diff options
Diffstat (limited to 'arch/powerpc/include/asm/mmu_context.h')
-rw-r--r-- | arch/powerpc/include/asm/mmu_context.h | 257 |
1 files changed, 34 insertions, 223 deletions
diff --git a/arch/powerpc/include/asm/mmu_context.h b/arch/powerpc/include/asm/mmu_context.h index 6b993ef452f..ab4f19263c4 100644 --- a/arch/powerpc/include/asm/mmu_context.h +++ b/arch/powerpc/include/asm/mmu_context.h | |||
@@ -2,237 +2,26 @@ | |||
2 | #define __ASM_POWERPC_MMU_CONTEXT_H | 2 | #define __ASM_POWERPC_MMU_CONTEXT_H |
3 | #ifdef __KERNEL__ | 3 | #ifdef __KERNEL__ |
4 | 4 | ||
5 | #include <linux/kernel.h> | ||
6 | #include <linux/mm.h> | ||
7 | #include <linux/sched.h> | ||
8 | #include <linux/spinlock.h> | ||
5 | #include <asm/mmu.h> | 9 | #include <asm/mmu.h> |
6 | #include <asm/cputable.h> | 10 | #include <asm/cputable.h> |
7 | #include <asm-generic/mm_hooks.h> | 11 | #include <asm-generic/mm_hooks.h> |
8 | 12 | #include <asm/cputhreads.h> | |
9 | #ifndef CONFIG_PPC64 | ||
10 | #include <asm/atomic.h> | ||
11 | #include <linux/bitops.h> | ||
12 | |||
13 | /* | ||
14 | * On 32-bit PowerPC 6xx/7xx/7xxx CPUs, we use a set of 16 VSIDs | ||
15 | * (virtual segment identifiers) for each context. Although the | ||
16 | * hardware supports 24-bit VSIDs, and thus >1 million contexts, | ||
17 | * we only use 32,768 of them. That is ample, since there can be | ||
18 | * at most around 30,000 tasks in the system anyway, and it means | ||
19 | * that we can use a bitmap to indicate which contexts are in use. | ||
20 | * Using a bitmap means that we entirely avoid all of the problems | ||
21 | * that we used to have when the context number overflowed, | ||
22 | * particularly on SMP systems. | ||
23 | * -- paulus. | ||
24 | */ | ||
25 | |||
26 | /* | ||
27 | * This function defines the mapping from contexts to VSIDs (virtual | ||
28 | * segment IDs). We use a skew on both the context and the high 4 bits | ||
29 | * of the 32-bit virtual address (the "effective segment ID") in order | ||
30 | * to spread out the entries in the MMU hash table. Note, if this | ||
31 | * function is changed then arch/ppc/mm/hashtable.S will have to be | ||
32 | * changed to correspond. | ||
33 | */ | ||
34 | #define CTX_TO_VSID(ctx, va) (((ctx) * (897 * 16) + ((va) >> 28) * 0x111) \ | ||
35 | & 0xffffff) | ||
36 | |||
37 | /* | ||
38 | The MPC8xx has only 16 contexts. We rotate through them on each | ||
39 | task switch. A better way would be to keep track of tasks that | ||
40 | own contexts, and implement an LRU usage. That way very active | ||
41 | tasks don't always have to pay the TLB reload overhead. The | ||
42 | kernel pages are mapped shared, so the kernel can run on behalf | ||
43 | of any task that makes a kernel entry. Shared does not mean they | ||
44 | are not protected, just that the ASID comparison is not performed. | ||
45 | -- Dan | ||
46 | |||
47 | The IBM4xx has 256 contexts, so we can just rotate through these | ||
48 | as a way of "switching" contexts. If the TID of the TLB is zero, | ||
49 | the PID/TID comparison is disabled, so we can use a TID of zero | ||
50 | to represent all kernel pages as shared among all contexts. | ||
51 | -- Dan | ||
52 | */ | ||
53 | |||
54 | static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) | ||
