aboutsummaryrefslogtreecommitdiffstats
path: root/sound
diff options
context:
space:
mode:
authorTimur Tabi <timur@freescale.com>2008-08-01 15:58:44 -0400
committerTakashi Iwai <tiwai@suse.de>2008-08-04 06:26:23 -0400
commitbf9c8c9ddef7ef761ae9747349175adad0ef16ce (patch)
tree0b69a7dff8c7a0e9cce8f05e64d0e24cba4374db /sound
parent11589418a1c4cf68be9367f802898d35e07809c4 (diff)
ALSA: ASoC: fix SNDCTL_DSP_SYNC support in Freescale 8610 sound drivers
If an OSS application calls SNDCTL_DSP_SYNC, then ALSA will call the driver's _hw_params and _prepare functions again. On the Freescale MPC8610 DMA ASoC driver, this caused the DMA controller to be unneccessarily re-programmed, and apparently it doesn't like that. The DMA will then not operate when instructed. This patch relocates much of the DMA programming to fsl_dma_open(), which is called only once. Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Takashi Iwai <tiwai@suse.de>
Diffstat (limited to 'sound')
-rw-r--r--sound/soc/fsl/fsl_dma.c235
1 files changed, 124 insertions, 111 deletions
diff --git a/sound/soc/fsl/fsl_dma.c b/sound/soc/fsl/fsl_dma.c
index 7ceea2bba1f..d2d3da9729f 100644
--- a/sound/soc/fsl/fsl_dma.c
+++ b/sound/soc/fsl/fsl_dma.c
@@ -327,14 +327,75 @@ static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
327 * fsl_dma_open: open a new substream. 327 * fsl_dma_open: open a new substream.
328 * 328 *
329 * Each substream has its own DMA buffer. 329 * Each substream has its own DMA buffer.
330 *
331 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
332 * descriptors that ping-pong from one period to the next. For example, if
333 * there are six periods and two link descriptors, this is how they look
334 * before playback starts:
335 *
336 * The last link descriptor
337 * ____________ points back to the first
338 * | |
339 * V |
340 * ___ ___ |
341 * | |->| |->|
342 * |___| |___|
343 * | |
344 * | |
345 * V V
346 * _________________________________________
347 * | | | | | | | The DMA buffer is
348 * | | | | | | | divided into 6 parts
349 * |______|______|______|______|______|______|
350 *
351 * and here's how they look after the first period is finished playing:
352 *
353 * ____________
354 * | |
355 * V |
356 * ___ ___ |
357 * | |->| |->|
358 * |___| |___|
359 * | |
360 * |______________
361 * | |
362 * V V
363 * _________________________________________
364 * | | | | | | |
365 * | | | | | | |
366 * |______|______|______|______|______|______|
367 *
368 * The first link descriptor now points to the third period. The DMA
369 * controller is currently playing the second period. When it finishes, it
370 * will jump back to the first descriptor and play the third period.
371 *
372 * There are four reasons we do this:
373 *
374 * 1. The only way to get the DMA controller to automatically restart the
375 * transfer when it gets to the end of the buffer is to use chaining
376 * mode. Basic direct mode doesn't offer that feature.
377 * 2. We need to receive an interrupt at the end of every period. The DMA
378 * controller can generate an interrupt at the end of every link transfer
379 * (aka segment). Making each period into a DMA segment will give us the
380 * interrupts we need.
381 * 3. By creating only two link descriptors, regardless of the number of
382 * periods, we do not need to reallocate the link descriptors if the
383 * number of periods changes.
384 * 4. All of the audio data is still stored in a single, contiguous DMA
385 * buffer, which is what ALSA expects. We're just dividing it into
386 * contiguous parts, and creating a link descriptor for each one.
