void set_current_cr3(void *v) | ||
| 732 | { | ||
| 733 | x86_write_percpu(xen_current_cr3, (unsigned long)v); | ||
| 734 | } | ||
| 735 | |||
| 736 | static void __xen_write_cr3(bool kernel, unsigned long cr3) | ||
| 737 | { | ||
| 738 | struct mmuext_op *op; | ||
| 739 | struct multicall_space mcs; | ||
| 740 | unsigned long mfn; | ||
| 741 | |||
| 742 | if (cr3) | ||
| 743 | mfn = pfn_to_mfn(PFN_DOWN(cr3)); | ||
| 744 | else | ||
| 745 | mfn = 0; | ||
| 746 | |||
| 747 | WARN_ON(mfn == 0 && kernel); | ||
| 748 | |||
| 749 | mcs = __xen_mc_entry(sizeof(*op)); | ||
| 750 | |||
| 751 | op = mcs.args; | ||
| 752 | op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; | ||
| 753 | op->arg1.mfn = mfn; | ||
| 754 | |||
| 755 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | ||
| 756 | |||
| 757 | if (kernel) { | ||
| 758 | x86_write_percpu(xen_cr3, cr3); | ||
| 759 | |||
| 760 | /* Update xen_current_cr3 once the batch has actually | ||
| 761 | been submitted. */ | ||
| 762 | xen_mc_callback(set_current_cr3, (void *)cr3); | ||
| 763 | } | ||
| 764 | } | ||
| 765 | |||
| 766 | static void xen_write_cr3(unsigned long cr3) | ||
| 767 | { | ||
| 768 | BUG_ON(preemptible()); | ||
| 769 | |||
| 770 | xen_mc_batch(); /* disables interrupts */ | ||
| 771 | |||
| 772 | /* Update while interrupts are disabled, so its atomic with | ||
| 773 | respect to ipis */ | ||
| 774 | x86_write_percpu(xen_cr3, cr3); | ||
| 775 | |||
| 776 | __xen_write_cr3(true, cr3); | ||
| 777 | |||
| 778 | #ifdef CONFIG_X86_64 | ||
| 779 | { | ||
| 780 | pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); | ||
| 781 | if (user_pgd) | ||
| 782 | __xen_write_cr3(false, __pa(user_pgd)); | ||
| 783 | else | ||
| 784 | __xen_write_cr3(false, 0); | ||
| 785 | } | ||
| 786 | #endif | ||
| 787 | |||
| 788 | xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ | ||
| 789 | } | ||
| 790 | |||
| 791 | static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) | 604 | static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) |
| 792 | { | 605 | { |
| 793 | int ret; | 606 | int ret; |
| @@ -829,185 +642,6 @@ static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) | |||
| 829 | return ret; | 642 | return ret; |
| 830 | } | 643 | } |
| 831 | 644 | ||
| 832 | /* Early in boot, while setting up the initial pagetable, assume | ||
| 833 | everything is pinned. */ | ||
| 834 | static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) | ||
| 835 | { | ||
| 836 | #ifdef CONFIG_FLATMEM | ||
| 837 | BUG_ON(mem_map); /* should only be used early */ | ||
| 838 | #endif | ||
| 839 | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); | ||
| 840 | } | ||
| 841 | |||
| 842 | /* Early release_pte assumes that all pts are pinned, since there's | ||
| 843 | only init_mm and anything attached to that is pinned. */ | ||
| 844 | static void xen_release_pte_init(unsigned long pfn) | ||
| 845 | { | ||
| 846 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | ||
| 847 | } | ||
| 848 | |||
| 849 | static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn) | ||
| 850 | { | ||
| 851 | struct mmuext_op op; | ||
| 852 | op.cmd = cmd; | ||
| 853 | op.arg1.mfn = pfn_to_mfn(pfn); | ||
| 854 | if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) | ||
| 855 | BUG(); | ||
| 856 | } | ||
| 857 | |||
| 858 | /* This needs to make sure the new pte page is pinned iff its being | ||
| 859 | attached to a pinned pagetable. */ | ||
| 860 | static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level) | ||
| 861 | { | ||
| 862 | struct page *page = pfn_to_page(pfn); | ||
| 863 | |||
| 864 | if (PagePinned(virt_to_page(mm->pgd))) { | ||
| 865 | SetPagePinned(page); | ||
| 866 | |||
| 867 | vm_unmap_aliases(); | ||
| 868 | if (!PageHighMem(page)) { | ||
| 869 | make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn))); | ||
| 870 | if (level == PT_PTE && USE_SPLIT_PTLOCKS) | ||
| 871 | pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); | ||
| 872 | } else { | ||
| 873 | /* make sure there are no stray mappings of | ||
| 874 | this page */ | ||
| 875 | kmap_flush_unused(); | ||
| 876 | } | ||
| 877 | } | ||
| 878 | } | ||
| 879 | |||
| 880 | static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) | ||
| 881 | { | ||
| 882 | xen_alloc_ptpage(mm, pfn, PT_PTE); | ||
| 883 | } | ||
| 884 | |||
| 885 | static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) | ||
| 886 | { | ||
| 887 | xen_alloc_ptpage(mm, pfn, PT_PMD); | ||
| 888 | } | ||
| 889 | |||
| 890 | static int xen_pgd_alloc(struct mm_struct *mm) | ||
| 891 | { | ||
| 892 | pgd_t *pgd = mm->pgd; | ||
| 893 | int ret = 0; | ||
| 894 | |||
| 895 | BUG_ON(PagePinned(virt_to_page(pgd))); | ||
| 896 | |||
| 897 | #ifdef CONFIG_X86_64 | ||
| 898 | { | ||
| 899 | struct page *page = virt_to_page(pgd); | ||
| 900 | pgd_t *user_pgd; | ||
| 901 | |||
| 902 | BUG_ON(page->private != 0); | ||
| 903 | |||
| 904 | ret = -ENOMEM; | ||
| 905 | |||
| 906 | user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); | ||
| 907 | page->private = (unsigned long)user_pgd; | ||
| 908 | |||
| 909 | if (user_pgd != NULL) { | ||
| 910 | user_pgd[pgd_index(VSYSCALL_START)] = | ||
| 911 | __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); | ||
| 912 | ret = 0; | ||
| 913 | } | ||
| 914 | |||
| 915 | BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); | ||
| 916 | } | ||
| 917 | #endif | ||
| 918 | |||
| 919 | return ret; | ||
| 920 | } | ||
| 921 | |||
| 922 | static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) | ||
| 923 | { | ||
| 924 | #ifdef CONFIG_X86_64 | ||
| 925 | pgd_t *user_pgd = xen_get_user_pgd(pgd); | ||
| 926 | |||
| 927 | if (user_pgd) | ||
| 928 | free_page((unsigned long)user_pgd); | ||
| 929 | #endif | ||
| 930 | } | ||
| 931 | |||
| 932 | /* This should never happen until we're OK to use struct page */ | ||
| 933 | static void xen_release_ptpage(unsigned long pfn, unsigned level) | ||
| 934 | { | ||
| 935 | struct page *page = pfn_to_page(pfn); | ||
| 936 | |||
| 937 | if (PagePinned(page)) { | ||
| 938 | if (!PageHighMem(page)) { | ||
| 939 | if (level == PT_PTE && USE_SPLIT_PTLOCKS) | ||
| 940 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); | ||
| 941 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | ||
| 942 | } | ||
| 943 | ClearPagePinned(page); | ||
| 944 | } | ||
| 945 | } | ||
| 946 | |||
| 947 | static void xen_release_pte(unsigned long pfn) | ||
| 948 | { | ||
| 949 | xen_release_ptpage(pfn, PT_PTE); | ||
| 950 | } | ||
| 951 | |||
| 952 | static void xen_release_pmd(unsigned long pfn) | ||
| 953 | { | ||
| 954 | xen_release_ptpage(pfn, PT_PMD); | ||
| 955 | } | ||
| 956 | |||
| 957 | #if PAGETABLE_LEVELS == 4 | ||
| 958 | static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) | ||
| 959 | { | ||
| 960 | xen_alloc_ptpage(mm, pfn, PT_PUD); | ||
| 961 | } | ||
| 962 | |||
| 963 | static void xen_release_pud(unsigned long pfn) | ||
| 964 | { | ||
| 965 | xen_release_ptpage(pfn, PT_PUD); | ||
| 966 | } | ||
| 967 | #endif | ||
| 968 | |||
| 969 | #ifdef CONFIG_HIGHPTE | ||
| 970 | static void *xen_kmap_atomic_pte(struct page *page, enum km_type type) | ||
| 971 | { | ||
| 972 | pgprot_t prot = PAGE_KERNEL; | ||
| 973 | |||
| 974 | if (PagePinned(page)) | ||
| 975 | prot = PAGE_KERNEL_RO; | ||
| 976 | |||
| 977 | if (0 && PageHighMem(page)) | ||
| 978 | printk("mapping highpte %lx type %d prot %s\n", | ||
| 979 | page_to_pfn(page), type, | ||
| 980 | (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ"); | ||
| 981 | |||
| 982 | return kmap_atomic_prot(page, type, prot); | ||
| 983 | } | ||
| 984 | #endif | ||
| 985 | |||
| 986 | #ifdef CONFIG_X86_32 | ||
| 987 | static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte) | ||
| 988 | { | ||
| 989 | /* If there's an existing pte, then don't allow _PAGE_RW to be set */ | ||
| 990 | if (pte_val_ma(*ptep) & _PAGE_PRESENT) | ||
| 991 | pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & | ||
| 992 | pte_val_ma(pte)); | ||
| 993 | |||
| 994 | return pte; | ||
| 995 | } | ||
| 996 | |||
| 997 | /* Init-time set_pte while constructing initial pagetables, which | ||
| 998 | doesn't allow RO pagetable pages to be remapped RW */ | ||
| 999 | static __init void xen_set_pte_init(pte_t *ptep, pte_t pte) | ||
| 1000 | { | ||
| 1001 | pte = mask_rw_pte(ptep, pte); | ||
| 1002 | |||
| 1003 | xen_set_pte(ptep, pte); | ||
| 1004 | } | ||
| 1005 | #endif | ||
| 1006 | |||
| 1007 | static __init void xen_pagetable_setup_start(pgd_t *base) | ||
| 1008 | { | ||
| 1009 | } | ||
| 1010 | |||
| 1011 | void xen_setup_shared_info(void) | 645 | void xen_setup_shared_info(void) |
| 1012 | { | 646 | { |
| 1013 | if (!xen_feature(XENFEAT_auto_translated_physmap)) { | 647 | if (!xen_feature(XENFEAT_auto_translated_physmap)) { |
| @@ -1028,37 +662,6 @@ void xen_setup_shared_info(void) | |||
| 1028 | xen_setup_mfn_list_list(); | 662 | xen_setup_mfn_list_list(); |
| 1029 | } | 663 | } |
| 1030 | 664 | ||
| 1031 | static __init void xen_pagetable_setup_done(pgd_t *base) | ||
| 1032 | { | ||
| 1033 | xen_setup_shared_info(); | ||
| 1034 | } | ||
| 1035 | |||
| 1036 | static __init void xen_post_allocator_init(void) | ||
| 1037 | { | ||
| 1038 | pv_mmu_ops.set_pte = xen_set_pte; | ||
| 1039 | pv_mmu_ops.set_pmd = xen_set_pmd; | ||
| 1040 | pv_mmu_ops.set_pud = xen_set_pud; | ||
| 1041 | #if PAGETABLE_LEVELS == 4 | ||
| 1042 | pv_mmu_ops.set_pgd = xen_set_pgd; | ||
| 1043 | #endif | ||
| 1044 | |||
| 1045 | /* This will work as long as patching hasn't happened yet | ||
| 1046 | (which it hasn't) */ | ||
| 1047 | pv_mmu_ops.alloc_pte = xen_alloc_pte; | ||
| 1048 | pv_mmu_ops.alloc_pmd = xen_alloc_pmd; | ||
| 1049 | pv_mmu_ops.release_pte = xen_release_pte; | ||
| 1050 | pv_mmu_ops.release_pmd = xen_release_pmd; | ||
| 1051 | #if PAGETABLE_LEVELS == 4 | ||
| 1052 | pv_mmu_ops.alloc_pud = xen_alloc_pud; | ||
| 1053 | pv_mmu_ops.release_pud = xen_release_pud; | ||
| 1054 | #endif | ||
| 1055 | |||
| 1056 | #ifdef CONFIG_X86_64 | ||
| 1057 | SetPagePinned(virt_to_page(level3_user_vsyscall)); | ||
| 1058 | #endif | ||
| 1059 | xen_mark_init_mm_pinned(); | ||
| 1060 | } | ||
| 1061 | |||
| 1062 | /* This is called once we have the cpu_possible_map */ | 665 | /* This is called once we have the cpu_possible_map */ |
| 1063 | void xen_setup_vcpu_info_placement(void) | 666 | void xen_setup_vcpu_info_placement(void) |
| 1064 | { | 667 | { |
| @@ -1072,10 +675,10 @@ void xen_setup_vcpu_info_placement(void) | |||
| 1072 | if (have_vcpu_info_placement) { | 675 | if (have_vcpu_info_placement) { |
| 1073 | printk(KERN_INFO "Xen: using vcpu_info placement\n"); | 676 | printk(KERN_INFO "Xen: using vcpu_info placement\n"); |
| 1074 | 677 | ||
| 1075 | pv_irq_ops.save_fl = xen_save_fl_direct; | 678 | pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct); |
| 1076 | pv_irq_ops.restore_fl = xen_restore_fl_direct; | 679 | pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct); |
| 1077 | pv_irq_ops.irq_disable = xen_irq_disable_direct; | 680 | pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct); |
| 1078 | pv_irq_ops.irq_enable = xen_irq_enable_direct; | 681 | pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct); |
| 1079 | pv_mmu_ops.read_cr2 = xen_read_cr2_direct; | 682 | pv_mmu_ops.read_cr2 = xen_read_cr2_direct; |
| 1080 | } | 683 | } |
| 1081 | } | 684 | } |
| @@ -1133,49 +736,6 @@ static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf, | |||
| 1133 | return ret; | 736 | return ret; |
| 1134 | } | 737 | } |
| 1135 | 738 | ||
| 1136 | static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot) | ||
| 1137 | { | ||
| 1138 | pte_t pte; | ||
| 1139 | |||
| 1140 | phys >>= PAGE_SHIFT; | ||
| 1141 | |||
| 1142 | switch (idx) { | ||
| 1143 | case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: | ||
| 1144 | #ifdef CONFIG_X86_F00F_BUG | ||
| 1145 | case FIX_F00F_IDT: | ||
| 1146 | #endif | ||
| 1147 | #ifdef CONFIG_X86_32 | ||
| 1148 | case FIX_WP_TEST: | ||
| 1149 | case FIX_VDSO: | ||
| 1150 | # ifdef CONFIG_HIGHMEM | ||
| 1151 | case FIX_KMAP_BEGIN ... FIX_KMAP_END: | ||
| 1152 | # endif | ||
| 1153 | #else | ||
| 1154 | case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE: | ||
| 1155 | #endif | ||
| 1156 | #ifdef CONFIG_X86_LOCAL_APIC | ||
| 1157 | case FIX_APIC_BASE: /* maps dummy local APIC */ | ||
| 1158 | #endif | ||
| 1159 | pte = pfn_pte(phys, prot); | ||
| 1160 | break; | ||
| 1161 | |||
| 1162 | default: | ||
| 1163 | pte = mfn_pte(phys, prot); | ||
| 1164 | break; | ||
| 1165 | } | ||
| 1166 | |||
| 1167 | __native_set_fixmap(idx, pte); | ||
| 1168 | |||
| 1169 | #ifdef CONFIG_X86_64 | ||
| 1170 | /* Replicate changes to map the vsyscall page into the user | ||
| 1171 | pagetable vsyscall mapping. */ | ||
| 1172 | if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) { | ||
| 1173 | unsigned long vaddr = __fix_to_virt(idx); | ||
| 1174 | set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); | ||
| 1175 | } | ||
| 1176 | #endif | ||
| 1177 | } | ||
| 1178 | |||
| 1179 | static const struct pv_info xen_info __initdata = { | 739 | static const struct pv_info xen_info __initdata = { |
| 1180 | .paravirt_enabled = 1, | 740 | .paravirt_enabled = 1, |
| 1181 | .shared_kernel_pmd = 0, | 741 | .shared_kernel_pmd = 0, |
| @@ -1271,87 +831,6 @@ static const struct pv_apic_ops xen_apic_ops __initdata = { | |||
| 1271 | #endif | 831 | #endif |
| 1272 | }; | 832 | }; |
| 1273 | 833 | ||
| 1274 | static const struct pv_mmu_ops xen_mmu_ops __initdata = { | ||
| 1275 | .pagetable_setup_start = xen_pagetable_setup_start, | ||
| 1276 | .pagetable_setup_done = xen_pagetable_setup_done, | ||
| 1277 | |||
| 1278 | .read_cr2 = xen_read_cr2, | ||
| 1279 | .write_cr2 = xen_write_cr2, | ||
| 1280 | |||
| 1281 | .read_cr3 = xen_read_cr3, | ||
| 1282 | .write_cr3 = xen_write_cr3, | ||
| 1283 | |||
| 1284 | .flush_tlb_user = xen_flush_tlb, | ||
| 1285 | .flush_tlb_kernel = xen_flush_tlb, | ||
| 1286 | .flush_tlb_single = xen_flush_tlb_single, | ||
| 1287 | .flush_tlb_others = xen_flush_tlb_others, | ||
| 1288 | |||
| 1289 | .pte_update = paravirt_nop, | ||
| 1290 | .pte_update_defer = paravirt_nop, | ||
| 1291 | |||
| 1292 | .pgd_alloc = xen_pgd_alloc, | ||
| 1293 | .pgd_free = xen_pgd_free, | ||
| 1294 | |||
| 1295 | .alloc_pte = xen_alloc_pte_init, | ||
| 1296 | .release_pte = xen_release_pte_init, | ||
| 1297 | .alloc_pmd = xen_alloc_pte_init, | ||
| 1298 | .alloc_pmd_clone = paravirt_nop, | ||
| 1299 | .release_pmd = xen_release_pte_init, | ||
| 1300 | |||
| 1301 | #ifdef CONFIG_HIGHPTE | ||
| 1302 | .kmap_atomic_pte = xen_kmap_atomic_pte, | ||
| 1303 | #endif | ||
| 1304 | |||
| 1305 | #ifdef CONFIG_X86_64 | ||
| 1306 | .set_pte = xen_set_pte, | ||
| 1307 | #else | ||
| 1308 | .set_pte = xen_set_pte_init, | ||
| 1309 | #endif | ||
