aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/i2c/writing-clients
blob: 3a057c8e5507c4d1ef8620b93fff8bfe1f208702 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
This is a small guide for those who want to write kernel drivers for I2C
or SMBus devices.

To set up a driver, you need to do several things. Some are optional, and
some things can be done slightly or completely different. Use this as a
guide, not as a rule book!


General remarks
===============

Try to keep the kernel namespace as clean as possible. The best way to
do this is to use a unique prefix for all global symbols. This is 
especially important for exported symbols, but it is a good idea to do
it for non-exported symbols too. We will use the prefix `foo_' in this
tutorial, and `FOO_' for preprocessor variables.


The driver structure
====================

Usually, you will implement a single driver structure, and instantiate
all clients from it. Remember, a driver structure contains general access 
routines, a client structure specific information like the actual I2C
address.

static struct i2c_driver foo_driver = {
	.driver = {
		.name	= "foo",
	},
	.attach_adapter	= &foo_attach_adapter,
	.detach_client	= &foo_detach_client,
	.command	= &foo_command /* may be NULL */
}
 
The name field must match the driver name, including the case. It must not
contain spaces, and may be up to 31 characters long.

All other fields are for call-back functions which will be explained 
below.


Extra client data
=================

The client structure has a special `data' field that can point to any
structure at all. You can use this to keep client-specific data. You
do not always need this, but especially for `sensors' drivers, it can
be very useful.

An example structure is below.

  struct foo_data {
    struct i2c_client client;
    struct semaphore lock; /* For ISA access in `sensors' drivers. */
    int sysctl_id;         /* To keep the /proc directory entry for 
                              `sensors' drivers. */
    enum chips type;       /* To keep the chips type for `sensors' drivers. */
   
    /* Because the i2c bus is slow, it is often useful to cache the read
       information of a chip for some time (for example, 1 or 2 seconds).
       It depends of course on the device whether this is really worthwhile
       or even sensible. */
    struct semaphore update_lock; /* When we are reading lots of information,
                                     another process should not update the
                                     below information */
    char valid;                   /* != 0 if the following fields are valid. */
    unsigned long last_updated;   /* In jiffies */
    /* Add the read information here too */
  };


Accessing the client
====================

Let's say we have a valid client structure. At some time, we will need
to gather information from the client, or write new information to the
client. How we will export this information to user-space is less 
important at this moment (perhaps we do not need to do this at all for
some obscure clients). But we need generic reading and writing routines.

I have found it useful to define foo_read and foo_write function for this.
For some cases, it will be easier to call the i2c functions directly,
but many chips have some kind of register-value idea that can easily
be encapsulated. Also, some chips have both ISA and I2C interfaces, and
it useful to abstract from this (only for `sensors' drivers).

The below functions are simple examples, and should not be copied
literally.

  int foo_read_value(struct i2c_client *client, u8 reg)
  {
    if (reg < 0x10) /* byte-sized register */
      return i2c_smbus_read_byte_data(client,reg);
    else /* word-sized register */
      return i2c_smbus_read_word_data(client,reg);
  }

  int foo_write_value(struct i2c_client *client, u8 reg, u16 value)
  {
    if (reg == 0x10) /* Impossible to write - driver error! */ {
      return -1;
    else if (reg < 0x10) /* byte-sized register */
      return i2c_smbus_write_byte_data(client,reg,value);
    else /* word-sized register */
      return i2c_smbus_write_word_data(client,reg,value);
  }

For sensors code, you may have to cope with ISA registers too. Something
like the below often works. Note the locking! 

  int foo_read_value(struct i2c_client *client, u8 reg)
  {
    int res;
    if (i2c_is_isa_client(client)) {
      down(&(((struct foo_data *) (client->data)) -> lock));
      outb_p(reg,client->addr + FOO_ADDR_REG_OFFSET);
      res = inb_p(client->addr + FOO_DATA_REG_OFFSET);
      up(&(((struct foo_data *) (client->data)) -> lock));
      return res;
    } else
      return i2c_smbus_read_byte_data(client,reg);
  }

Writing is done the same way.


Probing and attaching
=====================

Most i2c devices can be present on several i2c addresses; for some this
is determined in hardware (by soldering some chip pins to Vcc or Ground),
for others this can be changed in software (by writing to specific client
registers). Some devices are usually on a specific address, but not always;
and some are even more tricky. So you will probably need to scan several
i2c addresses for your clients, and do some sort of detection to see
whether it is actually a device supported by your driver.

To give the user a maximum of possibilities, some default module parameters
are defined to help determine what addresses are scanned. Several macros
are defined in i2c.h to help you support them, as well as a generic
detection algorithm.

You do not have to use this parameter interface; but don't try to use
function i2c_probe() if you don't.

NOTE: If you want to write a `sensors' driver, the interface is slightly
      different! See below.



