diff options
author | Balbir Singh <balbir@linux.vnet.ibm.com> | 2008-09-05 12:12:23 -0400 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2008-09-05 12:14:35 -0400 |
commit | 49048622eae698e5c4ae61f7e71200f265ccc529 (patch) | |
tree | e568595fe5329e1293eafc3a3cc833dfe89ffbf2 /kernel/sched.c | |
parent | 56c7426b3951e4f35a71d695f1c982989399d6fd (diff) |
sched: fix process time monotonicity
Spencer reported a problem where utime and stime were going negative despite
the fixes in commit b27f03d4bdc145a09fb7b0c0e004b29f1ee555fa. The suspected
reason for the problem is that signal_struct maintains it's own utime and
stime (of exited tasks), these are not updated using the new task_utime()
routine, hence sig->utime can go backwards and cause the same problem
to occur (sig->utime, adds tsk->utime and not task_utime()). This patch
fixes the problem
TODO: using max(task->prev_utime, derived utime) works for now, but a more
generic solution is to implement cputime_max() and use the cputime_gt()
function for comparison.
Reported-by: spencer@bluehost.com
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel/sched.c')
-rw-r--r-- | kernel/sched.c | 59 |
1 files changed, 59 insertions, 0 deletions
diff --git a/kernel/sched.c b/kernel/sched.c index 9a1ddb84e26..1a5f73c1fcd 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -4179,6 +4179,65 @@ void account_steal_time(struct task_struct *p, cputime_t steal) | |||
4179 | } | 4179 | } |
4180 | 4180 | ||
4181 | /* | 4181 | /* |
4182 | * Use precise platform statistics if available: | ||
4183 | */ | ||
4184 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING | ||
4185 | cputime_t task_utime(struct task_struct *p) | ||
4186 | { | ||
4187 | return p->utime; | ||
4188 | } | ||
4189 | |||
4190 | cputime_t task_stime(struct task_struct *p) | ||
4191 | { | ||
4192 | return p->stime; | ||
4193 | } | ||
4194 | #else | ||
4195 | cputime_t task_utime(struct task_struct *p) | ||
4196 | { | ||
4197 | clock_t utime = cputime_to_clock_t(p->utime), | ||
4198 | total = utime + cputime_to_clock_t(p->stime); | ||
4199 | u64 temp; | ||
4200 | |||
4201 | /* | ||
4202 | * Use CFS's precise accounting: | ||
4203 | */ | ||
4204 | temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); | ||
4205 | |||
4206 | if (total) { | ||
4207 | temp *= utime; | ||
4208 | do_div(temp, total); | ||
4209 | } | ||
4210 | utime = (clock_t)temp; | ||
4211 | |||
4212 | p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); | ||
4213 | return p->prev_utime; | ||
4214 | } | ||
4215 | |||
4216 | cputime_t task_stime(struct task_struct *p) | ||
4217 | { | ||
4218 | clock_t stime; | ||
4219 | |||
4220 | /* | ||
4221 | * Use CFS's precise accounting. (we subtract utime from | ||
4222 | * the total, to make sure the total observed by userspace | ||
4223 | * grows monotonically - apps rely on that): | ||
4224 | */ | ||
4225 | stime = nsec_to_clock_t(p->se.sum_exec_runtime) - | ||
4226 | cputime_to_clock_t(task_utime(p)); | ||
4227 | |||
4228 | if (stime >= 0) | ||
4229 | p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); | ||
4230 | |||
4231 | return p->prev_stime; | ||
4232 | } | ||
4233 | #endif | ||
4234 | |||
4235 | inline cputime_t task_gtime(struct task_struct *p) | ||
4236 | { | ||
4237 | return p->gtime; | ||
4238 | } | ||
4239 | |||
4240 | /* | ||
4182 | * This function gets called by the timer code, with HZ frequency. | 4241 | * This function gets called by the timer code, with HZ frequency. |
4183 | * We call it with interrupts disabled. | 4242 | * We call it with interrupts disabled. |
4184 | * | 4243 | * |