aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless/ipw2x00
diff options
context:
space:
mode:
authorJohn W. Linville <linville@tuxdriver.com>2008-11-11 16:22:09 -0500
committerJohn W. Linville <linville@tuxdriver.com>2008-11-21 11:08:17 -0500
commit0795cd29b6fe05107b40080cb1fccadb96320c96 (patch)
tree36618d9489bb4e9dc8abd2505e48528c92facb65 /drivers/net/wireless/ipw2x00
parent2ba4b32ecf748d5f45f298fc9677fa46d1dd9aff (diff)
ipw2x00: relocate ipw2100/ipw2200 to common directory
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Diffstat (limited to 'drivers/net/wireless/ipw2x00')
-rw-r--r--drivers/net/wireless/ipw2x00/Kconfig150
-rw-r--r--drivers/net/wireless/ipw2x00/Makefile6
-rw-r--r--drivers/net/wireless/ipw2x00/ipw2100.c8649
-rw-r--r--drivers/net/wireless/ipw2x00/ipw2100.h1162
-rw-r--r--drivers/net/wireless/ipw2x00/ipw2200.c11984
-rw-r--r--drivers/net/wireless/ipw2x00/ipw2200.h2011
6 files changed, 23962 insertions, 0 deletions
diff --git a/drivers/net/wireless/ipw2x00/Kconfig b/drivers/net/wireless/ipw2x00/Kconfig
new file mode 100644
index 00000000000..67c57bfa5c1
--- /dev/null
+++ b/drivers/net/wireless/ipw2x00/Kconfig
@@ -0,0 +1,150 @@
1#
2# Intel Centrino wireless drivers
3#
4
5config IPW2100
6 tristate "Intel PRO/Wireless 2100 Network Connection"
7 depends on PCI && WLAN_80211
8 select WIRELESS_EXT
9 select FW_LOADER
10 select LIB80211
11 select IEEE80211
12 ---help---
13 A driver for the Intel PRO/Wireless 2100 Network
14 Connection 802.11b wireless network adapter.
15
16 See <file:Documentation/networking/README.ipw2100> for information on
17 the capabilities currently enabled in this driver and for tips
18 for debugging issues and problems.
19
20 In order to use this driver, you will need a firmware image for it.
21 You can obtain the firmware from
22 <http://ipw2100.sf.net/>. Once you have the firmware image, you
23 will need to place it in /lib/firmware.
24
25 You will also very likely need the Wireless Tools in order to
26 configure your card:
27
28 <http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html>.
29
30 It is recommended that you compile this driver as a module (M)
31 rather than built-in (Y). This driver requires firmware at device
32 initialization time, and when built-in this typically happens
33 before the filesystem is accessible (hence firmware will be
34 unavailable and initialization will fail). If you do choose to build
35 this driver into your kernel image, you can avoid this problem by
36 including the firmware and a firmware loader in an initramfs.
37
38config IPW2100_MONITOR
39 bool "Enable promiscuous mode"
40 depends on IPW2100
41 ---help---
42 Enables promiscuous/monitor mode support for the ipw2100 driver.
43 With this feature compiled into the driver, you can switch to
44 promiscuous mode via the Wireless Tool's Monitor mode. While in this
45 mode, no packets can be sent.
46
47config IPW2100_DEBUG
48 bool "Enable full debugging output in IPW2100 module."
49 depends on IPW2100
50 ---help---
51 This option will enable debug tracing output for the IPW2100.
52
53 This will result in the kernel module being ~60k larger. You can
54 control which debug output is sent to the kernel log by setting the
55 value in
56
57 /sys/bus/pci/drivers/ipw2100/debug_level
58
59 This entry will only exist if this option is enabled.
60
61 If you are not trying to debug or develop the IPW2100 driver, you
62 most likely want to say N here.
63
64config IPW2200
65 tristate "Intel PRO/Wireless 2200BG and 2915ABG Network Connection"
66 depends on PCI && WLAN_80211
67 select WIRELESS_EXT
68 select FW_LOADER
69 select LIB80211
70 select IEEE80211
71 ---help---
72 A driver for the Intel PRO/Wireless 2200BG and 2915ABG Network
73 Connection adapters.
74
75 See <file:Documentation/networking/README.ipw2200> for
76 information on the capabilities currently enabled in this
77 driver and for tips for debugging issues and problems.
78
79 In order to use this driver, you will need a firmware image for it.
80 You can obtain the firmware from
81 <http://ipw2200.sf.net/>. See the above referenced README.ipw2200
82 for information on where to install the firmware images.
83
84 You will also very likely need the Wireless Tools in order to
85 configure your card:
86
87 <http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html>.
88
89 It is recommended that you compile this driver as a module (M)
90 rather than built-in (Y). This driver requires firmware at device
91 initialization time, and when built-in this typically happens
92 before the filesystem is accessible (hence firmware will be
93 unavailable and initialization will fail). If you do choose to build
94 this driver into your kernel image, you can avoid this problem by
95 including the firmware and a firmware loader in an initramfs.
96
97config IPW2200_MONITOR
98 bool "Enable promiscuous mode"
99 depends on IPW2200
100 ---help---
101 Enables promiscuous/monitor mode support for the ipw2200 driver.
102 With this feature compiled into the driver, you can switch to
103 promiscuous mode via the Wireless Tool's Monitor mode. While in this
104 mode, no packets can be sent.
105
106config IPW2200_RADIOTAP
107 bool "Enable radiotap format 802.11 raw packet support"
108 depends on IPW2200_MONITOR
109
110config IPW2200_PROMISCUOUS
111 bool "Enable creation of a RF radiotap promiscuous interface"
112 depends on IPW2200_MONITOR
113 select IPW2200_RADIOTAP
114 ---help---
115 Enables the creation of a second interface prefixed 'rtap'.
116 This second interface will provide every received in radiotap
117 format.
118
119 This is useful for performing wireless network analysis while
120 maintaining an active association.
121
122 Example usage:
123
124 % modprobe ipw2200 rtap_iface=1
125 % ifconfig rtap0 up
126 % tethereal -i rtap0
127
128 If you do not specify 'rtap_iface=1' as a module parameter then
129 the rtap interface will not be created and you will need to turn
130 it on via sysfs:
131
132 % echo 1 > /sys/bus/pci/drivers/ipw2200/*/rtap_iface
133
134config IPW2200_QOS
135 bool "Enable QoS support"
136 depends on IPW2200 && EXPERIMENTAL
137
138config IPW2200_DEBUG
139 bool "Enable full debugging output in IPW2200 module."
140 depends on IPW2200
141 ---help---
142 This option will enable low level debug tracing output for IPW2200.
143
144 Note, normal debug code is already compiled in. This low level
145 debug option enables debug on hot paths (e.g Tx, Rx, ISR) and
146 will result in the kernel module being ~70 larger. Most users
147 will typically not need this high verbosity debug information.
148
149 If you are not sure, say N here.
150
diff --git a/drivers/net/wireless/ipw2x00/Makefile b/drivers/net/wireless/ipw2x00/Makefile
new file mode 100644
index 00000000000..dbc0d81b6fa
--- /dev/null
+++ b/drivers/net/wireless/ipw2x00/Makefile
@@ -0,0 +1,6 @@
1#
2# Makefile for the Intel Centrino wireless drivers
3#
4
5obj-$(CONFIG_IPW2100) += ipw2100.o
6obj-$(CONFIG_IPW2200) += ipw2200.o
diff --git a/drivers/net/wireless/ipw2x00/ipw2100.c b/drivers/net/wireless/ipw2x00/ipw2100.c
new file mode 100644
index 00000000000..2d2044d3d1c
--- /dev/null
+++ b/drivers/net/wireless/ipw2x00/ipw2100.c
@@ -0,0 +1,8649 @@
1/******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38******************************************************************************/
39/*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46Theory of Operation
47
48Tx - Commands and Data
49
50Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52sent to the firmware as well as the length of the data.
53
54The host writes to the TBD queue at the WRITE index. The WRITE index points
55to the _next_ packet to be written and is advanced when after the TBD has been
56filled.
57
58The firmware pulls from the TBD queue at the READ index. The READ index points
59to the currently being read entry, and is advanced once the firmware is
60done with a packet.
61
62When data is sent to the firmware, the first TBD is used to indicate to the
63firmware if a Command or Data is being sent. If it is Command, all of the
64command information is contained within the physical address referred to by the
65TBD. If it is Data, the first TBD indicates the type of data packet, number
66of fragments, etc. The next TBD then referrs to the actual packet location.
67
68The Tx flow cycle is as follows:
69
701) ipw2100_tx() is called by kernel with SKB to transmit
712) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
733) work is scheduled to move pending packets into the shared circular queue.
744) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
785) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
806) firmware is notified that the WRITE index has
817) Once the firmware has processed the TBD, INTA is triggered.
828) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
849) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
8610)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
8911)The packet structure is placed onto the tx_free_list
90
91The above steps are the same for commands, only the msg_free_list/msg_pend_list
92are used instead of tx_free_list/tx_pend_list
93
94...
95
96Critical Sections / Locking :
97
98There are two locks utilized. The first is the low level lock (priv->low_lock)
99that protects the following:
100
101- Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126- The internal data state of the device itself
127- Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130All external entry functions are locked with the priv->action_lock to ensure
131that only one external action is invoked at a time.
132
133
134*/
135
136#include <linux/compiler.h>
137#include <linux/errno.h>
138#include <linux/if_arp.h>
139#include <linux/in6.h>
140#include <linux/in.h>
141#include <linux/ip.h>
142#include <linux/kernel.h>
143#include <linux/kmod.h>
144#include <linux/module.h>
145#include <linux/netdevice.h>
146#include <linux/ethtool.h>
147#include <linux/pci.h>
148#include <linux/dma-mapping.h>
149#include <linux/proc_fs.h>
150#include <linux/skbuff.h>
151#include <asm/uaccess.h>
152#include <asm/io.h>
153#include <linux/fs.h>
154#include <linux/mm.h>
155#include <linux/slab.h>
156#include <linux/unistd.h>
157#include <linux/stringify.h>
158#include <linux/tcp.h>
159#include <linux/types.h>
160#include <linux/time.h>
161#include <linux/firmware.h>
162#include <linux/acpi.h>
163#include <linux/ctype.h>
164#include <linux/pm_qos_params.h>
165
166#include <net/lib80211.h>
167
168#include "ipw2100.h"
169
170#define IPW2100_VERSION "git-1.2.2"
171
172#define DRV_NAME "ipw2100"
173#define DRV_VERSION IPW2100_VERSION
174#define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175#define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
176
177/* Debugging stuff */
178#ifdef CONFIG_IPW2100_DEBUG
179#define IPW2100_RX_DEBUG /* Reception debugging */
180#endif
181
182MODULE_DESCRIPTION(DRV_DESCRIPTION);
183MODULE_VERSION(DRV_VERSION);
184MODULE_AUTHOR(DRV_COPYRIGHT);
185MODULE_LICENSE("GPL");
186
187static int debug = 0;
188static int mode = 0;
189static int channel = 0;
190static int associate = 0;
191static int disable = 0;
192#ifdef CONFIG_PM
193static struct ipw2100_fw ipw2100_firmware;
194#endif
195
196#include <linux/moduleparam.h>
197module_param(debug, int, 0444);
198module_param(mode, int, 0444);
199module_param(channel, int, 0444);
200module_param(associate, int, 0444);
201module_param(disable, int, 0444);
202
203MODULE_PARM_DESC(debug, "debug level");
204MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205MODULE_PARM_DESC(channel, "channel");
206MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
207MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211#ifdef CONFIG_IPW2100_DEBUG
212#define IPW_DEBUG(level, message...) \
213do { \
214 if (ipw2100_debug_level & (level)) { \
215 printk(KERN_DEBUG "ipw2100: %c %s ", \
216 in_interrupt() ? 'I' : 'U', __func__); \
217 printk(message); \
218 } \
219} while (0)
220#else
221#define IPW_DEBUG(level, message...) do {} while (0)
222#endif /* CONFIG_IPW2100_DEBUG */
223
224#ifdef CONFIG_IPW2100_DEBUG
225static const char *command_types[] = {
226 "undefined",
227 "unused", /* HOST_ATTENTION */
228 "HOST_COMPLETE",
229 "unused", /* SLEEP */
230 "unused", /* HOST_POWER_DOWN */
231 "unused",
232 "SYSTEM_CONFIG",
233 "unused", /* SET_IMR */
234 "SSID",
235 "MANDATORY_BSSID",
236 "AUTHENTICATION_TYPE",
237 "ADAPTER_ADDRESS",
238 "PORT_TYPE",
239 "INTERNATIONAL_MODE",
240 "CHANNEL",
241 "RTS_THRESHOLD",
242 "FRAG_THRESHOLD",
243 "POWER_MODE",
244 "TX_RATES",
245 "BASIC_TX_RATES",
246 "WEP_KEY_INFO",
247 "unused",
248 "unused",
249 "unused",
250 "unused",
251 "WEP_KEY_INDEX",
252 "WEP_FLAGS",
253 "ADD_MULTICAST",
254 "CLEAR_ALL_MULTICAST",
255 "BEACON_INTERVAL",
256 "ATIM_WINDOW",
257 "CLEAR_STATISTICS",
258 "undefined",
259 "undefined",
260 "undefined",
261 "undefined",
262 "TX_POWER_INDEX",
263 "undefined",
264 "undefined",
265 "undefined",
266 "undefined",
267 "undefined",
268 "undefined",
269 "BROADCAST_SCAN",
270 "CARD_DISABLE",
271 "PREFERRED_BSSID",
272 "SET_SCAN_OPTIONS",
273 "SCAN_DWELL_TIME",
274 "SWEEP_TABLE",
275 "AP_OR_STATION_TABLE",
276 "GROUP_ORDINALS",
277 "SHORT_RETRY_LIMIT",
278 "LONG_RETRY_LIMIT",
279 "unused", /* SAVE_CALIBRATION */
280 "unused", /* RESTORE_CALIBRATION */
281 "undefined",
282 "undefined",
283 "undefined",
284 "HOST_PRE_POWER_DOWN",
285 "unused", /* HOST_INTERRUPT_COALESCING */
286 "undefined",
287 "CARD_DISABLE_PHY_OFF",
288 "MSDU_TX_RATES" "undefined",
289 "undefined",
290 "SET_STATION_STAT_BITS",
291 "CLEAR_STATIONS_STAT_BITS",
292 "LEAP_ROGUE_MODE",
293 "SET_SECURITY_INFORMATION",
294 "DISASSOCIATION_BSSID",
295 "SET_WPA_ASS_IE"
296};
297#endif
298
299/* Pre-decl until we get the code solid and then we can clean it up */
300static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303
304static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305static void ipw2100_queues_free(struct ipw2100_priv *priv);
306static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307
308static int ipw2100_fw_download(struct ipw2100_priv *priv,
309 struct ipw2100_fw *fw);
310static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311 struct ipw2100_fw *fw);
312static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313 size_t max);
314static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315 size_t max);
316static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317 struct ipw2100_fw *fw);
318static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319 struct ipw2100_fw *fw);
320static void ipw2100_wx_event_work(struct work_struct *work);
321static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322static struct iw_handler_def ipw2100_wx_handler_def;
323
324static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325{
326 *val = readl((void __iomem *)(dev->base_addr + reg));
327 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328}
329
330static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331{
332 writel(val, (void __iomem *)(dev->base_addr + reg));
333 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334}
335
336static inline void read_register_word(struct net_device *dev, u32 reg,
337 u16 * val)
338{
339 *val = readw((void __iomem *)(dev->base_addr + reg));
340 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341}
342
343static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344{
345 *val = readb((void __iomem *)(dev->base_addr + reg));
346 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347}
348
349static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350{
351 writew(val, (void __iomem *)(dev->base_addr + reg));
352 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353}
354
355static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356{
357 writeb(val, (void __iomem *)(dev->base_addr + reg));
358 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359}
360
361static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362{
363 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364 addr & IPW_REG_INDIRECT_ADDR_MASK);
365 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366}
367
368static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369{
370 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371 addr & IPW_REG_INDIRECT_ADDR_MASK);
372 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373}
374
375static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376{
377 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378 addr & IPW_REG_INDIRECT_ADDR_MASK);
379 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380}
381
382static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383{
384 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385 addr & IPW_REG_INDIRECT_ADDR_MASK);
386 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387}
388
389static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390{
391 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392 addr & IPW_REG_INDIRECT_ADDR_MASK);
393 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394}
395
396static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397{
398 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399 addr & IPW_REG_INDIRECT_ADDR_MASK);
400 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401}
402
403static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404{
405 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406 addr & IPW_REG_INDIRECT_ADDR_MASK);
407}
408
409static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410{
411 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412}
413
414static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
415 const u8 * buf)
416{
417 u32 aligned_addr;
418 u32 aligned_len;
419 u32 dif_len;
420 u32 i;
421
422 /* read first nibble byte by byte */
423 aligned_addr = addr & (~0x3);
424 dif_len = addr - aligned_addr;
425 if (dif_len) {
426 /* Start reading at aligned_addr + dif_len */
427 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428 aligned_addr);
429 for (i = dif_len; i < 4; i++, buf++)
430 write_register_byte(dev,
431 IPW_REG_INDIRECT_ACCESS_DATA + i,
432 *buf);
433
434 len -= dif_len;
435 aligned_addr += 4;
436 }
437
438 /* read DWs through autoincrement registers */
439 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440 aligned_len = len & (~0x3);
441 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443
444 /* copy the last nibble */
445 dif_len = len - aligned_len;
446 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447 for (i = 0; i < dif_len; i++, buf++)
448 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
449 *buf);
450}
451
452static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
453 u8 * buf)
454{
455 u32 aligned_addr;
456 u32 aligned_len;
457 u32 dif_len;
458 u32 i;
459
460 /* read first nibble byte by byte */
461 aligned_addr = addr & (~0x3);
462 dif_len = addr - aligned_addr;
463 if (dif_len) {
464 /* Start reading at aligned_addr + dif_len */
465 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466 aligned_addr);
467 for (i = dif_len; i < 4; i++, buf++)
468 read_register_byte(dev,
469 IPW_REG_INDIRECT_ACCESS_DATA + i,
470 buf);
471
472 len -= dif_len;
473 aligned_addr += 4;
474 }
475
476 /* read DWs through autoincrement registers */
477 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478 aligned_len = len & (~0x3);
479 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481
482 /* copy the last nibble */
483 dif_len = len - aligned_len;
484 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485 for (i = 0; i < dif_len; i++, buf++)
486 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487}
488
489static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490{
491 return (dev->base_addr &&
492 (readl
493 ((void __iomem *)(dev->base_addr +
494 IPW_REG_DOA_DEBUG_AREA_START))
495 == IPW_DATA_DOA_DEBUG_VALUE));
496}
497
498static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499 void *val, u32 * len)
500{
501 struct ipw2100_ordinals *ordinals = &priv->ordinals;
502 u32 addr;
503 u32 field_info;
504 u16 field_len;
505 u16 field_count;
506 u32 total_length;
507
508 if (ordinals->table1_addr == 0) {
509 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510 "before they have been loaded.\n");
511 return -EINVAL;
512 }
513
514 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517
518 printk(KERN_WARNING DRV_NAME
519 ": ordinal buffer length too small, need %zd\n",
520 IPW_ORD_TAB_1_ENTRY_SIZE);
521
522 return -EINVAL;
523 }
524
525 read_nic_dword(priv->net_dev,
526 ordinals->table1_addr + (ord << 2), &addr);
527 read_nic_dword(priv->net_dev, addr, val);
528
529 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530
531 return 0;
532 }
533
534 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535
536 ord -= IPW_START_ORD_TAB_2;
537
538 /* get the address of statistic */
539 read_nic_dword(priv->net_dev,
540 ordinals->table2_addr + (ord << 3), &addr);
541
542 /* get the second DW of statistics ;
543 * two 16-bit words - first is length, second is count */
544 read_nic_dword(priv->net_dev,
545 ordinals->table2_addr + (ord << 3) + sizeof(u32),
546 &field_info);
547
548 /* get each entry length */
549 field_len = *((u16 *) & field_info);
550
551 /* get number of entries */
552 field_count = *(((u16 *) & field_info) + 1);
553
554 /* abort if no enought memory */
555 total_length = field_len * field_count;
556 if (total_length > *len) {
557 *len = total_length;
558 return -EINVAL;
559 }
560
561 *len = total_length;
562 if (!total_length)
563 return 0;
564
565 /* read the ordinal data from the SRAM */
566 read_nic_memory(priv->net_dev, addr, total_length, val);
567
568 return 0;
569 }
570
571 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572 "in table 2\n", ord);
573
574 return -EINVAL;
575}
576
577static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
578 u32 * len)
579{
580 struct ipw2100_ordinals *ordinals = &priv->ordinals;
581 u32 addr;
582
583 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586 IPW_DEBUG_INFO("wrong size\n");
587 return -EINVAL;
588 }
589
590 read_nic_dword(priv->net_dev,
591 ordinals->table1_addr + (ord << 2), &addr);
592
593 write_nic_dword(priv->net_dev, addr, *val);
594
595 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596
597 return 0;
598 }
599
600 IPW_DEBUG_INFO("wrong table\n");
601 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
602 return -EINVAL;
603
604 return -EINVAL;
605}
606
607static char *snprint_line(char *buf, size_t count,
608 const u8 * data, u32 len, u32 ofs)
609{
610 int out, i, j, l;
611 char c;
612
613 out = snprintf(buf, count, "%08X", ofs);
614
615 for (l = 0, i = 0; i < 2; i++) {
616 out += snprintf(buf + out, count - out, " ");
617 for (j = 0; j < 8 && l < len; j++, l++)
618 out += snprintf(buf + out, count - out, "%02X ",
619 data[(i * 8 + j)]);
620 for (; j < 8; j++)
621 out += snprintf(buf + out, count - out, " ");
622 }
623
624 out += snprintf(buf + out, count - out, " ");
625 for (l = 0, i = 0; i < 2; i++) {
626 out += snprintf(buf + out, count - out, " ");
627 for (j = 0; j < 8 && l < len; j++, l++) {
628 c = data[(i * 8 + j)];
629 if (!isascii(c) || !isprint(c))
630 c = '.';
631
632 out += snprintf(buf + out, count - out, "%c", c);
633 }
634
635 for (; j < 8; j++)
636 out += snprintf(buf + out, count - out, " ");
637 }
638
639 return buf;
640}
641
642static void printk_buf(int level, const u8 * data, u32 len)
643{
644 char line[81];
645 u32 ofs = 0;
646 if (!(ipw2100_debug_level & level))
647 return;
648
649 while (len) {
650 printk(KERN_DEBUG "%s\n",
651 snprint_line(line, sizeof(line), &data[ofs],
652 min(len, 16U), ofs));
653 ofs += 16;
654 len -= min(len, 16U);
655 }
656}
657
658#define MAX_RESET_BACKOFF 10
659
660static void schedule_reset(struct ipw2100_priv *priv)
661{
662 unsigned long now = get_seconds();
663
664 /* If we haven't received a reset request within the backoff period,
665 * then we can reset the backoff interval so this reset occurs
666 * immediately */
667 if (priv->reset_backoff &&
668 (now - priv->last_reset > priv->reset_backoff))
669 priv->reset_backoff = 0;
670
671 priv->last_reset = get_seconds();
672
673 if (!(priv->status & STATUS_RESET_PENDING)) {
674 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675 priv->net_dev->name, priv->reset_backoff);
676 netif_carrier_off(priv->net_dev);
677 netif_stop_queue(priv->net_dev);
678 priv->status |= STATUS_RESET_PENDING;
679 if (priv->reset_backoff)
680 queue_delayed_work(priv->workqueue, &priv->reset_work,
681 priv->reset_backoff * HZ);
682 else
683 queue_delayed_work(priv->workqueue, &priv->reset_work,
684 0);
685
686 if (priv->reset_backoff < MAX_RESET_BACKOFF)
687 priv->reset_backoff++;
688
689 wake_up_interruptible(&priv->wait_command_queue);
690 } else
691 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
692 priv->net_dev->name);
693
694}
695
696#define HOST_COMPLETE_TIMEOUT (2 * HZ)
697static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
698 struct host_command *cmd)
699{
700 struct list_head *element;
701 struct ipw2100_tx_packet *packet;
702 unsigned long flags;
703 int err = 0;
704
705 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
706 command_types[cmd->host_command], cmd->host_command,
707 cmd->host_command_length);
708 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
709 cmd->host_command_length);
710
711 spin_lock_irqsave(&priv->low_lock, flags);
712
713 if (priv->fatal_error) {
714 IPW_DEBUG_INFO
715 ("Attempt to send command while hardware in fatal error condition.\n");
716 err = -EIO;
717 goto fail_unlock;
718 }
719
720 if (!(priv->status & STATUS_RUNNING)) {
721 IPW_DEBUG_INFO
722 ("Attempt to send command while hardware is not running.\n");
723 err = -EIO;
724 goto fail_unlock;
725 }
726
727 if (priv->status & STATUS_CMD_ACTIVE) {
728 IPW_DEBUG_INFO
729 ("Attempt to send command while another command is pending.\n");
730 err = -EBUSY;
731 goto fail_unlock;
732 }
733
734 if (list_empty(&priv->msg_free_list)) {
735 IPW_DEBUG_INFO("no available msg buffers\n");
736 goto fail_unlock;
737 }
738
739 priv->status |= STATUS_CMD_ACTIVE;
740 priv->messages_sent++;
741
742 element = priv->msg_free_list.next;
743
744 packet = list_entry(element, struct ipw2100_tx_packet, list);
745 packet->jiffy_start = jiffies;
746
747 /* initialize the firmware command packet */
748 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
749 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
750 packet->info.c_struct.cmd->host_command_len_reg =
751 cmd->host_command_length;
752 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
753
754 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
755 cmd->host_command_parameters,
756 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
757
758 list_del(element);
759 DEC_STAT(&priv->msg_free_stat);
760
761 list_add_tail(element, &priv->msg_pend_list);
762 INC_STAT(&priv->msg_pend_stat);
763
764 ipw2100_tx_send_commands(priv);
765 ipw2100_tx_send_data(priv);
766
767 spin_unlock_irqrestore(&priv->low_lock, flags);
768
769 /*
770 * We must wait for this command to complete before another
771 * command can be sent... but if we wait more than 3 seconds
772 * then there is a problem.
773 */
774
775 err =
776 wait_event_interruptible_timeout(priv->wait_command_queue,
777 !(priv->
778 status & STATUS_CMD_ACTIVE),
779 HOST_COMPLETE_TIMEOUT);
780
781 if (err == 0) {
782 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
783 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
784 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
785 priv->status &= ~STATUS_CMD_ACTIVE;
786 schedule_reset(priv);
787 return -EIO;
788 }
789
790 if (priv->fatal_error) {
791 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
792 priv->net_dev->name);
793 return -EIO;
794 }
795
796 /* !!!!! HACK TEST !!!!!
797 * When lots of debug trace statements are enabled, the driver
798 * doesn't seem to have as many firmware restart cycles...
799 *
800 * As a test, we're sticking in a 1/100s delay here */
801 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
802
803 return 0;
804
805 fail_unlock:
806 spin_unlock_irqrestore(&priv->low_lock, flags);
807
808 return err;
809}
810
811/*
812 * Verify the values and data access of the hardware
813 * No locks needed or used. No functions called.
814 */
815static int ipw2100_verify(struct ipw2100_priv *priv)
816{
817 u32 data1, data2;
818 u32 address;
819
820 u32 val1 = 0x76543210;
821 u32 val2 = 0xFEDCBA98;
822
823 /* Domain 0 check - all values should be DOA_DEBUG */
824 for (address = IPW_REG_DOA_DEBUG_AREA_START;
825 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
826 read_register(priv->net_dev, address, &data1);
827 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
828 return -EIO;
829 }
830
831 /* Domain 1 check - use arbitrary read/write compare */
832 for (address = 0; address < 5; address++) {
833 /* The memory area is not used now */
834 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
835 val1);
836 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
837 val2);
838 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
839 &data1);
840 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
841 &data2);
842 if (val1 == data1 && val2 == data2)
843 return 0;
844 }
845
846 return -EIO;
847}
848
849/*
850 *
851 * Loop until the CARD_DISABLED bit is the same value as the
852 * supplied parameter
853 *
854 * TODO: See if it would be more efficient to do a wait/wake
855 * cycle and have the completion event trigger the wakeup
856 *
857 */
858#define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
859static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
860{
861 int i;
862 u32 card_state;
863 u32 len = sizeof(card_state);
864 int err;
865
866 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
867 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
868 &card_state, &len);
869 if (err) {
870 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
871 "failed.\n");
872 return 0;
873 }
874
875 /* We'll break out if either the HW state says it is
876 * in the state we want, or if HOST_COMPLETE command
877 * finishes */
878 if ((card_state == state) ||
879 ((priv->status & STATUS_ENABLED) ?
880 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
881 if (state == IPW_HW_STATE_ENABLED)
882 priv->status |= STATUS_ENABLED;
883 else
884 priv->status &= ~STATUS_ENABLED;
885
886 return 0;
887 }
888
889 udelay(50);
890 }
891
892 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
893 state ? "DISABLED" : "ENABLED");
894 return -EIO;
895}
896
897/*********************************************************************
898 Procedure : sw_reset_and_clock
899 Purpose : Asserts s/w reset, asserts clock initialization
900 and waits for clock stabilization
901 ********************************************************************/
902static int sw_reset_and_clock(struct ipw2100_priv *priv)
903{
904 int i;
905 u32 r;
906
907 // assert s/w reset
908 write_register(priv->net_dev, IPW_REG_RESET_REG,
909 IPW_AUX_HOST_RESET_REG_SW_RESET);
910
911 // wait for clock stabilization
912 for (i = 0; i < 1000; i++) {
913 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
914
915 // check clock ready bit
916 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
917 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
918 break;
919 }
920
921 if (i == 1000)
922 return -EIO; // TODO: better error value
923
924 /* set "initialization complete" bit to move adapter to
925 * D0 state */
926 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
927 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
928
929 /* wait for clock stabilization */
930 for (i = 0; i < 10000; i++) {
931 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
932
933 /* check clock ready bit */
934 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
935 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
936 break;
937 }
938
939 if (i == 10000)
940 return -EIO; /* TODO: better error value */
941
942 /* set D0 standby bit */
943 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
944 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
945 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
946
947 return 0;
948}
949
950/*********************************************************************
951 Procedure : ipw2100_download_firmware
952 Purpose : Initiaze adapter after power on.
953 The sequence is:
954 1. assert s/w reset first!
