diff options
-rw-r--r-- | Documentation/filesystems/relayfs.txt | 362 | ||||
-rw-r--r-- | fs/Kconfig | 12 | ||||
-rw-r--r-- | fs/Makefile | 1 | ||||
-rw-r--r-- | fs/relayfs/Makefile | 4 | ||||
-rw-r--r-- | fs/relayfs/buffers.c | 189 | ||||
-rw-r--r-- | fs/relayfs/buffers.h | 12 | ||||
-rw-r--r-- | fs/relayfs/inode.c | 609 | ||||
-rw-r--r-- | fs/relayfs/relay.c | 431 | ||||
-rw-r--r-- | fs/relayfs/relay.h | 12 | ||||
-rw-r--r-- | include/linux/relayfs_fs.h | 255 |
10 files changed, 1887 insertions, 0 deletions
diff --git a/Documentation/filesystems/relayfs.txt b/Documentation/filesystems/relayfs.txt new file mode 100644 index 00000000000..d24e1b0d4f3 --- /dev/null +++ b/Documentation/filesystems/relayfs.txt | |||
@@ -0,0 +1,362 @@ | |||
1 | |||
2 | relayfs - a high-speed data relay filesystem | ||
3 | ============================================ | ||
4 | |||
5 | relayfs is a filesystem designed to provide an efficient mechanism for | ||
6 | tools and facilities to relay large and potentially sustained streams | ||
7 | of data from kernel space to user space. | ||
8 | |||
9 | The main abstraction of relayfs is the 'channel'. A channel consists | ||
10 | of a set of per-cpu kernel buffers each represented by a file in the | ||
11 | relayfs filesystem. Kernel clients write into a channel using | ||
12 | efficient write functions which automatically log to the current cpu's | ||
13 | channel buffer. User space applications mmap() the per-cpu files and | ||
14 | retrieve the data as it becomes available. | ||
15 | |||
16 | The format of the data logged into the channel buffers is completely | ||
17 | up to the relayfs client; relayfs does however provide hooks which | ||
18 | allow clients to impose some stucture on the buffer data. Nor does | ||
19 | relayfs implement any form of data filtering - this also is left to | ||
20 | the client. The purpose is to keep relayfs as simple as possible. | ||
21 | |||
22 | This document provides an overview of the relayfs API. The details of | ||
23 | the function parameters are documented along with the functions in the | ||
24 | filesystem code - please see that for details. | ||
25 | |||
26 | Semantics | ||
27 | ========= | ||
28 | |||
29 | Each relayfs channel has one buffer per CPU, each buffer has one or | ||
30 | more sub-buffers. Messages are written to the first sub-buffer until | ||
31 | it is too full to contain a new message, in which case it it is | ||
32 | written to the next (if available). Messages are never split across | ||
33 | sub-buffers. At this point, userspace can be notified so it empties | ||
34 | the first sub-buffer, while the kernel continues writing to the next. | ||
35 | |||
36 | When notified that a sub-buffer is full, the kernel knows how many | ||
37 | bytes of it are padding i.e. unused. Userspace can use this knowledge | ||
38 | to copy only valid data. | ||
39 | |||
40 | After copying it, userspace can notify the kernel that a sub-buffer | ||
41 | has been consumed. | ||
42 | |||
43 | relayfs can operate in a mode where it will overwrite data not yet | ||
44 | collected by userspace, and not wait for it to consume it. | ||
45 | |||
46 | relayfs itself does not provide for communication of such data between | ||
47 | userspace and kernel, allowing the kernel side to remain simple and not | ||
48 | impose a single interface on userspace. It does provide a separate | ||
49 | helper though, described below. | ||
50 | |||
51 | klog, relay-app & librelay | ||
52 | ========================== | ||
53 | |||
54 | relayfs itself is ready to use, but to make things easier, two | ||
55 | additional systems are provided. klog is a simple wrapper to make | ||
56 | writing formatted text or raw data to a channel simpler, regardless of | ||
57 | whether a channel to write into exists or not, or whether relayfs is | ||
58 | compiled into the kernel or is configured as a module. relay-app is | ||
59 | the kernel counterpart of userspace librelay.c, combined these two | ||
60 | files provide glue to easily stream data to disk, without having to | ||
61 | bother with housekeeping. klog and relay-app can be used together, | ||
62 | with klog providing high-level logging functions to the kernel and | ||
63 | relay-app taking care of kernel-user control and disk-logging chores. | ||
64 | |||
65 | It is possible to use relayfs without relay-app & librelay, but you'll | ||
66 | have to implement communication between userspace and kernel, allowing | ||
67 | both to convey the state of buffers (full, empty, amount of padding). | ||
68 | |||
69 | klog, relay-app and librelay can be found in the relay-apps tarball on | ||
70 | http://relayfs.sourceforge.net | ||
71 | |||
72 | The relayfs user space API | ||
73 | ========================== | ||
74 | |||
75 | relayfs implements basic file operations for user space access to | ||
76 | relayfs channel buffer data. Here are the file operations that are | ||
77 | available and some comments regarding their behavior: | ||
78 | |||
79 | open() enables user to open an _existing_ buffer. | ||
80 | |||
81 | mmap() results in channel buffer being mapped into the caller's | ||
82 | memory space. Note that you can't do a partial mmap - you must | ||
83 | map the entire file, which is NRBUF * SUBBUFSIZE. | ||
84 | |||
85 | read() read the contents of a channel buffer. The bytes read are | ||
86 | 'consumed' by the reader i.e. they won't be available again | ||
87 | to subsequent reads. If the channel is being used in | ||
88 | no-overwrite mode (the default), it can be read at any time | ||
89 | even if there's an active kernel writer. If the channel is | ||
90 | being used in overwrite mode and there are active channel | ||
91 | writers, results may be unpredictable - users should make | ||
92 | sure that all logging to the channel has ended before using | ||
93 | read() with overwrite mode. | ||
94 | |||
95 | poll() POLLIN/POLLRDNORM/POLLERR supported. User applications are | ||
96 | notified when sub-buffer boundaries are crossed. | ||
97 | |||
98 | close() decrements the channel buffer's refcount. When the refcount | ||
99 | reaches 0 i.e. when no process or kernel client has the buffer | ||
100 | open, the channel buffer is freed. | ||
101 | |||
102 | |||
103 | In order for a user application to make use of relayfs files, the | ||
104 | relayfs filesystem must be mounted. For example, | ||
105 | |||
106 | mount -t relayfs relayfs /mnt/relay | ||
107 | |||
108 | NOTE: relayfs doesn't need to be mounted for kernel clients to create | ||
109 | or use channels - it only needs to be mounted when user space | ||
110 | applications need access to the buffer data. | ||
111 | |||
112 | |||
113 | The relayfs kernel API | ||
114 | ====================== | ||
115 | |||
116 | Here's a summary of the API relayfs provides to in-kernel clients: | ||
117 | |||
118 | |||
119 | channel management functions: | ||
120 | |||
121 | relay_open(base_filename, parent, subbuf_size, n_subbufs, | ||
122 | callbacks) | ||
123 | relay_close(chan) | ||
124 | relay_flush(chan) | ||
125 | relay_reset(chan) | ||
126 | relayfs_create_dir(name, parent) | ||
127 | relayfs_remove_dir(dentry) | ||
128 | |||
129 | channel management typically called on instigation of userspace: | ||
130 | |||
131 | relay_subbufs_consumed(chan, cpu, subbufs_consumed) | ||
132 | |||
133 | write functions: | ||
134 | |||
135 | relay_write(chan, data, length) | ||
136 | __relay_write(chan, data, length) | ||
137 | relay_reserve(chan, length) | ||
138 | |||
139 | callbacks: | ||
140 | |||
141 | subbuf_start(buf, subbuf, prev_subbuf, prev_padding) | ||
142 | buf_mapped(buf, filp) | ||
143 | buf_unmapped(buf, filp) | ||
144 | |||
145 | helper functions: | ||
146 | |||
147 | relay_buf_full(buf) | ||
148 | subbuf_start_reserve(buf, length) | ||
149 | |||
150 | |||
151 | Creating a channel | ||
152 | ------------------ | ||
153 | |||
154 | relay_open() is used to create a channel, along with its per-cpu | ||
155 | channel buffers. Each channel buffer will have an associated file | ||
156 | created for it in the relayfs filesystem, which can be opened and | ||
157 | mmapped from user space if desired. The files are named | ||
158 | basename0...basenameN-1 where N is the number of online cpus, and by | ||
159 | default will be created in the root of the filesystem. If you want a | ||
160 | directory structure to contain your relayfs files, you can create it | ||
161 | with relayfs_create_dir() and pass the parent directory to | ||
162 | relay_open(). Clients are responsible for cleaning up any directory | ||
163 | structure they create when the channel is closed - use | ||
164 | relayfs_remove_dir() for that. | ||
165 | |||
166 | The total size of each per-cpu buffer is calculated by multiplying the | ||
167 | number of sub-buffers by the sub-buffer size passed into relay_open(). | ||
168 | The idea behind sub-buffers is that they're basically an extension of | ||
169 | double-buffering to N buffers, and they also allow applications to | ||
170 | easily implement random-access-on-buffer-boundary schemes, which can | ||
171 | be important for some high-volume applications. The number and size | ||
172 | of sub-buffers is completely dependent on the application and even for | ||
