diff options
Diffstat (limited to 'net/rds/ib_recv.c')
-rw-r--r-- | net/rds/ib_recv.c | 869 |
1 files changed, 869 insertions, 0 deletions
diff --git a/net/rds/ib_recv.c b/net/rds/ib_recv.c new file mode 100644 index 00000000000..5061b550216 --- /dev/null +++ b/net/rds/ib_recv.c | |||
@@ -0,0 +1,869 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2006 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This software is available to you under a choice of one of two | ||
5 | * licenses. You may choose to be licensed under the terms of the GNU | ||
6 | * General Public License (GPL) Version 2, available from the file | ||
7 | * COPYING in the main directory of this source tree, or the | ||
8 | * OpenIB.org BSD license below: | ||
9 | * | ||
10 | * Redistribution and use in source and binary forms, with or | ||
11 | * without modification, are permitted provided that the following | ||
12 | * conditions are met: | ||
13 | * | ||
14 | * - Redistributions of source code must retain the above | ||
15 | * copyright notice, this list of conditions and the following | ||
16 | * disclaimer. | ||
17 | * | ||
18 | * - Redistributions in binary form must reproduce the above | ||
19 | * copyright notice, this list of conditions and the following | ||
20 | * disclaimer in the documentation and/or other materials | ||
21 | * provided with the distribution. | ||
22 | * | ||
23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
30 | * SOFTWARE. | ||
31 | * | ||
32 | */ | ||
33 | #include <linux/kernel.h> | ||
34 | #include <linux/pci.h> | ||
35 | #include <linux/dma-mapping.h> | ||
36 | #include <rdma/rdma_cm.h> | ||
37 | |||
38 | #include "rds.h" | ||
39 | #include "ib.h" | ||
40 | |||
41 | static struct kmem_cache *rds_ib_incoming_slab; | ||
42 | static struct kmem_cache *rds_ib_frag_slab; | ||
43 | static atomic_t rds_ib_allocation = ATOMIC_INIT(0); | ||
44 | |||
45 | static void rds_ib_frag_drop_page(struct rds_page_frag *frag) | ||
46 | { | ||
47 | rdsdebug("frag %p page %p\n", frag, frag->f_page); | ||
48 | __free_page(frag->f_page); | ||
49 | frag->f_page = NULL; | ||
50 | } | ||
51 | |||
52 | static void rds_ib_frag_free(struct rds_page_frag *frag) | ||
53 | { | ||
54 | rdsdebug("frag %p page %p\n", frag, frag->f_page); | ||
55 | BUG_ON(frag->f_page != NULL); | ||
56 | kmem_cache_free(rds_ib_frag_slab, frag); | ||
57 | } | ||
58 | |||
59 | /* | ||
60 | * We map a page at a time. Its fragments are posted in order. This | ||
61 | * is called in fragment order as the fragments get send completion events. | ||
62 | * Only the last frag in the page performs the unmapping. | ||
63 | * | ||
64 | * It's OK for ring cleanup to call this in whatever order it likes because | ||
65 | * DMA is not in flight and so we can unmap while other ring entries still | ||
66 | * hold page references in their frags. | ||
67 | */ | ||
68 | static void rds_ib_recv_unmap_page(struct rds_ib_connection *ic, | ||
69 | struct rds_ib_recv_work *recv) | ||
70 | { | ||
71 | struct rds_page_frag *frag = recv->r_frag; | ||
72 | |||
73 | rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page); | ||
74 | if (frag->f_mapped) | ||
75 | ib_dma_unmap_page(ic->i_cm_id->device, | ||
76 | frag->f_mapped, | ||
77 | RDS_FRAG_SIZE, DMA_FROM_DEVICE); | ||
78 | frag->f_mapped = 0; | ||
79 | } | ||
80 | |||
81 | void rds_ib_recv_init_ring(struct rds_ib_connection *ic) | ||
82 | { | ||
83 | struct rds_ib_recv_work *recv; | ||
84 | u32 i; | ||
85 | |||
86 | for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) { | ||
87 | struct ib_sge *sge; | ||
88 | |||
89 | recv->r_ibinc = NULL; | ||
90 | recv->r_frag = NULL; | ||
91 | |||
92 | recv->r_wr.next = NULL; | ||
93 | recv->r_wr.wr_id = i; | ||
94 | recv->r_wr.sg_list = recv->r_sge; | ||
95 | recv->r_wr.num_sge = RDS_IB_RECV_SGE; | ||
96 | |||
97 | sge = rds_ib_data_sge(ic, recv->r_sge); | ||
98 | sge->addr = 0; | ||
99 | sge->length = RDS_FRAG_SIZE; | ||
100 | sge->lkey = ic->i_mr->lkey; | ||
101 | |||
102 | sge = rds_ib_header_sge(ic, recv->r_sge); | ||
103 | sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header)); | ||