| 1310 | .set_pte_at = xen_set_pte_at, | ||
| 1311 | .set_pmd = xen_set_pmd_hyper, | ||
| 1312 | |||
| 1313 | .ptep_modify_prot_start = __ptep_modify_prot_start, | ||
| 1314 | .ptep_modify_prot_commit = __ptep_modify_prot_commit, | ||
| 1315 | |||
| 1316 | .pte_val = xen_pte_val, | ||
| 1317 | .pte_flags = native_pte_flags, | ||
| 1318 | .pgd_val = xen_pgd_val, | ||
| 1319 | |||
| 1320 | .make_pte = xen_make_pte, | ||
| 1321 | .make_pgd = xen_make_pgd, | ||
| 1322 | |||
| 1323 | #ifdef CONFIG_X86_PAE | ||
| 1324 | .set_pte_atomic = xen_set_pte_atomic, | ||
| 1325 | .set_pte_present = xen_set_pte_at, | ||
| 1326 | .pte_clear = xen_pte_clear, | ||
| 1327 | .pmd_clear = xen_pmd_clear, | ||
| 1328 | #endif /* CONFIG_X86_PAE */ | ||
| 1329 | .set_pud = xen_set_pud_hyper, | ||
| 1330 | |||
| 1331 | .make_pmd = xen_make_pmd, | ||
| 1332 | .pmd_val = xen_pmd_val, | ||
| 1333 | |||
| 1334 | #if PAGETABLE_LEVELS == 4 | ||
| 1335 | .pud_val = xen_pud_val, | ||
| 1336 | .make_pud = xen_make_pud, | ||
| 1337 | .set_pgd = xen_set_pgd_hyper, | ||
| 1338 | |||
| 1339 | .alloc_pud = xen_alloc_pte_init, | ||
| 1340 | .release_pud = xen_release_pte_init, | ||
| 1341 | #endif /* PAGETABLE_LEVELS == 4 */ | ||
| 1342 | |||
| 1343 | .activate_mm = xen_activate_mm, | ||
| 1344 | .dup_mmap = xen_dup_mmap, | ||
| 1345 | .exit_mmap = xen_exit_mmap, | ||
| 1346 | |||
| 1347 | .lazy_mode = { | ||
| 1348 | .enter = paravirt_enter_lazy_mmu, | ||
| 1349 | .leave = xen_leave_lazy, | ||
| 1350 | }, | ||
| 1351 | |||
| 1352 | .set_fixmap = xen_set_fixmap, | ||
| 1353 | }; | ||
| 1354 | |||
| 1355 | static void xen_reboot(int reason) | 834 | static void xen_reboot(int reason) |
| 1356 | { | 835 | { |
| 1357 | struct sched_shutdown r = { .reason = reason }; | 836 | struct sched_shutdown r = { .reason = reason }; |
| @@ -1394,223 +873,6 @@ static const struct machine_ops __initdata xen_machine_ops = { | |||
| 1394 | }; | 873 | }; |
| 1395 | 874 | ||
| 1396 | 875 | ||
| 1397 | static void __init xen_reserve_top(void) | ||
| 1398 | { | ||
| 1399 | #ifdef CONFIG_X86_32 | ||
| 1400 | unsigned long top = HYPERVISOR_VIRT_START; | ||
| 1401 | struct xen_platform_parameters pp; | ||
| 1402 | |||
| 1403 | if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) | ||
| 1404 | top = pp.virt_start; | ||
| 1405 | |||
| 1406 | reserve_top_address(-top); | ||
| 1407 | #endif /* CONFIG_X86_32 */ | ||
| 1408 | } | ||
| 1409 | |||
| 1410 | /* | ||
| 1411 | * Like __va(), but returns address in the kernel mapping (which is | ||
| 1412 | * all we have until the physical memory mapping has been set up. | ||
| 1413 | */ | ||
| 1414 | static void *__ka(phys_addr_t paddr) | ||
| 1415 | { | ||
| 1416 | #ifdef CONFIG_X86_64 | ||
| 1417 | return (void *)(paddr + __START_KERNEL_map); | ||
| 1418 | #else | ||
| 1419 | return __va(paddr); | ||
| 1420 | #endif | ||
| 1421 | } | ||
| 1422 | |||
| 1423 | /* Convert a machine address to physical address */ | ||
| 1424 | static unsigned long m2p(phys_addr_t maddr) | ||
| 1425 | { | ||
| 1426 | phys_addr_t paddr; | ||
| 1427 | |||
| 1428 | maddr &= PTE_PFN_MASK; | ||
| 1429 | paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; | ||
| 1430 | |||
| 1431 | return paddr; | ||
| 1432 | } | ||
| 1433 | |||
| 1434 | /* Convert a machine address to kernel virtual */ | ||
| 1435 | static void *m2v(phys_addr_t maddr) | ||
| 1436 | { | ||
| 1437 | return __ka(m2p(maddr)); | ||
| 1438 | } | ||
| 1439 | |||
| 1440 | static void set_page_prot(void *addr, pgprot_t prot) | ||
| 1441 | { | ||
| 1442 | unsigned long pfn = __pa(addr) >> PAGE_SHIFT; | ||
| 1443 | pte_t pte = pfn_pte(pfn, prot); | ||
| 1444 | |||
| 1445 | if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0)) | ||
| 1446 | BUG(); | ||
| 1447 | } | ||
| 1448 | |||
| 1449 | static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) | ||
| 1450 | { | ||
| 1451 | unsigned pmdidx, pteidx; | ||
| 1452 | unsigned ident_pte; | ||
| 1453 | unsigned long pfn; | ||
| 1454 | |||
| 1455 | ident_pte = 0; | ||
| 1456 | pfn = 0; | ||
| 1457 | for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { | ||
| 1458 | pte_t *pte_page; | ||
| 1459 | |||
| 1460 | /* Reuse or allocate a page of ptes */ | ||
| 1461 | if (pmd_present(pmd[pmdidx])) | ||
| 1462 | pte_page = m2v(pmd[pmdidx].pmd); | ||
| 1463 | else { | ||
| 1464 | /* Check for free pte pages */ | ||
| 1465 | if (ident_pte == ARRAY_SIZE(level1_ident_pgt)) | ||
| 1466 | break; | ||
| 1467 | |||
| 1468 | pte_page = &level1_ident_pgt[ident_pte]; | ||
| 1469 | ident_pte += PTRS_PER_PTE; | ||
| 1470 | |||
| 1471 | pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); | ||
| 1472 | } | ||
| 1473 | |||
| 1474 | /* Install mappings */ | ||
| 1475 | for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { | ||
| 1476 | pte_t pte; | ||
| 1477 | |||
| 1478 | if (pfn > max_pfn_mapped) | ||
| 1479 | max_pfn_mapped = pfn; | ||
| 1480 | |||
| 1481 | if (!pte_none(pte_page[pteidx])) | ||
| 1482 | continue; | ||
| 1483 | |||
| 1484 | pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); | ||
| 1485 | pte_page[pteidx] = pte; | ||
| 1486 | } | ||
| 1487 | } | ||
| 1488 | |||
| 1489 | for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) | ||
| 1490 | set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); | ||
| 1491 | |||
| 1492 | set_page_prot(pmd, PAGE_KERNEL_RO); | ||
| 1493 | } | ||
| 1494 | |||
| 1495 | #ifdef CONFIG_X86_64 | ||
| 1496 | static void convert_pfn_mfn(void *v) | ||
| 1497 | { | ||
| 1498 | pte_t *pte = v; | ||
| 1499 | int i; | ||
| 1500 | |||
| 1501 | /* All levels are converted the same way, so just treat them | ||
| 1502 | as ptes. */ | ||
| 1503 | for (i = 0; i < PTRS_PER_PTE; i++) | ||
| 1504 | pte[i] = xen_make_pte(pte[i].pte); | ||
| 1505 | } | ||
| 1506 | |||
| 1507 | /* | ||
| 1508 | * Set up the inital kernel pagetable. | ||
| 1509 | * | ||
| 1510 | * We can construct this by grafting the Xen provided pagetable into | ||
| 1511 | * head_64.S's preconstructed pagetables. We copy the Xen L2's into | ||
| 1512 | * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This | ||
| 1513 | * means that only the kernel has a physical mapping to start with - | ||
| 1514 | * but that's enough to get __va working. We need to fill in the rest | ||
| 1515 | * of the physical mapping once some sort of allocator has been set | ||
| 1516 | * up. | ||
| 1517 | */ | ||
| 1518 | static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, | ||
| 1519 | unsigned long max_pfn) | ||
| 1520 | { | ||
| 1521 | pud_t *l3; | ||
| 1522 | pmd_t *l2; | ||
| 1523 | |||
| 1524 | /* Zap identity mapping */ | ||
| 1525 | init_level4_pgt[0] = __pgd(0); | ||
| 1526 | |||
| 1527 | /* Pre-constructed entries are in pfn, so convert to mfn */ | ||
| 1528 | convert_pfn_mfn(init_level4_pgt); | ||
| 1529 | convert_pfn_mfn(level3_ident_pgt); | ||
| 1530 | convert_pfn_mfn(level3_kernel_pgt); | ||
| 1531 | |||
| 1532 | l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); | ||
| 1533 | l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); | ||
| 1534 | |||
| 1535 | memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | ||
| 1536 | memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | ||
| 1537 | |||
| 1538 | l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd); | ||
| 1539 | l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud); | ||
| 1540 | memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | ||
| 1541 | |||
| 1542 | /* Set up identity map */ | ||
| 1543 | xen_map_identity_early(level2_ident_pgt, max_pfn); | ||
| 1544 | |||
| 1545 | /* Make pagetable pieces RO */ | ||
| 1546 | set_page_prot(init_level4_pgt, PAGE_KERNEL_RO); | ||
| 1547 | set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); | ||
| 1548 | set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); | ||
| 1549 | set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); | ||
| 1550 | set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); | ||
| 1551 | set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); | ||
| 1552 | |||
| 1553 | /* Pin down new L4 */ | ||
| 1554 | pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, | ||
| 1555 | PFN_DOWN(__pa_symbol(init_level4_pgt))); | ||
| 1556 | |||
| 1557 | /* Unpin Xen-provided one */ | ||
| 1558 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | ||
| 1559 | |||
| 1560 | /* Switch over */ | ||
| 1561 | pgd = init_level4_pgt; | ||
| 1562 | |||
| 1563 | /* | ||
| 1564 | * At this stage there can be no user pgd, and no page | ||
| 1565 | * structure to attach it to, so make sure we just set kernel | ||
| 1566 | * pgd. | ||
| 1567 | */ | ||
| 1568 | xen_mc_batch(); | ||
| 1569 | __xen_write_cr3(true, __pa(pgd)); | ||
| 1570 | xen_mc_issue(PARAVIRT_LAZY_CPU); | ||
| 1571 | |||
| 1572 | reserve_early(__pa(xen_start_info->pt_base), | ||
| 1573 | __pa(xen_start_info->pt_base + | ||
| 1574 | xen_start_info->nr_pt_frames * PAGE_SIZE), | ||
| 1575 | "XEN PAGETABLES"); | ||
| 1576 | |||
| 1577 | return pgd; | ||
| 1578 | } | ||
| 1579 | #else /* !CONFIG_X86_64 */ | ||
| 1580 | static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss; | ||
| 1581 | |||
| 1582 | static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, | ||
| 1583 | unsigned long max_pfn) | ||
| 1584 | { | ||
| 1585 | pmd_t *kernel_pmd; | ||
| 1586 | |||
| 1587 | init_pg_tables_start = __pa(pgd); | ||
| 1588 | init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE; | ||
| 1589 | max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024); | ||
| 1590 | |||
| 1591 | kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); | ||
| 1592 | memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD); | ||
| 1593 | |||
| 1594 | xen_map_identity_early(level2_kernel_pgt, max_pfn); | ||
| 1595 | |||
| 1596 | memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD); | ||
| 1597 | set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY], | ||
| 1598 | __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT)); | ||
| 1599 | |||
| 1600 | set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); | ||
| 1601 | set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); | ||
| 1602 | set_page_prot(empty_zero_page, PAGE_KERNEL_RO); | ||
| 1603 | |||
| 1604 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | ||
| 1605 | |||
| 1606 | xen_write_cr3(__pa(swapper_pg_dir)); | ||
| 1607 | |||
| 1608 | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir))); | ||
| 1609 | |||
| 1610 | return swapper_pg_dir; | ||
| 1611 | } | ||
| 1612 | #endif /* CONFIG_X86_64 */ | ||
| 1613 | |||
| 1614 | /* First C function to be called on Xen boot */ | 876 | /* First C function to be called on Xen boot */ |
| 1615 | asmlinkage void __init xen_start_kernel(void) | 877 | asmlinkage void __init xen_start_kernel(void) |
| 1616 | { | 878 | { |
| @@ -1639,7 +901,7 @@ asmlinkage void __init xen_start_kernel(void) | |||
| 1639 | /* | 901 | /* |
| 1640 | * set up the basic apic ops. | 902 | * set up the basic apic ops. |
| 1641 | */ | 903 | */ |
| 1642 | apic_ops = &xen_basic_apic_ops; | 904 | set_xen_basic_apic_ops(); |
| 1643 | #endif | 905 | #endif |
| 1644 | 906 | ||
| 1645 | if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) { | 907 | if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) { |
| @@ -1650,10 +912,18 @@ asmlinkage void __init xen_start_kernel(void) | |||
| 1650 | machine_ops = xen_machine_ops; | 912 | machine_ops = xen_machine_ops; |
| 1651 | 913 | ||
| 1652 | #ifdef CONFIG_X86_64 | 914 | #ifdef CONFIG_X86_64 |
| 1653 | /* Disable until direct per-cpu data access. */ | 915 | /* |
| 1654 | have_vcpu_info_placement = 0; | 916 | * Setup percpu state. We only need to do this for 64-bit |
| 1655 | x86_64_init_pda(); | 917 | * because 32-bit already has %fs set properly. |
| 918 | */ | ||
| 919 | load_percpu_segment(0); | ||
| 1656 | #endif | 920 | #endif |
| 921 | /* | ||
| 922 | * The only reliable way to retain the initial address of the | ||
| 923 | * percpu gdt_page is to remember it here, so we can go and | ||
| 924 | * mark it RW later, when the initial percpu area is freed. | ||
| 925 | */ | ||
| 926 | xen_initial_gdt = &per_cpu(gdt_page, 0); | ||
| 1657 | 927 | ||
| 1658 | xen_smp_init(); | 928 | xen_smp_init(); |
| 1659 | 929 | ||
diff --git a/arch/x86/xen/irq.c b/arch/x86/xen/irq.c index bb042608c60..cfd17799bd6 100644 --- a/arch/x86/xen/irq.c +++ b/arch/x86/xen/irq.c | |||
| @@ -19,27 +19,12 @@ void xen_force_evtchn_callback(void) | |||
| 19 | (void)HYPERVISOR_xen_version(0, NULL); | 19 | (void)HYPERVISOR_xen_version(0, NULL); |
| 20 | } | 20 | } |
| 21 | 21 | ||
| 22 | static void __init __xen_init_IRQ(void) | ||
| 23 | { | ||
| 24 | int i; | ||
| 25 | |||
| 26 | /* Create identity vector->irq map */ | ||
| 27 | for(i = 0; i < NR_VECTORS; i++) { | ||
| 28 | int cpu; | ||
| 29 | |||
| 30 | for_each_possible_cpu(cpu) | ||
| 31 | per_cpu(vector_irq, cpu)[i] = i; | ||
| 32 | } | ||
| 33 | |||
| 34 | xen_init_IRQ(); | ||
| 35 | } | ||
| 36 | |||
| 37 | static unsigned long xen_save_fl(void) | 22 | static unsigned long xen_save_fl(void) |
| 38 | { | 23 | { |
| 39 | struct vcpu_info *vcpu; | 24 | struct vcpu_info *vcpu; |
| 40 | unsigned long flags; | 25 | unsigned long flags; |
| 41 | 26 | ||
| 42 | vcpu = x86_read_percpu(xen_vcpu); | 27 | vcpu = percpu_read(xen_vcpu); |
| 43 | 28 | ||
| 44 | /* flag has opposite sense of mask */ | 29 | /* flag has opposite sense of mask */ |
| 45 | flags = !vcpu->evtchn_upcall_mask; | 30 | flags = !vcpu->evtchn_upcall_mask; |
| @@ -50,6 +35,7 @@ static unsigned long xen_save_fl(void) | |||
| 50 | */ | 35 | */ |
| 51 | return (-flags) & X86_EFLAGS_IF; | 36 | return (-flags) & X86_EFLAGS_IF; |
| 52 | } | 37 | } |
| 38 | PV_CALLEE_SAVE_REGS_THUNK(xen_save_fl); | ||
| 53 | 39 | ||
| 54 | static void xen_restore_fl(unsigned long flags) | 40 | static void xen_restore_fl(unsigned long flags) |
| 55 | { | 41 | { |
| @@ -62,7 +48,7 @@ static void xen_restore_fl(unsigned long flags) | |||
| 62 | make sure we're don't switch CPUs between getting the vcpu | 48 | make sure we're don't switch CPUs between getting the vcpu |
| 63 | pointer and updating the mask. */ | 49 | pointer and updating the mask. */ |
| 64 | preempt_disable(); | 50 | preempt_disable(); |
| 65 | vcpu = x86_read_percpu(xen_vcpu); | 51 | vcpu = percpu_read(xen_vcpu); |
| 66 | vcpu->evtchn_upcall_mask = flags; | 52 | vcpu->evtchn_upcall_mask = flags; |
| 67 | preempt_enable_no_resched(); | 53 | preempt_enable_no_resched(); |
| 68 | 54 | ||
| @@ -76,6 +62,7 @@ static void xen_restore_fl(unsigned long flags) | |||
| 76 | xen_force_evtchn_callback(); | 62 | xen_force_evtchn_callback(); |
| 77 | } | 63 | } |
| 78 | } | 64 | } |
| 65 | PV_CALLEE_SAVE_REGS_THUNK(xen_restore_fl); | ||
| 79 | 66 | ||
| 80 | static void xen_irq_disable(void) | 67 | static void xen_irq_disable(void) |
| 81 | { | 68 | { |
