aboutsummaryrefslogtreecommitdiffstats
path: root/mm
diff options
context:
space:
mode:
Diffstat (limited to 'mm')
-rw-r--r--mm/readahead.c373
1 files changed, 25 insertions, 348 deletions
diff --git a/mm/readahead.c b/mm/readahead.c
index c094e4f5a25..5b3c9b7d70f 100644
--- a/mm/readahead.c
+++ b/mm/readahead.c
@@ -49,82 +49,6 @@ file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
49} 49}
50EXPORT_SYMBOL_GPL(file_ra_state_init); 50EXPORT_SYMBOL_GPL(file_ra_state_init);
51 51
52/*
53 * Return max readahead size for this inode in number-of-pages.
54 */
55static inline unsigned long get_max_readahead(struct file_ra_state *ra)
56{
57 return ra->ra_pages;
58}
59
60static inline unsigned long get_min_readahead(struct file_ra_state *ra)
61{
62 return MIN_RA_PAGES;
63}
64
65static inline void reset_ahead_window(struct file_ra_state *ra)
66{
67 /*
68 * ... but preserve ahead_start + ahead_size value,
69 * see 'recheck:' label in page_cache_readahead().
70 * Note: We never use ->ahead_size as rvalue without
71 * checking ->ahead_start != 0 first.
72 */
73 ra->ahead_size += ra->ahead_start;
74 ra->ahead_start = 0;
75}
76
77static inline void ra_off(struct file_ra_state *ra)
78{
79 ra->start = 0;
80 ra->flags = 0;
81 ra->size = 0;
82 reset_ahead_window(ra);
83 return;
84}
85
86/*
87 * Set the initial window size, round to next power of 2 and square
88 * for small size, x 4 for medium, and x 2 for large
89 * for 128k (32 page) max ra
90 * 1-8 page = 32k initial, > 8 page = 128k initial
91 */
92static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
93{
94 unsigned long newsize = roundup_pow_of_two(size);
95
96 if (newsize <= max / 32)
97 newsize = newsize * 4;
98 else if (newsize <= max / 4)
99 newsize = newsize * 2;
100 else
101 newsize = max;
102 return newsize;
103}
104
105/*
106 * Set the new window size, this is called only when I/O is to be submitted,
107 * not for each call to readahead. If a cache miss occured, reduce next I/O
108 * size, else increase depending on how close to max we are.
109 */
110static inline unsigned long get_next_ra_size(struct file_ra_state *ra)
111{
112 unsigned long max = get_max_readahead(ra);
113 unsigned long min = get_min_readahead(ra);
114 unsigned long cur = ra->size;
115 unsigned long newsize;
116
117 if (ra->flags & RA_FLAG_MISS) {
118 ra->flags &= ~RA_FLAG_MISS;
119 newsize = max((cur - 2), min);
120 } else if (cur < max / 16) {
121 newsize = 4 * cur;
122 } else {
123 newsize = 2 * cur;
124 }
125 return min(newsize, max);
126}
127
128#define list_to_page(head) (list_entry((head)->prev, struct page, lru)) 52#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
129 53
130/** 54/**
@@ -201,66 +125,6 @@ out:
201} 125}
202 126
203/* 127/*
204 * Readahead design.
205 *
206 * The fields in struct file_ra_state represent the most-recently-executed
207 * readahead attempt:
208 *
209 * start: Page index at which we started the readahead
210 * size: Number of pages in that read
211 * Together, these form the "current window".
212 * Together, start and size represent the `readahead window'.
213 * prev_index: The page which the readahead algorithm most-recently inspected.
214 * It is mainly used to detect sequential file reading.
215 * If page_cache_readahead sees that it is again being called for
216 * a page which it just looked at, it can return immediately without
217 * making any state changes.
218 * offset: Offset in the prev_index where the last read ended - used for
219 * detection of sequential file reading.
220 * ahead_start,
221 * ahead_size: Together, these form the "ahead window".
222 * ra_pages: The externally controlled max readahead for this fd.
223 *
224 * When readahead is in the off state (size == 0), readahead is disabled.
225 * In this state, prev_index is used to detect the resumption of sequential I/O.