104 | sge->length = sizeof(struct rds_header); | ||
105 | sge->lkey = ic->i_mr->lkey; | ||
106 | } | ||
107 | } | ||
108 | |||
109 | static void rds_ib_recv_clear_one(struct rds_ib_connection *ic, | ||
110 | struct rds_ib_recv_work *recv) | ||
111 | { | ||
112 | if (recv->r_ibinc) { | ||
113 | rds_inc_put(&recv->r_ibinc->ii_inc); | ||
114 | recv->r_ibinc = NULL; | ||
115 | } | ||
116 | if (recv->r_frag) { | ||
117 | rds_ib_recv_unmap_page(ic, recv); | ||
118 | if (recv->r_frag->f_page) | ||
119 | rds_ib_frag_drop_page(recv->r_frag); | ||
120 | rds_ib_frag_free(recv->r_frag); | ||
121 | recv->r_frag = NULL; | ||
122 | } | ||
123 | } | ||
124 | |||
125 | void rds_ib_recv_clear_ring(struct rds_ib_connection *ic) | ||
126 | { | ||
127 | u32 i; | ||
128 | |||
129 | for (i = 0; i < ic->i_recv_ring.w_nr; i++) | ||
130 | rds_ib_recv_clear_one(ic, &ic->i_recvs[i]); | ||
131 | |||
132 | if (ic->i_frag.f_page) | ||
133 | rds_ib_frag_drop_page(&ic->i_frag); | ||
134 | } | ||
135 | |||
136 | static int rds_ib_recv_refill_one(struct rds_connection *conn, | ||
137 | struct rds_ib_recv_work *recv, | ||
138 | gfp_t kptr_gfp, gfp_t page_gfp) | ||
139 | { | ||
140 | struct rds_ib_connection *ic = conn->c_transport_data; | ||
141 | dma_addr_t dma_addr; | ||
142 | struct ib_sge *sge; | ||
143 | int ret = -ENOMEM; | ||
144 | |||
145 | if (recv->r_ibinc == NULL) { | ||
146 | if (atomic_read(&rds_ib_allocation) >= rds_ib_sysctl_max_recv_allocation) { | ||
147 | rds_ib_stats_inc(s_ib_rx_alloc_limit); | ||
148 | goto out; | ||
149 | } | ||
150 | recv->r_ibinc = kmem_cache_alloc(rds_ib_incoming_slab, | ||
151 | kptr_gfp); | ||
152 | if (recv->r_ibinc == NULL) | ||
153 | goto out; | ||
154 | atomic_inc(&rds_ib_allocation); | ||
155 | INIT_LIST_HEAD(&recv->r_ibinc->ii_frags); | ||
156 | rds_inc_init(&recv->r_ibinc->ii_inc, conn, conn->c_faddr); | ||
157 | } | ||
158 | |||
159 | if (recv->r_frag == NULL) { | ||
160 | recv->r_frag = kmem_cache_alloc(rds_ib_frag_slab, kptr_gfp); | ||
161 | if (recv->r_frag == NULL) | ||
162 | goto out; | ||
163 | INIT_LIST_HEAD(&recv->r_frag->f_item); | ||
164 | recv->r_frag->f_page = NULL; | ||
165 | } | ||
166 | |||
167 | if (ic->i_frag.f_page == NULL) { | ||
168 | ic->i_frag.f_page = alloc_page(page_gfp); | ||
169 | if (ic->i_frag.f_page == NULL) | ||
170 | goto out; | ||
171 | ic->i_frag.f_offset = 0; | ||
172 | } | ||
173 | |||
174 | dma_addr = ib_dma_map_page(ic->i_cm_id->device, | ||
175 | ic->i_frag.f_page, | ||
176 | ic->i_frag.f_offset, | ||
177 | RDS_FRAG_SIZE, | ||
178 | DMA_FROM_DEVICE); | ||
179 | if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr)) | ||
180 | goto out; | ||
181 | |||
182 | /* | ||
183 | * Once we get the RDS_PAGE_LAST_OFF frag then rds_ib_frag_unmap() | ||
184 | * must be called on this recv. This happens as completions hit | ||
185 | * in order or on connection shutdown. | ||
186 | */ | ||
187 | recv->r_frag->f_page = ic->i_frag.f_page; | ||
188 | recv->r_frag->f_offset = ic->i_frag.f_offset; | ||
189 | recv->r_frag->f_mapped = dma_addr; | ||
190 | |||
191 | sge = rds_ib_data_sge(ic, recv->r_sge); | ||
192 | sge->addr = dma_addr; | ||
193 | sge->length = RDS_FRAG_SIZE; | ||
194 | |||
195 | sge = rds_ib_header_sge(ic, recv->r_sge); | ||
196 | sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header); | ||
197 | sge->length = sizeof(struct rds_header); | ||
198 | |||
199 | get_page(recv->r_frag->f_page); | ||
200 | |||
201 | if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) { | ||
202 | ic->i_frag.f_offset += RDS_FRAG_SIZE; | ||
203 | } else { | ||
204 | put_page(ic->i_frag.f_page); | ||
205 | ic->i_frag.f_page = NULL; | ||
206 | ic->i_frag.f_offset = 0; | ||
207 | } | ||
208 | |||
209 | ret = 0; | ||
210 | out: | ||
211 | return ret; | ||
212 | } | ||
213 | |||
214 | /* | ||
215 | * This tries to allocate and post unused work requests after making sure that | ||
216 | * they have all the allocations they need to queue received fragments into | ||
217 | * sockets. The i_recv_mutex is held here so that ring_alloc and _unalloc | ||
218 | * pairs don't go unmatched. | ||
219 | * | ||