| @@ -83,9 +70,10 @@ static void xen_irq_disable(void) | |||
| 83 | make sure we're don't switch CPUs between getting the vcpu | 70 | make sure we're don't switch CPUs between getting the vcpu |
| 84 | pointer and updating the mask. */ | 71 | pointer and updating the mask. */ |
| 85 | preempt_disable(); | 72 | preempt_disable(); |
| 86 | x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1; | 73 | percpu_read(xen_vcpu)->evtchn_upcall_mask = 1; |
| 87 | preempt_enable_no_resched(); | 74 | preempt_enable_no_resched(); |
| 88 | } | 75 | } |
| 76 | PV_CALLEE_SAVE_REGS_THUNK(xen_irq_disable); | ||
| 89 | 77 | ||
| 90 | static void xen_irq_enable(void) | 78 | static void xen_irq_enable(void) |
| 91 | { | 79 | { |
| @@ -96,7 +84,7 @@ static void xen_irq_enable(void) | |||
| 96 | the caller is confused and is trying to re-enable interrupts | 84 | the caller is confused and is trying to re-enable interrupts |
| 97 | on an indeterminate processor. */ | 85 | on an indeterminate processor. */ |
| 98 | 86 | ||
| 99 | vcpu = x86_read_percpu(xen_vcpu); | 87 | vcpu = percpu_read(xen_vcpu); |
| 100 | vcpu->evtchn_upcall_mask = 0; | 88 | vcpu->evtchn_upcall_mask = 0; |
| 101 | 89 | ||
| 102 | /* Doesn't matter if we get preempted here, because any | 90 | /* Doesn't matter if we get preempted here, because any |
| @@ -106,6 +94,7 @@ static void xen_irq_enable(void) | |||
| 106 | if (unlikely(vcpu->evtchn_upcall_pending)) | 94 | if (unlikely(vcpu->evtchn_upcall_pending)) |
| 107 | xen_force_evtchn_callback(); | 95 | xen_force_evtchn_callback(); |
| 108 | } | 96 | } |
| 97 | PV_CALLEE_SAVE_REGS_THUNK(xen_irq_enable); | ||
| 109 | 98 | ||
| 110 | static void xen_safe_halt(void) | 99 | static void xen_safe_halt(void) |
| 111 | { | 100 | { |
| @@ -123,11 +112,13 @@ static void xen_halt(void) | |||
| 123 | } | 112 | } |
| 124 | 113 | ||
| 125 | static const struct pv_irq_ops xen_irq_ops __initdata = { | 114 | static const struct pv_irq_ops xen_irq_ops __initdata = { |
| 126 | .init_IRQ = __xen_init_IRQ, | 115 | .init_IRQ = xen_init_IRQ, |
| 127 | .save_fl = xen_save_fl, | 116 | |
| 128 | .restore_fl = xen_restore_fl, | 117 | .save_fl = PV_CALLEE_SAVE(xen_save_fl), |
| 129 | .irq_disable = xen_irq_disable, | 118 | .restore_fl = PV_CALLEE_SAVE(xen_restore_fl), |
| 130 | .irq_enable = xen_irq_enable, | 119 | .irq_disable = PV_CALLEE_SAVE(xen_irq_disable), |
| 120 | .irq_enable = PV_CALLEE_SAVE(xen_irq_enable), | ||
| 121 | |||
| 131 | .safe_halt = xen_safe_halt, | 122 | .safe_halt = xen_safe_halt, |
| 132 | .halt = xen_halt, | 123 | .halt = xen_halt, |
| 133 | #ifdef CONFIG_X86_64 | 124 | #ifdef CONFIG_X86_64 |
diff --git a/arch/x86/xen/mmu.c b/arch/x86/xen/mmu.c index 503c240e26c..cb6afa4ec95 100644 --- a/arch/x86/xen/mmu.c +++ b/arch/x86/xen/mmu.c | |||
| @@ -47,6 +47,7 @@ | |||
| 47 | #include <asm/tlbflush.h> | 47 | #include <asm/tlbflush.h> |
| 48 | #include <asm/fixmap.h> | 48 | #include <asm/fixmap.h> |
| 49 | #include <asm/mmu_context.h> | 49 | #include <asm/mmu_context.h> |
| 50 | #include <asm/setup.h> | ||
| 50 | #include <asm/paravirt.h> | 51 | #include <asm/paravirt.h> |
| 51 | #include <asm/linkage.h> | 52 | #include <asm/linkage.h> |
| 52 | 53 | ||
| @@ -55,6 +56,8 @@ | |||
| 55 | 56 | ||
| 56 | #include <xen/page.h> | 57 | #include <xen/page.h> |
| 57 | #include <xen/interface/xen.h> | 58 | #include <xen/interface/xen.h> |
| 59 | #include <xen/interface/version.h> | ||
| 60 | #include <xen/hvc-console.h> | ||
| 58 | 61 | ||
| 59 | #include "multicalls.h" | 62 | #include "multicalls.h" |
| 60 | #include "mmu.h" | 63 | #include "mmu.h" |
| @@ -114,6 +117,37 @@ static inline void check_zero(void) | |||
| 114 | 117 | ||
| 115 | #endif /* CONFIG_XEN_DEBUG_FS */ | 118 | #endif /* CONFIG_XEN_DEBUG_FS */ |
| 116 | 119 | ||
| 120 | |||
| 121 | /* | ||
| 122 | * Identity map, in addition to plain kernel map. This needs to be | ||
| 123 | * large enough to allocate page table pages to allocate the rest. | ||
| 124 | * Each page can map 2MB. | ||
| 125 | */ | ||
| 126 | static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss; | ||
| 127 | |||
| 128 | #ifdef CONFIG_X86_64 | ||
| 129 | /* l3 pud for userspace vsyscall mapping */ | ||
| 130 | static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; | ||
| 131 | #endif /* CONFIG_X86_64 */ | ||
| 132 | |||
| 133 | /* | ||
| 134 | * Note about cr3 (pagetable base) values: | ||
| 135 | * | ||
| 136 | * xen_cr3 contains the current logical cr3 value; it contains the | ||
| 137 | * last set cr3. This may not be the current effective cr3, because | ||
| 138 | * its update may be being lazily deferred. However, a vcpu looking | ||
| 139 | * at its own cr3 can use this value knowing that it everything will | ||
| 140 | * be self-consistent. | ||
| 141 | * | ||
| 142 | * xen_current_cr3 contains the actual vcpu cr3; it is set once the | ||
| 143 | * hypercall to set the vcpu cr3 is complete (so it may be a little | ||
| 144 | * out of date, but it will never be set early). If one vcpu is | ||
| 145 | * looking at another vcpu's cr3 value, it should use this variable. | ||
| 146 | */ | ||
| 147 | DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ | ||
| 148 | DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ | ||
| 149 | |||
| 150 | |||
| 117 | /* | 151 | /* |
| 118 | * Just beyond the highest usermode address. STACK_TOP_MAX has a | 152 | * Just beyond the highest usermode address. STACK_TOP_MAX has a |
| 119 | * redzone above it, so round it up to a PGD boundary. | 153 | * redzone above it, so round it up to a PGD boundary. |
| @@ -242,6 +276,13 @@ void set_phys_to_machine(unsigned long pfn, unsigned long mfn) | |||
| 242 | p2m_top[topidx][idx] = mfn; | 276 | p2m_top[topidx][idx] = mfn; |
| 243 | } | 277 | } |
| 244 | 278 | ||
| 279 | unsigned long arbitrary_virt_to_mfn(void *vaddr) | ||
| 280 | { | ||
| 281 | xmaddr_t maddr = arbitrary_virt_to_machine(vaddr); | ||
| 282 | |||
| 283 | return PFN_DOWN(maddr.maddr); | ||
| 284 | } | ||
| 285 | |||
| 245 | xmaddr_t arbitrary_virt_to_machine(void *vaddr) | 286 | xmaddr_t arbitrary_virt_to_machine(void *vaddr) |
| 246 | { | 287 | { |
| 247 | unsigned long address = (unsigned long)vaddr; | 288 | unsigned long address = (unsigned long)vaddr; |
| @@ -458,28 +499,33 @@ pteval_t xen_pte_val(pte_t pte) | |||
| 458 | { | 499 | { |
| 459 | return pte_mfn_to_pfn(pte.pte); | 500 | return pte_mfn_to_pfn(pte.pte); |
| 460 | } | 501 | } |
| 502 | PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); | ||
| 461 | 503 | ||
| 462 | pgdval_t xen_pgd_val(pgd_t pgd) | 504 | pgdval_t xen_pgd_val(pgd_t pgd) |
| 463 | { | 505 | { |
| 464 | return pte_mfn_to_pfn(pgd.pgd); | 506 | return pte_mfn_to_pfn(pgd.pgd); |
| 465 | } | 507 | } |
| 508 | PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); | ||
| 466 | 509 | ||
| 467 | pte_t xen_make_pte(pteval_t pte) | 510 | pte_t xen_make_pte(pteval_t pte) |
| 468 | { | 511 | { |
| 469 | pte = pte_pfn_to_mfn(pte); | 512 | pte = pte_pfn_to_mfn(pte); |
| 470 | return native_make_pte(pte); | 513 | return native_make_pte(pte); |
| 471 | } | 514 | } |
| 515 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); | ||
| 472 | 516 | ||
| 473 | pgd_t xen_make_pgd(pgdval_t pgd) | 517 | pgd_t xen_make_pgd(pgdval_t pgd) |
| 474 | { | 518 | { |
| 475 | pgd = pte_pfn_to_mfn(pgd); | 519 | pgd = pte_pfn_to_mfn(pgd); |
| 476 | return native_make_pgd(pgd); | 520 | return native_make_pgd(pgd); |
| 477 | } | 521 | } |
| 522 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); | ||
| 478 | 523 | ||
| 479 | pmdval_t xen_pmd_val(pmd_t pmd) | 524 | pmdval_t xen_pmd_val(pmd_t pmd) |
| 480 | { | 525 | { |
| 481 | return pte_mfn_to_pfn(pmd.pmd); | 526 | return pte_mfn_to_pfn(pmd.pmd); |
| 482 | } | 527 | } |
| 528 | PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); | ||
| 483 | 529 | ||
| 484 | void xen_set_pud_hyper(pud_t *ptr, pud_t val) | 530 | void xen_set_pud_hyper(pud_t *ptr, pud_t val) |
| 485 | { | 531 | { |
| @@ -556,12 +602,14 @@ pmd_t xen_make_pmd(pmdval_t pmd) | |||
| 556 | pmd = pte_pfn_to_mfn(pmd); | 602 | pmd = pte_pfn_to_mfn(pmd); |
| 557 | return native_make_pmd(pmd); | 603 | return native_make_pmd(pmd); |
| 558 | } | 604 | } |
| 605 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); | ||
| 559 | 606 | ||
| 560 | #if PAGETABLE_LEVELS == 4 | 607 | #if PAGETABLE_LEVELS == 4 |
| 561 | pudval_t xen_pud_val(pud_t pud) | 608 | pudval_t xen_pud_val(pud_t pud) |
| 562 | { | 609 | { |
| 563 | return pte_mfn_to_pfn(pud.pud); | 610 | return pte_mfn_to_pfn(pud.pud); |
| 564 | } | 611 | } |
| 612 | PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); | ||
| 565 | 613 | ||
| 566 | pud_t xen_make_pud(pudval_t pud) | 614 | pud_t xen_make_pud(pudval_t pud) |
| 567 | { | 615 | { |
| @@ -569,6 +617,7 @@ pud_t xen_make_pud(pudval_t pud) | |||
| 569 | 617 | ||
| 570 | return native_make_pud(pud); | 618 | return native_make_pud(pud); |
| 571 | } | 619 | } |
| 620 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); | ||
| 572 | 621 | ||
| 573 | pgd_t *xen_get_user_pgd(pgd_t *pgd) | 622 | pgd_t *xen_get_user_pgd(pgd_t *pgd) |
| 574 | { | 623 | { |
| @@ -1063,18 +1112,14 @@ static void drop_other_mm_ref(void *info) | |||
| 1063 | struct mm_struct *mm = info; | 1112 | struct mm_struct *mm = info; |
| 1064 | struct mm_struct *active_mm; | 1113 | struct mm_struct *active_mm; |
| 1065 | 1114 | ||
| 1066 | #ifdef CONFIG_X86_64 | 1115 | active_mm = percpu_read(cpu_tlbstate.active_mm); |
| 1067 | active_mm = read_pda(active_mm); | ||
| 1068 | #else | ||
| 1069 | active_mm = __get_cpu_var(cpu_tlbstate).active_mm; | ||
| 1070 | #endif | ||
| 1071 | 1116 | ||
| 1072 | if (active_mm == mm) | 1117 | if (active_mm == mm) |
| 1073 | leave_mm(smp_processor_id()); | 1118 | leave_mm(smp_processor_id()); |
| 1074 | 1119 | ||
| 1075 | /* If this cpu still has a stale cr3 reference, then make sure | 1120 | /* If this cpu still has a stale cr3 reference, then make sure |
| 1076 | it has been flushed. */ | 1121 | it has been flushed. */ |
| 1077 | if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) { | 1122 | if (percpu_read(xen_current_cr3) == __pa(mm->pgd)) { |
| 1078 | load_cr3(swapper_pg_dir); | 1123 | load_cr3(swapper_pg_dir); |
| 1079 | arch_flush_lazy_cpu_mode(); | 1124 | arch_flush_lazy_cpu_mode(); |
| 1080 | } | 1125 | } |
| @@ -1156,6 +1201,706 @@ void xen_exit_mmap(struct mm_struct *mm) | |||
| 1156 | spin_unlock(&mm->page_table_lock); | 1201 | spin_unlock(&mm->page_table_lock); |
| 1157 | } | 1202 | } |
| 1158 | 1203 | ||
| 1204 | static __init void xen_pagetable_setup_start(pgd_t *base) | ||
| 1205 | { | ||
| 1206 | } | ||
| 1207 | |||
| 1208 | static __init void xen_pagetable_setup_done(pgd_t *base) | ||
| 1209 | { | ||
| 1210 | xen_setup_shared_info(); | ||
| 1211 | } | ||
| 1212 | |||
| 1213 | static void xen_write_cr2(unsigned long cr2) | ||
| 1214 | { | ||
| 1215 | percpu_read(xen_vcpu)->arch.cr2 = cr2; | ||
| 1216 | } | ||
| 1217 | |||
| 1218 | static unsigned long xen_read_cr2(void) | ||
| 1219 | { | ||
| 1220 | return percpu_read(xen_vcpu)->arch.cr2; | ||
| 1221 | } | ||
| 1222 | |||
| 1223 | unsigned long xen_read_cr2_direct(void) | ||
| 1224 | { | ||
| 1225 | return percpu_read(xen_vcpu_info.arch.cr2); | ||
| 1226 | } | ||
| 1227 | |||
| 1228 | static void xen_flush_tlb(void) | ||
| 1229 | { | ||
| 1230 | struct mmuext_op *op; | ||
| 1231 | struct multicall_space mcs; | ||
| 1232 | |||
| 1233 | preempt_disable(); | ||
| 1234 | |||
| 1235 | mcs = xen_mc_entry(sizeof(*op)); | ||
| 1236 | |||
| 1237 | op = mcs.args; | ||
| 1238 | op->cmd = MMUEXT_TLB_FLUSH_LOCAL; | ||
| 1239 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | ||
| 1240 | |||
| 1241 | xen_mc_issue(PARAVIRT_LAZY_MMU); | ||
| 1242 | |||
| 1243 | preempt_enable(); | ||
| 1244 | } | ||
| 1245 | |||
| 1246 | static void xen_flush_tlb_single(unsigned long addr) | ||
| 1247 | { | ||
| 1248 | struct mmuext_op *op; | ||
| 1249 | struct multicall_space mcs; | ||
| 1250 | |||
| 1251 | preempt_disable(); | ||
| 1252 | |||
| 1253 | mcs = xen_mc_entry(sizeof(*op)); | ||
| 1254 | op = mcs.args; | ||
| 1255 | op->cmd = MMUEXT_INVLPG_LOCAL; | ||
| 1256 | op->arg1.linear_addr = addr & PAGE_MASK; | ||
| 1257 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | ||
| 1258 | |||
| 1259 | xen_mc_issue(PARAVIRT_LAZY_MMU); | ||
| 1260 | |||
| 1261 | preempt_enable(); | ||
| 1262 | } | ||
| 1263 | |||
| 1264 | static void xen_flush_tlb_others(const struct cpumask *cpus, | ||
| 1265 | struct mm_struct *mm, unsigned long va) | ||
| 1266 | { | ||
| 1267 | struct { | ||
| 1268 | struct mmuext_op op; | ||
| 1269 | DECLARE_BITMAP(mask, NR_CPUS); | ||
| 1270 | } *args; | ||
| 1271 | struct multicall_space mcs; | ||
| 1272 | |||
| 1273 | BUG_ON(cpumask_empty(cpus)); | ||
| 1274 | BUG_ON(!mm); | ||
| 1275 | |||
| 1276 | mcs = xen_mc_entry(sizeof(*args)); | ||
| 1277 | args = mcs.args; | ||
| 1278 | args->op.arg2.vcpumask = to_cpumask(args->mask); | ||
| 1279 | |||
| 1280 | /* Remove us, and any offline CPUS. */ | ||
| 1281 | cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); | ||
| 1282 | cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); | ||
| 1283 | |||
| 1284 | if (va == TLB_FLUSH_ALL) { | ||
| 1285 | args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; | ||
| 1286 | } else { | ||
| 1287 | args->op.cmd = MMUEXT_INVLPG_MULTI; | ||
| 1288 | args->op.arg1.linear_addr = va; | ||
| 1289 | } | ||
| 1290 | |||
| 1291 | MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); | ||
| 1292 | |||
| 1293 | xen_mc_issue(PARAVIRT_LAZY_MMU); | ||
| 1294 | } | ||
| 1295 | |||
| 1296 | static unsigned long xen_read_cr3(void) | ||
| 1297 | { | ||
| 1298 | return percpu_read(xen_cr3); | ||
| 1299 | } | ||
| 1300 | |||
| 1301 | static void set_current_cr3(void *v) | ||
| 1302 | { | ||
| 1303 | percpu_write(xen_current_cr3, (unsigned long)v); | ||
| 1304 | } | ||
| 1305 | |||
| 1306 | static void __xen_write_cr3(bool kernel, unsigned long cr3) | ||
| 1307 | { | ||
| 1308 | struct mmuext_op *op; | ||
| 1309 | struct multicall_space mcs; | ||
| 1310 | unsigned long mfn; | ||
| 1311 | |||
| 1312 | if (cr3) | ||
| 1313 | mfn = pfn_to_mfn(PFN_DOWN(cr3)); | ||
| 1314 | else | ||
| 1315 | mfn = 0; | ||
| 1316 | |||
| 1317 | WARN_ON(mfn == 0 && kernel); | ||
| 1318 | |||
| 1319 | mcs = __xen_mc_entry(sizeof(*op)); | ||
| 1320 | |||
| 1321 | op = mcs.args; | ||
| 1322 | op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; | ||
| 1323 | op->arg1.mfn = mfn; | ||
| 1324 | |||
| 1325 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | ||
| 1326 | |||
| 1327 | if (kernel) { | ||
| 1328 | percpu_write(xen_cr3, cr3); | ||
| 1329 | |||
| 1330 | /* Update xen_current_cr3 once the batch has actually | ||
| 1331 | been submitted. */ | ||
| 1332 | xen_mc_callback(set_current_cr3, (void *)cr3); | ||