173 | the same application, different conditions will warrant different | ||
174 | values for these parameters at different times. Typically, the right | ||
175 | values to use are best decided after some experimentation; in general, | ||
176 | though, it's safe to assume that having only 1 sub-buffer is a bad | ||
177 | idea - you're guaranteed to either overwrite data or lose events | ||
178 | depending on the channel mode being used. | ||
179 | |||
180 | Channel 'modes' | ||
181 | --------------- | ||
182 | |||
183 | relayfs channels can be used in either of two modes - 'overwrite' or | ||
184 | 'no-overwrite'. The mode is entirely determined by the implementation | ||
185 | of the subbuf_start() callback, as described below. In 'overwrite' | ||
186 | mode, also known as 'flight recorder' mode, writes continuously cycle | ||
187 | around the buffer and will never fail, but will unconditionally | ||
188 | overwrite old data regardless of whether it's actually been consumed. | ||
189 | In no-overwrite mode, writes will fail i.e. data will be lost, if the | ||
190 | number of unconsumed sub-buffers equals the total number of | ||
191 | sub-buffers in the channel. It should be clear that if there is no | ||
192 | consumer or if the consumer can't consume sub-buffers fast enought, | ||
193 | data will be lost in either case; the only difference is whether data | ||
194 | is lost from the beginning or the end of a buffer. | ||
195 | |||
196 | As explained above, a relayfs channel is made of up one or more | ||
197 | per-cpu channel buffers, each implemented as a circular buffer | ||
198 | subdivided into one or more sub-buffers. Messages are written into | ||
199 | the current sub-buffer of the channel's current per-cpu buffer via the | ||
200 | write functions described below. Whenever a message can't fit into | ||
201 | the current sub-buffer, because there's no room left for it, the | ||
202 | client is notified via the subbuf_start() callback that a switch to a | ||
203 | new sub-buffer is about to occur. The client uses this callback to 1) | ||
204 | initialize the next sub-buffer if appropriate 2) finalize the previous | ||
205 | sub-buffer if appropriate and 3) return a boolean value indicating | ||
206 | whether or not to actually go ahead with the sub-buffer switch. | ||
207 | |||
208 | To implement 'no-overwrite' mode, the userspace client would provide | ||
209 | an implementation of the subbuf_start() callback something like the | ||
210 | following: | ||
211 | |||
212 | static int subbuf_start(struct rchan_buf *buf, | ||
213 | void *subbuf, | ||
214 | void *prev_subbuf, | ||
215 | unsigned int prev_padding) | ||
216 | { | ||
217 | if (prev_subbuf) | ||
218 | *((unsigned *)prev_subbuf) = prev_padding; | ||
219 | |||
220 | if (relay_buf_full(buf)) | ||
221 | return 0; | ||
222 | |||
223 | subbuf_start_reserve(buf, sizeof(unsigned int)); | ||
224 | |||
225 | return 1; | ||
226 | } | ||
227 | |||
228 | If the current buffer is full i.e. all sub-buffers remain unconsumed, | ||
229 | the callback returns 0 to indicate that the buffer switch should not | ||
230 | occur yet i.e. until the consumer has had a chance to read the current | ||
231 | set of ready sub-buffers. For the relay_buf_full() function to make | ||
232 | sense, the consumer is reponsible for notifying relayfs when | ||
233 | sub-buffers have been consumed via relay_subbufs_consumed(). Any | ||
234 | subsequent attempts to write into the buffer will again invoke the | ||
235 | subbuf_start() callback with the same parameters; only when the | ||
236 | consumer has consumed one or more of the ready sub-buffers will | ||
237 | relay_buf_full() return 0, in which case the buffer switch can | ||
238 | continue. | ||
239 | |||
240 | The implementation of the subbuf_start() callback for 'overwrite' mode | ||
241 | would be very similar: | ||
242 | |||
243 | static int subbuf_start(struct rchan_buf *buf, | ||
244 | void *subbuf, | ||
245 | void *prev_subbuf, | ||
246 | unsigned int prev_padding) | ||
247 | { | ||
248 | if (prev_subbuf) | ||
249 | *((unsigned *)prev_subbuf) = prev_padding; | ||
250 | |||
251 | subbuf_start_reserve(buf, sizeof(unsigned int)); | ||
252 | |||
253 | return 1; | ||
254 | } | ||
255 | |||
256 | In this case, the relay_buf_full() check is meaningless and the | ||
257 | callback always returns 1, causing the buffer switch to occur | ||
258 | unconditionally. It's also meaningless for the client to use the | ||
259 | relay_subbufs_consumed() function in this mode, as it's never | ||
260 | consulted. | ||
261 | |||
262 | The default subbuf_start() implementation, used if the client doesn't | ||
263 | define any callbacks, or doesn't define the subbuf_start() callback, | ||
264 | implements the simplest possible 'no-overwrite' mode i.e. it does | ||
265 | nothing but return 0. | ||
266 | |||
267 | Header information can be reserved at the beginning of each sub-buffer | ||
268 | by calling the subbuf_start_reserve() helper function from within the | ||
269 | subbuf_start() callback. This reserved area can be used to store | ||
270 | whatever information the client wants. In the example above, room is | ||
271 | reserved in each sub-buffer to store the padding count for that | ||
272 | sub-buffer. This is filled in for the previous sub-buffer in the | ||
273 | subbuf_start() implementation; the padding value for the previous | ||
274 | sub-buffer is passed into the subbuf_start() callback along with a | ||
275 | pointer to the previous sub-buffer, since the padding value isn't | ||
276 | known until a sub-buffer is filled. The subbuf_start() callback is | ||
277 | also called for the first sub-buffer when the channel is opened, to | ||
278 | give the client a chance to reserve space in it. In this case the | ||
279 | previous sub-buffer pointer passed into the callback will be NULL, so | ||
280 | the client should check the value of the prev_subbuf pointer before | ||
281 | writing into the previous sub-buffer. | ||
282 | |||
283 | Writing to a channel | ||
284 | -------------------- | ||
285 | |||
286 | kernel clients write data into the current cpu's channel buffer using | ||
287 | relay_write() or __relay_write(). relay_write() is the main logging | ||
288 | function - it uses local_irqsave() to protect the buffer and should be | ||
289 | used if you might be logging from interrupt context. If you know | ||
290 | you'll never be logging from interrupt context, you can use | ||
291 | __relay_write(), which only disables preemption. These functions | ||
292 | don't return a value, so you can't determine whether or not they | ||
293 | failed - the assumption is that you wouldn't want to check a return | ||
294 | value in the fast logging path anyway, and that they'll always succeed | ||
295 | unless the buffer is full and no-overwrite mode is being used, in | ||
296 | which case you can detect a failed write in the subbuf_start() | ||
297 | callback by calling the relay_buf_full() helper function. | ||
298 | |||
299 | relay_reserve() is used to reserve a slot in a channel buffer which | ||
300 | can be written to later. This would typically be used in applications | ||
301 | that need to write directly into a channel buffer without having to | ||
302 | stage data in a temporary buffer beforehand. Because the actual write | ||
303 | may not happen immediately after the slot is reserved, applications | ||
304 | using relay_reserve() can keep a count of the number of bytes actually | ||
305 | written, either in space reserved in the sub-buffers themselves or as | ||
306 | a separate array. See the 'reserve' example in the relay-apps tarball | ||
307 | at http://relayfs.sourceforge.net for an example of how this can be | ||
308 | done. Because the write is under control of the client and is | ||
309 | separated from the reserve, relay_reserve() doesn't protect the buffer | ||
310 | at all - it's up to the client to provide the appropriate | ||
311 | synchronization when using relay_reserve(). | ||
312 | |||
313 | Closing a channel | ||
314 | ----------------- | ||
315 | |||
316 | The client calls relay_close() when it's finished using the channel. | ||
317 | The channel and its associated buffers are destroyed when there are no | ||
318 | longer any references to any of the channel buffers. relay_flush() | ||
319 | forces a sub-buffer switch on all the channel buffers, and can be used | ||
320 | to finalize and process the last sub-buffers before the channel is | ||
321 | closed. | ||
322 | |||
323 | Misc | ||
324 | ---- | ||
325 | |||
326 | Some applications may want to keep a channel around and re-use it | ||
327 | rather than open and close a new channel for each use. relay_reset() | ||
328 | can be used for this purpose - it resets a channel to its initial | ||
329 | state without reallocating channel buffer memory or destroying | ||
330 | existing mappings. It should however only be called when it's safe to | ||
331 | do so i.e. when the channel isn't currently being written to. | ||
332 | |||
333 | Finally, there are a couple of utility callbacks that can be used for | ||
334 | different purposes. buf_mapped() is called whenever a channel buffer | ||
335 | is mmapped from user space and buf_unmapped() is called when it's | ||