226 *
227 * The readahead code manages two windows - the "current" and the "ahead"
228 * windows. The intent is that while the application is walking the pages
229 * in the current window, I/O is underway on the ahead window. When the
230 * current window is fully traversed, it is replaced by the ahead window
231 * and the ahead window is invalidated. When this copying happens, the
232 * new current window's pages are probably still locked. So
233 * we submit a new batch of I/O immediately, creating a new ahead window.
234 *
235 * So:
236 *
237 * ----|----------------|----------------|-----
238 * ^start ^start+size
239 * ^ahead_start ^ahead_start+ahead_size
240 *
241 * ^ When this page is read, we submit I/O for the
242 * ahead window.
243 *
244 * A `readahead hit' occurs when a read request is made against a page which is
245 * the next sequential page. Ahead window calculations are done only when it
246 * is time to submit a new IO. The code ramps up the size agressively at first,
247 * but slow down as it approaches max_readhead.
248 *
249 * Any seek/ramdom IO will result in readahead being turned off. It will resume
250 * at the first sequential access.
251 *
252 * There is a special-case: if the first page which the application tries to
253 * read happens to be the first page of the file, it is assumed that a linear
254 * read is about to happen and the window is immediately set to the initial size
255 * based on I/O request size and the max_readahead.
256 *
257 * This function is to be called for every read request, rather than when
258 * it is time to perform readahead. It is called only once for the entire I/O
259 * regardless of size unless readahead is unable to start enough I/O to satisfy
260 * the request (I/O request > max_readahead).
261 */
262
263/*
264 * do_page_cache_readahead actually reads a chunk of disk. It allocates all 128 * do_page_cache_readahead actually reads a chunk of disk. It allocates all
265 * the pages first, then submits them all for I/O. This avoids the very bad 129 * the pages first, then submits them all for I/O. This avoids the very bad
266 * behaviour which would occur if page allocations are causing VM writeback. 130 * behaviour which would occur if page allocations are causing VM writeback.
@@ -295,7 +159,7 @@ __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
295 read_lock_irq(&mapping->tree_lock); 159 read_lock_irq(&mapping->tree_lock);
296 for (page_idx = 0; page_idx < nr_to_read; page_idx++) { 160 for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
297 pgoff_t page_offset = offset + page_idx; 161 pgoff_t page_offset = offset + page_idx;
298 162
299 if (page_offset > end_index) 163 if (page_offset > end_index)
300 break; 164 break;
301 165
@@ -361,28 +225,6 @@ int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
361} 225}
362 226
363/* 227/*
364 * Check how effective readahead is being. If the amount of started IO is
365 * less than expected then the file is partly or fully in pagecache and
366 * readahead isn't helping.
367 *
368 */
369static inline int check_ra_success(struct file_ra_state *ra,
370 unsigned long nr_to_read, unsigned long actual)
371{
372 if (actual == 0) {
373 ra->cache_hit += nr_to_read;
374 if (ra->cache_hit >= VM_MAX_CACHE_HIT) {
375 ra_off(ra);
376 ra->flags |= RA_FLAG_INCACHE;
377 return 0;
378 }
379 } else {
380 ra->cache_hit=0;
381 }
382 return 1;
383}
384
385/*
386 * This version skips the IO if the queue is read-congested, and will tell the 228 * This version skips the IO if the queue is read-congested, and will tell the
387 * block layer to abandon the readahead if request allocation would block. 229 * block layer to abandon the readahead if request allocation would block.
388 * 230 *
@@ -399,191 +241,6 @@ int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
399} 241}
400 242
401/* 243/*
402 * Read 'nr_to_read' pages starting at page 'offset'. If the flag 'block'
403 * is set wait till the read completes. Otherwise attempt to read without
404 * blocking.
405 * Returns 1 meaning 'success' if read is successful without switching off
406 * readahead mode. Otherwise return failure.
