diff options
Diffstat (limited to 'arch/x86/kernel/apb_timer.c')
-rw-r--r-- | arch/x86/kernel/apb_timer.c | 784 |
1 files changed, 784 insertions, 0 deletions
diff --git a/arch/x86/kernel/apb_timer.c b/arch/x86/kernel/apb_timer.c new file mode 100644 index 00000000000..4b7099526d2 --- /dev/null +++ b/arch/x86/kernel/apb_timer.c | |||
@@ -0,0 +1,784 @@ | |||
1 | /* | ||
2 | * apb_timer.c: Driver for Langwell APB timers | ||
3 | * | ||
4 | * (C) Copyright 2009 Intel Corporation | ||
5 | * Author: Jacob Pan (jacob.jun.pan@intel.com) | ||
6 | * | ||
7 | * This program is free software; you can redistribute it and/or | ||
8 | * modify it under the terms of the GNU General Public License | ||
9 | * as published by the Free Software Foundation; version 2 | ||
10 | * of the License. | ||
11 | * | ||
12 | * Note: | ||
13 | * Langwell is the south complex of Intel Moorestown MID platform. There are | ||
14 | * eight external timers in total that can be used by the operating system. | ||
15 | * The timer information, such as frequency and addresses, is provided to the | ||
16 | * OS via SFI tables. | ||
17 | * Timer interrupts are routed via FW/HW emulated IOAPIC independently via | ||
18 | * individual redirection table entries (RTE). | ||
19 | * Unlike HPET, there is no master counter, therefore one of the timers are | ||
20 | * used as clocksource. The overall allocation looks like: | ||
21 | * - timer 0 - NR_CPUs for per cpu timer | ||
22 | * - one timer for clocksource | ||
23 | * - one timer for watchdog driver. | ||
24 | * It is also worth notice that APB timer does not support true one-shot mode, | ||
25 | * free-running mode will be used here to emulate one-shot mode. | ||
26 | * APB timer can also be used as broadcast timer along with per cpu local APIC | ||
27 | * timer, but by default APB timer has higher rating than local APIC timers. | ||
28 | */ | ||
29 | |||
30 | #include <linux/clocksource.h> | ||
31 | #include <linux/clockchips.h> | ||
32 | #include <linux/delay.h> | ||
33 | #include <linux/errno.h> | ||
34 | #include <linux/init.h> | ||
35 | #include <linux/sysdev.h> | ||
36 | #include <linux/pm.h> | ||
37 | #include <linux/pci.h> | ||
38 | #include <linux/sfi.h> | ||
39 | #include <linux/interrupt.h> | ||
40 | #include <linux/cpu.h> | ||
41 | #include <linux/irq.h> | ||
42 | |||
43 | #include <asm/fixmap.h> | ||
44 | #include <asm/apb_timer.h> | ||
45 | |||
46 | #define APBT_MASK CLOCKSOURCE_MASK(32) | ||
47 | #define APBT_SHIFT 22 | ||
48 | #define APBT_CLOCKEVENT_RATING 150 | ||
49 | #define APBT_CLOCKSOURCE_RATING 250 | ||
50 | #define APBT_MIN_DELTA_USEC 200 | ||
51 | |||
52 | #define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt) | ||
53 | #define APBT_CLOCKEVENT0_NUM (0) | ||
54 | #define APBT_CLOCKEVENT1_NUM (1) | ||
55 | #define APBT_CLOCKSOURCE_NUM (2) | ||
56 | |||
57 | static unsigned long apbt_address; | ||
58 | static int apb_timer_block_enabled; | ||
59 | static void __iomem *apbt_virt_address; | ||
60 | static int phy_cs_timer_id; | ||
61 | |||
62 | /* | ||
63 | * Common DW APB timer info | ||
64 | */ | ||
65 | static uint64_t apbt_freq; | ||
66 | |||
67 | static void apbt_set_mode(enum clock_event_mode mode, | ||
68 | struct clock_event_device *evt); | ||
69 | static int apbt_next_event(unsigned long delta, | ||
70 | struct clock_event_device *evt); | ||
71 | static cycle_t apbt_read_clocksource(struct clocksource *cs); | ||
72 | static void apbt_restart_clocksource(struct clocksource *cs); | ||
73 | |||
74 | struct apbt_dev { | ||
75 | struct clock_event_device evt; | ||
76 | unsigned int num; | ||
77 | int cpu; | ||
78 | unsigned int irq; | ||
79 | unsigned int tick; | ||