220 | * -1 is returned if posting fails due to temporary resource exhaustion. | ||
221 | */ | ||
222 | int rds_ib_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp, | ||
223 | gfp_t page_gfp, int prefill) | ||
224 | { | ||
225 | struct rds_ib_connection *ic = conn->c_transport_data; | ||
226 | struct rds_ib_recv_work *recv; | ||
227 | struct ib_recv_wr *failed_wr; | ||
228 | unsigned int posted = 0; | ||
229 | int ret = 0; | ||
230 | u32 pos; | ||
231 | |||
232 | while ((prefill || rds_conn_up(conn)) | ||
233 | && rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) { | ||
234 | if (pos >= ic->i_recv_ring.w_nr) { | ||
235 | printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n", | ||
236 | pos); | ||
237 | ret = -EINVAL; | ||
238 | break; | ||
239 | } | ||
240 | |||
241 | recv = &ic->i_recvs[pos]; | ||
242 | ret = rds_ib_recv_refill_one(conn, recv, kptr_gfp, page_gfp); | ||
243 | if (ret) { | ||
244 | ret = -1; | ||
245 | break; | ||
246 | } | ||
247 | |||
248 | /* XXX when can this fail? */ | ||
249 | ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr); | ||
250 | rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv, | ||
251 | recv->r_ibinc, recv->r_frag->f_page, | ||
252 | (long) recv->r_frag->f_mapped, ret); | ||
253 | if (ret) { | ||
254 | rds_ib_conn_error(conn, "recv post on " | ||
255 | "%pI4 returned %d, disconnecting and " | ||
256 | "reconnecting\n", &conn->c_faddr, | ||
257 | ret); | ||
258 | ret = -1; | ||
259 | break; | ||
260 | } | ||
261 | |||
262 | posted++; | ||
263 | } | ||
264 | |||
265 | /* We're doing flow control - update the window. */ | ||
266 | if (ic->i_flowctl && posted) | ||
267 | rds_ib_advertise_credits(conn, posted); | ||
268 | |||
269 | if (ret) | ||
270 | rds_ib_ring_unalloc(&ic->i_recv_ring, 1); | ||
271 | return ret; | ||
272 | } | ||
273 | |||
274 | void rds_ib_inc_purge(struct rds_incoming *inc) | ||
275 | { | ||
276 | struct rds_ib_incoming *ibinc; | ||
277 | struct rds_page_frag *frag; | ||
278 | struct rds_page_frag *pos; | ||
279 | |||
280 | ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); | ||
281 | rdsdebug("purging ibinc %p inc %p\n", ibinc, inc); | ||
282 | |||
283 | list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) { | ||
284 | list_del_init(&frag->f_item); | ||
285 | rds_ib_frag_drop_page(frag); | ||
286 | rds_ib_frag_free(frag); | ||
287 | } | ||
288 | } | ||
289 | |||
290 | void rds_ib_inc_free(struct rds_incoming *inc) | ||
291 | { | ||
292 | struct rds_ib_incoming *ibinc; | ||
293 | |||
294 | ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); | ||
295 | |||
296 | rds_ib_inc_purge(inc); | ||
297 | rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc); | ||
298 | BUG_ON(!list_empty(&ibinc->ii_frags)); | ||
299 | kmem_cache_free(rds_ib_incoming_slab, ibinc); | ||
300 | atomic_dec(&rds_ib_allocation); | ||
301 | BUG_ON(atomic_read(&rds_ib_allocation) < 0); | ||
302 | } | ||
303 | |||
304 | int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov, | ||
305 | size_t size) | ||
306 | { | ||
307 | struct rds_ib_incoming *ibinc; | ||
308 | struct rds_page_frag *frag; | ||
309 | struct iovec *iov = first_iov; | ||
310 | unsigned long to_copy; | ||
311 | unsigned long frag_off = 0; | ||
312 | unsigned long iov_off = 0; | ||
313 | int copied = 0; | ||
314 | int ret; | ||
315 | u32 len; | ||
316 | |||
317 | ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); | ||
318 | frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); | ||
319 | len = be32_to_cpu(inc->i_hdr.h_len); | ||
320 | |||
321 | while (copied < size && copied < len) { | ||
322 | if (frag_off == RDS_FRAG_SIZE) { | ||
323 | frag = list_entry(frag->f_item.next, | ||
324 | struct rds_page_frag, f_item); | ||
325 | frag_off = 0; | ||
326 | } | ||
327 | while (iov_off == iov->iov_len) { | ||
328 | iov_off = 0; | ||
329 | iov++; | ||
330 | } | ||
331 | |||
332 | to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off); | ||
333 | to_copy = min_t(size_t, to_copy, size - copied); | ||
334 | to_copy = min_t(unsigned long, to_copy, len - copied); | ||
335 | |||
336 | rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag " | ||
