aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--drivers/net/isa-skeleton.c718
1 files changed, 0 insertions, 718 deletions
diff --git a/drivers/net/isa-skeleton.c b/drivers/net/isa-skeleton.c
deleted file mode 100644
index 9e55c300774..00000000000
--- a/drivers/net/isa-skeleton.c
+++ /dev/null
@@ -1,718 +0,0 @@
1/* isa-skeleton.c: A network driver outline for linux.
2 *
3 * Written 1993-94 by Donald Becker.
4 *
5 * Copyright 1993 United States Government as represented by the
6 * Director, National Security Agency.
7 *
8 * This software may be used and distributed according to the terms
9 * of the GNU General Public License, incorporated herein by reference.
10 *
11 * The author may be reached as becker@scyld.com, or C/O
12 * Scyld Computing Corporation
13 * 410 Severn Ave., Suite 210
14 * Annapolis MD 21403
15 *
16 * This file is an outline for writing a network device driver for the
17 * the Linux operating system.
18 *
19 * To write (or understand) a driver, have a look at the "loopback.c" file to
20 * get a feel of what is going on, and then use the code below as a skeleton
21 * for the new driver.
22 *
23 */
24
25static const char *version =
26 "isa-skeleton.c:v1.51 9/24/94 Donald Becker (becker@cesdis.gsfc.nasa.gov)\n";
27
28/*
29 * Sources:
30 * List your sources of programming information to document that
31 * the driver is your own creation, and give due credit to others
32 * that contributed to the work. Remember that GNU project code
33 * cannot use proprietary or trade secret information. Interface
34 * definitions are generally considered non-copyrightable to the
35 * extent that the same names and structures must be used to be
36 * compatible.
37 *
38 * Finally, keep in mind that the Linux kernel is has an API, not
39 * ABI. Proprietary object-code-only distributions are not permitted
40 * under the GPL.
41 */
42
43#include <linux/module.h>
44#include <linux/kernel.h>
45#include <linux/types.h>
46#include <linux/fcntl.h>
47#include <linux/interrupt.h>
48#include <linux/ioport.h>
49#include <linux/in.h>
50#include <linux/slab.h>
51#include <linux/string.h>
52#include <linux/spinlock.h>
53#include <linux/errno.h>
54#include <linux/init.h>
55#include <linux/netdevice.h>
56#include <linux/etherdevice.h>
57#include <linux/skbuff.h>
58#include <linux/bitops.h>
59
60#include <asm/system.h>
61#include <asm/io.h>
62#include <asm/dma.h>
63
64/*
65 * The name of the card. Is used for messages and in the requests for
66 * io regions, irqs and dma channels
67 */
68static const char* cardname = "netcard";
69
70/* First, a few definitions that the brave might change. */
71
72/* A zero-terminated list of I/O addresses to be probed. */
73static unsigned int netcard_portlist[] __initdata =
74 { 0x200, 0x240, 0x280, 0x2C0, 0x300, 0x320, 0x340, 0};
75
76/* use 0 for production, 1 for verification, >2 for debug */
77#ifndef NET_DEBUG
78#define NET_DEBUG 2
79#endif
80static unsigned int net_debug = NET_DEBUG;
81
82/* The number of low I/O ports used by the ethercard. */
83#define NETCARD_IO_EXTENT 32
84
85#define MY_TX_TIMEOUT ((400*HZ)/1000)
86
87/* Information that need to be kept for each board. */
88struct net_local {
89 struct net_device_stats stats;
90 long open_time; /* Useless example local info. */
91
92 /* Tx control lock. This protects the transmit buffer ring
93 * state along with the "tx full" state of the driver. This
94 * means all netif_queue flow control actions are protected
95 * by this lock as well.
