diff options
author | KaiGai Kohei <kaigai@ak.jp.nec.com> | 2007-09-28 13:20:55 -0400 |
---|---|---|
committer | James Morris <jmorris@namei.org> | 2007-10-16 18:59:34 -0400 |
commit | 9fe79ad1e43d236bbbb8edb3cf634356de714c79 (patch) | |
tree | 91149cefa28baf692eb55f88f8c544a33e9126df /security/selinux/ss/ebitmap.c | |
parent | 3f12070e27b4a213d62607d2bff139793089a77d (diff) |
SELinux: improve performance when AVC misses.
* We add ebitmap_for_each_positive_bit() which enables to walk on
any positive bit on the given ebitmap, to improve its performance
using common bit-operations defined in linux/bitops.h.
In the previous version, this logic was implemented using a combination
of ebitmap_for_each_bit() and ebitmap_node_get_bit(), but is was worse
in performance aspect.
This logic is most frequestly used to compute a new AVC entry,
so this patch can improve SELinux performance when AVC misses are happen.
* struct ebitmap_node is redefined as an array of "unsigned long", to get
suitable for using find_next_bit() which is fasted than iteration of
shift and logical operation, and to maximize memory usage allocated
from general purpose slab.
* Any ebitmap_for_each_bit() are repleced by the new implementation
in ss/service.c and ss/mls.c. Some of related implementation are
changed, however, there is no incompatibility with the previous
version.
* The width of any new line are less or equal than 80-chars.
The following benchmark shows the effect of this patch, when we
access many files which have different security context one after
another. The number is more than /selinux/avc/cache_threshold, so
any access always causes AVC misses.
selinux-2.6 selinux-2.6-ebitmap
AVG: 22.763 [s] 8.750 [s]
STD: 0.265 0.019
------------------------------------------
1st: 22.558 [s] 8.786 [s]
2nd: 22.458 [s] 8.750 [s]
3rd: 22.478 [s] 8.754 [s]
4th: 22.724 [s] 8.745 [s]
5th: 22.918 [s] 8.748 [s]
6th: 22.905 [s] 8.764 [s]
7th: 23.238 [s] 8.726 [s]
8th: 22.822 [s] 8.729 [s]
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: James Morris <jmorris@namei.org>
Diffstat (limited to 'security/selinux/ss/ebitmap.c')
-rw-r--r-- | security/selinux/ss/ebitmap.c | 281 |
1 files changed, 158 insertions, 123 deletions
diff --git a/security/selinux/ss/ebitmap.c b/security/selinux/ss/ebitmap.c index ce492a6b38e..ae44c0c9401 100644 --- a/security/selinux/ss/ebitmap.c +++ b/security/selinux/ss/ebitmap.c | |||
@@ -10,6 +10,10 @@ | |||
10 | * | 10 | * |
11 | * (c) Copyright Hewlett-Packard Development Company, L.P., 2006 | 11 | * (c) Copyright Hewlett-Packard Development Company, L.P., 2006 |
12 | */ | 12 | */ |
13 | /* | ||
14 | * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com> | ||
15 | * Applied standard bit operations to improve bitmap scanning. | ||
16 | */ | ||
13 | 17 | ||
14 | #include <linux/kernel.h> | 18 | #include <linux/kernel.h> |