55 | { | ||
56 | } | ||
57 | |||
58 | #ifdef CONFIG_8xx | ||
59 | #define NO_CONTEXT 16 | ||
60 | #define LAST_CONTEXT 15 | ||
61 | #define FIRST_CONTEXT 0 | ||
62 | |||
63 | #elif defined(CONFIG_4xx) | ||
64 | #define NO_CONTEXT 256 | ||
65 | #define LAST_CONTEXT 255 | ||
66 | #define FIRST_CONTEXT 1 | ||
67 | |||
68 | #elif defined(CONFIG_E200) || defined(CONFIG_E500) | ||
69 | #define NO_CONTEXT 256 | ||
70 | #define LAST_CONTEXT 255 | ||
71 | #define FIRST_CONTEXT 1 | ||
72 | |||
73 | #else | ||
74 | |||
75 | /* PPC 6xx, 7xx CPUs */ | ||
76 | #define NO_CONTEXT ((unsigned long) -1) | ||
77 | #define LAST_CONTEXT 32767 | ||
78 | #define FIRST_CONTEXT 1 | ||
79 | #endif | ||
80 | |||
81 | /* | ||
82 | * Set the current MMU context. | ||
83 | * On 32-bit PowerPCs (other than the 8xx embedded chips), this is done by | ||
84 | * loading up the segment registers for the user part of the address space. | ||
85 | * | ||
86 | * Since the PGD is immediately available, it is much faster to simply | ||
87 | * pass this along as a second parameter, which is required for 8xx and | ||
88 | * can be used for debugging on all processors (if you happen to have | ||
89 | * an Abatron). | ||
90 | */ | ||
91 | extern void set_context(unsigned long contextid, pgd_t *pgd); | ||
92 | |||
93 | /* | ||
94 | * Bitmap of contexts in use. | ||
95 | * The size of this bitmap is LAST_CONTEXT + 1 bits. | ||
96 | */ | ||
97 | extern unsigned long context_map[]; | ||
98 | |||
99 | /* | ||
100 | * This caches the next context number that we expect to be free. | ||
101 | * Its use is an optimization only, we can't rely on this context | ||
102 | * number to be free, but it usually will be. | ||
103 | */ | ||
104 | extern unsigned long next_mmu_context; | ||
105 | |||
106 | /* | ||
107 | * If we don't have sufficient contexts to give one to every task | ||
108 | * that could be in the system, we need to be able to steal contexts. | ||
109 | * These variables support that. | ||
110 | */ | ||
111 | #if LAST_CONTEXT < 30000 | ||
112 | #define FEW_CONTEXTS 1 | ||
113 | extern atomic_t nr_free_contexts; | ||
114 | extern struct mm_struct *context_mm[LAST_CONTEXT+1]; | ||
115 | extern void steal_context(void); | ||
116 | #endif | ||
117 | |||
118 | /* | ||
119 | * Get a new mmu context for the address space described by `mm'. | ||
120 | */ | ||
121 | static inline void get_mmu_context(struct mm_struct *mm) | ||
122 | { | ||
123 | unsigned long ctx; | ||
124 | |||
125 | if (mm->context.id != NO_CONTEXT) | ||
126 | return; | ||
127 | #ifdef FEW_CONTEXTS | ||
128 | while (atomic_dec_if_positive(&nr_free_contexts) < 0) | ||
129 | steal_context(); | ||
130 | #endif | ||
131 | ctx = next_mmu_context; | ||
132 | while (test_and_set_bit(ctx, context_map)) { | ||
133 | ctx = find_next_zero_bit(context_map, LAST_CONTEXT+1, ctx); | ||
134 | if (ctx > LAST_CONTEXT) | ||
135 | ctx = 0; | ||
136 | } | ||
137 | next_mmu_context = (ctx + 1) & LAST_CONTEXT; | ||
138 | mm->context.id = ctx; | ||
139 | #ifdef FEW_CONTEXTS | ||
140 | context_mm[ctx] = mm; | ||
141 | #endif | ||
142 | } | ||
143 | |||
144 | /* | ||
145 | * Set up the context for a new address space. | ||
146 | */ | ||
147 | static inline int init_new_context(struct task_struct *t, struct mm_struct *mm) | ||