330 */ 387 */
331static int fsl_dma_open(struct snd_pcm_substream *substream) 388static int fsl_dma_open(struct snd_pcm_substream *substream)
332{ 389{
333 struct snd_pcm_runtime *runtime = substream->runtime; 390 struct snd_pcm_runtime *runtime = substream->runtime;
334 struct fsl_dma_private *dma_private; 391 struct fsl_dma_private *dma_private;
392 struct ccsr_dma_channel __iomem *dma_channel;
335 dma_addr_t ld_buf_phys; 393 dma_addr_t ld_buf_phys;
394 u64 temp_link; /* Pointer to next link descriptor */
395 u32 mr;
336 unsigned int channel; 396 unsigned int channel;
337 int ret = 0; 397 int ret = 0;
398 unsigned int i;
338 399
339 /* 400 /*
340 * Reject any DMA buffer whose size is not a multiple of the period 401 * Reject any DMA buffer whose size is not a multiple of the period
@@ -395,68 +456,74 @@ static int fsl_dma_open(struct snd_pcm_substream *substream)
395 snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware); 456 snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
396 runtime->private_data = dma_private; 457 runtime->private_data = dma_private;
397 458
459 /* Program the fixed DMA controller parameters */
460
461 dma_channel = dma_private->dma_channel;
462
463 temp_link = dma_private->ld_buf_phys +
464 sizeof(struct fsl_dma_link_descriptor);
465
466 for (i = 0; i < NUM_DMA_LINKS; i++) {
467 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
468
469 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
470 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
471 link->next = cpu_to_be64(temp_link);
472
473 temp_link += sizeof(struct fsl_dma_link_descriptor);
474 }
475 /* The last link descriptor points to the first */
476 dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
477
478 /* Tell the DMA controller where the first link descriptor is */
479 out_be32(&dma_channel->clndar,
480 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
481 out_be32(&dma_channel->eclndar,
482 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
483
484 /* The manual says the BCR must be clear before enabling EMP */
485 out_be32(&dma_channel->bcr, 0);
486
487 /*
488 * Program the mode register for interrupts, external master control,
489 * and source/destination hold. Also clear the Channel Abort bit.
490 */
491 mr = in_be32(&dma_channel->mr) &
492 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
493
494 /*
495 * We want External Master Start and External Master Pause enabled,
496 * because the SSI is controlling the DMA controller. We want the DMA
497 * controller to be set up in advance, and then we signal only the SSI
498 * to start transferring.
499 *
500 * We want End-Of-Segment Interrupts enabled, because this will generate
501 * an interrupt at the end of each segment (each link descriptor
502 * represents one segment). Each DMA segment is the same thing as an
503 * ALSA period, so this is how we get an interrupt at the end of every
504 * period.
505 *
506 * We want Error Interrupt enabled, so that we can get an error if
507 * the DMA controller is mis-programmed somehow.
508 */
509 mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
510 CCSR_DMA_MR_EMS_EN;
511
512 /* For playback, we want the destination address to be held. For
513 capture, set the source address to be held. */
514 mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
515 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
516
517 out_be32(&dma_channel->mr, mr);
518
398 return 0; 519 return 0;
399} 520}
400 521
401/** 522/**
402 * fsl_dma_hw_params: allocate the DMA buffer and the DMA link descriptors. 523 * fsl_dma_hw_params: continue initializing the DMA links
403 *
404 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
405 * descriptors that ping-pong from one period to the next. For example, if
406 * there are six periods and two link descriptors, this is how they look
407 * before playback starts:
408 *
409 * The last link descriptor
410 * ____________ points back to the first
411 * | |
412 * V |
413 * ___ ___ |
414 * | |->| |->|
415 * |___| |___|
416 * | |
417 * | |
418 * V V
419 * _________________________________________
420 * | | | | | | | The DMA buffer is
421 * | | | | | | | divided into 6 parts
422 * |______|______|______|______|______|______|
423 *
424 * and here's how they look after the first period is finished playing:
425 *
426 * ____________
427 * | |
428 * V |
429 * ___ ___ |
430 * | |->| |->|
431 * |___| |___|
432 * | |
433 * |______________
434 * | |
435 * V V
436 * _________________________________________
437 * | | | | | | |
438 * | | | | | | |
439 * |______|______|______|______|______|______|
440 * 524 *
441 * The first link descriptor now points to the third period. The DMA 525 * This function obtains hardware parameters about the opened stream and
442 * controller is currently playing the second period. When it finishes, it 526 * programs the DMA controller accordingly.
443 * will jump back to the first descriptor and play the third period.
444 *
445 * There are four reasons we do this:
446 *
447 * 1. The only way to get the DMA controller to automatically restart the
448 * transfer when it gets to the end of the buffer is to use chaining
449 * mode. Basic direct mode doesn't offer that feature.
450 * 2. We need to receive an interrupt at the end of every period. The DMA
451 * controller can generate an interrupt at the end of every link transfer
452 * (aka segment). Making each period into a DMA segment will give us the
453 * interrupts we need.
454 * 3. By creating only two link descriptors, regardless of the number of
455 * periods, we do not need to reallocate the link descriptors if the
456 * number of periods changes.