96 */
97 spinlock_t lock;
98};
99
100/* The station (ethernet) address prefix, used for IDing the board. */
101#define SA_ADDR0 0x00
102#define SA_ADDR1 0x42
103#define SA_ADDR2 0x65
104
105/* Index to functions, as function prototypes. */
106
107static int netcard_probe1(struct net_device *dev, int ioaddr);
108static int net_open(struct net_device *dev);
109static int net_send_packet(struct sk_buff *skb, struct net_device *dev);
110static irqreturn_t net_interrupt(int irq, void *dev_id);
111static void net_rx(struct net_device *dev);
112static int net_close(struct net_device *dev);
113static struct net_device_stats *net_get_stats(struct net_device *dev);
114static void set_multicast_list(struct net_device *dev);
115static void net_tx_timeout(struct net_device *dev);
116
117
118/* Example routines you must write ;->. */
119#define tx_done(dev) 1
120static void hardware_send_packet(short ioaddr, char *buf, int length);
121static void chipset_init(struct net_device *dev, int startp);
122
123/*
124 * Check for a network adaptor of this type, and return '0' iff one exists.
125 * If dev->base_addr == 0, probe all likely locations.
126 * If dev->base_addr == 1, always return failure.
127 * If dev->base_addr == 2, allocate space for the device and return success
128 * (detachable devices only).
129 */
130static int __init do_netcard_probe(struct net_device *dev)
131{
132 int i;
133 int base_addr = dev->base_addr;
134 int irq = dev->irq;
135
136 if (base_addr > 0x1ff) /* Check a single specified location. */
137 return netcard_probe1(dev, base_addr);
138 else if (base_addr != 0) /* Don't probe at all. */
139 return -ENXIO;
140
141 for (i = 0; netcard_portlist[i]; i++) {
142 int ioaddr = netcard_portlist[i];
143 if (netcard_probe1(dev, ioaddr) == 0)
144 return 0;
145 dev->irq = irq;
146 }
147
148 return -ENODEV;
149}
150
151static void cleanup_card(struct net_device *dev)
152{
153#ifdef jumpered_dma
154 free_dma(dev->dma);
155#endif
156#ifdef jumpered_interrupts
157 free_irq(dev->irq, dev);
158#endif
159 release_region(dev->base_addr, NETCARD_IO_EXTENT);
160}
161
162#ifndef MODULE
163struct net_device * __init netcard_probe(int unit)
164{
165 struct net_device *dev = alloc_etherdev(sizeof(struct net_local));
166 int err;
167
168 if (!dev)
169 return ERR_PTR(-ENOMEM);
170
171 sprintf(dev->name, "eth%d", unit);
172 netdev_boot_setup_check(dev);
173
174 err = do_netcard_probe(dev);
175 if (err)
176 goto out;
177 return dev;
178out:
179 free_netdev(dev);
180 return ERR_PTR(err);
181}
182#endif
183
184static const struct net_device_ops netcard_netdev_ops = {
185 .ndo_open = net_open,
186 .ndo_stop = net_close,
187 .ndo_start_xmit = net_send_packet,
188 .ndo_get_stats = net_get_stats,
189 .ndo_set_multicast_list = set_multicast_list,
190 .ndo_tx_timeout = net_tx_timeout,
191 .ndo_validate_addr = eth_validate_addr,
192 .ndo_set_mac_address = eth_mac_addr,
193 .ndo_change_mtu = eth_change_mtu,
194};
195
196/*
197 * This is the real probe routine. Linux has a history of friendly device
198 * probes on the ISA bus. A good device probes avoids doing writes, and
199 * verifies that the correct device exists and functions.
200 */
201static int __init netcard_probe1(struct net_device *dev, int ioaddr)
202{
203 struct net_local *np;
204 static unsigned version_printed;
205 int i;
206 int err = -ENODEV;
207
208 /* Grab the region so that no one else tries to probe our ioports. */
209 if (!request_region(ioaddr, NETCARD_IO_EXTENT, cardname))
210 return -EBUSY;
211
212 /*
213 * For ethernet adaptors the first three octets of the station address
214 * contains the manufacturer's unique code. That might be a good probe
215 * method. Ideally you would add additional checks.