955 2. awake clocks & wait for clock stabilization
956 3. hold ARC (don't ask me why...)
957 4. load Dino ucode and reset/clock init again
958 5. zero-out shared mem
959 6. download f/w
960 *******************************************************************/
961static int ipw2100_download_firmware(struct ipw2100_priv *priv)
962{
963 u32 address;
964 int err;
965
966#ifndef CONFIG_PM
967 /* Fetch the firmware and microcode */
968 struct ipw2100_fw ipw2100_firmware;
969#endif
970
971 if (priv->fatal_error) {
972 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
973 "fatal error %d. Interface must be brought down.\n",
974 priv->net_dev->name, priv->fatal_error);
975 return -EINVAL;
976 }
977#ifdef CONFIG_PM
978 if (!ipw2100_firmware.version) {
979 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
980 if (err) {
981 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
982 priv->net_dev->name, err);
983 priv->fatal_error = IPW2100_ERR_FW_LOAD;
984 goto fail;
985 }
986 }
987#else
988 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
989 if (err) {
990 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
991 priv->net_dev->name, err);
992 priv->fatal_error = IPW2100_ERR_FW_LOAD;
993 goto fail;
994 }
995#endif
996 priv->firmware_version = ipw2100_firmware.version;
997
998 /* s/w reset and clock stabilization */
999 err = sw_reset_and_clock(priv);
1000 if (err) {
1001 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1002 priv->net_dev->name, err);
1003 goto fail;
1004 }
1005
1006 err = ipw2100_verify(priv);
1007 if (err) {
1008 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1009 priv->net_dev->name, err);
1010 goto fail;
1011 }
1012
1013 /* Hold ARC */
1014 write_nic_dword(priv->net_dev,
1015 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1016
1017 /* allow ARC to run */
1018 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1019
1020 /* load microcode */
1021 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1022 if (err) {
1023 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1024 priv->net_dev->name, err);
1025 goto fail;
1026 }
1027
1028 /* release ARC */
1029 write_nic_dword(priv->net_dev,
1030 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1031
1032 /* s/w reset and clock stabilization (again!!!) */
1033 err = sw_reset_and_clock(priv);
1034 if (err) {
1035 printk(KERN_ERR DRV_NAME
1036 ": %s: sw_reset_and_clock failed: %d\n",
1037 priv->net_dev->name, err);
1038 goto fail;
1039 }
1040
1041 /* load f/w */
1042 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1043 if (err) {
1044 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1045 priv->net_dev->name, err);
1046 goto fail;
1047 }
1048#ifndef CONFIG_PM
1049 /*
1050 * When the .resume method of the driver is called, the other
1051 * part of the system, i.e. the ide driver could still stay in
1052 * the suspend stage. This prevents us from loading the firmware
1053 * from the disk. --YZ
1054 */
1055
1056 /* free any storage allocated for firmware image */
1057 ipw2100_release_firmware(priv, &ipw2100_firmware);
1058#endif
1059
1060 /* zero out Domain 1 area indirectly (Si requirement) */
1061 for (address = IPW_HOST_FW_SHARED_AREA0;
1062 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1063 write_nic_dword(priv->net_dev, address, 0);
1064 for (address = IPW_HOST_FW_SHARED_AREA1;
1065 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1066 write_nic_dword(priv->net_dev, address, 0);
1067 for (address = IPW_HOST_FW_SHARED_AREA2;
1068 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1069 write_nic_dword(priv->net_dev, address, 0);
1070 for (address = IPW_HOST_FW_SHARED_AREA3;
1071 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1072 write_nic_dword(priv->net_dev, address, 0);
1073 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1074 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1075 write_nic_dword(priv->net_dev, address, 0);
1076
1077 return 0;
1078
1079 fail:
1080 ipw2100_release_firmware(priv, &ipw2100_firmware);
1081 return err;
1082}
1083
1084static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1085{
1086 if (priv->status & STATUS_INT_ENABLED)
1087 return;
1088 priv->status |= STATUS_INT_ENABLED;
1089 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1090}
1091
1092static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1093{
1094 if (!(priv->status & STATUS_INT_ENABLED))
1095 return;
1096 priv->status &= ~STATUS_INT_ENABLED;
1097 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1098}
1099
1100static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1101{
1102 struct ipw2100_ordinals *ord = &priv->ordinals;
1103
1104 IPW_DEBUG_INFO("enter\n");
1105
1106 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1107 &ord->table1_addr);
1108
1109 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1110 &ord->table2_addr);
1111
1112 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1113 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1114
1115 ord->table2_size &= 0x0000FFFF;
1116
1117 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1118 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1119 IPW_DEBUG_INFO("exit\n");
1120}
1121
1122static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1123{
1124 u32 reg = 0;
1125 /*
1126 * Set GPIO 3 writable by FW; GPIO 1 writable
1127 * by driver and enable clock
1128 */
1129 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1130 IPW_BIT_GPIO_LED_OFF);
1131 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1132}
1133
1134static int rf_kill_active(struct ipw2100_priv *priv)
1135{
1136#define MAX_RF_KILL_CHECKS 5
1137#define RF_KILL_CHECK_DELAY 40
1138
1139 unsigned short value = 0;
1140 u32 reg = 0;
1141 int i;
1142
1143 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1144 priv->status &= ~STATUS_RF_KILL_HW;
1145 return 0;
1146 }
1147
1148 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1149 udelay(RF_KILL_CHECK_DELAY);
1150 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1151 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1152 }
1153
1154 if (value == 0)
1155 priv->status |= STATUS_RF_KILL_HW;
1156 else
1157 priv->status &= ~STATUS_RF_KILL_HW;
1158
1159 return (value == 0);
1160}
1161
1162static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1163{
1164 u32 addr, len;
1165 u32 val;
1166
1167 /*
1168 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1169 */
1170 len = sizeof(addr);
1171 if (ipw2100_get_ordinal
1172 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1173 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1174 __LINE__);
1175 return -EIO;
1176 }
1177
1178 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1179
1180 /*
1181 * EEPROM version is the byte at offset 0xfd in firmware
1182 * We read 4 bytes, then shift out the byte we actually want */
1183 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1184 priv->eeprom_version = (val >> 24) & 0xFF;
1185 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1186
1187 /*
1188 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1189 *
1190 * notice that the EEPROM bit is reverse polarity, i.e.
1191 * bit = 0 signifies HW RF kill switch is supported
1192 * bit = 1 signifies HW RF kill switch is NOT supported
1193 */
1194 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1195 if (!((val >> 24) & 0x01))
1196 priv->hw_features |= HW_FEATURE_RFKILL;
1197
1198 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1199 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1200
1201 return 0;
1202}
1203
1204/*
1205 * Start firmware execution after power on and intialization
1206 * The sequence is:
1207 * 1. Release ARC
1208 * 2. Wait for f/w initialization completes;
1209 */
1210static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1211{
1212 int i;
1213 u32 inta, inta_mask, gpio;
1214
1215 IPW_DEBUG_INFO("enter\n");
1216
1217 if (priv->status & STATUS_RUNNING)
1218 return 0;
1219
1220 /*
1221 * Initialize the hw - drive adapter to DO state by setting
1222 * init_done bit. Wait for clk_ready bit and Download
1223 * fw & dino ucode
1224 */
1225 if (ipw2100_download_firmware(priv)) {
1226 printk(KERN_ERR DRV_NAME
1227 ": %s: Failed to power on the adapter.\n",
1228 priv->net_dev->name);
1229 return -EIO;
1230 }
1231
1232 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1233 * in the firmware RBD and TBD ring queue */
1234 ipw2100_queues_initialize(priv);
1235
1236 ipw2100_hw_set_gpio(priv);
1237
1238 /* TODO -- Look at disabling interrupts here to make sure none
1239 * get fired during FW initialization */
1240
1241 /* Release ARC - clear reset bit */
1242 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1243
1244 /* wait for f/w intialization complete */
1245 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1246 i = 5000;
1247 do {
1248 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1249 /* Todo... wait for sync command ... */
1250
1251 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1252
1253 /* check "init done" bit */
1254 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1255 /* reset "init done" bit */
1256 write_register(priv->net_dev, IPW_REG_INTA,
1257 IPW2100_INTA_FW_INIT_DONE);
1258 break;
1259 }
1260
1261 /* check error conditions : we check these after the firmware
1262 * check so that if there is an error, the interrupt handler
1263 * will see it and the adapter will be reset */
1264 if (inta &
1265 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1266 /* clear error conditions */
1267 write_register(priv->net_dev, IPW_REG_INTA,
1268 IPW2100_INTA_FATAL_ERROR |
1269 IPW2100_INTA_PARITY_ERROR);
1270 }
1271 } while (--i);
1272
1273 /* Clear out any pending INTAs since we aren't supposed to have
1274 * interrupts enabled at this point... */
1275 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1276 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1277 inta &= IPW_INTERRUPT_MASK;
1278 /* Clear out any pending interrupts */
1279 if (inta & inta_mask)
1280 write_register(priv->net_dev, IPW_REG_INTA, inta);
1281
1282 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1283 i ? "SUCCESS" : "FAILED");
1284
1285 if (!i) {
1286 printk(KERN_WARNING DRV_NAME
1287 ": %s: Firmware did not initialize.\n",
1288 priv->net_dev->name);
1289 return -EIO;
1290 }
1291
1292 /* allow firmware to write to GPIO1 & GPIO3 */
1293 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1294
1295 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1296
1297 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1298
1299 /* Ready to receive commands */
1300 priv->status |= STATUS_RUNNING;
1301
1302 /* The adapter has been reset; we are not associated */
1303 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1304
1305 IPW_DEBUG_INFO("exit\n");
1306
1307 return 0;
1308}
1309
1310static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1311{
1312 if (!priv->fatal_error)
1313 return;
1314
1315 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1316 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1317 priv->fatal_error = 0;
1318}
1319
1320/* NOTE: Our interrupt is disabled when this method is called */
1321static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1322{
1323 u32 reg;
1324 int i;
1325
1326 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1327
1328 ipw2100_hw_set_gpio(priv);
1329
1330 /* Step 1. Stop Master Assert */
1331 write_register(priv->net_dev, IPW_REG_RESET_REG,
1332 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1333
1334 /* Step 2. Wait for stop Master Assert
1335 * (not more then 50us, otherwise ret error */
1336 i = 5;
1337 do {
1338 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1339 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1340
1341 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1342 break;
1343 } while (--i);
1344
1345 priv->status &= ~STATUS_RESET_PENDING;
1346
1347 if (!i) {
1348 IPW_DEBUG_INFO
1349 ("exit - waited too long for master assert stop\n");
1350 return -EIO;
1351 }
1352
1353 write_register(priv->net_dev, IPW_REG_RESET_REG,
1354 IPW_AUX_HOST_RESET_REG_SW_RESET);
1355
1356 /* Reset any fatal_error conditions */
1357 ipw2100_reset_fatalerror(priv);
1358
1359 /* At this point, the adapter is now stopped and disabled */
1360 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1361 STATUS_ASSOCIATED | STATUS_ENABLED);
1362
1363 return 0;
1364}
1365
1366/*
1367 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1368 *
1369 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1370 *
1371 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1372 * if STATUS_ASSN_LOST is sent.
1373 */
1374static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1375{
1376
1377#define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1378
1379 struct host_command cmd = {
1380 .host_command = CARD_DISABLE_PHY_OFF,
1381 .host_command_sequence = 0,
1382 .host_command_length = 0,
1383 };
1384 int err, i;
1385 u32 val1, val2;
1386
1387 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1388
1389 /* Turn off the radio */
1390 err = ipw2100_hw_send_command(priv, &cmd);
1391 if (err)
1392 return err;
1393
1394 for (i = 0; i < 2500; i++) {
1395 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1396 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1397
1398 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1399 (val2 & IPW2100_COMMAND_PHY_OFF))
1400 return 0;
1401
1402 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1403 }
1404
1405 return -EIO;
1406}
1407
1408static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1409{
1410 struct host_command cmd = {
1411 .host_command = HOST_COMPLETE,
1412 .host_command_sequence = 0,
1413 .host_command_length = 0
1414 };
1415 int err = 0;
1416
1417 IPW_DEBUG_HC("HOST_COMPLETE\n");
1418
1419 if (priv->status & STATUS_ENABLED)
1420 return 0;
1421
1422 mutex_lock(&priv->adapter_mutex);
1423
1424 if (rf_kill_active(priv)) {
1425 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1426 goto fail_up;
1427 }
1428
1429 err = ipw2100_hw_send_command(priv, &cmd);
1430 if (err) {
1431 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1432 goto fail_up;
1433 }
1434
1435 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1436 if (err) {
1437 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1438 priv->net_dev->name);
1439 goto fail_up;
1440 }
1441
1442 if (priv->stop_hang_check) {
1443 priv->stop_hang_check = 0;
1444 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1445 }
1446
1447 fail_up:
1448 mutex_unlock(&priv->adapter_mutex);
1449 return err;
1450}
1451
1452static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1453{
1454#define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1455
1456 struct host_command cmd = {
1457 .host_command = HOST_PRE_POWER_DOWN,
1458 .host_command_sequence = 0,
1459 .host_command_length = 0,
1460 };
1461 int err, i;
1462 u32 reg;
1463
1464 if (!(priv->status & STATUS_RUNNING))
1465 return 0;
1466
1467 priv->status |= STATUS_STOPPING;
1468
1469 /* We can only shut down the card if the firmware is operational. So,
1470 * if we haven't reset since a fatal_error, then we can not send the
1471 * shutdown commands. */
1472 if (!priv->fatal_error) {
1473 /* First, make sure the adapter is enabled so that the PHY_OFF
1474 * command can shut it down */
1475 ipw2100_enable_adapter(priv);
1476
1477 err = ipw2100_hw_phy_off(priv);
1478 if (err)
1479 printk(KERN_WARNING DRV_NAME
1480 ": Error disabling radio %d\n", err);
1481
1482 /*
1483 * If in D0-standby mode going directly to D3 may cause a
1484 * PCI bus violation. Therefore we must change out of the D0
1485 * state.
1486 *
1487 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1488 * hardware from going into standby mode and will transition
1489 * out of D0-standby if it is already in that state.
1490 *
1491 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1492 * driver upon completion. Once received, the driver can
1493 * proceed to the D3 state.
1494 *
1495 * Prepare for power down command to fw. This command would
1496 * take HW out of D0-standby and prepare it for D3 state.
1497 *
1498 * Currently FW does not support event notification for this
1499 * event. Therefore, skip waiting for it. Just wait a fixed
1500 * 100ms
1501 */
1502 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1503
1504 err = ipw2100_hw_send_command(priv, &cmd);
1505 if (err)
1506 printk(KERN_WARNING DRV_NAME ": "
1507 "%s: Power down command failed: Error %d\n",
1508 priv->net_dev->name, err);
1509 else
1510 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1511 }
1512
1513 priv->status &= ~STATUS_ENABLED;
1514
1515 /*
1516 * Set GPIO 3 writable by FW; GPIO 1 writable
1517 * by driver and enable clock
1518 */
1519 ipw2100_hw_set_gpio(priv);
1520
1521 /*
1522 * Power down adapter. Sequence:
1523 * 1. Stop master assert (RESET_REG[9]=1)
1524 * 2. Wait for stop master (RESET_REG[8]==1)
1525 * 3. S/w reset assert (RESET_REG[7] = 1)
1526 */
1527
1528 /* Stop master assert */
1529 write_register(priv->net_dev, IPW_REG_RESET_REG,
1530 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1531
1532 /* wait stop master not more than 50 usec.
1533 * Otherwise return error. */
1534 for (i = 5; i > 0; i--) {
1535 udelay(10);
1536
1537 /* Check master stop bit */
1538 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1539
1540 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1541 break;
1542 }
1543
1544 if (i == 0)
1545 printk(KERN_WARNING DRV_NAME
1546 ": %s: Could now power down adapter.\n",
1547 priv->net_dev->name);
1548
1549 /* assert s/w reset */
1550 write_register(priv->net_dev, IPW_REG_RESET_REG,
1551 IPW_AUX_HOST_RESET_REG_SW_RESET);
1552
1553 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1554
1555 return 0;
1556}
1557
1558static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1559{
1560 struct host_command cmd = {
1561 .host_command = CARD_DISABLE,
1562 .host_command_sequence = 0,
1563 .host_command_length = 0
1564 };
1565 int err = 0;
1566
1567 IPW_DEBUG_HC("CARD_DISABLE\n");
1568
1569 if (!(priv->status & STATUS_ENABLED))
1570 return 0;
1571
1572 /* Make sure we clear the associated state */
1573 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1574
1575 if (!priv->stop_hang_check) {
1576 priv->stop_hang_check = 1;
1577 cancel_delayed_work(&priv->hang_check);
1578 }
1579
1580 mutex_lock(&priv->adapter_mutex);
1581
1582 err = ipw2100_hw_send_command(priv, &cmd);
1583 if (err) {
1584 printk(KERN_WARNING DRV_NAME
1585 ": exit - failed to send CARD_DISABLE command\n");
1586 goto fail_up;
1587 }
1588
1589 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1590 if (err) {
1591 printk(KERN_WARNING DRV_NAME
1592 ": exit - card failed to change to DISABLED\n");
1593 goto fail_up;
1594 }
1595
1596 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1597
1598 fail_up:
1599 mutex_unlock(&priv->adapter_mutex);
1600 return err;
1601}
1602
1603static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1604{
1605 struct host_command cmd = {
1606 .host_command = SET_SCAN_OPTIONS,
1607 .host_command_sequence = 0,
1608 .host_command_length = 8
1609 };
1610 int err;
1611
1612 IPW_DEBUG_INFO("enter\n");
1613
1614 IPW_DEBUG_SCAN("setting scan options\n");
1615
1616 cmd.host_command_parameters[0] = 0;
1617
1618 if (!(priv->config & CFG_ASSOCIATE))
1619 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1620 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1621 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1622 if (priv->config & CFG_PASSIVE_SCAN)
1623 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1624
1625 cmd.host_command_parameters[1] = priv->channel_mask;
1626
1627 err = ipw2100_hw_send_command(priv, &cmd);
1628
1629 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1630 cmd.host_command_parameters[0]);
1631
1632 return err;
1633}
1634
1635static int ipw2100_start_scan(struct ipw2100_priv *priv)
1636{
1637 struct host_command cmd = {
1638 .host_command = BROADCAST_SCAN,
1639 .host_command_sequence = 0,
1640 .host_command_length = 4
1641 };
1642 int err;
1643
1644 IPW_DEBUG_HC("START_SCAN\n");
1645
1646 cmd.host_command_parameters[0] = 0;
1647
1648 /* No scanning if in monitor mode */
1649 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1650 return 1;
1651
1652 if (priv->status & STATUS_SCANNING) {
1653 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1654 return 0;
1655 }
1656
1657 IPW_DEBUG_INFO("enter\n");
1658
1659 /* Not clearing here; doing so makes iwlist always return nothing...
1660 *
1661 * We should modify the table logic to use aging tables vs. clearing
1662 * the table on each scan start.
1663 */
1664 IPW_DEBUG_SCAN("starting scan\n");
1665
1666 priv->status |= STATUS_SCANNING;
1667 err = ipw2100_hw_send_command(priv, &cmd);
1668 if (err)
1669 priv->status &= ~STATUS_SCANNING;
1670
1671 IPW_DEBUG_INFO("exit\n");
1672
1673 return err;
1674}
1675
1676static const struct ieee80211_geo ipw_geos[] = {
1677 { /* Restricted */
1678 "---",
1679 .bg_channels = 14,
1680 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1681 {2427, 4}, {2432, 5}, {2437, 6},
1682 {2442, 7}, {2447, 8}, {2452, 9},
1683 {2457, 10}, {2462, 11}, {2467, 12},
1684 {2472, 13}, {2484, 14}},
1685 },
1686};
1687
1688static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1689{
1690 unsigned long flags;
1691 int rc = 0;
1692 u32 lock;
1693 u32 ord_len = sizeof(lock);
1694
1695 /* Quite if manually disabled. */
1696 if (priv->status & STATUS_RF_KILL_SW) {
1697 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1698 "switch\n", priv->net_dev->name);
1699 return 0;
1700 }
1701
1702 /* the ipw2100 hardware really doesn't want power management delays
1703 * longer than 175usec
1704 */
1705 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100", 175);
1706
1707 /* If the interrupt is enabled, turn it off... */
1708 spin_lock_irqsave(&priv->low_lock, flags);
1709 ipw2100_disable_interrupts(priv);
1710
1711 /* Reset any fatal_error conditions */
1712 ipw2100_reset_fatalerror(priv);
1713 spin_unlock_irqrestore(&priv->low_lock, flags);
1714
1715 if (priv->status & STATUS_POWERED ||
1716 (priv->status & STATUS_RESET_PENDING)) {
1717 /* Power cycle the card ... */
1718 if (ipw2100_power_cycle_adapter(priv)) {
1719 printk(KERN_WARNING DRV_NAME
1720 ": %s: Could not cycle adapter.\n",
1721 priv->net_dev->name);
1722 rc = 1;
1723 goto exit;
1724 }
1725 } else
1726 priv->status |= STATUS_POWERED;
1727
1728 /* Load the firmware, start the clocks, etc. */
1729 if (ipw2100_start_adapter(priv)) {
1730 printk(KERN_ERR DRV_NAME
1731 ": %s: Failed to start the firmware.\n",
1732 priv->net_dev->name);
1733 rc = 1;
1734 goto exit;
1735 }
1736
1737 ipw2100_initialize_ordinals(priv);
1738
1739 /* Determine capabilities of this particular HW configuration */
1740 if (ipw2100_get_hw_features(priv)) {
1741 printk(KERN_ERR DRV_NAME
1742 ": %s: Failed to determine HW features.\n",
1743 priv->net_dev->name);
1744 rc = 1;
1745 goto exit;
1746 }
1747
1748 /* Initialize the geo */
1749 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1750 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1751 return 0;
1752 }
1753 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1754
1755 lock = LOCK_NONE;
1756 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1757 printk(KERN_ERR DRV_NAME
1758 ": %s: Failed to clear ordinal lock.\n",
1759 priv->net_dev->name);
1760 rc = 1;
1761 goto exit;
1762 }
1763
1764 priv->status &= ~STATUS_SCANNING;
1765
1766 if (rf_kill_active(priv)) {
1767 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1768 priv->net_dev->name);
1769
1770 if (priv->stop_rf_kill) {
1771 priv->stop_rf_kill = 0;
1772 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1773 round_jiffies_relative(HZ));
1774 }
1775
1776 deferred = 1;
1777 }
1778
1779 /* Turn on the interrupt so that commands can be processed */
1780 ipw2100_enable_interrupts(priv);
1781
1782 /* Send all of the commands that must be sent prior to
1783 * HOST_COMPLETE */
1784 if (ipw2100_adapter_setup(priv)) {
1785 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1786 priv->net_dev->name);
1787 rc = 1;
1788 goto exit;
1789 }
1790
1791 if (!deferred) {
1792 /* Enable the adapter - sends HOST_COMPLETE */
1793 if (ipw2100_enable_adapter(priv)) {
1794 printk(KERN_ERR DRV_NAME ": "
1795 "%s: failed in call to enable adapter.\n",
1796 priv->net_dev->name);
1797 ipw2100_hw_stop_adapter(priv);
1798 rc = 1;
1799 goto exit;
1800 }
1801
1802 /* Start a scan . . . */
1803 ipw2100_set_scan_options(priv);
1804 ipw2100_start_scan(priv);
1805 }
1806
1807 exit:
1808 return rc;
1809}
1810
1811/* Called by register_netdev() */
1812static int ipw2100_net_init(struct net_device *dev)
1813{
1814 struct ipw2100_priv *priv = ieee80211_priv(dev);
1815 return ipw2100_up(priv, 1);
1816}
1817
1818static void ipw2100_down(struct ipw2100_priv *priv)
1819{
1820 unsigned long flags;
1821 union iwreq_data wrqu = {
1822 .ap_addr = {
1823 .sa_family = ARPHRD_ETHER}
1824 };
1825 int associated = priv->status & STATUS_ASSOCIATED;
1826
1827 /* Kill the RF switch timer */
1828 if (!priv->stop_rf_kill) {
1829 priv->stop_rf_kill = 1;
1830 cancel_delayed_work(&priv->rf_kill);
1831 }
1832
1833 /* Kill the firmare hang check timer */
1834 if (!priv->stop_hang_check) {
1835 priv->stop_hang_check = 1;
1836 cancel_delayed_work(&priv->hang_check);
1837 }
1838
1839 /* Kill any pending resets */
1840 if (priv->status & STATUS_RESET_PENDING)
1841 cancel_delayed_work(&priv->reset_work);
1842
1843 /* Make sure the interrupt is on so that FW commands will be
1844 * processed correctly */
1845 spin_lock_irqsave(&priv->low_lock, flags);
1846 ipw2100_enable_interrupts(priv);
1847 spin_unlock_irqrestore(&priv->low_lock, flags);
1848
1849 if (ipw2100_hw_stop_adapter(priv))
1850 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1851 priv->net_dev->name);
1852
1853 /* Do not disable the interrupt until _after_ we disable
1854 * the adaptor. Otherwise the CARD_DISABLE command will never
1855 * be ack'd by the firmware */
1856 spin_lock_irqsave(&priv->low_lock, flags);
1857 ipw2100_disable_interrupts(priv);
1858 spin_unlock_irqrestore(&priv->low_lock, flags);
1859
1860 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100",
1861 PM_QOS_DEFAULT_VALUE);
1862
1863 /* We have to signal any supplicant if we are disassociating */
1864 if (associated)
1865 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1866
1867 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1868 netif_carrier_off(priv->net_dev);
1869 netif_stop_queue(priv->net_dev);
1870}
1871
1872static void ipw2100_reset_adapter(struct work_struct *work)
1873{
1874 struct ipw2100_priv *priv =
1875 container_of(work, struct ipw2100_priv, reset_work.work);
1876 unsigned long flags;
1877 union iwreq_data wrqu = {
1878 .ap_addr = {
1879 .sa_family = ARPHRD_ETHER}
1880 };
1881 int associated = priv->status & STATUS_ASSOCIATED;
1882
1883 spin_lock_irqsave(&priv->low_lock, flags);
1884 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1885 priv->resets++;
1886 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1887 priv->status |= STATUS_SECURITY_UPDATED;
1888
1889 /* Force a power cycle even if interface hasn't been opened
1890 * yet */
1891 cancel_delayed_work(&priv->reset_work);
1892 priv->status |= STATUS_RESET_PENDING;
1893 spin_unlock_irqrestore(&priv->low_lock, flags);
1894
1895 mutex_lock(&priv->action_mutex);
1896 /* stop timed checks so that they don't interfere with reset */
1897 priv->stop_hang_check = 1;
1898 cancel_delayed_work(&priv->hang_check);
1899
1900 /* We have to signal any supplicant if we are disassociating */
1901 if (associated)
1902 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1903
1904 ipw2100_up(priv, 0);
1905 mutex_unlock(&priv->action_mutex);
1906
1907}
1908
1909static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1910{
1911
1912#define MAC_ASSOCIATION_READ_DELAY (HZ)
1913 int ret, len, essid_len;
1914 char essid[IW_ESSID_MAX_SIZE];
1915 u32 txrate;
1916 u32 chan;
1917 char *txratename;
1918 u8 bssid[ETH_ALEN];
1919 DECLARE_SSID_BUF(ssid);
1920
1921 /*
1922 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1923 * an actual MAC of the AP. Seems like FW sets this
1924 * address too late. Read it later and expose through
1925 * /proc or schedule a later task to query and update
1926 */
1927
1928 essid_len = IW_ESSID_MAX_SIZE;
1929 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1930 essid, &essid_len);
1931 if (ret) {
1932 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1933 __LINE__);
1934 return;
1935 }
1936
1937 len = sizeof(u32);
1938 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1939 if (ret) {
1940 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1941 __LINE__);
1942 return;
1943 }
1944
1945 len = sizeof(u32);
1946 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1947 if (ret) {
1948 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1949 __LINE__);
1950 return;
1951 }
1952 len = ETH_ALEN;
1953 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1954 if (ret) {
1955 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1956 __LINE__);
1957 return;
1958 }
1959 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1960
1961 switch (txrate) {
1962 case TX_RATE_1_MBIT:
1963 txratename = "1Mbps";
1964 break;
1965 case TX_RATE_2_MBIT:
1966 txratename = "2Mbsp";
1967 break;
1968 case TX_RATE_5_5_MBIT:
1969 txratename = "5.5Mbps";
1970 break;
1971 case TX_RATE_11_MBIT:
1972 txratename = "11Mbps";
1973 break;
1974 default:
1975 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1976 txratename = "unknown rate";
1977 break;
1978 }
1979
1980 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
1981 priv->net_dev->name, print_ssid(ssid, essid, essid_len),
1982 txratename, chan, bssid);
1983
1984 /* now we copy read ssid into dev */
1985 if (!(priv->config & CFG_STATIC_ESSID)) {
1986 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1987 memcpy(priv->essid, essid, priv->essid_len);
1988 }
1989 priv->channel = chan;
1990 memcpy(priv->bssid, bssid, ETH_ALEN);
1991
1992 priv->status |= STATUS_ASSOCIATING;
1993 priv->connect_start = get_seconds();
1994
1995 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1996}
1997
1998static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1999 int length, int batch_mode)
2000{
2001 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2002 struct host_command cmd = {
2003 .host_command = SSID,
2004 .host_command_sequence = 0,
2005 .host_command_length = ssid_len
2006 };
2007 int err;
2008 DECLARE_SSID_BUF(ssid);
2009
2010 IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2011
2012 if (ssid_len)
2013 memcpy(cmd.host_command_parameters, essid, ssid_len);