80 | unsigned int count; | ||
81 | unsigned int flags; | ||
82 | char name[10]; | ||
83 | }; | ||
84 | |||
85 | int disable_apbt_percpu __cpuinitdata; | ||
86 | |||
87 | static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev); | ||
88 | |||
89 | #ifdef CONFIG_SMP | ||
90 | static unsigned int apbt_num_timers_used; | ||
91 | static struct apbt_dev *apbt_devs; | ||
92 | #endif | ||
93 | |||
94 | static inline unsigned long apbt_readl_reg(unsigned long a) | ||
95 | { | ||
96 | return readl(apbt_virt_address + a); | ||
97 | } | ||
98 | |||
99 | static inline void apbt_writel_reg(unsigned long d, unsigned long a) | ||
100 | { | ||
101 | writel(d, apbt_virt_address + a); | ||
102 | } | ||
103 | |||
104 | static inline unsigned long apbt_readl(int n, unsigned long a) | ||
105 | { | ||
106 | return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE); | ||
107 | } | ||
108 | |||
109 | static inline void apbt_writel(int n, unsigned long d, unsigned long a) | ||
110 | { | ||
111 | writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE); | ||
112 | } | ||
113 | |||
114 | static inline void apbt_set_mapping(void) | ||
115 | { | ||
116 | struct sfi_timer_table_entry *mtmr; | ||
117 | |||
118 | if (apbt_virt_address) { | ||
119 | pr_debug("APBT base already mapped\n"); | ||
120 | return; | ||
121 | } | ||
122 | mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); | ||
123 | if (mtmr == NULL) { | ||
124 | printk(KERN_ERR "Failed to get MTMR %d from SFI\n", | ||
125 | APBT_CLOCKEVENT0_NUM); | ||
126 | return; | ||
127 | } | ||
128 | apbt_address = (unsigned long)mtmr->phys_addr; | ||
129 | if (!apbt_address) { | ||
130 | printk(KERN_WARNING "No timer base from SFI, use default\n"); | ||
131 | apbt_address = APBT_DEFAULT_BASE; | ||
132 | } | ||
133 | apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE); | ||
134 | if (apbt_virt_address) { | ||
135 | pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\ | ||
136 | (void *)apbt_address, (void *)apbt_virt_address); | ||
137 | } else { | ||
138 | pr_debug("Failed mapping APBT phy address at %p\n",\ | ||
139 | (void *)apbt_address); | ||
140 | goto panic_noapbt; | ||
141 | } | ||
142 | apbt_freq = mtmr->freq_hz / USEC_PER_SEC; | ||
143 | sfi_free_mtmr(mtmr); | ||
144 | |||
145 | /* Now figure out the physical timer id for clocksource device */ | ||
146 | mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM); | ||
147 | if (mtmr == NULL) | ||
148 | goto panic_noapbt; | ||
149 | |||
150 | /* Now figure out the physical timer id */ | ||
151 | phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) | ||
152 | / APBTMRS_REG_SIZE; | ||
153 | pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id); | ||
154 | return; | ||
155 | |||
156 | panic_noapbt: | ||
157 | panic("Failed to setup APB system timer\n"); | ||
158 | |||
159 | } | ||
160 | |||
161 | static inline void apbt_clear_mapping(void) | ||
162 | { | ||
163 | iounmap(apbt_virt_address); | ||
164 | apbt_virt_address = NULL; | ||
165 | } | ||
166 | |||
167 | /* | ||
168 | * APBT timer interrupt enable / disable | ||
169 | */ | ||
170 | static inline int is_apbt_capable(void) | ||
171 | { | ||
172 | return apbt_virt_address ? 1 : 0; | ||
173 | } | ||
174 | |||
175 | static struct clocksource clocksource_apbt = { | ||
176 | .name = "apbt", | ||
177 | .rating = APBT_CLOCKSOURCE_RATING, | ||
178 | .read = apbt_read_clocksource, | ||
179 | .mask = APBT_MASK, | ||
180 | .shift = APBT_SHIFT, | ||
181 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, | ||
182 | .resume = apbt_restart_clocksource, | ||
183 | }; | ||
184 | |||
185 | /* boot APB clock event device */ | ||
186 | static struct clock_event_device apbt_clockevent = { | ||