336 | unmapped. The client can use this notification to trigger actions | ||
337 | within the kernel application, such as enabling/disabling logging to | ||
338 | the channel. | ||
339 | |||
340 | |||
341 | Resources | ||
342 | ========= | ||
343 | |||
344 | For news, example code, mailing list, etc. see the relayfs homepage: | ||
345 | |||
346 | http://relayfs.sourceforge.net | ||
347 | |||
348 | |||
349 | Credits | ||
350 | ======= | ||
351 | |||
352 | The ideas and specs for relayfs came about as a result of discussions | ||
353 | on tracing involving the following: | ||
354 | |||
355 | Michel Dagenais <michel.dagenais@polymtl.ca> | ||
356 | Richard Moore <richardj_moore@uk.ibm.com> | ||
357 | Bob Wisniewski <bob@watson.ibm.com> | ||
358 | Karim Yaghmour <karim@opersys.com> | ||
359 | Tom Zanussi <zanussi@us.ibm.com> | ||
360 | |||
361 | Also thanks to Hubertus Franke for a lot of useful suggestions and bug | ||
362 | reports. | ||
diff --git a/fs/Kconfig b/fs/Kconfig index ed78d24ee42..740d6ff0367 100644 --- a/fs/Kconfig +++ b/fs/Kconfig | |||
@@ -816,6 +816,18 @@ config RAMFS | |||
816 | To compile this as a module, choose M here: the module will be called | 816 | To compile this as a module, choose M here: the module will be called |
817 | ramfs. | 817 | ramfs. |
818 | 818 | ||
819 | config RELAYFS_FS | ||
820 | tristate "Relayfs file system support" | ||
821 | ---help--- | ||
822 | Relayfs is a high-speed data relay filesystem designed to provide | ||
823 | an efficient mechanism for tools and facilities to relay large | ||
824 | amounts of data from kernel space to user space. | ||
825 | |||
826 | To compile this code as a module, choose M here: the module will be | ||
827 | called relayfs. | ||
828 | |||
829 | If unsure, say N. | ||
830 | |||
819 | endmenu | 831 | endmenu |
820 | 832 | ||
821 | menu "Miscellaneous filesystems" | 833 | menu "Miscellaneous filesystems" |
diff --git a/fs/Makefile b/fs/Makefile index cf95eb894fd..15158309dee 100644 --- a/fs/Makefile +++ b/fs/Makefile | |||
@@ -90,6 +90,7 @@ obj-$(CONFIG_AUTOFS_FS) += autofs/ | |||
90 | obj-$(CONFIG_AUTOFS4_FS) += autofs4/ | 90 | obj-$(CONFIG_AUTOFS4_FS) += autofs4/ |
91 | obj-$(CONFIG_ADFS_FS) += adfs/ | 91 | obj-$(CONFIG_ADFS_FS) += adfs/ |
92 | obj-$(CONFIG_UDF_FS) += udf/ | 92 | obj-$(CONFIG_UDF_FS) += udf/ |
93 | obj-$(CONFIG_RELAYFS_FS) += relayfs/ | ||
93 | obj-$(CONFIG_SUN_OPENPROMFS) += openpromfs/ | 94 | obj-$(CONFIG_SUN_OPENPROMFS) += openpromfs/ |
94 | obj-$(CONFIG_JFS_FS) += jfs/ | 95 | obj-$(CONFIG_JFS_FS) += jfs/ |
95 | obj-$(CONFIG_XFS_FS) += xfs/ | 96 | obj-$(CONFIG_XFS_FS) += xfs/ |
diff --git a/fs/relayfs/Makefile b/fs/relayfs/Makefile new file mode 100644 index 00000000000..e76e182cdb3 --- /dev/null +++ b/fs/relayfs/Makefile | |||
@@ -0,0 +1,4 @@ | |||
1 | obj-$(CONFIG_RELAYFS_FS) += relayfs.o | ||
2 | |||
3 | relayfs-y := relay.o inode.o buffers.o | ||
4 | |||
diff --git a/fs/relayfs/buffers.c b/fs/relayfs/buffers.c new file mode 100644 index 00000000000..2aa8e271999 --- /dev/null +++ b/fs/relayfs/buffers.c | |||
@@ -0,0 +1,189 @@ | |||
1 | /* | ||
2 | * RelayFS buffer management code. | ||
3 | * | ||
4 | * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp | ||
5 | * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) | ||
6 | * | ||
7 | * This file is released under the GPL. | ||
8 | */ | ||
9 | |||
10 | #include <linux/module.h> | ||
11 | #include <linux/vmalloc.h> | ||
12 | #include <linux/mm.h> | ||
13 | #include <linux/relayfs_fs.h> | ||
14 | #include "relay.h" | ||
15 | #include "buffers.h" | ||
16 | |||
17 | /* | ||
18 | * close() vm_op implementation for relayfs file mapping. | ||
19 | */ | ||
20 | static void relay_file_mmap_close(struct vm_area_struct *vma) | ||
21 | { | ||
22 | struct rchan_buf *buf = vma->vm_private_data; | ||
23 | buf->chan->cb->buf_unmapped(buf, vma->vm_file); | ||
24 | } | ||
25 | |||
26 | /* | ||
27 | * nopage() vm_op implementation for relayfs file mapping. | ||
28 | */ | ||
29 | static struct page *relay_buf_nopage(struct vm_area_struct *vma, | ||
30 | unsigned long address, | ||
31 | int *type) | ||
32 | { | ||
33 | struct page *page; | ||
34 | struct rchan_buf *buf = vma->vm_private_data; | ||
35 | unsigned long offset = address - vma->vm_start; | ||
36 | |||
37 | if (address > vma->vm_end) | ||
38 | return NOPAGE_SIGBUS; /* Disallow mremap */ | ||
39 | if (!buf) | ||
40 | return NOPAGE_OOM; | ||
41 | |||
42 | page = vmalloc_to_page(buf->start + offset); | ||
43 | if (!page) | ||
44 | return NOPAGE_OOM; | ||
45 | get_page(page); | ||
46 | |||
47 | if (type) | ||
48 | *type = VM_FAULT_MINOR; | ||
49 | |||
50 | return page; | ||
51 | } | ||
52 | |||
53 | /* | ||
54 | * vm_ops for relay file mappings. | ||
55 | */ | ||
56 | static struct vm_operations_struct relay_file_mmap_ops = { | ||
57 | .nopage = relay_buf_nopage, | ||
58 | .close = relay_file_mmap_close, | ||
59 | }; | ||
60 | |||
61 | /** | ||
62 | * relay_mmap_buf: - mmap channel buffer to process address space | ||
63 | * @buf: relay channel buffer | ||
64 | * @vma: vm_area_struct describing memory to be mapped | ||
65 | * | ||
66 | * Returns 0 if ok, negative on error | ||
67 | * | ||
68 | * Caller should already have grabbed mmap_sem. | ||
69 | */ | ||
70 | int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma) | ||
71 | { | ||
72 | unsigned long length = vma->vm_end - vma->vm_start; | ||
73 | struct file *filp = vma->vm_file; | ||
74 | |||
75 | if (!buf) | ||
76 | return -EBADF; | ||
77 | |||
78 | if (length != (unsigned long)buf->chan->alloc_size) | ||
79 | return -EINVAL; | ||
80 | |||
81 | vma->vm_ops = &relay_file_mmap_ops; | ||
82 | vma->vm_private_data = buf; | ||
83 | buf->chan->cb->buf_mapped(buf, filp); | ||
84 | |||
85 | return 0; | ||
86 | } | ||
87 | |||
88 | /** | ||
89 | * relay_alloc_buf - allocate a channel buffer | ||
90 | * @buf: the buffer struct | ||
91 | * @size: total size of the buffer | ||
92 | * | ||
93 | * Returns a pointer to the resulting buffer, NULL if unsuccessful | ||
94 | */ | ||
95 | static void *relay_alloc_buf(struct rchan_buf *buf, unsigned long size) | ||
96 | { | ||
97 | void *mem; | ||
98 | unsigned int i, j, n_pages; | ||
99 | |||
100 | size = PAGE_ALIGN(size); | ||
101 | n_pages = size >> PAGE_SHIFT; | ||
102 | |||
103 | buf->page_array = kcalloc(n_pages, sizeof(struct page *), GFP_KERNEL); | ||
104 | if (!buf->page_array) | ||
105 | return NULL; | ||
106 | |||
107 | for (i = 0; i < n_pages; i++) { | ||
108 | buf->page_array[i] = alloc_page(GFP_KERNEL); | ||
109 | if (unlikely(!buf->page_array[i])) | ||
110 | goto depopulate; | ||
111 | } | ||
112 | mem = vmap(buf->page_array, n_pages, GFP_KERNEL, PAGE_KERNEL); | ||
113 | if (!mem) | ||
114 | goto depopulate; | ||
115 | |||
116 | memset(mem, 0, size); | ||
117 | buf->page_count = n_pages; | ||
118 | return mem; | ||
119 | |||
120 | depopulate: | ||
121 | for (j = 0; j < i; j++) | ||
122 | __free_page(buf->page_array[j]); | ||
123 | kfree(buf->page_array); | ||
124 | return NULL; | ||
125 | } | ||
126 | |||
127 | /** | ||
128 | * relay_create_buf - allocate and initialize a channel buffer | ||
129 | * @alloc_size: size of the buffer to allocate | ||
130 | * @n_subbufs: number of sub-buffers in the channel | ||
131 | * | ||
132 | * Returns channel buffer if successful, NULL otherwise | ||
133 | */ | ||
134 | struct rchan_buf *relay_create_buf(struct rchan *chan) | ||
135 | { | ||
136 | struct rchan_buf *buf = kcalloc(1, sizeof(struct rchan_buf), GFP_KERNEL); | ||
137 | if (!buf) | ||
138 | return NULL; | ||
139 | |||
140 | buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL); | ||
141 | if (!buf->padding) | ||
142 | goto free_buf; | ||
143 | |||
144 | buf->start = relay_alloc_buf(buf, chan->alloc_size); | ||
145 | if (!buf->start) | ||
146 | goto free_buf; | ||
147 | |||
148 | buf->chan = chan; | ||
149 | kref_get(&buf->chan->kref); | ||
150 | return buf; | ||
151 | |||
152 | free_buf: | ||
153 | kfree(buf->padding); | ||
154 | kfree(buf); | ||
155 | return NULL; | ||
156 | } | ||
157 | |||
158 | /** | ||
159 | * relay_destroy_buf - destroy an rchan_buf struct and associated buffer | ||
160 | * @buf: the buffer struct | ||
161 | */ | ||
162 | void relay_destroy_buf(struct rchan_buf *buf) | ||
163 | { | ||
164 | struct rchan *chan = buf->chan; | ||
165 | unsigned int i; | ||
166 | |||
167 | if (likely(buf->start)) { | ||
168 | vunmap(buf->start); | ||
169 | for (i = 0; i < buf->page_count; i++) | ||
170 | __free_page(buf->page_array[i]); | ||
171 | kfree(buf->page_array); | ||
172 | } | ||
173 | kfree(buf->padding); | ||
174 | kfree(buf); | ||
175 | kref_put(&chan->kref, relay_destroy_channel); | ||
176 | } | ||
177 | |||
178 | /** | ||
179 | * relay_remove_buf - remove a channel buffer | ||
180 | * | ||
181 | * Removes the file from the relayfs fileystem, which also frees the | ||
182 | * rchan_buf_struct and the channel buffer. Should only be called from | ||
183 | * kref_put(). | ||
184 | */ | ||
185 | void relay_remove_buf(struct kref *kref) | ||
186 | { | ||
187 | struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref); | ||
188 | relayfs_remove(buf->dentry); | ||
189 | } | ||
diff --git a/fs/relayfs/buffers.h b/fs/relayfs/buffers.h new file mode 100644 index 00000000000..37a12493f64 --- /dev/null +++ b/fs/relayfs/buffers.h | |||