| 1333 | } | ||
| 1334 | } | ||
| 1335 | |||
| 1336 | static void xen_write_cr3(unsigned long cr3) | ||
| 1337 | { | ||
| 1338 | BUG_ON(preemptible()); | ||
| 1339 | |||
| 1340 | xen_mc_batch(); /* disables interrupts */ | ||
| 1341 | |||
| 1342 | /* Update while interrupts are disabled, so its atomic with | ||
| 1343 | respect to ipis */ | ||
| 1344 | percpu_write(xen_cr3, cr3); | ||
| 1345 | |||
| 1346 | __xen_write_cr3(true, cr3); | ||
| 1347 | |||
| 1348 | #ifdef CONFIG_X86_64 | ||
| 1349 | { | ||
| 1350 | pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); | ||
| 1351 | if (user_pgd) | ||
| 1352 | __xen_write_cr3(false, __pa(user_pgd)); | ||
| 1353 | else | ||
| 1354 | __xen_write_cr3(false, 0); | ||
| 1355 | } | ||
| 1356 | #endif | ||
| 1357 | |||
| 1358 | xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ | ||
| 1359 | } | ||
| 1360 | |||
| 1361 | static int xen_pgd_alloc(struct mm_struct *mm) | ||
| 1362 | { | ||
| 1363 | pgd_t *pgd = mm->pgd; | ||
| 1364 | int ret = 0; | ||
| 1365 | |||
| 1366 | BUG_ON(PagePinned(virt_to_page(pgd))); | ||
| 1367 | |||
| 1368 | #ifdef CONFIG_X86_64 | ||
| 1369 | { | ||
| 1370 | struct page *page = virt_to_page(pgd); | ||
| 1371 | pgd_t *user_pgd; | ||
| 1372 | |||
| 1373 | BUG_ON(page->private != 0); | ||
| 1374 | |||
| 1375 | ret = -ENOMEM; | ||
| 1376 | |||
| 1377 | user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); | ||
| 1378 | page->private = (unsigned long)user_pgd; | ||
| 1379 | |||
| 1380 | if (user_pgd != NULL) { | ||
| 1381 | user_pgd[pgd_index(VSYSCALL_START)] = | ||
| 1382 | __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); | ||
| 1383 | ret = 0; | ||
| 1384 | } | ||
| 1385 | |||
| 1386 | BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); | ||
| 1387 | } | ||
| 1388 | #endif | ||
| 1389 | |||
| 1390 | return ret; | ||
| 1391 | } | ||
| 1392 | |||
| 1393 | static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) | ||
| 1394 | { | ||
| 1395 | #ifdef CONFIG_X86_64 | ||
| 1396 | pgd_t *user_pgd = xen_get_user_pgd(pgd); | ||
| 1397 | |||
| 1398 | if (user_pgd) | ||
| 1399 | free_page((unsigned long)user_pgd); | ||
| 1400 | #endif | ||
| 1401 | } | ||
| 1402 | |||
| 1403 | #ifdef CONFIG_HIGHPTE | ||
| 1404 | static void *xen_kmap_atomic_pte(struct page *page, enum km_type type) | ||
| 1405 | { | ||
| 1406 | pgprot_t prot = PAGE_KERNEL; | ||
| 1407 | |||
| 1408 | if (PagePinned(page)) | ||
| 1409 | prot = PAGE_KERNEL_RO; | ||
| 1410 | |||
| 1411 | if (0 && PageHighMem(page)) | ||
| 1412 | printk("mapping highpte %lx type %d prot %s\n", | ||
| 1413 | page_to_pfn(page), type, | ||
| 1414 | (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ"); | ||
| 1415 | |||
| 1416 | return kmap_atomic_prot(page, type, prot); | ||
| 1417 | } | ||
| 1418 | #endif | ||
| 1419 | |||
| 1420 | #ifdef CONFIG_X86_32 | ||
| 1421 | static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte) | ||
| 1422 | { | ||
| 1423 | /* If there's an existing pte, then don't allow _PAGE_RW to be set */ | ||
| 1424 | if (pte_val_ma(*ptep) & _PAGE_PRESENT) | ||
| 1425 | pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & | ||
| 1426 | pte_val_ma(pte)); | ||
| 1427 | |||
| 1428 | return pte; | ||
| 1429 | } | ||
| 1430 | |||
| 1431 | /* Init-time set_pte while constructing initial pagetables, which | ||
| 1432 | doesn't allow RO pagetable pages to be remapped RW */ | ||
| 1433 | static __init void xen_set_pte_init(pte_t *ptep, pte_t pte) | ||
| 1434 | { | ||
| 1435 | pte = mask_rw_pte(ptep, pte); | ||
| 1436 | |||
| 1437 | xen_set_pte(ptep, pte); | ||
| 1438 | } | ||
| 1439 | #endif | ||
| 1440 | |||
| 1441 | /* Early in boot, while setting up the initial pagetable, assume | ||
| 1442 | everything is pinned. */ | ||
| 1443 | static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) | ||
| 1444 | { | ||
| 1445 | #ifdef CONFIG_FLATMEM | ||
| 1446 | BUG_ON(mem_map); /* should only be used early */ | ||
| 1447 | #endif | ||
| 1448 | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); | ||
| 1449 | } | ||
| 1450 | |||
| 1451 | /* Early release_pte assumes that all pts are pinned, since there's | ||
| 1452 | only init_mm and anything attached to that is pinned. */ | ||
| 1453 | static void xen_release_pte_init(unsigned long pfn) | ||
| 1454 | { | ||
| 1455 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | ||
| 1456 | } | ||
| 1457 | |||
| 1458 | static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn) | ||
| 1459 | { | ||
| 1460 | struct mmuext_op op; | ||
| 1461 | op.cmd = cmd; | ||
| 1462 | op.arg1.mfn = pfn_to_mfn(pfn); | ||
| 1463 | if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) | ||
| 1464 | BUG(); | ||
| 1465 | } | ||
| 1466 | |||
| 1467 | /* This needs to make sure the new pte page is pinned iff its being | ||
| 1468 | attached to a pinned pagetable. */ | ||
| 1469 | static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level) | ||
| 1470 | { | ||
| 1471 | struct page *page = pfn_to_page(pfn); | ||
| 1472 | |||
| 1473 | if (PagePinned(virt_to_page(mm->pgd))) { | ||
| 1474 | SetPagePinned(page); | ||
| 1475 | |||
| 1476 | vm_unmap_aliases(); | ||
| 1477 | if (!PageHighMem(page)) { | ||
| 1478 | make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn))); | ||
| 1479 | if (level == PT_PTE && USE_SPLIT_PTLOCKS) | ||
| 1480 | pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); | ||
| 1481 | } else { | ||
| 1482 | /* make sure there are no stray mappings of | ||
| 1483 | this page */ | ||
| 1484 | kmap_flush_unused(); | ||
| 1485 | } | ||
| 1486 | } | ||
| 1487 | } | ||
| 1488 | |||
| 1489 | static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) | ||
| 1490 | { | ||
| 1491 | xen_alloc_ptpage(mm, pfn, PT_PTE); | ||
| 1492 | } | ||
| 1493 | |||
| 1494 | static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) | ||
| 1495 | { | ||
| 1496 | xen_alloc_ptpage(mm, pfn, PT_PMD); | ||
| 1497 | } | ||
| 1498 | |||
| 1499 | /* This should never happen until we're OK to use struct page */ | ||
| 1500 | static void xen_release_ptpage(unsigned long pfn, unsigned level) | ||
| 1501 | { | ||
| 1502 | struct page *page = pfn_to_page(pfn); | ||
| 1503 | |||
| 1504 | if (PagePinned(page)) { | ||
| 1505 | if (!PageHighMem(page)) { | ||
| 1506 | if (level == PT_PTE && USE_SPLIT_PTLOCKS) | ||
| 1507 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); | ||
| 1508 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | ||
| 1509 | } | ||
| 1510 | ClearPagePinned(page); | ||
| 1511 | } | ||
| 1512 | } | ||
| 1513 | |||
| 1514 | static void xen_release_pte(unsigned long pfn) | ||
| 1515 | { | ||
| 1516 | xen_release_ptpage(pfn, PT_PTE); | ||
| 1517 | } | ||
| 1518 | |||
| 1519 | static void xen_release_pmd(unsigned long pfn) | ||
| 1520 | { | ||
| 1521 | xen_release_ptpage(pfn, PT_PMD); | ||
| 1522 | } | ||
| 1523 | |||
| 1524 | #if PAGETABLE_LEVELS == 4 | ||
| 1525 | static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) | ||
| 1526 | { | ||
| 1527 | xen_alloc_ptpage(mm, pfn, PT_PUD); | ||
| 1528 | } | ||
| 1529 | |||
| 1530 | static void xen_release_pud(unsigned long pfn) | ||
| 1531 | { | ||
| 1532 | xen_release_ptpage(pfn, PT_PUD); | ||
| 1533 | } | ||
| 1534 | #endif | ||
| 1535 | |||
| 1536 | void __init xen_reserve_top(void) | ||
| 1537 | { | ||
| 1538 | #ifdef CONFIG_X86_32 | ||
| 1539 | unsigned long top = HYPERVISOR_VIRT_START; | ||
| 1540 | struct xen_platform_parameters pp; | ||
| 1541 | |||
| 1542 | if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) | ||
| 1543 | top = pp.virt_start; | ||
| 1544 | |||
| 1545 | reserve_top_address(-top); | ||
| 1546 | #endif /* CONFIG_X86_32 */ | ||
| 1547 | } | ||
| 1548 | |||
| 1549 | /* | ||
| 1550 | * Like __va(), but returns address in the kernel mapping (which is | ||
| 1551 | * all we have until the physical memory mapping has been set up. | ||
| 1552 | */ | ||
| 1553 | static void *__ka(phys_addr_t paddr) | ||
| 1554 | { | ||
| 1555 | #ifdef CONFIG_X86_64 | ||
| 1556 | return (void *)(paddr + __START_KERNEL_map); | ||
| 1557 | #else | ||
| 1558 | return __va(paddr); | ||
| 1559 | #endif | ||
| 1560 | } | ||
| 1561 | |||
| 1562 | /* Convert a machine address to physical address */ | ||
| 1563 | static unsigned long m2p(phys_addr_t maddr) | ||
| 1564 | { | ||
| 1565 | phys_addr_t paddr; | ||
| 1566 | |||
| 1567 | maddr &= PTE_PFN_MASK; | ||
| 1568 | paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; | ||
| 1569 | |||
| 1570 | return paddr; | ||
| 1571 | } | ||
| 1572 | |||
| 1573 | /* Convert a machine address to kernel virtual */ | ||
| 1574 | static void *m2v(phys_addr_t maddr) | ||
| 1575 | { | ||
| 1576 | return __ka(m2p(maddr)); | ||
| 1577 | } | ||
| 1578 | |||
| 1579 | static void set_page_prot(void *addr, pgprot_t prot) | ||
| 1580 | { | ||
| 1581 | unsigned long pfn = __pa(addr) >> PAGE_SHIFT; | ||
| 1582 | pte_t pte = pfn_pte(pfn, prot); | ||
| 1583 | |||
| 1584 | if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0)) | ||
| 1585 | BUG(); | ||
| 1586 | } | ||
| 1587 | |||
| 1588 | static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) | ||
| 1589 | { | ||
| 1590 | unsigned pmdidx, pteidx; | ||
| 1591 | unsigned ident_pte; | ||
| 1592 | unsigned long pfn; | ||
| 1593 | |||
| 1594 | ident_pte = 0; | ||
| 1595 | pfn = 0; | ||
| 1596 | for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { | ||
| 1597 | pte_t *pte_page; | ||
| 1598 | |||
| 1599 | /* Reuse or allocate a page of ptes */ | ||
| 1600 | if (pmd_present(pmd[pmdidx])) | ||
| 1601 | pte_page = m2v(pmd[pmdidx].pmd); | ||
| 1602 | else { | ||
| 1603 | /* Check for free pte pages */ | ||
| 1604 | if (ident_pte == ARRAY_SIZE(level1_ident_pgt)) | ||
| 1605 | break; | ||
| 1606 | |||
| 1607 | pte_page = &level1_ident_pgt[ident_pte]; | ||
| 1608 | ident_pte += PTRS_PER_PTE; | ||
| 1609 | |||
| 1610 | pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); | ||
| 1611 | } | ||
| 1612 | |||
| 1613 | /* Install mappings */ | ||
| 1614 | for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { | ||
| 1615 | pte_t pte; | ||
| 1616 | |||
| 1617 | if (pfn > max_pfn_mapped) | ||
| 1618 | max_pfn_mapped = pfn; | ||
| 1619 | |||
| 1620 | if (!pte_none(pte_page[pteidx])) | ||
| 1621 | continue; | ||
| 1622 | |||
| 1623 | pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); | ||
| 1624 | pte_page[pteidx] = pte; | ||
| 1625 | } | ||
| 1626 | } | ||
| 1627 | |||
| 1628 | for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) | ||
| 1629 | set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); | ||
| 1630 | |||
| 1631 | set_page_prot(pmd, PAGE_KERNEL_RO); | ||
| 1632 | } | ||
| 1633 | |||
| 1634 | #ifdef CONFIG_X86_64 | ||
| 1635 | static void convert_pfn_mfn(void *v) | ||
| 1636 | { | ||
| 1637 | pte_t *pte = v; | ||
| 1638 | int i; | ||
| 1639 | |||
| 1640 | /* All levels are converted the same way, so just treat them | ||
| 1641 | as ptes. */ | ||
| 1642 | for (i = 0; i < PTRS_PER_PTE; i++) | ||
| 1643 | pte[i] = xen_make_pte(pte[i].pte); | ||
| 1644 | } | ||
| 1645 | |||
| 1646 | /* | ||
| 1647 | * Set up the inital kernel pagetable. | ||
| 1648 | * | ||
| 1649 | * We can construct this by grafting the Xen provided pagetable into | ||
| 1650 | * head_64.S's preconstructed pagetables. We copy the Xen L2's into | ||
| 1651 | * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This | ||
| 1652 | * means that only the kernel has a physical mapping to start with - | ||
| 1653 | * but that's enough to get __va working. We need to fill in the rest | ||
| 1654 | * of the physical mapping once some sort of allocator has been set | ||
| 1655 | * up. | ||
| 1656 | */ | ||
| 1657 | __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, | ||
| 1658 | unsigned long max_pfn) | ||
| 1659 | { | ||
| 1660 | pud_t *l3; | ||
| 1661 | pmd_t *l2; | ||
| 1662 | |||
| 1663 | /* Zap identity mapping */ | ||
| 1664 | init_level4_pgt[0] = __pgd(0); | ||
| 1665 | |||
| 1666 | /* Pre-constructed entries are in pfn, so convert to mfn */ | ||
| 1667 | convert_pfn_mfn(init_level4_pgt); | ||
| 1668 | convert_pfn_mfn(level3_ident_pgt); | ||
| 1669 | convert_pfn_mfn(level3_kernel_pgt); | ||
| 1670 | |||
| 1671 | l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); | ||
| 1672 | l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); | ||
| 1673 | |||
| 1674 | memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | ||
| 1675 | memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | ||
| 1676 | |||
| 1677 | l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd); | ||
| 1678 | l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud); | ||
| 1679 | memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | ||
| 1680 | |||
| 1681 | /* Set up identity map */ | ||
| 1682 | xen_map_identity_early(level2_ident_pgt, max_pfn); | ||
| 1683 | |||
| 1684 | /* Make pagetable pieces RO */ | ||
| 1685 | set_page_prot(init_level4_pgt, PAGE_KERNEL_RO); | ||
| 1686 | set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); | ||
| 1687 | set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); | ||
| 1688 | set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); | ||
| 1689 | set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); | ||
| 1690 | set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); | ||
| 1691 | |||
| 1692 | /* Pin down new L4 */ | ||
| 1693 | pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, | ||
| 1694 | PFN_DOWN(__pa_symbol(init_level4_pgt))); | ||
| 1695 | |||
| 1696 | /* Unpin Xen-provided one */ | ||
| 1697 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | ||
| 1698 | |||
| 1699 | /* Switch over */ | ||
| 1700 | pgd = init_level4_pgt; | ||
| 1701 | |||
| 1702 | /* | ||
| 1703 | * At this stage there can be no user pgd, and no page | ||
| 1704 | * structure to attach it to, so make sure we just set kernel | ||
| 1705 | * pgd. | ||
| 1706 | */ | ||
| 1707 | xen_mc_batch(); | ||
| 1708 | __xen_write_cr3(true, __pa(pgd)); | ||
| 1709 | xen_mc_issue(PARAVIRT_LAZY_CPU); | ||
| 1710 | |||
| 1711 | reserve_early(__pa(xen_start_info->pt_base), | ||
| 1712 | __pa(xen_start_info->pt_base + | ||
| 1713 | xen_start_info->nr_pt_frames * PAGE_SIZE), | ||
| 1714 | "XEN PAGETABLES"); | ||
| 1715 | |||
| 1716 | return pgd; | ||
| 1717 | } | ||
| 1718 | #else /* !CONFIG_X86_64 */ | ||
| 1719 | static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss; | ||
| 1720 | |||
| 1721 | __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, | ||
| 1722 | unsigned long max_pfn) | ||
| 1723 | { | ||
| 1724 | pmd_t *kernel_pmd; | ||
| 1725 | |||
| 1726 | init_pg_tables_start = __pa(pgd); | ||
| 1727 | init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE; | ||
| 1728 | max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024); | ||
| 1729 | |||
| 1730 | kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); | ||