187 | .name = "apbt0", | ||
188 | .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, | ||
189 | .set_mode = apbt_set_mode, | ||
190 | .set_next_event = apbt_next_event, | ||
191 | .shift = APBT_SHIFT, | ||
192 | .irq = 0, | ||
193 | .rating = APBT_CLOCKEVENT_RATING, | ||
194 | }; | ||
195 | |||
196 | /* | ||
197 | * if user does not want to use per CPU apb timer, just give it a lower rating | ||
198 | * than local apic timer and skip the late per cpu timer init. | ||
199 | */ | ||
200 | static inline int __init setup_x86_mrst_timer(char *arg) | ||
201 | { | ||
202 | if (!arg) | ||
203 | return -EINVAL; | ||
204 | |||
205 | if (strcmp("apbt_only", arg) == 0) | ||
206 | disable_apbt_percpu = 0; | ||
207 | else if (strcmp("lapic_and_apbt", arg) == 0) | ||
208 | disable_apbt_percpu = 1; | ||
209 | else { | ||
210 | pr_warning("X86 MRST timer option %s not recognised" | ||
211 | " use x86_mrst_timer=apbt_only or lapic_and_apbt\n", | ||
212 | arg); | ||
213 | return -EINVAL; | ||
214 | } | ||
215 | return 0; | ||
216 | } | ||
217 | __setup("x86_mrst_timer=", setup_x86_mrst_timer); | ||
218 | |||
219 | /* | ||
220 | * start count down from 0xffff_ffff. this is done by toggling the enable bit | ||
221 | * then load initial load count to ~0. | ||
222 | */ | ||
223 | static void apbt_start_counter(int n) | ||
224 | { | ||
225 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); | ||
226 | |||
227 | ctrl &= ~APBTMR_CONTROL_ENABLE; | ||
228 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | ||
229 | apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT); | ||
230 | /* enable, mask interrupt */ | ||
231 | ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; | ||
232 | ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT); | ||
233 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | ||
234 | /* read it once to get cached counter value initialized */ | ||
235 | apbt_read_clocksource(&clocksource_apbt); | ||
236 | } | ||
237 | |||
238 | static irqreturn_t apbt_interrupt_handler(int irq, void *data) | ||
239 | { | ||
240 | struct apbt_dev *dev = (struct apbt_dev *)data; | ||
241 | struct clock_event_device *aevt = &dev->evt; | ||
242 | |||
243 | if (!aevt->event_handler) { | ||
244 | printk(KERN_INFO "Spurious APBT timer interrupt on %d\n", | ||
245 | dev->num); | ||
246 | return IRQ_NONE; | ||
247 | } | ||
248 | aevt->event_handler(aevt); | ||
249 | return IRQ_HANDLED; | ||
250 | } | ||
251 | |||
252 | static void apbt_restart_clocksource(struct clocksource *cs) | ||
253 | { | ||
254 | apbt_start_counter(phy_cs_timer_id); | ||
255 | } | ||
256 | |||
257 | /* Setup IRQ routing via IOAPIC */ | ||
258 | #ifdef CONFIG_SMP | ||
259 | static void apbt_setup_irq(struct apbt_dev *adev) | ||
260 | { | ||
261 | struct irq_chip *chip; | ||
262 | struct irq_desc *desc; | ||
263 | |||
264 | /* timer0 irq has been setup early */ | ||
265 | if (adev->irq == 0) | ||
266 | return; | ||
267 | desc = irq_to_desc(adev->irq); | ||
268 | chip = get_irq_chip(adev->irq); | ||
269 | disable_irq(adev->irq); | ||
270 | desc->status |= IRQ_MOVE_PCNTXT; | ||
271 | irq_set_affinity(adev->irq, cpumask_of(adev->cpu)); | ||
272 | /* APB timer irqs are set up as mp_irqs, timer is edge triggerred */ | ||
273 | set_irq_chip_and_handler_name(adev->irq, chip, handle_edge_irq, "edge"); | ||
274 | enable_irq(adev->irq); | ||
275 | if (system_state == SYSTEM_BOOTING) | ||
276 | if (request_irq(adev->irq, apbt_interrupt_handler, | ||
277 | IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING, | ||
278 | adev->name, adev)) { | ||
279 | printk(KERN_ERR "Failed request IRQ for APBT%d\n", | ||
280 | adev->num); | ||
281 | } | ||
282 | } | ||