2014
2015 if (!batch_mode) {
2016 err = ipw2100_disable_adapter(priv);
2017 if (err)
2018 return err;
2019 }
2020
2021 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2022 * disable auto association -- so we cheat by setting a bogus SSID */
2023 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2024 int i;
2025 u8 *bogus = (u8 *) cmd.host_command_parameters;
2026 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2027 bogus[i] = 0x18 + i;
2028 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2029 }
2030
2031 /* NOTE: We always send the SSID command even if the provided ESSID is
2032 * the same as what we currently think is set. */
2033
2034 err = ipw2100_hw_send_command(priv, &cmd);
2035 if (!err) {
2036 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2037 memcpy(priv->essid, essid, ssid_len);
2038 priv->essid_len = ssid_len;
2039 }
2040
2041 if (!batch_mode) {
2042 if (ipw2100_enable_adapter(priv))
2043 err = -EIO;
2044 }
2045
2046 return err;
2047}
2048
2049static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2050{
2051 DECLARE_SSID_BUF(ssid);
2052
2053 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2054 "disassociated: '%s' %pM \n",
2055 print_ssid(ssid, priv->essid, priv->essid_len),
2056 priv->bssid);
2057
2058 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2059
2060 if (priv->status & STATUS_STOPPING) {
2061 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2062 return;
2063 }
2064
2065 memset(priv->bssid, 0, ETH_ALEN);
2066 memset(priv->ieee->bssid, 0, ETH_ALEN);
2067
2068 netif_carrier_off(priv->net_dev);
2069 netif_stop_queue(priv->net_dev);
2070
2071 if (!(priv->status & STATUS_RUNNING))
2072 return;
2073
2074 if (priv->status & STATUS_SECURITY_UPDATED)
2075 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2076
2077 queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2078}
2079
2080static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2081{
2082 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2083 priv->net_dev->name);
2084
2085 /* RF_KILL is now enabled (else we wouldn't be here) */
2086 priv->status |= STATUS_RF_KILL_HW;
2087
2088 /* Make sure the RF Kill check timer is running */
2089 priv->stop_rf_kill = 0;
2090 cancel_delayed_work(&priv->rf_kill);
2091 queue_delayed_work(priv->workqueue, &priv->rf_kill,
2092 round_jiffies_relative(HZ));
2093}
2094
2095static void send_scan_event(void *data)
2096{
2097 struct ipw2100_priv *priv = data;
2098 union iwreq_data wrqu;
2099
2100 wrqu.data.length = 0;
2101 wrqu.data.flags = 0;
2102 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2103}
2104
2105static void ipw2100_scan_event_later(struct work_struct *work)
2106{
2107 send_scan_event(container_of(work, struct ipw2100_priv,
2108 scan_event_later.work));
2109}
2110
2111static void ipw2100_scan_event_now(struct work_struct *work)
2112{
2113 send_scan_event(container_of(work, struct ipw2100_priv,
2114 scan_event_now));
2115}
2116
2117static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2118{
2119 IPW_DEBUG_SCAN("scan complete\n");
2120 /* Age the scan results... */
2121 priv->ieee->scans++;
2122 priv->status &= ~STATUS_SCANNING;
2123
2124 /* Only userspace-requested scan completion events go out immediately */
2125 if (!priv->user_requested_scan) {
2126 if (!delayed_work_pending(&priv->scan_event_later))
2127 queue_delayed_work(priv->workqueue,
2128 &priv->scan_event_later,
2129 round_jiffies_relative(msecs_to_jiffies(4000)));
2130 } else {
2131 priv->user_requested_scan = 0;
2132 cancel_delayed_work(&priv->scan_event_later);
2133 queue_work(priv->workqueue, &priv->scan_event_now);
2134 }
2135}
2136
2137#ifdef CONFIG_IPW2100_DEBUG
2138#define IPW2100_HANDLER(v, f) { v, f, # v }
2139struct ipw2100_status_indicator {
2140 int status;
2141 void (*cb) (struct ipw2100_priv * priv, u32 status);
2142 char *name;
2143};
2144#else
2145#define IPW2100_HANDLER(v, f) { v, f }
2146struct ipw2100_status_indicator {
2147 int status;
2148 void (*cb) (struct ipw2100_priv * priv, u32 status);
2149};
2150#endif /* CONFIG_IPW2100_DEBUG */
2151
2152static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2153{
2154 IPW_DEBUG_SCAN("Scanning...\n");
2155 priv->status |= STATUS_SCANNING;
2156}
2157
2158static const struct ipw2100_status_indicator status_handlers[] = {
2159 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2160 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2161 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2162 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2163 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2164 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2165 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2166 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2167 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2168 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2169 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2170 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2171 IPW2100_HANDLER(-1, NULL)
2172};
2173
2174static void isr_status_change(struct ipw2100_priv *priv, int status)
2175{
2176 int i;
2177
2178 if (status == IPW_STATE_SCANNING &&
2179 priv->status & STATUS_ASSOCIATED &&
2180 !(priv->status & STATUS_SCANNING)) {
2181 IPW_DEBUG_INFO("Scan detected while associated, with "
2182 "no scan request. Restarting firmware.\n");
2183
2184 /* Wake up any sleeping jobs */
2185 schedule_reset(priv);
2186 }
2187
2188 for (i = 0; status_handlers[i].status != -1; i++) {
2189 if (status == status_handlers[i].status) {
2190 IPW_DEBUG_NOTIF("Status change: %s\n",
2191 status_handlers[i].name);
2192 if (status_handlers[i].cb)
2193 status_handlers[i].cb(priv, status);
2194 priv->wstats.status = status;
2195 return;
2196 }
2197 }
2198
2199 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2200}
2201
2202static void isr_rx_complete_command(struct ipw2100_priv *priv,
2203 struct ipw2100_cmd_header *cmd)
2204{
2205#ifdef CONFIG_IPW2100_DEBUG
2206 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2207 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2208 command_types[cmd->host_command_reg],
2209 cmd->host_command_reg);
2210 }
2211#endif
2212 if (cmd->host_command_reg == HOST_COMPLETE)
2213 priv->status |= STATUS_ENABLED;
2214
2215 if (cmd->host_command_reg == CARD_DISABLE)
2216 priv->status &= ~STATUS_ENABLED;
2217
2218 priv->status &= ~STATUS_CMD_ACTIVE;
2219
2220 wake_up_interruptible(&priv->wait_command_queue);
2221}
2222
2223#ifdef CONFIG_IPW2100_DEBUG
2224static const char *frame_types[] = {
2225 "COMMAND_STATUS_VAL",
2226 "STATUS_CHANGE_VAL",
2227 "P80211_DATA_VAL",
2228 "P8023_DATA_VAL",
2229 "HOST_NOTIFICATION_VAL"
2230};
2231#endif
2232
2233static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2234 struct ipw2100_rx_packet *packet)
2235{
2236 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2237 if (!packet->skb)
2238 return -ENOMEM;
2239
2240 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2241 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2242 sizeof(struct ipw2100_rx),
2243 PCI_DMA_FROMDEVICE);
2244 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2245 * dma_addr */
2246
2247 return 0;
2248}
2249
2250#define SEARCH_ERROR 0xffffffff
2251#define SEARCH_FAIL 0xfffffffe
2252#define SEARCH_SUCCESS 0xfffffff0
2253#define SEARCH_DISCARD 0
2254#define SEARCH_SNAPSHOT 1
2255
2256#define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2257static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2258{
2259 int i;
2260 if (!priv->snapshot[0])
2261 return;
2262 for (i = 0; i < 0x30; i++)
2263 kfree(priv->snapshot[i]);
2264 priv->snapshot[0] = NULL;
2265}
2266
2267#ifdef IPW2100_DEBUG_C3
2268static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2269{
2270 int i;
2271 if (priv->snapshot[0])
2272 return 1;
2273 for (i = 0; i < 0x30; i++) {
2274 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2275 if (!priv->snapshot[i]) {
2276 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2277 "buffer %d\n", priv->net_dev->name, i);
2278 while (i > 0)
2279 kfree(priv->snapshot[--i]);
2280 priv->snapshot[0] = NULL;
2281 return 0;
2282 }
2283 }
2284
2285 return 1;
2286}
2287
2288static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2289 size_t len, int mode)
2290{
2291 u32 i, j;
2292 u32 tmp;
2293 u8 *s, *d;
2294 u32 ret;
2295
2296 s = in_buf;
2297 if (mode == SEARCH_SNAPSHOT) {
2298 if (!ipw2100_snapshot_alloc(priv))
2299 mode = SEARCH_DISCARD;
2300 }
2301
2302 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2303 read_nic_dword(priv->net_dev, i, &tmp);
2304 if (mode == SEARCH_SNAPSHOT)
2305 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2306 if (ret == SEARCH_FAIL) {
2307 d = (u8 *) & tmp;
2308 for (j = 0; j < 4; j++) {
2309 if (*s != *d) {
2310 s = in_buf;
2311 continue;
2312 }
2313
2314 s++;
2315 d++;
2316
2317 if ((s - in_buf) == len)
2318 ret = (i + j) - len + 1;
2319 }
2320 } else if (mode == SEARCH_DISCARD)
2321 return ret;
2322 }
2323
2324 return ret;
2325}
2326#endif
2327
2328/*
2329 *
2330 * 0) Disconnect the SKB from the firmware (just unmap)
2331 * 1) Pack the ETH header into the SKB
2332 * 2) Pass the SKB to the network stack
2333 *
2334 * When packet is provided by the firmware, it contains the following:
2335 *
2336 * . ieee80211_hdr
2337 * . ieee80211_snap_hdr
2338 *
2339 * The size of the constructed ethernet
2340 *
2341 */
2342#ifdef IPW2100_RX_DEBUG
2343static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2344#endif
2345
2346static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2347{
2348#ifdef IPW2100_DEBUG_C3
2349 struct ipw2100_status *status = &priv->status_queue.drv[i];
2350 u32 match, reg;
2351 int j;
2352#endif
2353
2354 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2355 i * sizeof(struct ipw2100_status));
2356
2357#ifdef IPW2100_DEBUG_C3
2358 /* Halt the fimrware so we can get a good image */
2359 write_register(priv->net_dev, IPW_REG_RESET_REG,
2360 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2361 j = 5;
2362 do {
2363 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2364 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2365
2366 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2367 break;
2368 } while (j--);
2369
2370 match = ipw2100_match_buf(priv, (u8 *) status,
2371 sizeof(struct ipw2100_status),
2372 SEARCH_SNAPSHOT);
2373 if (match < SEARCH_SUCCESS)
2374 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2375 "offset 0x%06X, length %d:\n",
2376 priv->net_dev->name, match,
2377 sizeof(struct ipw2100_status));
2378 else
2379 IPW_DEBUG_INFO("%s: No DMA status match in "
2380 "Firmware.\n", priv->net_dev->name);
2381
2382 printk_buf((u8 *) priv->status_queue.drv,
2383 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2384#endif
2385
2386 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2387 priv->ieee->stats.rx_errors++;
2388 schedule_reset(priv);
2389}
2390
2391static void isr_rx(struct ipw2100_priv *priv, int i,
2392 struct ieee80211_rx_stats *stats)
2393{
2394 struct ipw2100_status *status = &priv->status_queue.drv[i];
2395 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2396
2397 IPW_DEBUG_RX("Handler...\n");
2398
2399 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2400 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2401 " Dropping.\n",
2402 priv->net_dev->name,
2403 status->frame_size, skb_tailroom(packet->skb));
2404 priv->ieee->stats.rx_errors++;
2405 return;
2406 }
2407
2408 if (unlikely(!netif_running(priv->net_dev))) {
2409 priv->ieee->stats.rx_errors++;
2410 priv->wstats.discard.misc++;
2411 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2412 return;
2413 }
2414
2415 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2416 !(priv->status & STATUS_ASSOCIATED))) {
2417 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2418 priv->wstats.discard.misc++;
2419 return;
2420 }
2421
2422 pci_unmap_single(priv->pci_dev,
2423 packet->dma_addr,
2424 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2425
2426 skb_put(packet->skb, status->frame_size);
2427
2428#ifdef IPW2100_RX_DEBUG
2429 /* Make a copy of the frame so we can dump it to the logs if
2430 * ieee80211_rx fails */
2431 skb_copy_from_linear_data(packet->skb, packet_data,
2432 min_t(u32, status->frame_size,
2433 IPW_RX_NIC_BUFFER_LENGTH));
2434#endif
2435
2436 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2437#ifdef IPW2100_RX_DEBUG
2438 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2439 priv->net_dev->name);
2440 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2441#endif
2442 priv->ieee->stats.rx_errors++;
2443
2444 /* ieee80211_rx failed, so it didn't free the SKB */
2445 dev_kfree_skb_any(packet->skb);
2446 packet->skb = NULL;
2447 }
2448
2449 /* We need to allocate a new SKB and attach it to the RDB. */
2450 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2451 printk(KERN_WARNING DRV_NAME ": "
2452 "%s: Unable to allocate SKB onto RBD ring - disabling "
2453 "adapter.\n", priv->net_dev->name);
2454 /* TODO: schedule adapter shutdown */
2455 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2456 }
2457
2458 /* Update the RDB entry */
2459 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2460}
2461
2462#ifdef CONFIG_IPW2100_MONITOR
2463
2464static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2465 struct ieee80211_rx_stats *stats)
2466{
2467 struct ipw2100_status *status = &priv->status_queue.drv[i];
2468 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2469
2470 /* Magic struct that slots into the radiotap header -- no reason
2471 * to build this manually element by element, we can write it much
2472 * more efficiently than we can parse it. ORDER MATTERS HERE */
2473 struct ipw_rt_hdr {
2474 struct ieee80211_radiotap_header rt_hdr;
2475 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2476 } *ipw_rt;
2477
2478 IPW_DEBUG_RX("Handler...\n");
2479
2480 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2481 sizeof(struct ipw_rt_hdr))) {
2482 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2483 " Dropping.\n",
2484 priv->net_dev->name,
2485 status->frame_size,
2486 skb_tailroom(packet->skb));
2487 priv->ieee->stats.rx_errors++;
2488 return;
2489 }
2490
2491 if (unlikely(!netif_running(priv->net_dev))) {
2492 priv->ieee->stats.rx_errors++;
2493 priv->wstats.discard.misc++;
2494 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2495 return;
2496 }
2497
2498 if (unlikely(priv->config & CFG_CRC_CHECK &&
2499 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2500 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2501 priv->ieee->stats.rx_errors++;
2502 return;
2503 }
2504
2505 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2506 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2507 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2508 packet->skb->data, status->frame_size);
2509
2510 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2511
2512 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2513 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2514 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2515
2516 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2517
2518 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2519
2520 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2521
2522 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2523 priv->ieee->stats.rx_errors++;
2524
2525 /* ieee80211_rx failed, so it didn't free the SKB */
2526 dev_kfree_skb_any(packet->skb);
2527 packet->skb = NULL;
2528 }
2529
2530 /* We need to allocate a new SKB and attach it to the RDB. */
2531 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2532 IPW_DEBUG_WARNING(
2533 "%s: Unable to allocate SKB onto RBD ring - disabling "
2534 "adapter.\n", priv->net_dev->name);
2535 /* TODO: schedule adapter shutdown */
2536 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2537 }
2538
2539 /* Update the RDB entry */
2540 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2541}
2542
2543#endif
2544
2545static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2546{
2547 struct ipw2100_status *status = &priv->status_queue.drv[i];
2548 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2549 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2550
2551 switch (frame_type) {
2552 case COMMAND_STATUS_VAL:
2553 return (status->frame_size != sizeof(u->rx_data.command));
2554 case STATUS_CHANGE_VAL:
2555 return (status->frame_size != sizeof(u->rx_data.status));
2556 case HOST_NOTIFICATION_VAL:
2557 return (status->frame_size < sizeof(u->rx_data.notification));
2558 case P80211_DATA_VAL:
2559 case P8023_DATA_VAL:
2560#ifdef CONFIG_IPW2100_MONITOR
2561 return 0;
2562#else
2563 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2564 case IEEE80211_FTYPE_MGMT:
2565 case IEEE80211_FTYPE_CTL:
2566 return 0;
2567 case IEEE80211_FTYPE_DATA:
2568 return (status->frame_size >
2569 IPW_MAX_802_11_PAYLOAD_LENGTH);
2570 }
2571#endif
2572 }
2573
2574 return 1;
2575}
2576
2577/*
2578 * ipw2100 interrupts are disabled at this point, and the ISR
2579 * is the only code that calls this method. So, we do not need
2580 * to play with any locks.
2581 *
2582 * RX Queue works as follows:
2583 *
2584 * Read index - firmware places packet in entry identified by the
2585 * Read index and advances Read index. In this manner,
2586 * Read index will always point to the next packet to
2587 * be filled--but not yet valid.
2588 *
2589 * Write index - driver fills this entry with an unused RBD entry.
2590 * This entry has not filled by the firmware yet.
2591 *
2592 * In between the W and R indexes are the RBDs that have been received
2593 * but not yet processed.
2594 *
2595 * The process of handling packets will start at WRITE + 1 and advance
2596 * until it reaches the READ index.
2597 *
2598 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2599 *
2600 */
2601static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2602{
2603 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2604 struct ipw2100_status_queue *sq = &priv->status_queue;
2605 struct ipw2100_rx_packet *packet;
2606 u16 frame_type;
2607 u32 r, w, i, s;
2608 struct ipw2100_rx *u;
2609 struct ieee80211_rx_stats stats = {
2610 .mac_time = jiffies,
2611 };
2612
2613 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2614 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2615
2616 if (r >= rxq->entries) {
2617 IPW_DEBUG_RX("exit - bad read index\n");
2618 return;
2619 }
2620
2621 i = (rxq->next + 1) % rxq->entries;
2622 s = i;
2623 while (i != r) {
2624 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2625 r, rxq->next, i); */
2626
2627 packet = &priv->rx_buffers[i];
2628
2629 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2630 * the correct values */
2631 pci_dma_sync_single_for_cpu(priv->pci_dev,
2632 sq->nic +
2633 sizeof(struct ipw2100_status) * i,
2634 sizeof(struct ipw2100_status),
2635 PCI_DMA_FROMDEVICE);
2636
2637 /* Sync the DMA for the RX buffer so CPU is sure to get
2638 * the correct values */
2639 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2640 sizeof(struct ipw2100_rx),
2641 PCI_DMA_FROMDEVICE);
2642
2643 if (unlikely(ipw2100_corruption_check(priv, i))) {
2644 ipw2100_corruption_detected(priv, i);
2645 goto increment;
2646 }
2647
2648 u = packet->rxp;
2649 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2650 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2651 stats.len = sq->drv[i].frame_size;
2652
2653 stats.mask = 0;
2654 if (stats.rssi != 0)
2655 stats.mask |= IEEE80211_STATMASK_RSSI;
2656 stats.freq = IEEE80211_24GHZ_BAND;
2657
2658 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2659 priv->net_dev->name, frame_types[frame_type],
2660 stats.len);
2661
2662 switch (frame_type) {
2663 case COMMAND_STATUS_VAL:
2664 /* Reset Rx watchdog */
2665 isr_rx_complete_command(priv, &u->rx_data.command);
2666 break;
2667
2668 case STATUS_CHANGE_VAL:
2669 isr_status_change(priv, u->rx_data.status);
2670 break;
2671
2672 case P80211_DATA_VAL:
2673 case P8023_DATA_VAL:
2674#ifdef CONFIG_IPW2100_MONITOR
2675 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2676 isr_rx_monitor(priv, i, &stats);
2677 break;
2678 }
2679#endif
2680 if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2681 break;
2682 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2683 case IEEE80211_FTYPE_MGMT:
2684 ieee80211_rx_mgt(priv->ieee,
2685 &u->rx_data.header, &stats);
2686 break;
2687
2688 case IEEE80211_FTYPE_CTL:
2689 break;
2690
2691 case IEEE80211_FTYPE_DATA:
2692 isr_rx(priv, i, &stats);
2693 break;
2694
2695 }
2696 break;
2697 }
2698
2699 increment:
2700 /* clear status field associated with this RBD */
2701 rxq->drv[i].status.info.field = 0;
2702
2703 i = (i + 1) % rxq->entries;
2704 }
2705
2706 if (i != s) {
2707 /* backtrack one entry, wrapping to end if at 0 */
2708 rxq->next = (i ? i : rxq->entries) - 1;
2709
2710 write_register(priv->net_dev,
2711 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2712 }
2713}
2714
2715/*
2716 * __ipw2100_tx_process
2717 *
2718 * This routine will determine whether the next packet on
2719 * the fw_pend_list has been processed by the firmware yet.
2720 *
2721 * If not, then it does nothing and returns.
2722 *
2723 * If so, then it removes the item from the fw_pend_list, frees
2724 * any associated storage, and places the item back on the
2725 * free list of its source (either msg_free_list or tx_free_list)
2726 *
2727 * TX Queue works as follows:
2728 *
2729 * Read index - points to the next TBD that the firmware will
2730 * process. The firmware will read the data, and once
2731 * done processing, it will advance the Read index.
2732 *
2733 * Write index - driver fills this entry with an constructed TBD
2734 * entry. The Write index is not advanced until the
2735 * packet has been configured.
2736 *
2737 * In between the W and R indexes are the TBDs that have NOT been
2738 * processed. Lagging behind the R index are packets that have
2739 * been processed but have not been freed by the driver.
2740 *
2741 * In order to free old storage, an internal index will be maintained
2742 * that points to the next packet to be freed. When all used
2743 * packets have been freed, the oldest index will be the same as the
2744 * firmware's read index.
2745 *
2746 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2747 *
2748 * Because the TBD structure can not contain arbitrary data, the
2749 * driver must keep an internal queue of cached allocations such that
2750 * it can put that data back into the tx_free_list and msg_free_list
2751 * for use by future command and data packets.
2752 *
2753 */
2754static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2755{
2756 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2757 struct ipw2100_bd *tbd;
2758 struct list_head *element;
2759 struct ipw2100_tx_packet *packet;
2760 int descriptors_used;
2761 int e, i;
2762 u32 r, w, frag_num = 0;
2763
2764 if (list_empty(&priv->fw_pend_list))
2765 return 0;
2766
2767 element = priv->fw_pend_list.next;
2768
2769 packet = list_entry(element, struct ipw2100_tx_packet, list);
2770 tbd = &txq->drv[packet->index];
2771
2772 /* Determine how many TBD entries must be finished... */
2773 switch (packet->type) {
2774 case COMMAND:
2775 /* COMMAND uses only one slot; don't advance */
2776 descriptors_used = 1;
2777 e = txq->oldest;
2778 break;
2779
2780 case DATA:
2781 /* DATA uses two slots; advance and loop position. */
2782 descriptors_used = tbd->num_fragments;
2783 frag_num = tbd->num_fragments - 1;
2784 e = txq->oldest + frag_num;
2785 e %= txq->entries;
2786 break;
2787
2788 default:
2789 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2790 priv->net_dev->name);
2791 return 0;
2792 }
2793
2794 /* if the last TBD is not done by NIC yet, then packet is
2795 * not ready to be released.
2796 *
2797 */
2798 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2799 &r);
2800 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2801 &w);
2802 if (w != txq->next)
2803 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2804 priv->net_dev->name);
2805
2806 /*
2807 * txq->next is the index of the last packet written txq->oldest is
2808 * the index of the r is the index of the next packet to be read by
2809 * firmware
2810 */
2811
2812 /*
2813 * Quick graphic to help you visualize the following
2814 * if / else statement
2815 *
2816 * ===>| s---->|===============
2817 * e>|
2818 * | a | b | c | d | e | f | g | h | i | j | k | l
2819 * r---->|
2820 * w
2821 *
2822 * w - updated by driver
2823 * r - updated by firmware
2824 * s - start of oldest BD entry (txq->oldest)
2825 * e - end of oldest BD entry
2826 *
2827 */
2828 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2829 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2830 return 0;
2831 }
2832
2833 list_del(element);
2834 DEC_STAT(&priv->fw_pend_stat);
2835
2836#ifdef CONFIG_IPW2100_DEBUG
2837 {
2838 int i = txq->oldest;
2839 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2840 &txq->drv[i],
2841 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2842 txq->drv[i].host_addr, txq->drv[i].buf_length);
2843
2844 if (packet->type == DATA) {
2845 i = (i + 1) % txq->entries;
2846
2847 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2848 &txq->drv[i],
2849 (u32) (txq->nic + i *
2850 sizeof(struct ipw2100_bd)),
2851 (u32) txq->drv[i].host_addr,
2852 txq->drv[i].buf_length);
2853 }
2854 }
2855#endif
2856
2857 switch (packet->type) {
2858 case DATA:
2859 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2860 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2861 "Expecting DATA TBD but pulled "
2862 "something else: ids %d=%d.\n",
2863 priv->net_dev->name, txq->oldest, packet->index);
2864
2865 /* DATA packet; we have to unmap and free the SKB */
2866 for (i = 0; i < frag_num; i++) {
2867 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2868
2869 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2870 (packet->index + 1 + i) % txq->entries,
2871 tbd->host_addr, tbd->buf_length);
2872
2873 pci_unmap_single(priv->pci_dev,
2874 tbd->host_addr,
2875 tbd->buf_length, PCI_DMA_TODEVICE);
2876 }
2877
2878 ieee80211_txb_free(packet->info.d_struct.txb);
2879 packet->info.d_struct.txb = NULL;
2880
2881 list_add_tail(element, &priv->tx_free_list);
2882 INC_STAT(&priv->tx_free_stat);
2883
2884 /* We have a free slot in the Tx queue, so wake up the
2885 * transmit layer if it is stopped. */
2886 if (priv->status & STATUS_ASSOCIATED)
2887 netif_wake_queue(priv->net_dev);
2888
2889 /* A packet was processed by the hardware, so update the
2890 * watchdog */
2891 priv->net_dev->trans_start = jiffies;
2892
2893 break;
2894
2895 case COMMAND:
2896 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2897 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2898 "Expecting COMMAND TBD but pulled "
2899 "something else: ids %d=%d.\n",
2900 priv->net_dev->name, txq->oldest, packet->index);
2901
2902#ifdef CONFIG_IPW2100_DEBUG
2903 if (packet->info.c_struct.cmd->host_command_reg <
2904 ARRAY_SIZE(command_types))
2905 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2906 command_types[packet->info.c_struct.cmd->
2907 host_command_reg],
2908 packet->info.c_struct.cmd->
2909 host_command_reg,
2910 packet->info.c_struct.cmd->cmd_status_reg);
2911#endif
2912
2913 list_add_tail(element, &priv->msg_free_list);
2914 INC_STAT(&priv->msg_free_stat);
2915 break;
2916 }
2917
2918 /* advance oldest used TBD pointer to start of next entry */
2919 txq->oldest = (e + 1) % txq->entries;
2920 /* increase available TBDs number */
2921 txq->available += descriptors_used;
2922 SET_STAT(&priv->txq_stat, txq->available);
2923
2924 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2925 jiffies - packet->jiffy_start);
2926
2927 return (!list_empty(&priv->fw_pend_list));
2928}
2929
2930static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2931{
2932 int i = 0;
2933
2934 while (__ipw2100_tx_process(priv) && i < 200)
2935 i++;
2936
2937 if (i == 200) {
2938 printk(KERN_WARNING DRV_NAME ": "
2939 "%s: Driver is running slow (%d iters).\n",
2940 priv->net_dev->name, i);
2941 }
2942}
2943
2944static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2945{
2946 struct list_head *element;
2947 struct ipw2100_tx_packet *packet;
2948 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2949 struct ipw2100_bd *tbd;
2950 int next = txq->next;
2951
2952 while (!list_empty(&priv->msg_pend_list)) {
2953 /* if there isn't enough space in TBD queue, then
2954 * don't stuff a new one in.
2955 * NOTE: 3 are needed as a command will take one,
2956 * and there is a minimum of 2 that must be
2957 * maintained between the r and w indexes
2958 */
2959 if (txq->available <= 3) {
2960 IPW_DEBUG_TX("no room in tx_queue\n");
2961 break;
2962 }
2963
2964 element = priv->msg_pend_list.next;
2965 list_del(element);
2966 DEC_STAT(&priv->msg_pend_stat);
2967
2968 packet = list_entry(element, struct ipw2100_tx_packet, list);
2969
2970 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2971 &txq->drv[txq->next],
2972 (void *)(txq->nic + txq->next *
2973 sizeof(struct ipw2100_bd)));
2974
2975 packet->index = txq->next;
2976
2977 tbd = &txq->drv[txq->next];
2978
2979 /* initialize TBD */
2980 tbd->host_addr = packet->info.c_struct.cmd_phys;
2981 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2982 /* not marking number of fragments causes problems
2983 * with f/w debug version */
2984 tbd->num_fragments = 1;
2985 tbd->status.info.field =
2986 IPW_BD_STATUS_TX_FRAME_COMMAND |
2987 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2988
2989 /* update TBD queue counters */
2990 txq->next++;
2991 txq->next %= txq->entries;
2992 txq->available--;
2993 DEC_STAT(&priv->txq_stat);
2994
2995 list_add_tail(element, &priv->fw_pend_list);
2996 INC_STAT(&priv->fw_pend_stat);
2997 }
2998
2999 if (txq->next != next) {
3000 /* kick off the DMA by notifying firmware the
3001 * write index has moved; make sure TBD stores are sync'd */
3002 wmb();
3003 write_register(priv->net_dev,
3004 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3005 txq->next);
3006 }
3007}
3008
3009/*
3010 * ipw2100_tx_send_data
3011 *
3012 */
3013static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3014{
3015 struct list_head *element;
3016 struct ipw2100_tx_packet *packet;
3017 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3018 struct ipw2100_bd *tbd;
3019 int next = txq->next;
3020 int i = 0;
3021 struct ipw2100_data_header *ipw_hdr;
3022 struct ieee80211_hdr_3addr *hdr;
3023
3024 while (!list_empty(&priv->tx_pend_list)) {
3025 /* if there isn't enough space in TBD queue, then
3026 * don't stuff a new one in.
