aboutsummaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'kernel')
-rw-r--r--kernel/futex.c25
1 files changed, 14 insertions, 11 deletions
diff --git a/kernel/futex.c b/kernel/futex.c
index 92a31d4cd56..9b9fda73ba2 100644
--- a/kernel/futex.c
+++ b/kernel/futex.c
@@ -91,6 +91,7 @@ struct futex_pi_state {
91 91
92/** 92/**
93 * struct futex_q - The hashed futex queue entry, one per waiting task 93 * struct futex_q - The hashed futex queue entry, one per waiting task
94 * @list: priority-sorted list of tasks waiting on this futex
94 * @task: the task waiting on the futex 95 * @task: the task waiting on the futex
95 * @lock_ptr: the hash bucket lock 96 * @lock_ptr: the hash bucket lock
96 * @key: the key the futex is hashed on 97 * @key: the key the futex is hashed on
@@ -104,7 +105,7 @@ struct futex_pi_state {
104 * 105 *
105 * A futex_q has a woken state, just like tasks have TASK_RUNNING. 106 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
106 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. 107 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
107 * The order of wakup is always to make the first condition true, then 108 * The order of wakeup is always to make the first condition true, then
108 * the second. 109 * the second.
109 * 110 *
110 * PI futexes are typically woken before they are removed from the hash list via 111 * PI futexes are typically woken before they are removed from the hash list via
@@ -295,7 +296,7 @@ void put_futex_key(int fshared, union futex_key *key)
295 * Slow path to fixup the fault we just took in the atomic write 296 * Slow path to fixup the fault we just took in the atomic write
296 * access to @uaddr. 297 * access to @uaddr.
297 * 298 *
298 * We have no generic implementation of a non destructive write to the 299 * We have no generic implementation of a non-destructive write to the
299 * user address. We know that we faulted in the atomic pagefault 300 * user address. We know that we faulted in the atomic pagefault
300 * disabled section so we can as well avoid the #PF overhead by 301 * disabled section so we can as well avoid the #PF overhead by
301 * calling get_user_pages() right away. 302 * calling get_user_pages() right away.
@@ -515,7 +516,7 @@ lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
515 */ 516 */
516 pi_state = this->pi_state; 517 pi_state = this->pi_state;
517 /* 518 /*
518 * Userspace might have messed up non PI and PI futexes 519 * Userspace might have messed up non-PI and PI futexes
519 */ 520 */
520 if (unlikely(!pi_state)) 521 if (unlikely(!pi_state))
521 return -EINVAL; 522 return -EINVAL;
@@ -736,8 +737,8 @@ static void wake_futex(struct futex_q *q)
736 737
737 /* 738 /*
738 * We set q->lock_ptr = NULL _before_ we wake up the task. If 739 * We set q->lock_ptr = NULL _before_ we wake up the task. If
739 * a non futex wake up happens on another CPU then the task 740 * a non-futex wake up happens on another CPU then the task
740 * might exit and p would dereference a non existing task 741 * might exit and p would dereference a non-existing task
741 * struct. Prevent this by holding a reference on p across the 742 * struct. Prevent this by holding a reference on p across the
742 * wake up. 743 * wake up.
743 */ 744 */
@@ -1131,11 +1132,13 @@ static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1131 1132
1132/** 1133/**
1133 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2 1134 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1134 * uaddr1: source futex user address 1135 * @uaddr1: source futex user address
1135 * uaddr2: target futex user address 1136 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
1136 * nr_wake: number of waiters to wake (must be 1 for requeue_pi) 1137 * @uaddr2: target futex user address
1137 * nr_requeue: number of waiters to requeue (0-INT_MAX) 1138 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1138 * requeue_pi: if we are attempting to requeue from a non-pi futex to a 1139 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1140 * @cmpval: @uaddr1 expected value (or %NULL)
1141 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1139 * pi futex (pi to pi requeue is not supported) 1142 * pi futex (pi to pi requeue is not supported)
1140 * 1143 *
1141 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire 1144 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
@@ -2651,7 +2654,7 @@ static int __init futex_init(void)
2651 * of the complex code paths. Also we want to prevent 2654 * of the complex code paths. Also we want to prevent
2652 * registration of robust lists in that case. NULL is 2655 * registration of robust lists in that case. NULL is
2653 * guaranteed to fault and we get -EFAULT on functional 2656 * guaranteed to fault and we get -EFAULT on functional
2654 * implementation, the non functional ones will return 2657 * implementation, the non-functional ones will return
2655 * -ENOSYS. 2658 * -ENOSYS.
2656 */ 2659 */
2657 curval = cmpxchg_futex_value_locked(NULL, 0, 0); 2660 curval = cmpxchg_futex_value_locked(NULL, 0, 0);