283 | #endif | ||
284 | |||
285 | static void apbt_enable_int(int n) | ||
286 | { | ||
287 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); | ||
288 | /* clear pending intr */ | ||
289 | apbt_readl(n, APBTMR_N_EOI); | ||
290 | ctrl &= ~APBTMR_CONTROL_INT; | ||
291 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | ||
292 | } | ||
293 | |||
294 | static void apbt_disable_int(int n) | ||
295 | { | ||
296 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); | ||
297 | |||
298 | ctrl |= APBTMR_CONTROL_INT; | ||
299 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | ||
300 | } | ||
301 | |||
302 | |||
303 | static int __init apbt_clockevent_register(void) | ||
304 | { | ||
305 | struct sfi_timer_table_entry *mtmr; | ||
306 | struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev); | ||
307 | |||
308 | mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); | ||
309 | if (mtmr == NULL) { | ||
310 | printk(KERN_ERR "Failed to get MTMR %d from SFI\n", | ||
311 | APBT_CLOCKEVENT0_NUM); | ||
312 | return -ENODEV; | ||
313 | } | ||
314 | |||
315 | /* | ||
316 | * We need to calculate the scaled math multiplication factor for | ||
317 | * nanosecond to apbt tick conversion. | ||
318 | * mult = (nsec/cycle)*2^APBT_SHIFT | ||
319 | */ | ||
320 | apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz | ||
321 | , NSEC_PER_SEC, APBT_SHIFT); | ||
322 | |||
323 | /* Calculate the min / max delta */ | ||
324 | apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, | ||
325 | &apbt_clockevent); | ||
326 | apbt_clockevent.min_delta_ns = clockevent_delta2ns( | ||
327 | APBT_MIN_DELTA_USEC*apbt_freq, | ||
328 | &apbt_clockevent); | ||
329 | /* | ||
330 | * Start apbt with the boot cpu mask and make it | ||
331 | * global if not used for per cpu timer. | ||
332 | */ | ||
333 | apbt_clockevent.cpumask = cpumask_of(smp_processor_id()); | ||
334 | adev->num = smp_processor_id(); | ||
335 | memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device)); | ||
336 | |||
337 | if (disable_apbt_percpu) { | ||
338 | apbt_clockevent.rating = APBT_CLOCKEVENT_RATING - 100; | ||
339 | global_clock_event = &adev->evt; | ||
340 | printk(KERN_DEBUG "%s clockevent registered as global\n", | ||
341 | global_clock_event->name); | ||
342 | } | ||
343 | |||
344 | if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler, | ||
345 | IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING, | ||
346 | apbt_clockevent.name, adev)) { | ||
347 | printk(KERN_ERR "Failed request IRQ for APBT%d\n", | ||
348 | apbt_clockevent.irq); | ||
349 | } | ||
350 | |||
351 | clockevents_register_device(&adev->evt); | ||
352 | /* Start APBT 0 interrupts */ | ||
353 | apbt_enable_int(APBT_CLOCKEVENT0_NUM); | ||
354 | |||
355 | sfi_free_mtmr(mtmr); | ||
356 | return 0; | ||
357 | } | ||
358 | |||
359 | #ifdef CONFIG_SMP | ||
360 | /* Should be called with per cpu */ | ||
361 | void apbt_setup_secondary_clock(void) | ||
362 | { | ||
363 | struct apbt_dev *adev; | ||
364 | struct clock_event_device *aevt; | ||
365 | int cpu; | ||
366 | |||
367 | /* Don't register boot CPU clockevent */ | ||
368 | cpu = smp_processor_id(); | ||
369 | if (cpu == boot_cpu_id) | ||
370 | return; | ||
371 | /* | ||
372 | * We need to calculate the scaled math multiplication factor for | ||
373 | * nanosecond to apbt tick conversion. | ||
374 | * mult = (nsec/cycle)*2^APBT_SHIFT | ||
375 | */ | ||
376 | printk(KERN_INFO "Init per CPU clockevent %d\n", cpu); | ||
377 | adev = &per_cpu(cpu_apbt_dev, cpu); | ||
378 | aevt = &adev->evt; | ||
379 | |||
380 | memcpy(aevt, &apbt_clockevent, sizeof(*aevt)); | ||
381 | aevt->cpumask = cpumask_of(cpu); | ||
382 | aevt->name = adev->name; | ||