216 */
217 if (inb(ioaddr + 0) != SA_ADDR0 ||
218 inb(ioaddr + 1) != SA_ADDR1 ||
219 inb(ioaddr + 2) != SA_ADDR2)
220 goto out;
221
222 if (net_debug && version_printed++ == 0)
223 printk(KERN_DEBUG "%s", version);
224
225 printk(KERN_INFO "%s: %s found at %#3x, ", dev->name, cardname, ioaddr);
226
227 /* Fill in the 'dev' fields. */
228 dev->base_addr = ioaddr;
229
230 /* Retrieve and print the ethernet address. */
231 for (i = 0; i < 6; i++)
232 dev->dev_addr[i] = inb(ioaddr + i);
233
234 printk("%pM", dev->dev_addr);
235
236 err = -EAGAIN;
237#ifdef jumpered_interrupts
238 /*
239 * If this board has jumpered interrupts, allocate the interrupt
240 * vector now. There is no point in waiting since no other device
241 * can use the interrupt, and this marks the irq as busy. Jumpered
242 * interrupts are typically not reported by the boards, and we must
243 * used autoIRQ to find them.
244 */
245
246 if (dev->irq == -1)
247 ; /* Do nothing: a user-level program will set it. */
248 else if (dev->irq < 2) { /* "Auto-IRQ" */
249 unsigned long irq_mask = probe_irq_on();
250 /* Trigger an interrupt here. */
251
252 dev->irq = probe_irq_off(irq_mask);
253 if (net_debug >= 2)
254 printk(" autoirq is %d", dev->irq);
255 } else if (dev->irq == 2)
256 /*
257 * Fixup for users that don't know that IRQ 2 is really
258 * IRQ9, or don't know which one to set.
259 */
260 dev->irq = 9;
261
262 {
263 int irqval = request_irq(dev->irq, net_interrupt, 0, cardname, dev);
264 if (irqval) {
265 printk("%s: unable to get IRQ %d (irqval=%d).\n",
266 dev->name, dev->irq, irqval);
267 goto out;
268 }
269 }
270#endif /* jumpered interrupt */
271#ifdef jumpered_dma
272 /*
273 * If we use a jumpered DMA channel, that should be probed for and
274 * allocated here as well. See lance.c for an example.
275 */
276 if (dev->dma == 0) {
277 if (request_dma(dev->dma, cardname)) {
278 printk("DMA %d allocation failed.\n", dev->dma);
279 goto out1;
280 } else
281 printk(", assigned DMA %d.\n", dev->dma);
282 } else {
283 short dma_status, new_dma_status;
284
285 /* Read the DMA channel status registers. */
286 dma_status = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) |
287 (inb(DMA2_STAT_REG) & 0xf0);
288 /* Trigger a DMA request, perhaps pause a bit. */
289 outw(0x1234, ioaddr + 8);
290 /* Re-read the DMA status registers. */
291 new_dma_status = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) |
292 (inb(DMA2_STAT_REG) & 0xf0);
293 /*
294 * Eliminate the old and floating requests,
295 * and DMA4 the cascade.
296 */
297 new_dma_status ^= dma_status;
298 new_dma_status &= ~0x10;
299 for (i = 7; i > 0; i--)
300 if (test_bit(i, &new_dma_status)) {
301 dev->dma = i;
302 break;
303 }
304 if (i <= 0) {
305 printk("DMA probe failed.\n");
306 goto out1;
307 }
308 if (request_dma(dev->dma, cardname)) {
309 printk("probed DMA %d allocation failed.\n", dev->dma);
310 goto out1;
311 }
312 }
313#endif /* jumpered DMA */
314
315 np = netdev_priv(dev);
316 spin_lock_init(&np->lock);
317
318 dev->netdev_ops = &netcard_netdev_ops;
319 dev->watchdog_timeo = MY_TX_TIMEOUT;
320
321 err = register_netdev(dev);
322 if (err)
323 goto out2;
324 return 0;
325out2:
326#ifdef jumpered_dma
327 free_dma(dev->dma);
328#endif
329out1:
330#ifdef jumpered_interrupts
331 free_irq(dev->irq, dev);
332#endif
333out:
334 release_region(base_addr, NETCARD_IO_EXTENT);
335 return err;
336}
337
338static void net_tx_timeout(struct net_device *dev)
339{
340 struct net_local *np = netdev_priv(dev);
341
342 printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name,
343 tx_done(dev) ? "IRQ conflict" : "network cable problem");
344
345 /* Try to restart the adaptor. */
346 chipset_init(dev, 1);
347
348 np->stats.tx_errors++;
349
350 /* If we have space available to accept new transmit
351 * requests, wake up the queueing layer. This would
352 * be the case if the chipset_init() call above just
353 * flushes out the tx queue and empties it.