337 | "[%p, %lu] + %lu\n", | ||
338 | to_copy, iov->iov_base, iov->iov_len, iov_off, | ||
339 | frag->f_page, frag->f_offset, frag_off); | ||
340 | |||
341 | /* XXX needs + offset for multiple recvs per page */ | ||
342 | ret = rds_page_copy_to_user(frag->f_page, | ||
343 | frag->f_offset + frag_off, | ||
344 | iov->iov_base + iov_off, | ||
345 | to_copy); | ||
346 | if (ret) { | ||
347 | copied = ret; | ||
348 | break; | ||
349 | } | ||
350 | |||
351 | iov_off += to_copy; | ||
352 | frag_off += to_copy; | ||
353 | copied += to_copy; | ||
354 | } | ||
355 | |||
356 | return copied; | ||
357 | } | ||
358 | |||
359 | /* ic starts out kzalloc()ed */ | ||
360 | void rds_ib_recv_init_ack(struct rds_ib_connection *ic) | ||
361 | { | ||
362 | struct ib_send_wr *wr = &ic->i_ack_wr; | ||
363 | struct ib_sge *sge = &ic->i_ack_sge; | ||
364 | |||
365 | sge->addr = ic->i_ack_dma; | ||
366 | sge->length = sizeof(struct rds_header); | ||
367 | sge->lkey = ic->i_mr->lkey; | ||
368 | |||
369 | wr->sg_list = sge; | ||
370 | wr->num_sge = 1; | ||
371 | wr->opcode = IB_WR_SEND; | ||
372 | wr->wr_id = RDS_IB_ACK_WR_ID; | ||
373 | wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED; | ||
374 | } | ||
375 | |||
376 | /* | ||
377 | * You'd think that with reliable IB connections you wouldn't need to ack | ||
378 | * messages that have been received. The problem is that IB hardware generates | ||
379 | * an ack message before it has DMAed the message into memory. This creates a | ||
380 | * potential message loss if the HCA is disabled for any reason between when it | ||
381 | * sends the ack and before the message is DMAed and processed. This is only a | ||
382 | * potential issue if another HCA is available for fail-over. | ||
383 | * | ||
384 | * When the remote host receives our ack they'll free the sent message from | ||
385 | * their send queue. To decrease the latency of this we always send an ack | ||
386 | * immediately after we've received messages. | ||
387 | * | ||
388 | * For simplicity, we only have one ack in flight at a time. This puts | ||
389 | * pressure on senders to have deep enough send queues to absorb the latency of | ||
390 | * a single ack frame being in flight. This might not be good enough. | ||
391 | * | ||
392 | * This is implemented by have a long-lived send_wr and sge which point to a | ||
393 | * statically allocated ack frame. This ack wr does not fall under the ring | ||
394 | * accounting that the tx and rx wrs do. The QP attribute specifically makes | ||
395 | * room for it beyond the ring size. Send completion notices its special | ||
396 | * wr_id and avoids working with the ring in that case. | ||
397 | */ | ||
398 | static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, | ||
399 | int ack_required) | ||
400 | { | ||
401 | rds_ib_set_64bit(&ic->i_ack_next, seq); | ||
402 | if (ack_required) { | ||
403 | smp_mb__before_clear_bit(); | ||
404 | set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | ||
405 | } | ||
406 | } | ||
407 | |||
408 | static u64 rds_ib_get_ack(struct rds_ib_connection *ic) | ||
409 | { | ||
410 | clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | ||
411 | smp_mb__after_clear_bit(); | ||
412 | |||
413 | return ic->i_ack_next; | ||
414 | } | ||
415 | |||
416 | static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits) | ||
417 | { | ||
418 | struct rds_header *hdr = ic->i_ack; | ||
419 | struct ib_send_wr *failed_wr; | ||
420 | u64 seq; | ||
421 | int ret; | ||
422 | |||
423 | seq = rds_ib_get_ack(ic); | ||
424 | |||
425 | rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq); | ||
426 | rds_message_populate_header(hdr, 0, 0, 0); | ||
427 | hdr->h_ack = cpu_to_be64(seq); | ||
428 | hdr->h_credit = adv_credits; | ||
429 | rds_message_make_checksum(hdr); | ||
430 | ic->i_ack_queued = jiffies; | ||
431 | |||
432 | ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr); | ||
433 | if (unlikely(ret)) { | ||
434 | /* Failed to send. Release the WR, and | ||
435 | * force another ACK. | ||
436 | */ | ||
437 | clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); | ||