Probing classes
---------------

All parameters are given as lists of unsigned 16-bit integers. Lists are
terminated by I2C_CLIENT_END.
The following lists are used internally:

  normal_i2c: filled in by the module writer. 
     A list of I2C addresses which should normally be examined.
   probe: insmod parameter. 
     A list of pairs. The first value is a bus number (-1 for any I2C bus), 
     the second is the address. These addresses are also probed, as if they 
     were in the 'normal' list.
   ignore: insmod parameter.
     A list of pairs. The first value is a bus number (-1 for any I2C bus), 
     the second is the I2C address. These addresses are never probed. 
     This parameter overrules the 'normal_i2c' list only.
   force: insmod parameter. 
     A list of pairs. The first value is a bus number (-1 for any I2C bus),
     the second is the I2C address. A device is blindly assumed to be on
     the given address, no probing is done. 

Additionally, kind-specific force lists may optionally be defined if
the driver supports several chip kinds. They are grouped in a
NULL-terminated list of pointers named forces, those first element if the
generic force list mentioned above. Each additional list correspond to an
insmod parameter of the form force_<kind>.

Fortunately, as a module writer, you just have to define the `normal_i2c' 
parameter. The complete declaration could look like this:

  /* Scan 0x37, and 0x48 to 0x4f */
  static unsigned short normal_i2c[] = { 0x37, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
                                         0x4d, 0x4e, 0x4f, I2C_CLIENT_END };

  /* Magic definition of all other variables and things */
  I2C_CLIENT_INSMOD;
  /* Or, if your driver supports, say, 2 kind of devices: */
  I2C_CLIENT_INSMOD_2(foo, bar);

If you use the multi-kind form, an enum will be defined for you:
  enum chips { any_chip, foo, bar, ... }
You can then (and certainly should) use it in the driver code.

Note that you *have* to call the defined variable `normal_i2c',
without any prefix!


Attaching to an adapter
-----------------------

Whenever a new adapter is inserted, or for all adapters if the driver is
being registered, the callback attach_adapter() is called. Now is the
time to determine what devices are present on the adapter, and to register
a client for each of them.

The attach_adapter callback is really easy: we just call the generic
detection function. This function will scan the bus for us, using the
information as defined in the lists explained above. If a device is
detected at a specific address, another callback is called.

  int foo_attach_adapter(struct i2c_adapter *adapter)
  {
    return i2c_probe(adapter,&addr_data,&foo_detect_client);
  }

Remember, structure `addr_data' is defined by the macros explained above,
so you do not have to define it yourself.

The i2c_probe function will call the foo_detect_client
function only for those i2c addresses that actually have a device on
them (unless a `force' parameter was used). In addition, addresses that
are already in use (by some other registered client) are skipped.


The detect client function
--------------------------

The detect client function is called by i2c_probe. The `kind' parameter
contains -1 for a probed detection, 0 for a forced detection, or a positive
number for a forced detection with a chip type forced.

Below, some things are only needed if this is a `sensors' driver. Those
parts are between /* SENSORS ONLY START */ and /* SENSORS ONLY END */
markers. 

Returning an error different from -ENODEV in a detect function will cause
the detection to stop: other addresses and adapters won't be scanned.
This should only be done on fatal or internal errors, such as a memory
shortage or i2c_attach_client failing.

For now, you can ignore the `flags' parameter. It is there for future use.

  int foo_detect_client(struct i2c_adapter *adapter, int address, 
                        unsigned short flags, int kind)
  {
    int err = 0;
    int i;
    struct i2c_client *new_client;
    struct foo_data *data;
    const char *client_name = ""; /* For non-`sensors' drivers, put the real
                                     name here! */
   
    /* Let's see whether this adapter can support what we need.
       Please substitute the things you need here! 
       For `sensors' drivers, add `! is_isa &&' to the if statement */
    if (!i2c_check_functionality(adapter,I2C_FUNC_SMBUS_WORD_DATA |
                                        I2C_FUNC_SMBUS_WRITE_BYTE))
       goto ERROR0;

    /* SENSORS ONLY START */
    const char *type_name = "";
    int is_isa = i2c_is_isa_adapter(adapter);

    /* Do this only if the chip can additionally be found on the ISA bus
       (hybrid chip). */

    if (is_isa) {

      /* Discard immediately if this ISA range is already used */
      /* FIXME: never use check_region(), only request_region() */
      if (check_region(address,FOO_EXTENT))
        goto ERROR0;

      /* Probe whether there is anything on this address.
         Some example code is below, but you will have to adapt this
         for your own driver */

      if (kind < 0) /* Only if no force parameter was used */ {
        /* We may need long timeouts at least for some chips. */
        #define REALLY_SLOW_IO
        i = inb_p(address + 1);
        if (inb_p(address + 2) != i)
          goto ERROR0;
        if (inb_p(address + 3) != i)
          goto ERROR0;
        if (inb_p(address + 7) != i)
          goto ERROR0;
        #undef REALLY_SLOW_IO

        /* Let's just hope nothing breaks here */
        i = inb_p(address + 5) & 0x7f;
        outb_p(~i & 0x7f,address+5);
        if ((inb_p(address + 5) & 0x7f) != (~i & 0x7f)) {
          outb_p(i,address+5);
          return 0;
        }
      }
    }