15 | #include <linux/slab.h> | 19 | #include <linux/slab.h> |
@@ -29,7 +33,7 @@ int ebitmap_cmp(struct ebitmap *e1, struct ebitmap *e2) | |||
29 | n2 = e2->node; | 33 | n2 = e2->node; |
30 | while (n1 && n2 && | 34 | while (n1 && n2 && |
31 | (n1->startbit == n2->startbit) && | 35 | (n1->startbit == n2->startbit) && |
32 | (n1->map == n2->map)) { | 36 | !memcmp(n1->maps, n2->maps, EBITMAP_SIZE / 8)) { |
33 | n1 = n1->next; | 37 | n1 = n1->next; |
34 | n2 = n2->next; | 38 | n2 = n2->next; |
35 | } | 39 | } |
@@ -54,7 +58,7 @@ int ebitmap_cpy(struct ebitmap *dst, struct ebitmap *src) | |||
54 | return -ENOMEM; | 58 | return -ENOMEM; |
55 | } | 59 | } |
56 | new->startbit = n->startbit; | 60 | new->startbit = n->startbit; |
57 | new->map = n->map; | 61 | memcpy(new->maps, n->maps, EBITMAP_SIZE / 8); |
58 | new->next = NULL; | 62 | new->next = NULL; |
59 | if (prev) | 63 | if (prev) |
60 | prev->next = new; | 64 | prev->next = new; |
@@ -84,13 +88,15 @@ int ebitmap_netlbl_export(struct ebitmap *ebmap, | |||
84 | { | 88 | { |
85 | struct ebitmap_node *e_iter = ebmap->node; | 89 | struct ebitmap_node *e_iter = ebmap->node; |
86 | struct netlbl_lsm_secattr_catmap *c_iter; | 90 | struct netlbl_lsm_secattr_catmap *c_iter; |
87 | u32 cmap_idx; | 91 | u32 cmap_idx, cmap_sft; |
92 | int i; | ||
88 | 93 | ||
89 | /* This function is a much simpler because SELinux's MAPTYPE happens | 94 | /* NetLabel's NETLBL_CATMAP_MAPTYPE is defined as an array of u64, |
90 | * to be the same as NetLabel's NETLBL_CATMAP_MAPTYPE, if MAPTYPE is | 95 | * however, it is not always compatible with an array of unsigned long |
91 | * changed from a u64 this function will most likely need to be changed | 96 | * in ebitmap_node. |
92 | * as well. It's not ideal but I think the tradeoff in terms of | 97 | * In addition, you should pay attention the following implementation |
93 | * neatness and speed is worth it. */ | 98 | * assumes unsigned long has a width equal with or less than 64-bit. |
99 | */ | ||
94 | 100 | ||
95 | if (e_iter == NULL) { | 101 | if (e_iter == NULL) { |
96 | *catmap = NULL; | 102 | *catmap = NULL; |
@@ -104,19 +110,27 @@ int ebitmap_netlbl_export(struct ebitmap *ebmap, | |||
104 | c_iter->startbit = e_iter->startbit & ~(NETLBL_CATMAP_SIZE - 1); | 110 | c_iter->startbit = e_iter->startbit & ~(NETLBL_CATMAP_SIZE - 1); |
105 | 111 | ||
106 | while (e_iter != NULL) { | 112 | while (e_iter != NULL) { |
107 | if (e_iter->startbit >= | 113 | for (i = 0; i < EBITMAP_UNIT_NUMS; i++) { |
108 | (c_iter->startbit + NETLBL_CATMAP_SIZE)) { | 114 | unsigned int delta, e_startbit, c_endbit; |
109 | c_iter->next = netlbl_secattr_catmap_alloc(GFP_ATOMIC); | 115 | |
110 | if (c_iter->next == NULL) | 116 | e_startbit = e_iter->startbit + i * EBITMAP_UNIT_SIZE; |
111 | goto netlbl_export_failure; | 117 | c_endbit = c_iter->startbit + NETLBL_CATMAP_SIZE; |
