diff options
Diffstat (limited to 'arch/powerpc/include/asm/mmu-hash64.h')
-rw-r--r-- | arch/powerpc/include/asm/mmu-hash64.h | 478 |
1 files changed, 478 insertions, 0 deletions
diff --git a/arch/powerpc/include/asm/mmu-hash64.h b/arch/powerpc/include/asm/mmu-hash64.h new file mode 100644 index 00000000000..19c7a940349 --- /dev/null +++ b/arch/powerpc/include/asm/mmu-hash64.h | |||
@@ -0,0 +1,478 @@ | |||
1 | #ifndef _ASM_POWERPC_MMU_HASH64_H_ | ||
2 | #define _ASM_POWERPC_MMU_HASH64_H_ | ||
3 | /* | ||
4 | * PowerPC64 memory management structures | ||
5 | * | ||
6 | * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com> | ||
7 | * PPC64 rework. | ||
8 | * | ||
9 | * This program is free software; you can redistribute it and/or | ||
10 | * modify it under the terms of the GNU General Public License | ||
11 | * as published by the Free Software Foundation; either version | ||
12 | * 2 of the License, or (at your option) any later version. | ||
13 | */ | ||
14 | |||
15 | #include <asm/asm-compat.h> | ||
16 | #include <asm/page.h> | ||
17 | |||
18 | /* | ||
19 | * Segment table | ||
20 | */ | ||
21 | |||
22 | #define STE_ESID_V 0x80 | ||
23 | #define STE_ESID_KS 0x20 | ||
24 | #define STE_ESID_KP 0x10 | ||
25 | #define STE_ESID_N 0x08 | ||
26 | |||
27 | #define STE_VSID_SHIFT 12 | ||
28 | |||
29 | /* Location of cpu0's segment table */ | ||
30 | #define STAB0_PAGE 0x6 | ||
31 | #define STAB0_OFFSET (STAB0_PAGE << 12) | ||
32 | #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START) | ||
33 | |||
34 | #ifndef __ASSEMBLY__ | ||
35 | extern char initial_stab[]; | ||
36 | #endif /* ! __ASSEMBLY */ | ||
37 | |||
38 | /* | ||
39 | * SLB | ||
40 | */ | ||
41 | |||
42 | #define SLB_NUM_BOLTED 3 | ||
43 | #define SLB_CACHE_ENTRIES 8 | ||
44 | |||
45 | /* Bits in the SLB ESID word */ | ||
46 | #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */ | ||
47 | |||
48 | /* Bits in the SLB VSID word */ | ||
49 | #define SLB_VSID_SHIFT 12 | ||
50 | #define SLB_VSID_SHIFT_1T 24 | ||
51 | #define SLB_VSID_SSIZE_SHIFT 62 | ||
52 | #define SLB_VSID_B ASM_CONST(0xc000000000000000) | ||
53 | #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000) | ||
54 | #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000) | ||
55 | #define SLB_VSID_KS ASM_CONST(0x0000000000000800) | ||
56 | #define SLB_VSID_KP ASM_CONST(0x0000000000000400) | ||
57 | #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */ | ||
58 | #define SLB_VSID_L ASM_CONST(0x0000000000000100) | ||
59 | #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */ | ||
60 | #define SLB_VSID_LP ASM_CONST(0x0000000000000030) | ||
61 | #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000) | ||
62 | #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010) | ||
63 | #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020) | ||
64 | #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030) | ||
65 | #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP) | ||
66 | |||
67 | #define SLB_VSID_KERNEL (SLB_VSID_KP) | ||
68 | #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C) | ||
69 | |||
70 | #define SLBIE_C (0x08000000) | ||
71 | #define SLBIE_SSIZE_SHIFT 25 | ||
72 | |||
73 | /* | ||
74 | * Hash table | ||
75 | */ | ||
76 | |||
77 | #define HPTES_PER_GROUP 8 | ||
78 | |||
79 | #define HPTE_V_SSIZE_SHIFT 62 | ||
80 | #define HPTE_V_AVPN_SHIFT 7 | ||
81 | #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80) | ||
82 | #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT) | ||
83 | #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL)) | ||
84 | #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010) | ||
85 | #define HPTE_V_LOCK ASM_CONST(0x0000000000000008) | ||
86 | #define HPTE_V_LARGE ASM_CONST(0x0000000000000004) | ||
87 | #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002) | ||
88 | #define HPTE_V_VALID ASM_CONST(0x0000000000000001) | ||
89 | |||
90 | #define HPTE_R_PP0 ASM_CONST(0x8000000000000000) | ||
91 | #define HPTE_R_TS ASM_CONST(0x4000000000000000) | ||
92 | #define HPTE_R_RPN_SHIFT 12 | ||