383 | aevt->mode = CLOCK_EVT_MODE_UNUSED; | ||
384 | |||
385 | printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n", | ||
386 | cpu, aevt->name, *(u32 *)aevt->cpumask); | ||
387 | |||
388 | apbt_setup_irq(adev); | ||
389 | |||
390 | clockevents_register_device(aevt); | ||
391 | |||
392 | apbt_enable_int(cpu); | ||
393 | |||
394 | return; | ||
395 | } | ||
396 | |||
397 | /* | ||
398 | * this notify handler process CPU hotplug events. in case of S0i3, nonboot | ||
399 | * cpus are disabled/enabled frequently, for performance reasons, we keep the | ||
400 | * per cpu timer irq registered so that we do need to do free_irq/request_irq. | ||
401 | * | ||
402 | * TODO: it might be more reliable to directly disable percpu clockevent device | ||
403 | * without the notifier chain. currently, cpu 0 may get interrupts from other | ||
404 | * cpu timers during the offline process due to the ordering of notification. | ||
405 | * the extra interrupt is harmless. | ||
406 | */ | ||
407 | static int apbt_cpuhp_notify(struct notifier_block *n, | ||
408 | unsigned long action, void *hcpu) | ||
409 | { | ||
410 | unsigned long cpu = (unsigned long)hcpu; | ||
411 | struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu); | ||
412 | |||
413 | switch (action & 0xf) { | ||
414 | case CPU_DEAD: | ||
415 | apbt_disable_int(cpu); | ||
416 | if (system_state == SYSTEM_RUNNING) | ||
417 | pr_debug("skipping APBT CPU %lu offline\n", cpu); | ||
418 | else if (adev) { | ||
419 | pr_debug("APBT clockevent for cpu %lu offline\n", cpu); | ||
420 | free_irq(adev->irq, adev); | ||
421 | } | ||
422 | break; | ||
423 | default: | ||
424 | pr_debug(KERN_INFO "APBT notified %lu, no action\n", action); | ||
425 | } | ||
426 | return NOTIFY_OK; | ||
427 | } | ||
428 | |||
429 | static __init int apbt_late_init(void) | ||
430 | { | ||
431 | if (disable_apbt_percpu) | ||
432 | return 0; | ||
433 | /* This notifier should be called after workqueue is ready */ | ||
434 | hotcpu_notifier(apbt_cpuhp_notify, -20); | ||
435 | return 0; | ||
436 | } | ||
437 | fs_initcall(apbt_late_init); | ||
438 | #else | ||
439 | |||
440 | void apbt_setup_secondary_clock(void) {} | ||
441 | |||
442 | #endif /* CONFIG_SMP */ | ||
443 | |||
444 | static void apbt_set_mode(enum clock_event_mode mode, | ||
445 | struct clock_event_device *evt) | ||
446 | { | ||
447 | unsigned long ctrl; | ||
448 | uint64_t delta; | ||
449 | int timer_num; | ||
450 | struct apbt_dev *adev = EVT_TO_APBT_DEV(evt); | ||
451 | |||
452 | timer_num = adev->num; | ||
453 | pr_debug("%s CPU %d timer %d mode=%d\n", | ||
454 | __func__, first_cpu(*evt->cpumask), timer_num, mode); | ||
455 | |||
456 | switch (mode) { | ||
457 | case CLOCK_EVT_MODE_PERIODIC: | ||
458 | delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult; | ||
459 | delta >>= apbt_clockevent.shift; | ||
460 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); | ||
461 | ctrl |= APBTMR_CONTROL_MODE_PERIODIC; | ||
462 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
463 | /* | ||
464 | * DW APB p. 46, have to disable timer before load counter, | ||
465 | * may cause sync problem. | ||
466 | */ | ||
467 | ctrl &= ~APBTMR_CONTROL_ENABLE; | ||
468 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
469 | udelay(1); | ||
470 | pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ); | ||
471 | apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT); | ||
472 | ctrl |= APBTMR_CONTROL_ENABLE; | ||
473 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
474 | break; | ||
475 | /* APB timer does not have one-shot mode, use free running mode */ | ||
476 | case CLOCK_EVT_MODE_ONESHOT: | ||