    /* SENSORS ONLY END */

    /* OK. For now, we presume we have a valid client. We now create the
       client structure, even though we cannot fill it completely yet.
       But it allows us to access several i2c functions safely */
    
    if (!(data = kzalloc(sizeof(struct foo_data), GFP_KERNEL))) {
      err = -ENOMEM;
      goto ERROR0;
    }

    new_client = &data->client;
    i2c_set_clientdata(new_client, data);

    new_client->addr = address;
    new_client->adapter = adapter;
    new_client->driver = &foo_driver;
    new_client->flags = 0;

    /* Now, we do the remaining detection. If no `force' parameter is used. */

    /* First, the generic detection (if any), that is skipped if any force
       parameter was used. */
    if (kind < 0) {
      /* The below is of course bogus */
      if (foo_read(new_client,FOO_REG_GENERIC) != FOO_GENERIC_VALUE)
         goto ERROR1;
    }

    /* SENSORS ONLY START */

    /* Next, specific detection. This is especially important for `sensors'
       devices. */

    /* Determine the chip type. Not needed if a `force_CHIPTYPE' parameter
       was used. */
    if (kind <= 0) {
      i = foo_read(new_client,FOO_REG_CHIPTYPE);
      if (i == FOO_TYPE_1) 
        kind = chip1; /* As defined in the enum */
      else if (i == FOO_TYPE_2)
        kind = chip2;
      else {
        printk("foo: Ignoring 'force' parameter for unknown chip at "
               "adapter %d, address 0x%02x\n",i2c_adapter_id(adapter),address);
        goto ERROR1;
      }
    }

    /* Now set the type and chip names */
    if (kind == chip1) {
      type_name = "chip1"; /* For /proc entry */
      client_name = "CHIP 1";
    } else if (kind == chip2) {
      type_name = "chip2"; /* For /proc entry */
      client_name = "CHIP 2";
    }
   
    /* Reserve the ISA region */
    if (is_isa)
      request_region(address,FOO_EXTENT,type_name);

    /* SENSORS ONLY END */

    /* Fill in the remaining client fields. */
    strcpy(new_client->name,client_name);

    /* SENSORS ONLY BEGIN */
    data->type = kind;
    /* SENSORS ONLY END */

    data->valid = 0; /* Only if you use this field */
    init_MUTEX(&data->update_lock); /* Only if you use this field */

    /* Any other initializations in data must be done here too. */

    /* Tell the i2c layer a new client has arrived */
    if ((err = i2c_attach_client(new_client)))
      goto ERROR3;

    /* SENSORS ONLY BEGIN */
    /* Register a new directory entry with module sensors. See below for
       the `template' structure. */
    if ((i = i2c_register_entry(new_client, type_name,
                                    foo_dir_table_template,THIS_MODULE)) < 0) {
      err = i;
      goto ERROR4;
    }
    data->sysctl_id = i;

    /* SENSORS ONLY END */

    /* This function can write default values to the client registers, if
       needed. */
    foo_init_client(new_client);
    return 0;

    /* OK, this is not exactly good programming practice, usually. But it is
       very code-efficient in this case. */

    ERROR4:
      i2c_detach_client(new_client);
    ERROR3:
    ERROR2:
    /* SENSORS ONLY START */
      if (is_isa)
        release_region(address,FOO_EXTENT);
    /* SENSORS ONLY END */
    ERROR1:
      kfree(data);
    ERROR0:
      return err;
  }


Removing the client
===================

The detach_client call back function is called when a client should be
removed. It may actually fail, but only when panicking. This code is
much simpler than the attachment code, fortunately!

  int foo_detach_client(struct i2c_client *client)
  {
    int err,i;

    /* SENSORS ONLY START */
    /* Deregister with the `i2c-proc' module. */
    i2c_deregister_entry(((struct lm78_data *)(client->data))->sysctl_id);
    /* SENSORS ONLY END */

    /* Try to detach the client from i2c space */
    if ((err = i2c_detach_client(client)))
      return err;

    /* HYBRID SENSORS CHIP ONLY START */
    if i2c_is_isa_client(client)
      release_region(client->addr,LM78_EXTENT);
    /* HYBRID SENSORS CHIP ONLY END */

    kfree(i2c_get_clientdata(client));
    return 0;
  }


Initializing the module or kernel
=================================

When the kernel is booted, or when your foo driver module is inserted, 
you have to do some initializing. Fortunately, just attaching (registering)
the driver module is usually enough.