438 | set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | ||
439 | |||
440 | rds_ib_stats_inc(s_ib_ack_send_failure); | ||
441 | /* Need to finesse this later. */ | ||
442 | BUG(); | ||
443 | } else | ||
444 | rds_ib_stats_inc(s_ib_ack_sent); | ||
445 | } | ||
446 | |||
447 | /* | ||
448 | * There are 3 ways of getting acknowledgements to the peer: | ||
449 | * 1. We call rds_ib_attempt_ack from the recv completion handler | ||
450 | * to send an ACK-only frame. | ||
451 | * However, there can be only one such frame in the send queue | ||
452 | * at any time, so we may have to postpone it. | ||
453 | * 2. When another (data) packet is transmitted while there's | ||
454 | * an ACK in the queue, we piggyback the ACK sequence number | ||
455 | * on the data packet. | ||
456 | * 3. If the ACK WR is done sending, we get called from the | ||
457 | * send queue completion handler, and check whether there's | ||
458 | * another ACK pending (postponed because the WR was on the | ||
459 | * queue). If so, we transmit it. | ||
460 | * | ||
461 | * We maintain 2 variables: | ||
462 | * - i_ack_flags, which keeps track of whether the ACK WR | ||
463 | * is currently in the send queue or not (IB_ACK_IN_FLIGHT) | ||
464 | * - i_ack_next, which is the last sequence number we received | ||
465 | * | ||
466 | * Potentially, send queue and receive queue handlers can run concurrently. | ||
467 | * | ||
468 | * Reconnecting complicates this picture just slightly. When we | ||
469 | * reconnect, we may be seeing duplicate packets. The peer | ||
470 | * is retransmitting them, because it hasn't seen an ACK for | ||
471 | * them. It is important that we ACK these. | ||
472 | * | ||
473 | * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with | ||
474 | * this flag set *MUST* be acknowledged immediately. | ||
475 | */ | ||
476 | |||
477 | /* | ||
478 | * When we get here, we're called from the recv queue handler. | ||
479 | * Check whether we ought to transmit an ACK. | ||
480 | */ | ||
481 | void rds_ib_attempt_ack(struct rds_ib_connection *ic) | ||
482 | { | ||
483 | unsigned int adv_credits; | ||
484 | |||
485 | if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) | ||
486 | return; | ||
487 | |||
488 | if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) { | ||
489 | rds_ib_stats_inc(s_ib_ack_send_delayed); | ||
490 | return; | ||
491 | } | ||
492 | |||
493 | /* Can we get a send credit? */ | ||
494 | if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0)) { | ||
495 | rds_ib_stats_inc(s_ib_tx_throttle); | ||
496 | clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); | ||
497 | return; | ||
498 | } | ||
499 | |||
500 | clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | ||
501 | rds_ib_send_ack(ic, adv_credits); | ||
502 | } | ||
503 | |||
504 | /* | ||
505 | * We get here from the send completion handler, when the | ||
506 | * adapter tells us the ACK frame was sent. | ||
507 | */ | ||
508 | void rds_ib_ack_send_complete(struct rds_ib_connection *ic) | ||
509 | { | ||
510 | clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); | ||
511 | rds_ib_attempt_ack(ic); | ||
512 | } | ||
513 | |||
514 | /* | ||
515 | * This is called by the regular xmit code when it wants to piggyback | ||
516 | * an ACK on an outgoing frame. | ||
517 | */ | ||
518 | u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic) | ||
519 | { | ||
520 | if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) | ||
521 | rds_ib_stats_inc(s_ib_ack_send_piggybacked); | ||
522 | return rds_ib_get_ack(ic); | ||
523 | } | ||
524 | |||
525 | /* | ||
526 | * It's kind of lame that we're copying from the posted receive pages into | ||
527 | * long-lived bitmaps. We could have posted the bitmaps and rdma written into | ||
528 | * them. But receiving new congestion bitmaps should be a *rare* event, so | ||
529 | * hopefully we won't need to invest that complexity in making it more | ||
530 | * efficient. By copying we can share a simpler core with TCP which has to | ||
531 | * copy. | ||
532 | */ | ||
533 | static void rds_ib_cong_recv(struct rds_connection *conn, | ||