477 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); | ||
478 | /* | ||
479 | * set free running mode, this mode will let timer reload max | ||
480 | * timeout which will give time (3min on 25MHz clock) to rearm | ||
481 | * the next event, therefore emulate the one-shot mode. | ||
482 | */ | ||
483 | ctrl &= ~APBTMR_CONTROL_ENABLE; | ||
484 | ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; | ||
485 | |||
486 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
487 | /* write again to set free running mode */ | ||
488 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
489 | |||
490 | /* | ||
491 | * DW APB p. 46, load counter with all 1s before starting free | ||
492 | * running mode. | ||
493 | */ | ||
494 | apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT); | ||
495 | ctrl &= ~APBTMR_CONTROL_INT; | ||
496 | ctrl |= APBTMR_CONTROL_ENABLE; | ||
497 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
498 | break; | ||
499 | |||
500 | case CLOCK_EVT_MODE_UNUSED: | ||
501 | case CLOCK_EVT_MODE_SHUTDOWN: | ||
502 | apbt_disable_int(timer_num); | ||
503 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); | ||
504 | ctrl &= ~APBTMR_CONTROL_ENABLE; | ||
505 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
506 | break; | ||
507 | |||
508 | case CLOCK_EVT_MODE_RESUME: | ||
509 | apbt_enable_int(timer_num); | ||
510 | break; | ||
511 | } | ||
512 | } | ||
513 | |||
514 | static int apbt_next_event(unsigned long delta, | ||
515 | struct clock_event_device *evt) | ||
516 | { | ||
517 | unsigned long ctrl; | ||
518 | int timer_num; | ||
519 | |||
520 | struct apbt_dev *adev = EVT_TO_APBT_DEV(evt); | ||
521 | |||
522 | timer_num = adev->num; | ||
523 | /* Disable timer */ | ||
524 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); | ||
525 | ctrl &= ~APBTMR_CONTROL_ENABLE; | ||
526 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
527 | /* write new count */ | ||
528 | apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT); | ||
529 | ctrl |= APBTMR_CONTROL_ENABLE; | ||
530 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | ||
531 | return 0; | ||
532 | } | ||
533 | |||
534 | /* | ||
535 | * APB timer clock is not in sync with pclk on Langwell, which translates to | ||
536 | * unreliable read value caused by sampling error. the error does not add up | ||
537 | * overtime and only happens when sampling a 0 as a 1 by mistake. so the time | ||
538 | * would go backwards. the following code is trying to prevent time traveling | ||
539 | * backwards. little bit paranoid. | ||
540 | */ | ||
541 | static cycle_t apbt_read_clocksource(struct clocksource *cs) | ||
542 | { | ||
543 | unsigned long t0, t1, t2; | ||
544 | static unsigned long last_read; | ||
545 | |||
546 | bad_count: | ||
547 | t1 = apbt_readl(phy_cs_timer_id, | ||
548 | APBTMR_N_CURRENT_VALUE); | ||
549 | t2 = apbt_readl(phy_cs_timer_id, | ||
550 | APBTMR_N_CURRENT_VALUE); | ||
551 | if (unlikely(t1 < t2)) { | ||
552 | pr_debug("APBT: read current count error %lx:%lx:%lx\n", | ||
553 | t1, t2, t2 - t1); | ||
554 | goto bad_count; | ||
555 | } | ||
556 | /* | ||
557 | * check against cached last read, makes sure time does not go back. | ||
558 | * it could be a normal rollover but we will do tripple check anyway | ||
559 | */ | ||
560 | if (unlikely(t2 > last_read)) { | ||
561 | /* check if we have a normal rollover */ | ||
562 | unsigned long raw_intr_status = | ||
563 | apbt_readl_reg(APBTMRS_RAW_INT_STATUS); | ||
564 | /* | ||
565 | * cs timer interrupt is masked but raw intr bit is set if | ||
566 | * rollover occurs. then we read EOI reg to clear it. | ||
567 | */ | ||
568 | if (raw_intr_status & (1 << phy_cs_timer_id)) { | ||