  /* Keep track of how far we got in the initialization process. If several
     things have to initialized, and we fail halfway, only those things
     have to be cleaned up! */
  static int __initdata foo_initialized = 0;

  static int __init foo_init(void)
  {
    int res;
    printk("foo version %s (%s)\n",FOO_VERSION,FOO_DATE);
    
    if ((res = i2c_add_driver(&foo_driver))) {
      printk("foo: Driver registration failed, module not inserted.\n");
      foo_cleanup();
      return res;
    }
    foo_initialized ++;
    return 0;
  }

  void foo_cleanup(void)
  {
    if (foo_initialized == 1) {
      if ((res = i2c_del_driver(&foo_driver))) {
        printk("foo: Driver registration failed, module not removed.\n");
        return;
      }
      foo_initialized --;
    }
  }

  /* Substitute your own name and email address */
  MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>"
  MODULE_DESCRIPTION("Driver for Barf Inc. Foo I2C devices");

  module_init(foo_init);
  module_exit(foo_cleanup);

Note that some functions are marked by `__init', and some data structures
by `__init_data'.  Hose functions and structures can be removed after
kernel booting (or module loading) is completed.


Command function
================

A generic ioctl-like function call back is supported. You will seldom
need this, and its use is deprecated anyway, so newer design should not
use it. Set it to NULL.


Sending and receiving
=====================

If you want to communicate with your device, there are several functions
to do this. You can find all of them in i2c.h.

If you can choose between plain i2c communication and SMBus level
communication, please use the last. All adapters understand SMBus level
commands, but only some of them understand plain i2c!


Plain i2c communication
-----------------------

  extern int i2c_master_send(struct i2c_client *,const char* ,int);
  extern int i2c_master_recv(struct i2c_client *,char* ,int);

These routines read and write some bytes from/to a client. The client
contains the i2c address, so you do not have to include it. The second
parameter contains the bytes the read/write, the third the length of the
buffer. Returned is the actual number of bytes read/written.
  
  extern int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msg,
                          int num);

This sends a series of messages. Each message can be a read or write,
and they can be mixed in any way. The transactions are combined: no
stop bit is sent between transaction. The i2c_msg structure contains
for each message the client address, the number of bytes of the message
and the message data itself.

You can read the file `i2c-protocol' for more information about the
actual i2c protocol.


SMBus communication
-------------------

  extern s32 i2c_smbus_xfer (struct i2c_adapter * adapter, u16 addr, 
                             unsigned short flags,
                             char read_write, u8 command, int size,
                             union i2c_smbus_data * data);

  This is the generic SMBus function. All functions below are implemented
  in terms of it. Never use this function directly!


  extern s32 i2c_smbus_write_quick(struct i2c_client * client, u8 value);
  extern s32 i2c_smbus_read_byte(struct i2c_client * client);
  extern s32 i2c_smbus_write_byte(struct i2c_client * client, u8 value);
  extern s32 i2c_smbus_read_byte_data(struct i2c_client * client, u8 command);
  extern s32 i2c_smbus_write_byte_data(struct i2c_client * client,
                                       u8 command, u8 value);
  extern s32 i2c_smbus_read_word_data(struct i2c_client * client, u8 command);
  extern s32 i2c_smbus_write_word_data(struct i2c_client * client,
                                       u8 command, u16 value);
  extern s32 i2c_smbus_write_block_data(struct i2c_client * client,
                                        u8 command, u8 length,
                                        u8 *values);
  extern s32 i2c_smbus_read_i2c_block_data(struct i2c_client * client,
                                           u8 command, u8 *values);

These ones were removed in Linux 2.6.10 because they had no users, but could
be added back later if needed:

  extern s32 i2c_smbus_read_block_data(struct i2c_client * client,
                                       u8 command, u8 *values);
  extern s32 i2c_smbus_write_i2c_block_data(struct i2c_client * client,
                                            u8 command, u8 length,
                                            u8 *values);
  extern s32 i2c_smbus_process_call(struct i2c_client * client,
                                    u8 command, u16 value);
  extern s32 i2c_smbus_block_process_call(struct i2c_client *client,
                                          u8 command, u8 length,
                                          u8 *values)

All these transactions return -1 on failure. The 'write' transactions 
return 0 on success; the 'read' transactions return the read value, except 
for read_block, which returns the number of values read. The block buffers 
need not be longer than 32 bytes.

You can read the file `smbus-protocol' for more information about the
actual SMBus protocol.


General purpose routines
========================

Below all general purpose routines are listed, that were not mentioned
before.

  /* This call returns a unique low identifier for each registered adapter,
   * or -1 if the adapter was not registered.
   */
  extern int i2c_adapter_id(struct i2c_adapter *adap);


The sensors sysctl/proc interface
=================================

This section only applies if you write `sensors' drivers.

Each sensors driver creates a directory in /proc/sys/dev/sensors for each
registered client. The directory is called something like foo-i2c-4-65.
The sensors module helps you to do this as easily as possible.

The template
------------

You will need to define a ctl_table template. This template will automatically
be copied to a newly allocated structure and filled in where necessary when
you call sensors_register_entry.