| 1731 | memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD); | ||
| 1732 | |||
| 1733 | xen_map_identity_early(level2_kernel_pgt, max_pfn); | ||
| 1734 | |||
| 1735 | memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD); | ||
| 1736 | set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY], | ||
| 1737 | __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT)); | ||
| 1738 | |||
| 1739 | set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); | ||
| 1740 | set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); | ||
| 1741 | set_page_prot(empty_zero_page, PAGE_KERNEL_RO); | ||
| 1742 | |||
| 1743 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | ||
| 1744 | |||
| 1745 | xen_write_cr3(__pa(swapper_pg_dir)); | ||
| 1746 | |||
| 1747 | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir))); | ||
| 1748 | |||
| 1749 | return swapper_pg_dir; | ||
| 1750 | } | ||
| 1751 | #endif /* CONFIG_X86_64 */ | ||
| 1752 | |||
| 1753 | static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot) | ||
| 1754 | { | ||
| 1755 | pte_t pte; | ||
| 1756 | |||
| 1757 | phys >>= PAGE_SHIFT; | ||
| 1758 | |||
| 1759 | switch (idx) { | ||
| 1760 | case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: | ||
| 1761 | #ifdef CONFIG_X86_F00F_BUG | ||
| 1762 | case FIX_F00F_IDT: | ||
| 1763 | #endif | ||
| 1764 | #ifdef CONFIG_X86_32 | ||
| 1765 | case FIX_WP_TEST: | ||
| 1766 | case FIX_VDSO: | ||
| 1767 | # ifdef CONFIG_HIGHMEM | ||
| 1768 | case FIX_KMAP_BEGIN ... FIX_KMAP_END: | ||
| 1769 | # endif | ||
| 1770 | #else | ||
| 1771 | case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE: | ||
| 1772 | #endif | ||
| 1773 | #ifdef CONFIG_X86_LOCAL_APIC | ||
| 1774 | case FIX_APIC_BASE: /* maps dummy local APIC */ | ||
| 1775 | #endif | ||
| 1776 | pte = pfn_pte(phys, prot); | ||
| 1777 | break; | ||
| 1778 | |||
| 1779 | default: | ||
| 1780 | pte = mfn_pte(phys, prot); | ||
| 1781 | break; | ||
| 1782 | } | ||
| 1783 | |||
| 1784 | __native_set_fixmap(idx, pte); | ||
| 1785 | |||
| 1786 | #ifdef CONFIG_X86_64 | ||
| 1787 | /* Replicate changes to map the vsyscall page into the user | ||
| 1788 | pagetable vsyscall mapping. */ | ||
| 1789 | if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) { | ||
| 1790 | unsigned long vaddr = __fix_to_virt(idx); | ||
| 1791 | set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); | ||
| 1792 | } | ||
| 1793 | #endif | ||
| 1794 | } | ||
| 1795 | |||
| 1796 | __init void xen_post_allocator_init(void) | ||
| 1797 | { | ||
| 1798 | pv_mmu_ops.set_pte = xen_set_pte; | ||
| 1799 | pv_mmu_ops.set_pmd = xen_set_pmd; | ||
| 1800 | pv_mmu_ops.set_pud = xen_set_pud; | ||
| 1801 | #if PAGETABLE_LEVELS == 4 | ||
| 1802 | pv_mmu_ops.set_pgd = xen_set_pgd; | ||
| 1803 | #endif | ||
| 1804 | |||
| 1805 | /* This will work as long as patching hasn't happened yet | ||
| 1806 | (which it hasn't) */ | ||
| 1807 | pv_mmu_ops.alloc_pte = xen_alloc_pte; | ||
| 1808 | pv_mmu_ops.alloc_pmd = xen_alloc_pmd; | ||
| 1809 | pv_mmu_ops.release_pte = xen_release_pte; | ||
| 1810 | pv_mmu_ops.release_pmd = xen_release_pmd; | ||
| 1811 | #if PAGETABLE_LEVELS == 4 | ||
| 1812 | pv_mmu_ops.alloc_pud = xen_alloc_pud; | ||
| 1813 | pv_mmu_ops.release_pud = xen_release_pud; | ||
| 1814 | #endif | ||
| 1815 | |||
| 1816 | #ifdef CONFIG_X86_64 | ||
| 1817 | SetPagePinned(virt_to_page(level3_user_vsyscall)); | ||
| 1818 | #endif | ||
| 1819 | xen_mark_init_mm_pinned(); | ||
| 1820 | } | ||
| 1821 | |||
| 1822 | |||
| 1823 | const struct pv_mmu_ops xen_mmu_ops __initdata = { | ||
| 1824 | .pagetable_setup_start = xen_pagetable_setup_start, | ||
| 1825 | .pagetable_setup_done = xen_pagetable_setup_done, | ||
| 1826 | |||
| 1827 | .read_cr2 = xen_read_cr2, | ||
| 1828 | .write_cr2 = xen_write_cr2, | ||
| 1829 | |||
| 1830 | .read_cr3 = xen_read_cr3, | ||
| 1831 | .write_cr3 = xen_write_cr3, | ||
| 1832 | |||
| 1833 | .flush_tlb_user = xen_flush_tlb, | ||
| 1834 | .flush_tlb_kernel = xen_flush_tlb, | ||
| 1835 | .flush_tlb_single = xen_flush_tlb_single, | ||
| 1836 | .flush_tlb_others = xen_flush_tlb_others, | ||
| 1837 | |||
| 1838 | .pte_update = paravirt_nop, | ||
| 1839 | .pte_update_defer = paravirt_nop, | ||
| 1840 | |||
| 1841 | .pgd_alloc = xen_pgd_alloc, | ||
| 1842 | .pgd_free = xen_pgd_free, | ||
| 1843 | |||
| 1844 | .alloc_pte = xen_alloc_pte_init, | ||
| 1845 | .release_pte = xen_release_pte_init, | ||
| 1846 | .alloc_pmd = xen_alloc_pte_init, | ||
| 1847 | .alloc_pmd_clone = paravirt_nop, | ||
| 1848 | .release_pmd = xen_release_pte_init, | ||
| 1849 | |||
| 1850 | #ifdef CONFIG_HIGHPTE | ||
| 1851 | .kmap_atomic_pte = xen_kmap_atomic_pte, | ||
| 1852 | #endif | ||
| 1853 | |||
| 1854 | #ifdef CONFIG_X86_64 | ||
| 1855 | .set_pte = xen_set_pte, | ||
| 1856 | #else | ||
| 1857 | .set_pte = xen_set_pte_init, | ||
| 1858 | #endif | ||
| 1859 | .set_pte_at = xen_set_pte_at, | ||
| 1860 | .set_pmd = xen_set_pmd_hyper, | ||
| 1861 | |||
| 1862 | .ptep_modify_prot_start = __ptep_modify_prot_start, | ||
| 1863 | .ptep_modify_prot_commit = __ptep_modify_prot_commit, | ||
| 1864 | |||
| 1865 | .pte_val = PV_CALLEE_SAVE(xen_pte_val), | ||
| 1866 | .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), | ||
| 1867 | |||
| 1868 | .make_pte = PV_CALLEE_SAVE(xen_make_pte), | ||
| 1869 | .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), | ||
| 1870 | |||
| 1871 | #ifdef CONFIG_X86_PAE | ||
| 1872 | .set_pte_atomic = xen_set_pte_atomic, | ||
| 1873 | .set_pte_present = xen_set_pte_at, | ||
| 1874 | .pte_clear = xen_pte_clear, | ||
| 1875 | .pmd_clear = xen_pmd_clear, | ||
| 1876 | #endif /* CONFIG_X86_PAE */ | ||
| 1877 | .set_pud = xen_set_pud_hyper, | ||
| 1878 | |||
| 1879 | .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), | ||
| 1880 | .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), | ||
| 1881 | |||
| 1882 | #if PAGETABLE_LEVELS == 4 | ||
| 1883 | .pud_val = PV_CALLEE_SAVE(xen_pud_val), | ||
| 1884 | .make_pud = PV_CALLEE_SAVE(xen_make_pud), | ||
| 1885 | .set_pgd = xen_set_pgd_hyper, | ||
| 1886 | |||
| 1887 | .alloc_pud = xen_alloc_pte_init, | ||
| 1888 | .release_pud = xen_release_pte_init, | ||
| 1889 | #endif /* PAGETABLE_LEVELS == 4 */ | ||
| 1890 | |||
| 1891 | .activate_mm = xen_activate_mm, | ||
| 1892 | .dup_mmap = xen_dup_mmap, | ||
| 1893 | .exit_mmap = xen_exit_mmap, | ||
| 1894 | |||
| 1895 | .lazy_mode = { | ||
| 1896 | .enter = paravirt_enter_lazy_mmu, | ||
| 1897 | .leave = xen_leave_lazy, | ||
| 1898 | }, | ||
| 1899 | |||
| 1900 | .set_fixmap = xen_set_fixmap, | ||
| 1901 | }; | ||
| 1902 | |||
| 1903 | |||
| 1159 | #ifdef CONFIG_XEN_DEBUG_FS | 1904 | #ifdef CONFIG_XEN_DEBUG_FS |
| 1160 | 1905 | ||
| 1161 | static struct dentry *d_mmu_debug; | 1906 | static struct dentry *d_mmu_debug; |
diff --git a/arch/x86/xen/mmu.h b/arch/x86/xen/mmu.h index 98d71659da5..24d1b44a337 100644 --- a/arch/x86/xen/mmu.h +++ b/arch/x86/xen/mmu.h | |||
| @@ -54,4 +54,7 @@ pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr, pte_t | |||
| 54 | void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, | 54 | void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, |
| 55 | pte_t *ptep, pte_t pte); | 55 | pte_t *ptep, pte_t pte); |
| 56 | 56 | ||
| 57 | unsigned long xen_read_cr2_direct(void); | ||
| 58 | |||
| 59 | extern const struct pv_mmu_ops xen_mmu_ops; | ||
| 57 | #endif /* _XEN_MMU_H */ | 60 | #endif /* _XEN_MMU_H */ |
diff --git a/arch/x86/xen/multicalls.c b/arch/x86/xen/multicalls.c index c738644b543..8bff7e7c290 100644 --- a/arch/x86/xen/multicalls.c +++ b/arch/x86/xen/multicalls.c | |||
| @@ -39,6 +39,7 @@ struct mc_buffer { | |||
| 39 | struct multicall_entry entries[MC_BATCH]; | 39 | struct multicall_entry entries[MC_BATCH]; |
| 40 | #if MC_DEBUG | 40 | #if MC_DEBUG |
| 41 | struct multicall_entry debug[MC_BATCH]; | 41 | struct multicall_entry debug[MC_BATCH]; |
| 42 | void *caller[MC_BATCH]; | ||
| 42 | #endif | 43 | #endif |
| 43 | unsigned char args[MC_ARGS]; | 44 | unsigned char args[MC_ARGS]; |
| 44 | struct callback { | 45 | struct callback { |
| @@ -154,11 +155,12 @@ void xen_mc_flush(void) | |||
| 154 | ret, smp_processor_id()); | 155 | ret, smp_processor_id()); |
| 155 | dump_stack(); | 156 | dump_stack(); |
| 156 | for (i = 0; i < b->mcidx; i++) { | 157 | for (i = 0; i < b->mcidx; i++) { |
| 157 | printk(KERN_DEBUG " call %2d/%d: op=%lu arg=[%lx] result=%ld\n", | 158 | printk(KERN_DEBUG " call %2d/%d: op=%lu arg=[%lx] result=%ld\t%pF\n", |
| 158 | i+1, b->mcidx, | 159 | i+1, b->mcidx, |
| 159 | b->debug[i].op, | 160 | b->debug[i].op, |
| 160 | b->debug[i].args[0], | 161 | b->debug[i].args[0], |
| 161 | b->entries[i].result); | 162 | b->entries[i].result, |
| 163 | b->caller[i]); | ||
| 162 | } | 164 | } |
| 163 | } | 165 | } |
| 164 | #endif | 166 | #endif |
| @@ -168,8 +170,6 @@ void xen_mc_flush(void) | |||
| 168 | } else | 170 | } else |
| 169 | BUG_ON(b->argidx != 0); | 171 | BUG_ON(b->argidx != 0); |
| 170 | 172 | ||
| 171 | local_irq_restore(flags); | ||
| 172 | |||
| 173 | for (i = 0; i < b->cbidx; i++) { | 173 | for (i = 0; i < b->cbidx; i++) { |
| 174 | struct callback *cb = &b->callbacks[i]; | 174 | struct callback *cb = &b->callbacks[i]; |
| 175 | 175 | ||
| @@ -177,7 +177,9 @@ void xen_mc_flush(void) | |||
| 177 | } | 177 | } |
| 178 | b->cbidx = 0; | 178 | b->cbidx = 0; |
| 179 | 179 | ||
| 180 | BUG_ON(ret); | 180 | local_irq_restore(flags); |
| 181 | |||
| 182 | WARN_ON(ret); | ||
| 181 | } | 183 | } |
| 182 | 184 | ||
| 183 | struct multicall_space __xen_mc_entry(size_t args) | 185 | struct multicall_space __xen_mc_entry(size_t args) |
| @@ -197,6 +199,9 @@ struct multicall_space __xen_mc_entry(size_t args) | |||
| 197 | } | 199 | } |
| 198 | 200 | ||
| 199 | ret.mc = &b->entries[b->mcidx]; | 201 | ret.mc = &b->entries[b->mcidx]; |
| 202 | #ifdef MC_DEBUG | ||
| 203 | b->caller[b->mcidx] = __builtin_return_address(0); | ||
| 204 | #endif | ||
| 200 | b->mcidx++; | 205 | b->mcidx++; |
| 201 | ret.args = &b->args[argidx]; | 206 | ret.args = &b->args[argidx]; |
| 202 | b->argidx = argidx + args; | 207 | b->argidx = argidx + args; |
diff --git a/arch/x86/xen/multicalls.h b/arch/x86/xen/multicalls.h index fa3e10725d9..9e565da5d1f 100644 --- a/arch/x86/xen/multicalls.h +++ b/arch/x86/xen/multicalls.h | |||
| @@ -41,7 +41,7 @@ static inline void xen_mc_issue(unsigned mode) | |||
| 41 | xen_mc_flush(); | 41 | xen_mc_flush(); |
| 42 | 42 | ||
| 43 | /* restore flags saved in xen_mc_batch */ | 43 | /* restore flags saved in xen_mc_batch */ |
| 44 | local_irq_restore(x86_read_percpu(xen_mc_irq_flags)); | 44 | local_irq_restore(percpu_read(xen_mc_irq_flags)); |
| 45 | } | 45 | } |
| 46 | 46 | ||
| 47 | /* Set up a callback to be called when the current batch is flushed */ | 47 | /* Set up a callback to be called when the current batch is flushed */ |
diff --git a/arch/x86/xen/smp.c b/arch/x86/xen/smp.c index c44e2069c7c..585a6e33083 100644 --- a/arch/x86/xen/smp.c +++ b/arch/x86/xen/smp.c | |||
| @@ -50,11 +50,7 @@ static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id); | |||
| 50 | */ | 50 | */ |
| 51 | static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id) | 51 | static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id) |
| 52 | { | 52 | { |
| 53 | #ifdef CONFIG_X86_32 | 53 | inc_irq_stat(irq_resched_count); |
| 54 | __get_cpu_var(irq_stat).irq_resched_count++; | ||
| 55 | #else | ||
| 56 | add_pda(irq_resched_count, 1); | ||
| 57 | #endif | ||
| 58 | 54 | ||
| 59 | return IRQ_HANDLED; | 55 | return IRQ_HANDLED; |
| 60 | } | 56 | } |
| @@ -78,7 +74,7 @@ static __cpuinit void cpu_bringup(void) | |||
| 78 | xen_setup_cpu_clockevents(); | 74 | xen_setup_cpu_clockevents(); |
| 79 | 75 | ||
| 80 | cpu_set(cpu, cpu_online_map); | 76 | cpu_set(cpu, cpu_online_map); |
| 81 | x86_write_percpu(cpu_state, CPU_ONLINE); | 77 | percpu_write(cpu_state, CPU_ONLINE); |
| 82 | wmb(); | 78 | wmb(); |
| 83 | 79 | ||
| 84 | /* We can take interrupts now: we're officially "up". */ | 80 | /* We can take interrupts now: we're officially "up". */ |
| @@ -162,7 +158,7 @@ static void __init xen_fill_possible_map(void) | |||
| 162 | rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); | 158 | rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); |
| 163 | if (rc >= 0) { | 159 | if (rc >= 0) { |
| 164 | num_processors++; | 160 | num_processors++; |
| 165 | cpu_set(i, cpu_possible_map); | 161 | set_cpu_possible(i, true); |
| 166 | } | 162 | } |
| 167 | } | 163 | } |
| 168 | } | 164 | } |
| @@ -174,7 +170,7 @@ static void __init xen_smp_prepare_boot_cpu(void) | |||
| 174 | 170 | ||
| 175 | /* We've switched to the "real" per-cpu gdt, so make sure the | 171 | /* We've switched to the "real" per-cpu gdt, so make sure the |
| 176 | old memory can be recycled */ | 172 | old memory can be recycled */ |
| 177 | make_lowmem_page_readwrite(&per_cpu_var(gdt_page)); | 173 | make_lowmem_page_readwrite(xen_initial_gdt); |
| 178 | 174 | ||
| 179 | xen_setup_vcpu_info_placement(); | 175 | xen_setup_vcpu_info_placement(); |
| 180 | } | 176 | } |
| @@ -201,7 +197,7 @@ static void __init xen_smp_prepare_cpus(unsigned int max_cpus) | |||
| 201 | while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) { | 197 | while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) { |
| 202 | for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--) | 198 | for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--) |
| 203 | continue; | 199 | continue; |
| 204 | cpu_clear(cpu, cpu_possible_map); | 200 | set_cpu_possible(cpu, false); |
| 205 | } | 201 | } |
| 206 | 202 | ||
| 207 | for_each_possible_cpu (cpu) { | 203 | for_each_possible_cpu (cpu) { |
| @@ -214,7 +210,7 @@ static void __init xen_smp_prepare_cpus(unsigned int max_cpus) | |||
| 214 | if (IS_ERR(idle)) | 210 | if (IS_ERR(idle)) |
| 215 | panic("failed fork for CPU %d", cpu); | 211 | panic("failed fork for CPU %d", cpu); |
| 216 | 212 | ||
| 217 | cpu_set(cpu, cpu_present_map); | 213 | set_cpu_present(cpu, true); |
| 218 | } | 214 | } |
| 219 | } | 215 | } |
| 220 | 216 | ||
| @@ -223,6 +219,7 @@ cpu_initialize_context(unsigned int cpu, struct task_struct *idle) | |||
| 223 | { | 219 | { |
| 224 | struct vcpu_guest_context *ctxt; | 220 | struct vcpu_guest_context *ctxt; |
| 225 | struct desc_struct *gdt; | 221 | struct desc_struct *gdt; |
| 222 | unsigned long gdt_mfn; | ||
| 226 | 223 | ||
| 227 | if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map)) | 224 | if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map)) |
| 228 | return 0; | 225 | return 0; |
| @@ -239,6 +236,8 @@ cpu_initialize_context(unsigned int cpu, struct task_struct *idle) | |||
| 239 | ctxt->user_regs.ss = __KERNEL_DS; | 236 | ctxt->user_regs.ss = __KERNEL_DS; |
| 240 | #ifdef CONFIG_X86_32 | 237 | #ifdef CONFIG_X86_32 |