3027 * NOTE: 4 are needed as a data will take two,
3028 * and there is a minimum of 2 that must be
3029 * maintained between the r and w indexes
3030 */
3031 element = priv->tx_pend_list.next;
3032 packet = list_entry(element, struct ipw2100_tx_packet, list);
3033
3034 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3035 IPW_MAX_BDS)) {
3036 /* TODO: Support merging buffers if more than
3037 * IPW_MAX_BDS are used */
3038 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
3039 "Increase fragmentation level.\n",
3040 priv->net_dev->name);
3041 }
3042
3043 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3044 IPW_DEBUG_TX("no room in tx_queue\n");
3045 break;
3046 }
3047
3048 list_del(element);
3049 DEC_STAT(&priv->tx_pend_stat);
3050
3051 tbd = &txq->drv[txq->next];
3052
3053 packet->index = txq->next;
3054
3055 ipw_hdr = packet->info.d_struct.data;
3056 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3057 fragments[0]->data;
3058
3059 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3060 /* To DS: Addr1 = BSSID, Addr2 = SA,
3061 Addr3 = DA */
3062 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3063 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3064 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3065 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3066 Addr3 = BSSID */
3067 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3068 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3069 }
3070
3071 ipw_hdr->host_command_reg = SEND;
3072 ipw_hdr->host_command_reg1 = 0;
3073
3074 /* For now we only support host based encryption */
3075 ipw_hdr->needs_encryption = 0;
3076 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3077 if (packet->info.d_struct.txb->nr_frags > 1)
3078 ipw_hdr->fragment_size =
3079 packet->info.d_struct.txb->frag_size -
3080 IEEE80211_3ADDR_LEN;
3081 else
3082 ipw_hdr->fragment_size = 0;
3083
3084 tbd->host_addr = packet->info.d_struct.data_phys;
3085 tbd->buf_length = sizeof(struct ipw2100_data_header);
3086 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3087 tbd->status.info.field =
3088 IPW_BD_STATUS_TX_FRAME_802_3 |
3089 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3090 txq->next++;
3091 txq->next %= txq->entries;
3092
3093 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3094 packet->index, tbd->host_addr, tbd->buf_length);
3095#ifdef CONFIG_IPW2100_DEBUG
3096 if (packet->info.d_struct.txb->nr_frags > 1)
3097 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3098 packet->info.d_struct.txb->nr_frags);
3099#endif
3100
3101 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3102 tbd = &txq->drv[txq->next];
3103 if (i == packet->info.d_struct.txb->nr_frags - 1)
3104 tbd->status.info.field =
3105 IPW_BD_STATUS_TX_FRAME_802_3 |
3106 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3107 else
3108 tbd->status.info.field =
3109 IPW_BD_STATUS_TX_FRAME_802_3 |
3110 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3111
3112 tbd->buf_length = packet->info.d_struct.txb->
3113 fragments[i]->len - IEEE80211_3ADDR_LEN;
3114
3115 tbd->host_addr = pci_map_single(priv->pci_dev,
3116 packet->info.d_struct.
3117 txb->fragments[i]->
3118 data +
3119 IEEE80211_3ADDR_LEN,
3120 tbd->buf_length,
3121 PCI_DMA_TODEVICE);
3122
3123 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3124 txq->next, tbd->host_addr,
3125 tbd->buf_length);
3126
3127 pci_dma_sync_single_for_device(priv->pci_dev,
3128 tbd->host_addr,
3129 tbd->buf_length,
3130 PCI_DMA_TODEVICE);
3131
3132 txq->next++;
3133 txq->next %= txq->entries;
3134 }
3135
3136 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3137 SET_STAT(&priv->txq_stat, txq->available);
3138
3139 list_add_tail(element, &priv->fw_pend_list);
3140 INC_STAT(&priv->fw_pend_stat);
3141 }
3142
3143 if (txq->next != next) {
3144 /* kick off the DMA by notifying firmware the
3145 * write index has moved; make sure TBD stores are sync'd */
3146 write_register(priv->net_dev,
3147 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3148 txq->next);
3149 }
3150 return;
3151}
3152
3153static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3154{
3155 struct net_device *dev = priv->net_dev;
3156 unsigned long flags;
3157 u32 inta, tmp;
3158
3159 spin_lock_irqsave(&priv->low_lock, flags);
3160 ipw2100_disable_interrupts(priv);
3161
3162 read_register(dev, IPW_REG_INTA, &inta);
3163
3164 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3165 (unsigned long)inta & IPW_INTERRUPT_MASK);
3166
3167 priv->in_isr++;
3168 priv->interrupts++;
3169
3170 /* We do not loop and keep polling for more interrupts as this
3171 * is frowned upon and doesn't play nicely with other potentially
3172 * chained IRQs */
3173 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3174 (unsigned long)inta & IPW_INTERRUPT_MASK);
3175
3176 if (inta & IPW2100_INTA_FATAL_ERROR) {
3177 printk(KERN_WARNING DRV_NAME
3178 ": Fatal interrupt. Scheduling firmware restart.\n");
3179 priv->inta_other++;
3180 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3181
3182 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3183 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3184 priv->net_dev->name, priv->fatal_error);
3185
3186 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3187 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3188 priv->net_dev->name, tmp);
3189
3190 /* Wake up any sleeping jobs */
3191 schedule_reset(priv);
3192 }
3193
3194 if (inta & IPW2100_INTA_PARITY_ERROR) {
3195 printk(KERN_ERR DRV_NAME
3196 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3197 priv->inta_other++;
3198 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3199 }
3200
3201 if (inta & IPW2100_INTA_RX_TRANSFER) {
3202 IPW_DEBUG_ISR("RX interrupt\n");
3203
3204 priv->rx_interrupts++;
3205
3206 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3207
3208 __ipw2100_rx_process(priv);
3209 __ipw2100_tx_complete(priv);
3210 }
3211
3212 if (inta & IPW2100_INTA_TX_TRANSFER) {
3213 IPW_DEBUG_ISR("TX interrupt\n");
3214
3215 priv->tx_interrupts++;
3216
3217 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3218
3219 __ipw2100_tx_complete(priv);
3220 ipw2100_tx_send_commands(priv);
3221 ipw2100_tx_send_data(priv);
3222 }
3223
3224 if (inta & IPW2100_INTA_TX_COMPLETE) {
3225 IPW_DEBUG_ISR("TX complete\n");
3226 priv->inta_other++;
3227 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3228
3229 __ipw2100_tx_complete(priv);
3230 }
3231
3232 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3233 /* ipw2100_handle_event(dev); */
3234 priv->inta_other++;
3235 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3236 }
3237
3238 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3239 IPW_DEBUG_ISR("FW init done interrupt\n");
3240 priv->inta_other++;
3241
3242 read_register(dev, IPW_REG_INTA, &tmp);
3243 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3244 IPW2100_INTA_PARITY_ERROR)) {
3245 write_register(dev, IPW_REG_INTA,
3246 IPW2100_INTA_FATAL_ERROR |
3247 IPW2100_INTA_PARITY_ERROR);
3248 }
3249
3250 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3251 }
3252
3253 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3254 IPW_DEBUG_ISR("Status change interrupt\n");
3255 priv->inta_other++;
3256 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3257 }
3258
3259 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3260 IPW_DEBUG_ISR("slave host mode interrupt\n");
3261 priv->inta_other++;
3262 write_register(dev, IPW_REG_INTA,
3263 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3264 }
3265
3266 priv->in_isr--;
3267 ipw2100_enable_interrupts(priv);
3268
3269 spin_unlock_irqrestore(&priv->low_lock, flags);
3270
3271 IPW_DEBUG_ISR("exit\n");
3272}
3273
3274static irqreturn_t ipw2100_interrupt(int irq, void *data)
3275{
3276 struct ipw2100_priv *priv = data;
3277 u32 inta, inta_mask;
3278
3279 if (!data)
3280 return IRQ_NONE;
3281
3282 spin_lock(&priv->low_lock);
3283
3284 /* We check to see if we should be ignoring interrupts before
3285 * we touch the hardware. During ucode load if we try and handle
3286 * an interrupt we can cause keyboard problems as well as cause
3287 * the ucode to fail to initialize */
3288 if (!(priv->status & STATUS_INT_ENABLED)) {
3289 /* Shared IRQ */
3290 goto none;
3291 }
3292
3293 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3294 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3295
3296 if (inta == 0xFFFFFFFF) {
3297 /* Hardware disappeared */
3298 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3299 goto none;
3300 }
3301
3302 inta &= IPW_INTERRUPT_MASK;
3303
3304 if (!(inta & inta_mask)) {
3305 /* Shared interrupt */
3306 goto none;
3307 }
3308
3309 /* We disable the hardware interrupt here just to prevent unneeded
3310 * calls to be made. We disable this again within the actual
3311 * work tasklet, so if another part of the code re-enables the
3312 * interrupt, that is fine */
3313 ipw2100_disable_interrupts(priv);
3314
3315 tasklet_schedule(&priv->irq_tasklet);
3316 spin_unlock(&priv->low_lock);
3317
3318 return IRQ_HANDLED;
3319 none:
3320 spin_unlock(&priv->low_lock);
3321 return IRQ_NONE;
3322}
3323
3324static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3325 int pri)
3326{
3327 struct ipw2100_priv *priv = ieee80211_priv(dev);
3328 struct list_head *element;
3329 struct ipw2100_tx_packet *packet;
3330 unsigned long flags;
3331
3332 spin_lock_irqsave(&priv->low_lock, flags);
3333
3334 if (!(priv->status & STATUS_ASSOCIATED)) {
3335 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3336 priv->ieee->stats.tx_carrier_errors++;
3337 netif_stop_queue(dev);
3338 goto fail_unlock;
3339 }
3340
3341 if (list_empty(&priv->tx_free_list))
3342 goto fail_unlock;
3343
3344 element = priv->tx_free_list.next;
3345 packet = list_entry(element, struct ipw2100_tx_packet, list);
3346
3347 packet->info.d_struct.txb = txb;
3348
3349 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3350 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3351
3352 packet->jiffy_start = jiffies;
3353
3354 list_del(element);
3355 DEC_STAT(&priv->tx_free_stat);
3356
3357 list_add_tail(element, &priv->tx_pend_list);
3358 INC_STAT(&priv->tx_pend_stat);
3359
3360 ipw2100_tx_send_data(priv);
3361
3362 spin_unlock_irqrestore(&priv->low_lock, flags);
3363 return 0;
3364
3365 fail_unlock:
3366 netif_stop_queue(dev);
3367 spin_unlock_irqrestore(&priv->low_lock, flags);
3368 return 1;
3369}
3370
3371static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3372{
3373 int i, j, err = -EINVAL;
3374 void *v;
3375 dma_addr_t p;
3376
3377 priv->msg_buffers =
3378 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3379 sizeof(struct
3380 ipw2100_tx_packet),
3381 GFP_KERNEL);
3382 if (!priv->msg_buffers) {
3383 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3384 "buffers.\n", priv->net_dev->name);
3385 return -ENOMEM;
3386 }
3387
3388 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3389 v = pci_alloc_consistent(priv->pci_dev,
3390 sizeof(struct ipw2100_cmd_header), &p);
3391 if (!v) {
3392 printk(KERN_ERR DRV_NAME ": "
3393 "%s: PCI alloc failed for msg "
3394 "buffers.\n", priv->net_dev->name);
3395 err = -ENOMEM;
3396 break;
3397 }
3398
3399 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3400
3401 priv->msg_buffers[i].type = COMMAND;
3402 priv->msg_buffers[i].info.c_struct.cmd =
3403 (struct ipw2100_cmd_header *)v;
3404 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3405 }
3406
3407 if (i == IPW_COMMAND_POOL_SIZE)
3408 return 0;
3409
3410 for (j = 0; j < i; j++) {
3411 pci_free_consistent(priv->pci_dev,
3412 sizeof(struct ipw2100_cmd_header),
3413 priv->msg_buffers[j].info.c_struct.cmd,
3414 priv->msg_buffers[j].info.c_struct.
3415 cmd_phys);
3416 }
3417
3418 kfree(priv->msg_buffers);
3419 priv->msg_buffers = NULL;
3420
3421 return err;
3422}
3423
3424static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3425{
3426 int i;
3427
3428 INIT_LIST_HEAD(&priv->msg_free_list);
3429 INIT_LIST_HEAD(&priv->msg_pend_list);
3430
3431 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3432 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3433 SET_STAT(&priv->msg_free_stat, i);
3434
3435 return 0;
3436}
3437
3438static void ipw2100_msg_free(struct ipw2100_priv *priv)
3439{
3440 int i;
3441
3442 if (!priv->msg_buffers)
3443 return;
3444
3445 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3446 pci_free_consistent(priv->pci_dev,
3447 sizeof(struct ipw2100_cmd_header),
3448 priv->msg_buffers[i].info.c_struct.cmd,
3449 priv->msg_buffers[i].info.c_struct.
3450 cmd_phys);
3451 }
3452
3453 kfree(priv->msg_buffers);
3454 priv->msg_buffers = NULL;
3455}
3456
3457static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3458 char *buf)
3459{
3460 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3461 char *out = buf;
3462 int i, j;
3463 u32 val;
3464
3465 for (i = 0; i < 16; i++) {
3466 out += sprintf(out, "[%08X] ", i * 16);
3467 for (j = 0; j < 16; j += 4) {
3468 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3469 out += sprintf(out, "%08X ", val);
3470 }
3471 out += sprintf(out, "\n");
3472 }
3473
3474 return out - buf;
3475}
3476
3477static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3478
3479static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3480 char *buf)
3481{
3482 struct ipw2100_priv *p = d->driver_data;
3483 return sprintf(buf, "0x%08x\n", (int)p->config);
3484}
3485
3486static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3487
3488static ssize_t show_status(struct device *d, struct device_attribute *attr,
3489 char *buf)
3490{
3491 struct ipw2100_priv *p = d->driver_data;
3492 return sprintf(buf, "0x%08x\n", (int)p->status);
3493}
3494
3495static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3496
3497static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3498 char *buf)
3499{
3500 struct ipw2100_priv *p = d->driver_data;
3501 return sprintf(buf, "0x%08x\n", (int)p->capability);
3502}
3503
3504static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3505
3506#define IPW2100_REG(x) { IPW_ ##x, #x }
3507static const struct {
3508 u32 addr;
3509 const char *name;
3510} hw_data[] = {
3511IPW2100_REG(REG_GP_CNTRL),
3512 IPW2100_REG(REG_GPIO),
3513 IPW2100_REG(REG_INTA),
3514 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3515#define IPW2100_NIC(x, s) { x, #x, s }
3516static const struct {
3517 u32 addr;
3518 const char *name;
3519 size_t size;
3520} nic_data[] = {
3521IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3522 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3523#define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3524static const struct {
3525 u8 index;
3526 const char *name;
3527 const char *desc;
3528} ord_data[] = {
3529IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3530 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3531 "successful Host Tx's (MSDU)"),
3532 IPW2100_ORD(STAT_TX_DIR_DATA,
3533 "successful Directed Tx's (MSDU)"),
3534 IPW2100_ORD(STAT_TX_DIR_DATA1,
3535 "successful Directed Tx's (MSDU) @ 1MB"),
3536 IPW2100_ORD(STAT_TX_DIR_DATA2,
3537 "successful Directed Tx's (MSDU) @ 2MB"),
3538 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3539 "successful Directed Tx's (MSDU) @ 5_5MB"),
3540 IPW2100_ORD(STAT_TX_DIR_DATA11,
3541 "successful Directed Tx's (MSDU) @ 11MB"),
3542 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3543 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3544 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3545 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3546 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3547 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3548 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3549 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3550 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3551 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3552 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3553 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3554 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3555 IPW2100_ORD(STAT_TX_ASSN_RESP,
3556 "successful Association response Tx's"),
3557 IPW2100_ORD(STAT_TX_REASSN,
3558 "successful Reassociation Tx's"),
3559 IPW2100_ORD(STAT_TX_REASSN_RESP,
3560 "successful Reassociation response Tx's"),
3561 IPW2100_ORD(STAT_TX_PROBE,
3562 "probes successfully transmitted"),
3563 IPW2100_ORD(STAT_TX_PROBE_RESP,
3564 "probe responses successfully transmitted"),
3565 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3566 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3567 IPW2100_ORD(STAT_TX_DISASSN,
3568 "successful Disassociation TX"),
3569 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3570 IPW2100_ORD(STAT_TX_DEAUTH,
3571 "successful Deauthentication TX"),
3572 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3573 "Total successful Tx data bytes"),
3574 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3575 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3576 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3577 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3578 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3579 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3580 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3581 "times max tries in a hop failed"),
3582 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3583 "times disassociation failed"),
3584 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3585 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3586 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3587 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3588 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3589 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3590 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3591 "directed packets at 5.5MB"),
3592 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3593 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3594 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3595 "nondirected packets at 1MB"),
3596 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3597 "nondirected packets at 2MB"),
3598 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3599 "nondirected packets at 5.5MB"),
3600 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3601 "nondirected packets at 11MB"),
3602 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3603 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3604 "Rx CTS"),
3605 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3606 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3607 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3608 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3609 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3610 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3611 IPW2100_ORD(STAT_RX_REASSN_RESP,
3612 "Reassociation response Rx's"),
3613 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3614 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3615 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3616 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3617 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3618 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3619 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3620 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3621 "Total rx data bytes received"),
3622 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3623 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3624 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3625 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3626 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3627 IPW2100_ORD(STAT_RX_DUPLICATE1,
3628 "duplicate rx packets at 1MB"),
3629 IPW2100_ORD(STAT_RX_DUPLICATE2,
3630 "duplicate rx packets at 2MB"),
3631 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3632 "duplicate rx packets at 5.5MB"),
3633 IPW2100_ORD(STAT_RX_DUPLICATE11,
3634 "duplicate rx packets at 11MB"),
3635 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3636 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3637 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3638 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3639 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3640 "rx frames with invalid protocol"),
3641 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3642 IPW2100_ORD(STAT_RX_NO_BUFFER,
3643 "rx frames rejected due to no buffer"),
3644 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3645 "rx frames dropped due to missing fragment"),
3646 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3647 "rx frames dropped due to non-sequential fragment"),
3648 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3649 "rx frames dropped due to unmatched 1st frame"),
3650 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3651 "rx frames dropped due to uncompleted frame"),
3652 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3653 "ICV errors during decryption"),
3654 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3655 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3656 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3657 "poll response timeouts"),
3658 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3659 "timeouts waiting for last {broad,multi}cast pkt"),
3660 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3661 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3662 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3663 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3664 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3665 "current calculation of % missed beacons"),
3666 IPW2100_ORD(STAT_PERCENT_RETRIES,
3667 "current calculation of % missed tx retries"),
3668 IPW2100_ORD(ASSOCIATED_AP_PTR,
3669 "0 if not associated, else pointer to AP table entry"),
3670 IPW2100_ORD(AVAILABLE_AP_CNT,
3671 "AP's decsribed in the AP table"),
3672 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3673 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3674 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3675 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3676 "failures due to response fail"),
3677 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3678 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3679 IPW2100_ORD(STAT_ROAM_INHIBIT,
3680 "times roaming was inhibited due to activity"),
3681 IPW2100_ORD(RSSI_AT_ASSN,
3682 "RSSI of associated AP at time of association"),
3683 IPW2100_ORD(STAT_ASSN_CAUSE1,
3684 "reassociation: no probe response or TX on hop"),
3685 IPW2100_ORD(STAT_ASSN_CAUSE2,
3686 "reassociation: poor tx/rx quality"),
3687 IPW2100_ORD(STAT_ASSN_CAUSE3,
3688 "reassociation: tx/rx quality (excessive AP load"),
3689 IPW2100_ORD(STAT_ASSN_CAUSE4,
3690 "reassociation: AP RSSI level"),
3691 IPW2100_ORD(STAT_ASSN_CAUSE5,
3692 "reassociations due to load leveling"),
3693 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3694 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3695 "times authentication response failed"),
3696 IPW2100_ORD(STATION_TABLE_CNT,
3697 "entries in association table"),
3698 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3699 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3700 IPW2100_ORD(COUNTRY_CODE,
3701 "IEEE country code as recv'd from beacon"),
3702 IPW2100_ORD(COUNTRY_CHANNELS,
3703 "channels suported by country"),
3704 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3705 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3706 IPW2100_ORD(ANTENNA_DIVERSITY,
3707 "TRUE if antenna diversity is disabled"),
3708 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3709 IPW2100_ORD(OUR_FREQ,
3710 "current radio freq lower digits - channel ID"),
3711 IPW2100_ORD(RTC_TIME, "current RTC time"),
3712 IPW2100_ORD(PORT_TYPE, "operating mode"),
3713 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3714 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3715 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3716 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3717 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3718 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3719 IPW2100_ORD(CAPABILITIES,
3720 "Management frame capability field"),
3721 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3722 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3723 IPW2100_ORD(RTS_THRESHOLD,
3724 "Min packet length for RTS handshaking"),
3725 IPW2100_ORD(INT_MODE, "International mode"),
3726 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3727 "protocol frag threshold"),
3728 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3729 "EEPROM offset in SRAM"),
3730 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3731 "EEPROM size in SRAM"),
3732 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3733 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3734 "EEPROM IBSS 11b channel set"),
3735 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3736 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3737 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3738 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3739 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3740
3741static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3742 char *buf)
3743{
3744 int i;
3745 struct ipw2100_priv *priv = dev_get_drvdata(d);
3746 struct net_device *dev = priv->net_dev;
3747 char *out = buf;
3748 u32 val = 0;
3749
3750 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3751
3752 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3753 read_register(dev, hw_data[i].addr, &val);
3754 out += sprintf(out, "%30s [%08X] : %08X\n",
3755 hw_data[i].name, hw_data[i].addr, val);
3756 }
3757
3758 return out - buf;
3759}
3760
3761static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3762
3763static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3764 char *buf)
3765{
3766 struct ipw2100_priv *priv = dev_get_drvdata(d);
3767 struct net_device *dev = priv->net_dev;
3768 char *out = buf;
3769 int i;
3770
3771 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3772
3773 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3774 u8 tmp8;
3775 u16 tmp16;
3776 u32 tmp32;
3777
3778 switch (nic_data[i].size) {
3779 case 1:
3780 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3781 out += sprintf(out, "%30s [%08X] : %02X\n",
3782 nic_data[i].name, nic_data[i].addr,
3783 tmp8);
3784 break;
3785 case 2:
3786 read_nic_word(dev, nic_data[i].addr, &tmp16);
3787 out += sprintf(out, "%30s [%08X] : %04X\n",
3788 nic_data[i].name, nic_data[i].addr,
3789 tmp16);
3790 break;
3791 case 4:
3792 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3793 out += sprintf(out, "%30s [%08X] : %08X\n",
3794 nic_data[i].name, nic_data[i].addr,
3795 tmp32);
3796 break;
3797 }
3798 }
3799 return out - buf;
3800}
3801
3802static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3803
3804static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3805 char *buf)
3806{
3807 struct ipw2100_priv *priv = dev_get_drvdata(d);
3808 struct net_device *dev = priv->net_dev;
3809 static unsigned long loop = 0;
3810 int len = 0;
3811 u32 buffer[4];
3812 int i;
3813 char line[81];
3814
3815 if (loop >= 0x30000)
3816 loop = 0;
3817
3818 /* sysfs provides us PAGE_SIZE buffer */
3819 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3820
3821 if (priv->snapshot[0])
3822 for (i = 0; i < 4; i++)
3823 buffer[i] =
3824 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3825 else
3826 for (i = 0; i < 4; i++)
3827 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3828
3829 if (priv->dump_raw)
3830 len += sprintf(buf + len,
3831 "%c%c%c%c"
3832 "%c%c%c%c"
3833 "%c%c%c%c"
3834 "%c%c%c%c",
3835 ((u8 *) buffer)[0x0],
3836 ((u8 *) buffer)[0x1],
3837 ((u8 *) buffer)[0x2],
3838 ((u8 *) buffer)[0x3],
3839 ((u8 *) buffer)[0x4],
3840 ((u8 *) buffer)[0x5],
3841 ((u8 *) buffer)[0x6],
3842 ((u8 *) buffer)[0x7],
3843 ((u8 *) buffer)[0x8],
3844 ((u8 *) buffer)[0x9],
3845 ((u8 *) buffer)[0xa],
3846 ((u8 *) buffer)[0xb],
3847 ((u8 *) buffer)[0xc],
3848 ((u8 *) buffer)[0xd],
3849 ((u8 *) buffer)[0xe],
3850 ((u8 *) buffer)[0xf]);
3851 else
3852 len += sprintf(buf + len, "%s\n",
3853 snprint_line(line, sizeof(line),
3854 (u8 *) buffer, 16, loop));
3855 loop += 16;
3856 }
3857
3858 return len;
3859}
3860
3861static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3862 const char *buf, size_t count)
3863{
3864 struct ipw2100_priv *priv = dev_get_drvdata(d);
3865 struct net_device *dev = priv->net_dev;
3866 const char *p = buf;
3867
3868 (void)dev; /* kill unused-var warning for debug-only code */
3869
3870 if (count < 1)
3871 return count;
3872
3873 if (p[0] == '1' ||
3874 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3875 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3876 dev->name);
3877 priv->dump_raw = 1;
3878
3879 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3880 tolower(p[1]) == 'f')) {
3881 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3882 dev->name);
3883 priv->dump_raw = 0;
3884
3885 } else if (tolower(p[0]) == 'r') {
3886 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3887 ipw2100_snapshot_free(priv);
3888
3889 } else
3890 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3891 "reset = clear memory snapshot\n", dev->name);
3892
3893 return count;
3894}
3895
3896static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3897
3898static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3899 char *buf)
3900{
3901 struct ipw2100_priv *priv = dev_get_drvdata(d);
3902 u32 val = 0;
3903 int len = 0;
3904 u32 val_len;
3905 static int loop = 0;
3906
3907 if (priv->status & STATUS_RF_KILL_MASK)
3908 return 0;
3909
3910 if (loop >= ARRAY_SIZE(ord_data))
3911 loop = 0;
3912
3913 /* sysfs provides us PAGE_SIZE buffer */
3914 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3915 val_len = sizeof(u32);
3916
3917 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3918 &val_len))
3919 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3920 ord_data[loop].index,
3921 ord_data[loop].desc);
3922 else
3923 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3924 ord_data[loop].index, val,
3925 ord_data[loop].desc);
3926 loop++;
3927 }
3928
3929 return len;
3930}
3931
3932static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3933
3934static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3935 char *buf)
3936{
3937 struct ipw2100_priv *priv = dev_get_drvdata(d);
3938 char *out = buf;
3939
3940 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3941 priv->interrupts, priv->tx_interrupts,
3942 priv->rx_interrupts, priv->inta_other);
3943 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3944 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3945#ifdef CONFIG_IPW2100_DEBUG
3946 out += sprintf(out, "packet mismatch image: %s\n",
3947 priv->snapshot[0] ? "YES" : "NO");
3948#endif
3949
3950 return out - buf;
3951}
3952
3953static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3954
3955static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3956{
3957 int err;
3958
3959 if (mode == priv->ieee->iw_mode)
3960 return 0;
3961
3962 err = ipw2100_disable_adapter(priv);
3963 if (err) {
3964 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3965 priv->net_dev->name, err);
3966 return err;
3967 }
3968
3969 switch (mode) {
3970 case IW_MODE_INFRA:
3971 priv->net_dev->type = ARPHRD_ETHER;