First, I will give an example definition.
  static ctl_table foo_dir_table_template[] = {
    { FOO_SYSCTL_FUNC1, "func1", NULL, 0, 0644, NULL, &i2c_proc_real,
      &i2c_sysctl_real,NULL,&foo_func },
    { FOO_SYSCTL_FUNC2, "func2", NULL, 0, 0644, NULL, &i2c_proc_real,
      &i2c_sysctl_real,NULL,&foo_func },
    { FOO_SYSCTL_DATA, "data", NULL, 0, 0644, NULL, &i2c_proc_real,
      &i2c_sysctl_real,NULL,&foo_data },
    { 0 }
  };

In the above example, three entries are defined. They can either be
accessed through the /proc interface, in the /proc/sys/dev/sensors/*
directories, as files named func1, func2 and data, or alternatively 
through the sysctl interface, in the appropriate table, with identifiers
FOO_SYSCTL_FUNC1, FOO_SYSCTL_FUNC2 and FOO_SYSCTL_DATA.

The third, sixth and ninth parameters should always be NULL, and the
fourth should always be 0. The fifth is the mode of the /proc file;
0644 is safe, as the file will be owned by root:root. 

The seventh and eighth parameters should be &i2c_proc_real and
&i2c_sysctl_real if you want to export lists of reals (scaled
integers). You can also use your own function for them, as usual.
Finally, the last parameter is the call-back to gather the data
(see below) if you use the *_proc_real functions. 


Gathering the data
------------------

The call back functions (foo_func and foo_data in the above example)
can be called in several ways; the operation parameter determines
what should be done:

  * If operation == SENSORS_PROC_REAL_INFO, you must return the
    magnitude (scaling) in nrels_mag;
  * If operation == SENSORS_PROC_REAL_READ, you must read information
    from the chip and return it in results. The number of integers
    to display should be put in nrels_mag;
  * If operation == SENSORS_PROC_REAL_WRITE, you must write the
    supplied information to the chip. nrels_mag will contain the number
    of integers, results the integers themselves.

The *_proc_real functions will display the elements as reals for the
/proc interface. If you set the magnitude to 2, and supply 345 for
SENSORS_PROC_REAL_READ, it would display 3.45; and if the user would
write 45.6 to the /proc file, it would be returned as 4560 for
SENSORS_PROC_REAL_WRITE. A magnitude may even be negative!

An example function:

  /* FOO_FROM_REG and FOO_TO_REG translate between scaled values and
     register values. Note the use of the read cache. */
  void foo_in(struct i2c_client *client, int operation, int ctl_name, 
              int *nrels_mag, long *results)
  {
    struct foo_data *data = client->data;
    int nr = ctl_name - FOO_SYSCTL_FUNC1; /* reduce to 0 upwards */
    
    if (operation == SENSORS_PROC_REAL_INFO)
      *nrels_mag = 2;
    else if (operation == SENSORS_PROC_REAL_READ) {
      /* Update the readings cache (if necessary) */
      foo_update_client(client);
      /* Get the readings from the cache */
      results[0] = FOO_FROM_REG(data->foo_func_base[nr]);
      results[1] = FOO_FROM_REG(data->foo_func_more[nr]);
      results[2] = FOO_FROM_REG(data->foo_func_readonly[nr]);
      *nrels_mag = 2;
    } else if (operation == SENSORS_PROC_REAL_WRITE) {
      if (*nrels_mag >= 1) {
        /* Update the cache */
        data->foo_base[nr] = FOO_TO_REG(results[0]);
        /* Update the chip */
        foo_write_value(client,FOO_REG_FUNC_BASE(nr),data->foo_base[nr]);
      }
      if (*nrels_mag >= 2) {
        /* Update the cache */
        data->foo_more[nr] = FOO_TO_REG(results[1]);
        /* Update the chip */
        foo_write_value(client,FOO_REG_FUNC_MORE(nr),data->foo_more[nr]);
      }
    }
  }
href='#n1291'>1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
/*
 * linux/fs/inode.c
 *
 * (C) 1997 Linus Torvalds
 */

#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/dcache.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/writeback.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/wait.h>
#include <linux/rwsem.h>
#include <linux/hash.h>
#include <linux/swap.h>
#include <linux/security.h>
#include <linux/pagemap.h>
#include <linux/cdev.h>
#include <linux/bootmem.h>
#include <linux/fsnotify.h>
#include <linux/mount.h>
#include <linux/async.h>
#include <linux/posix_acl.h>
#include <linux/ima.h>

/*
 * This is needed for the following functions:
 *  - inode_has_buffers
 *  - invalidate_bdev
 *
 * FIXME: remove all knowledge of the buffer layer from this file
 */
#include <linux/buffer_head.h>

/*
 * New inode.c implementation.
 *
 * This implementation has the basic premise of trying
 * to be extremely low-overhead and SMP-safe, yet be
 * simple enough to be "obviously correct".
 *
 * Famous last words.
 */

/* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */

/* #define INODE_PARANOIA 1 */
/* #define INODE_DEBUG 1 */

/*
 * Inode lookup is no longer as critical as it used to be:
 * most of the lookups are going to be through the dcache.
 */
#define I_HASHBITS	i_hash_shift
#define I_HASHMASK	i_hash_mask

static unsigned int i_hash_mask __read_mostly;
static unsigned int i_hash_shift __read_mostly;