407 */
408static int
409blockable_page_cache_readahead(struct address_space *mapping, struct file *filp,
410 pgoff_t offset, unsigned long nr_to_read,
411 struct file_ra_state *ra, int block)
412{
413 int actual;
414
415 if (!block && bdi_read_congested(mapping->backing_dev_info))
416 return 0;
417
418 actual = __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
419
420 return check_ra_success(ra, nr_to_read, actual);
421}
422
423static int make_ahead_window(struct address_space *mapping, struct file *filp,
424 struct file_ra_state *ra, int force)
425{
426 int block, ret;
427
428 ra->ahead_size = get_next_ra_size(ra);
429 ra->ahead_start = ra->start + ra->size;
430
431 block = force || (ra->prev_index >= ra->ahead_start);
432 ret = blockable_page_cache_readahead(mapping, filp,
433 ra->ahead_start, ra->ahead_size, ra, block);
434
435 if (!ret && !force) {
436 /* A read failure in blocking mode, implies pages are
437 * all cached. So we can safely assume we have taken
438 * care of all the pages requested in this call.
439 * A read failure in non-blocking mode, implies we are
440 * reading more pages than requested in this call. So
441 * we safely assume we have taken care of all the pages
442 * requested in this call.
443 *
444 * Just reset the ahead window in case we failed due to
445 * congestion. The ahead window will any way be closed
446 * in case we failed due to excessive page cache hits.
447 */
448 reset_ahead_window(ra);
449 }
450
451 return ret;
452}
453
454/**
455 * page_cache_readahead - generic adaptive readahead
456 * @mapping: address_space which holds the pagecache and I/O vectors
457 * @ra: file_ra_state which holds the readahead state
458 * @filp: passed on to ->readpage() and ->readpages()
459 * @offset: start offset into @mapping, in PAGE_CACHE_SIZE units
460 * @req_size: hint: total size of the read which the caller is performing in
461 * PAGE_CACHE_SIZE units
462 *
463 * page_cache_readahead() is the main function. It performs the adaptive
464 * readahead window size management and submits the readahead I/O.
465 *
466 * Note that @filp is purely used for passing on to the ->readpage[s]()
467 * handler: it may refer to a different file from @mapping (so we may not use
468 * @filp->f_mapping or @filp->f_path.dentry->d_inode here).
469 * Also, @ra may not be equal to &@filp->f_ra.
470 *
471 */
472unsigned long
473page_cache_readahead(struct address_space *mapping, struct file_ra_state *ra,
474 struct file *filp, pgoff_t offset, unsigned long req_size)
475{
476 unsigned long max, newsize;
477 int sequential;
478
479 /*
480 * We avoid doing extra work and bogusly perturbing the readahead
481 * window expansion logic.
482 */
483 if (offset == ra->prev_index && --req_size)
484 ++offset;
485
486 /* Note that prev_index == -1 if it is a first read */
487 sequential = (offset == ra->prev_index + 1);
488 ra->prev_index = offset;
489 ra->prev_offset = 0;
490
491 max = get_max_readahead(ra);
492 newsize = min(req_size, max);
493
494 /* No readahead or sub-page sized read or file already in cache */
495 if (newsize == 0 || (ra->flags & RA_FLAG_INCACHE))
496 goto out;
497
498 ra->prev_index += newsize - 1;
499
500 /*
501 * Special case - first read at start of file. We'll assume it's
502 * a whole-file read and grow the window fast. Or detect first
503 * sequential access
504 */
505 if (sequential && ra->size == 0) {
506 ra->size = get_init_ra_size(newsize, max);
507 ra->start = offset;
508 if (!blockable_page_cache_readahead(mapping, filp, offset,
509 ra->size, ra, 1))
510 goto out;
511
512 /*
513 * If the request size is larger than our max readahead, we
514 * at least want to be sure that we get 2 IOs in flight and
515 * we know that we will definitly need the new I/O.
516 * once we do this, subsequent calls should be able to overlap
517 * IOs,* thus preventing stalls. so issue the ahead window
518 * immediately.
519 */
520 if (req_size >= max)
521 make_ahead_window(mapping, filp, ra, 1);
522
523 goto out;
524 }
525
526 /*
527 * Now handle the random case:
528 * partial page reads and first access were handled above,
529 * so this must be the next page otherwise it is random
530 */
531 if (!sequential) {
532 ra_off(ra);
533 blockable_page_cache_readahead(mapping, filp, offset,
534 newsize, ra, 1);
535 goto out;
536 }
537
538 /*
539 * If we get here we are doing sequential IO and this was not the first
540 * occurence (ie we have an existing window)
541 */
542 if (ra->ahead_start == 0) { /* no ahead window yet */
543 if (!make_ahead_window(mapping, filp, ra, 0))
544 goto recheck;
545 }
546
547 /*
548 * Already have an ahead window, check if we crossed into it.