534 | struct rds_ib_incoming *ibinc) | ||
535 | { | ||
536 | struct rds_cong_map *map; | ||
537 | unsigned int map_off; | ||
538 | unsigned int map_page; | ||
539 | struct rds_page_frag *frag; | ||
540 | unsigned long frag_off; | ||
541 | unsigned long to_copy; | ||
542 | unsigned long copied; | ||
543 | uint64_t uncongested = 0; | ||
544 | void *addr; | ||
545 | |||
546 | /* catch completely corrupt packets */ | ||
547 | if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES) | ||
548 | return; | ||
549 | |||
550 | map = conn->c_fcong; | ||
551 | map_page = 0; | ||
552 | map_off = 0; | ||
553 | |||
554 | frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); | ||
555 | frag_off = 0; | ||
556 | |||
557 | copied = 0; | ||
558 | |||
559 | while (copied < RDS_CONG_MAP_BYTES) { | ||
560 | uint64_t *src, *dst; | ||
561 | unsigned int k; | ||
562 | |||
563 | to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off); | ||
564 | BUG_ON(to_copy & 7); /* Must be 64bit aligned. */ | ||
565 | |||
566 | addr = kmap_atomic(frag->f_page, KM_SOFTIRQ0); | ||
567 | |||
568 | src = addr + frag_off; | ||
569 | dst = (void *)map->m_page_addrs[map_page] + map_off; | ||
570 | for (k = 0; k < to_copy; k += 8) { | ||
571 | /* Record ports that became uncongested, ie | ||
572 | * bits that changed from 0 to 1. */ | ||
573 | uncongested |= ~(*src) & *dst; | ||
574 | *dst++ = *src++; | ||
575 | } | ||
576 | kunmap_atomic(addr, KM_SOFTIRQ0); | ||
577 | |||
578 | copied += to_copy; | ||
579 | |||
580 | map_off += to_copy; | ||
581 | if (map_off == PAGE_SIZE) { | ||
582 | map_off = 0; | ||
583 | map_page++; | ||
584 | } | ||
585 | |||
586 | frag_off += to_copy; | ||
587 | if (frag_off == RDS_FRAG_SIZE) { | ||
588 | frag = list_entry(frag->f_item.next, | ||
589 | struct rds_page_frag, f_item); | ||
590 | frag_off = 0; | ||
591 | } | ||
592 | } | ||
593 | |||
594 | /* the congestion map is in little endian order */ | ||
595 | uncongested = le64_to_cpu(uncongested); | ||
596 | |||
597 | rds_cong_map_updated(map, uncongested); | ||
598 | } | ||
599 | |||
600 | /* | ||
601 | * Rings are posted with all the allocations they'll need to queue the | ||
602 | * incoming message to the receiving socket so this can't fail. | ||
603 | * All fragments start with a header, so we can make sure we're not receiving | ||
604 | * garbage, and we can tell a small 8 byte fragment from an ACK frame. | ||
605 | */ | ||
606 | struct rds_ib_ack_state { | ||
607 | u64 ack_next; | ||
608 | u64 ack_recv; | ||
609 | unsigned int ack_required:1; | ||
610 | unsigned int ack_next_valid:1; | ||
611 | unsigned int ack_recv_valid:1; | ||
612 | }; | ||
613 | |||
614 | static void rds_ib_process_recv(struct rds_connection *conn, | ||
615 | struct rds_ib_recv_work *recv, u32 byte_len, | ||
616 | struct rds_ib_ack_state *state) | ||
617 | { | ||
618 | struct rds_ib_connection *ic = conn->c_transport_data; | ||
619 | struct rds_ib_incoming *ibinc = ic->i_ibinc; | ||
620 | struct rds_header *ihdr, *hdr; | ||
621 | |||
622 | /* XXX shut down the connection if port 0,0 are seen? */ | ||
623 | |||
624 | rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv, | ||
625 | byte_len); | ||
626 | |||
627 | if (byte_len < sizeof(struct rds_header)) { | ||
628 | rds_ib_conn_error(conn, "incoming message " | ||
629 | "from %pI4 didn't inclue a " | ||
630 | "header, disconnecting and " | ||
631 | "reconnecting\n", | ||
632 | &conn->c_faddr); | ||
633 | return; | ||
634 | } | ||
635 | byte_len -= sizeof(struct rds_header); | ||
636 | |||
637 | ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs]; | ||
638 | |||
639 | /* Validate the checksum. */ | ||
640 | if (!rds_message_verify_checksum(ihdr)) { | ||
641 | rds_ib_conn_error(conn, "incoming message " | ||
642 | "from %pI4 has corrupted header - " | ||
643 | "forcing a reconnect\n", | ||
644 | &conn->c_faddr); | ||
645 | rds_stats_inc(s_recv_drop_bad_checksum); | ||
646 | return; | ||
647 | } | ||
648 | |||
649 | /* Process the ACK sequence which comes with every packet */ | ||
650 | state->ack_recv = be64_to_cpu(ihdr->h_ack); | ||
651 | state->ack_recv_valid = 1; | ||
652 | |||