| 241 | ctxt->user_regs.fs = __KERNEL_PERCPU; | 238 | ctxt->user_regs.fs = __KERNEL_PERCPU; |
| 239 | #else | ||
| 240 | ctxt->gs_base_kernel = per_cpu_offset(cpu); | ||
| 242 | #endif | 241 | #endif |
| 243 | ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle; | 242 | ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle; |
| 244 | ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */ | 243 | ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */ |
| @@ -250,9 +249,12 @@ cpu_initialize_context(unsigned int cpu, struct task_struct *idle) | |||
| 250 | ctxt->ldt_ents = 0; | 249 | ctxt->ldt_ents = 0; |
| 251 | 250 | ||
| 252 | BUG_ON((unsigned long)gdt & ~PAGE_MASK); | 251 | BUG_ON((unsigned long)gdt & ~PAGE_MASK); |
| 252 | |||
| 253 | gdt_mfn = arbitrary_virt_to_mfn(gdt); | ||
| 253 | make_lowmem_page_readonly(gdt); | 254 | make_lowmem_page_readonly(gdt); |
| 255 | make_lowmem_page_readonly(mfn_to_virt(gdt_mfn)); | ||
| 254 | 256 | ||
| 255 | ctxt->gdt_frames[0] = virt_to_mfn(gdt); | 257 | ctxt->gdt_frames[0] = gdt_mfn; |
| 256 | ctxt->gdt_ents = GDT_ENTRIES; | 258 | ctxt->gdt_ents = GDT_ENTRIES; |
| 257 | 259 | ||
| 258 | ctxt->user_regs.cs = __KERNEL_CS; | 260 | ctxt->user_regs.cs = __KERNEL_CS; |
| @@ -283,23 +285,14 @@ static int __cpuinit xen_cpu_up(unsigned int cpu) | |||
| 283 | struct task_struct *idle = idle_task(cpu); | 285 | struct task_struct *idle = idle_task(cpu); |
| 284 | int rc; | 286 | int rc; |
| 285 | 287 | ||
| 286 | #ifdef CONFIG_X86_64 | ||
| 287 | /* Allocate node local memory for AP pdas */ | ||
| 288 | WARN_ON(cpu == 0); | ||
| 289 | if (cpu > 0) { | ||
| 290 | rc = get_local_pda(cpu); | ||
| 291 | if (rc) | ||
| 292 | return rc; | ||
| 293 | } | ||
| 294 | #endif | ||
| 295 | |||
| 296 | #ifdef CONFIG_X86_32 | ||
| 297 | init_gdt(cpu); | ||
| 298 | per_cpu(current_task, cpu) = idle; | 288 | per_cpu(current_task, cpu) = idle; |
| 289 | #ifdef CONFIG_X86_32 | ||
| 299 | irq_ctx_init(cpu); | 290 | irq_ctx_init(cpu); |
| 300 | #else | 291 | #else |
| 301 | cpu_pda(cpu)->pcurrent = idle; | ||
| 302 | clear_tsk_thread_flag(idle, TIF_FORK); | 292 | clear_tsk_thread_flag(idle, TIF_FORK); |
| 293 | per_cpu(kernel_stack, cpu) = | ||
| 294 | (unsigned long)task_stack_page(idle) - | ||
| 295 | KERNEL_STACK_OFFSET + THREAD_SIZE; | ||
| 303 | #endif | 296 | #endif |
| 304 | xen_setup_timer(cpu); | 297 | xen_setup_timer(cpu); |
| 305 | xen_init_lock_cpu(cpu); | 298 | xen_init_lock_cpu(cpu); |
| @@ -445,11 +438,7 @@ static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id) | |||
| 445 | { | 438 | { |
| 446 | irq_enter(); | 439 | irq_enter(); |
| 447 | generic_smp_call_function_interrupt(); | 440 | generic_smp_call_function_interrupt(); |
| 448 | #ifdef CONFIG_X86_32 | 441 | inc_irq_stat(irq_call_count); |
| 449 | __get_cpu_var(irq_stat).irq_call_count++; | ||
| 450 | #else | ||
| 451 | add_pda(irq_call_count, 1); | ||
| 452 | #endif | ||
| 453 | irq_exit(); | 442 | irq_exit(); |
| 454 | 443 | ||
| 455 | return IRQ_HANDLED; | 444 | return IRQ_HANDLED; |
| @@ -459,11 +448,7 @@ static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id) | |||
| 459 | { | 448 | { |
| 460 | irq_enter(); | 449 | irq_enter(); |
| 461 | generic_smp_call_function_single_interrupt(); | 450 | generic_smp_call_function_single_interrupt(); |
| 462 | #ifdef CONFIG_X86_32 | 451 | inc_irq_stat(irq_call_count); |
| 463 | __get_cpu_var(irq_stat).irq_call_count++; | ||
| 464 | #else | ||
| 465 | add_pda(irq_call_count, 1); | ||
| 466 | #endif | ||
| 467 | irq_exit(); | 452 | irq_exit(); |
| 468 | 453 | ||
| 469 | return IRQ_HANDLED; | 454 | return IRQ_HANDLED; |
diff --git a/arch/x86/xen/suspend.c b/arch/x86/xen/suspend.c index 212ffe012b7..95be7b43472 100644 --- a/arch/x86/xen/suspend.c +++ b/arch/x86/xen/suspend.c | |||
| @@ -6,6 +6,7 @@ | |||
| 6 | 6 | ||
| 7 | #include <asm/xen/hypercall.h> | 7 | #include <asm/xen/hypercall.h> |
| 8 | #include <asm/xen/page.h> | 8 | #include <asm/xen/page.h> |
| 9 | #include <asm/fixmap.h> | ||
| 9 | 10 | ||
| 10 | #include "xen-ops.h" | 11 | #include "xen-ops.h" |
| 11 | #include "mmu.h" | 12 | #include "mmu.h" |
diff --git a/arch/x86/xen/xen-asm.S b/arch/x86/xen/xen-asm.S new file mode 100644 index 00000000000..79d7362ad6d --- /dev/null +++ b/arch/x86/xen/xen-asm.S | |||
| @@ -0,0 +1,142 @@ | |||
| 1 | /* | ||
| 2 | * Asm versions of Xen pv-ops, suitable for either direct use or | ||
| 3 | * inlining. The inline versions are the same as the direct-use | ||
| 4 | * versions, with the pre- and post-amble chopped off. | ||
| 5 | * | ||
| 6 | * This code is encoded for size rather than absolute efficiency, with | ||
| 7 | * a view to being able to inline as much as possible. | ||
| 8 | * | ||
| 9 | * We only bother with direct forms (ie, vcpu in percpu data) of the | ||
| 10 | * operations here; the indirect forms are better handled in C, since | ||
| 11 | * they're generally too large to inline anyway. | ||
| 12 | */ | ||
| 13 | |||
| 14 | #include <asm/asm-offsets.h> | ||
| 15 | #include <asm/percpu.h> | ||
| 16 | #include <asm/processor-flags.h> | ||
| 17 | |||
| 18 | #include "xen-asm.h" | ||
| 19 | |||
| 20 | /* | ||
| 21 | * Enable events. This clears the event mask and tests the pending | ||
| 22 | * event status with one and operation. If there are pending events, | ||
| 23 | * then enter the hypervisor to get them handled. | ||
| 24 | */ | ||
| 25 | ENTRY(xen_irq_enable_direct) | ||
| 26 | /* Unmask events */ | ||
| 27 | movb $0, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask | ||
| 28 | |||
| 29 | /* | ||
| 30 | * Preempt here doesn't matter because that will deal with any | ||
| 31 | * pending interrupts. The pending check may end up being run | ||
| 32 | * on the wrong CPU, but that doesn't hurt. | ||
| 33 | */ | ||
| 34 | |||
| 35 | /* Test for pending */ | ||
| 36 | testb $0xff, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_pending | ||
| 37 | jz 1f | ||
| 38 | |||
| 39 | 2: call check_events | ||
| 40 | 1: | ||
| 41 | ENDPATCH(xen_irq_enable_direct) | ||
| 42 | ret | ||
| 43 | ENDPROC(xen_irq_enable_direct) | ||
| 44 | RELOC(xen_irq_enable_direct, 2b+1) | ||
| 45 | |||
| 46 | |||
| 47 | /* | ||
| 48 | * Disabling events is simply a matter of making the event mask | ||
| 49 | * non-zero. | ||
| 50 | */ | ||
| 51 | ENTRY(xen_irq_disable_direct) | ||
| 52 | movb $1, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask | ||
| 53 | ENDPATCH(xen_irq_disable_direct) | ||
| 54 | ret | ||
| 55 | ENDPROC(xen_irq_disable_direct) | ||
| 56 | RELOC(xen_irq_disable_direct, 0) | ||
| 57 | |||
| 58 | /* | ||
| 59 | * (xen_)save_fl is used to get the current interrupt enable status. | ||
| 60 | * Callers expect the status to be in X86_EFLAGS_IF, and other bits | ||
| 61 | * may be set in the return value. We take advantage of this by | ||
| 62 | * making sure that X86_EFLAGS_IF has the right value (and other bits | ||
| 63 | * in that byte are 0), but other bits in the return value are | ||
| 64 | * undefined. We need to toggle the state of the bit, because Xen and | ||
| 65 | * x86 use opposite senses (mask vs enable). | ||
| 66 | */ | ||
| 67 | ENTRY(xen_save_fl_direct) | ||
| 68 | testb $0xff, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask | ||
| 69 | setz %ah | ||
| 70 | addb %ah, %ah | ||
| 71 | ENDPATCH(xen_save_fl_direct) | ||
| 72 | ret | ||
| 73 | ENDPROC(xen_save_fl_direct) | ||
| 74 | RELOC(xen_save_fl_direct, 0) | ||
| 75 | |||
| 76 | |||
| 77 | /* | ||
| 78 | * In principle the caller should be passing us a value return from | ||
| 79 | * xen_save_fl_direct, but for robustness sake we test only the | ||
| 80 | * X86_EFLAGS_IF flag rather than the whole byte. After setting the | ||
| 81 | * interrupt mask state, it checks for unmasked pending events and | ||
| 82 | * enters the hypervisor to get them delivered if so. | ||
| 83 | */ | ||
| 84 | ENTRY(xen_restore_fl_direct) | ||
| 85 | #ifdef CONFIG_X86_64 | ||
| 86 | testw $X86_EFLAGS_IF, %di | ||
| 87 | #else | ||
| 88 | testb $X86_EFLAGS_IF>>8, %ah | ||
| 89 | #endif | ||
| 90 | setz PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_mask | ||
| 91 | /* | ||
| 92 | * Preempt here doesn't matter because that will deal with any | ||
| 93 | * pending interrupts. The pending check may end up being run | ||
| 94 | * on the wrong CPU, but that doesn't hurt. | ||
| 95 | */ | ||
| 96 | |||
| 97 | /* check for unmasked and pending */ | ||
| 98 | cmpw $0x0001, PER_CPU_VAR(xen_vcpu_info) + XEN_vcpu_info_pending | ||
| 99 | jz 1f | ||
| 100 | 2: call check_events | ||
| 101 | 1: | ||
| 102 | ENDPATCH(xen_restore_fl_direct) | ||
| 103 | ret | ||
| 104 | ENDPROC(xen_restore_fl_direct) | ||
| 105 | RELOC(xen_restore_fl_direct, 2b+1) | ||
| 106 | |||
| 107 | |||
| 108 | /* | ||
| 109 | * Force an event check by making a hypercall, but preserve regs | ||
| 110 | * before making the call. | ||
| 111 | */ | ||
| 112 | check_events: | ||
| 113 | #ifdef CONFIG_X86_32 | ||
| 114 | push %eax | ||
| 115 | push %ecx | ||
| 116 | push %edx | ||
| 117 | call xen_force_evtchn_callback | ||
| 118 | pop %edx | ||
| 119 | pop %ecx | ||
| 120 | pop %eax | ||
| 121 | #else | ||
| 122 | push %rax | ||
| 123 | push %rcx | ||
| 124 | push %rdx | ||
| 125 | push %rsi | ||
| 126 | push %rdi | ||
| 127 | push %r8 | ||
| 128 | push %r9 | ||
| 129 | push %r10 | ||
| 130 | push %r11 | ||
| 131 | call xen_force_evtchn_callback | ||
| 132 | pop %r11 | ||
| 133 | pop %r10 | ||
| 134 | pop %r9 | ||
| 135 | pop %r8 | ||
| 136 | pop %rdi | ||
| 137 | pop %rsi | ||
| 138 | pop %rdx | ||
| 139 | pop %rcx | ||
| 140 | pop %rax | ||
| 141 | #endif | ||
| 142 | ret | ||
diff --git a/arch/x86/xen/xen-asm.h b/arch/x86/xen/xen-asm.h new file mode 100644 index 00000000000..465276467a4 --- /dev/null +++ b/arch/x86/xen/xen-asm.h | |||
| @@ -0,0 +1,12 @@ | |||
| 1 | #ifndef _XEN_XEN_ASM_H | ||
| 2 | #define _XEN_XEN_ASM_H | ||
| 3 | |||
| 4 | #include <linux/linkage.h> | ||
| 5 | |||
| 6 | #define RELOC(x, v) .globl x##_reloc; x##_reloc=v | ||
| 7 | #define ENDPATCH(x) .globl x##_end; x##_end=. | ||
| 8 | |||
| 9 | /* Pseudo-flag used for virtual NMI, which we don't implement yet */ | ||
| 10 | #define XEN_EFLAGS_NMI 0x80000000 | ||
| 11 | |||
| 12 | #endif | ||
diff --git a/arch/x86/xen/xen-asm_32.S b/arch/x86/xen/xen-asm_32.S index 42786f59d9c..88e15deb8b8 100644 --- a/arch/x86/xen/xen-asm_32.S +++ b/arch/x86/xen/xen-asm_32.S | |||
| @@ -1,117 +1,43 @@ | |||
| 1 | /* | 1 | /* |
| 2 | Asm versions of Xen pv-ops, suitable for either direct use or inlining. | 2 | * Asm versions of Xen pv-ops, suitable for either direct use or |
| 3 | The inline versions are the same as the direct-use versions, with the | 3 | * inlining. The inline versions are the same as the direct-use |
| 4 | pre- and post-amble chopped off. | 4 | * versions, with the pre- and post-amble chopped off. |
| 5 | 5 | * | |
| 6 | This code is encoded for size rather than absolute efficiency, | 6 | * This code is encoded for size rather than absolute efficiency, with |
| 7 | with a view to being able to inline as much as possible. | 7 | * a view to being able to inline as much as possible. |
| 8 | 8 | * | |
| 9 | We only bother with direct forms (ie, vcpu in pda) of the operations | 9 | * We only bother with direct forms (ie, vcpu in pda) of the |
| 10 | here; the indirect forms are better handled in C, since they're | 10 | * operations here; the indirect forms are better handled in C, since |
| 11 | generally too large to inline anyway. | 11 | * they're generally too large to inline anyway. |
| 12 | */ | 12 | */ |
| 13 | 13 | ||
| 14 | #include <linux/linkage.h> | ||
| 15 | |||
| 16 | #include <asm/asm-offsets.h> | ||
| 17 | #include <asm/thread_info.h> | 14 | #include <asm/thread_info.h> |
| 18 | #include <asm/percpu.h> | ||
| 19 | #include <asm/processor-flags.h> | 15 | #include <asm/processor-flags.h> |
| 20 | #include <asm/segment.h> | 16 | #include <asm/segment.h> |
| 21 | 17 | ||
| 22 | #include <xen/interface/xen.h> | 18 | #include <xen/interface/xen.h> |
| 23 | 19 | ||
| 24 | #define RELOC(x, v) .globl x##_reloc; x##_reloc=v | 20 | #include "xen-asm.h" |
| 25 | #define ENDPATCH(x) .globl x##_end; x##_end=. | ||
| 26 | |||
| 27 | /* Pseudo-flag used for virtual NMI, which we don't implement yet */ | ||
| 28 | #define XEN_EFLAGS_NMI 0x80000000 | ||
| 29 | |||
| 30 | /* | ||
| 31 | Enable events. This clears the event mask and tests the pending | ||
| 32 | event status with one and operation. If there are pending | ||
| 33 | events, then enter the hypervisor to get them handled. | ||
| 34 | */ | ||
| 35 | ENTRY(xen_irq_enable_direct) | ||
| 36 | /* Unmask events */ | ||
| 37 | movb $0, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_mask | ||
| 38 | |||
| 39 | /* Preempt here doesn't matter because that will deal with | ||
| 40 | any pending interrupts. The pending check may end up being | ||
| 41 | run on the wrong CPU, but that doesn't hurt. */ | ||
| 42 | |||
| 43 | /* Test for pending */ | ||
| 44 | testb $0xff, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_pending | ||
| 45 | jz 1f | ||
| 46 | |||
| 47 | 2: call check_events | ||
| 48 | 1: | ||
| 49 | ENDPATCH(xen_irq_enable_direct) | ||
| 50 | ret | ||
| 51 | ENDPROC(xen_irq_enable_direct) | ||
| 52 | RELOC(xen_irq_enable_direct, 2b+1) | ||
| 53 | |||
| 54 | |||
| 55 | /* | ||
| 56 | Disabling events is simply a matter of making the event mask | ||
| 57 | non-zero. | ||
| 58 | */ | ||
| 59 | ENTRY(xen_irq_disable_direct) | ||
| 60 | movb $1, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_mask | ||
| 61 | ENDPATCH(xen_irq_disable_direct) | ||
| 62 | ret | ||
| 63 | ENDPROC(xen_irq_disable_direct) | ||
| 64 | RELOC(xen_irq_disable_direct, 0) | ||
| 65 | 21 | ||
| 66 | /* | 22 | /* |
| 67 | (xen_)save_fl is used to get the current interrupt enable status. | 23 | * Force an event check by making a hypercall, but preserve regs |
| 68 | Callers expect the status to be in X86_EFLAGS_IF, and other bits | 24 | * before making the call. |
| 69 | may be set in the return value. We take advantage of this by | ||
| 70 | making sure that X86_EFLAGS_IF has the right value (and other bits | ||
| 71 | in that byte are 0), but other bits in the return value are | ||
| 72 | undefined. We need to toggle the state of the bit, because | ||
| 73 | Xen and x86 use opposite senses (mask vs enable). | ||
| 74 | */ | 25 | */ |
| 75 | ENTRY(xen_save_fl_direct) | 26 | check_events: |
| 76 | testb $0xff, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_mask | 27 | push %eax |
| 77 | setz %ah | 28 | push %ecx |
| 78 | addb %ah,%ah | 29 | push %edx |
| 79 | ENDPATCH(xen_save_fl_direct) | 30 | call xen_force_evtchn_callback |
| 80 | ret | 31 | pop %edx |
| 81 | ENDPROC(xen_save_fl_direct) | 32 | pop %ecx |
| 82 | RELOC(xen_save_fl_direct, 0) | 33 | pop %eax |
| 83 | |||