148 | { | ||
149 | mm->context.id = NO_CONTEXT; | ||
150 | return 0; | ||
151 | } | ||
152 | |||
153 | /* | ||
154 | * We're finished using the context for an address space. | ||
155 | */ | ||
156 | static inline void destroy_context(struct mm_struct *mm) | ||
157 | { | ||
158 | preempt_disable(); | ||
159 | if (mm->context.id != NO_CONTEXT) { | ||
160 | clear_bit(mm->context.id, context_map); | ||
161 | mm->context.id = NO_CONTEXT; | ||
162 | #ifdef FEW_CONTEXTS | ||
163 | atomic_inc(&nr_free_contexts); | ||
164 | #endif | ||
165 | } | ||
166 | preempt_enable(); | ||
167 | } | ||
168 | |||
169 | static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next, | ||
170 | struct task_struct *tsk) | ||
171 | { | ||
172 | #ifdef CONFIG_ALTIVEC | ||
173 | if (cpu_has_feature(CPU_FTR_ALTIVEC)) | ||
174 | asm volatile ("dssall;\n" | ||
175 | #ifndef CONFIG_POWER4 | ||
176 | "sync;\n" /* G4 needs a sync here, G5 apparently not */ | ||
177 | #endif | ||
178 | : : ); | ||
179 | #endif /* CONFIG_ALTIVEC */ | ||
180 | |||
181 | tsk->thread.pgdir = next->pgd; | ||
182 | |||
183 | /* No need to flush userspace segments if the mm doesnt change */ | ||
184 | if (prev == next) | ||
185 | return; | ||
186 | |||
187 | /* Setup new userspace context */ | ||
188 | get_mmu_context(next); | ||
189 | set_context(next->context.id, next->pgd); | ||
190 | } | ||
191 | |||
192 | #define deactivate_mm(tsk,mm) do { } while (0) | ||
193 | 13 | ||
194 | /* | 14 | /* |
195 | * After we have set current->mm to a new value, this activates | 15 | * Most if the context management is out of line |
196 | * the context for the new mm so we see the new mappings. | ||
197 | */ | 16 | */ |
198 | #define activate_mm(active_mm, mm) switch_mm(active_mm, mm, current) | ||
199 | |||
200 | extern void mmu_context_init(void); | 17 | extern void mmu_context_init(void); |
201 | |||
202 | |||
203 | #else | ||
204 | |||
205 | #include <linux/kernel.h> | ||
206 | #include <linux/mm.h> | ||
207 | #include <linux/sched.h> | ||
208 | |||
209 | /* | ||
210 | * Copyright (C) 2001 PPC 64 Team, IBM Corp | ||
211 | * | ||
212 | * This program is free software; you can redistribute it and/or | ||
213 | * modify it under the terms of the GNU General Public License | ||
214 | * as published by the Free Software Foundation; either version | ||
215 | * 2 of the License, or (at your option) any later version. | ||
216 | */ | ||
217 | |||
218 | static inline void enter_lazy_tlb(struct mm_struct *mm, | ||
219 | struct task_struct *tsk) | ||
220 | { | ||
221 | } | ||
222 | |||
223 | /* | ||
224 | * The proto-VSID space has 2^35 - 1 segments available for user mappings. | ||
225 | * Each segment contains 2^28 bytes. Each context maps 2^44 bytes, | ||
226 | * so we can support 2^19-1 contexts (19 == 35 + 28 - 44). | ||
227 | */ | ||
228 | #define NO_CONTEXT 0 | ||
229 | #define MAX_CONTEXT ((1UL << 19) - 1) | ||
230 | |||
231 | extern int init_new_context(struct task_struct *tsk, struct mm_struct *mm); | 18 | extern int init_new_context(struct task_struct *tsk, struct mm_struct *mm); |
232 | extern void destroy_context(struct mm_struct *mm); | 19 | extern void destroy_context(struct mm_struct *mm); |
233 | 20 | ||
21 | extern void switch_mmu_context(struct mm_struct *prev, struct mm_struct *next); | ||