93 | #define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000) | ||
94 | #define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff) | ||
95 | #define HPTE_R_PP ASM_CONST(0x0000000000000003) | ||
96 | #define HPTE_R_N ASM_CONST(0x0000000000000004) | ||
97 | #define HPTE_R_C ASM_CONST(0x0000000000000080) | ||
98 | #define HPTE_R_R ASM_CONST(0x0000000000000100) | ||
99 | |||
100 | #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000) | ||
101 | #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000) | ||
102 | |||
103 | /* Values for PP (assumes Ks=0, Kp=1) */ | ||
104 | /* pp0 will always be 0 for linux */ | ||
105 | #define PP_RWXX 0 /* Supervisor read/write, User none */ | ||
106 | #define PP_RWRX 1 /* Supervisor read/write, User read */ | ||
107 | #define PP_RWRW 2 /* Supervisor read/write, User read/write */ | ||
108 | #define PP_RXRX 3 /* Supervisor read, User read */ | ||
109 | |||
110 | #ifndef __ASSEMBLY__ | ||
111 | |||
112 | struct hash_pte { | ||
113 | unsigned long v; | ||
114 | unsigned long r; | ||
115 | }; | ||
116 | |||
117 | extern struct hash_pte *htab_address; | ||
118 | extern unsigned long htab_size_bytes; | ||
119 | extern unsigned long htab_hash_mask; | ||
120 | |||
121 | /* | ||
122 | * Page size definition | ||
123 | * | ||
124 | * shift : is the "PAGE_SHIFT" value for that page size | ||
125 | * sllp : is a bit mask with the value of SLB L || LP to be or'ed | ||
126 | * directly to a slbmte "vsid" value | ||
127 | * penc : is the HPTE encoding mask for the "LP" field: | ||
128 | * | ||
129 | */ | ||
130 | struct mmu_psize_def | ||
131 | { | ||
132 | unsigned int shift; /* number of bits */ | ||
133 | unsigned int penc; /* HPTE encoding */ | ||
134 | unsigned int tlbiel; /* tlbiel supported for that page size */ | ||
135 | unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */ | ||
136 | unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */ | ||
137 | }; | ||
138 | |||
139 | #endif /* __ASSEMBLY__ */ | ||
140 | |||
141 | /* | ||
142 | * The kernel use the constants below to index in the page sizes array. | ||
143 | * The use of fixed constants for this purpose is better for performances | ||
144 | * of the low level hash refill handlers. | ||
145 | * | ||
146 | * A non supported page size has a "shift" field set to 0 | ||
147 | * | ||
148 | * Any new page size being implemented can get a new entry in here. Whether | ||
149 | * the kernel will use it or not is a different matter though. The actual page | ||
150 | * size used by hugetlbfs is not defined here and may be made variable | ||
151 | */ | ||
152 | |||
153 | #define MMU_PAGE_4K 0 /* 4K */ | ||
154 | #define MMU_PAGE_64K 1 /* 64K */ | ||
155 | #define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */ | ||
156 | #define MMU_PAGE_1M 3 /* 1M */ | ||
157 | #define MMU_PAGE_16M 4 /* 16M */ | ||
158 | #define MMU_PAGE_16G 5 /* 16G */ | ||
159 | #define MMU_PAGE_COUNT 6 | ||
160 | |||
161 | /* | ||
162 | * Segment sizes. | ||
163 | * These are the values used by hardware in the B field of | ||
164 | * SLB entries and the first dword of MMU hashtable entries. | ||
165 | * The B field is 2 bits; the values 2 and 3 are unused and reserved. | ||
166 | */ | ||
167 | #define MMU_SEGSIZE_256M 0 | ||
168 | #define MMU_SEGSIZE_1T 1 | ||
169 | |||
170 | |||
171 | #ifndef __ASSEMBLY__ | ||
172 | |||
173 | /* | ||
174 | * The current system page and segment sizes | ||
175 | */ | ||
176 | extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; | ||
177 | extern int mmu_linear_psize; | ||
178 | extern int mmu_virtual_psize; | ||
179 | extern int mmu_vmalloc_psize; | ||
180 | extern int mmu_vmemmap_psize; | ||
181 | extern int mmu_io_psize; | ||
182 | extern int mmu_kernel_ssize; | ||
183 | extern int mmu_highuser_ssize; | ||
184 | extern u16 mmu_slb_size; | ||
185 | extern unsigned long tce_alloc_start, tce_alloc_end; | ||
186 | |||
187 | /* | ||
188 | * If the processor supports 64k normal pages but not 64k cache | ||
189 | * inhibited pages, we have to be prepared to switch processes | ||