@@ -0,0 +1,12 @@ | |||
1 | #ifndef _BUFFERS_H | ||
2 | #define _BUFFERS_H | ||
3 | |||
4 | /* This inspired by rtai/shmem */ | ||
5 | #define FIX_SIZE(x) (((x) - 1) & PAGE_MASK) + PAGE_SIZE | ||
6 | |||
7 | extern int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma); | ||
8 | extern struct rchan_buf *relay_create_buf(struct rchan *chan); | ||
9 | extern void relay_destroy_buf(struct rchan_buf *buf); | ||
10 | extern void relay_remove_buf(struct kref *kref); | ||
11 | |||
12 | #endif/* _BUFFERS_H */ | ||
diff --git a/fs/relayfs/inode.c b/fs/relayfs/inode.c new file mode 100644 index 00000000000..0f7f88d067a --- /dev/null +++ b/fs/relayfs/inode.c | |||
@@ -0,0 +1,609 @@ | |||
1 | /* | ||
2 | * VFS-related code for RelayFS, a high-speed data relay filesystem. | ||
3 | * | ||
4 | * Copyright (C) 2003-2005 - Tom Zanussi <zanussi@us.ibm.com>, IBM Corp | ||
5 | * Copyright (C) 2003-2005 - Karim Yaghmour <karim@opersys.com> | ||
6 | * | ||
7 | * Based on ramfs, Copyright (C) 2002 - Linus Torvalds | ||
8 | * | ||
9 | * This file is released under the GPL. | ||
10 | */ | ||
11 | |||
12 | #include <linux/module.h> | ||
13 | #include <linux/fs.h> | ||
14 | #include <linux/mount.h> | ||
15 | #include <linux/pagemap.h> | ||
16 | #include <linux/init.h> | ||
17 | #include <linux/string.h> | ||
18 | #include <linux/backing-dev.h> | ||
19 | #include <linux/namei.h> | ||
20 | #include <linux/poll.h> | ||
21 | #include <linux/relayfs_fs.h> | ||
22 | #include "relay.h" | ||
23 | #include "buffers.h" | ||
24 | |||
25 | #define RELAYFS_MAGIC 0xF0B4A981 | ||
26 | |||
27 | static struct vfsmount * relayfs_mount; | ||
28 | static int relayfs_mount_count; | ||
29 | static kmem_cache_t * relayfs_inode_cachep; | ||
30 | |||
31 | static struct backing_dev_info relayfs_backing_dev_info = { | ||
32 | .ra_pages = 0, /* No readahead */ | ||
33 | .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK, | ||
34 | }; | ||
35 | |||
36 | static struct inode *relayfs_get_inode(struct super_block *sb, int mode, | ||
37 | struct rchan *chan) | ||
38 | { | ||
39 | struct rchan_buf *buf = NULL; | ||
40 | struct inode *inode; | ||
41 | |||
42 | if (S_ISREG(mode)) { | ||
43 | BUG_ON(!chan); | ||
44 | buf = relay_create_buf(chan); | ||
45 | if (!buf) | ||
46 | return NULL; | ||
47 | } | ||
48 | |||
49 | inode = new_inode(sb); | ||
50 | if (!inode) { | ||
51 | relay_destroy_buf(buf); | ||
52 | return NULL; | ||
53 | } | ||
54 | |||
55 | inode->i_mode = mode; | ||
56 | inode->i_uid = 0; | ||
57 | inode->i_gid = 0; | ||
58 | inode->i_blksize = PAGE_CACHE_SIZE; | ||
59 | inode->i_blocks = 0; | ||
60 | inode->i_mapping->backing_dev_info = &relayfs_backing_dev_info; | ||
61 | inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; | ||
62 | switch (mode & S_IFMT) { | ||
63 | case S_IFREG: | ||
64 | inode->i_fop = &relayfs_file_operations; | ||
65 | RELAYFS_I(inode)->buf = buf; | ||
66 | break; | ||
67 | case S_IFDIR: | ||
68 | inode->i_op = &simple_dir_inode_operations; | ||
69 | inode->i_fop = &simple_dir_operations; | ||
70 | |||
71 | /* directory inodes start off with i_nlink == 2 (for "." entry) */ | ||
72 | inode->i_nlink++; | ||
73 | break; | ||
74 | default: | ||
75 | break; | ||
76 | } | ||
77 | |||
78 | return inode; | ||
79 | } | ||
80 | |||
81 | /** | ||
82 | * relayfs_create_entry - create a relayfs directory or file | ||
83 | * @name: the name of the file to create | ||
84 | * @parent: parent directory | ||
85 | * @mode: mode | ||
86 | * @chan: relay channel associated with the file | ||
87 | * | ||
88 | * Returns the new dentry, NULL on failure | ||
89 | * | ||
90 | * Creates a file or directory with the specifed permissions. | ||
91 | */ | ||
92 | static struct dentry *relayfs_create_entry(const char *name, | ||
93 | struct dentry *parent, | ||
94 | int mode, | ||
95 | struct rchan *chan) | ||
96 | { | ||
97 | struct dentry *d; | ||
98 | struct inode *inode; | ||
99 | int error = 0; | ||
100 | |||
101 | BUG_ON(!name || !(S_ISREG(mode) || S_ISDIR(mode))); | ||
102 | |||
103 | error = simple_pin_fs("relayfs", &relayfs_mount, &relayfs_mount_count); | ||
104 | if (error) { | ||
105 | printk(KERN_ERR "Couldn't mount relayfs: errcode %d\n", error); | ||
106 | return NULL; | ||
107 | } | ||
108 | |||
109 | if (!parent && relayfs_mount && relayfs_mount->mnt_sb) | ||
110 | parent = relayfs_mount->mnt_sb->s_root; | ||
111 | |||
112 | if (!parent) { | ||
113 | simple_release_fs(&relayfs_mount, &relayfs_mount_count); | ||
114 | return NULL; | ||
115 | } | ||
116 | |||
117 | parent = dget(parent); | ||
118 | down(&parent->d_inode->i_sem); | ||
119 | d = lookup_one_len(name, parent, strlen(name)); | ||
120 | if (IS_ERR(d)) { | ||
121 | d = NULL; | ||
122 | goto release_mount; | ||
123 | } | ||
124 | |||
125 | if (d->d_inode) { | ||
126 | d = NULL; | ||
127 | goto release_mount; | ||
128 | } | ||
129 | |||
130 | inode = relayfs_get_inode(parent->d_inode->i_sb, mode, chan); | ||
131 | if (!inode) { | ||
132 | d = NULL; | ||
133 | goto release_mount; | ||
134 | } | ||
135 | |||
136 | d_instantiate(d, inode); | ||
137 | dget(d); /* Extra count - pin the dentry in core */ | ||
138 | |||
139 | if (S_ISDIR(mode)) | ||
140 | parent->d_inode->i_nlink++; | ||
141 | |||
142 | goto exit; | ||
143 | |||
144 | release_mount: | ||
145 | simple_release_fs(&relayfs_mount, &relayfs_mount_count); | ||
146 | |||
147 | exit: | ||
148 | up(&parent->d_inode->i_sem); | ||
149 | dput(parent); | ||
150 | return d; | ||
151 | } | ||
152 | |||
153 | /** | ||
154 | * relayfs_create_file - create a file in the relay filesystem | ||
155 | * @name: the name of the file to create | ||
156 | * @parent: parent directory | ||
157 | * @mode: mode, if not specied the default perms are used | ||
158 | * @chan: channel associated with the file | ||
159 | * | ||
160 | * Returns file dentry if successful, NULL otherwise. | ||
161 | * | ||
162 | * The file will be created user r on behalf of current user. | ||
163 | */ | ||
164 | struct dentry *relayfs_create_file(const char *name, struct dentry *parent, | ||
165 | int mode, struct rchan *chan) | ||
166 | { | ||
167 | if (!mode) | ||
168 | mode = S_IRUSR; | ||
169 | mode = (mode & S_IALLUGO) | S_IFREG; | ||
170 | |||
171 | return relayfs_create_entry(name, parent, mode, chan); | ||
172 | } | ||
173 | |||
174 | /** | ||
175 | * relayfs_create_dir - create a directory in the relay filesystem | ||
176 | * @name: the name of the directory to create | ||
177 | * @parent: parent directory, NULL if parent should be fs root | ||
178 | * | ||
179 | * Returns directory dentry if successful, NULL otherwise. | ||
180 | * | ||
181 | * The directory will be created world rwx on behalf of current user. | ||
182 | */ | ||
183 | struct dentry *relayfs_create_dir(const char *name, struct dentry *parent) | ||
184 | { | ||
185 | int mode = S_IFDIR | S_IRWXU | S_IRUGO | S_IXUGO; | ||
186 | return relayfs_create_entry(name, parent, mode, NULL); | ||
187 | } | ||
188 | |||
189 | /** | ||
190 | * relayfs_remove - remove a file or directory in the relay filesystem | ||
191 | * @dentry: file or directory dentry | ||
192 | * | ||
193 | * Returns 0 if successful, negative otherwise. | ||
194 | */ | ||
195 | int relayfs_remove(struct dentry *dentry) | ||
196 | { | ||
197 | struct dentry *parent; | ||
198 | int error = 0; | ||
199 | |||
200 | if (!dentry) | ||
201 | return -EINVAL; | ||
202 | parent = dentry->d_parent; | ||
203 | if (!parent) | ||
204 | return -EINVAL; | ||
205 | |||
206 | parent = dget(parent); | ||
207 | down(&parent->d_inode->i_sem); | ||
208 | if (dentry->d_inode) { | ||
209 | if (S_ISDIR(dentry->d_inode->i_mode)) | ||
210 | error = simple_rmdir(parent->d_inode, dentry); | ||
211 | else | ||
212 | error = simple_unlink(parent->d_inode, dentry); | ||
213 | if (!error) | ||
214 | d_delete(dentry); | ||
215 | } | ||
216 | if (!error) | ||
217 | dput(dentry); | ||
218 | up(&parent->d_inode->i_sem); | ||
219 | dput(parent); | ||
220 | |||
221 | if (!error) | ||
222 | simple_release_fs(&relayfs_mount, &relayfs_mount_count); | ||
223 | |||
224 | return error; | ||
225 | } | ||
226 | |||
227 | /** | ||
228 | * relayfs_remove_dir - remove a directory in the relay filesystem | ||
229 | * @dentry: directory dentry | ||
230 | * | ||
231 | * Returns 0 if successful, negative otherwise. | ||
232 | */ | ||
233 | int relayfs_remove_dir(struct dentry *dentry) | ||
234 | { | ||
235 | return relayfs_remove(dentry); | ||
236 | } | ||
237 | |||
238 | /** | ||
239 | * relayfs_open - open file op for relayfs files | ||
240 | * @inode: the inode | ||
241 | * @filp: the file | ||
242 | * | ||
243 | * Increments the channel buffer refcount. | ||
244 | */ | ||
245 | static int relayfs_open(struct inode *inode, struct file *filp) | ||
246 | { | ||
247 | struct rchan_buf *buf = RELAYFS_I(inode)->buf; | ||
248 | kref_get(&buf->kref); | ||
249 | |||
250 | return 0; | ||
251 | } | ||
252 | |||
253 | /** | ||
254 | * relayfs_mmap - mmap file op for relayfs files | ||
255 | * @filp: the file | ||
256 | * @vma: the vma describing what to map | ||
257 | * | ||
258 | * Calls upon relay_mmap_buf to map the file into user space. | ||
259 | */ | ||
260 | static int relayfs_mmap(struct file *filp, struct vm_area_struct *vma) | ||
261 | { | ||