653 | /* Process the credits update if there was one */ | ||
654 | if (ihdr->h_credit) | ||
655 | rds_ib_send_add_credits(conn, ihdr->h_credit); | ||
656 | |||
657 | if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && byte_len == 0) { | ||
658 | /* This is an ACK-only packet. The fact that it gets | ||
659 | * special treatment here is that historically, ACKs | ||
660 | * were rather special beasts. | ||
661 | */ | ||
662 | rds_ib_stats_inc(s_ib_ack_received); | ||
663 | |||
664 | /* | ||
665 | * Usually the frags make their way on to incs and are then freed as | ||
666 | * the inc is freed. We don't go that route, so we have to drop the | ||
667 | * page ref ourselves. We can't just leave the page on the recv | ||
668 | * because that confuses the dma mapping of pages and each recv's use | ||
669 | * of a partial page. We can leave the frag, though, it will be | ||
670 | * reused. | ||
671 | * | ||
672 | * FIXME: Fold this into the code path below. | ||
673 | */ | ||
674 | rds_ib_frag_drop_page(recv->r_frag); | ||
675 | return; | ||
676 | } | ||
677 | |||
678 | /* | ||
679 | * If we don't already have an inc on the connection then this | ||
680 | * fragment has a header and starts a message.. copy its header | ||
681 | * into the inc and save the inc so we can hang upcoming fragments | ||
682 | * off its list. | ||
683 | */ | ||
684 | if (ibinc == NULL) { | ||
685 | ibinc = recv->r_ibinc; | ||
686 | recv->r_ibinc = NULL; | ||
687 | ic->i_ibinc = ibinc; | ||
688 | |||
689 | hdr = &ibinc->ii_inc.i_hdr; | ||
690 | memcpy(hdr, ihdr, sizeof(*hdr)); | ||
691 | ic->i_recv_data_rem = be32_to_cpu(hdr->h_len); | ||
692 | |||
693 | rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc, | ||
694 | ic->i_recv_data_rem, hdr->h_flags); | ||
695 | } else { | ||
696 | hdr = &ibinc->ii_inc.i_hdr; | ||
697 | /* We can't just use memcmp here; fragments of a | ||
698 | * single message may carry different ACKs */ | ||
699 | if (hdr->h_sequence != ihdr->h_sequence | ||
700 | || hdr->h_len != ihdr->h_len | ||
701 | || hdr->h_sport != ihdr->h_sport | ||
702 | || hdr->h_dport != ihdr->h_dport) { | ||
703 | rds_ib_conn_error(conn, | ||
704 | "fragment header mismatch; forcing reconnect\n"); | ||
705 | return; | ||
706 | } | ||
707 | } | ||
708 | |||
709 | list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags); | ||
710 | recv->r_frag = NULL; | ||
711 | |||
712 | if (ic->i_recv_data_rem > RDS_FRAG_SIZE) | ||
713 | ic->i_recv_data_rem -= RDS_FRAG_SIZE; | ||
714 | else { | ||
715 | ic->i_recv_data_rem = 0; | ||
716 | ic->i_ibinc = NULL; | ||
717 | |||
718 | if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) | ||
719 | rds_ib_cong_recv(conn, ibinc); | ||
720 | else { | ||
721 | rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr, | ||
722 | &ibinc->ii_inc, GFP_ATOMIC, | ||
723 | KM_SOFTIRQ0); | ||
724 | state->ack_next = be64_to_cpu(hdr->h_sequence); | ||
725 | state->ack_next_valid = 1; | ||
726 | } | ||
727 | |||
728 | /* Evaluate the ACK_REQUIRED flag *after* we received | ||
729 | * the complete frame, and after bumping the next_rx | ||
730 | * sequence. */ | ||
731 | if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) { | ||
732 | rds_stats_inc(s_recv_ack_required); | ||
733 | state->ack_required = 1; | ||
734 | } | ||
735 | |||
736 | rds_inc_put(&ibinc->ii_inc); | ||
737 | } | ||
738 | } | ||
739 | |||
740 | /* | ||
741 | * Plucking the oldest entry from the ring can be done concurrently with | ||
742 | * the thread refilling the ring. Each ring operation is protected by | ||
743 | * spinlocks and the transient state of refilling doesn't change the | ||
744 | * recording of which entry is oldest. | ||
745 | * | ||
746 | * This relies on IB only calling one cq comp_handler for each cq so that | ||
747 | * there will only be one caller of rds_recv_incoming() per RDS connection. | ||
748 | */ | ||
749 | void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context) | ||
750 | { | ||
751 | struct rds_connection *conn = context; | ||
752 | struct rds_ib_connection *ic = conn->c_transport_data; | ||
753 | struct ib_wc wc; | ||