3972 break;
3973 case IW_MODE_ADHOC:
3974 priv->net_dev->type = ARPHRD_ETHER;
3975 break;
3976#ifdef CONFIG_IPW2100_MONITOR
3977 case IW_MODE_MONITOR:
3978 priv->last_mode = priv->ieee->iw_mode;
3979 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3980 break;
3981#endif /* CONFIG_IPW2100_MONITOR */
3982 }
3983
3984 priv->ieee->iw_mode = mode;
3985
3986#ifdef CONFIG_PM
3987 /* Indicate ipw2100_download_firmware download firmware
3988 * from disk instead of memory. */
3989 ipw2100_firmware.version = 0;
3990#endif
3991
3992 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3993 priv->reset_backoff = 0;
3994 schedule_reset(priv);
3995
3996 return 0;
3997}
3998
3999static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4000 char *buf)
4001{
4002 struct ipw2100_priv *priv = dev_get_drvdata(d);
4003 int len = 0;
4004
4005#define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4006
4007 if (priv->status & STATUS_ASSOCIATED)
4008 len += sprintf(buf + len, "connected: %lu\n",
4009 get_seconds() - priv->connect_start);
4010 else
4011 len += sprintf(buf + len, "not connected\n");
4012
4013 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4014 DUMP_VAR(status, "08lx");
4015 DUMP_VAR(config, "08lx");
4016 DUMP_VAR(capability, "08lx");
4017
4018 len +=
4019 sprintf(buf + len, "last_rtc: %lu\n",
4020 (unsigned long)priv->last_rtc);
4021
4022 DUMP_VAR(fatal_error, "d");
4023 DUMP_VAR(stop_hang_check, "d");
4024 DUMP_VAR(stop_rf_kill, "d");
4025 DUMP_VAR(messages_sent, "d");
4026
4027 DUMP_VAR(tx_pend_stat.value, "d");
4028 DUMP_VAR(tx_pend_stat.hi, "d");
4029
4030 DUMP_VAR(tx_free_stat.value, "d");
4031 DUMP_VAR(tx_free_stat.lo, "d");
4032
4033 DUMP_VAR(msg_free_stat.value, "d");
4034 DUMP_VAR(msg_free_stat.lo, "d");
4035
4036 DUMP_VAR(msg_pend_stat.value, "d");
4037 DUMP_VAR(msg_pend_stat.hi, "d");
4038
4039 DUMP_VAR(fw_pend_stat.value, "d");
4040 DUMP_VAR(fw_pend_stat.hi, "d");
4041
4042 DUMP_VAR(txq_stat.value, "d");
4043 DUMP_VAR(txq_stat.lo, "d");
4044
4045 DUMP_VAR(ieee->scans, "d");
4046 DUMP_VAR(reset_backoff, "d");
4047
4048 return len;
4049}
4050
4051static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4052
4053static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4054 char *buf)
4055{
4056 struct ipw2100_priv *priv = dev_get_drvdata(d);
4057 char essid[IW_ESSID_MAX_SIZE + 1];
4058 u8 bssid[ETH_ALEN];
4059 u32 chan = 0;
4060 char *out = buf;
4061 int length;
4062 int ret;
4063
4064 if (priv->status & STATUS_RF_KILL_MASK)
4065 return 0;
4066
4067 memset(essid, 0, sizeof(essid));
4068 memset(bssid, 0, sizeof(bssid));
4069
4070 length = IW_ESSID_MAX_SIZE;
4071 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4072 if (ret)
4073 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4074 __LINE__);
4075
4076 length = sizeof(bssid);
4077 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4078 bssid, &length);
4079 if (ret)
4080 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4081 __LINE__);
4082
4083 length = sizeof(u32);
4084 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4085 if (ret)
4086 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4087 __LINE__);
4088
4089 out += sprintf(out, "ESSID: %s\n", essid);
4090 out += sprintf(out, "BSSID: %pM\n", bssid);
4091 out += sprintf(out, "Channel: %d\n", chan);
4092
4093 return out - buf;
4094}
4095
4096static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4097
4098#ifdef CONFIG_IPW2100_DEBUG
4099static ssize_t show_debug_level(struct device_driver *d, char *buf)
4100{
4101 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4102}
4103
4104static ssize_t store_debug_level(struct device_driver *d,
4105 const char *buf, size_t count)
4106{
4107 char *p = (char *)buf;
4108 u32 val;
4109
4110 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4111 p++;
4112 if (p[0] == 'x' || p[0] == 'X')
4113 p++;
4114 val = simple_strtoul(p, &p, 16);
4115 } else
4116 val = simple_strtoul(p, &p, 10);
4117 if (p == buf)
4118 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4119 else
4120 ipw2100_debug_level = val;
4121
4122 return strnlen(buf, count);
4123}
4124
4125static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4126 store_debug_level);
4127#endif /* CONFIG_IPW2100_DEBUG */
4128
4129static ssize_t show_fatal_error(struct device *d,
4130 struct device_attribute *attr, char *buf)
4131{
4132 struct ipw2100_priv *priv = dev_get_drvdata(d);
4133 char *out = buf;
4134 int i;
4135
4136 if (priv->fatal_error)
4137 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4138 else
4139 out += sprintf(out, "0\n");
4140
4141 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4142 if (!priv->fatal_errors[(priv->fatal_index - i) %
4143 IPW2100_ERROR_QUEUE])
4144 continue;
4145
4146 out += sprintf(out, "%d. 0x%08X\n", i,
4147 priv->fatal_errors[(priv->fatal_index - i) %
4148 IPW2100_ERROR_QUEUE]);
4149 }
4150
4151 return out - buf;
4152}
4153
4154static ssize_t store_fatal_error(struct device *d,
4155 struct device_attribute *attr, const char *buf,
4156 size_t count)
4157{
4158 struct ipw2100_priv *priv = dev_get_drvdata(d);
4159 schedule_reset(priv);
4160 return count;
4161}
4162
4163static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4164 store_fatal_error);
4165
4166static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4167 char *buf)
4168{
4169 struct ipw2100_priv *priv = dev_get_drvdata(d);
4170 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4171}
4172
4173static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4174 const char *buf, size_t count)
4175{
4176 struct ipw2100_priv *priv = dev_get_drvdata(d);
4177 struct net_device *dev = priv->net_dev;
4178 char buffer[] = "00000000";
4179 unsigned long len =
4180 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4181 unsigned long val;
4182 char *p = buffer;
4183
4184 (void)dev; /* kill unused-var warning for debug-only code */
4185
4186 IPW_DEBUG_INFO("enter\n");
4187
4188 strncpy(buffer, buf, len);
4189 buffer[len] = 0;
4190
4191 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4192 p++;
4193 if (p[0] == 'x' || p[0] == 'X')
4194 p++;
4195 val = simple_strtoul(p, &p, 16);
4196 } else
4197 val = simple_strtoul(p, &p, 10);
4198 if (p == buffer) {
4199 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4200 } else {
4201 priv->ieee->scan_age = val;
4202 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4203 }
4204
4205 IPW_DEBUG_INFO("exit\n");
4206 return len;
4207}
4208
4209static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4210
4211static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4212 char *buf)
4213{
4214 /* 0 - RF kill not enabled
4215 1 - SW based RF kill active (sysfs)
4216 2 - HW based RF kill active
4217 3 - Both HW and SW baed RF kill active */
4218 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4219 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4220 (rf_kill_active(priv) ? 0x2 : 0x0);
4221 return sprintf(buf, "%i\n", val);
4222}
4223
4224static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4225{
4226 if ((disable_radio ? 1 : 0) ==
4227 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4228 return 0;
4229
4230 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4231 disable_radio ? "OFF" : "ON");
4232
4233 mutex_lock(&priv->action_mutex);
4234
4235 if (disable_radio) {
4236 priv->status |= STATUS_RF_KILL_SW;
4237 ipw2100_down(priv);
4238 } else {
4239 priv->status &= ~STATUS_RF_KILL_SW;
4240 if (rf_kill_active(priv)) {
4241 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4242 "disabled by HW switch\n");
4243 /* Make sure the RF_KILL check timer is running */
4244 priv->stop_rf_kill = 0;
4245 cancel_delayed_work(&priv->rf_kill);
4246 queue_delayed_work(priv->workqueue, &priv->rf_kill,
4247 round_jiffies_relative(HZ));
4248 } else
4249 schedule_reset(priv);
4250 }
4251
4252 mutex_unlock(&priv->action_mutex);
4253 return 1;
4254}
4255
4256static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4257 const char *buf, size_t count)
4258{
4259 struct ipw2100_priv *priv = dev_get_drvdata(d);
4260 ipw_radio_kill_sw(priv, buf[0] == '1');
4261 return count;
4262}
4263
4264static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4265
4266static struct attribute *ipw2100_sysfs_entries[] = {
4267 &dev_attr_hardware.attr,
4268 &dev_attr_registers.attr,
4269 &dev_attr_ordinals.attr,
4270 &dev_attr_pci.attr,
4271 &dev_attr_stats.attr,
4272 &dev_attr_internals.attr,
4273 &dev_attr_bssinfo.attr,
4274 &dev_attr_memory.attr,
4275 &dev_attr_scan_age.attr,
4276 &dev_attr_fatal_error.attr,
4277 &dev_attr_rf_kill.attr,
4278 &dev_attr_cfg.attr,
4279 &dev_attr_status.attr,
4280 &dev_attr_capability.attr,
4281 NULL,
4282};
4283
4284static struct attribute_group ipw2100_attribute_group = {
4285 .attrs = ipw2100_sysfs_entries,
4286};
4287
4288static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4289{
4290 struct ipw2100_status_queue *q = &priv->status_queue;
4291
4292 IPW_DEBUG_INFO("enter\n");
4293
4294 q->size = entries * sizeof(struct ipw2100_status);
4295 q->drv =
4296 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4297 q->size, &q->nic);
4298 if (!q->drv) {
4299 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4300 return -ENOMEM;
4301 }
4302
4303 memset(q->drv, 0, q->size);
4304
4305 IPW_DEBUG_INFO("exit\n");
4306
4307 return 0;
4308}
4309
4310static void status_queue_free(struct ipw2100_priv *priv)
4311{
4312 IPW_DEBUG_INFO("enter\n");
4313
4314 if (priv->status_queue.drv) {
4315 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4316 priv->status_queue.drv,
4317 priv->status_queue.nic);
4318 priv->status_queue.drv = NULL;
4319 }
4320
4321 IPW_DEBUG_INFO("exit\n");
4322}
4323
4324static int bd_queue_allocate(struct ipw2100_priv *priv,
4325 struct ipw2100_bd_queue *q, int entries)
4326{
4327 IPW_DEBUG_INFO("enter\n");
4328
4329 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4330
4331 q->entries = entries;
4332 q->size = entries * sizeof(struct ipw2100_bd);
4333 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4334 if (!q->drv) {
4335 IPW_DEBUG_INFO
4336 ("can't allocate shared memory for buffer descriptors\n");
4337 return -ENOMEM;
4338 }
4339 memset(q->drv, 0, q->size);
4340
4341 IPW_DEBUG_INFO("exit\n");
4342
4343 return 0;
4344}
4345
4346static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4347{
4348 IPW_DEBUG_INFO("enter\n");
4349
4350 if (!q)
4351 return;
4352
4353 if (q->drv) {
4354 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4355 q->drv = NULL;
4356 }
4357
4358 IPW_DEBUG_INFO("exit\n");
4359}
4360
4361static void bd_queue_initialize(struct ipw2100_priv *priv,
4362 struct ipw2100_bd_queue *q, u32 base, u32 size,
4363 u32 r, u32 w)
4364{
4365 IPW_DEBUG_INFO("enter\n");
4366
4367 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4368 (u32) q->nic);
4369
4370 write_register(priv->net_dev, base, q->nic);
4371 write_register(priv->net_dev, size, q->entries);
4372 write_register(priv->net_dev, r, q->oldest);
4373 write_register(priv->net_dev, w, q->next);
4374
4375 IPW_DEBUG_INFO("exit\n");
4376}
4377
4378static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4379{
4380 if (priv->workqueue) {
4381 priv->stop_rf_kill = 1;
4382 priv->stop_hang_check = 1;
4383 cancel_delayed_work(&priv->reset_work);
4384 cancel_delayed_work(&priv->security_work);
4385 cancel_delayed_work(&priv->wx_event_work);
4386 cancel_delayed_work(&priv->hang_check);
4387 cancel_delayed_work(&priv->rf_kill);
4388 cancel_delayed_work(&priv->scan_event_later);
4389 destroy_workqueue(priv->workqueue);
4390 priv->workqueue = NULL;
4391 }
4392}
4393
4394static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4395{
4396 int i, j, err = -EINVAL;
4397 void *v;
4398 dma_addr_t p;
4399
4400 IPW_DEBUG_INFO("enter\n");
4401
4402 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4403 if (err) {
4404 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4405 priv->net_dev->name);
4406 return err;
4407 }
4408
4409 priv->tx_buffers =
4410 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4411 sizeof(struct
4412 ipw2100_tx_packet),
4413 GFP_ATOMIC);
4414 if (!priv->tx_buffers) {
4415 printk(KERN_ERR DRV_NAME
4416 ": %s: alloc failed form tx buffers.\n",
4417 priv->net_dev->name);
4418 bd_queue_free(priv, &priv->tx_queue);
4419 return -ENOMEM;
4420 }
4421
4422 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4423 v = pci_alloc_consistent(priv->pci_dev,
4424 sizeof(struct ipw2100_data_header),
4425 &p);
4426 if (!v) {
4427 printk(KERN_ERR DRV_NAME
4428 ": %s: PCI alloc failed for tx " "buffers.\n",
4429 priv->net_dev->name);
4430 err = -ENOMEM;
4431 break;
4432 }
4433
4434 priv->tx_buffers[i].type = DATA;
4435 priv->tx_buffers[i].info.d_struct.data =
4436 (struct ipw2100_data_header *)v;
4437 priv->tx_buffers[i].info.d_struct.data_phys = p;
4438 priv->tx_buffers[i].info.d_struct.txb = NULL;
4439 }
4440
4441 if (i == TX_PENDED_QUEUE_LENGTH)
4442 return 0;
4443
4444 for (j = 0; j < i; j++) {
4445 pci_free_consistent(priv->pci_dev,
4446 sizeof(struct ipw2100_data_header),
4447 priv->tx_buffers[j].info.d_struct.data,
4448 priv->tx_buffers[j].info.d_struct.
4449 data_phys);
4450 }
4451
4452 kfree(priv->tx_buffers);
4453 priv->tx_buffers = NULL;
4454
4455 return err;
4456}
4457
4458static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4459{
4460 int i;
4461
4462 IPW_DEBUG_INFO("enter\n");
4463
4464 /*
4465 * reinitialize packet info lists
4466 */
4467 INIT_LIST_HEAD(&priv->fw_pend_list);
4468 INIT_STAT(&priv->fw_pend_stat);
4469
4470 /*
4471 * reinitialize lists
4472 */
4473 INIT_LIST_HEAD(&priv->tx_pend_list);
4474 INIT_LIST_HEAD(&priv->tx_free_list);
4475 INIT_STAT(&priv->tx_pend_stat);
4476 INIT_STAT(&priv->tx_free_stat);
4477
4478 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4479 /* We simply drop any SKBs that have been queued for
4480 * transmit */
4481 if (priv->tx_buffers[i].info.d_struct.txb) {
4482 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4483 txb);
4484 priv->tx_buffers[i].info.d_struct.txb = NULL;
4485 }
4486
4487 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4488 }
4489
4490 SET_STAT(&priv->tx_free_stat, i);
4491
4492 priv->tx_queue.oldest = 0;
4493 priv->tx_queue.available = priv->tx_queue.entries;
4494 priv->tx_queue.next = 0;
4495 INIT_STAT(&priv->txq_stat);
4496 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4497
4498 bd_queue_initialize(priv, &priv->tx_queue,
4499 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4500 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4501 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4502 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4503
4504 IPW_DEBUG_INFO("exit\n");
4505
4506}
4507
4508static void ipw2100_tx_free(struct ipw2100_priv *priv)
4509{
4510 int i;
4511
4512 IPW_DEBUG_INFO("enter\n");
4513
4514 bd_queue_free(priv, &priv->tx_queue);
4515
4516 if (!priv->tx_buffers)
4517 return;
4518
4519 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4520 if (priv->tx_buffers[i].info.d_struct.txb) {
4521 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4522 txb);
4523 priv->tx_buffers[i].info.d_struct.txb = NULL;
4524 }
4525 if (priv->tx_buffers[i].info.d_struct.data)
4526 pci_free_consistent(priv->pci_dev,
4527 sizeof(struct ipw2100_data_header),
4528 priv->tx_buffers[i].info.d_struct.
4529 data,
4530 priv->tx_buffers[i].info.d_struct.
4531 data_phys);
4532 }
4533
4534 kfree(priv->tx_buffers);
4535 priv->tx_buffers = NULL;
4536
4537 IPW_DEBUG_INFO("exit\n");
4538}
4539
4540static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4541{
4542 int i, j, err = -EINVAL;
4543
4544 IPW_DEBUG_INFO("enter\n");
4545
4546 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4547 if (err) {
4548 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4549 return err;
4550 }
4551
4552 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4553 if (err) {
4554 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4555 bd_queue_free(priv, &priv->rx_queue);
4556 return err;
4557 }
4558
4559 /*
4560 * allocate packets
4561 */
4562 priv->rx_buffers = (struct ipw2100_rx_packet *)
4563 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4564 GFP_KERNEL);
4565 if (!priv->rx_buffers) {
4566 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4567
4568 bd_queue_free(priv, &priv->rx_queue);
4569
4570 status_queue_free(priv);
4571
4572 return -ENOMEM;
4573 }
4574
4575 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4576 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4577
4578 err = ipw2100_alloc_skb(priv, packet);
4579 if (unlikely(err)) {
4580 err = -ENOMEM;
4581 break;
4582 }
4583
4584 /* The BD holds the cache aligned address */
4585 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4586 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4587 priv->status_queue.drv[i].status_fields = 0;
4588 }
4589
4590 if (i == RX_QUEUE_LENGTH)
4591 return 0;
4592
4593 for (j = 0; j < i; j++) {
4594 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4595 sizeof(struct ipw2100_rx_packet),
4596 PCI_DMA_FROMDEVICE);
4597 dev_kfree_skb(priv->rx_buffers[j].skb);
4598 }
4599
4600 kfree(priv->rx_buffers);
4601 priv->rx_buffers = NULL;
4602
4603 bd_queue_free(priv, &priv->rx_queue);
4604
4605 status_queue_free(priv);
4606
4607 return err;
4608}
4609
4610static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4611{
4612 IPW_DEBUG_INFO("enter\n");
4613
4614 priv->rx_queue.oldest = 0;
4615 priv->rx_queue.available = priv->rx_queue.entries - 1;
4616 priv->rx_queue.next = priv->rx_queue.entries - 1;
4617
4618 INIT_STAT(&priv->rxq_stat);
4619 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4620
4621 bd_queue_initialize(priv, &priv->rx_queue,
4622 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4623 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4624 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4625 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4626
4627 /* set up the status queue */
4628 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4629 priv->status_queue.nic);
4630
4631 IPW_DEBUG_INFO("exit\n");
4632}
4633
4634static void ipw2100_rx_free(struct ipw2100_priv *priv)
4635{
4636 int i;
4637
4638 IPW_DEBUG_INFO("enter\n");
4639
4640 bd_queue_free(priv, &priv->rx_queue);
4641 status_queue_free(priv);
4642
4643 if (!priv->rx_buffers)
4644 return;
4645
4646 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4647 if (priv->rx_buffers[i].rxp) {
4648 pci_unmap_single(priv->pci_dev,
4649 priv->rx_buffers[i].dma_addr,
4650 sizeof(struct ipw2100_rx),
4651 PCI_DMA_FROMDEVICE);
4652 dev_kfree_skb(priv->rx_buffers[i].skb);
4653 }
4654 }
4655
4656 kfree(priv->rx_buffers);
4657 priv->rx_buffers = NULL;
4658
4659 IPW_DEBUG_INFO("exit\n");
4660}
4661
4662static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4663{
4664 u32 length = ETH_ALEN;
4665 u8 addr[ETH_ALEN];
4666
4667 int err;
4668
4669 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4670 if (err) {
4671 IPW_DEBUG_INFO("MAC address read failed\n");
4672 return -EIO;
4673 }
4674
4675 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4676 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4677
4678 return 0;
4679}
4680
4681/********************************************************************
4682 *
4683 * Firmware Commands
4684 *
4685 ********************************************************************/
4686
4687static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4688{
4689 struct host_command cmd = {
4690 .host_command = ADAPTER_ADDRESS,
4691 .host_command_sequence = 0,
4692 .host_command_length = ETH_ALEN
4693 };
4694 int err;
4695
4696 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4697
4698 IPW_DEBUG_INFO("enter\n");
4699
4700 if (priv->config & CFG_CUSTOM_MAC) {
4701 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4702 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4703 } else
4704 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4705 ETH_ALEN);
4706
4707 err = ipw2100_hw_send_command(priv, &cmd);
4708
4709 IPW_DEBUG_INFO("exit\n");
4710 return err;
4711}
4712
4713static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4714 int batch_mode)
4715{
4716 struct host_command cmd = {
4717 .host_command = PORT_TYPE,
4718 .host_command_sequence = 0,
4719 .host_command_length = sizeof(u32)
4720 };
4721 int err;
4722
4723 switch (port_type) {
4724 case IW_MODE_INFRA:
4725 cmd.host_command_parameters[0] = IPW_BSS;
4726 break;
4727 case IW_MODE_ADHOC:
4728 cmd.host_command_parameters[0] = IPW_IBSS;
4729 break;
4730 }
4731
4732 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4733 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4734
4735 if (!batch_mode) {
4736 err = ipw2100_disable_adapter(priv);
4737 if (err) {
4738 printk(KERN_ERR DRV_NAME
4739 ": %s: Could not disable adapter %d\n",
4740 priv->net_dev->name, err);
4741 return err;
4742 }
4743 }
4744
4745 /* send cmd to firmware */
4746 err = ipw2100_hw_send_command(priv, &cmd);
4747
4748 if (!batch_mode)
4749 ipw2100_enable_adapter(priv);
4750
4751 return err;
4752}
4753
4754static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4755 int batch_mode)
4756{
4757 struct host_command cmd = {
4758 .host_command = CHANNEL,
4759 .host_command_sequence = 0,
4760 .host_command_length = sizeof(u32)
4761 };
4762 int err;
4763
4764 cmd.host_command_parameters[0] = channel;
4765
4766 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4767
4768 /* If BSS then we don't support channel selection */
4769 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4770 return 0;
4771
4772 if ((channel != 0) &&
4773 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4774 return -EINVAL;
4775
4776 if (!batch_mode) {
4777 err = ipw2100_disable_adapter(priv);
4778 if (err)
4779 return err;
4780 }
4781
4782 err = ipw2100_hw_send_command(priv, &cmd);
4783 if (err) {
4784 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4785 return err;
4786 }
4787
4788 if (channel)
4789 priv->config |= CFG_STATIC_CHANNEL;
4790 else
4791 priv->config &= ~CFG_STATIC_CHANNEL;
4792
4793 priv->channel = channel;
4794
4795 if (!batch_mode) {
4796 err = ipw2100_enable_adapter(priv);
4797 if (err)
4798 return err;
4799 }
4800
4801 return 0;
4802}
4803
4804static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4805{
4806 struct host_command cmd = {
4807 .host_command = SYSTEM_CONFIG,
4808 .host_command_sequence = 0,
4809 .host_command_length = 12,
4810 };
4811 u32 ibss_mask, len = sizeof(u32);
4812 int err;
4813
4814 /* Set system configuration */
4815
4816 if (!batch_mode) {
4817 err = ipw2100_disable_adapter(priv);
4818 if (err)
4819 return err;
4820 }
4821
4822 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4823 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4824
4825 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4826 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4827
4828 if (!(priv->config & CFG_LONG_PREAMBLE))
4829 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4830
4831 err = ipw2100_get_ordinal(priv,
4832 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4833 &ibss_mask, &len);
4834 if (err)
4835 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4836
4837 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4838 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4839
4840 /* 11b only */
4841 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4842
4843 err = ipw2100_hw_send_command(priv, &cmd);
4844 if (err)
4845 return err;
4846
4847/* If IPv6 is configured in the kernel then we don't want to filter out all
4848 * of the multicast packets as IPv6 needs some. */
4849#if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4850 cmd.host_command = ADD_MULTICAST;
4851 cmd.host_command_sequence = 0;
4852 cmd.host_command_length = 0;
4853
4854 ipw2100_hw_send_command(priv, &cmd);
4855#endif
4856 if (!batch_mode) {
4857 err = ipw2100_enable_adapter(priv);
4858 if (err)
4859 return err;
4860 }
4861
4862 return 0;
4863}
4864
4865static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4866 int batch_mode)
4867{
4868 struct host_command cmd = {
4869 .host_command = BASIC_TX_RATES,
4870 .host_command_sequence = 0,
4871 .host_command_length = 4
4872 };
4873 int err;
4874
4875 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4876
4877 if (!batch_mode) {
4878 err = ipw2100_disable_adapter(priv);
4879 if (err)
4880 return err;
4881 }
4882
4883 /* Set BASIC TX Rate first */
4884 ipw2100_hw_send_command(priv, &cmd);
4885
4886 /* Set TX Rate */
4887 cmd.host_command = TX_RATES;
4888 ipw2100_hw_send_command(priv, &cmd);
4889
4890 /* Set MSDU TX Rate */
4891 cmd.host_command = MSDU_TX_RATES;
4892 ipw2100_hw_send_command(priv, &cmd);
4893
4894 if (!batch_mode) {
4895 err = ipw2100_enable_adapter(priv);
4896 if (err)
4897 return err;
4898 }
4899
4900 priv->tx_rates = rate;
4901
4902 return 0;
4903}
4904
4905static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4906{
4907 struct host_command cmd = {
4908 .host_command = POWER_MODE,
4909 .host_command_sequence = 0,
4910 .host_command_length = 4
4911 };
4912 int err;
4913
4914 cmd.host_command_parameters[0] = power_level;
4915
4916 err = ipw2100_hw_send_command(priv, &cmd);
4917 if (err)
4918 return err;
4919
4920 if (power_level == IPW_POWER_MODE_CAM)
4921 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4922 else
4923 priv->power_mode = IPW_POWER_ENABLED | power_level;
4924
4925#ifdef IPW2100_TX_POWER
4926 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4927 /* Set beacon interval */
4928 cmd.host_command = TX_POWER_INDEX;
4929 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4930
4931 err = ipw2100_hw_send_command(priv, &cmd);
4932 if (err)
4933 return err;
4934 }
4935#endif
4936
4937 return 0;
4938}
4939
4940static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4941{
4942 struct host_command cmd = {
4943 .host_command = RTS_THRESHOLD,
4944 .host_command_sequence = 0,
4945 .host_command_length = 4
4946 };
4947 int err;
4948
4949 if (threshold & RTS_DISABLED)
4950 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4951 else
4952 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4953
4954 err = ipw2100_hw_send_command(priv, &cmd);
4955 if (err)
4956 return err;
4957
4958 priv->rts_threshold = threshold;
4959
4960 return 0;
4961}
4962
4963#if 0
4964int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4965 u32 threshold, int batch_mode)
4966{
4967 struct host_command cmd = {
4968 .host_command = FRAG_THRESHOLD,
4969 .host_command_sequence = 0,
4970 .host_command_length = 4,
4971 .host_command_parameters[0] = 0,
4972 };
4973 int err;
4974
4975 if (!batch_mode) {
4976 err = ipw2100_disable_adapter(priv);
4977 if (err)
4978 return err;
4979 }
4980
4981 if (threshold == 0)
4982 threshold = DEFAULT_FRAG_THRESHOLD;
4983 else {
4984 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4985 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4986 }
4987
4988 cmd.host_command_parameters[0] = threshold;
4989
4990 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4991
4992 err = ipw2100_hw_send_command(priv, &cmd);
4993
4994 if (!batch_mode)
4995 ipw2100_enable_adapter(priv);
4996
4997 if (!err)
4998 priv->frag_threshold = threshold;
4999
5000 return err;
5001}
5002#endif
5003
5004static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5005{
5006 struct host_command cmd = {
5007 .host_command = SHORT_RETRY_LIMIT,
5008 .host_command_sequence = 0,
5009 .host_command_length = 4
5010 };
5011 int err;
5012
5013 cmd.host_command_parameters[0] = retry;
5014
5015 err = ipw2100_hw_send_command(priv, &cmd);
5016 if (err)
5017 return err;
5018
5019 priv->short_retry_limit = retry;
5020
5021 return 0;
5022}
5023
5024static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5025{
5026 struct host_command cmd = {
5027 .host_command = LONG_RETRY_LIMIT,
5028 .host_command_sequence = 0,
5029 .host_command_length = 4
5030 };
5031 int err;
5032
5033 cmd.host_command_parameters[0] = retry;
5034
5035 err = ipw2100_hw_send_command(priv, &cmd);
5036 if (err)
5037 return err;
5038
5039 priv->long_retry_limit = retry;
5040
5041 return 0;
5042}
5043
5044static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5045 int batch_mode)
5046{
5047 struct host_command cmd = {
5048 .host_command = MANDATORY_BSSID,
5049 .host_command_sequence = 0,
5050 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5051 };
5052 int err;
5053
5054#ifdef CONFIG_IPW2100_DEBUG
5055 if (bssid != NULL)
5056 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5057 else
5058 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5059#endif
5060 /* if BSSID is empty then we disable mandatory bssid mode */
5061 if (bssid != NULL)
5062 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5063
5064 if (!batch_mode) {
5065 err = ipw2100_disable_adapter(priv);
5066 if (err)
5067 return err;
5068 }
5069
5070 err = ipw2100_hw_send_command(priv, &cmd);
5071
5072 if (!batch_mode)
5073 ipw2100_enable_adapter(priv);
5074
5075 return err;
5076}
5077
5078static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5079{
5080 struct host_command cmd = {
5081 .host_command = DISASSOCIATION_BSSID,
5082 .host_command_sequence = 0,
5083 .host_command_length = ETH_ALEN
5084 };
5085 int err;
5086 int len;
5087
5088 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5089
5090 len = ETH_ALEN;
5091 /* The Firmware currently ignores the BSSID and just disassociates from
5092 * the currently associated AP -- but in the off chance that a future
5093 * firmware does use the BSSID provided here, we go ahead and try and
5094 * set it to the currently associated AP's BSSID */
5095 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5096
5097 err = ipw2100_hw_send_command(priv, &cmd);
5098
5099 return err;
5100}
5101
5102static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5103 struct ipw2100_wpa_assoc_frame *, int)
5104 __attribute__ ((unused));
5105
5106static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5107 struct ipw2100_wpa_assoc_frame *wpa_frame,
5108 int batch_mode)
5109{
5110 struct host_command cmd = {
5111 .host_command = SET_WPA_IE,
5112 .host_command_sequence = 0,
5113 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5114 };
5115 int err;
5116
5117 IPW_DEBUG_HC("SET_WPA_IE\n");
5118
5119 if (!batch_mode) {
5120 err = ipw2100_disable_adapter(priv);
5121 if (err)
5122 return err;
5123 }
5124
5125 memcpy(cmd.host_command_parameters, wpa_frame,
5126 sizeof(struct ipw2100_wpa_assoc_frame));
5127
5128 err = ipw2100_hw_send_command(priv, &cmd);
5129
5130 if (!batch_mode) {
5131 if (ipw2100_enable_adapter(priv))
5132 err = -EIO;
5133 }
5134
5135 return err;
5136}
5137
5138struct security_info_params {
5139 u32 allowed_ciphers;
5140 u16 version;
5141 u8 auth_mode;
5142 u8 replay_counters_number;
5143 u8 unicast_using_group;
5144} __attribute__ ((packed));
5145
5146static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5147 int auth_mode,
5148 int security_level,
5149 int unicast_using_group,
5150 int batch_mode)
5151{
5152 struct host_command cmd = {
5153 .host_command = SET_SECURITY_INFORMATION,
5154 .host_command_sequence = 0,
5155 .host_command_length = sizeof(struct security_info_params)
5156 };
5157 struct security_info_params *security =
5158 (struct security_info_params *)&cmd.host_command_parameters;
5159 int err;
5160 memset(security, 0, sizeof(*security));
5161
5162 /* If shared key AP authentication is turned on, then we need to
5163 * configure the firmware to try and use it.