262 | struct inode *inode = filp->f_dentry->d_inode; | ||
263 | return relay_mmap_buf(RELAYFS_I(inode)->buf, vma); | ||
264 | } | ||
265 | |||
266 | /** | ||
267 | * relayfs_poll - poll file op for relayfs files | ||
268 | * @filp: the file | ||
269 | * @wait: poll table | ||
270 | * | ||
271 | * Poll implemention. | ||
272 | */ | ||
273 | static unsigned int relayfs_poll(struct file *filp, poll_table *wait) | ||
274 | { | ||
275 | unsigned int mask = 0; | ||
276 | struct inode *inode = filp->f_dentry->d_inode; | ||
277 | struct rchan_buf *buf = RELAYFS_I(inode)->buf; | ||
278 | |||
279 | if (buf->finalized) | ||
280 | return POLLERR; | ||
281 | |||
282 | if (filp->f_mode & FMODE_READ) { | ||
283 | poll_wait(filp, &buf->read_wait, wait); | ||
284 | if (!relay_buf_empty(buf)) | ||
285 | mask |= POLLIN | POLLRDNORM; | ||
286 | } | ||
287 | |||
288 | return mask; | ||
289 | } | ||
290 | |||
291 | /** | ||
292 | * relayfs_release - release file op for relayfs files | ||
293 | * @inode: the inode | ||
294 | * @filp: the file | ||
295 | * | ||
296 | * Decrements the channel refcount, as the filesystem is | ||
297 | * no longer using it. | ||
298 | */ | ||
299 | static int relayfs_release(struct inode *inode, struct file *filp) | ||
300 | { | ||
301 | struct rchan_buf *buf = RELAYFS_I(inode)->buf; | ||
302 | kref_put(&buf->kref, relay_remove_buf); | ||
303 | |||
304 | return 0; | ||
305 | } | ||
306 | |||
307 | /** | ||
308 | * relayfs_read_consume - update the consumed count for the buffer | ||
309 | */ | ||
310 | static void relayfs_read_consume(struct rchan_buf *buf, | ||
311 | size_t read_pos, | ||
312 | size_t bytes_consumed) | ||
313 | { | ||
314 | size_t subbuf_size = buf->chan->subbuf_size; | ||
315 | size_t n_subbufs = buf->chan->n_subbufs; | ||
316 | size_t read_subbuf; | ||
317 | |||
318 | if (buf->bytes_consumed + bytes_consumed > subbuf_size) { | ||
319 | relay_subbufs_consumed(buf->chan, buf->cpu, 1); | ||
320 | buf->bytes_consumed = 0; | ||
321 | } | ||
322 | |||
323 | buf->bytes_consumed += bytes_consumed; | ||
324 | read_subbuf = read_pos / buf->chan->subbuf_size; | ||
325 | if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) { | ||
326 | if ((read_subbuf == buf->subbufs_produced % n_subbufs) && | ||
327 | (buf->offset == subbuf_size)) | ||
328 | return; | ||
329 | relay_subbufs_consumed(buf->chan, buf->cpu, 1); | ||
330 | buf->bytes_consumed = 0; | ||
331 | } | ||
332 | } | ||
333 | |||
334 | /** | ||
335 | * relayfs_read_avail - boolean, are there unconsumed bytes available? | ||
336 | */ | ||
337 | static int relayfs_read_avail(struct rchan_buf *buf, size_t read_pos) | ||
338 | { | ||
339 | size_t bytes_produced, bytes_consumed, write_offset; | ||
340 | size_t subbuf_size = buf->chan->subbuf_size; | ||
341 | size_t n_subbufs = buf->chan->n_subbufs; | ||
342 | size_t produced = buf->subbufs_produced % n_subbufs; | ||
343 | size_t consumed = buf->subbufs_consumed % n_subbufs; | ||
344 | |||
345 | write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; | ||
346 | |||
347 | if (consumed > produced) { | ||
348 | if ((produced > n_subbufs) && | ||
349 | (produced + n_subbufs - consumed <= n_subbufs)) | ||
350 | produced += n_subbufs; | ||
351 | } else if (consumed == produced) { | ||
352 | if (buf->offset > subbuf_size) { | ||
353 | produced += n_subbufs; | ||
354 | if (buf->subbufs_produced == buf->subbufs_consumed) | ||
355 | consumed += n_subbufs; | ||
356 | } | ||
357 | } | ||
358 | |||
359 | if (buf->offset > subbuf_size) | ||
360 | bytes_produced = (produced - 1) * subbuf_size + write_offset; | ||
361 | else | ||
362 | bytes_produced = produced * subbuf_size + write_offset; | ||
363 | bytes_consumed = consumed * subbuf_size + buf->bytes_consumed; | ||
364 | |||
365 | if (bytes_produced == bytes_consumed) | ||
366 | return 0; | ||
367 | |||
368 | relayfs_read_consume(buf, read_pos, 0); | ||
369 | |||
370 | return 1; | ||
371 | } | ||
372 | |||
373 | /** | ||
374 | * relayfs_read_subbuf_avail - return bytes available in sub-buffer | ||
375 | */ | ||
376 | static size_t relayfs_read_subbuf_avail(size_t read_pos, | ||
377 | struct rchan_buf *buf) | ||
378 | { | ||
379 | size_t padding, avail = 0; | ||
380 | size_t read_subbuf, read_offset, write_subbuf, write_offset; | ||
381 | size_t subbuf_size = buf->chan->subbuf_size; | ||
382 | |||
383 | write_subbuf = (buf->data - buf->start) / subbuf_size; | ||
384 | write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; | ||
385 | read_subbuf = read_pos / subbuf_size; | ||
386 | read_offset = read_pos % subbuf_size; | ||
387 | padding = buf->padding[read_subbuf]; | ||
388 | |||
389 | if (read_subbuf == write_subbuf) { | ||
390 | if (read_offset + padding < write_offset) | ||
391 | avail = write_offset - (read_offset + padding); | ||
392 | } else | ||
393 | avail = (subbuf_size - padding) - read_offset; | ||
394 | |||
395 | return avail; | ||
396 | } | ||
397 | |||
398 | /** | ||
399 | * relayfs_read_start_pos - find the first available byte to read | ||
400 | * | ||
401 | * If the read_pos is in the middle of padding, return the | ||
402 | * position of the first actually available byte, otherwise | ||
403 | * return the original value. | ||
404 | */ | ||
405 | static size_t relayfs_read_start_pos(size_t read_pos, | ||
406 | struct rchan_buf *buf) | ||
407 | { | ||
408 | size_t read_subbuf, padding, padding_start, padding_end; | ||
409 | size_t subbuf_size = buf->chan->subbuf_size; | ||
410 | size_t n_subbufs = buf->chan->n_subbufs; | ||
411 | |||
412 | read_subbuf = read_pos / subbuf_size; | ||
413 | padding = buf->padding[read_subbuf]; | ||
414 | padding_start = (read_subbuf + 1) * subbuf_size - padding; | ||
415 | padding_end = (read_subbuf + 1) * subbuf_size; | ||
416 | if (read_pos >= padding_start && read_pos < padding_end) { | ||
417 | read_subbuf = (read_subbuf + 1) % n_subbufs; | ||
418 | read_pos = read_subbuf * subbuf_size; | ||
419 | } | ||
420 | |||
421 | return read_pos; | ||
422 | } | ||
423 | |||
424 | /** | ||
425 | * relayfs_read_end_pos - return the new read position | ||
426 | */ | ||
427 | static size_t relayfs_read_end_pos(struct rchan_buf *buf, | ||
428 | size_t read_pos, | ||
429 | size_t count) | ||
430 | { | ||
431 | size_t read_subbuf, padding, end_pos; | ||
432 | size_t subbuf_size = buf->chan->subbuf_size; | ||
433 | size_t n_subbufs = buf->chan->n_subbufs; | ||
434 | |||
435 | read_subbuf = read_pos / subbuf_size; | ||
436 | padding = buf->padding[read_subbuf]; | ||
437 | if (read_pos % subbuf_size + count + padding == subbuf_size) | ||
438 | end_pos = (read_subbuf + 1) * subbuf_size; | ||
439 | else | ||
440 | end_pos = read_pos + count; | ||
441 | if (end_pos >= subbuf_size * n_subbufs) | ||
442 | end_pos = 0; | ||
443 | |||
444 | return end_pos; | ||
445 | } | ||
446 | |||
447 | /** | ||
448 | * relayfs_read - read file op for relayfs files | ||
449 | * @filp: the file | ||
450 | * @buffer: the userspace buffer | ||
451 | * @count: number of bytes to read | ||
452 | * @ppos: position to read from | ||
453 | * | ||
454 | * Reads count bytes or the number of bytes available in the | ||
455 | * current sub-buffer being read, whichever is smaller. | ||
456 | */ | ||
457 | static ssize_t relayfs_read(struct file *filp, | ||
458 | char __user *buffer, | ||
459 | size_t count, | ||
460 | loff_t *ppos) | ||
461 | { | ||
462 | struct inode *inode = filp->f_dentry->d_inode; | ||
463 | struct rchan_buf *buf = RELAYFS_I(inode)->buf; | ||
464 | size_t read_start, avail; | ||
465 | ssize_t ret = 0; | ||
466 | void *from; | ||
467 | |||
468 | down(&inode->i_sem); | ||
469 | if(!relayfs_read_avail(buf, *ppos)) | ||
470 | goto out; | ||
471 | |||
472 | read_start = relayfs_read_start_pos(*ppos, buf); | ||
473 | avail = relayfs_read_subbuf_avail(read_start, buf); | ||
474 | if (!avail) | ||
475 | goto out; | ||
476 | |||
477 | from = buf->start + read_start; | ||
478 | ret = count = min(count, avail); | ||
479 | if (copy_to_user(buffer, from, count)) { | ||
480 | ret = -EFAULT; | ||
481 | goto out; | ||
482 | } | ||
483 | relayfs_read_consume(buf, read_start, count); | ||
484 | *ppos = relayfs_read_end_pos(buf, read_start, count); | ||
485 | out: | ||
486 | up(&inode->i_sem); | ||
487 | return ret; | ||
488 | } | ||
489 | |||
490 | /** | ||
491 | * relayfs alloc_inode() implementation | ||
492 | */ | ||
493 | static struct inode *relayfs_alloc_inode(struct super_block *sb) | ||
494 | { | ||
495 | struct relayfs_inode_info *p = kmem_cache_alloc(relayfs_inode_cachep, SLAB_KERNEL); | ||
496 | if (!p) | ||
497 | return NULL; | ||
498 | p->buf = NULL; | ||
499 | |||
500 | return &p->vfs_inode; | ||
501 | } | ||
502 | |||
503 | /** | ||
504 | * relayfs destroy_inode() implementation | ||
505 | */ | ||
506 | static void relayfs_destroy_inode(struct inode *inode) | ||
507 | { | ||
508 | if (RELAYFS_I(inode)->buf) | ||
509 | relay_destroy_buf(RELAYFS_I(inode)->buf); | ||
510 | |||
511 | kmem_cache_free(relayfs_inode_cachep, RELAYFS_I(inode)); | ||
512 | } | ||
513 | |||
514 | static void init_once(void *p, kmem_cache_t *cachep, unsigned long flags) | ||
515 | { | ||
516 | struct relayfs_inode_info *i = p; | ||
517 | if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) == SLAB_CTOR_CONSTRUCTOR) | ||
518 | inode_init_once(&i->vfs_inode); | ||