190 | * to use 4k pages when they create cache-inhibited mappings. | ||
191 | * If this is the case, mmu_ci_restrictions will be set to 1. | ||
192 | */ | ||
193 | extern int mmu_ci_restrictions; | ||
194 | |||
195 | #ifdef CONFIG_HUGETLB_PAGE | ||
196 | /* | ||
197 | * The page size indexes of the huge pages for use by hugetlbfs | ||
198 | */ | ||
199 | extern unsigned int mmu_huge_psizes[MMU_PAGE_COUNT]; | ||
200 | |||
201 | #endif /* CONFIG_HUGETLB_PAGE */ | ||
202 | |||
203 | /* | ||
204 | * This function sets the AVPN and L fields of the HPTE appropriately | ||
205 | * for the page size | ||
206 | */ | ||
207 | static inline unsigned long hpte_encode_v(unsigned long va, int psize, | ||
208 | int ssize) | ||
209 | { | ||
210 | unsigned long v; | ||
211 | v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm); | ||
212 | v <<= HPTE_V_AVPN_SHIFT; | ||
213 | if (psize != MMU_PAGE_4K) | ||
214 | v |= HPTE_V_LARGE; | ||
215 | v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT; | ||
216 | return v; | ||
217 | } | ||
218 | |||
219 | /* | ||
220 | * This function sets the ARPN, and LP fields of the HPTE appropriately | ||
221 | * for the page size. We assume the pa is already "clean" that is properly | ||
222 | * aligned for the requested page size | ||
223 | */ | ||
224 | static inline unsigned long hpte_encode_r(unsigned long pa, int psize) | ||
225 | { | ||
226 | unsigned long r; | ||
227 | |||
228 | /* A 4K page needs no special encoding */ | ||
229 | if (psize == MMU_PAGE_4K) | ||
230 | return pa & HPTE_R_RPN; | ||
231 | else { | ||
232 | unsigned int penc = mmu_psize_defs[psize].penc; | ||
233 | unsigned int shift = mmu_psize_defs[psize].shift; | ||
234 | return (pa & ~((1ul << shift) - 1)) | (penc << 12); | ||
235 | } | ||
236 | return r; | ||
237 | } | ||
238 | |||
239 | /* | ||
240 | * Build a VA given VSID, EA and segment size | ||
241 | */ | ||
242 | static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid, | ||
243 | int ssize) | ||
244 | { | ||
245 | if (ssize == MMU_SEGSIZE_256M) | ||
246 | return (vsid << 28) | (ea & 0xfffffffUL); | ||
247 | return (vsid << 40) | (ea & 0xffffffffffUL); | ||
248 | } | ||
249 | |||
250 | /* | ||
251 | * This hashes a virtual address | ||
252 | */ | ||
253 | |||
254 | static inline unsigned long hpt_hash(unsigned long va, unsigned int shift, | ||
255 | int ssize) | ||
256 | { | ||
257 | unsigned long hash, vsid; | ||
258 | |||
259 | if (ssize == MMU_SEGSIZE_256M) { | ||
260 | hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift); | ||
261 | } else { | ||
262 | vsid = va >> 40; | ||
263 | hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift); | ||
264 | } | ||
265 | return hash & 0x7fffffffffUL; | ||
266 | } | ||
267 | |||
268 | extern int __hash_page_4K(unsigned long ea, unsigned long access, | ||
269 | unsigned long vsid, pte_t *ptep, unsigned long trap, | ||
270 | unsigned int local, int ssize, int subpage_prot); | ||
271 | extern int __hash_page_64K(unsigned long ea, unsigned long access, | ||
272 | unsigned long vsid, pte_t *ptep, unsigned long trap, | ||
273 | unsigned int local, int ssize); | ||
274 | struct mm_struct; | ||
275 | extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); | ||
276 | extern int hash_huge_page(struct mm_struct *mm, unsigned long access, | ||
277 | unsigned long ea, unsigned long vsid, int local, | ||
278 | unsigned long trap); | ||
279 | |||
280 | extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend, | ||
281 | unsigned long pstart, unsigned long mode, | ||
282 | int psize, int ssize); | ||
283 | extern void set_huge_psize(int psize); | ||
284 | extern void add_gpage(unsigned long addr, unsigned long page_size, | ||
285 | unsigned long number_of_pages); | ||
286 | extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr); | ||
287 | |||
288 | extern void htab_initialize(void); | ||
289 | extern void htab_initialize_secondary(void); | ||
290 | extern void hpte_init_native(void); | ||
291 | extern void hpte_init_lpar(void); | ||
292 | extern void hpte_init_iSeries(void); | ||