569 | apbt_readl(phy_cs_timer_id, APBTMR_N_EOI); | ||
570 | goto out; | ||
571 | } | ||
572 | pr_debug("APB CS going back %lx:%lx:%lx ", | ||
573 | t2, last_read, t2 - last_read); | ||
574 | bad_count_x3: | ||
575 | pr_debug(KERN_INFO "tripple check enforced\n"); | ||
576 | t0 = apbt_readl(phy_cs_timer_id, | ||
577 | APBTMR_N_CURRENT_VALUE); | ||
578 | udelay(1); | ||
579 | t1 = apbt_readl(phy_cs_timer_id, | ||
580 | APBTMR_N_CURRENT_VALUE); | ||
581 | udelay(1); | ||
582 | t2 = apbt_readl(phy_cs_timer_id, | ||
583 | APBTMR_N_CURRENT_VALUE); | ||
584 | if ((t2 > t1) || (t1 > t0)) { | ||
585 | printk(KERN_ERR "Error: APB CS tripple check failed\n"); | ||
586 | goto bad_count_x3; | ||
587 | } | ||
588 | } | ||
589 | out: | ||
590 | last_read = t2; | ||
591 | return (cycle_t)~t2; | ||
592 | } | ||
593 | |||
594 | static int apbt_clocksource_register(void) | ||
595 | { | ||
596 | u64 start, now; | ||
597 | cycle_t t1; | ||
598 | |||
599 | /* Start the counter, use timer 2 as source, timer 0/1 for event */ | ||
600 | apbt_start_counter(phy_cs_timer_id); | ||
601 | |||
602 | /* Verify whether apbt counter works */ | ||
603 | t1 = apbt_read_clocksource(&clocksource_apbt); | ||
604 | rdtscll(start); | ||
605 | |||
606 | /* | ||
607 | * We don't know the TSC frequency yet, but waiting for | ||
608 | * 200000 TSC cycles is safe: | ||
609 | * 4 GHz == 50us | ||
610 | * 1 GHz == 200us | ||
611 | */ | ||
612 | do { | ||
613 | rep_nop(); | ||
614 | rdtscll(now); | ||
615 | } while ((now - start) < 200000UL); | ||
616 | |||
617 | /* APBT is the only always on clocksource, it has to work! */ | ||
618 | if (t1 == apbt_read_clocksource(&clocksource_apbt)) | ||
619 | panic("APBT counter not counting. APBT disabled\n"); | ||
620 | |||
621 | /* | ||
622 | * initialize and register APBT clocksource | ||
623 | * convert that to ns/clock cycle | ||
624 | * mult = (ns/c) * 2^APBT_SHIFT | ||
625 | */ | ||
626 | clocksource_apbt.mult = div_sc(MSEC_PER_SEC, | ||
627 | (unsigned long) apbt_freq, APBT_SHIFT); | ||
628 | clocksource_register(&clocksource_apbt); | ||
629 | |||
630 | return 0; | ||
631 | } | ||
632 | |||
633 | /* | ||
634 | * Early setup the APBT timer, only use timer 0 for booting then switch to | ||
635 | * per CPU timer if possible. | ||
636 | * returns 1 if per cpu apbt is setup | ||
637 | * returns 0 if no per cpu apbt is chosen | ||
638 | * panic if set up failed, this is the only platform timer on Moorestown. | ||
639 | */ | ||
640 | void __init apbt_time_init(void) | ||
641 | { | ||
642 | #ifdef CONFIG_SMP | ||
643 | int i; | ||
644 | struct sfi_timer_table_entry *p_mtmr; | ||
645 | unsigned int percpu_timer; | ||
646 | struct apbt_dev *adev; | ||
647 | #endif | ||
648 | |||
649 | if (apb_timer_block_enabled) | ||
650 | return; | ||
651 | apbt_set_mapping(); | ||
652 | if (apbt_virt_address) { | ||
653 | pr_debug("Found APBT version 0x%lx\n",\ | ||
654 | apbt_readl_reg(APBTMRS_COMP_VERSION)); | ||
655 | } else | ||
656 | goto out_noapbt; | ||
657 | /* | ||
658 | * Read the frequency and check for a sane value, for ESL model | ||
659 | * we extend the possible clock range to allow time scaling. | ||
660 | */ | ||
661 | |||
662 | if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) { | ||
663 | pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq); | ||
664 | goto out_noapbt; | ||
665 | } | ||
666 | if (apbt_clocksource_register()) { | ||
667 | pr_debug("APBT has failed to register clocksource\n"); | ||
668 | goto out_noapbt; | ||
669 | } | ||
670 | if (!apbt_clockevent_register()) | ||
671 | apb_timer_block_enabled = 1; | ||
672 | else { | ||
673 | pr_debug("APBT has failed to register clockevent\n"); | ||
674 | goto out_noapbt; | ||