519 | } | ||
520 | |||
521 | struct file_operations relayfs_file_operations = { | ||
522 | .open = relayfs_open, | ||
523 | .poll = relayfs_poll, | ||
524 | .mmap = relayfs_mmap, | ||
525 | .read = relayfs_read, | ||
526 | .llseek = no_llseek, | ||
527 | .release = relayfs_release, | ||
528 | }; | ||
529 | |||
530 | static struct super_operations relayfs_ops = { | ||
531 | .statfs = simple_statfs, | ||
532 | .drop_inode = generic_delete_inode, | ||
533 | .alloc_inode = relayfs_alloc_inode, | ||
534 | .destroy_inode = relayfs_destroy_inode, | ||
535 | }; | ||
536 | |||
537 | static int relayfs_fill_super(struct super_block * sb, void * data, int silent) | ||
538 | { | ||
539 | struct inode *inode; | ||
540 | struct dentry *root; | ||
541 | int mode = S_IFDIR | S_IRWXU | S_IRUGO | S_IXUGO; | ||
542 | |||
543 | sb->s_blocksize = PAGE_CACHE_SIZE; | ||
544 | sb->s_blocksize_bits = PAGE_CACHE_SHIFT; | ||
545 | sb->s_magic = RELAYFS_MAGIC; | ||
546 | sb->s_op = &relayfs_ops; | ||
547 | inode = relayfs_get_inode(sb, mode, NULL); | ||
548 | |||
549 | if (!inode) | ||
550 | return -ENOMEM; | ||
551 | |||
552 | root = d_alloc_root(inode); | ||
553 | if (!root) { | ||
554 | iput(inode); | ||
555 | return -ENOMEM; | ||
556 | } | ||
557 | sb->s_root = root; | ||
558 | |||
559 | return 0; | ||
560 | } | ||
561 | |||
562 | static struct super_block * relayfs_get_sb(struct file_system_type *fs_type, | ||
563 | int flags, const char *dev_name, | ||
564 | void *data) | ||
565 | { | ||
566 | return get_sb_single(fs_type, flags, data, relayfs_fill_super); | ||
567 | } | ||
568 | |||
569 | static struct file_system_type relayfs_fs_type = { | ||
570 | .owner = THIS_MODULE, | ||
571 | .name = "relayfs", | ||
572 | .get_sb = relayfs_get_sb, | ||
573 | .kill_sb = kill_litter_super, | ||
574 | }; | ||
575 | |||
576 | static int __init init_relayfs_fs(void) | ||
577 | { | ||
578 | int err; | ||
579 | |||
580 | relayfs_inode_cachep = kmem_cache_create("relayfs_inode_cache", | ||
581 | sizeof(struct relayfs_inode_info), 0, | ||
582 | 0, init_once, NULL); | ||
583 | if (!relayfs_inode_cachep) | ||
584 | return -ENOMEM; | ||
585 | |||
586 | err = register_filesystem(&relayfs_fs_type); | ||
587 | if (err) | ||
588 | kmem_cache_destroy(relayfs_inode_cachep); | ||
589 | |||
590 | return err; | ||
591 | } | ||
592 | |||
593 | static void __exit exit_relayfs_fs(void) | ||
594 | { | ||
595 | unregister_filesystem(&relayfs_fs_type); | ||
596 | kmem_cache_destroy(relayfs_inode_cachep); | ||
597 | } | ||
598 | |||
599 | module_init(init_relayfs_fs) | ||
600 | module_exit(exit_relayfs_fs) | ||
601 | |||
602 | EXPORT_SYMBOL_GPL(relayfs_file_operations); | ||
603 | EXPORT_SYMBOL_GPL(relayfs_create_dir); | ||
604 | EXPORT_SYMBOL_GPL(relayfs_remove_dir); | ||
605 | |||
606 | MODULE_AUTHOR("Tom Zanussi <zanussi@us.ibm.com> and Karim Yaghmour <karim@opersys.com>"); | ||
607 | MODULE_DESCRIPTION("Relay Filesystem"); | ||
608 | MODULE_LICENSE("GPL"); | ||
609 | |||
diff --git a/fs/relayfs/relay.c b/fs/relayfs/relay.c new file mode 100644 index 00000000000..16446a15c96 --- /dev/null +++ b/fs/relayfs/relay.c | |||
@@ -0,0 +1,431 @@ | |||
1 | /* | ||
2 | * Public API and common code for RelayFS. | ||
3 | * | ||
4 | * See Documentation/filesystems/relayfs.txt for an overview of relayfs. | ||
5 | * | ||
6 | * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp | ||
7 | * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) | ||
8 | * | ||
9 | * This file is released under the GPL. | ||
10 | */ | ||
11 | |||
12 | #include <linux/errno.h> | ||
13 | #include <linux/stddef.h> | ||
14 | #include <linux/slab.h> | ||
15 | #include <linux/module.h> | ||
16 | #include <linux/string.h> | ||
17 | #include <linux/relayfs_fs.h> | ||
18 | #include "relay.h" | ||
19 | #include "buffers.h" | ||
20 | |||
21 | /** | ||
22 | * relay_buf_empty - boolean, is the channel buffer empty? | ||
23 | * @buf: channel buffer | ||
24 | * | ||
25 | * Returns 1 if the buffer is empty, 0 otherwise. | ||
26 | */ | ||
27 | int relay_buf_empty(struct rchan_buf *buf) | ||
28 | { | ||
29 | return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1; | ||
30 | } | ||
31 | |||
32 | /** | ||
33 | * relay_buf_full - boolean, is the channel buffer full? | ||
34 | * @buf: channel buffer | ||
35 | * | ||
36 | * Returns 1 if the buffer is full, 0 otherwise. | ||
37 | */ | ||
38 | int relay_buf_full(struct rchan_buf *buf) | ||
39 | { | ||
40 | size_t ready = buf->subbufs_produced - buf->subbufs_consumed; | ||
41 | return (ready >= buf->chan->n_subbufs) ? 1 : 0; | ||
42 | } | ||
43 | |||
44 | /* | ||
45 | * High-level relayfs kernel API and associated functions. | ||
46 | */ | ||
47 | |||
48 | /* | ||
49 | * rchan_callback implementations defining default channel behavior. Used | ||
50 | * in place of corresponding NULL values in client callback struct. | ||
51 | */ | ||
52 | |||
53 | /* | ||
54 | * subbuf_start() default callback. Does nothing. | ||
55 | */ | ||
56 | static int subbuf_start_default_callback (struct rchan_buf *buf, | ||
57 | void *subbuf, | ||
58 | void *prev_subbuf, | ||
59 | size_t prev_padding) | ||
60 | { | ||
61 | if (relay_buf_full(buf)) | ||
62 | return 0; | ||
63 | |||
64 | return 1; | ||
65 | } | ||
66 | |||
67 | /* | ||
68 | * buf_mapped() default callback. Does nothing. | ||
69 | */ | ||
70 | static void buf_mapped_default_callback(struct rchan_buf *buf, | ||
71 | struct file *filp) | ||
72 | { | ||
73 | } | ||
74 | |||
75 | /* | ||
76 | * buf_unmapped() default callback. Does nothing. | ||
77 | */ | ||
78 | static void buf_unmapped_default_callback(struct rchan_buf *buf, | ||
79 | struct file *filp) | ||
80 | { | ||
81 | } | ||
82 | |||
83 | /* relay channel default callbacks */ | ||
84 | static struct rchan_callbacks default_channel_callbacks = { | ||
85 | .subbuf_start = subbuf_start_default_callback, | ||
86 | .buf_mapped = buf_mapped_default_callback, | ||
87 | .buf_unmapped = buf_unmapped_default_callback, | ||
88 | }; | ||
89 | |||
90 | /** | ||
91 | * wakeup_readers - wake up readers waiting on a channel | ||
92 | * @private: the channel buffer | ||
93 | * | ||
94 | * This is the work function used to defer reader waking. The | ||
95 | * reason waking is deferred is that calling directly from write | ||
96 | * causes problems if you're writing from say the scheduler. | ||
97 | */ | ||
98 | static void wakeup_readers(void *private) | ||
99 | { | ||
100 | struct rchan_buf *buf = private; | ||
101 | wake_up_interruptible(&buf->read_wait); | ||
102 | } | ||
103 | |||
104 | /** | ||
105 | * __relay_reset - reset a channel buffer | ||
106 | * @buf: the channel buffer | ||
107 | * @init: 1 if this is a first-time initialization | ||
108 | * | ||
109 | * See relay_reset for description of effect. | ||
110 | */ | ||
111 | static inline void __relay_reset(struct rchan_buf *buf, unsigned int init) | ||
112 | { | ||
113 | size_t i; | ||
114 | |||
115 | if (init) { | ||
116 | init_waitqueue_head(&buf->read_wait); | ||
117 | kref_init(&buf->kref); | ||
118 | INIT_WORK(&buf->wake_readers, NULL, NULL); | ||
119 | } else { | ||
120 | cancel_delayed_work(&buf->wake_readers); | ||
121 | flush_scheduled_work(); | ||
122 | } | ||
123 | |||
124 | buf->subbufs_produced = 0; | ||
125 | buf->subbufs_consumed = 0; | ||
126 | buf->bytes_consumed = 0; | ||
127 | buf->finalized = 0; | ||
128 | buf->data = buf->start; | ||
129 | buf->offset = 0; | ||
130 | |||
131 | for (i = 0; i < buf->chan->n_subbufs; i++) | ||
132 | buf->padding[i] = 0; | ||
133 | |||
134 | buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0); | ||
135 | } | ||
136 | |||
137 | /** | ||
138 | * relay_reset - reset the channel | ||
139 | * @chan: the channel | ||
140 | * | ||
141 | * This has the effect of erasing all data from all channel buffers | ||
142 | * and restarting the channel in its initial state. The buffers | ||
143 | * are not freed, so any mappings are still in effect. | ||
144 | * | ||
145 | * NOTE: Care should be taken that the channel isn't actually | ||
146 | * being used by anything when this call is made. | ||
147 | */ | ||
148 | void relay_reset(struct rchan *chan) | ||
149 | { | ||
150 | unsigned int i; | ||
151 | |||
152 | if (!chan) | ||
153 | return; | ||
154 | |||
155 | for (i = 0; i < NR_CPUS; i++) { | ||
156 | if (!chan->buf[i]) | ||
157 | continue; | ||
158 | __relay_reset(chan->buf[i], 0); | ||
159 | } | ||
160 | } | ||
161 | |||
162 | /** | ||
163 | * relay_open_buf - create a new channel buffer in relayfs | ||
164 | * | ||
165 | * Internal - used by relay_open(). | ||
166 | */ | ||
167 | static struct rchan_buf *relay_open_buf(struct rchan *chan, | ||
168 | const char *filename, | ||
169 | struct dentry *parent) | ||
170 | { | ||
171 | struct rchan_buf *buf; | ||
172 | struct dentry *dentry; | ||
173 | |||
174 | /* Create file in fs */ | ||
175 | dentry = relayfs_create_file(filename, parent, S_IRUSR, chan); | ||
176 | if (!dentry) | ||
177 | return NULL; | ||
178 | |||
179 | buf = RELAYFS_I(dentry->d_inode)->buf; | ||
180 | buf->dentry = dentry; | ||
181 | __relay_reset(buf, 1); | ||
182 | |||
183 | return buf; | ||
184 | } | ||
185 | |||
186 | /** | ||
187 | * relay_close_buf - close a channel buffer | ||
188 | * @buf: channel buffer | ||
189 | * | ||