5164 *
5165 * Actual data encryption/decryption is handled by the host. */
5166 security->auth_mode = auth_mode;
5167 security->unicast_using_group = unicast_using_group;
5168
5169 switch (security_level) {
5170 default:
5171 case SEC_LEVEL_0:
5172 security->allowed_ciphers = IPW_NONE_CIPHER;
5173 break;
5174 case SEC_LEVEL_1:
5175 security->allowed_ciphers = IPW_WEP40_CIPHER |
5176 IPW_WEP104_CIPHER;
5177 break;
5178 case SEC_LEVEL_2:
5179 security->allowed_ciphers = IPW_WEP40_CIPHER |
5180 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5181 break;
5182 case SEC_LEVEL_2_CKIP:
5183 security->allowed_ciphers = IPW_WEP40_CIPHER |
5184 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5185 break;
5186 case SEC_LEVEL_3:
5187 security->allowed_ciphers = IPW_WEP40_CIPHER |
5188 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5189 break;
5190 }
5191
5192 IPW_DEBUG_HC
5193 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5194 security->auth_mode, security->allowed_ciphers, security_level);
5195
5196 security->replay_counters_number = 0;
5197
5198 if (!batch_mode) {
5199 err = ipw2100_disable_adapter(priv);
5200 if (err)
5201 return err;
5202 }
5203
5204 err = ipw2100_hw_send_command(priv, &cmd);
5205
5206 if (!batch_mode)
5207 ipw2100_enable_adapter(priv);
5208
5209 return err;
5210}
5211
5212static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5213{
5214 struct host_command cmd = {
5215 .host_command = TX_POWER_INDEX,
5216 .host_command_sequence = 0,
5217 .host_command_length = 4
5218 };
5219 int err = 0;
5220 u32 tmp = tx_power;
5221
5222 if (tx_power != IPW_TX_POWER_DEFAULT)
5223 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5224 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5225
5226 cmd.host_command_parameters[0] = tmp;
5227
5228 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5229 err = ipw2100_hw_send_command(priv, &cmd);
5230 if (!err)
5231 priv->tx_power = tx_power;
5232
5233 return 0;
5234}
5235
5236static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5237 u32 interval, int batch_mode)
5238{
5239 struct host_command cmd = {
5240 .host_command = BEACON_INTERVAL,
5241 .host_command_sequence = 0,
5242 .host_command_length = 4
5243 };
5244 int err;
5245
5246 cmd.host_command_parameters[0] = interval;
5247
5248 IPW_DEBUG_INFO("enter\n");
5249
5250 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5251 if (!batch_mode) {
5252 err = ipw2100_disable_adapter(priv);
5253 if (err)
5254 return err;
5255 }
5256
5257 ipw2100_hw_send_command(priv, &cmd);
5258
5259 if (!batch_mode) {
5260 err = ipw2100_enable_adapter(priv);
5261 if (err)
5262 return err;
5263 }
5264 }
5265
5266 IPW_DEBUG_INFO("exit\n");
5267
5268 return 0;
5269}
5270
5271void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5272{
5273 ipw2100_tx_initialize(priv);
5274 ipw2100_rx_initialize(priv);
5275 ipw2100_msg_initialize(priv);
5276}
5277
5278void ipw2100_queues_free(struct ipw2100_priv *priv)
5279{
5280 ipw2100_tx_free(priv);
5281 ipw2100_rx_free(priv);
5282 ipw2100_msg_free(priv);
5283}
5284
5285int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5286{
5287 if (ipw2100_tx_allocate(priv) ||
5288 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5289 goto fail;
5290
5291 return 0;
5292
5293 fail:
5294 ipw2100_tx_free(priv);
5295 ipw2100_rx_free(priv);
5296 ipw2100_msg_free(priv);
5297 return -ENOMEM;
5298}
5299
5300#define IPW_PRIVACY_CAPABLE 0x0008
5301
5302static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5303 int batch_mode)
5304{
5305 struct host_command cmd = {
5306 .host_command = WEP_FLAGS,
5307 .host_command_sequence = 0,
5308 .host_command_length = 4
5309 };
5310 int err;
5311
5312 cmd.host_command_parameters[0] = flags;
5313
5314 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5315
5316 if (!batch_mode) {
5317 err = ipw2100_disable_adapter(priv);
5318 if (err) {
5319 printk(KERN_ERR DRV_NAME
5320 ": %s: Could not disable adapter %d\n",
5321 priv->net_dev->name, err);
5322 return err;
5323 }
5324 }
5325
5326 /* send cmd to firmware */
5327 err = ipw2100_hw_send_command(priv, &cmd);
5328
5329 if (!batch_mode)
5330 ipw2100_enable_adapter(priv);
5331
5332 return err;
5333}
5334
5335struct ipw2100_wep_key {
5336 u8 idx;
5337 u8 len;
5338 u8 key[13];
5339};
5340
5341/* Macros to ease up priting WEP keys */
5342#define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5343#define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5344#define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5345#define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5346
5347/**
5348 * Set a the wep key
5349 *
5350 * @priv: struct to work on
5351 * @idx: index of the key we want to set
5352 * @key: ptr to the key data to set
5353 * @len: length of the buffer at @key
5354 * @batch_mode: FIXME perform the operation in batch mode, not
5355 * disabling the device.
5356 *
5357 * @returns 0 if OK, < 0 errno code on error.
5358 *
5359 * Fill out a command structure with the new wep key, length an
5360 * index and send it down the wire.
5361 */
5362static int ipw2100_set_key(struct ipw2100_priv *priv,
5363 int idx, char *key, int len, int batch_mode)
5364{
5365 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5366 struct host_command cmd = {
5367 .host_command = WEP_KEY_INFO,
5368 .host_command_sequence = 0,
5369 .host_command_length = sizeof(struct ipw2100_wep_key),
5370 };
5371 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5372 int err;
5373
5374 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5375 idx, keylen, len);
5376
5377 /* NOTE: We don't check cached values in case the firmware was reset
5378 * or some other problem is occurring. If the user is setting the key,
5379 * then we push the change */
5380
5381 wep_key->idx = idx;
5382 wep_key->len = keylen;
5383
5384 if (keylen) {
5385 memcpy(wep_key->key, key, len);
5386 memset(wep_key->key + len, 0, keylen - len);
5387 }
5388
5389 /* Will be optimized out on debug not being configured in */
5390 if (keylen == 0)
5391 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5392 priv->net_dev->name, wep_key->idx);
5393 else if (keylen == 5)
5394 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5395 priv->net_dev->name, wep_key->idx, wep_key->len,
5396 WEP_STR_64(wep_key->key));
5397 else
5398 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5399 "\n",
5400 priv->net_dev->name, wep_key->idx, wep_key->len,
5401 WEP_STR_128(wep_key->key));
5402
5403 if (!batch_mode) {
5404 err = ipw2100_disable_adapter(priv);
5405 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5406 if (err) {
5407 printk(KERN_ERR DRV_NAME
5408 ": %s: Could not disable adapter %d\n",
5409 priv->net_dev->name, err);
5410 return err;
5411 }
5412 }
5413
5414 /* send cmd to firmware */
5415 err = ipw2100_hw_send_command(priv, &cmd);
5416
5417 if (!batch_mode) {
5418 int err2 = ipw2100_enable_adapter(priv);
5419 if (err == 0)
5420 err = err2;
5421 }
5422 return err;
5423}
5424
5425static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5426 int idx, int batch_mode)
5427{
5428 struct host_command cmd = {
5429 .host_command = WEP_KEY_INDEX,
5430 .host_command_sequence = 0,
5431 .host_command_length = 4,
5432 .host_command_parameters = {idx},
5433 };
5434 int err;
5435
5436 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5437
5438 if (idx < 0 || idx > 3)
5439 return -EINVAL;
5440
5441 if (!batch_mode) {
5442 err = ipw2100_disable_adapter(priv);
5443 if (err) {
5444 printk(KERN_ERR DRV_NAME
5445 ": %s: Could not disable adapter %d\n",
5446 priv->net_dev->name, err);
5447 return err;
5448 }
5449 }
5450
5451 /* send cmd to firmware */
5452 err = ipw2100_hw_send_command(priv, &cmd);
5453
5454 if (!batch_mode)
5455 ipw2100_enable_adapter(priv);
5456
5457 return err;
5458}
5459
5460static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5461{
5462 int i, err, auth_mode, sec_level, use_group;
5463
5464 if (!(priv->status & STATUS_RUNNING))
5465 return 0;
5466
5467 if (!batch_mode) {
5468 err = ipw2100_disable_adapter(priv);
5469 if (err)
5470 return err;
5471 }
5472
5473 if (!priv->ieee->sec.enabled) {
5474 err =
5475 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5476 SEC_LEVEL_0, 0, 1);
5477 } else {
5478 auth_mode = IPW_AUTH_OPEN;
5479 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5480 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5481 auth_mode = IPW_AUTH_SHARED;
5482 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5483 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5484 }
5485
5486 sec_level = SEC_LEVEL_0;
5487 if (priv->ieee->sec.flags & SEC_LEVEL)
5488 sec_level = priv->ieee->sec.level;
5489
5490 use_group = 0;
5491 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5492 use_group = priv->ieee->sec.unicast_uses_group;
5493
5494 err =
5495 ipw2100_set_security_information(priv, auth_mode, sec_level,
5496 use_group, 1);
5497 }
5498
5499 if (err)
5500 goto exit;
5501
5502 if (priv->ieee->sec.enabled) {
5503 for (i = 0; i < 4; i++) {
5504 if (!(priv->ieee->sec.flags & (1 << i))) {
5505 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5506 priv->ieee->sec.key_sizes[i] = 0;
5507 } else {
5508 err = ipw2100_set_key(priv, i,
5509 priv->ieee->sec.keys[i],
5510 priv->ieee->sec.
5511 key_sizes[i], 1);
5512 if (err)
5513 goto exit;
5514 }
5515 }
5516
5517 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5518 }
5519
5520 /* Always enable privacy so the Host can filter WEP packets if
5521 * encrypted data is sent up */
5522 err =
5523 ipw2100_set_wep_flags(priv,
5524 priv->ieee->sec.
5525 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5526 if (err)
5527 goto exit;
5528
5529 priv->status &= ~STATUS_SECURITY_UPDATED;
5530
5531 exit:
5532 if (!batch_mode)
5533 ipw2100_enable_adapter(priv);
5534
5535 return err;
5536}
5537
5538static void ipw2100_security_work(struct work_struct *work)
5539{
5540 struct ipw2100_priv *priv =
5541 container_of(work, struct ipw2100_priv, security_work.work);
5542
5543 /* If we happen to have reconnected before we get a chance to
5544 * process this, then update the security settings--which causes
5545 * a disassociation to occur */
5546 if (!(priv->status & STATUS_ASSOCIATED) &&
5547 priv->status & STATUS_SECURITY_UPDATED)
5548 ipw2100_configure_security(priv, 0);
5549}
5550
5551static void shim__set_security(struct net_device *dev,
5552 struct ieee80211_security *sec)
5553{
5554 struct ipw2100_priv *priv = ieee80211_priv(dev);
5555 int i, force_update = 0;
5556
5557 mutex_lock(&priv->action_mutex);
5558 if (!(priv->status & STATUS_INITIALIZED))
5559 goto done;
5560
5561 for (i = 0; i < 4; i++) {
5562 if (sec->flags & (1 << i)) {
5563 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5564 if (sec->key_sizes[i] == 0)
5565 priv->ieee->sec.flags &= ~(1 << i);
5566 else
5567 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5568 sec->key_sizes[i]);
5569 if (sec->level == SEC_LEVEL_1) {
5570 priv->ieee->sec.flags |= (1 << i);
5571 priv->status |= STATUS_SECURITY_UPDATED;
5572 } else
5573 priv->ieee->sec.flags &= ~(1 << i);
5574 }
5575 }
5576
5577 if ((sec->flags & SEC_ACTIVE_KEY) &&
5578 priv->ieee->sec.active_key != sec->active_key) {
5579 if (sec->active_key <= 3) {
5580 priv->ieee->sec.active_key = sec->active_key;
5581 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5582 } else
5583 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5584
5585 priv->status |= STATUS_SECURITY_UPDATED;
5586 }
5587
5588 if ((sec->flags & SEC_AUTH_MODE) &&
5589 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5590 priv->ieee->sec.auth_mode = sec->auth_mode;
5591 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5592 priv->status |= STATUS_SECURITY_UPDATED;
5593 }
5594
5595 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5596 priv->ieee->sec.flags |= SEC_ENABLED;
5597 priv->ieee->sec.enabled = sec->enabled;
5598 priv->status |= STATUS_SECURITY_UPDATED;
5599 force_update = 1;
5600 }
5601
5602 if (sec->flags & SEC_ENCRYPT)
5603 priv->ieee->sec.encrypt = sec->encrypt;
5604
5605 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5606 priv->ieee->sec.level = sec->level;
5607 priv->ieee->sec.flags |= SEC_LEVEL;
5608 priv->status |= STATUS_SECURITY_UPDATED;
5609 }
5610
5611 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5612 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5613 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5614 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5615 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5616 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5617 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5618 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5619 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5620 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5621
5622/* As a temporary work around to enable WPA until we figure out why
5623 * wpa_supplicant toggles the security capability of the driver, which
5624 * forces a disassocation with force_update...
5625 *
5626 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5627 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5628 ipw2100_configure_security(priv, 0);
5629 done:
5630 mutex_unlock(&priv->action_mutex);
5631}
5632
5633static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5634{
5635 int err;
5636 int batch_mode = 1;
5637 u8 *bssid;
5638
5639 IPW_DEBUG_INFO("enter\n");
5640
5641 err = ipw2100_disable_adapter(priv);
5642 if (err)
5643 return err;
5644#ifdef CONFIG_IPW2100_MONITOR
5645 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5646 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5647 if (err)
5648 return err;
5649
5650 IPW_DEBUG_INFO("exit\n");
5651
5652 return 0;
5653 }
5654#endif /* CONFIG_IPW2100_MONITOR */
5655
5656 err = ipw2100_read_mac_address(priv);
5657 if (err)
5658 return -EIO;
5659
5660 err = ipw2100_set_mac_address(priv, batch_mode);
5661 if (err)
5662 return err;
5663
5664 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5665 if (err)
5666 return err;
5667
5668 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5669 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5670 if (err)
5671 return err;
5672 }
5673
5674 err = ipw2100_system_config(priv, batch_mode);
5675 if (err)
5676 return err;
5677
5678 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5679 if (err)
5680 return err;
5681
5682 /* Default to power mode OFF */
5683 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5684 if (err)
5685 return err;
5686
5687 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5688 if (err)
5689 return err;
5690
5691 if (priv->config & CFG_STATIC_BSSID)
5692 bssid = priv->bssid;
5693 else
5694 bssid = NULL;
5695 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5696 if (err)
5697 return err;
5698
5699 if (priv->config & CFG_STATIC_ESSID)
5700 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5701 batch_mode);
5702 else
5703 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5704 if (err)
5705 return err;
5706
5707 err = ipw2100_configure_security(priv, batch_mode);
5708 if (err)
5709 return err;
5710
5711 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5712 err =
5713 ipw2100_set_ibss_beacon_interval(priv,
5714 priv->beacon_interval,
5715 batch_mode);
5716 if (err)
5717 return err;
5718
5719 err = ipw2100_set_tx_power(priv, priv->tx_power);
5720 if (err)
5721 return err;
5722 }
5723
5724 /*
5725 err = ipw2100_set_fragmentation_threshold(
5726 priv, priv->frag_threshold, batch_mode);
5727 if (err)
5728 return err;
5729 */
5730
5731 IPW_DEBUG_INFO("exit\n");
5732
5733 return 0;
5734}
5735
5736/*************************************************************************
5737 *
5738 * EXTERNALLY CALLED METHODS
5739 *
5740 *************************************************************************/
5741
5742/* This method is called by the network layer -- not to be confused with
5743 * ipw2100_set_mac_address() declared above called by this driver (and this
5744 * method as well) to talk to the firmware */
5745static int ipw2100_set_address(struct net_device *dev, void *p)
5746{
5747 struct ipw2100_priv *priv = ieee80211_priv(dev);
5748 struct sockaddr *addr = p;
5749 int err = 0;
5750
5751 if (!is_valid_ether_addr(addr->sa_data))
5752 return -EADDRNOTAVAIL;
5753
5754 mutex_lock(&priv->action_mutex);
5755
5756 priv->config |= CFG_CUSTOM_MAC;
5757 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5758
5759 err = ipw2100_set_mac_address(priv, 0);
5760 if (err)
5761 goto done;
5762
5763 priv->reset_backoff = 0;
5764 mutex_unlock(&priv->action_mutex);
5765 ipw2100_reset_adapter(&priv->reset_work.work);
5766 return 0;
5767
5768 done:
5769 mutex_unlock(&priv->action_mutex);
5770 return err;
5771}
5772
5773static int ipw2100_open(struct net_device *dev)
5774{
5775 struct ipw2100_priv *priv = ieee80211_priv(dev);
5776 unsigned long flags;
5777 IPW_DEBUG_INFO("dev->open\n");
5778
5779 spin_lock_irqsave(&priv->low_lock, flags);
5780 if (priv->status & STATUS_ASSOCIATED) {
5781 netif_carrier_on(dev);
5782 netif_start_queue(dev);
5783 }
5784 spin_unlock_irqrestore(&priv->low_lock, flags);
5785
5786 return 0;
5787}
5788
5789static int ipw2100_close(struct net_device *dev)
5790{
5791 struct ipw2100_priv *priv = ieee80211_priv(dev);
5792 unsigned long flags;
5793 struct list_head *element;
5794 struct ipw2100_tx_packet *packet;
5795
5796 IPW_DEBUG_INFO("enter\n");
5797
5798 spin_lock_irqsave(&priv->low_lock, flags);
5799
5800 if (priv->status & STATUS_ASSOCIATED)
5801 netif_carrier_off(dev);
5802 netif_stop_queue(dev);
5803
5804 /* Flush the TX queue ... */
5805 while (!list_empty(&priv->tx_pend_list)) {
5806 element = priv->tx_pend_list.next;
5807 packet = list_entry(element, struct ipw2100_tx_packet, list);
5808
5809 list_del(element);
5810 DEC_STAT(&priv->tx_pend_stat);
5811
5812 ieee80211_txb_free(packet->info.d_struct.txb);
5813 packet->info.d_struct.txb = NULL;
5814
5815 list_add_tail(element, &priv->tx_free_list);
5816 INC_STAT(&priv->tx_free_stat);
5817 }
5818 spin_unlock_irqrestore(&priv->low_lock, flags);
5819
5820 IPW_DEBUG_INFO("exit\n");
5821
5822 return 0;
5823}
5824
5825/*
5826 * TODO: Fix this function... its just wrong
5827 */
5828static void ipw2100_tx_timeout(struct net_device *dev)
5829{
5830 struct ipw2100_priv *priv = ieee80211_priv(dev);
5831
5832 priv->ieee->stats.tx_errors++;
5833
5834#ifdef CONFIG_IPW2100_MONITOR
5835 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5836 return;
5837#endif
5838
5839 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5840 dev->name);
5841 schedule_reset(priv);
5842}
5843
5844static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5845{
5846 /* This is called when wpa_supplicant loads and closes the driver
5847 * interface. */
5848 priv->ieee->wpa_enabled = value;
5849 return 0;
5850}
5851
5852static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5853{
5854
5855 struct ieee80211_device *ieee = priv->ieee;
5856 struct ieee80211_security sec = {
5857 .flags = SEC_AUTH_MODE,
5858 };
5859 int ret = 0;
5860
5861 if (value & IW_AUTH_ALG_SHARED_KEY) {
5862 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5863 ieee->open_wep = 0;
5864 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5865 sec.auth_mode = WLAN_AUTH_OPEN;
5866 ieee->open_wep = 1;
5867 } else if (value & IW_AUTH_ALG_LEAP) {
5868 sec.auth_mode = WLAN_AUTH_LEAP;
5869 ieee->open_wep = 1;
5870 } else
5871 return -EINVAL;
5872
5873 if (ieee->set_security)
5874 ieee->set_security(ieee->dev, &sec);
5875 else
5876 ret = -EOPNOTSUPP;
5877
5878 return ret;
5879}
5880
5881static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5882 char *wpa_ie, int wpa_ie_len)
5883{
5884
5885 struct ipw2100_wpa_assoc_frame frame;
5886
5887 frame.fixed_ie_mask = 0;
5888
5889 /* copy WPA IE */
5890 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5891 frame.var_ie_len = wpa_ie_len;
5892
5893 /* make sure WPA is enabled */
5894 ipw2100_wpa_enable(priv, 1);
5895 ipw2100_set_wpa_ie(priv, &frame, 0);
5896}
5897
5898static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5899 struct ethtool_drvinfo *info)
5900{
5901 struct ipw2100_priv *priv = ieee80211_priv(dev);
5902 char fw_ver[64], ucode_ver[64];
5903
5904 strcpy(info->driver, DRV_NAME);
5905 strcpy(info->version, DRV_VERSION);
5906
5907 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5908 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5909
5910 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5911 fw_ver, priv->eeprom_version, ucode_ver);
5912
5913 strcpy(info->bus_info, pci_name(priv->pci_dev));
5914}
5915
5916static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5917{
5918 struct ipw2100_priv *priv = ieee80211_priv(dev);
5919 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5920}
5921
5922static const struct ethtool_ops ipw2100_ethtool_ops = {
5923 .get_link = ipw2100_ethtool_get_link,
5924 .get_drvinfo = ipw_ethtool_get_drvinfo,
5925};
5926
5927static void ipw2100_hang_check(struct work_struct *work)
5928{
5929 struct ipw2100_priv *priv =
5930 container_of(work, struct ipw2100_priv, hang_check.work);
5931 unsigned long flags;
5932 u32 rtc = 0xa5a5a5a5;
5933 u32 len = sizeof(rtc);
5934 int restart = 0;
5935
5936 spin_lock_irqsave(&priv->low_lock, flags);
5937
5938 if (priv->fatal_error != 0) {
5939 /* If fatal_error is set then we need to restart */
5940 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5941 priv->net_dev->name);
5942
5943 restart = 1;
5944 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5945 (rtc == priv->last_rtc)) {
5946 /* Check if firmware is hung */
5947 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5948 priv->net_dev->name);
5949
5950 restart = 1;
5951 }
5952
5953 if (restart) {
5954 /* Kill timer */
5955 priv->stop_hang_check = 1;
5956 priv->hangs++;
5957
5958 /* Restart the NIC */
5959 schedule_reset(priv);
5960 }
5961
5962 priv->last_rtc = rtc;
5963
5964 if (!priv->stop_hang_check)
5965 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5966
5967 spin_unlock_irqrestore(&priv->low_lock, flags);
5968}
5969
5970static void ipw2100_rf_kill(struct work_struct *work)
5971{
5972 struct ipw2100_priv *priv =
5973 container_of(work, struct ipw2100_priv, rf_kill.work);
5974 unsigned long flags;
5975
5976 spin_lock_irqsave(&priv->low_lock, flags);
5977
5978 if (rf_kill_active(priv)) {
5979 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5980 if (!priv->stop_rf_kill)
5981 queue_delayed_work(priv->workqueue, &priv->rf_kill,
5982 round_jiffies_relative(HZ));
5983 goto exit_unlock;
5984 }
5985
5986 /* RF Kill is now disabled, so bring the device back up */
5987
5988 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5989 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5990 "device\n");
5991 schedule_reset(priv);
5992 } else
5993 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5994 "enabled\n");
5995
5996 exit_unlock:
5997 spin_unlock_irqrestore(&priv->low_lock, flags);
5998}
5999
6000static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6001
6002/* Look into using netdev destructor to shutdown ieee80211? */
6003
6004static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6005 void __iomem * base_addr,
6006 unsigned long mem_start,
6007 unsigned long mem_len)
6008{
6009 struct ipw2100_priv *priv;
6010 struct net_device *dev;
6011
6012 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6013 if (!dev)
6014 return NULL;
6015 priv = ieee80211_priv(dev);
6016 priv->ieee = netdev_priv(dev);
6017 priv->pci_dev = pci_dev;
6018 priv->net_dev = dev;
6019
6020 priv->ieee->hard_start_xmit = ipw2100_tx;
6021 priv->ieee->set_security = shim__set_security;
6022
6023 priv->ieee->perfect_rssi = -20;
6024 priv->ieee->worst_rssi = -85;
6025
6026 dev->open = ipw2100_open;
6027 dev->stop = ipw2100_close;
6028 dev->init = ipw2100_net_init;
6029 dev->ethtool_ops = &ipw2100_ethtool_ops;
6030 dev->tx_timeout = ipw2100_tx_timeout;
6031 dev->wireless_handlers = &ipw2100_wx_handler_def;
6032 priv->wireless_data.ieee80211 = priv->ieee;
6033 dev->wireless_data = &priv->wireless_data;
6034 dev->set_mac_address = ipw2100_set_address;
6035 dev->watchdog_timeo = 3 * HZ;
6036 dev->irq = 0;
6037
6038 dev->base_addr = (unsigned long)base_addr;
6039 dev->mem_start = mem_start;
6040 dev->mem_end = dev->mem_start + mem_len - 1;
6041
6042 /* NOTE: We don't use the wireless_handlers hook
6043 * in dev as the system will start throwing WX requests
6044 * to us before we're actually initialized and it just
6045 * ends up causing problems. So, we just handle
6046 * the WX extensions through the ipw2100_ioctl interface */
6047
6048 /* memset() puts everything to 0, so we only have explicitly set
6049 * those values that need to be something else */
6050
6051 /* If power management is turned on, default to AUTO mode */
6052 priv->power_mode = IPW_POWER_AUTO;
6053
6054#ifdef CONFIG_IPW2100_MONITOR
6055 priv->config |= CFG_CRC_CHECK;
6056#endif
6057 priv->ieee->wpa_enabled = 0;
6058 priv->ieee->drop_unencrypted = 0;
6059 priv->ieee->privacy_invoked = 0;
6060 priv->ieee->ieee802_1x = 1;
6061
6062 /* Set module parameters */
6063 switch (mode) {
6064 case 1:
6065 priv->ieee->iw_mode = IW_MODE_ADHOC;
6066 break;
6067#ifdef CONFIG_IPW2100_MONITOR
6068 case 2:
6069 priv->ieee->iw_mode = IW_MODE_MONITOR;
6070 break;
6071#endif
6072 default:
6073 case 0:
6074 priv->ieee->iw_mode = IW_MODE_INFRA;
6075 break;
6076 }
6077
6078 if (disable == 1)
6079 priv->status |= STATUS_RF_KILL_SW;
6080
6081 if (channel != 0 &&
6082 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6083 priv->config |= CFG_STATIC_CHANNEL;
6084 priv->channel = channel;
6085 }
6086
6087 if (associate)
6088 priv->config |= CFG_ASSOCIATE;
6089
6090 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6091 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6092 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6093 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6094 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6095 priv->tx_power = IPW_TX_POWER_DEFAULT;
6096 priv->tx_rates = DEFAULT_TX_RATES;
6097
6098 strcpy(priv->nick, "ipw2100");
6099
6100 spin_lock_init(&priv->low_lock);
6101 mutex_init(&priv->action_mutex);
6102 mutex_init(&priv->adapter_mutex);
6103
6104 init_waitqueue_head(&priv->wait_command_queue);
6105
6106 netif_carrier_off(dev);
6107
6108 INIT_LIST_HEAD(&priv->msg_free_list);
6109 INIT_LIST_HEAD(&priv->msg_pend_list);
6110 INIT_STAT(&priv->msg_free_stat);
6111 INIT_STAT(&priv->msg_pend_stat);
6112
6113 INIT_LIST_HEAD(&priv->tx_free_list);
6114 INIT_LIST_HEAD(&priv->tx_pend_list);
6115 INIT_STAT(&priv->tx_free_stat);
6116 INIT_STAT(&priv->tx_pend_stat);
6117
6118 INIT_LIST_HEAD(&priv->fw_pend_list);
6119 INIT_STAT(&priv->fw_pend_stat);
6120
6121 priv->workqueue = create_workqueue(DRV_NAME);
6122
6123 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6124 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6125 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6126 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6127 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6128 INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6129 INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6130
6131 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6132 ipw2100_irq_tasklet, (unsigned long)priv);
6133
6134 /* NOTE: We do not start the deferred work for status checks yet */
6135 priv->stop_rf_kill = 1;
6136 priv->stop_hang_check = 1;
6137
6138 return dev;
6139}
6140
6141static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6142 const struct pci_device_id *ent)
6143{
6144 unsigned long mem_start, mem_len, mem_flags;
6145 void __iomem *base_addr = NULL;
6146 struct net_device *dev = NULL;
6147 struct ipw2100_priv *priv = NULL;
6148 int err = 0;
6149 int registered = 0;
6150 u32 val;
6151
6152 IPW_DEBUG_INFO("enter\n");
6153
6154 mem_start = pci_resource_start(pci_dev, 0);
6155 mem_len = pci_resource_len(pci_dev, 0);
6156 mem_flags = pci_resource_flags(pci_dev, 0);
6157
6158 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6159 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6160 err = -ENODEV;
6161 goto fail;
6162 }
6163
6164 base_addr = ioremap_nocache(mem_start, mem_len);
6165 if (!base_addr) {
6166 printk(KERN_WARNING DRV_NAME
6167 "Error calling ioremap_nocache.\n");
6168 err = -EIO;
6169 goto fail;
6170 }
6171
6172 /* allocate and initialize our net_device */
6173 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6174 if (!dev) {
6175 printk(KERN_WARNING DRV_NAME
6176 "Error calling ipw2100_alloc_device.\n");
6177 err = -ENOMEM;
6178 goto fail;
6179 }
6180
6181 /* set up PCI mappings for device */
6182 err = pci_enable_device(pci_dev);
6183 if (err) {
6184 printk(KERN_WARNING DRV_NAME
6185 "Error calling pci_enable_device.\n");
6186 return err;
6187 }
6188
6189 priv = ieee80211_priv(dev);
6190
6191 pci_set_master(pci_dev);
6192 pci_set_drvdata(pci_dev, priv);
6193
6194 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6195 if (err) {
6196 printk(KERN_WARNING DRV_NAME
6197 "Error calling pci_set_dma_mask.\n");
6198 pci_disable_device(pci_dev);
6199 return err;
6200 }
6201
6202 err = pci_request_regions(pci_dev, DRV_NAME);
6203 if (err) {
6204 printk(KERN_WARNING DRV_NAME
6205 "Error calling pci_request_regions.\n");
6206 pci_disable_device(pci_dev);
6207 return err;
6208 }
6209
6210 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6211 * PCI Tx retries from interfering with C3 CPU state */
6212 pci_read_config_dword(pci_dev, 0x40, &val);
6213 if ((val & 0x0000ff00) != 0)
6214 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6215
6216 pci_set_power_state(pci_dev, PCI_D0);
6217
6218 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6219 printk(KERN_WARNING DRV_NAME
6220 "Device not found via register read.\n");
6221 err = -ENODEV;
6222 goto fail;
6223 }
6224
6225 SET_NETDEV_DEV(dev, &pci_dev->dev);
6226
6227 /* Force interrupts to be shut off on the device */
6228 priv->status |= STATUS_INT_ENABLED;
6229 ipw2100_disable_interrupts(priv);
6230
6231 /* Allocate and initialize the Tx/Rx queues and lists */
6232 if (ipw2100_queues_allocate(priv)) {
6233 printk(KERN_WARNING DRV_NAME
6234 "Error calling ipw2100_queues_allocate.\n");
6235 err = -ENOMEM;
6236 goto fail;
6237 }
6238 ipw2100_queues_initialize(priv);
6239
6240 err = request_irq(pci_dev->irq,
6241 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6242 if (err) {
6243 printk(KERN_WARNING DRV_NAME
6244 "Error calling request_irq: %d.\n", pci_dev->irq);
6245 goto fail;
6246 }
6247 dev->irq = pci_dev->irq;
6248
6249 IPW_DEBUG_INFO("Attempting to register device...\n");
6250
6251 printk(KERN_INFO DRV_NAME
6252 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6253
6254 /* Bring up the interface. Pre 0.46, after we registered the
6255 * network device we would call ipw2100_up. This introduced a race
6256 * condition with newer hotplug configurations (network was coming
6257 * up and making calls before the device was initialized).
6258 *
6259 * If we called ipw2100_up before we registered the device, then the
6260 * device name wasn't registered. So, we instead use the net_dev->init
6261 * member to call a function that then just turns and calls ipw2100_up.