/*
 * Each inode can be on two separate lists. One is
 * the hash list of the inode, used for lookups. The
 * other linked list is the "type" list:
 *  "in_use" - valid inode, i_count > 0, i_nlink > 0
 *  "dirty"  - as "in_use" but also dirty
 *  "unused" - valid inode, i_count = 0
 *
 * A "dirty" list is maintained for each super block,
 * allowing for low-overhead inode sync() operations.
 */

static LIST_HEAD(inode_lru);
static struct hlist_head *inode_hashtable __read_mostly;

/*
 * A simple spinlock to protect the list manipulations.
 *
 * NOTE! You also have to own the lock if you change
 * the i_state of an inode while it is in use..
 */
DEFINE_SPINLOCK(inode_lock);

/*
 * iprune_sem provides exclusion between the kswapd or try_to_free_pages
 * icache shrinking path, and the umount path.  Without this exclusion,
 * by the time prune_icache calls iput for the inode whose pages it has
 * been invalidating, or by the time it calls clear_inode & destroy_inode
 * from its final dispose_list, the struct super_block they refer to
 * (for inode->i_sb->s_op) may already have been freed and reused.
 *
 * We make this an rwsem because the fastpath is icache shrinking. In
 * some cases a filesystem may be doing a significant amount of work in
 * its inode reclaim code, so this should improve parallelism.
 */
static DECLARE_RWSEM(iprune_sem);

/*
 * Statistics gathering..
 */
struct inodes_stat_t inodes_stat;

static struct percpu_counter nr_inodes __cacheline_aligned_in_smp;
static struct percpu_counter nr_inodes_unused __cacheline_aligned_in_smp;

static struct kmem_cache *inode_cachep __read_mostly;

static inline int get_nr_inodes(void)
{
	return percpu_counter_sum_positive(&nr_inodes);
}

static inline int get_nr_inodes_unused(void)
{
	return percpu_counter_sum_positive(&nr_inodes_unused);
}

int get_nr_dirty_inodes(void)
{
	int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
	return nr_dirty > 0 ? nr_dirty : 0;

}

/*
 * Handle nr_inode sysctl
 */
#ifdef CONFIG_SYSCTL
int proc_nr_inodes(ctl_table *table, int write,
		   void __user *buffer, size_t *lenp, loff_t *ppos)
{
	inodes_stat.nr_inodes = get_nr_inodes();
	inodes_stat.nr_unused = get_nr_inodes_unused();
	return proc_dointvec(table, write, buffer, lenp, ppos);
}
#endif

static void wake_up_inode(struct inode *inode)
{
	/*
	 * Prevent speculative execution through spin_unlock(&inode_lock);
	 */
	smp_mb();
	wake_up_bit(&inode->i_state, __I_NEW);
}

/**
 * inode_init_always - perform inode structure intialisation
 * @sb: superblock inode belongs to
 * @inode: inode to initialise
 *
 * These are initializations that need to be done on every inode
 * allocation as the fields are not initialised by slab allocation.
 */
int inode_init_always(struct super_block *sb, struct inode *inode)
{
	static const struct address_space_operations empty_aops;
	static const struct inode_operations empty_iops;
	static const struct file_operations empty_fops;
	struct address_space *const mapping = &inode->i_data;

	inode->i_sb = sb;
	inode->i_blkbits = sb->s_blocksize_bits;
	inode->i_flags = 0;
	atomic_set(&inode->i_count, 1);
	inode->i_op = &empty_iops;
	inode->i_fop = &empty_fops;
	inode->i_nlink = 1;
	inode->i_uid = 0;
	inode->i_gid = 0;
	atomic_set(&inode->i_writecount, 0);
	inode->i_size = 0;
	inode->i_blocks = 0;
	inode->i_bytes = 0;
	inode->i_generation = 0;
#ifdef CONFIG_QUOTA
	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
#endif
	inode->i_pipe = NULL;
	inode->i_bdev = NULL;
	inode->i_cdev = NULL;
	inode->i_rdev = 0;
	inode->dirtied_when = 0;

	if (security_inode_alloc(inode))
		goto out;
	spin_lock_init(&inode->i_lock);
	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);

	mutex_init(&inode->i_mutex);
	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);

	init_rwsem(&inode->i_alloc_sem);
	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);

	mapping->a_ops = &empty_aops;
	mapping->host = inode;
	mapping->flags = 0;
	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
	mapping->assoc_mapping = NULL;
	mapping->backing_dev_info = &default_backing_dev_info;
	mapping->writeback_index = 0;

	/*
	 * If the block_device provides a backing_dev_info for client
	 * inodes then use that.  Otherwise the inode share the bdev's
	 * backing_dev_info.
	 */
	if (sb->s_bdev) {
		struct backing_dev_info *bdi;

		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
		mapping->backing_dev_info = bdi;
	}
	inode->i_private = NULL;
	inode->i_mapping = mapping;
#ifdef CONFIG_FS_POSIX_ACL
	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
#endif