754 | struct rds_ib_ack_state state = { 0, }; | ||
755 | struct rds_ib_recv_work *recv; | ||
756 | |||
757 | rdsdebug("conn %p cq %p\n", conn, cq); | ||
758 | |||
759 | rds_ib_stats_inc(s_ib_rx_cq_call); | ||
760 | |||
761 | ib_req_notify_cq(cq, IB_CQ_SOLICITED); | ||
762 | |||
763 | while (ib_poll_cq(cq, 1, &wc) > 0) { | ||
764 | rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", | ||
765 | (unsigned long long)wc.wr_id, wc.status, wc.byte_len, | ||
766 | be32_to_cpu(wc.ex.imm_data)); | ||
767 | rds_ib_stats_inc(s_ib_rx_cq_event); | ||
768 | |||
769 | recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)]; | ||
770 | |||
771 | rds_ib_recv_unmap_page(ic, recv); | ||
772 | |||
773 | /* | ||
774 | * Also process recvs in connecting state because it is possible | ||
775 | * to get a recv completion _before_ the rdmacm ESTABLISHED | ||
776 | * event is processed. | ||
777 | */ | ||
778 | if (rds_conn_up(conn) || rds_conn_connecting(conn)) { | ||
779 | /* We expect errors as the qp is drained during shutdown */ | ||
780 | if (wc.status == IB_WC_SUCCESS) { | ||
781 | rds_ib_process_recv(conn, recv, wc.byte_len, &state); | ||
782 | } else { | ||
783 | rds_ib_conn_error(conn, "recv completion on " | ||
784 | "%pI4 had status %u, disconnecting and " | ||
785 | "reconnecting\n", &conn->c_faddr, | ||
786 | wc.status); | ||
787 | } | ||
788 | } | ||
789 | |||
790 | rds_ib_ring_free(&ic->i_recv_ring, 1); | ||
791 | } | ||
792 | |||
793 | if (state.ack_next_valid) | ||
794 | rds_ib_set_ack(ic, state.ack_next, state.ack_required); | ||
795 | if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) { | ||
796 | rds_send_drop_acked(conn, state.ack_recv, NULL); | ||
797 | ic->i_ack_recv = state.ack_recv; | ||
798 | } | ||
799 | if (rds_conn_up(conn)) | ||
800 | rds_ib_attempt_ack(ic); | ||
801 | |||
802 | /* If we ever end up with a really empty receive ring, we're | ||
803 | * in deep trouble, as the sender will definitely see RNR | ||
804 | * timeouts. */ | ||
805 | if (rds_ib_ring_empty(&ic->i_recv_ring)) | ||
806 | rds_ib_stats_inc(s_ib_rx_ring_empty); | ||
807 | |||
808 | /* | ||
809 | * If the ring is running low, then schedule the thread to refill. | ||
810 | */ | ||
811 | if (rds_ib_ring_low(&ic->i_recv_ring)) | ||
812 | queue_delayed_work(rds_wq, &conn->c_recv_w, 0); | ||
813 | } | ||
814 | |||
815 | int rds_ib_recv(struct rds_connection *conn) | ||
816 | { | ||
817 | struct rds_ib_connection *ic = conn->c_transport_data; | ||
818 | int ret = 0; | ||
819 | |||
820 | rdsdebug("conn %p\n", conn); | ||
821 | |||
822 | /* | ||
823 | * If we get a temporary posting failure in this context then | ||
824 | * we're really low and we want the caller to back off for a bit. | ||
825 | */ | ||
826 | mutex_lock(&ic->i_recv_mutex); | ||
827 | if (rds_ib_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 0)) | ||
828 | ret = -ENOMEM; | ||
829 | else | ||
830 | rds_ib_stats_inc(s_ib_rx_refill_from_thread); | ||
831 | mutex_unlock(&ic->i_recv_mutex); | ||
832 | |||
833 | if (rds_conn_up(conn)) | ||
834 | rds_ib_attempt_ack(ic); | ||
835 | |||
836 | return ret; | ||
837 | } | ||
838 | |||
839 | int __init rds_ib_recv_init(void) | ||
840 | { | ||
841 | struct sysinfo si; | ||
842 | int ret = -ENOMEM; | ||
843 | |||
844 | /* Default to 30% of all available RAM for recv memory */ | ||
845 | si_meminfo(&si); | ||
846 | rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE; | ||
847 | |||
848 | rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming", | ||
849 | sizeof(struct rds_ib_incoming), | ||
850 | 0, 0, NULL); | ||
851 | if (rds_ib_incoming_slab == NULL) | ||
852 | goto out; | ||
853 | |||
854 | rds_ib_frag_slab = kmem_cache_create("rds_ib_frag", | ||
855 | sizeof(struct rds_page_frag), | ||
856 | 0, 0, NULL); | ||
857 | if (rds_ib_frag_slab == NULL) | ||
858 | kmem_cache_destroy(rds_ib_incoming_slab); | ||
859 | else | ||
860 | ret = 0; | ||
861 | out: | ||
862 | return ret; | ||
863 | } | ||
864 | |||
865 | void rds_ib_recv_exit(void) | ||
866 | { | ||
867 | kmem_cache_destroy(rds_ib_incoming_slab); | ||
868 | kmem_cache_destroy(rds_ib_frag_slab); | ||
869 | } | ||