112 | c_iter = c_iter->next; | 118 | if (e_startbit >= c_endbit) { |
113 | c_iter->startbit = e_iter->startbit & | 119 | c_iter->next |
114 | ~(NETLBL_CATMAP_SIZE - 1); | 120 | = netlbl_secattr_catmap_alloc(GFP_ATOMIC); |
121 | if (c_iter->next == NULL) | ||
122 | goto netlbl_export_failure; | ||
123 | c_iter = c_iter->next; | ||
124 | c_iter->startbit | ||
125 | = e_startbit & ~(NETLBL_CATMAP_SIZE - 1); | ||
126 | } | ||
127 | delta = e_startbit - c_iter->startbit; | ||
128 | cmap_idx = delta / NETLBL_CATMAP_MAPSIZE; | ||
129 | cmap_sft = delta % NETLBL_CATMAP_MAPSIZE; | ||
130 | c_iter->bitmap[cmap_idx] | ||
131 | |= e_iter->maps[cmap_idx] << cmap_sft; | ||
132 | e_iter = e_iter->next; | ||
115 | } | 133 | } |
116 | cmap_idx = (e_iter->startbit - c_iter->startbit) / | ||
117 | NETLBL_CATMAP_MAPSIZE; | ||
118 | c_iter->bitmap[cmap_idx] = e_iter->map; | ||
119 | e_iter = e_iter->next; | ||
120 | } | 134 | } |
121 | 135 | ||
122 | return 0; | 136 | return 0; |
@@ -128,7 +142,7 @@ netlbl_export_failure: | |||
128 | 142 | ||
129 | /** | 143 | /** |
130 | * ebitmap_netlbl_import - Import a NetLabel category bitmap into an ebitmap | 144 | * ebitmap_netlbl_import - Import a NetLabel category bitmap into an ebitmap |
131 | * @ebmap: the ebitmap to export | 145 | * @ebmap: the ebitmap to import |
132 | * @catmap: the NetLabel category bitmap | 146 | * @catmap: the NetLabel category bitmap |
133 | * | 147 | * |
134 | * Description: | 148 | * Description: |
@@ -142,36 +156,50 @@ int ebitmap_netlbl_import(struct ebitmap *ebmap, | |||
142 | struct ebitmap_node *e_iter = NULL; | 156 | struct ebitmap_node *e_iter = NULL; |
143 | struct ebitmap_node *emap_prev = NULL; | 157 | struct ebitmap_node *emap_prev = NULL; |
144 | struct netlbl_lsm_secattr_catmap *c_iter = catmap; | 158 | struct netlbl_lsm_secattr_catmap *c_iter = catmap; |
145 | u32 c_idx; | 159 | u32 c_idx, c_pos, e_idx, e_sft; |
146 | 160 | ||
147 | /* This function is a much simpler because SELinux's MAPTYPE happens | 161 | /* NetLabel's NETLBL_CATMAP_MAPTYPE is defined as an array of u64, |
148 | * to be the same as NetLabel's NETLBL_CATMAP_MAPTYPE, if MAPTYPE is | 162 | * however, it is not always compatible with an array of unsigned long |
149 | * changed from a u64 this function will most likely need to be changed | 163 | * in ebitmap_node. |
150 | * as well. It's not ideal but I think the tradeoff in terms of | 164 | * In addition, you should pay attention the following implementation |
151 | * neatness and speed is worth it. */ | 165 | * assumes unsigned long has a width equal with or less than 64-bit. |
166 | */ | ||
152 | 167 | ||
153 | do { | 168 | do { |
154 | for (c_idx = 0; c_idx < NETLBL_CATMAP_MAPCNT; c_idx++) { | 169 | for (c_idx = 0; c_idx < NETLBL_CATMAP_MAPCNT; c_idx++) { |
155 | if (c_iter->bitmap[c_idx] == 0) | 170 | unsigned int delta; |