234 | extern void switch_stab(struct task_struct *tsk, struct mm_struct *mm); | 22 | extern void switch_stab(struct task_struct *tsk, struct mm_struct *mm); |
235 | extern void switch_slb(struct task_struct *tsk, struct mm_struct *mm); | 23 | extern void switch_slb(struct task_struct *tsk, struct mm_struct *mm); |
24 | extern void set_context(unsigned long id, pgd_t *pgd); | ||
236 | 25 | ||
237 | /* | 26 | /* |
238 | * switch_mm is the entry point called from the architecture independent | 27 | * switch_mm is the entry point called from the architecture independent |
@@ -241,22 +30,39 @@ extern void switch_slb(struct task_struct *tsk, struct mm_struct *mm); | |||
241 | static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next, | 30 | static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next, |
242 | struct task_struct *tsk) | 31 | struct task_struct *tsk) |
243 | { | 32 | { |
244 | if (!cpu_isset(smp_processor_id(), next->cpu_vm_mask)) | 33 | /* Mark this context has been used on the new CPU */ |
245 | cpu_set(smp_processor_id(), next->cpu_vm_mask); | 34 | cpu_set(smp_processor_id(), next->cpu_vm_mask); |
35 | |||
36 | /* 32-bit keeps track of the current PGDIR in the thread struct */ | ||
37 | #ifdef CONFIG_PPC32 | ||
38 | tsk->thread.pgdir = next->pgd; | ||
39 | #endif /* CONFIG_PPC32 */ | ||
246 | 40 | ||
247 | /* No need to flush userspace segments if the mm doesnt change */ | 41 | /* Nothing else to do if we aren't actually switching */ |
248 | if (prev == next) | 42 | if (prev == next) |
249 | return; | 43 | return; |
250 | 44 | ||
45 | /* We must stop all altivec streams before changing the HW | ||
46 | * context | ||
47 | */ | ||
251 | #ifdef CONFIG_ALTIVEC | 48 | #ifdef CONFIG_ALTIVEC |
252 | if (cpu_has_feature(CPU_FTR_ALTIVEC)) | 49 | if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
253 | asm volatile ("dssall"); | 50 | asm volatile ("dssall"); |
254 | #endif /* CONFIG_ALTIVEC */ | 51 | #endif /* CONFIG_ALTIVEC */ |
255 | 52 | ||
53 | /* The actual HW switching method differs between the various | ||
54 | * sub architectures. | ||
55 | */ | ||
56 | #ifdef CONFIG_PPC_STD_MMU_64 | ||
256 | if (cpu_has_feature(CPU_FTR_SLB)) | 57 | if (cpu_has_feature(CPU_FTR_SLB)) |
257 | switch_slb(tsk, next); | 58 | switch_slb(tsk, next); |
258 | else | 59 | else |
259 | switch_stab(tsk, next); | 60 | switch_stab(tsk, next); |
61 | #else | ||
62 | /* Out of line for now */ | ||
63 | switch_mmu_context(prev, next); | ||
64 | #endif | ||
65 | |||
260 | } | 66 | } |
261 | 67 | ||
262 | #define deactivate_mm(tsk,mm) do { } while (0) | 68 | #define deactivate_mm(tsk,mm) do { } while (0) |
@@ -274,6 +80,11 @@ static inline void activate_mm(struct mm_struct *prev, struct mm_struct *next) | |||
274 | local_irq_restore(flags); | 80 | local_irq_restore(flags); |
275 | } | 81 | } |
276 | 82 | ||
277 | #endif /* CONFIG_PPC64 */ | 83 | /* We don't currently use enter_lazy_tlb() for anything */ |
84 | static inline void enter_lazy_tlb(struct mm_struct *mm, | ||
85 | struct task_struct *tsk) | ||
86 | { | ||
87 | } | ||
88 | |||
278 | #endif /* __KERNEL__ */ | 89 | #endif /* __KERNEL__ */ |
279 | #endif /* __ASM_POWERPC_MMU_CONTEXT_H */ | 90 | #endif /* __ASM_POWERPC_MMU_CONTEXT_H */ |