293 | extern void hpte_init_beat(void); | ||
294 | extern void hpte_init_beat_v3(void); | ||
295 | |||
296 | extern void stabs_alloc(void); | ||
297 | extern void slb_initialize(void); | ||
298 | extern void slb_flush_and_rebolt(void); | ||
299 | extern void stab_initialize(unsigned long stab); | ||
300 | |||
301 | extern void slb_vmalloc_update(void); | ||
302 | #endif /* __ASSEMBLY__ */ | ||
303 | |||
304 | /* | ||
305 | * VSID allocation | ||
306 | * | ||
307 | * We first generate a 36-bit "proto-VSID". For kernel addresses this | ||
308 | * is equal to the ESID, for user addresses it is: | ||
309 | * (context << 15) | (esid & 0x7fff) | ||
310 | * | ||
311 | * The two forms are distinguishable because the top bit is 0 for user | ||
312 | * addresses, whereas the top two bits are 1 for kernel addresses. | ||
313 | * Proto-VSIDs with the top two bits equal to 0b10 are reserved for | ||
314 | * now. | ||
315 | * | ||
316 | * The proto-VSIDs are then scrambled into real VSIDs with the | ||
317 | * multiplicative hash: | ||
318 | * | ||
319 | * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS | ||
320 | * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7 | ||
321 | * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF | ||
322 | * | ||
323 | * This scramble is only well defined for proto-VSIDs below | ||
324 | * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are | ||
325 | * reserved. VSID_MULTIPLIER is prime, so in particular it is | ||
326 | * co-prime to VSID_MODULUS, making this a 1:1 scrambling function. | ||
327 | * Because the modulus is 2^n-1 we can compute it efficiently without | ||
328 | * a divide or extra multiply (see below). | ||
329 | * | ||
330 | * This scheme has several advantages over older methods: | ||
331 | * | ||
332 | * - We have VSIDs allocated for every kernel address | ||
333 | * (i.e. everything above 0xC000000000000000), except the very top | ||
334 | * segment, which simplifies several things. | ||
335 | * | ||
336 | * - We allow for 15 significant bits of ESID and 20 bits of | ||
337 | * context for user addresses. i.e. 8T (43 bits) of address space for | ||
338 | * up to 1M contexts (although the page table structure and context | ||
339 | * allocation will need changes to take advantage of this). | ||
340 | * | ||
341 | * - The scramble function gives robust scattering in the hash | ||
342 | * table (at least based on some initial results). The previous | ||
343 | * method was more susceptible to pathological cases giving excessive | ||
344 | * hash collisions. | ||
345 | */ | ||
346 | /* | ||
347 | * WARNING - If you change these you must make sure the asm | ||
348 | * implementations in slb_allocate (slb_low.S), do_stab_bolted | ||
349 | * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly. | ||
350 | * | ||
351 | * You'll also need to change the precomputed VSID values in head.S | ||
352 | * which are used by the iSeries firmware. | ||
353 | */ | ||
354 | |||
355 | #define VSID_MULTIPLIER_256M ASM_CONST(200730139) /* 28-bit prime */ | ||
356 | #define VSID_BITS_256M 36 | ||
357 | #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1) | ||
358 | |||
359 | #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */ | ||
360 | #define VSID_BITS_1T 24 | ||
361 | #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1) | ||
362 | |||
363 | #define CONTEXT_BITS 19 | ||
364 | #define USER_ESID_BITS 16 | ||
365 | #define USER_ESID_BITS_1T 4 | ||
366 | |||
367 | #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT)) | ||
368 | |||
369 | /* | ||
370 | * This macro generates asm code to compute the VSID scramble | ||
371 | * function. Used in slb_allocate() and do_stab_bolted. The function | ||
372 | * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS | ||
373 | * | ||
374 | * rt = register continaing the proto-VSID and into which the | ||
375 | * VSID will be stored | ||
376 | * rx = scratch register (clobbered) | ||
377 | * | ||
378 | * - rt and rx must be different registers | ||