6262 * net_dev->init is called after name allocation but before the
6263 * notifier chain is called */
6264 err = register_netdev(dev);
6265 if (err) {
6266 printk(KERN_WARNING DRV_NAME
6267 "Error calling register_netdev.\n");
6268 goto fail;
6269 }
6270
6271 mutex_lock(&priv->action_mutex);
6272 registered = 1;
6273
6274 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6275
6276 /* perform this after register_netdev so that dev->name is set */
6277 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6278 if (err)
6279 goto fail_unlock;
6280
6281 /* If the RF Kill switch is disabled, go ahead and complete the
6282 * startup sequence */
6283 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6284 /* Enable the adapter - sends HOST_COMPLETE */
6285 if (ipw2100_enable_adapter(priv)) {
6286 printk(KERN_WARNING DRV_NAME
6287 ": %s: failed in call to enable adapter.\n",
6288 priv->net_dev->name);
6289 ipw2100_hw_stop_adapter(priv);
6290 err = -EIO;
6291 goto fail_unlock;
6292 }
6293
6294 /* Start a scan . . . */
6295 ipw2100_set_scan_options(priv);
6296 ipw2100_start_scan(priv);
6297 }
6298
6299 IPW_DEBUG_INFO("exit\n");
6300
6301 priv->status |= STATUS_INITIALIZED;
6302
6303 mutex_unlock(&priv->action_mutex);
6304
6305 return 0;
6306
6307 fail_unlock:
6308 mutex_unlock(&priv->action_mutex);
6309
6310 fail:
6311 if (dev) {
6312 if (registered)
6313 unregister_netdev(dev);
6314
6315 ipw2100_hw_stop_adapter(priv);
6316
6317 ipw2100_disable_interrupts(priv);
6318
6319 if (dev->irq)
6320 free_irq(dev->irq, priv);
6321
6322 ipw2100_kill_workqueue(priv);
6323
6324 /* These are safe to call even if they weren't allocated */
6325 ipw2100_queues_free(priv);
6326 sysfs_remove_group(&pci_dev->dev.kobj,
6327 &ipw2100_attribute_group);
6328
6329 free_ieee80211(dev);
6330 pci_set_drvdata(pci_dev, NULL);
6331 }
6332
6333 if (base_addr)
6334 iounmap(base_addr);
6335
6336 pci_release_regions(pci_dev);
6337 pci_disable_device(pci_dev);
6338
6339 return err;
6340}
6341
6342static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6343{
6344 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6345 struct net_device *dev;
6346
6347 if (priv) {
6348 mutex_lock(&priv->action_mutex);
6349
6350 priv->status &= ~STATUS_INITIALIZED;
6351
6352 dev = priv->net_dev;
6353 sysfs_remove_group(&pci_dev->dev.kobj,
6354 &ipw2100_attribute_group);
6355
6356#ifdef CONFIG_PM
6357 if (ipw2100_firmware.version)
6358 ipw2100_release_firmware(priv, &ipw2100_firmware);
6359#endif
6360 /* Take down the hardware */
6361 ipw2100_down(priv);
6362
6363 /* Release the mutex so that the network subsystem can
6364 * complete any needed calls into the driver... */
6365 mutex_unlock(&priv->action_mutex);
6366
6367 /* Unregister the device first - this results in close()
6368 * being called if the device is open. If we free storage
6369 * first, then close() will crash. */
6370 unregister_netdev(dev);
6371
6372 /* ipw2100_down will ensure that there is no more pending work
6373 * in the workqueue's, so we can safely remove them now. */
6374 ipw2100_kill_workqueue(priv);
6375
6376 ipw2100_queues_free(priv);
6377
6378 /* Free potential debugging firmware snapshot */
6379 ipw2100_snapshot_free(priv);
6380
6381 if (dev->irq)
6382 free_irq(dev->irq, priv);
6383
6384 if (dev->base_addr)
6385 iounmap((void __iomem *)dev->base_addr);
6386
6387 free_ieee80211(dev);
6388 }
6389
6390 pci_release_regions(pci_dev);
6391 pci_disable_device(pci_dev);
6392
6393 IPW_DEBUG_INFO("exit\n");
6394}
6395
6396#ifdef CONFIG_PM
6397static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6398{
6399 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6400 struct net_device *dev = priv->net_dev;
6401
6402 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6403
6404 mutex_lock(&priv->action_mutex);
6405 if (priv->status & STATUS_INITIALIZED) {
6406 /* Take down the device; powers it off, etc. */
6407 ipw2100_down(priv);
6408 }
6409
6410 /* Remove the PRESENT state of the device */
6411 netif_device_detach(dev);
6412
6413 pci_save_state(pci_dev);
6414 pci_disable_device(pci_dev);
6415 pci_set_power_state(pci_dev, PCI_D3hot);
6416
6417 mutex_unlock(&priv->action_mutex);
6418
6419 return 0;
6420}
6421
6422static int ipw2100_resume(struct pci_dev *pci_dev)
6423{
6424 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6425 struct net_device *dev = priv->net_dev;
6426 int err;
6427 u32 val;
6428
6429 if (IPW2100_PM_DISABLED)
6430 return 0;
6431
6432 mutex_lock(&priv->action_mutex);
6433
6434 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6435
6436 pci_set_power_state(pci_dev, PCI_D0);
6437 err = pci_enable_device(pci_dev);
6438 if (err) {
6439 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6440 dev->name);
6441 mutex_unlock(&priv->action_mutex);
6442 return err;
6443 }
6444 pci_restore_state(pci_dev);
6445
6446 /*
6447 * Suspend/Resume resets the PCI configuration space, so we have to
6448 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6449 * from interfering with C3 CPU state. pci_restore_state won't help
6450 * here since it only restores the first 64 bytes pci config header.
6451 */
6452 pci_read_config_dword(pci_dev, 0x40, &val);
6453 if ((val & 0x0000ff00) != 0)
6454 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6455
6456 /* Set the device back into the PRESENT state; this will also wake
6457 * the queue of needed */
6458 netif_device_attach(dev);
6459
6460 /* Bring the device back up */
6461 if (!(priv->status & STATUS_RF_KILL_SW))
6462 ipw2100_up(priv, 0);
6463
6464 mutex_unlock(&priv->action_mutex);
6465
6466 return 0;
6467}
6468#endif
6469
6470#define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6471
6472static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6473 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6474 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6475 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6476 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6477 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6478 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6479 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6480 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6481 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6482 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6483 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6484 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6485 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6486
6487 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6488 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6489 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6490 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6491 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6492
6493 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6494 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6495 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6496 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6497 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6498 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6499 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6500
6501 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6502
6503 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6504 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6505 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6506 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6507 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6508 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6509 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6510
6511 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6512 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6513 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6514 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6515 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6516 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6517
6518 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6519 {0,},
6520};
6521
6522MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6523
6524static struct pci_driver ipw2100_pci_driver = {
6525 .name = DRV_NAME,
6526 .id_table = ipw2100_pci_id_table,
6527 .probe = ipw2100_pci_init_one,
6528 .remove = __devexit_p(ipw2100_pci_remove_one),
6529#ifdef CONFIG_PM
6530 .suspend = ipw2100_suspend,
6531 .resume = ipw2100_resume,
6532#endif
6533};
6534
6535/**
6536 * Initialize the ipw2100 driver/module
6537 *
6538 * @returns 0 if ok, < 0 errno node con error.
6539 *
6540 * Note: we cannot init the /proc stuff until the PCI driver is there,
6541 * or we risk an unlikely race condition on someone accessing
6542 * uninitialized data in the PCI dev struct through /proc.
6543 */
6544static int __init ipw2100_init(void)
6545{
6546 int ret;
6547
6548 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6549 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6550
6551 ret = pci_register_driver(&ipw2100_pci_driver);
6552 if (ret)
6553 goto out;
6554
6555 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100",
6556 PM_QOS_DEFAULT_VALUE);
6557#ifdef CONFIG_IPW2100_DEBUG
6558 ipw2100_debug_level = debug;
6559 ret = driver_create_file(&ipw2100_pci_driver.driver,
6560 &driver_attr_debug_level);
6561#endif
6562
6563out:
6564 return ret;
6565}
6566
6567/**
6568 * Cleanup ipw2100 driver registration
6569 */
6570static void __exit ipw2100_exit(void)
6571{
6572 /* FIXME: IPG: check that we have no instances of the devices open */
6573#ifdef CONFIG_IPW2100_DEBUG
6574 driver_remove_file(&ipw2100_pci_driver.driver,
6575 &driver_attr_debug_level);
6576#endif
6577 pci_unregister_driver(&ipw2100_pci_driver);
6578 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100");
6579}
6580
6581module_init(ipw2100_init);
6582module_exit(ipw2100_exit);
6583
6584#define WEXT_USECHANNELS 1
6585
6586static const long ipw2100_frequencies[] = {
6587 2412, 2417, 2422, 2427,
6588 2432, 2437, 2442, 2447,
6589 2452, 2457, 2462, 2467,
6590 2472, 2484
6591};
6592
6593#define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
6594
6595static const long ipw2100_rates_11b[] = {
6596 1000000,
6597 2000000,
6598 5500000,
6599 11000000
6600};
6601
6602#define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6603
6604static int ipw2100_wx_get_name(struct net_device *dev,
6605 struct iw_request_info *info,
6606 union iwreq_data *wrqu, char *extra)
6607{
6608 /*
6609 * This can be called at any time. No action lock required
6610 */
6611
6612 struct ipw2100_priv *priv = ieee80211_priv(dev);
6613 if (!(priv->status & STATUS_ASSOCIATED))
6614 strcpy(wrqu->name, "unassociated");
6615 else
6616 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6617
6618 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6619 return 0;
6620}
6621
6622static int ipw2100_wx_set_freq(struct net_device *dev,
6623 struct iw_request_info *info,
6624 union iwreq_data *wrqu, char *extra)
6625{
6626 struct ipw2100_priv *priv = ieee80211_priv(dev);
6627 struct iw_freq *fwrq = &wrqu->freq;
6628 int err = 0;
6629
6630 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6631 return -EOPNOTSUPP;
6632
6633 mutex_lock(&priv->action_mutex);
6634 if (!(priv->status & STATUS_INITIALIZED)) {
6635 err = -EIO;
6636 goto done;
6637 }
6638
6639 /* if setting by freq convert to channel */
6640 if (fwrq->e == 1) {
6641 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6642 int f = fwrq->m / 100000;
6643 int c = 0;
6644
6645 while ((c < REG_MAX_CHANNEL) &&
6646 (f != ipw2100_frequencies[c]))
6647 c++;
6648
6649 /* hack to fall through */
6650 fwrq->e = 0;
6651 fwrq->m = c + 1;
6652 }
6653 }
6654
6655 if (fwrq->e > 0 || fwrq->m > 1000) {
6656 err = -EOPNOTSUPP;
6657 goto done;
6658 } else { /* Set the channel */
6659 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6660 err = ipw2100_set_channel(priv, fwrq->m, 0);
6661 }
6662
6663 done:
6664 mutex_unlock(&priv->action_mutex);
6665 return err;
6666}
6667
6668static int ipw2100_wx_get_freq(struct net_device *dev,
6669 struct iw_request_info *info,
6670 union iwreq_data *wrqu, char *extra)
6671{
6672 /*
6673 * This can be called at any time. No action lock required
6674 */
6675
6676 struct ipw2100_priv *priv = ieee80211_priv(dev);
6677
6678 wrqu->freq.e = 0;
6679
6680 /* If we are associated, trying to associate, or have a statically
6681 * configured CHANNEL then return that; otherwise return ANY */
6682 if (priv->config & CFG_STATIC_CHANNEL ||
6683 priv->status & STATUS_ASSOCIATED)
6684 wrqu->freq.m = priv->channel;
6685 else
6686 wrqu->freq.m = 0;
6687
6688 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6689 return 0;
6690
6691}
6692
6693static int ipw2100_wx_set_mode(struct net_device *dev,
6694 struct iw_request_info *info,
6695 union iwreq_data *wrqu, char *extra)
6696{
6697 struct ipw2100_priv *priv = ieee80211_priv(dev);
6698 int err = 0;
6699
6700 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6701
6702 if (wrqu->mode == priv->ieee->iw_mode)
6703 return 0;
6704
6705 mutex_lock(&priv->action_mutex);
6706 if (!(priv->status & STATUS_INITIALIZED)) {
6707 err = -EIO;
6708 goto done;
6709 }
6710
6711 switch (wrqu->mode) {
6712#ifdef CONFIG_IPW2100_MONITOR
6713 case IW_MODE_MONITOR:
6714 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6715 break;
6716#endif /* CONFIG_IPW2100_MONITOR */
6717 case IW_MODE_ADHOC:
6718 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6719 break;
6720 case IW_MODE_INFRA:
6721 case IW_MODE_AUTO:
6722 default:
6723 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6724 break;
6725 }
6726
6727 done:
6728 mutex_unlock(&priv->action_mutex);
6729 return err;
6730}
6731
6732static int ipw2100_wx_get_mode(struct net_device *dev,
6733 struct iw_request_info *info,
6734 union iwreq_data *wrqu, char *extra)
6735{
6736 /*
6737 * This can be called at any time. No action lock required
6738 */
6739
6740 struct ipw2100_priv *priv = ieee80211_priv(dev);
6741
6742 wrqu->mode = priv->ieee->iw_mode;
6743 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6744
6745 return 0;
6746}
6747
6748#define POWER_MODES 5
6749
6750/* Values are in microsecond */
6751static const s32 timeout_duration[POWER_MODES] = {
6752 350000,
6753 250000,
6754 75000,
6755 37000,
6756 25000,
6757};
6758
6759static const s32 period_duration[POWER_MODES] = {
6760 400000,
6761 700000,
6762 1000000,
6763 1000000,
6764 1000000
6765};
6766
6767static int ipw2100_wx_get_range(struct net_device *dev,
6768 struct iw_request_info *info,
6769 union iwreq_data *wrqu, char *extra)
6770{
6771 /*
6772 * This can be called at any time. No action lock required
6773 */
6774
6775 struct ipw2100_priv *priv = ieee80211_priv(dev);
6776 struct iw_range *range = (struct iw_range *)extra;
6777 u16 val;
6778 int i, level;
6779
6780 wrqu->data.length = sizeof(*range);
6781 memset(range, 0, sizeof(*range));
6782
6783 /* Let's try to keep this struct in the same order as in
6784 * linux/include/wireless.h
6785 */
6786
6787 /* TODO: See what values we can set, and remove the ones we can't
6788 * set, or fill them with some default data.
6789 */
6790
6791 /* ~5 Mb/s real (802.11b) */
6792 range->throughput = 5 * 1000 * 1000;
6793
6794// range->sensitivity; /* signal level threshold range */
6795
6796 range->max_qual.qual = 100;
6797 /* TODO: Find real max RSSI and stick here */
6798 range->max_qual.level = 0;
6799 range->max_qual.noise = 0;
6800 range->max_qual.updated = 7; /* Updated all three */
6801
6802 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6803 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6804 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6805 range->avg_qual.noise = 0;
6806 range->avg_qual.updated = 7; /* Updated all three */
6807
6808 range->num_bitrates = RATE_COUNT;
6809
6810 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6811 range->bitrate[i] = ipw2100_rates_11b[i];
6812 }
6813
6814 range->min_rts = MIN_RTS_THRESHOLD;
6815 range->max_rts = MAX_RTS_THRESHOLD;
6816 range->min_frag = MIN_FRAG_THRESHOLD;
6817 range->max_frag = MAX_FRAG_THRESHOLD;
6818
6819 range->min_pmp = period_duration[0]; /* Minimal PM period */
6820 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6821 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6822 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6823
6824 /* How to decode max/min PM period */
6825 range->pmp_flags = IW_POWER_PERIOD;
6826 /* How to decode max/min PM period */
6827 range->pmt_flags = IW_POWER_TIMEOUT;
6828 /* What PM options are supported */
6829 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6830
6831 range->encoding_size[0] = 5;
6832 range->encoding_size[1] = 13; /* Different token sizes */
6833 range->num_encoding_sizes = 2; /* Number of entry in the list */
6834 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6835// range->encoding_login_index; /* token index for login token */
6836
6837 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6838 range->txpower_capa = IW_TXPOW_DBM;
6839 range->num_txpower = IW_MAX_TXPOWER;
6840 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6841 i < IW_MAX_TXPOWER;
6842 i++, level -=
6843 ((IPW_TX_POWER_MAX_DBM -
6844 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6845 range->txpower[i] = level / 16;
6846 } else {
6847 range->txpower_capa = 0;
6848 range->num_txpower = 0;
6849 }
6850
6851 /* Set the Wireless Extension versions */
6852 range->we_version_compiled = WIRELESS_EXT;
6853 range->we_version_source = 18;
6854
6855// range->retry_capa; /* What retry options are supported */
6856// range->retry_flags; /* How to decode max/min retry limit */
6857// range->r_time_flags; /* How to decode max/min retry life */
6858// range->min_retry; /* Minimal number of retries */
6859// range->max_retry; /* Maximal number of retries */
6860// range->min_r_time; /* Minimal retry lifetime */
6861// range->max_r_time; /* Maximal retry lifetime */
6862
6863 range->num_channels = FREQ_COUNT;
6864
6865 val = 0;
6866 for (i = 0; i < FREQ_COUNT; i++) {
6867 // TODO: Include only legal frequencies for some countries
6868// if (local->channel_mask & (1 << i)) {
6869 range->freq[val].i = i + 1;
6870 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6871 range->freq[val].e = 1;
6872 val++;
6873// }
6874 if (val == IW_MAX_FREQUENCIES)
6875 break;
6876 }
6877 range->num_frequency = val;
6878
6879 /* Event capability (kernel + driver) */
6880 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6881 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6882 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6883
6884 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6885 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6886
6887 IPW_DEBUG_WX("GET Range\n");
6888
6889 return 0;
6890}
6891
6892static int ipw2100_wx_set_wap(struct net_device *dev,
6893 struct iw_request_info *info,
6894 union iwreq_data *wrqu, char *extra)
6895{
6896 struct ipw2100_priv *priv = ieee80211_priv(dev);
6897 int err = 0;
6898
6899 static const unsigned char any[] = {
6900 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6901 };
6902 static const unsigned char off[] = {
6903 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6904 };
6905
6906 // sanity checks
6907 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6908 return -EINVAL;
6909
6910 mutex_lock(&priv->action_mutex);
6911 if (!(priv->status & STATUS_INITIALIZED)) {
6912 err = -EIO;
6913 goto done;
6914 }
6915
6916 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6917 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6918 /* we disable mandatory BSSID association */
6919 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6920 priv->config &= ~CFG_STATIC_BSSID;
6921 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6922 goto done;
6923 }
6924
6925 priv->config |= CFG_STATIC_BSSID;
6926 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6927
6928 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6929
6930 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6931
6932 done:
6933 mutex_unlock(&priv->action_mutex);
6934 return err;
6935}
6936
6937static int ipw2100_wx_get_wap(struct net_device *dev,
6938 struct iw_request_info *info,
6939 union iwreq_data *wrqu, char *extra)
6940{
6941 /*
6942 * This can be called at any time. No action lock required
6943 */
6944
6945 struct ipw2100_priv *priv = ieee80211_priv(dev);
6946
6947 /* If we are associated, trying to associate, or have a statically
6948 * configured BSSID then return that; otherwise return ANY */
6949 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6950 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6951 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6952 } else
6953 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6954
6955 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6956 return 0;
6957}
6958
6959static int ipw2100_wx_set_essid(struct net_device *dev,
6960 struct iw_request_info *info,
6961 union iwreq_data *wrqu, char *extra)
6962{
6963 struct ipw2100_priv *priv = ieee80211_priv(dev);
6964 char *essid = ""; /* ANY */
6965 int length = 0;
6966 int err = 0;
6967 DECLARE_SSID_BUF(ssid);
6968
6969 mutex_lock(&priv->action_mutex);
6970 if (!(priv->status & STATUS_INITIALIZED)) {
6971 err = -EIO;
6972 goto done;
6973 }
6974
6975 if (wrqu->essid.flags && wrqu->essid.length) {
6976 length = wrqu->essid.length;
6977 essid = extra;
6978 }
6979
6980 if (length == 0) {
6981 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6982 priv->config &= ~CFG_STATIC_ESSID;
6983 err = ipw2100_set_essid(priv, NULL, 0, 0);
6984 goto done;
6985 }
6986
6987 length = min(length, IW_ESSID_MAX_SIZE);
6988
6989 priv->config |= CFG_STATIC_ESSID;
6990
6991 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6992 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6993 err = 0;
6994 goto done;
6995 }
6996
6997 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
6998 print_ssid(ssid, essid, length), length);
6999
7000 priv->essid_len = length;
7001 memcpy(priv->essid, essid, priv->essid_len);
7002
7003 err = ipw2100_set_essid(priv, essid, length, 0);
7004
7005 done:
7006 mutex_unlock(&priv->action_mutex);
7007 return err;
7008}
7009
7010static int ipw2100_wx_get_essid(struct net_device *dev,
7011 struct iw_request_info *info,
7012 union iwreq_data *wrqu, char *extra)
7013{
7014 /*
7015 * This can be called at any time. No action lock required
7016 */
7017
7018 struct ipw2100_priv *priv = ieee80211_priv(dev);
7019 DECLARE_SSID_BUF(ssid);
7020
7021 /* If we are associated, trying to associate, or have a statically
7022 * configured ESSID then return that; otherwise return ANY */
7023 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7024 IPW_DEBUG_WX("Getting essid: '%s'\n",
7025 print_ssid(ssid, priv->essid, priv->essid_len));
7026 memcpy(extra, priv->essid, priv->essid_len);
7027 wrqu->essid.length = priv->essid_len;
7028 wrqu->essid.flags = 1; /* active */
7029 } else {
7030 IPW_DEBUG_WX("Getting essid: ANY\n");
7031 wrqu->essid.length = 0;
7032 wrqu->essid.flags = 0; /* active */
7033 }
7034
7035 return 0;
7036}
7037
7038static int ipw2100_wx_set_nick(struct net_device *dev,
7039 struct iw_request_info *info,
7040 union iwreq_data *wrqu, char *extra)
7041{
7042 /*
7043 * This can be called at any time. No action lock required
7044 */
7045
7046 struct ipw2100_priv *priv = ieee80211_priv(dev);
7047
7048 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7049 return -E2BIG;
7050
7051 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7052 memset(priv->nick, 0, sizeof(priv->nick));
7053 memcpy(priv->nick, extra, wrqu->data.length);
7054
7055 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7056
7057 return 0;
7058}
7059
7060static int ipw2100_wx_get_nick(struct net_device *dev,
7061 struct iw_request_info *info,
7062 union iwreq_data *wrqu, char *extra)
7063{
7064 /*
7065 * This can be called at any time. No action lock required
7066 */
7067
7068 struct ipw2100_priv *priv = ieee80211_priv(dev);
7069
7070 wrqu->data.length = strlen(priv->nick);
7071 memcpy(extra, priv->nick, wrqu->data.length);
7072 wrqu->data.flags = 1; /* active */
7073
7074 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7075
7076 return 0;
7077}
7078
7079static int ipw2100_wx_set_rate(struct net_device *dev,
7080 struct iw_request_info *info,
7081 union iwreq_data *wrqu, char *extra)
7082{
7083 struct ipw2100_priv *priv = ieee80211_priv(dev);
7084 u32 target_rate = wrqu->bitrate.value;
7085 u32 rate;
7086 int err = 0;
7087
7088 mutex_lock(&priv->action_mutex);
7089 if (!(priv->status & STATUS_INITIALIZED)) {
7090 err = -EIO;
7091 goto done;
7092 }
7093
7094 rate = 0;
7095
7096 if (target_rate == 1000000 ||
7097 (!wrqu->bitrate.fixed && target_rate > 1000000))
7098 rate |= TX_RATE_1_MBIT;
7099 if (target_rate == 2000000 ||
7100 (!wrqu->bitrate.fixed && target_rate > 2000000))
7101 rate |= TX_RATE_2_MBIT;
7102 if (target_rate == 5500000 ||
7103 (!wrqu->bitrate.fixed && target_rate > 5500000))
7104 rate |= TX_RATE_5_5_MBIT;
7105 if (target_rate == 11000000 ||
7106 (!wrqu->bitrate.fixed && target_rate > 11000000))
7107 rate |= TX_RATE_11_MBIT;
7108 if (rate == 0)
7109 rate = DEFAULT_TX_RATES;
7110
7111 err = ipw2100_set_tx_rates(priv, rate, 0);
7112
7113 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7114 done:
7115 mutex_unlock(&priv->action_mutex);
7116 return err;
7117}
7118
7119static int ipw2100_wx_get_rate(struct net_device *dev,
7120 struct iw_request_info *info,
7121 union iwreq_data *wrqu, char *extra)
7122{
7123 struct ipw2100_priv *priv = ieee80211_priv(dev);
7124 int val;
7125 int len = sizeof(val);
7126 int err = 0;
7127
7128 if (!(priv->status & STATUS_ENABLED) ||
7129 priv->status & STATUS_RF_KILL_MASK ||
7130 !(priv->status & STATUS_ASSOCIATED)) {
7131 wrqu->bitrate.value = 0;
7132 return 0;
7133 }
7134
7135 mutex_lock(&priv->action_mutex);
7136 if (!(priv->status & STATUS_INITIALIZED)) {
7137 err = -EIO;
7138 goto done;
7139 }
7140
7141 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7142 if (err) {
7143 IPW_DEBUG_WX("failed querying ordinals.\n");
7144 goto done;
7145 }
7146
7147 switch (val & TX_RATE_MASK) {
7148 case TX_RATE_1_MBIT:
7149 wrqu->bitrate.value = 1000000;
7150 break;
7151 case TX_RATE_2_MBIT:
7152 wrqu->bitrate.value = 2000000;
7153 break;
7154 case TX_RATE_5_5_MBIT:
7155 wrqu->bitrate.value = 5500000;
7156 break;
7157 case TX_RATE_11_MBIT:
7158 wrqu->bitrate.value = 11000000;
7159 break;
7160 default:
7161 wrqu->bitrate.value = 0;
7162 }
7163
7164 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7165
7166 done:
7167 mutex_unlock(&priv->action_mutex);
7168 return err;
7169}
7170
7171static int ipw2100_wx_set_rts(struct net_device *dev,
7172 struct iw_request_info *info,
7173 union iwreq_data *wrqu, char *extra)
7174{
7175 struct ipw2100_priv *priv = ieee80211_priv(dev);
7176 int value, err;
7177
7178 /* Auto RTS not yet supported */
7179 if (wrqu->rts.fixed == 0)
7180 return -EINVAL;
7181
7182 mutex_lock(&priv->action_mutex);
7183 if (!(priv->status & STATUS_INITIALIZED)) {
7184 err = -EIO;
7185 goto done;
7186 }
7187
7188 if (wrqu->rts.disabled)
7189 value = priv->rts_threshold | RTS_DISABLED;
7190 else {
7191 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7192 err = -EINVAL;
7193 goto done;
7194 }
7195 value = wrqu->rts.value;
7196 }
7197
7198 err = ipw2100_set_rts_threshold(priv, value);
7199
7200 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7201 done:
7202 mutex_unlock(&priv->action_mutex);
7203 return err;
7204}
7205
7206static int ipw2100_wx_get_rts(struct net_device *dev,
7207 struct iw_request_info *info,
7208 union iwreq_data *wrqu, char *extra)
7209{
7210 /*
7211 * This can be called at any time. No action lock required
7212 */
7213
7214 struct ipw2100_priv *priv = ieee80211_priv(dev);
7215
7216 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7217 wrqu->rts.fixed = 1; /* no auto select */
7218
7219 /* If RTS is set to the default value, then it is disabled */
7220 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7221
7222 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7223
7224 return 0;
7225}
7226
7227static int ipw2100_wx_set_txpow(struct net_device *dev,
7228 struct iw_request_info *info,
7229 union iwreq_data *wrqu, char *extra)
7230{
7231 struct ipw2100_priv *priv = ieee80211_priv(dev);
7232 int err = 0, value;
7233
7234 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7235 return -EINPROGRESS;
7236
7237 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7238 return 0;
7239
7240 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7241 return -EINVAL;
7242
7243 if (wrqu->txpower.fixed == 0)
7244 value = IPW_TX_POWER_DEFAULT;
7245 else {
7246 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7247 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7248 return -EINVAL;
7249
7250 value = wrqu->txpower.value;
7251 }
7252
7253 mutex_lock(&priv->action_mutex);
7254 if (!(priv->status & STATUS_INITIALIZED)) {
7255 err = -EIO;
7256 goto done;
7257 }
7258
7259 err = ipw2100_set_tx_power(priv, value);
7260
7261 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7262
7263 done:
7264 mutex_unlock(&priv->action_mutex);
7265 return err;
7266}
7267
7268static int ipw2100_wx_get_txpow(struct net_device *dev,
7269 struct iw_request_info *info,
7270 union iwreq_data *wrqu, char *extra)
7271{
7272 /*
7273 * This can be called at any time. No action lock required
7274 */
7275
7276 struct ipw2100_priv *priv = ieee80211_priv(dev);
7277
7278 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7279
7280 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7281 wrqu->txpower.fixed = 0;
7282 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7283 } else {
7284 wrqu->txpower.fixed = 1;
7285 wrqu->txpower.value = priv->tx_power;
7286 }
7287
7288 wrqu->txpower.flags = IW_TXPOW_DBM;
7289
7290 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7291
7292 return 0;
7293}
7294
7295static int ipw2100_wx_set_frag(struct net_device *dev,
7296 struct iw_request_info *info,
7297 union iwreq_data *wrqu, char *extra)
7298{
7299 /*
7300 * This can be called at any time. No action lock required
7301 */
7302
7303 struct ipw2100_priv *priv = ieee80211_priv(dev);
7304
7305 if (!wrqu->frag.fixed)
7306 return -EINVAL;
7307
7308 if (wrqu->frag.disabled) {
7309 priv->frag_threshold |= FRAG_DISABLED;
7310 priv->ieee->fts = DEFAULT_FTS;
7311 } else {
7312 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7313 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7314 return -EINVAL;
7315
7316 priv->ieee->fts = wrqu->frag.value & ~0x1;
7317 priv->frag_threshold = priv->ieee->fts;
7318 }
7319
7320 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7321
7322 return 0;
7323}
7324
7325static int ipw2100_wx_get_frag(struct net_device *dev,
7326 struct iw_request_info *info,
7327 union iwreq_data *wrqu, char *extra)
7328{
7329 /*
7330 * This can be called at any time. No action lock required
7331 */
7332
7333 struct ipw2100_priv *priv = ieee80211_priv(dev);
7334 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7335 wrqu->frag.fixed = 0; /* no auto select */
7336 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7337
7338 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7339
7340 return 0;
7341}
7342
7343static int ipw2100_wx_set_retry(struct net_device *dev,
7344 struct iw_request_info *info,
7345 union iwreq_data *wrqu, char *extra)
7346{
7347 struct ipw2100_priv *priv = ieee80211_priv(dev);
7348 int err = 0;
7349
7350 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7351 return -EINVAL;
7352
7353 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7354 return 0;
7355
7356 mutex_lock(&priv->action_mutex);
7357 if (!(priv->status & STATUS_INITIALIZED)) {
7358 err = -EIO;
7359 goto done;
7360 }
7361
7362 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7363 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7364 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7365 wrqu->retry.value);
7366 goto done;
7367 }
7368
7369 if (wrqu->retry.flags & IW_RETRY_LONG) {
7370 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7371 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7372 wrqu->retry.value);
7373 goto done;
7374 }
7375
7376 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7377 if (!err)
7378 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7379
7380 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7381
7382 done:
7383 mutex_unlock(&priv->action_mutex);
7384 return err;
7385}
7386
7387static int ipw2100_wx_get_retry(struct net_device *dev,
7388 struct iw_request_info *info,
7389 union iwreq_data *wrqu, char *extra)
7390{
7391 /*
7392 * This can be called at any time. No action lock required
7393 */
7394
7395 struct ipw2100_priv *priv = ieee80211_priv(dev);
7396
7397 wrqu->retry.disabled = 0; /* can't be disabled */
7398
7399 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7400 return -EINVAL;
7401
7402 if (wrqu->retry.flags & IW_RETRY_LONG) {
7403 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7404 wrqu->retry.value = priv->long_retry_limit;
7405 } else {
7406 wrqu->retry.flags =
7407 (priv->short_retry_limit !=
7408 priv->long_retry_limit) ?