549 * If so, shift windows and issue a new ahead window.
550 * Only return the #pages that are in the current window, so that
551 * we get called back on the first page of the ahead window which
552 * will allow us to submit more IO.
553 */
554 if (ra->prev_index >= ra->ahead_start) {
555 ra->start = ra->ahead_start;
556 ra->size = ra->ahead_size;
557 make_ahead_window(mapping, filp, ra, 0);
558recheck:
559 /* prev_index shouldn't overrun the ahead window */
560 ra->prev_index = min(ra->prev_index,
561 ra->ahead_start + ra->ahead_size - 1);
562 }
563
564out:
565 return ra->prev_index + 1;
566}
567EXPORT_SYMBOL_GPL(page_cache_readahead);
568
569/*
570 * handle_ra_miss() is called when it is known that a page which should have
571 * been present in the pagecache (we just did some readahead there) was in fact
572 * not found. This will happen if it was evicted by the VM (readahead
573 * thrashing)
574 *
575 * Turn on the cache miss flag in the RA struct, this will cause the RA code
576 * to reduce the RA size on the next read.
577 */
578void handle_ra_miss(struct address_space *mapping,
579 struct file_ra_state *ra, pgoff_t offset)
580{
581 ra->flags |= RA_FLAG_MISS;
582 ra->flags &= ~RA_FLAG_INCACHE;
583 ra->cache_hit = 0;
584}
585
586/*
587 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a 244 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
588 * sensible upper limit. 245 * sensible upper limit.
589 */ 246 */
@@ -613,19 +270,39 @@ unsigned long ra_submit(struct file_ra_state *ra,
613EXPORT_SYMBOL_GPL(ra_submit); 270EXPORT_SYMBOL_GPL(ra_submit);
614 271
615/* 272/*
273 * Set the initial window size, round to next power of 2 and square
274 * for small size, x 4 for medium, and x 2 for large
275 * for 128k (32 page) max ra
276 * 1-8 page = 32k initial, > 8 page = 128k initial
277 */
278static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
279{
280 unsigned long newsize = roundup_pow_of_two(size);
281
282 if (newsize <= max / 32)
283 newsize = newsize * 4;
284 else if (newsize <= max / 4)
285 newsize = newsize * 2;
286 else
287 newsize = max;
288
289 return newsize;
290}
291
292/*
616 * Get the previous window size, ramp it up, and 293 * Get the previous window size, ramp it up, and
617 * return it as the new window size. 294 * return it as the new window size.
618 */ 295 */
619static unsigned long get_next_ra_size2(struct file_ra_state *ra, 296static unsigned long get_next_ra_size(struct file_ra_state *ra,
620 unsigned long max) 297 unsigned long max)
621{ 298{
622 unsigned long cur = ra->readahead_index - ra->ra_index; 299 unsigned long cur = ra->readahead_index - ra->ra_index;
623 unsigned long newsize; 300 unsigned long newsize;
624 301
625 if (cur < max / 16) 302 if (cur < max / 16)
626 newsize = cur * 4; 303 newsize = 4 * cur;
627 else 304 else
628 newsize = cur * 2; 305 newsize = 2 * cur;
629 306
630 return min(newsize, max); 307 return min(newsize, max);
631} 308}
@@ -701,7 +378,7 @@ ondemand_readahead(struct address_space *mapping,
701 if (offset && (offset == ra->lookahead_index || 378 if (offset && (offset == ra->lookahead_index ||
702 offset == ra->readahead_index)) { 379 offset == ra->readahead_index)) {
703 ra_index = ra->readahead_index; 380 ra_index = ra->readahead_index;
704 ra_size = get_next_ra_size2(ra, max); 381 ra_size = get_next_ra_size(ra, max);
705 la_size = ra_size; 382 la_size = ra_size;
706 goto fill_ra; 383 goto fill_ra;
707 } 384 }