675 | } | ||
676 | #ifdef CONFIG_SMP | ||
677 | /* kernel cmdline disable apb timer, so we will use lapic timers */ | ||
678 | if (disable_apbt_percpu) { | ||
679 | printk(KERN_INFO "apbt: disabled per cpu timer\n"); | ||
680 | return; | ||
681 | } | ||
682 | pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus()); | ||
683 | if (num_possible_cpus() <= sfi_mtimer_num) { | ||
684 | percpu_timer = 1; | ||
685 | apbt_num_timers_used = num_possible_cpus(); | ||
686 | } else { | ||
687 | percpu_timer = 0; | ||
688 | apbt_num_timers_used = 1; | ||
689 | adev = &per_cpu(cpu_apbt_dev, 0); | ||
690 | adev->flags &= ~APBT_DEV_USED; | ||
691 | } | ||
692 | pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used); | ||
693 | |||
694 | /* here we set up per CPU timer data structure */ | ||
695 | apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used, | ||
696 | GFP_KERNEL); | ||
697 | if (!apbt_devs) { | ||
698 | printk(KERN_ERR "Failed to allocate APB timer devices\n"); | ||
699 | return; | ||
700 | } | ||
701 | for (i = 0; i < apbt_num_timers_used; i++) { | ||
702 | adev = &per_cpu(cpu_apbt_dev, i); | ||
703 | adev->num = i; | ||
704 | adev->cpu = i; | ||
705 | p_mtmr = sfi_get_mtmr(i); | ||
706 | if (p_mtmr) { | ||
707 | adev->tick = p_mtmr->freq_hz; | ||
708 | adev->irq = p_mtmr->irq; | ||
709 | } else | ||
710 | printk(KERN_ERR "Failed to get timer for cpu %d\n", i); | ||
711 | adev->count = 0; | ||
712 | sprintf(adev->name, "apbt%d", i); | ||
713 | } | ||
714 | #endif | ||
715 | |||
716 | return; | ||
717 | |||
718 | out_noapbt: | ||
719 | apbt_clear_mapping(); | ||
720 | apb_timer_block_enabled = 0; | ||
721 | panic("failed to enable APB timer\n"); | ||
722 | } | ||
723 | |||
724 | static inline void apbt_disable(int n) | ||
725 | { | ||
726 | if (is_apbt_capable()) { | ||
727 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); | ||
728 | ctrl &= ~APBTMR_CONTROL_ENABLE; | ||
729 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | ||
730 | } | ||
731 | } | ||
732 | |||
733 | /* called before apb_timer_enable, use early map */ | ||
734 | unsigned long apbt_quick_calibrate() | ||
735 | { | ||
736 | int i, scale; | ||
737 | u64 old, new; | ||
738 | cycle_t t1, t2; | ||
739 | unsigned long khz = 0; | ||
740 | u32 loop, shift; | ||
741 | |||
742 | apbt_set_mapping(); | ||
743 | apbt_start_counter(phy_cs_timer_id); | ||
744 | |||
745 | /* check if the timer can count down, otherwise return */ | ||
746 | old = apbt_read_clocksource(&clocksource_apbt); | ||
747 | i = 10000; | ||
748 | while (--i) { | ||
749 | if (old != apbt_read_clocksource(&clocksource_apbt)) | ||
750 | break; | ||
751 | } | ||
752 | if (!i) | ||
753 | goto failed; | ||
754 | |||
755 | /* count 16 ms */ | ||
756 | loop = (apbt_freq * 1000) << 4; | ||
757 | |||
758 | /* restart the timer to ensure it won't get to 0 in the calibration */ | ||
759 | apbt_start_counter(phy_cs_timer_id); | ||
760 | |||
761 | old = apbt_read_clocksource(&clocksource_apbt); | ||
762 | old += loop; | ||
763 | |||
764 | t1 = __native_read_tsc(); | ||
765 | |||
766 | do { | ||
767 | new = apbt_read_clocksource(&clocksource_apbt); | ||
768 | } while (new < old); | ||
769 | |||
770 | t2 = __native_read_tsc(); | ||
771 | |||
772 | shift = 5; | ||
773 | if (unlikely(loop >> shift == 0)) { | ||
774 | printk(KERN_INFO | ||
775 | "APBT TSC calibration failed, not enough resolution\n"); | ||
776 | return 0; | ||
777 | } | ||
778 | scale = (int)div_u64((t2 - t1), loop >> shift); | ||
779 | khz = (scale * apbt_freq * 1000) >> shift; | ||
780 | printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz); | ||
781 | return khz; | ||
782 | failed: | ||
783 | return 0; | ||
784 | } | ||