| 84 | |||
| 85 | /* | ||
| 86 | In principle the caller should be passing us a value return | ||
| 87 | from xen_save_fl_direct, but for robustness sake we test only | ||
| 88 | the X86_EFLAGS_IF flag rather than the whole byte. After | ||
| 89 | setting the interrupt mask state, it checks for unmasked | ||
| 90 | pending events and enters the hypervisor to get them delivered | ||
| 91 | if so. | ||
| 92 | */ | ||
| 93 | ENTRY(xen_restore_fl_direct) | ||
| 94 | testb $X86_EFLAGS_IF>>8, %ah | ||
| 95 | setz PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_mask | ||
| 96 | /* Preempt here doesn't matter because that will deal with | ||
| 97 | any pending interrupts. The pending check may end up being | ||
| 98 | run on the wrong CPU, but that doesn't hurt. */ | ||
| 99 | |||
| 100 | /* check for unmasked and pending */ | ||
| 101 | cmpw $0x0001, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_pending | ||
| 102 | jz 1f | ||
| 103 | 2: call check_events | ||
| 104 | 1: | ||
| 105 | ENDPATCH(xen_restore_fl_direct) | ||
| 106 | ret | 34 | ret |
| 107 | ENDPROC(xen_restore_fl_direct) | ||
| 108 | RELOC(xen_restore_fl_direct, 2b+1) | ||
| 109 | 35 | ||
| 110 | /* | 36 | /* |
| 111 | We can't use sysexit directly, because we're not running in ring0. | 37 | * We can't use sysexit directly, because we're not running in ring0. |
| 112 | But we can easily fake it up using iret. Assuming xen_sysexit | 38 | * But we can easily fake it up using iret. Assuming xen_sysexit is |
| 113 | is jumped to with a standard stack frame, we can just strip it | 39 | * jumped to with a standard stack frame, we can just strip it back to |
| 114 | back to a standard iret frame and use iret. | 40 | * a standard iret frame and use iret. |
| 115 | */ | 41 | */ |
| 116 | ENTRY(xen_sysexit) | 42 | ENTRY(xen_sysexit) |
| 117 | movl PT_EAX(%esp), %eax /* Shouldn't be necessary? */ | 43 | movl PT_EAX(%esp), %eax /* Shouldn't be necessary? */ |
| @@ -122,33 +48,31 @@ ENTRY(xen_sysexit) | |||
| 122 | ENDPROC(xen_sysexit) | 48 | ENDPROC(xen_sysexit) |
| 123 | 49 | ||
| 124 | /* | 50 | /* |
| 125 | This is run where a normal iret would be run, with the same stack setup: | 51 | * This is run where a normal iret would be run, with the same stack setup: |
| 126 | 8: eflags | 52 | * 8: eflags |
| 127 | 4: cs | 53 | * 4: cs |
| 128 | esp-> 0: eip | 54 | * esp-> 0: eip |
| 129 | 55 | * | |
| 130 | This attempts to make sure that any pending events are dealt | 56 | * This attempts to make sure that any pending events are dealt with |
| 131 | with on return to usermode, but there is a small window in | 57 | * on return to usermode, but there is a small window in which an |
| 132 | which an event can happen just before entering usermode. If | 58 | * event can happen just before entering usermode. If the nested |
| 133 | the nested interrupt ends up setting one of the TIF_WORK_MASK | 59 | * interrupt ends up setting one of the TIF_WORK_MASK pending work |
| 134 | pending work flags, they will not be tested again before | 60 | * flags, they will not be tested again before returning to |
| 135 | returning to usermode. This means that a process can end up | 61 | * usermode. This means that a process can end up with pending work, |
| 136 | with pending work, which will be unprocessed until the process | 62 | * which will be unprocessed until the process enters and leaves the |
| 137 | enters and leaves the kernel again, which could be an | 63 | * kernel again, which could be an unbounded amount of time. This |
| 138 | unbounded amount of time. This means that a pending signal or | 64 | * means that a pending signal or reschedule event could be |
| 139 | reschedule event could be indefinitely delayed. | 65 | * indefinitely delayed. |
| 140 | 66 | * | |
| 141 | The fix is to notice a nested interrupt in the critical | 67 | * The fix is to notice a nested interrupt in the critical window, and |
| 142 | window, and if one occurs, then fold the nested interrupt into | 68 | * if one occurs, then fold the nested interrupt into the current |
| 143 | the current interrupt stack frame, and re-process it | 69 | * interrupt stack frame, and re-process it iteratively rather than |
| 144 | iteratively rather than recursively. This means that it will | 70 | * recursively. This means that it will exit via the normal path, and |
| 145 | exit via the normal path, and all pending work will be dealt | 71 | * all pending work will be dealt with appropriately. |
| 146 | with appropriately. | 72 | * |
| 147 | 73 | * Because the nested interrupt handler needs to deal with the current | |
| 148 | Because the nested interrupt handler needs to deal with the | 74 | * stack state in whatever form its in, we keep things simple by only |
| 149 | current stack state in whatever form its in, we keep things | 75 | * using a single register which is pushed/popped on the stack. |
| 150 | simple by only using a single register which is pushed/popped | ||
| 151 | on the stack. | ||
| 152 | */ | 76 | */ |
| 153 | ENTRY(xen_iret) | 77 | ENTRY(xen_iret) |
| 154 | /* test eflags for special cases */ | 78 | /* test eflags for special cases */ |
| @@ -158,13 +82,15 @@ ENTRY(xen_iret) | |||
| 158 | push %eax | 82 | push %eax |
| 159 | ESP_OFFSET=4 # bytes pushed onto stack | 83 | ESP_OFFSET=4 # bytes pushed onto stack |
| 160 | 84 | ||
| 161 | /* Store vcpu_info pointer for easy access. Do it this | 85 | /* |
| 162 | way to avoid having to reload %fs */ | 86 | * Store vcpu_info pointer for easy access. Do it this way to |
| 87 | * avoid having to reload %fs | ||
| 88 | */ | ||
| 163 | #ifdef CONFIG_SMP | 89 | #ifdef CONFIG_SMP |
| 164 | GET_THREAD_INFO(%eax) | 90 | GET_THREAD_INFO(%eax) |
| 165 | movl TI_cpu(%eax),%eax | 91 | movl TI_cpu(%eax), %eax |
| 166 | movl __per_cpu_offset(,%eax,4),%eax | 92 | movl __per_cpu_offset(,%eax,4), %eax |
| 167 | mov per_cpu__xen_vcpu(%eax),%eax | 93 | mov per_cpu__xen_vcpu(%eax), %eax |
| 168 | #else | 94 | #else |
| 169 | movl per_cpu__xen_vcpu, %eax | 95 | movl per_cpu__xen_vcpu, %eax |
| 170 | #endif | 96 | #endif |
| @@ -172,37 +98,46 @@ ENTRY(xen_iret) | |||
| 172 | /* check IF state we're restoring */ | 98 | /* check IF state we're restoring */ |
| 173 | testb $X86_EFLAGS_IF>>8, 8+1+ESP_OFFSET(%esp) | 99 | testb $X86_EFLAGS_IF>>8, 8+1+ESP_OFFSET(%esp) |
| 174 | 100 | ||
| 175 | /* Maybe enable events. Once this happens we could get a | 101 | /* |
| 176 | recursive event, so the critical region starts immediately | 102 | * Maybe enable events. Once this happens we could get a |
| 177 | afterwards. However, if that happens we don't end up | 103 | * recursive event, so the critical region starts immediately |
| 178 | resuming the code, so we don't have to be worried about | 104 | * afterwards. However, if that happens we don't end up |
| 179 | being preempted to another CPU. */ | 105 | * resuming the code, so we don't have to be worried about |
| 106 | * being preempted to another CPU. | ||
| 107 | */ | ||
| 180 | setz XEN_vcpu_info_mask(%eax) | 108 | setz XEN_vcpu_info_mask(%eax) |
| 181 | xen_iret_start_crit: | 109 | xen_iret_start_crit: |
| 182 | 110 | ||
| 183 | /* check for unmasked and pending */ | 111 | /* check for unmasked and pending */ |
| 184 | cmpw $0x0001, XEN_vcpu_info_pending(%eax) | 112 | cmpw $0x0001, XEN_vcpu_info_pending(%eax) |
| 185 | 113 | ||
| 186 | /* If there's something pending, mask events again so we | 114 | /* |
| 187 | can jump back into xen_hypervisor_callback */ | 115 | * If there's something pending, mask events again so we can |
| 116 | * jump back into xen_hypervisor_callback | ||
| 117 | */ | ||
| 188 | sete XEN_vcpu_info_mask(%eax) | 118 | sete XEN_vcpu_info_mask(%eax) |
| 189 | 119 | ||
| 190 | popl %eax | 120 | popl %eax |
| 191 | 121 | ||
| 192 | /* From this point on the registers are restored and the stack | 122 | /* |
| 193 | updated, so we don't need to worry about it if we're preempted */ | 123 | * From this point on the registers are restored and the stack |
| 124 | * updated, so we don't need to worry about it if we're | ||
| 125 | * preempted | ||
| 126 | */ | ||
| 194 | iret_restore_end: | 127 | iret_restore_end: |
| 195 | 128 | ||
| 196 | /* Jump to hypervisor_callback after fixing up the stack. | 129 | /* |
| 197 | Events are masked, so jumping out of the critical | 130 | * Jump to hypervisor_callback after fixing up the stack. |
| 198 | region is OK. */ | 131 | * Events are masked, so jumping out of the critical region is |
| 132 | * OK. | ||
| 133 | */ | ||
| 199 | je xen_hypervisor_callback | 134 | je xen_hypervisor_callback |
| 200 | 135 | ||
| 201 | 1: iret | 136 | 1: iret |
| 202 | xen_iret_end_crit: | 137 | xen_iret_end_crit: |
| 203 | .section __ex_table,"a" | 138 | .section __ex_table, "a" |
| 204 | .align 4 | 139 | .align 4 |
| 205 | .long 1b,iret_exc | 140 | .long 1b, iret_exc |
| 206 | .previous | 141 | .previous |
| 207 | 142 | ||
| 208 | hyper_iret: | 143 | hyper_iret: |
| @@ -212,55 +147,55 @@ hyper_iret: | |||
| 212 | .globl xen_iret_start_crit, xen_iret_end_crit | 147 | .globl xen_iret_start_crit, xen_iret_end_crit |
| 213 | 148 | ||
| 214 | /* | 149 | /* |
| 215 | This is called by xen_hypervisor_callback in entry.S when it sees | 150 | * This is called by xen_hypervisor_callback in entry.S when it sees |
| 216 | that the EIP at the time of interrupt was between xen_iret_start_crit | 151 | * that the EIP at the time of interrupt was between |
| 217 | and xen_iret_end_crit. We're passed the EIP in %eax so we can do | 152 | * xen_iret_start_crit and xen_iret_end_crit. We're passed the EIP in |
| 218 | a more refined determination of what to do. | 153 | * %eax so we can do a more refined determination of what to do. |
| 219 | 154 | * | |
| 220 | The stack format at this point is: | 155 | * The stack format at this point is: |
| 221 | ---------------- | 156 | * ---------------- |
| 222 | ss : (ss/esp may be present if we came from usermode) | 157 | * ss : (ss/esp may be present if we came from usermode) |
| 223 | esp : | 158 | * esp : |
| 224 | eflags } outer exception info | 159 | * eflags } outer exception info |
| 225 | cs } | 160 | * cs } |
| 226 | eip } | 161 | * eip } |
| 227 | ---------------- <- edi (copy dest) | 162 | * ---------------- <- edi (copy dest) |
| 228 | eax : outer eax if it hasn't been restored | 163 | * eax : outer eax if it hasn't been restored |
| 229 | ---------------- | 164 | * ---------------- |
| 230 | eflags } nested exception info | 165 | * eflags } nested exception info |
| 231 | cs } (no ss/esp because we're nested | 166 | * cs } (no ss/esp because we're nested |
| 232 | eip } from the same ring) | 167 | * eip } from the same ring) |
| 233 | orig_eax }<- esi (copy src) | 168 | * orig_eax }<- esi (copy src) |
| 234 | - - - - - - - - | 169 | * - - - - - - - - |
| 235 | fs } | 170 | * fs } |
| 236 | es } | 171 | * es } |
| 237 | ds } SAVE_ALL state | 172 | * ds } SAVE_ALL state |
| 238 | eax } | 173 | * eax } |
| 239 | : : | 174 | * : : |
| 240 | ebx }<- esp | 175 | * ebx }<- esp |
| 241 | ---------------- | 176 | * ---------------- |
| 242 | 177 | * | |
| 243 | In order to deliver the nested exception properly, we need to shift | 178 | * In order to deliver the nested exception properly, we need to shift |
| 244 | everything from the return addr up to the error code so it | 179 | * everything from the return addr up to the error code so it sits |
| 245 | sits just under the outer exception info. This means that when we | 180 | * just under the outer exception info. This means that when we |
| 246 | handle the exception, we do it in the context of the outer exception | 181 | * handle the exception, we do it in the context of the outer |
| 247 | rather than starting a new one. | 182 | * exception rather than starting a new one. |
| 248 | 183 | * | |
| 249 | The only caveat is that if the outer eax hasn't been | 184 | * The only caveat is that if the outer eax hasn't been restored yet |
| 250 | restored yet (ie, it's still on stack), we need to insert | 185 | * (ie, it's still on stack), we need to insert its value into the |
| 251 | its value into the SAVE_ALL state before going on, since | 186 | * SAVE_ALL state before going on, since it's usermode state which we |
| 252 | it's usermode state which we eventually need to restore. | 187 | * eventually need to restore. |
| 253 | */ | 188 | */ |
| 254 | ENTRY(xen_iret_crit_fixup) | 189 | ENTRY(xen_iret_crit_fixup) |
| 255 | /* | 190 | /* |
| 256 | Paranoia: Make sure we're really coming from kernel space. | 191 | * Paranoia: Make sure we're really coming from kernel space. |
| 257 | One could imagine a case where userspace jumps into the | 192 | * One could imagine a case where userspace jumps into the |
| 258 | critical range address, but just before the CPU delivers a GP, | 193 | * critical range address, but just before the CPU delivers a |
| 259 | it decides to deliver an interrupt instead. Unlikely? | 194 | * GP, it decides to deliver an interrupt instead. Unlikely? |
| 260 | Definitely. Easy to avoid? Yes. The Intel documents | 195 | * Definitely. Easy to avoid? Yes. The Intel documents |
| 261 | explicitly say that the reported EIP for a bad jump is the | 196 | * explicitly say that the reported EIP for a bad jump is the |
| 262 | jump instruction itself, not the destination, but some virtual | 197 | * jump instruction itself, not the destination, but some |
| 263 | environments get this wrong. | 198 | * virtual environments get this wrong. |
| 264 | */ | 199 | */ |
| 265 | movl PT_CS(%esp), %ecx | 200 | movl PT_CS(%esp), %ecx |
| 266 | andl $SEGMENT_RPL_MASK, %ecx | 201 | andl $SEGMENT_RPL_MASK, %ecx |
| @@ -270,15 +205,17 @@ ENTRY(xen_iret_crit_fixup) | |||
| 270 | lea PT_ORIG_EAX(%esp), %esi | 205 | lea PT_ORIG_EAX(%esp), %esi |
| 271 | lea PT_EFLAGS(%esp), %edi | 206 | lea PT_EFLAGS(%esp), %edi |
| 272 | 207 | ||
| 273 | /* If eip is before iret_restore_end then stack | 208 | /* |
| 274 | hasn't been restored yet. */ | 209 | * If eip is before iret_restore_end then stack |
| 210 | * hasn't been restored yet. | ||
| 211 | */ | ||
| 275 | cmp $iret_restore_end, %eax | 212 | cmp $iret_restore_end, %eax |
| 276 | jae 1f | 213 | jae 1f |
| 277 | 214 | ||
| 278 | movl 0+4(%edi),%eax /* copy EAX (just above top of frame) */ | 215 | movl 0+4(%edi), %eax /* copy EAX (just above top of frame) */ |
| 279 | movl %eax, PT_EAX(%esp) | 216 | movl %eax, PT_EAX(%esp) |
| 280 | 217 | ||
| 281 | lea ESP_OFFSET(%edi),%edi /* move dest up over saved regs */ | 218 | lea ESP_OFFSET(%edi), %edi /* move dest up over saved regs */ |
| 282 | 219 | ||
| 283 | /* set up the copy */ | 220 | /* set up the copy */ |
| 284 | 1: std | 221 | 1: std |
| @@ -286,20 +223,6 @@ ENTRY(xen_iret_crit_fixup) | |||
| 286 | rep movsl | 223 | rep movsl |
| 287 | cld | 224 | cld |