457 * 4. All of the audio data is still stored in a single, contiguous DMA
458 * buffer, which is what ALSA expects. We're just dividing it into
459 * contiguous parts, and creating a link descriptor for each one.
460 * 527 *
461 * Note that due to a quirk of the SSI's STX register, the target address 528 * Note that due to a quirk of the SSI's STX register, the target address
462 * for the DMA operations depends on the sample size. So we don't program 529 * for the DMA operations depends on the sample size. So we don't program
@@ -468,11 +535,8 @@ static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
468{ 535{
469 struct snd_pcm_runtime *runtime = substream->runtime; 536 struct snd_pcm_runtime *runtime = substream->runtime;
470 struct fsl_dma_private *dma_private = runtime->private_data; 537 struct fsl_dma_private *dma_private = runtime->private_data;
471 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
472 538
473 dma_addr_t temp_addr; /* Pointer to next period */ 539 dma_addr_t temp_addr; /* Pointer to next period */
474 u64 temp_link; /* Pointer to next link descriptor */
475 u32 mr; /* Temporary variable for MR register */
476 540
477 unsigned int i; 541 unsigned int i;
478 542
@@ -490,8 +554,6 @@ static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
490 dma_private->dma_buf_next = dma_private->dma_buf_phys; 554 dma_private->dma_buf_next = dma_private->dma_buf_phys;
491 555
492 /* 556 /*
493 * Initialize each link descriptor.
494 *
495 * The actual address in STX0 (destination for playback, source for 557 * The actual address in STX0 (destination for playback, source for
496 * capture) is based on the sample size, but we don't know the sample 558 * capture) is based on the sample size, but we don't know the sample
497 * size in this function, so we'll have to adjust that later. See 559 * size in this function, so we'll have to adjust that later. See
@@ -507,16 +569,11 @@ static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
507 * buffer itself. 569 * buffer itself.
508 */ 570 */
509 temp_addr = substream->dma_buffer.addr; 571 temp_addr = substream->dma_buffer.addr;
510 temp_link = dma_private->ld_buf_phys +
511 sizeof(struct fsl_dma_link_descriptor);
512 572
513 for (i = 0; i < NUM_DMA_LINKS; i++) { 573 for (i = 0; i < NUM_DMA_LINKS; i++) {
514 struct fsl_dma_link_descriptor *link = &dma_private->link[i]; 574 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
515 575
516 link->count = cpu_to_be32(period_size); 576 link->count = cpu_to_be32(period_size);
517 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
518 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
519 link->next = cpu_to_be64(temp_link);
520 577
521 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 578 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
522 link->source_addr = cpu_to_be32(temp_addr); 579 link->source_addr = cpu_to_be32(temp_addr);
@@ -524,51 +581,7 @@ static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
524 link->dest_addr = cpu_to_be32(temp_addr); 581 link->dest_addr = cpu_to_be32(temp_addr);
525 582
526 temp_addr += period_size; 583 temp_addr += period_size;
527 temp_link += sizeof(struct fsl_dma_link_descriptor);
528 } 584 }
529 /* The last link descriptor points to the first */
530 dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
531
532 /* Tell the DMA controller where the first link descriptor is */
533 out_be32(&dma_channel->clndar,
534 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
535 out_be32(&dma_channel->eclndar,
536 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
537
538 /* The manual says the BCR must be clear before enabling EMP */
539 out_be32(&dma_channel->bcr, 0);
540
541 /*
542 * Program the mode register for interrupts, external master control,
543 * and source/destination hold. Also clear the Channel Abort bit.
544 */
545 mr = in_be32(&dma_channel->mr) &
546 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
547
548 /*
549 * We want External Master Start and External Master Pause enabled,
550 * because the SSI is controlling the DMA controller. We want the DMA
551 * controller to be set up in advance, and then we signal only the SSI
552 * to start transfering.
553 *
554 * We want End-Of-Segment Interrupts enabled, because this will generate
555 * an interrupt at the end of each segment (each link descriptor
556 * represents one segment). Each DMA segment is the same thing as an
557 * ALSA period, so this is how we get an interrupt at the end of every
558 * period.
559 *
560 * We want Error Interrupt enabled, so that we can get an error if
561 * the DMA controller is mis-programmed somehow.
562 */
563 mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
564 CCSR_DMA_MR_EMS_EN;
565
566 /* For playback, we want the destination address to be held. For
567 capture, set the source address to be held. */
568 mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
569 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
570
571 out_be32(&dma_channel->mr, mr);
572 585
573 return 0; 586 return 0;
574} 587}