171 | u64 map = c_iter->bitmap[c_idx]; | ||
172 | |||
173 | if (!map) | ||
156 | continue; | 174 | continue; |
157 | 175 | ||
158 | e_iter = kzalloc(sizeof(*e_iter), GFP_ATOMIC); | 176 | c_pos = c_iter->startbit |
159 | if (e_iter == NULL) | 177 | + c_idx * NETLBL_CATMAP_MAPSIZE; |
160 | goto netlbl_import_failure; | 178 | if (!e_iter |
161 | if (emap_prev == NULL) | 179 | || c_pos >= e_iter->startbit + EBITMAP_SIZE) { |
162 | ebmap->node = e_iter; | 180 | e_iter = kzalloc(sizeof(*e_iter), GFP_ATOMIC); |
163 | else | 181 | if (!e_iter) |
164 | emap_prev->next = e_iter; | 182 | goto netlbl_import_failure; |
165 | emap_prev = e_iter; | 183 | e_iter->startbit |
166 | 184 | = c_pos - (c_pos % EBITMAP_SIZE); | |
167 | e_iter->startbit = c_iter->startbit + | 185 | if (emap_prev == NULL) |
168 | NETLBL_CATMAP_MAPSIZE * c_idx; | 186 | ebmap->node = e_iter; |
169 | e_iter->map = c_iter->bitmap[c_idx]; | 187 | else |
188 | emap_prev->next = e_iter; | ||
189 | emap_prev = e_iter; | ||
190 | } | ||
191 | delta = c_pos - e_iter->startbit; | ||
192 | e_idx = delta / EBITMAP_UNIT_SIZE; | ||
193 | e_sft = delta % EBITMAP_UNIT_SIZE; | ||
194 | while (map) { | ||
195 | e_iter->maps[e_idx++] |= map & (-1UL); | ||
196 | map >>= EBITMAP_UNIT_SIZE; | ||
197 | } | ||
170 | } | 198 | } |
171 | c_iter = c_iter->next; | 199 | c_iter = c_iter->next; |
172 | } while (c_iter != NULL); | 200 | } while (c_iter != NULL); |
173 | if (e_iter != NULL) | 201 | if (e_iter != NULL) |
174 | ebmap->highbit = e_iter->startbit + MAPSIZE; | 202 | ebmap->highbit = e_iter->startbit + EBITMAP_SIZE; |
175 | else | 203 | else |
176 | ebitmap_destroy(ebmap); | 204 | ebitmap_destroy(ebmap); |
177 | 205 | ||
@@ -186,6 +214,7 @@ netlbl_import_failure: | |||
186 | int ebitmap_contains(struct ebitmap *e1, struct ebitmap *e2) | 214 | int ebitmap_contains(struct ebitmap *e1, struct ebitmap *e2) |
187 | { | 215 | { |
188 | struct ebitmap_node *n1, *n2; | 216 | struct ebitmap_node *n1, *n2; |
217 | int i; | ||
189 | 218 | ||
190 | if (e1->highbit < e2->highbit) | 219 | if (e1->highbit < e2->highbit) |
191 | return 0; | 220 | return 0; |
@@ -197,8 +226,10 @@ int ebitmap_contains(struct ebitmap *e1, struct ebitmap *e2) | |||
197 | n1 = n1->next; | 226 | n1 = n1->next; |
198 | continue; | 227 | continue; |
199 | } | 228 | } |
200 | if ((n1->map & n2->map) != n2->map) | 229 | for (i = 0; i < EBITMAP_UNIT_NUMS; i++) { |
201 | return 0; | 230 | if ((n1->maps[i] & n2->maps[i]) != n2->maps[i]) |
231 | return 0; | ||
232 | } | ||
202 | 233 | ||
203 | n1 = n1->next; | 234 | n1 = n1->next; |
204 | n2 = n2->next; | 235 | n2 = n2->next; |
@@ -219,12 +250,8 @@ int ebitmap_get_bit(struct ebitmap *e, unsigned long bit) | |||
219 | 250 | ||
220 | n = e->node; | 251 | n = e->node; |
221 | while (n && (n->startbit <= bit)) { | 252 | while (n && (n->startbit <= bit)) { |