#ifdef CONFIG_FSNOTIFY
	inode->i_fsnotify_mask = 0;
#endif

	percpu_counter_inc(&nr_inodes);

	return 0;
out:
	return -ENOMEM;
}
EXPORT_SYMBOL(inode_init_always);

static struct inode *alloc_inode(struct super_block *sb)
{
	struct inode *inode;

	if (sb->s_op->alloc_inode)
		inode = sb->s_op->alloc_inode(sb);
	else
		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);

	if (!inode)
		return NULL;

	if (unlikely(inode_init_always(sb, inode))) {
		if (inode->i_sb->s_op->destroy_inode)
			inode->i_sb->s_op->destroy_inode(inode);
		else
			kmem_cache_free(inode_cachep, inode);
		return NULL;
	}

	return inode;
}

void __destroy_inode(struct inode *inode)
{
	BUG_ON(inode_has_buffers(inode));
	security_inode_free(inode);
	fsnotify_inode_delete(inode);
#ifdef CONFIG_FS_POSIX_ACL
	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
		posix_acl_release(inode->i_acl);
	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
		posix_acl_release(inode->i_default_acl);
#endif
	percpu_counter_dec(&nr_inodes);
}
EXPORT_SYMBOL(__destroy_inode);

static void destroy_inode(struct inode *inode)
{
	BUG_ON(!list_empty(&inode->i_lru));
	__destroy_inode(inode);
	if (inode->i_sb->s_op->destroy_inode)
		inode->i_sb->s_op->destroy_inode(inode);
	else
		kmem_cache_free(inode_cachep, (inode));
}

/*
 * These are initializations that only need to be done
 * once, because the fields are idempotent across use
 * of the inode, so let the slab aware of that.
 */
void inode_init_once(struct inode *inode)
{
	memset(inode, 0, sizeof(*inode));
	INIT_HLIST_NODE(&inode->i_hash);
	INIT_LIST_HEAD(&inode->i_dentry);
	INIT_LIST_HEAD(&inode->i_devices);
	INIT_LIST_HEAD(&inode->i_wb_list);
	INIT_LIST_HEAD(&inode->i_lru);
	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
	spin_lock_init(&inode->i_data.tree_lock);
	spin_lock_init(&inode->i_data.i_mmap_lock);
	INIT_LIST_HEAD(&inode->i_data.private_list);
	spin_lock_init(&inode->i_data.private_lock);
	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
	i_size_ordered_init(inode);
#ifdef CONFIG_FSNOTIFY
	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
#endif
}
EXPORT_SYMBOL(inode_init_once);

static void init_once(void *foo)
{
	struct inode *inode = (struct inode *) foo;

	inode_init_once(inode);
}

/*
 * inode_lock must be held
 */
void __iget(struct inode *inode)
{
	atomic_inc(&inode->i_count);
}

/*
 * get additional reference to inode; caller must already hold one.
 */
void ihold(struct inode *inode)
{
	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
}
EXPORT_SYMBOL(ihold);

static void inode_lru_list_add(struct inode *inode)
{
	if (list_empty(&inode->i_lru)) {
		list_add(&inode->i_lru, &inode_lru);
		percpu_counter_inc(&nr_inodes_unused);
	}
}

static void inode_lru_list_del(struct inode *inode)
{
	if (!list_empty(&inode->i_lru)) {
		list_del_init(&inode->i_lru);
		percpu_counter_dec(&nr_inodes_unused);
	}
}

static inline void __inode_sb_list_add(struct inode *inode)
{
	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
}

/**
 * inode_sb_list_add - add inode to the superblock list of inodes
 * @inode: inode to add
 */
void inode_sb_list_add(struct inode *inode)
{
	spin_lock(&inode_lock);
	__inode_sb_list_add(inode);
	spin_unlock(&inode_lock);
}
EXPORT_SYMBOL_GPL(inode_sb_list_add);

static inline void __inode_sb_list_del(struct inode *inode)
{
	list_del_init(&inode->i_sb_list);
}

static unsigned long hash(struct super_block *sb, unsigned long hashval)
{
	unsigned long tmp;

	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
			L1_CACHE_BYTES;
	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
	return tmp & I_HASHMASK;
}

/**
 *	__insert_inode_hash - hash an inode
 *	@inode: unhashed inode
 *	@hashval: unsigned long value used to locate this object in the
 *		inode_hashtable.
 *
 *	Add an inode to the inode hash for this superblock.
 */
void __insert_inode_hash(struct inode *inode, unsigned long hashval)
{
	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);

	spin_lock(&inode_lock);
	hlist_add_head(&inode->i_hash, b);
	spin_unlock(&inode_lock);
}
EXPORT_SYMBOL(__insert_inode_hash);

/**
 *	__remove_inode_hash - remove an inode from the hash
 *	@inode: inode to unhash
 *
 *	Remove an inode from the superblock.
 */
static void __remove_inode_hash(struct inode *inode)
{
	hlist_del_init(&inode->i_hash);
}