354 *
355 * If instead, the tx queue is retained then the
356 * netif_wake_queue() call should be placed in the
357 * TX completion interrupt handler of the driver instead
358 * of here.
359 */
360 if (!tx_full(dev))
361 netif_wake_queue(dev);
362}
363
364/*
365 * Open/initialize the board. This is called (in the current kernel)
366 * sometime after booting when the 'ifconfig' program is run.
367 *
368 * This routine should set everything up anew at each open, even
369 * registers that "should" only need to be set once at boot, so that
370 * there is non-reboot way to recover if something goes wrong.
371 */
372static int
373net_open(struct net_device *dev)
374{
375 struct net_local *np = netdev_priv(dev);
376 int ioaddr = dev->base_addr;
377 /*
378 * This is used if the interrupt line can turned off (shared).
379 * See 3c503.c for an example of selecting the IRQ at config-time.
380 */
381 if (request_irq(dev->irq, net_interrupt, 0, cardname, dev)) {
382 return -EAGAIN;
383 }
384 /*
385 * Always allocate the DMA channel after the IRQ,
386 * and clean up on failure.
387 */
388 if (request_dma(dev->dma, cardname)) {
389 free_irq(dev->irq, dev);
390 return -EAGAIN;
391 }
392
393 /* Reset the hardware here. Don't forget to set the station address. */
394 chipset_init(dev, 1);
395 outb(0x00, ioaddr);
396 np->open_time = jiffies;
397
398 /* We are now ready to accept transmit requeusts from
399 * the queueing layer of the networking.
400 */
401 netif_start_queue(dev);
402
403 return 0;
404}
405
406/* This will only be invoked if your driver is _not_ in XOFF state.
407 * What this means is that you need not check it, and that this
408 * invariant will hold if you make sure that the netif_*_queue()
409 * calls are done at the proper times.
410 */
411static int net_send_packet(struct sk_buff *skb, struct net_device *dev)
412{
413 struct net_local *np = netdev_priv(dev);
414 int ioaddr = dev->base_addr;
415 short length = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN;
416 unsigned char *buf = skb->data;
417
418 /* If some error occurs while trying to transmit this
419 * packet, you should return '1' from this function.
420 * In such a case you _may not_ do anything to the
421 * SKB, it is still owned by the network queueing
422 * layer when an error is returned. This means you
423 * may not modify any SKB fields, you may not free
424 * the SKB, etc.
425 */
426
427#if TX_RING
428 /* This is the most common case for modern hardware.
429 * The spinlock protects this code from the TX complete
430 * hardware interrupt handler. Queue flow control is
431 * thus managed under this lock as well.
432 */
433 unsigned long flags;
434 spin_lock_irqsave(&np->lock, flags);
435
436 add_to_tx_ring(np, skb, length);
437 dev->trans_start = jiffies;
438
439 /* If we just used up the very last entry in the
440 * TX ring on this device, tell the queueing
441 * layer to send no more.
442 */
443 if (tx_full(dev))
444 netif_stop_queue(dev);
445
446 /* When the TX completion hw interrupt arrives, this
447 * is when the transmit statistics are updated.