222 | if ((n->startbit + MAPSIZE) > bit) { | 253 | if ((n->startbit + EBITMAP_SIZE) > bit) |
223 | if (n->map & (MAPBIT << (bit - n->startbit))) | 254 | return ebitmap_node_get_bit(n, bit); |
224 | return 1; | ||
225 | else | ||
226 | return 0; | ||
227 | } | ||
228 | n = n->next; | 255 | n = n->next; |
229 | } | 256 | } |
230 | 257 | ||
@@ -238,31 +265,35 @@ int ebitmap_set_bit(struct ebitmap *e, unsigned long bit, int value) | |||
238 | prev = NULL; | 265 | prev = NULL; |
239 | n = e->node; | 266 | n = e->node; |
240 | while (n && n->startbit <= bit) { | 267 | while (n && n->startbit <= bit) { |
241 | if ((n->startbit + MAPSIZE) > bit) { | 268 | if ((n->startbit + EBITMAP_SIZE) > bit) { |
242 | if (value) { | 269 | if (value) { |
243 | n->map |= (MAPBIT << (bit - n->startbit)); | 270 | ebitmap_node_set_bit(n, bit); |
244 | } else { | 271 | } else { |
245 | n->map &= ~(MAPBIT << (bit - n->startbit)); | 272 | unsigned int s; |
246 | if (!n->map) { | 273 | |
247 | /* drop this node from the bitmap */ | 274 | ebitmap_node_clr_bit(n, bit); |
248 | 275 | ||
249 | if (!n->next) { | 276 | s = find_first_bit(n->maps, EBITMAP_SIZE); |
250 | /* | 277 | if (s < EBITMAP_SIZE) |
251 | * this was the highest map | 278 | return 0; |
252 | * within the bitmap | 279 | |
253 | */ | 280 | /* drop this node from the bitmap */ |
254 | if (prev) | 281 | if (!n->next) { |
255 | e->highbit = prev->startbit + MAPSIZE; | 282 | /* |
256 | else | 283 | * this was the highest map |
257 | e->highbit = 0; | 284 | * within the bitmap |
258 | } | 285 | */ |
259 | if (prev) | 286 | if (prev) |
260 | prev->next = n->next; | 287 | e->highbit = prev->startbit |
288 | + EBITMAP_SIZE; | ||
261 | else | 289 | else |
262 | e->node = n->next; | 290 | e->highbit = 0; |
263 | |||
264 | kfree(n); | ||
265 | } | 291 | } |
292 | if (prev) | ||
293 | prev->next = n->next; | ||
294 | else | ||
295 | e->node = n->next; | ||
296 | kfree(n); | ||
266 | } | 297 | } |
267 | return 0; | 298 | return 0; |
268 | } | 299 | } |
@@ -277,12 +308,12 @@ int ebitmap_set_bit(struct ebitmap *e, unsigned long bit, int value) | |||
277 | if (!new) | 308 | if (!new) |
278 | return -ENOMEM; | 309 | return -ENOMEM; |
279 | 310 | ||
280 | new->startbit = bit & ~(MAPSIZE - 1); | 311 | new->startbit = bit - (bit % EBITMAP_SIZE); |
281 | new->map = (MAPBIT << (bit - new->startbit)); | 312 | ebitmap_node_set_bit(new, bit); |
282 | 313 | ||
283 | if (!n) | 314 | if (!n) |
284 | /* this node will be the highest map within the bitmap */ | 315 | /* this node will be the highest map within the bitmap */ |
285 | e->highbit = new->startbit + MAPSIZE; | 316 | e->highbit = new->startbit + EBITMAP_SIZE; |
286 | 317 | ||
287 | if (prev) { | 318 | if (prev) { |
288 | new->next = prev->next; | 319 | new->next = prev->next; |
@@ -316,11 +347,11 @@ void ebitmap_destroy(struct ebitmap *e) | |||