/**
 *	remove_inode_hash - remove an inode from the hash
 *	@inode: inode to unhash
 *
 *	Remove an inode from the superblock.
 */
void remove_inode_hash(struct inode *inode)
{
	spin_lock(&inode_lock);
	hlist_del_init(&inode->i_hash);
	spin_unlock(&inode_lock);
}
EXPORT_SYMBOL(remove_inode_hash);

void end_writeback(struct inode *inode)
{
	might_sleep();
	BUG_ON(inode->i_data.nrpages);
	BUG_ON(!list_empty(&inode->i_data.private_list));
	BUG_ON(!(inode->i_state & I_FREEING));
	BUG_ON(inode->i_state & I_CLEAR);
	inode_sync_wait(inode);
	inode->i_state = I_FREEING | I_CLEAR;
}
EXPORT_SYMBOL(end_writeback);

static void evict(struct inode *inode)
{
	const struct super_operations *op = inode->i_sb->s_op;

	if (op->evict_inode) {
		op->evict_inode(inode);
	} else {
		if (inode->i_data.nrpages)
			truncate_inode_pages(&inode->i_data, 0);
		end_writeback(inode);
	}
	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
		bd_forget(inode);
	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
		cd_forget(inode);
}

/*
 * dispose_list - dispose of the contents of a local list
 * @head: the head of the list to free
 *
 * Dispose-list gets a local list with local inodes in it, so it doesn't
 * need to worry about list corruption and SMP locks.
 */
static void dispose_list(struct list_head *head)
{
	while (!list_empty(head)) {
		struct inode *inode;

		inode = list_first_entry(head, struct inode, i_lru);
		list_del_init(&inode->i_lru);

		evict(inode);

		spin_lock(&inode_lock);
		__remove_inode_hash(inode);
		__inode_sb_list_del(inode);
		spin_unlock(&inode_lock);

		wake_up_inode(inode);
		destroy_inode(inode);
	}
}

/**
 * evict_inodes	- evict all evictable inodes for a superblock
 * @sb:		superblock to operate on
 *
 * Make sure that no inodes with zero refcount are retained.  This is
 * called by superblock shutdown after having MS_ACTIVE flag removed,
 * so any inode reaching zero refcount during or after that call will
 * be immediately evicted.
 */
void evict_inodes(struct super_block *sb)
{
	struct inode *inode, *next;
	LIST_HEAD(dispose);

	down_write(&iprune_sem);

	spin_lock(&inode_lock);
	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
		if (atomic_read(&inode->i_count))
			continue;

		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
			WARN_ON(1);
			continue;
		}

		inode->i_state |= I_FREEING;

		/*
		 * Move the inode off the IO lists and LRU once I_FREEING is
		 * set so that it won't get moved back on there if it is dirty.
		 */
		list_move(&inode->i_lru, &dispose);
		list_del_init(&inode->i_wb_list);
		if (!(inode->i_state & (I_DIRTY | I_SYNC)))
			percpu_counter_dec(&nr_inodes_unused);
	}
	spin_unlock(&inode_lock);

	dispose_list(&dispose);
	up_write(&iprune_sem);
}

/**
 * invalidate_inodes	- attempt to free all inodes on a superblock
 * @sb:		superblock to operate on
 *
 * Attempts to free all inodes for a given superblock.  If there were any
 * busy inodes return a non-zero value, else zero.
 */
int invalidate_inodes(struct super_block *sb)
{
	int busy = 0;
	struct inode *inode, *next;
	LIST_HEAD(dispose);

	down_write(&iprune_sem);

	spin_lock(&inode_lock);
	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE))
			continue;
		if (atomic_read(&inode->i_count)) {
			busy = 1;
			continue;
		}

		inode->i_state |= I_FREEING;

		/*
		 * Move the inode off the IO lists and LRU once I_FREEING is
		 * set so that it won't get moved back on there if it is dirty.
		 */
		list_move(&inode->i_lru, &dispose);
		list_del_init(&inode->i_wb_list);
		if (!(inode->i_state & (I_DIRTY | I_SYNC)))
			percpu_counter_dec(&nr_inodes_unused);
	}
	spin_unlock(&inode_lock);

	dispose_list(&dispose);
	up_write(&iprune_sem);

	return busy;
}

static int can_unuse(struct inode *inode)
{
	if (inode->i_state & ~I_REFERENCED)
		return 0;
	if (inode_has_buffers(inode))
		return 0;
	if (atomic_read(&inode->i_count))
		return 0;
	if (inode->i_data.nrpages)
		return 0;
	return 1;
}

/*
 * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
 * temporary list and then are freed outside inode_lock by dispose_list().
 *
 * Any inodes which are pinned purely because of attached pagecache have their
 * pagecache removed.  If the inode has metadata buffers attached to
 * mapping->private_list then try to remove them.
 *
 * If the inode has the I_REFERENCED flag set, then it means that it has been
 * used recently - the flag is set in iput_final(). When we encounter such an
 * inode, clear the flag and move it to the back of the LRU so it gets another
 * pass through the LRU before it gets reclaimed. This is necessary because of