448 */
449
450 spin_unlock_irqrestore(&np->lock, flags);
451#else
452 /* This is the case for older hardware which takes
453 * a single transmit buffer at a time, and it is
454 * just written to the device via PIO.
455 *
456 * No spin locking is needed since there is no TX complete
457 * event. If by chance your card does have a TX complete
458 * hardware IRQ then you may need to utilize np->lock here.
459 */
460 hardware_send_packet(ioaddr, buf, length);
461 np->stats.tx_bytes += skb->len;
462
463 dev->trans_start = jiffies;
464
465 /* You might need to clean up and record Tx statistics here. */
466 if (inw(ioaddr) == /*RU*/81)
467 np->stats.tx_aborted_errors++;
468 dev_kfree_skb (skb);
469#endif
470
471 return NETDEV_TX_OK;
472}
473
474#if TX_RING
475/* This handles TX complete events posted by the device
476 * via interrupts.
477 */
478void net_tx(struct net_device *dev)
479{
480 struct net_local *np = netdev_priv(dev);
481 int entry;
482
483 /* This protects us from concurrent execution of
484 * our dev->hard_start_xmit function above.
485 */
486 spin_lock(&np->lock);
487
488 entry = np->tx_old;
489 while (tx_entry_is_sent(np, entry)) {
490 struct sk_buff *skb = np->skbs[entry];
491
492 np->stats.tx_bytes += skb->len;
493 dev_kfree_skb_irq (skb);
494
495 entry = next_tx_entry(np, entry);
496 }
497 np->tx_old = entry;
498
499 /* If we had stopped the queue due to a "tx full"
500 * condition, and space has now been made available,
501 * wake up the queue.
502 */
503 if (netif_queue_stopped(dev) && ! tx_full(dev))
504 netif_wake_queue(dev);
505
506 spin_unlock(&np->lock);
507}
508#endif
509
510/*
511 * The typical workload of the driver:
512 * Handle the network interface interrupts.
513 */
514static irqreturn_t net_interrupt(int irq, void *dev_id)
515{
516 struct net_device *dev = dev_id;
517 struct net_local *np;
518 int ioaddr, status;
519 int handled = 0;
520
521 ioaddr = dev->base_addr;
522
523 np = netdev_priv(dev);
524 status = inw(ioaddr + 0);
525
526 if (status == 0)
527 goto out;
528 handled = 1;
529
530 if (status & RX_INTR) {
531 /* Got a packet(s). */
532 net_rx(dev);
533 }
534#if TX_RING
535 if (status & TX_INTR) {
536 /* Transmit complete. */
537 net_tx(dev);
538 np->stats.tx_packets++;
539 }
540#endif
541 if (status & COUNTERS_INTR) {
542 /* Increment the appropriate 'localstats' field. */
543 np->stats.tx_window_errors++;
544 }
545out:
546 return IRQ_RETVAL(handled);
547}
548
549/* We have a good packet(s), get it/them out of the buffers. */
550static void
551net_rx(struct net_device *dev)
552{
553 struct net_local *lp = netdev_priv(dev);
554 int ioaddr = dev->base_addr;
555 int boguscount = 10;
556
557 do {
558 int status = inw(ioaddr);
559 int pkt_len = inw(ioaddr);
560
561 if (pkt_len == 0) /* Read all the frames? */
562 break; /* Done for now */
563
564 if (status & 0x40) { /* There was an error. */
565 lp->stats.rx_errors++;
566 if (status & 0x20) lp->stats.rx_frame_errors++;
567 if (status & 0x10) lp->stats.rx_over_errors++;
568 if (status & 0x08) lp->stats.rx_crc_errors++;
569 if (status & 0x04) lp->stats.rx_fifo_errors++;
570 } else {
571 /* Malloc up new buffer. */
572 struct sk_buff *skb;
573
574 lp->stats.rx_bytes+=pkt_len;
575
576 skb = dev_alloc_skb(pkt_len);
577 if (skb == NULL) {