316 | 347 | ||
317 | int ebitmap_read(struct ebitmap *e, void *fp) | 348 | int ebitmap_read(struct ebitmap *e, void *fp) |
318 | { | 349 | { |
319 | int rc; | 350 | struct ebitmap_node *n = NULL; |
320 | struct ebitmap_node *n, *l; | 351 | u32 mapunit, count, startbit, index; |
352 | u64 map; | ||
321 | __le32 buf[3]; | 353 | __le32 buf[3]; |
322 | u32 mapsize, count, i; | 354 | int rc, i; |
323 | __le64 map; | ||
324 | 355 | ||
325 | ebitmap_init(e); | 356 | ebitmap_init(e); |
326 | 357 | ||
@@ -328,85 +359,89 @@ int ebitmap_read(struct ebitmap *e, void *fp) | |||
328 | if (rc < 0) | 359 | if (rc < 0) |
329 | goto out; | 360 | goto out; |
330 | 361 | ||
331 | mapsize = le32_to_cpu(buf[0]); | 362 | mapunit = le32_to_cpu(buf[0]); |
332 | e->highbit = le32_to_cpu(buf[1]); | 363 | e->highbit = le32_to_cpu(buf[1]); |
333 | count = le32_to_cpu(buf[2]); | 364 | count = le32_to_cpu(buf[2]); |
334 | 365 | ||
335 | if (mapsize != MAPSIZE) { | 366 | if (mapunit != sizeof(u64) * 8) { |
336 | printk(KERN_ERR "security: ebitmap: map size %u does not " | 367 | printk(KERN_ERR "security: ebitmap: map size %u does not " |
337 | "match my size %Zd (high bit was %d)\n", mapsize, | 368 | "match my size %Zd (high bit was %d)\n", |
338 | MAPSIZE, e->highbit); | 369 | mapunit, sizeof(u64) * 8, e->highbit); |
339 | goto bad; | 370 | goto bad; |
340 | } | 371 | } |
372 | |||
373 | /* round up e->highbit */ | ||
374 | e->highbit += EBITMAP_SIZE - 1; | ||
375 | e->highbit -= (e->highbit % EBITMAP_SIZE); | ||
376 | |||
341 | if (!e->highbit) { | 377 | if (!e->highbit) { |
342 | e->node = NULL; | 378 | e->node = NULL; |
343 | goto ok; | 379 | goto ok; |
344 | } | 380 | } |
345 | if (e->highbit & (MAPSIZE - 1)) { | 381 | |
346 | printk(KERN_ERR "security: ebitmap: high bit (%d) is not a " | ||
347 | "multiple of the map size (%Zd)\n", e->highbit, MAPSIZE); | ||
348 | goto bad; | ||
349 | } | ||
350 | l = NULL; | ||
351 | for (i = 0; i < count; i++) { | 382 | for (i = 0; i < count; i++) { |
352 | rc = next_entry(buf, fp, sizeof(u32)); | 383 | rc = next_entry(&startbit, fp, sizeof(u32)); |
353 | if (rc < 0) { | 384 | if (rc < 0) { |
354 | printk(KERN_ERR "security: ebitmap: truncated map\n"); | 385 | printk(KERN_ERR "security: ebitmap: truncated map\n"); |
355 | goto bad; | 386 | goto bad; |
356 | } | 387 | } |
357 | n = kzalloc(sizeof(*n), GFP_KERNEL); | 388 | startbit = le32_to_cpu(startbit); |
358 | if (!n) { | ||
359 | printk(KERN_ERR "security: ebitmap: out of memory\n"); | ||
360 | rc = -ENOMEM; | ||
361 | goto bad; | ||
362 | } | ||
363 | |||
364 | n->startbit = le32_to_cpu(buf[0]); | ||
365 | 389 | ||
366 | if (n->startbit & (MAPSIZE - 1)) { | 390 | if (startbit & (mapunit - 1)) { |
367 | printk(KERN_ERR "security: ebitmap start bit (%d) is " | 391 | printk(KERN_ERR "security: ebitmap start bit (%d) is " |