190 | * Marks the buffer finalized and restores the default callbacks. | ||
191 | * The channel buffer and channel buffer data structure are then freed | ||
192 | * automatically when the last reference is given up. | ||
193 | */ | ||
194 | static inline void relay_close_buf(struct rchan_buf *buf) | ||
195 | { | ||
196 | buf->finalized = 1; | ||
197 | buf->chan->cb = &default_channel_callbacks; | ||
198 | cancel_delayed_work(&buf->wake_readers); | ||
199 | flush_scheduled_work(); | ||
200 | kref_put(&buf->kref, relay_remove_buf); | ||
201 | } | ||
202 | |||
203 | static inline void setup_callbacks(struct rchan *chan, | ||
204 | struct rchan_callbacks *cb) | ||
205 | { | ||
206 | if (!cb) { | ||
207 | chan->cb = &default_channel_callbacks; | ||
208 | return; | ||
209 | } | ||
210 | |||
211 | if (!cb->subbuf_start) | ||
212 | cb->subbuf_start = subbuf_start_default_callback; | ||
213 | if (!cb->buf_mapped) | ||
214 | cb->buf_mapped = buf_mapped_default_callback; | ||
215 | if (!cb->buf_unmapped) | ||
216 | cb->buf_unmapped = buf_unmapped_default_callback; | ||
217 | chan->cb = cb; | ||
218 | } | ||
219 | |||
220 | /** | ||
221 | * relay_open - create a new relayfs channel | ||
222 | * @base_filename: base name of files to create | ||
223 | * @parent: dentry of parent directory, NULL for root directory | ||
224 | * @subbuf_size: size of sub-buffers | ||
225 | * @n_subbufs: number of sub-buffers | ||
226 | * @cb: client callback functions | ||
227 | * | ||
228 | * Returns channel pointer if successful, NULL otherwise. | ||
229 | * | ||
230 | * Creates a channel buffer for each cpu using the sizes and | ||
231 | * attributes specified. The created channel buffer files | ||
232 | * will be named base_filename0...base_filenameN-1. File | ||
233 | * permissions will be S_IRUSR. | ||
234 | */ | ||
235 | struct rchan *relay_open(const char *base_filename, | ||
236 | struct dentry *parent, | ||
237 | size_t subbuf_size, | ||
238 | size_t n_subbufs, | ||
239 | struct rchan_callbacks *cb) | ||
240 | { | ||
241 | unsigned int i; | ||
242 | struct rchan *chan; | ||
243 | char *tmpname; | ||
244 | |||
245 | if (!base_filename) | ||
246 | return NULL; | ||
247 | |||
248 | if (!(subbuf_size && n_subbufs)) | ||
249 | return NULL; | ||
250 | |||
251 | chan = kcalloc(1, sizeof(struct rchan), GFP_KERNEL); | ||
252 | if (!chan) | ||
253 | return NULL; | ||
254 | |||
255 | chan->version = RELAYFS_CHANNEL_VERSION; | ||
256 | chan->n_subbufs = n_subbufs; | ||
257 | chan->subbuf_size = subbuf_size; | ||
258 | chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs); | ||
259 | setup_callbacks(chan, cb); | ||
260 | kref_init(&chan->kref); | ||
261 | |||
262 | tmpname = kmalloc(NAME_MAX + 1, GFP_KERNEL); | ||
263 | if (!tmpname) | ||
264 | goto free_chan; | ||
265 | |||
266 | for_each_online_cpu(i) { | ||
267 | sprintf(tmpname, "%s%d", base_filename, i); | ||
268 | chan->buf[i] = relay_open_buf(chan, tmpname, parent); | ||
269 | chan->buf[i]->cpu = i; | ||
270 | if (!chan->buf[i]) | ||
271 | goto free_bufs; | ||
272 | } | ||
273 | |||
274 | kfree(tmpname); | ||
275 | return chan; | ||
276 | |||
277 | free_bufs: | ||
278 | for (i = 0; i < NR_CPUS; i++) { | ||
279 | if (!chan->buf[i]) | ||
280 | break; | ||
281 | relay_close_buf(chan->buf[i]); | ||
282 | } | ||
283 | kfree(tmpname); | ||
284 | |||
285 | free_chan: | ||
286 | kref_put(&chan->kref, relay_destroy_channel); | ||
287 | return NULL; | ||
288 | } | ||
289 | |||
290 | /** | ||
291 | * relay_switch_subbuf - switch to a new sub-buffer | ||
292 | * @buf: channel buffer | ||
293 | * @length: size of current event | ||
294 | * | ||
295 | * Returns either the length passed in or 0 if full. | ||
296 | |||
297 | * Performs sub-buffer-switch tasks such as invoking callbacks, | ||
298 | * updating padding counts, waking up readers, etc. | ||
299 | */ | ||
300 | size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) | ||
301 | { | ||
302 | void *old, *new; | ||
303 | size_t old_subbuf, new_subbuf; | ||
304 | |||
305 | if (unlikely(length > buf->chan->subbuf_size)) | ||
306 | goto toobig; | ||
307 | |||
308 | if (buf->offset != buf->chan->subbuf_size + 1) { | ||
309 | buf->prev_padding = buf->chan->subbuf_size - buf->offset; | ||
310 | old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; | ||
311 | buf->padding[old_subbuf] = buf->prev_padding; | ||
312 | buf->subbufs_produced++; | ||
313 | if (waitqueue_active(&buf->read_wait)) { | ||
314 | PREPARE_WORK(&buf->wake_readers, wakeup_readers, buf); | ||
315 | schedule_delayed_work(&buf->wake_readers, 1); | ||
316 | } | ||
317 | } | ||
318 | |||
319 | old = buf->data; | ||
320 | new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; | ||
321 | new = buf->start + new_subbuf * buf->chan->subbuf_size; | ||
322 | buf->offset = 0; | ||
323 | if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) { | ||
324 | buf->offset = buf->chan->subbuf_size + 1; | ||
325 | return 0; | ||
326 | } | ||
327 | buf->data = new; | ||
328 | buf->padding[new_subbuf] = 0; | ||
329 | |||
330 | if (unlikely(length + buf->offset > buf->chan->subbuf_size)) | ||
331 | goto toobig; | ||
332 | |||
333 | return length; | ||
334 | |||
335 | toobig: | ||
336 | printk(KERN_WARNING "relayfs: event too large (%Zd)\n", length); | ||
337 | WARN_ON(1); | ||
338 | return 0; | ||
339 | } | ||
340 | |||
341 | /** | ||
342 | * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count | ||
343 | * @chan: the channel | ||
344 | * @cpu: the cpu associated with the channel buffer to update | ||
345 | * @subbufs_consumed: number of sub-buffers to add to current buf's count | ||
346 | * | ||
347 | * Adds to the channel buffer's consumed sub-buffer count. | ||
348 | * subbufs_consumed should be the number of sub-buffers newly consumed, | ||
349 | * not the total consumed. | ||
350 | * | ||
351 | * NOTE: kernel clients don't need to call this function if the channel | ||
352 | * mode is 'overwrite'. | ||
353 | */ | ||
354 | void relay_subbufs_consumed(struct rchan *chan, | ||
355 | unsigned int cpu, | ||
356 | size_t subbufs_consumed) | ||
357 | { | ||
358 | struct rchan_buf *buf; | ||
359 | |||
360 | if (!chan) | ||
361 | return; | ||
362 | |||
363 | if (cpu >= NR_CPUS || !chan->buf[cpu]) | ||
364 | return; | ||
365 | |||
366 | buf = chan->buf[cpu]; | ||
367 | buf->subbufs_consumed += subbufs_consumed; | ||
368 | if (buf->subbufs_consumed > buf->subbufs_produced) | ||
369 | buf->subbufs_consumed = buf->subbufs_produced; | ||
370 | } | ||
371 | |||
372 | /** | ||
373 | * relay_destroy_channel - free the channel struct | ||
374 | * | ||
375 | * Should only be called from kref_put(). | ||
376 | */ | ||
377 | void relay_destroy_channel(struct kref *kref) | ||
378 | { | ||
379 | struct rchan *chan = container_of(kref, struct rchan, kref); | ||
380 | kfree(chan); | ||
381 | } | ||
382 | |||
383 | /** | ||
384 | * relay_close - close the channel | ||
385 | * @chan: the channel | ||
386 | * | ||
387 | * Closes all channel buffers and frees the channel. | ||
388 | */ | ||
389 | void relay_close(struct rchan *chan) | ||
390 | { | ||
391 | unsigned int i; | ||
392 | |||
393 | if (!chan) | ||
394 | return; | ||
395 | |||
396 | for (i = 0; i < NR_CPUS; i++) { | ||
397 | if (!chan->buf[i]) | ||
398 | continue; | ||
399 | relay_close_buf(chan->buf[i]); | ||
400 | } | ||
401 | |||
402 | kref_put(&chan->kref, relay_destroy_channel); | ||
403 | } | ||
404 | |||
405 | /** | ||
406 | * relay_flush - close the channel | ||
407 | * @chan: the channel | ||
408 | * | ||
409 | * Flushes all channel buffers i.e. forces buffer switch. | ||
410 | */ | ||
411 | void relay_flush(struct rchan *chan) | ||
412 | { | ||
413 | unsigned int i; | ||
414 | |||
415 | if (!chan) | ||
416 | return; | ||
417 | |||
418 | for (i = 0; i < NR_CPUS; i++) { | ||
419 | if (!chan->buf[i]) | ||
420 | continue; | ||
421 | relay_switch_subbuf(chan->buf[i], 0); | ||
422 | } | ||
423 | } | ||
424 | |||
425 | EXPORT_SYMBOL_GPL(relay_open); | ||
426 | EXPORT_SYMBOL_GPL(relay_close); | ||
427 | EXPORT_SYMBOL_GPL(relay_flush); | ||
428 | EXPORT_SYMBOL_GPL(relay_reset); | ||
429 | EXPORT_SYMBOL_GPL(relay_subbufs_consumed); | ||
430 | EXPORT_SYMBOL_GPL(relay_switch_subbuf); | ||
431 | EXPORT_SYMBOL_GPL(relay_buf_full); | ||
diff --git a/fs/relayfs/relay.h b/fs/relayfs/relay.h new file mode 100644 index 00000000000..703503fa22b --- /dev/null +++ b/fs/relayfs/relay.h | |||
@@ -0,0 +1,12 @@ | |||
1 | #ifndef _RELAY_H | ||
2 | #define _RELAY_H | ||
3 | |||
4 | struct dentry *relayfs_create_file(const char *name, | ||
5 | struct dentry *parent, | ||
6 | int mode, | ||
7 | struct rchan *chan); | ||
8 | extern int relayfs_remove(struct dentry *dentry); | ||
9 | extern int relay_buf_empty(struct rchan_buf *buf); | ||
10 | extern void relay_destroy_channel(struct kref *kref); | ||
11 | |||
12 | #endif /* _RELAY_H */ | ||
diff --git a/include/linux/relayfs_fs.h b/include/linux/relayfs_fs.h new file mode 100644 index 00000000000..cfafc3e76bc --- /dev/null +++ b/include/linux/relayfs_fs.h | |||
@@ -0,0 +1,255 @@ | |||
1 | /* | ||
2 | * linux/include/linux/relayfs_fs.h | ||
3 | * | ||
4 | * Copyright (C) 2002, 2003 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp | ||
5 | * Copyright (C) 1999, 2000, 2001, 2002 - Karim Yaghmour (karim@opersys.com) | ||