578 printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n",
579 dev->name);
580 lp->stats.rx_dropped++;
581 break;
582 }
583 skb->dev = dev;
584
585 /* 'skb->data' points to the start of sk_buff data area. */
586 memcpy(skb_put(skb,pkt_len), (void*)dev->rmem_start,
587 pkt_len);
588 /* or */
589 insw(ioaddr, skb->data, (pkt_len + 1) >> 1);
590
591 netif_rx(skb);
592 lp->stats.rx_packets++;
593 lp->stats.rx_bytes += pkt_len;
594 }
595 } while (--boguscount);
596
597 return;
598}
599
600/* The inverse routine to net_open(). */
601static int
602net_close(struct net_device *dev)
603{
604 struct net_local *lp = netdev_priv(dev);
605 int ioaddr = dev->base_addr;
606
607 lp->open_time = 0;
608
609 netif_stop_queue(dev);
610
611 /* Flush the Tx and disable Rx here. */
612
613 disable_dma(dev->dma);
614
615 /* If not IRQ or DMA jumpered, free up the line. */
616 outw(0x00, ioaddr+0); /* Release the physical interrupt line. */
617
618 free_irq(dev->irq, dev);
619 free_dma(dev->dma);
620
621 /* Update the statistics here. */
622
623 return 0;
624
625}
626
627/*
628 * Get the current statistics.
629 * This may be called with the card open or closed.
630 */
631static struct net_device_stats *net_get_stats(struct net_device *dev)
632{
633 struct net_local *lp = netdev_priv(dev);
634 short ioaddr = dev->base_addr;
635
636 /* Update the statistics from the device registers. */
637 lp->stats.rx_missed_errors = inw(ioaddr+1);
638 return &lp->stats;
639}
640
641/*
642 * Set or clear the multicast filter for this adaptor.
643 * num_addrs == -1 Promiscuous mode, receive all packets
644 * num_addrs == 0 Normal mode, clear multicast list
645 * num_addrs > 0 Multicast mode, receive normal and MC packets,
646 * and do best-effort filtering.
647 */
648static void
649set_multicast_list(struct net_device *dev)
650{
651 short ioaddr = dev->base_addr;
652 if (dev->flags&IFF_PROMISC)
653 {
654 /* Enable promiscuous mode */
655 outw(MULTICAST|PROMISC, ioaddr);
656 }
657 else if ((dev->flags&IFF_ALLMULTI) ||
658 netdev_mc_count(dev) > HW_MAX_ADDRS)
659 {
660 /* Disable promiscuous mode, use normal mode. */
661 hardware_set_filter(NULL);
662
663 outw(MULTICAST, ioaddr);
664 }
665 else if (!netdev_mc_empty(dev))
666 {
667 /* Walk the address list, and load the filter */
668 hardware_set_filter(dev);
669
670 outw(MULTICAST, ioaddr);
671 }
672 else
673 outw(0, ioaddr);
674}
675
676#ifdef MODULE
677
678static struct net_device *this_device;
679static int io = 0x300;
680static int irq;
681static int dma;
682static int mem;
683MODULE_LICENSE("GPL");
684
685int init_module(void)
686{
687 struct net_device *dev;
688 int result;
689
690 if (io == 0)
691 printk(KERN_WARNING "%s: You shouldn't use auto-probing with insmod!\n",
692 cardname);
693 dev = alloc_etherdev(sizeof(struct net_local));
694 if (!dev)
695 return -ENOMEM;
696
697 /* Copy the parameters from insmod into the device structure. */
698 dev->base_addr = io;
699 dev->irq = irq;
700 dev->dma = dma;
701 dev->mem_start = mem;
702 if (do_netcard_probe(dev) == 0) {
703 this_device = dev;
704 return 0;
705 }
706 free_netdev(dev);
707 return -ENXIO;
708}
709
710void
711cleanup_module(void)
712{
713 unregister_netdev(this_device);
714 cleanup_card(this_device);
715 free_netdev(this_device);
716}
717
718#endif /* MODULE */