| 288 | 225 | ||
| 289 | lea 4(%edi),%esp /* point esp to new frame */ | 226 | lea 4(%edi), %esp /* point esp to new frame */ |
| 290 | 2: jmp xen_do_upcall | 227 | 2: jmp xen_do_upcall |
| 291 | 228 | ||
| 292 | |||
| 293 | /* | ||
| 294 | Force an event check by making a hypercall, | ||
| 295 | but preserve regs before making the call. | ||
| 296 | */ | ||
| 297 | check_events: | ||
| 298 | push %eax | ||
| 299 | push %ecx | ||
| 300 | push %edx | ||
| 301 | call xen_force_evtchn_callback | ||
| 302 | pop %edx | ||
| 303 | pop %ecx | ||
| 304 | pop %eax | ||
| 305 | ret | ||
diff --git a/arch/x86/xen/xen-asm_64.S b/arch/x86/xen/xen-asm_64.S index 05794c566e8..02f496a8dba 100644 --- a/arch/x86/xen/xen-asm_64.S +++ b/arch/x86/xen/xen-asm_64.S | |||
| @@ -1,174 +1,45 @@ | |||
| 1 | /* | 1 | /* |
| 2 | Asm versions of Xen pv-ops, suitable for either direct use or inlining. | 2 | * Asm versions of Xen pv-ops, suitable for either direct use or |
| 3 | The inline versions are the same as the direct-use versions, with the | 3 | * inlining. The inline versions are the same as the direct-use |
| 4 | pre- and post-amble chopped off. | 4 | * versions, with the pre- and post-amble chopped off. |
| 5 | 5 | * | |
| 6 | This code is encoded for size rather than absolute efficiency, | 6 | * This code is encoded for size rather than absolute efficiency, with |
| 7 | with a view to being able to inline as much as possible. | 7 | * a view to being able to inline as much as possible. |
| 8 | 8 | * | |
| 9 | We only bother with direct forms (ie, vcpu in pda) of the operations | 9 | * We only bother with direct forms (ie, vcpu in pda) of the |
| 10 | here; the indirect forms are better handled in C, since they're | 10 | * operations here; the indirect forms are better handled in C, since |
| 11 | generally too large to inline anyway. | 11 | * they're generally too large to inline anyway. |
| 12 | */ | 12 | */ |
| 13 | 13 | ||
| 14 | #include <linux/linkage.h> | ||
| 15 | |||
| 16 | #include <asm/asm-offsets.h> | ||
| 17 | #include <asm/processor-flags.h> | ||
| 18 | #include <asm/errno.h> | 14 | #include <asm/errno.h> |
| 15 | #include <asm/percpu.h> | ||
| 16 | #include <asm/processor-flags.h> | ||
| 19 | #include <asm/segment.h> | 17 | #include <asm/segment.h> |
| 20 | 18 | ||
| 21 | #include <xen/interface/xen.h> | 19 | #include <xen/interface/xen.h> |
| 22 | 20 | ||
| 23 | #define RELOC(x, v) .globl x##_reloc; x##_reloc=v | 21 | #include "xen-asm.h" |
| 24 | #define ENDPATCH(x) .globl x##_end; x##_end=. | ||
| 25 | |||
| 26 | /* Pseudo-flag used for virtual NMI, which we don't implement yet */ | ||
| 27 | #define XEN_EFLAGS_NMI 0x80000000 | ||
| 28 | |||
| 29 | #if 1 | ||
| 30 | /* | ||
| 31 | x86-64 does not yet support direct access to percpu variables | ||
| 32 | via a segment override, so we just need to make sure this code | ||
| 33 | never gets used | ||
| 34 | */ | ||
| 35 | #define BUG ud2a | ||
| 36 | #define PER_CPU_VAR(var, off) 0xdeadbeef | ||
| 37 | #endif | ||
| 38 | |||
| 39 | /* | ||
| 40 | Enable events. This clears the event mask and tests the pending | ||
| 41 | event status with one and operation. If there are pending | ||
| 42 | events, then enter the hypervisor to get them handled. | ||
| 43 | */ | ||
| 44 | ENTRY(xen_irq_enable_direct) | ||
| 45 | BUG | ||
| 46 | |||
| 47 | /* Unmask events */ | ||
| 48 | movb $0, PER_CPU_VAR(xen_vcpu_info, XEN_vcpu_info_mask) | ||
| 49 | |||
| 50 | /* Preempt here doesn't matter because that will deal with | ||
| 51 | any pending interrupts. The pending check may end up being | ||
| 52 | run on the wrong CPU, but that doesn't hurt. */ | ||
| 53 | |||
| 54 | /* Test for pending */ | ||
| 55 | testb $0xff, PER_CPU_VAR(xen_vcpu_info, XEN_vcpu_info_pending) | ||
| 56 | jz 1f | ||
| 57 | |||
| 58 | 2: call check_events | ||
| 59 | 1: | ||
| 60 | ENDPATCH(xen_irq_enable_direct) | ||
| 61 | ret | ||
| 62 | ENDPROC(xen_irq_enable_direct) | ||
| 63 | RELOC(xen_irq_enable_direct, 2b+1) | ||
| 64 | |||
| 65 | /* | ||
| 66 | Disabling events is simply a matter of making the event mask | ||
| 67 | non-zero. | ||
| 68 | */ | ||
| 69 | ENTRY(xen_irq_disable_direct) | ||
| 70 | BUG | ||
| 71 | |||
| 72 | movb $1, PER_CPU_VAR(xen_vcpu_info, XEN_vcpu_info_mask) | ||
| 73 | ENDPATCH(xen_irq_disable_direct) | ||
| 74 | ret | ||
| 75 | ENDPROC(xen_irq_disable_direct) | ||
| 76 | RELOC(xen_irq_disable_direct, 0) | ||
| 77 | |||
| 78 | /* | ||
| 79 | (xen_)save_fl is used to get the current interrupt enable status. | ||
| 80 | Callers expect the status to be in X86_EFLAGS_IF, and other bits | ||
| 81 | may be set in the return value. We take advantage of this by | ||
| 82 | making sure that X86_EFLAGS_IF has the right value (and other bits | ||
| 83 | in that byte are 0), but other bits in the return value are | ||
| 84 | undefined. We need to toggle the state of the bit, because | ||
| 85 | Xen and x86 use opposite senses (mask vs enable). | ||
| 86 | */ | ||
| 87 | ENTRY(xen_save_fl_direct) | ||
| 88 | BUG | ||
| 89 | |||
| 90 | testb $0xff, PER_CPU_VAR(xen_vcpu_info, XEN_vcpu_info_mask) | ||
| 91 | setz %ah | ||
| 92 | addb %ah,%ah | ||
| 93 | ENDPATCH(xen_save_fl_direct) | ||
| 94 | ret | ||
| 95 | ENDPROC(xen_save_fl_direct) | ||
| 96 | RELOC(xen_save_fl_direct, 0) | ||
| 97 | |||
| 98 | /* | ||
| 99 | In principle the caller should be passing us a value return | ||
| 100 | from xen_save_fl_direct, but for robustness sake we test only | ||
| 101 | the X86_EFLAGS_IF flag rather than the whole byte. After | ||
| 102 | setting the interrupt mask state, it checks for unmasked | ||
| 103 | pending events and enters the hypervisor to get them delivered | ||
| 104 | if so. | ||
| 105 | */ | ||
| 106 | ENTRY(xen_restore_fl_direct) | ||
| 107 | BUG | ||
| 108 | |||
| 109 | testb $X86_EFLAGS_IF>>8, %ah | ||
| 110 | setz PER_CPU_VAR(xen_vcpu_info, XEN_vcpu_info_mask) | ||
| 111 | /* Preempt here doesn't matter because that will deal with | ||
| 112 | any pending interrupts. The pending check may end up being | ||
| 113 | run on the wrong CPU, but that doesn't hurt. */ | ||
| 114 | |||
| 115 | /* check for unmasked and pending */ | ||
| 116 | cmpw $0x0001, PER_CPU_VAR(xen_vcpu_info, XEN_vcpu_info_pending) | ||
| 117 | jz 1f | ||
| 118 | 2: call check_events | ||
| 119 | 1: | ||
| 120 | ENDPATCH(xen_restore_fl_direct) | ||
| 121 | ret | ||
| 122 | ENDPROC(xen_restore_fl_direct) | ||
| 123 | RELOC(xen_restore_fl_direct, 2b+1) | ||
| 124 | |||
| 125 | |||
| 126 | /* | ||
| 127 | Force an event check by making a hypercall, | ||
| 128 | but preserve regs before making the call. | ||
| 129 | */ | ||
| 130 | check_events: | ||
| 131 | push %rax | ||
| 132 | push %rcx | ||
| 133 | push %rdx | ||
| 134 | push %rsi | ||
| 135 | push %rdi | ||
| 136 | push %r8 | ||
| 137 | push %r9 | ||
| 138 | push %r10 | ||
| 139 | push %r11 | ||
| 140 | call xen_force_evtchn_callback | ||
| 141 | pop %r11 | ||
| 142 | pop %r10 | ||
| 143 | pop %r9 | ||
| 144 | pop %r8 | ||
| 145 | pop %rdi | ||
| 146 | pop %rsi | ||
| 147 | pop %rdx | ||
| 148 | pop %rcx | ||
| 149 | pop %rax | ||
| 150 | ret | ||
| 151 | 22 | ||
| 152 | ENTRY(xen_adjust_exception_frame) | 23 | ENTRY(xen_adjust_exception_frame) |
| 153 | mov 8+0(%rsp),%rcx | 24 | mov 8+0(%rsp), %rcx |
| 154 | mov 8+8(%rsp),%r11 | 25 | mov 8+8(%rsp), %r11 |
| 155 | ret $16 | 26 | ret $16 |
| 156 | 27 | ||
| 157 | hypercall_iret = hypercall_page + __HYPERVISOR_iret * 32 | 28 | hypercall_iret = hypercall_page + __HYPERVISOR_iret * 32 |
| 158 | /* | 29 | /* |
| 159 | Xen64 iret frame: | 30 | * Xen64 iret frame: |
| 160 | 31 | * | |
| 161 | ss | 32 | * ss |
| 162 | rsp | 33 | * rsp |
| 163 | rflags | 34 | * rflags |
| 164 | cs | 35 | * cs |
| 165 | rip <-- standard iret frame | 36 | * rip <-- standard iret frame |
| 166 | 37 | * | |
| 167 | flags | 38 | * flags |
| 168 | 39 | * | |
| 169 | rcx } | 40 | * rcx } |
| 170 | r11 }<-- pushed by hypercall page | 41 | * r11 }<-- pushed by hypercall page |
| 171 | rsp -> rax } | 42 | * rsp->rax } |
| 172 | */ | 43 | */ |
| 173 | ENTRY(xen_iret) | 44 | ENTRY(xen_iret) |
| 174 | pushq $0 | 45 | pushq $0 |
| @@ -177,8 +48,8 @@ ENDPATCH(xen_iret) | |||
| 177 | RELOC(xen_iret, 1b+1) | 48 | RELOC(xen_iret, 1b+1) |
| 178 | 49 | ||
| 179 | /* | 50 | /* |
| 180 | sysexit is not used for 64-bit processes, so it's | 51 | * sysexit is not used for 64-bit processes, so it's only ever used to |
| 181 | only ever used to return to 32-bit compat userspace. | 52 | * return to 32-bit compat userspace. |
| 182 | */ | 53 | */ |
| 183 | ENTRY(xen_sysexit) | 54 | ENTRY(xen_sysexit) |
| 184 | pushq $__USER32_DS | 55 | pushq $__USER32_DS |
| @@ -193,13 +64,15 @@ ENDPATCH(xen_sysexit) | |||
| 193 | RELOC(xen_sysexit, 1b+1) | 64 | RELOC(xen_sysexit, 1b+1) |
| 194 | 65 | ||
| 195 | ENTRY(xen_sysret64) | 66 | ENTRY(xen_sysret64) |
| 196 | /* We're already on the usermode stack at this point, but still | 67 | /* |
| 197 | with the kernel gs, so we can easily switch back */ | 68 | * We're already on the usermode stack at this point, but |
| 198 | movq %rsp, %gs:pda_oldrsp | 69 | * still with the kernel gs, so we can easily switch back |
| 199 | movq %gs:pda_kernelstack,%rsp | 70 | */ |
| 71 | movq %rsp, PER_CPU_VAR(old_rsp) | ||
| 72 | movq PER_CPU_VAR(kernel_stack), %rsp | ||
| 200 | 73 | ||
| 201 | pushq $__USER_DS | 74 | pushq $__USER_DS |
| 202 | pushq %gs:pda_oldrsp | 75 | pushq PER_CPU_VAR(old_rsp) |
| 203 | pushq %r11 | 76 | pushq %r11 |
| 204 | pushq $__USER_CS | 77 | pushq $__USER_CS |
| 205 | pushq %rcx | 78 | pushq %rcx |
| @@ -210,13 +83,15 @@ ENDPATCH(xen_sysret64) | |||
| 210 | RELOC(xen_sysret64, 1b+1) | 83 | RELOC(xen_sysret64, 1b+1) |
| 211 | 84 | ||
| 212 | ENTRY(xen_sysret32) | 85 | ENTRY(xen_sysret32) |
| 213 | /* We're already on the usermode stack at this point, but still | 86 | /* |
| 214 | with the kernel gs, so we can easily switch back */ | 87 | * We're already on the usermode stack at this point, but |
| 215 | movq %rsp, %gs:pda_oldrsp | 88 | * still with the kernel gs, so we can easily switch back |
| 216 | movq %gs:pda_kernelstack, %rsp | 89 | */ |
| 90 | movq %rsp, PER_CPU_VAR(old_rsp) | ||
| 91 | movq PER_CPU_VAR(kernel_stack), %rsp | ||
| 217 | 92 | ||
| 218 | pushq $__USER32_DS | 93 | pushq $__USER32_DS |
| 219 | pushq %gs:pda_oldrsp | 94 | pushq PER_CPU_VAR(old_rsp) |
| 220 | pushq %r11 | 95 | pushq %r11 |
| 221 | pushq $__USER32_CS | 96 | pushq $__USER32_CS |
| 222 | pushq %rcx | 97 | pushq %rcx |
| @@ -227,28 +102,27 @@ ENDPATCH(xen_sysret32) | |||
| 227 | RELOC(xen_sysret32, 1b+1) | 102 | RELOC(xen_sysret32, 1b+1) |
| 228 | 103 | ||
| 229 | /* | 104 | /* |
| 230 | Xen handles syscall callbacks much like ordinary exceptions, | 105 | * Xen handles syscall callbacks much like ordinary exceptions, which |
| 231 | which means we have: | 106 | * means we have: |
| 232 | - kernel gs | 107 | * - kernel gs |
| 233 | - kernel rsp | 108 | * - kernel rsp |
| 234 | - an iret-like stack frame on the stack (including rcx and r11): | 109 | * - an iret-like stack frame on the stack (including rcx and r11): |
| 235 | ss | 110 | * ss |
| 236 | rsp | 111 | * rsp |
| 237 | rflags | 112 | * rflags |
| 238 | cs | 113 | * cs |
| 239 | rip | 114 | * rip |
| 240 | r11 | 115 | * r11 |
| 241 | rsp-> rcx | 116 | * rsp->rcx |
| 242 | 117 | * | |
| 243 | In all the entrypoints, we undo all that to make it look | 118 | * In all the entrypoints, we undo all that to make it look like a |
| 244 | like a CPU-generated syscall/sysenter and jump to the normal | 119 | * CPU-generated syscall/sysenter and jump to the normal entrypoint. |
| 245 | entrypoint. | ||
| 246 | */ | 120 | */ |
| 247 | 121 | ||
| 248 | .macro undo_xen_syscall | 122 | .macro undo_xen_syscall |
| 249 | mov 0*8(%rsp),%rcx | 123 | mov 0*8(%rsp), %rcx |
| 250 | mov 1*8(%rsp),%r11 | 124 | mov 1*8(%rsp), %r11 |
| 251 | mov 5*8(%rsp),%rsp | 125 | mov 5*8(%rsp), %rsp |
| 252 | .endm | 126 | .endm |
| 253 | 127 | ||
| 254 | /* Normal 64-bit system call target */ | 128 | /* Normal 64-bit system call target */ |
| @@ -275,7 +149,7 @@ ENDPROC(xen_sysenter_target) | |||
| 275 | 149 | ||
| 276 | ENTRY(xen_syscall32_target) | 150 | ENTRY(xen_syscall32_target) |
| 277 | ENTRY(xen_sysenter_target) | 151 | ENTRY(xen_sysenter_target) |
| 278 | lea 16(%rsp), %rsp /* strip %rcx,%r11 */ | 152 | lea 16(%rsp), %rsp /* strip %rcx, %r11 */ |
| 279 | mov $-ENOSYS, %rax | 153 | mov $-ENOSYS, %rax |
| 280 | pushq $VGCF_in_syscall | 154 | pushq $VGCF_in_syscall |
| 281 | jmp hypercall_iret | 155 | jmp hypercall_iret |
diff --git a/arch/x86/xen/xen-head.S b/arch/x86/xen/xen-head.S index 63d49a523ed..1a5ff24e29c 100644 --- a/arch/x86/xen/xen-head.S +++ b/arch/x86/xen/xen-head.S | |||
| @@ -8,7 +8,7 @@ | |||
| 8 | 8 | ||
| 9 | #include <asm/boot.h> | 9 | #include <asm/boot.h> |
| 10 | #include <asm/asm.h> | 10 | #include <asm/asm.h> |
| 11 | #include <asm/page.h> | 11 | #include <asm/page_types.h> |
| 12 | 12 | ||
| 13 | #include <xen/interface/elfnote.h> | 13 | #include <xen/interface/elfnote.h> |
| 14 | #include <asm/xen/interface.h> | 14 | #include <asm/xen/interface.h> |
diff --git a/arch/x86/xen/xen-ops.h b/arch/x86/xen/xen-ops.h index c1f8faf0a2c..2f5ef2632ea 100644 --- a/arch/x86/xen/xen-ops.h +++ b/arch/x86/xen/xen-ops.h | |||
| @@ -10,9 +10,12 @@ | |||
| 10 | extern const char xen_hypervisor_callback[]; | 10 | extern const char xen_hypervisor_callback[]; |
| 11 | extern const char xen_failsafe_callback[]; | 11 | extern const char xen_failsafe_callback[]; |
| 12 | 12 | ||
| 13 | extern void *xen_initial_gdt; | ||
| 14 | |||
| 13 | struct trap_info; | 15 | struct trap_info; |
| 14 | void xen_copy_trap_info(struct trap_info *traps); | 16 | void xen_copy_trap_info(struct trap_info *traps); |
| 15 | 17 | ||
| 18 | DECLARE_PER_CPU(struct vcpu_info, xen_vcpu_info); | ||
| 16 | DECLARE_PER_CPU(unsigned long, xen_cr3); | 19 | DECLARE_PER_CPU(unsigned long, xen_cr3); |
| 17 | DECLARE_PER_CPU(unsigned long, xen_current_cr3); | 20 | DECLARE_PER_CPU(unsigned long, xen_current_cr3); |
| 18 | 21 | ||
| @@ -22,6 +25,13 @@ extern struct shared_info *HYPERVISOR_shared_info; | |||
| 22 | 25 | ||
| 23 | void xen_setup_mfn_list_list(void); | 26 | void xen_setup_mfn_list_list(void); |
| 24 | void xen_setup_shared_info(void); | 27 | void xen_setup_shared_info(void); |
| 28 | void xen_setup_machphys_mapping(void); | ||
| 29 | pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn); | ||
| 30 | void xen_ident_map_ISA(void); | ||
| 31 | void xen_reserve_top(void); | ||
| 32 | |||
| 33 | void xen_leave_lazy(void); | ||
| 34 | void xen_post_allocator_init(void); | ||
| 25 | 35 | ||
| 26 | char * __init xen_memory_setup(void); | 36 | char * __init xen_memory_setup(void); |
| 27 | void __init xen_arch_setup(void); | 37 | void __init xen_arch_setup(void); |