379 | * - The answer will end up in the low VSID_BITS bits of rt. The higher | ||
380 | * bits may contain other garbage, so you may need to mask the | ||
381 | * result. | ||
382 | */ | ||
383 | #define ASM_VSID_SCRAMBLE(rt, rx, size) \ | ||
384 | lis rx,VSID_MULTIPLIER_##size@h; \ | ||
385 | ori rx,rx,VSID_MULTIPLIER_##size@l; \ | ||
386 | mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \ | ||
387 | \ | ||
388 | srdi rx,rt,VSID_BITS_##size; \ | ||
389 | clrldi rt,rt,(64-VSID_BITS_##size); \ | ||
390 | add rt,rt,rx; /* add high and low bits */ \ | ||
391 | /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \ | ||
392 | * 2^36-1+2^28-1. That in particular means that if r3 >= \ | ||
393 | * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \ | ||
394 | * the bit clear, r3 already has the answer we want, if it \ | ||
395 | * doesn't, the answer is the low 36 bits of r3+1. So in all \ | ||
396 | * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\ | ||
397 | addi rx,rt,1; \ | ||
398 | srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \ | ||
399 | add rt,rt,rx | ||
400 | |||
401 | |||
402 | #ifndef __ASSEMBLY__ | ||
403 | |||
404 | typedef unsigned long mm_context_id_t; | ||
405 | |||
406 | typedef struct { | ||
407 | mm_context_id_t id; | ||
408 | u16 user_psize; /* page size index */ | ||
409 | |||
410 | #ifdef CONFIG_PPC_MM_SLICES | ||
411 | u64 low_slices_psize; /* SLB page size encodings */ | ||
412 | u64 high_slices_psize; /* 4 bits per slice for now */ | ||
413 | #else | ||
414 | u16 sllp; /* SLB page size encoding */ | ||
415 | #endif | ||
416 | unsigned long vdso_base; | ||
417 | } mm_context_t; | ||
418 | |||
419 | |||
420 | #if 0 | ||
421 | /* | ||
422 | * The code below is equivalent to this function for arguments | ||
423 | * < 2^VSID_BITS, which is all this should ever be called | ||
424 | * with. However gcc is not clever enough to compute the | ||
425 | * modulus (2^n-1) without a second multiply. | ||
426 | */ | ||
427 | #define vsid_scrample(protovsid, size) \ | ||
428 | ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size)) | ||
429 | |||
430 | #else /* 1 */ | ||
431 | #define vsid_scramble(protovsid, size) \ | ||
432 | ({ \ | ||
433 | unsigned long x; \ | ||
434 | x = (protovsid) * VSID_MULTIPLIER_##size; \ | ||
435 | x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \ | ||
436 | (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \ | ||
437 | }) | ||
438 | #endif /* 1 */ | ||
439 | |||
440 | /* This is only valid for addresses >= KERNELBASE */ | ||
441 | static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize) | ||
442 | { | ||
443 | if (ssize == MMU_SEGSIZE_256M) | ||
444 | return vsid_scramble(ea >> SID_SHIFT, 256M); | ||
445 | return vsid_scramble(ea >> SID_SHIFT_1T, 1T); | ||
446 | } | ||
447 | |||
448 | /* Returns the segment size indicator for a user address */ | ||
449 | static inline int user_segment_size(unsigned long addr) | ||
450 | { | ||
451 | /* Use 1T segments if possible for addresses >= 1T */ | ||
452 | if (addr >= (1UL << SID_SHIFT_1T)) | ||
453 | return mmu_highuser_ssize; | ||
454 | return MMU_SEGSIZE_256M; | ||
455 | } | ||
456 | |||
457 | /* This is only valid for user addresses (which are below 2^44) */ | ||
458 | static inline unsigned long get_vsid(unsigned long context, unsigned long ea, | ||
459 | int ssize) | ||
460 | { | ||
461 | if (ssize == MMU_SEGSIZE_256M) | ||
462 | return vsid_scramble((context << USER_ESID_BITS) | ||
463 | | (ea >> SID_SHIFT), 256M); | ||
464 | return vsid_scramble((context << USER_ESID_BITS_1T) | ||
465 | | (ea >> SID_SHIFT_1T), 1T); | ||
466 | } | ||
467 | |||
468 | /* | ||
469 | * This is only used on legacy iSeries in lparmap.c, | ||
470 | * hence the 256MB segment assumption. | ||
471 | */ | ||
472 | #define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER_256M) % \ | ||
473 | VSID_MODULUS_256M) | ||
474 | #define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea)) | ||
475 | |||
476 | #endif /* __ASSEMBLY__ */ | ||
477 | |||
478 | #endif /* _ASM_POWERPC_MMU_HASH64_H_ */ | ||