368 | "not a multiple of the map size (%Zd)\n", | 392 | "not a multiple of the map unit size (%Zd)\n", |
369 | n->startbit, MAPSIZE); | 393 | startbit, mapunit); |
370 | goto bad_free; | 394 | goto bad; |
371 | } | 395 | } |
372 | if (n->startbit > (e->highbit - MAPSIZE)) { | 396 | if (startbit > e->highbit - mapunit) { |
373 | printk(KERN_ERR "security: ebitmap start bit (%d) is " | 397 | printk(KERN_ERR "security: ebitmap start bit (%d) is " |
374 | "beyond the end of the bitmap (%Zd)\n", | 398 | "beyond the end of the bitmap (%Zd)\n", |
375 | n->startbit, (e->highbit - MAPSIZE)); | 399 | startbit, (e->highbit - mapunit)); |
376 | goto bad_free; | 400 | goto bad; |
401 | } | ||
402 | |||
403 | if (!n || startbit >= n->startbit + EBITMAP_SIZE) { | ||
404 | struct ebitmap_node *tmp; | ||
405 | tmp = kzalloc(sizeof(*tmp), GFP_KERNEL); | ||
406 | if (!tmp) { | ||
407 | printk(KERN_ERR | ||
408 | "security: ebitmap: out of memory\n"); | ||
409 | rc = -ENOMEM; | ||
410 | goto bad; | ||
411 | } | ||
412 | /* round down */ | ||
413 | tmp->startbit = startbit - (startbit % EBITMAP_SIZE); | ||
414 | if (n) { | ||
415 | n->next = tmp; | ||
416 | } else { | ||
417 | e->node = tmp; | ||
418 | } | ||
419 | n = tmp; | ||
420 | } else if (startbit <= n->startbit) { | ||
421 | printk(KERN_ERR "security: ebitmap: start bit %d" | ||
422 | " comes after start bit %d\n", | ||
423 | startbit, n->startbit); | ||
424 | goto bad; | ||
377 | } | 425 | } |
426 | |||
378 | rc = next_entry(&map, fp, sizeof(u64)); | 427 | rc = next_entry(&map, fp, sizeof(u64)); |
379 | if (rc < 0) { | 428 | if (rc < 0) { |
380 | printk(KERN_ERR "security: ebitmap: truncated map\n"); | 429 | printk(KERN_ERR "security: ebitmap: truncated map\n"); |
381 | goto bad_free; | 430 | goto bad; |
382 | } | 431 | } |
383 | n->map = le64_to_cpu(map); | 432 | map = le64_to_cpu(map); |
384 | 433 | ||
385 | if (!n->map) { | 434 | index = (startbit - n->startbit) / EBITMAP_UNIT_SIZE; |
386 | printk(KERN_ERR "security: ebitmap: null map in " | 435 | while (map) { |
387 | "ebitmap (startbit %d)\n", n->startbit); | 436 | n->maps[index] = map & (-1UL); |
388 | goto bad_free; | 437 | map = map >> EBITMAP_UNIT_SIZE; |
438 | index++; | ||
389 | } | 439 | } |
390 | if (l) { | ||
391 | if (n->startbit <= l->startbit) { | ||
392 | printk(KERN_ERR "security: ebitmap: start " | ||
393 | "bit %d comes after start bit %d\n", | ||
394 | n->startbit, l->startbit); | ||
395 | goto bad_free; | ||
396 | } | ||
397 | l->next = n; | ||
398 | } else | ||
399 | e->node = n; | ||
400 | |||
401 | l = n; | ||
402 | } | 440 | } |
403 | |||
404 | ok: | 441 | ok: |
405 | rc = 0; | 442 | rc = 0; |
406 | out: | 443 | out: |
407 | return rc; | 444 | return rc; |
408 | bad_free: | ||
409 | kfree(n); | ||
410 | bad: | 445 | bad: |
411 | if (!rc) | 446 | if (!rc) |
412 | rc = -EINVAL; | 447 | rc = -EINVAL; |