6 | * | ||
7 | * RelayFS definitions and declarations | ||
8 | */ | ||
9 | |||
10 | #ifndef _LINUX_RELAYFS_FS_H | ||
11 | #define _LINUX_RELAYFS_FS_H | ||
12 | |||
13 | #include <linux/config.h> | ||
14 | #include <linux/types.h> | ||
15 | #include <linux/sched.h> | ||
16 | #include <linux/wait.h> | ||
17 | #include <linux/list.h> | ||
18 | #include <linux/fs.h> | ||
19 | #include <linux/poll.h> | ||
20 | #include <linux/kref.h> | ||
21 | |||
22 | /* | ||
23 | * Tracks changes to rchan_buf struct | ||
24 | */ | ||
25 | #define RELAYFS_CHANNEL_VERSION 5 | ||
26 | |||
27 | /* | ||
28 | * Per-cpu relay channel buffer | ||
29 | */ | ||
30 | struct rchan_buf | ||
31 | { | ||
32 | void *start; /* start of channel buffer */ | ||
33 | void *data; /* start of current sub-buffer */ | ||
34 | size_t offset; /* current offset into sub-buffer */ | ||
35 | size_t subbufs_produced; /* count of sub-buffers produced */ | ||
36 | size_t subbufs_consumed; /* count of sub-buffers consumed */ | ||
37 | struct rchan *chan; /* associated channel */ | ||
38 | wait_queue_head_t read_wait; /* reader wait queue */ | ||
39 | struct work_struct wake_readers; /* reader wake-up work struct */ | ||
40 | struct dentry *dentry; /* channel file dentry */ | ||
41 | struct kref kref; /* channel buffer refcount */ | ||
42 | struct page **page_array; /* array of current buffer pages */ | ||
43 | unsigned int page_count; /* number of current buffer pages */ | ||
44 | unsigned int finalized; /* buffer has been finalized */ | ||
45 | size_t *padding; /* padding counts per sub-buffer */ | ||
46 | size_t prev_padding; /* temporary variable */ | ||
47 | size_t bytes_consumed; /* bytes consumed in cur read subbuf */ | ||
48 | unsigned int cpu; /* this buf's cpu */ | ||
49 | } ____cacheline_aligned; | ||
50 | |||
51 | /* | ||
52 | * Relay channel data structure | ||
53 | */ | ||
54 | struct rchan | ||
55 | { | ||
56 | u32 version; /* the version of this struct */ | ||
57 | size_t subbuf_size; /* sub-buffer size */ | ||
58 | size_t n_subbufs; /* number of sub-buffers per buffer */ | ||
59 | size_t alloc_size; /* total buffer size allocated */ | ||
60 | struct rchan_callbacks *cb; /* client callbacks */ | ||
61 | struct kref kref; /* channel refcount */ | ||
62 | void *private_data; /* for user-defined data */ | ||
63 | struct rchan_buf *buf[NR_CPUS]; /* per-cpu channel buffers */ | ||
64 | }; | ||
65 | |||
66 | /* | ||
67 | * Relayfs inode | ||
68 | */ | ||
69 | struct relayfs_inode_info | ||
70 | { | ||
71 | struct inode vfs_inode; | ||
72 | struct rchan_buf *buf; | ||
73 | }; | ||
74 | |||
75 | static inline struct relayfs_inode_info *RELAYFS_I(struct inode *inode) | ||
76 | { | ||
77 | return container_of(inode, struct relayfs_inode_info, vfs_inode); | ||
78 | } | ||
79 | |||
80 | /* | ||
81 | * Relay channel client callbacks | ||
82 | */ | ||
83 | struct rchan_callbacks | ||
84 | { | ||
85 | /* | ||
86 | * subbuf_start - called on buffer-switch to a new sub-buffer | ||
87 | * @buf: the channel buffer containing the new sub-buffer | ||
88 | * @subbuf: the start of the new sub-buffer | ||
89 | * @prev_subbuf: the start of the previous sub-buffer | ||
90 | * @prev_padding: unused space at the end of previous sub-buffer | ||
91 | * | ||
92 | * The client should return 1 to continue logging, 0 to stop | ||
93 | * logging. | ||
94 | * | ||
95 | * NOTE: subbuf_start will also be invoked when the buffer is | ||
96 | * created, so that the first sub-buffer can be initialized | ||
97 | * if necessary. In this case, prev_subbuf will be NULL. | ||
98 | * | ||
99 | * NOTE: the client can reserve bytes at the beginning of the new | ||
100 | * sub-buffer by calling subbuf_start_reserve() in this callback. | ||
101 | */ | ||
102 | int (*subbuf_start) (struct rchan_buf *buf, | ||
103 | void *subbuf, | ||
104 | void *prev_subbuf, | ||
105 | size_t prev_padding); | ||
106 | |||
107 | /* | ||
108 | * buf_mapped - relayfs buffer mmap notification | ||
109 | * @buf: the channel buffer | ||
110 | * @filp: relayfs file pointer | ||
111 | * | ||
112 | * Called when a relayfs file is successfully mmapped | ||
113 | */ | ||
114 | void (*buf_mapped)(struct rchan_buf *buf, | ||
115 | struct file *filp); | ||
116 | |||
117 | /* | ||
118 | * buf_unmapped - relayfs buffer unmap notification | ||
119 | * @buf: the channel buffer | ||
120 | * @filp: relayfs file pointer | ||
121 | * | ||
122 | * Called when a relayfs file is successfully unmapped | ||
123 | */ | ||
124 | void (*buf_unmapped)(struct rchan_buf *buf, | ||
125 | struct file *filp); | ||
126 | }; | ||
127 | |||
128 | /* | ||
129 | * relayfs kernel API, fs/relayfs/relay.c | ||
130 | */ | ||
131 | |||
132 | struct rchan *relay_open(const char *base_filename, | ||
133 | struct dentry *parent, | ||
134 | size_t subbuf_size, | ||
135 | size_t n_subbufs, | ||
136 | struct rchan_callbacks *cb); | ||
137 | extern void relay_close(struct rchan *chan); | ||
138 | extern void relay_flush(struct rchan *chan); | ||
139 | extern void relay_subbufs_consumed(struct rchan *chan, | ||
140 | unsigned int cpu, | ||
141 | size_t consumed); | ||
142 | extern void relay_reset(struct rchan *chan); | ||
143 | extern int relay_buf_full(struct rchan_buf *buf); | ||
144 | |||
145 | extern size_t relay_switch_subbuf(struct rchan_buf *buf, | ||
146 | size_t length); | ||
147 | extern struct dentry *relayfs_create_dir(const char *name, | ||
148 | struct dentry *parent); | ||
149 | extern int relayfs_remove_dir(struct dentry *dentry); | ||
150 | |||
151 | /** | ||
152 | * relay_write - write data into the channel | ||
153 | * @chan: relay channel | ||
154 | * @data: data to be written | ||
155 | * @length: number of bytes to write | ||
156 | * | ||
157 | * Writes data into the current cpu's channel buffer. | ||
158 | * | ||
159 | * Protects the buffer by disabling interrupts. Use this | ||
160 | * if you might be logging from interrupt context. Try | ||
161 | * __relay_write() if you know you won't be logging from | ||
162 | * interrupt context. | ||
163 | */ | ||
164 | static inline void relay_write(struct rchan *chan, | ||
165 | const void *data, | ||
166 | size_t length) | ||
167 | { | ||
168 | unsigned long flags; | ||
169 | struct rchan_buf *buf; | ||
170 | |||
171 | local_irq_save(flags); | ||
172 | buf = chan->buf[smp_processor_id()]; | ||
173 | if (unlikely(buf->offset + length > chan->subbuf_size)) | ||
174 | length = relay_switch_subbuf(buf, length); | ||
175 | memcpy(buf->data + buf->offset, data, length); | ||
176 | buf->offset += length; | ||
177 | local_irq_restore(flags); | ||
178 | } | ||
179 | |||
180 | /** | ||
181 | * __relay_write - write data into the channel | ||
182 | * @chan: relay channel | ||
183 | * @data: data to be written | ||
184 | * @length: number of bytes to write | ||
185 | * | ||
186 | * Writes data into the current cpu's channel buffer. | ||
187 | * | ||
188 | * Protects the buffer by disabling preemption. Use | ||
189 | * relay_write() if you might be logging from interrupt | ||
190 | * context. | ||
191 | */ | ||
192 | static inline void __relay_write(struct rchan *chan, | ||
193 | const void *data, | ||
194 | size_t length) | ||
195 | { | ||
196 | struct rchan_buf *buf; | ||
197 | |||
198 | buf = chan->buf[get_cpu()]; | ||
199 | if (unlikely(buf->offset + length > buf->chan->subbuf_size)) | ||
200 | length = relay_switch_subbuf(buf, length); | ||
201 | memcpy(buf->data + buf->offset, data, length); | ||
202 | buf->offset += length; | ||
203 | put_cpu(); | ||
204 | } | ||
205 | |||
206 | /** | ||
207 | * relay_reserve - reserve slot in channel buffer | ||
208 | * @chan: relay channel | ||
209 | * @length: number of bytes to reserve | ||
210 | * | ||
211 | * Returns pointer to reserved slot, NULL if full. | ||
212 | * | ||
213 | * Reserves a slot in the current cpu's channel buffer. | ||
214 | * Does not protect the buffer at all - caller must provide | ||
215 | * appropriate synchronization. | ||
216 | */ | ||
217 | static inline void *relay_reserve(struct rchan *chan, size_t length) | ||
218 | { | ||
219 | void *reserved; | ||
220 | struct rchan_buf *buf = chan->buf[smp_processor_id()]; | ||
221 | |||
222 | if (unlikely(buf->offset + length > buf->chan->subbuf_size)) { | ||
223 | length = relay_switch_subbuf(buf, length); | ||
224 | if (!length) | ||
225 | return NULL; | ||
226 | } | ||
227 | reserved = buf->data + buf->offset; | ||
228 | buf->offset += length; | ||
229 | |||
230 | return reserved; | ||
231 | } | ||
232 | |||
233 | /** | ||
234 | * subbuf_start_reserve - reserve bytes at the start of a sub-buffer | ||
235 | * @buf: relay channel buffer | ||
236 | * @length: number of bytes to reserve | ||
237 | * | ||
238 | * Helper function used to reserve bytes at the beginning of | ||
239 | * a sub-buffer in the subbuf_start() callback. | ||
240 | */ | ||
241 | static inline void subbuf_start_reserve(struct rchan_buf *buf, | ||
242 | size_t length) | ||
243 | { | ||
244 | BUG_ON(length >= buf->chan->subbuf_size - 1); | ||
245 | buf->offset = length; | ||
246 | } | ||
247 | |||
248 | /* | ||
249 | * exported relayfs file operations, fs/relayfs/inode.c | ||
250 | */ | ||
251 | |||
252 | extern struct file_operations relayfs_file_operations; | ||
253 | |||
254 | #endif /* _LINUX_RELAYFS_FS_H */ | ||
255 | |||