7409 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7410
7411 wrqu->retry.value = priv->short_retry_limit;
7412 }
7413
7414 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7415
7416 return 0;
7417}
7418
7419static int ipw2100_wx_set_scan(struct net_device *dev,
7420 struct iw_request_info *info,
7421 union iwreq_data *wrqu, char *extra)
7422{
7423 struct ipw2100_priv *priv = ieee80211_priv(dev);
7424 int err = 0;
7425
7426 mutex_lock(&priv->action_mutex);
7427 if (!(priv->status & STATUS_INITIALIZED)) {
7428 err = -EIO;
7429 goto done;
7430 }
7431
7432 IPW_DEBUG_WX("Initiating scan...\n");
7433
7434 priv->user_requested_scan = 1;
7435 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7436 IPW_DEBUG_WX("Start scan failed.\n");
7437
7438 /* TODO: Mark a scan as pending so when hardware initialized
7439 * a scan starts */
7440 }
7441
7442 done:
7443 mutex_unlock(&priv->action_mutex);
7444 return err;
7445}
7446
7447static int ipw2100_wx_get_scan(struct net_device *dev,
7448 struct iw_request_info *info,
7449 union iwreq_data *wrqu, char *extra)
7450{
7451 /*
7452 * This can be called at any time. No action lock required
7453 */
7454
7455 struct ipw2100_priv *priv = ieee80211_priv(dev);
7456 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7457}
7458
7459/*
7460 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7461 */
7462static int ipw2100_wx_set_encode(struct net_device *dev,
7463 struct iw_request_info *info,
7464 union iwreq_data *wrqu, char *key)
7465{
7466 /*
7467 * No check of STATUS_INITIALIZED required
7468 */
7469
7470 struct ipw2100_priv *priv = ieee80211_priv(dev);
7471 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7472}
7473
7474static int ipw2100_wx_get_encode(struct net_device *dev,
7475 struct iw_request_info *info,
7476 union iwreq_data *wrqu, char *key)
7477{
7478 /*
7479 * This can be called at any time. No action lock required
7480 */
7481
7482 struct ipw2100_priv *priv = ieee80211_priv(dev);
7483 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7484}
7485
7486static int ipw2100_wx_set_power(struct net_device *dev,
7487 struct iw_request_info *info,
7488 union iwreq_data *wrqu, char *extra)
7489{
7490 struct ipw2100_priv *priv = ieee80211_priv(dev);
7491 int err = 0;
7492
7493 mutex_lock(&priv->action_mutex);
7494 if (!(priv->status & STATUS_INITIALIZED)) {
7495 err = -EIO;
7496 goto done;
7497 }
7498
7499 if (wrqu->power.disabled) {
7500 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7501 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7502 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7503 goto done;
7504 }
7505
7506 switch (wrqu->power.flags & IW_POWER_MODE) {
7507 case IW_POWER_ON: /* If not specified */
7508 case IW_POWER_MODE: /* If set all mask */
7509 case IW_POWER_ALL_R: /* If explicitly state all */
7510 break;
7511 default: /* Otherwise we don't support it */
7512 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7513 wrqu->power.flags);
7514 err = -EOPNOTSUPP;
7515 goto done;
7516 }
7517
7518 /* If the user hasn't specified a power management mode yet, default
7519 * to BATTERY */
7520 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7521 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7522
7523 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7524
7525 done:
7526 mutex_unlock(&priv->action_mutex);
7527 return err;
7528
7529}
7530
7531static int ipw2100_wx_get_power(struct net_device *dev,
7532 struct iw_request_info *info,
7533 union iwreq_data *wrqu, char *extra)
7534{
7535 /*
7536 * This can be called at any time. No action lock required
7537 */
7538
7539 struct ipw2100_priv *priv = ieee80211_priv(dev);
7540
7541 if (!(priv->power_mode & IPW_POWER_ENABLED))
7542 wrqu->power.disabled = 1;
7543 else {
7544 wrqu->power.disabled = 0;
7545 wrqu->power.flags = 0;
7546 }
7547
7548 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7549
7550 return 0;
7551}
7552
7553/*
7554 * WE-18 WPA support
7555 */
7556
7557/* SIOCSIWGENIE */
7558static int ipw2100_wx_set_genie(struct net_device *dev,
7559 struct iw_request_info *info,
7560 union iwreq_data *wrqu, char *extra)
7561{
7562
7563 struct ipw2100_priv *priv = ieee80211_priv(dev);
7564 struct ieee80211_device *ieee = priv->ieee;
7565 u8 *buf;
7566
7567 if (!ieee->wpa_enabled)
7568 return -EOPNOTSUPP;
7569
7570 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7571 (wrqu->data.length && extra == NULL))
7572 return -EINVAL;
7573
7574 if (wrqu->data.length) {
7575 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7576 if (buf == NULL)
7577 return -ENOMEM;
7578
7579 kfree(ieee->wpa_ie);
7580 ieee->wpa_ie = buf;
7581 ieee->wpa_ie_len = wrqu->data.length;
7582 } else {
7583 kfree(ieee->wpa_ie);
7584 ieee->wpa_ie = NULL;
7585 ieee->wpa_ie_len = 0;
7586 }
7587
7588 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7589
7590 return 0;
7591}
7592
7593/* SIOCGIWGENIE */
7594static int ipw2100_wx_get_genie(struct net_device *dev,
7595 struct iw_request_info *info,
7596 union iwreq_data *wrqu, char *extra)
7597{
7598 struct ipw2100_priv *priv = ieee80211_priv(dev);
7599 struct ieee80211_device *ieee = priv->ieee;
7600
7601 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7602 wrqu->data.length = 0;
7603 return 0;
7604 }
7605
7606 if (wrqu->data.length < ieee->wpa_ie_len)
7607 return -E2BIG;
7608
7609 wrqu->data.length = ieee->wpa_ie_len;
7610 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7611
7612 return 0;
7613}
7614
7615/* SIOCSIWAUTH */
7616static int ipw2100_wx_set_auth(struct net_device *dev,
7617 struct iw_request_info *info,
7618 union iwreq_data *wrqu, char *extra)
7619{
7620 struct ipw2100_priv *priv = ieee80211_priv(dev);
7621 struct ieee80211_device *ieee = priv->ieee;
7622 struct iw_param *param = &wrqu->param;
7623 struct lib80211_crypt_data *crypt;
7624 unsigned long flags;
7625 int ret = 0;
7626
7627 switch (param->flags & IW_AUTH_INDEX) {
7628 case IW_AUTH_WPA_VERSION:
7629 case IW_AUTH_CIPHER_PAIRWISE:
7630 case IW_AUTH_CIPHER_GROUP:
7631 case IW_AUTH_KEY_MGMT:
7632 /*
7633 * ipw2200 does not use these parameters
7634 */
7635 break;
7636
7637 case IW_AUTH_TKIP_COUNTERMEASURES:
7638 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7639 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7640 break;
7641
7642 flags = crypt->ops->get_flags(crypt->priv);
7643
7644 if (param->value)
7645 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7646 else
7647 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7648
7649 crypt->ops->set_flags(flags, crypt->priv);
7650
7651 break;
7652
7653 case IW_AUTH_DROP_UNENCRYPTED:{
7654 /* HACK:
7655 *
7656 * wpa_supplicant calls set_wpa_enabled when the driver
7657 * is loaded and unloaded, regardless of if WPA is being
7658 * used. No other calls are made which can be used to
7659 * determine if encryption will be used or not prior to
7660 * association being expected. If encryption is not being
7661 * used, drop_unencrypted is set to false, else true -- we
7662 * can use this to determine if the CAP_PRIVACY_ON bit should
7663 * be set.
7664 */
7665 struct ieee80211_security sec = {
7666 .flags = SEC_ENABLED,
7667 .enabled = param->value,
7668 };
7669 priv->ieee->drop_unencrypted = param->value;
7670 /* We only change SEC_LEVEL for open mode. Others
7671 * are set by ipw_wpa_set_encryption.
7672 */
7673 if (!param->value) {
7674 sec.flags |= SEC_LEVEL;
7675 sec.level = SEC_LEVEL_0;
7676 } else {
7677 sec.flags |= SEC_LEVEL;
7678 sec.level = SEC_LEVEL_1;
7679 }
7680 if (priv->ieee->set_security)
7681 priv->ieee->set_security(priv->ieee->dev, &sec);
7682 break;
7683 }
7684
7685 case IW_AUTH_80211_AUTH_ALG:
7686 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7687 break;
7688
7689 case IW_AUTH_WPA_ENABLED:
7690 ret = ipw2100_wpa_enable(priv, param->value);
7691 break;
7692
7693 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7694 ieee->ieee802_1x = param->value;
7695 break;
7696
7697 //case IW_AUTH_ROAMING_CONTROL:
7698 case IW_AUTH_PRIVACY_INVOKED:
7699 ieee->privacy_invoked = param->value;
7700 break;
7701
7702 default:
7703 return -EOPNOTSUPP;
7704 }
7705 return ret;
7706}
7707
7708/* SIOCGIWAUTH */
7709static int ipw2100_wx_get_auth(struct net_device *dev,
7710 struct iw_request_info *info,
7711 union iwreq_data *wrqu, char *extra)
7712{
7713 struct ipw2100_priv *priv = ieee80211_priv(dev);
7714 struct ieee80211_device *ieee = priv->ieee;
7715 struct lib80211_crypt_data *crypt;
7716 struct iw_param *param = &wrqu->param;
7717 int ret = 0;
7718
7719 switch (param->flags & IW_AUTH_INDEX) {
7720 case IW_AUTH_WPA_VERSION:
7721 case IW_AUTH_CIPHER_PAIRWISE:
7722 case IW_AUTH_CIPHER_GROUP:
7723 case IW_AUTH_KEY_MGMT:
7724 /*
7725 * wpa_supplicant will control these internally
7726 */
7727 ret = -EOPNOTSUPP;
7728 break;
7729
7730 case IW_AUTH_TKIP_COUNTERMEASURES:
7731 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7732 if (!crypt || !crypt->ops->get_flags) {
7733 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7734 "crypt not set!\n");
7735 break;
7736 }
7737
7738 param->value = (crypt->ops->get_flags(crypt->priv) &
7739 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7740
7741 break;
7742
7743 case IW_AUTH_DROP_UNENCRYPTED:
7744 param->value = ieee->drop_unencrypted;
7745 break;
7746
7747 case IW_AUTH_80211_AUTH_ALG:
7748 param->value = priv->ieee->sec.auth_mode;
7749 break;
7750
7751 case IW_AUTH_WPA_ENABLED:
7752 param->value = ieee->wpa_enabled;
7753 break;
7754
7755 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7756 param->value = ieee->ieee802_1x;
7757 break;
7758
7759 case IW_AUTH_ROAMING_CONTROL:
7760 case IW_AUTH_PRIVACY_INVOKED:
7761 param->value = ieee->privacy_invoked;
7762 break;
7763
7764 default:
7765 return -EOPNOTSUPP;
7766 }
7767 return 0;
7768}
7769
7770/* SIOCSIWENCODEEXT */
7771static int ipw2100_wx_set_encodeext(struct net_device *dev,
7772 struct iw_request_info *info,
7773 union iwreq_data *wrqu, char *extra)
7774{
7775 struct ipw2100_priv *priv = ieee80211_priv(dev);
7776 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7777}
7778
7779/* SIOCGIWENCODEEXT */
7780static int ipw2100_wx_get_encodeext(struct net_device *dev,
7781 struct iw_request_info *info,
7782 union iwreq_data *wrqu, char *extra)
7783{
7784 struct ipw2100_priv *priv = ieee80211_priv(dev);
7785 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7786}
7787
7788/* SIOCSIWMLME */
7789static int ipw2100_wx_set_mlme(struct net_device *dev,
7790 struct iw_request_info *info,
7791 union iwreq_data *wrqu, char *extra)
7792{
7793 struct ipw2100_priv *priv = ieee80211_priv(dev);
7794 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7795 __le16 reason;
7796
7797 reason = cpu_to_le16(mlme->reason_code);
7798
7799 switch (mlme->cmd) {
7800 case IW_MLME_DEAUTH:
7801 // silently ignore
7802 break;
7803
7804 case IW_MLME_DISASSOC:
7805 ipw2100_disassociate_bssid(priv);
7806 break;
7807
7808 default:
7809 return -EOPNOTSUPP;
7810 }
7811 return 0;
7812}
7813
7814/*
7815 *
7816 * IWPRIV handlers
7817 *
7818 */
7819#ifdef CONFIG_IPW2100_MONITOR
7820static int ipw2100_wx_set_promisc(struct net_device *dev,
7821 struct iw_request_info *info,
7822 union iwreq_data *wrqu, char *extra)
7823{
7824 struct ipw2100_priv *priv = ieee80211_priv(dev);
7825 int *parms = (int *)extra;
7826 int enable = (parms[0] > 0);
7827 int err = 0;
7828
7829 mutex_lock(&priv->action_mutex);
7830 if (!(priv->status & STATUS_INITIALIZED)) {
7831 err = -EIO;
7832 goto done;
7833 }
7834
7835 if (enable) {
7836 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7837 err = ipw2100_set_channel(priv, parms[1], 0);
7838 goto done;
7839 }
7840 priv->channel = parms[1];
7841 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7842 } else {
7843 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7844 err = ipw2100_switch_mode(priv, priv->last_mode);
7845 }
7846 done:
7847 mutex_unlock(&priv->action_mutex);
7848 return err;
7849}
7850
7851static int ipw2100_wx_reset(struct net_device *dev,
7852 struct iw_request_info *info,
7853 union iwreq_data *wrqu, char *extra)
7854{
7855 struct ipw2100_priv *priv = ieee80211_priv(dev);
7856 if (priv->status & STATUS_INITIALIZED)
7857 schedule_reset(priv);
7858 return 0;
7859}
7860
7861#endif
7862
7863static int ipw2100_wx_set_powermode(struct net_device *dev,
7864 struct iw_request_info *info,
7865 union iwreq_data *wrqu, char *extra)
7866{
7867 struct ipw2100_priv *priv = ieee80211_priv(dev);
7868 int err = 0, mode = *(int *)extra;
7869
7870 mutex_lock(&priv->action_mutex);
7871 if (!(priv->status & STATUS_INITIALIZED)) {
7872 err = -EIO;
7873 goto done;
7874 }
7875
7876 if ((mode < 0) || (mode > POWER_MODES))
7877 mode = IPW_POWER_AUTO;
7878
7879 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7880 err = ipw2100_set_power_mode(priv, mode);
7881 done:
7882 mutex_unlock(&priv->action_mutex);
7883 return err;
7884}
7885
7886#define MAX_POWER_STRING 80
7887static int ipw2100_wx_get_powermode(struct net_device *dev,
7888 struct iw_request_info *info,
7889 union iwreq_data *wrqu, char *extra)
7890{
7891 /*
7892 * This can be called at any time. No action lock required
7893 */
7894
7895 struct ipw2100_priv *priv = ieee80211_priv(dev);
7896 int level = IPW_POWER_LEVEL(priv->power_mode);
7897 s32 timeout, period;
7898
7899 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7900 snprintf(extra, MAX_POWER_STRING,
7901 "Power save level: %d (Off)", level);
7902 } else {
7903 switch (level) {
7904 case IPW_POWER_MODE_CAM:
7905 snprintf(extra, MAX_POWER_STRING,
7906 "Power save level: %d (None)", level);
7907 break;
7908 case IPW_POWER_AUTO:
7909 snprintf(extra, MAX_POWER_STRING,
7910 "Power save level: %d (Auto)", level);
7911 break;
7912 default:
7913 timeout = timeout_duration[level - 1] / 1000;
7914 period = period_duration[level - 1] / 1000;
7915 snprintf(extra, MAX_POWER_STRING,
7916 "Power save level: %d "
7917 "(Timeout %dms, Period %dms)",
7918 level, timeout, period);
7919 }
7920 }
7921
7922 wrqu->data.length = strlen(extra) + 1;
7923
7924 return 0;
7925}
7926
7927static int ipw2100_wx_set_preamble(struct net_device *dev,
7928 struct iw_request_info *info,
7929 union iwreq_data *wrqu, char *extra)
7930{
7931 struct ipw2100_priv *priv = ieee80211_priv(dev);
7932 int err, mode = *(int *)extra;
7933
7934 mutex_lock(&priv->action_mutex);
7935 if (!(priv->status & STATUS_INITIALIZED)) {
7936 err = -EIO;
7937 goto done;
7938 }
7939
7940 if (mode == 1)
7941 priv->config |= CFG_LONG_PREAMBLE;
7942 else if (mode == 0)
7943 priv->config &= ~CFG_LONG_PREAMBLE;
7944 else {
7945 err = -EINVAL;
7946 goto done;
7947 }
7948
7949 err = ipw2100_system_config(priv, 0);
7950
7951 done:
7952 mutex_unlock(&priv->action_mutex);
7953 return err;
7954}
7955
7956static int ipw2100_wx_get_preamble(struct net_device *dev,
7957 struct iw_request_info *info,
7958 union iwreq_data *wrqu, char *extra)
7959{
7960 /*
7961 * This can be called at any time. No action lock required
7962 */
7963
7964 struct ipw2100_priv *priv = ieee80211_priv(dev);
7965
7966 if (priv->config & CFG_LONG_PREAMBLE)
7967 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7968 else
7969 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7970
7971 return 0;
7972}
7973
7974#ifdef CONFIG_IPW2100_MONITOR
7975static int ipw2100_wx_set_crc_check(struct net_device *dev,
7976 struct iw_request_info *info,
7977 union iwreq_data *wrqu, char *extra)
7978{
7979 struct ipw2100_priv *priv = ieee80211_priv(dev);
7980 int err, mode = *(int *)extra;
7981
7982 mutex_lock(&priv->action_mutex);
7983 if (!(priv->status & STATUS_INITIALIZED)) {
7984 err = -EIO;
7985 goto done;
7986 }
7987
7988 if (mode == 1)
7989 priv->config |= CFG_CRC_CHECK;
7990 else if (mode == 0)
7991 priv->config &= ~CFG_CRC_CHECK;
7992 else {
7993 err = -EINVAL;
7994 goto done;
7995 }
7996 err = 0;
7997
7998 done:
7999 mutex_unlock(&priv->action_mutex);
8000 return err;
8001}
8002
8003static int ipw2100_wx_get_crc_check(struct net_device *dev,
8004 struct iw_request_info *info,
8005 union iwreq_data *wrqu, char *extra)
8006{
8007 /*
8008 * This can be called at any time. No action lock required
8009 */
8010
8011 struct ipw2100_priv *priv = ieee80211_priv(dev);
8012
8013 if (priv->config & CFG_CRC_CHECK)
8014 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8015 else
8016 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8017
8018 return 0;
8019}
8020#endif /* CONFIG_IPW2100_MONITOR */
8021
8022static iw_handler ipw2100_wx_handlers[] = {
8023 NULL, /* SIOCSIWCOMMIT */
8024 ipw2100_wx_get_name, /* SIOCGIWNAME */
8025 NULL, /* SIOCSIWNWID */
8026 NULL, /* SIOCGIWNWID */
8027 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8028 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8029 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8030 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8031 NULL, /* SIOCSIWSENS */
8032 NULL, /* SIOCGIWSENS */
8033 NULL, /* SIOCSIWRANGE */
8034 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8035 NULL, /* SIOCSIWPRIV */
8036 NULL, /* SIOCGIWPRIV */
8037 NULL, /* SIOCSIWSTATS */
8038 NULL, /* SIOCGIWSTATS */
8039 NULL, /* SIOCSIWSPY */
8040 NULL, /* SIOCGIWSPY */
8041 NULL, /* SIOCGIWTHRSPY */
8042 NULL, /* SIOCWIWTHRSPY */
8043 ipw2100_wx_set_wap, /* SIOCSIWAP */
8044 ipw2100_wx_get_wap, /* SIOCGIWAP */
8045 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8046 NULL, /* SIOCGIWAPLIST -- deprecated */
8047 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8048 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8049 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8050 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8051 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8052 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8053 NULL, /* -- hole -- */
8054 NULL, /* -- hole -- */
8055 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8056 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8057 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8058 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8059 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8060 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8061 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8062 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8063 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8064 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8065 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8066 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8067 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8068 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8069 NULL, /* -- hole -- */
8070 NULL, /* -- hole -- */
8071 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8072 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8073 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8074 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8075 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8076 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8077 NULL, /* SIOCSIWPMKSA */
8078};
8079
8080#define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8081#define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8082#define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8083#define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8084#define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8085#define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8086#define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8087#define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8088
8089static const struct iw_priv_args ipw2100_private_args[] = {
8090
8091#ifdef CONFIG_IPW2100_MONITOR
8092 {
8093 IPW2100_PRIV_SET_MONITOR,
8094 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8095 {
8096 IPW2100_PRIV_RESET,
8097 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8098#endif /* CONFIG_IPW2100_MONITOR */
8099
8100 {
8101 IPW2100_PRIV_SET_POWER,
8102 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8103 {
8104 IPW2100_PRIV_GET_POWER,
8105 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8106 "get_power"},
8107 {
8108 IPW2100_PRIV_SET_LONGPREAMBLE,
8109 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8110 {
8111 IPW2100_PRIV_GET_LONGPREAMBLE,
8112 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8113#ifdef CONFIG_IPW2100_MONITOR
8114 {
8115 IPW2100_PRIV_SET_CRC_CHECK,
8116 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8117 {
8118 IPW2100_PRIV_GET_CRC_CHECK,
8119 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8120#endif /* CONFIG_IPW2100_MONITOR */
8121};
8122
8123static iw_handler ipw2100_private_handler[] = {
8124#ifdef CONFIG_IPW2100_MONITOR
8125 ipw2100_wx_set_promisc,
8126 ipw2100_wx_reset,
8127#else /* CONFIG_IPW2100_MONITOR */
8128 NULL,
8129 NULL,
8130#endif /* CONFIG_IPW2100_MONITOR */
8131 ipw2100_wx_set_powermode,
8132 ipw2100_wx_get_powermode,
8133 ipw2100_wx_set_preamble,
8134 ipw2100_wx_get_preamble,
8135#ifdef CONFIG_IPW2100_MONITOR
8136 ipw2100_wx_set_crc_check,
8137 ipw2100_wx_get_crc_check,
8138#else /* CONFIG_IPW2100_MONITOR */
8139 NULL,
8140 NULL,
8141#endif /* CONFIG_IPW2100_MONITOR */
8142};
8143
8144/*
8145 * Get wireless statistics.
8146 * Called by /proc/net/wireless
8147 * Also called by SIOCGIWSTATS
8148 */
8149static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8150{
8151 enum {
8152 POOR = 30,
8153 FAIR = 60,
8154 GOOD = 80,
8155 VERY_GOOD = 90,
8156 EXCELLENT = 95,
8157 PERFECT = 100
8158 };
8159 int rssi_qual;
8160 int tx_qual;
8161 int beacon_qual;
8162
8163 struct ipw2100_priv *priv = ieee80211_priv(dev);
8164 struct iw_statistics *wstats;
8165 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8166 u32 ord_len = sizeof(u32);
8167
8168 if (!priv)
8169 return (struct iw_statistics *)NULL;
8170
8171 wstats = &priv->wstats;
8172
8173 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8174 * ipw2100_wx_wireless_stats seems to be called before fw is
8175 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8176 * and associated; if not associcated, the values are all meaningless
8177 * anyway, so set them all to NULL and INVALID */
8178 if (!(priv->status & STATUS_ASSOCIATED)) {
8179 wstats->miss.beacon = 0;
8180 wstats->discard.retries = 0;
8181 wstats->qual.qual = 0;
8182 wstats->qual.level = 0;
8183 wstats->qual.noise = 0;
8184 wstats->qual.updated = 7;
8185 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8186 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8187 return wstats;
8188 }
8189
8190 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8191 &missed_beacons, &ord_len))
8192 goto fail_get_ordinal;
8193
8194 /* If we don't have a connection the quality and level is 0 */
8195 if (!(priv->status & STATUS_ASSOCIATED)) {
8196 wstats->qual.qual = 0;
8197 wstats->qual.level = 0;
8198 } else {
8199 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8200 &rssi, &ord_len))
8201 goto fail_get_ordinal;
8202 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8203 if (rssi < 10)
8204 rssi_qual = rssi * POOR / 10;
8205 else if (rssi < 15)
8206 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8207 else if (rssi < 20)
8208 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8209 else if (rssi < 30)
8210 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8211 10 + GOOD;
8212 else
8213 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8214 10 + VERY_GOOD;
8215
8216 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8217 &tx_retries, &ord_len))
8218 goto fail_get_ordinal;
8219
8220 if (tx_retries > 75)
8221 tx_qual = (90 - tx_retries) * POOR / 15;
8222 else if (tx_retries > 70)
8223 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8224 else if (tx_retries > 65)
8225 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8226 else if (tx_retries > 50)
8227 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8228 15 + GOOD;
8229 else
8230 tx_qual = (50 - tx_retries) *
8231 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8232
8233 if (missed_beacons > 50)
8234 beacon_qual = (60 - missed_beacons) * POOR / 10;
8235 else if (missed_beacons > 40)
8236 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8237 10 + POOR;
8238 else if (missed_beacons > 32)
8239 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8240 18 + FAIR;
8241 else if (missed_beacons > 20)
8242 beacon_qual = (32 - missed_beacons) *
8243 (VERY_GOOD - GOOD) / 20 + GOOD;
8244 else
8245 beacon_qual = (20 - missed_beacons) *
8246 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8247
8248 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8249
8250#ifdef CONFIG_IPW2100_DEBUG
8251 if (beacon_qual == quality)
8252 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8253 else if (tx_qual == quality)
8254 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8255 else if (quality != 100)
8256 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8257 else
8258 IPW_DEBUG_WX("Quality not clamped.\n");
8259#endif
8260
8261 wstats->qual.qual = quality;
8262 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8263 }
8264
8265 wstats->qual.noise = 0;
8266 wstats->qual.updated = 7;
8267 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8268
8269 /* FIXME: this is percent and not a # */
8270 wstats->miss.beacon = missed_beacons;
8271
8272 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8273 &tx_failures, &ord_len))
8274 goto fail_get_ordinal;
8275 wstats->discard.retries = tx_failures;
8276
8277 return wstats;
8278
8279 fail_get_ordinal:
8280 IPW_DEBUG_WX("failed querying ordinals.\n");
8281
8282 return (struct iw_statistics *)NULL;
8283}
8284
8285static struct iw_handler_def ipw2100_wx_handler_def = {
8286 .standard = ipw2100_wx_handlers,
8287 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8288 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8289 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8290 .private = (iw_handler *) ipw2100_private_handler,
8291 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8292 .get_wireless_stats = ipw2100_wx_wireless_stats,
8293};
8294
8295static void ipw2100_wx_event_work(struct work_struct *work)
8296{
8297 struct ipw2100_priv *priv =
8298 container_of(work, struct ipw2100_priv, wx_event_work.work);
8299 union iwreq_data wrqu;
8300 int len = ETH_ALEN;
8301
8302 if (priv->status & STATUS_STOPPING)
8303 return;
8304
8305 mutex_lock(&priv->action_mutex);
8306
8307 IPW_DEBUG_WX("enter\n");
8308
8309 mutex_unlock(&priv->action_mutex);
8310
8311 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8312
8313 /* Fetch BSSID from the hardware */
8314 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8315 priv->status & STATUS_RF_KILL_MASK ||
8316 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8317 &priv->bssid, &len)) {
8318 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8319 } else {
8320 /* We now have the BSSID, so can finish setting to the full
8321 * associated state */
8322 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8323 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8324 priv->status &= ~STATUS_ASSOCIATING;
8325 priv->status |= STATUS_ASSOCIATED;
8326 netif_carrier_on(priv->net_dev);
8327 netif_wake_queue(priv->net_dev);
8328 }
8329
8330 if (!(priv->status & STATUS_ASSOCIATED)) {
8331 IPW_DEBUG_WX("Configuring ESSID\n");
8332 mutex_lock(&priv->action_mutex);
8333 /* This is a disassociation event, so kick the firmware to
8334 * look for another AP */
8335 if (priv->config & CFG_STATIC_ESSID)
8336 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8337 0);
8338 else
8339 ipw2100_set_essid(priv, NULL, 0, 0);
8340 mutex_unlock(&priv->action_mutex);
8341 }
8342
8343 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8344}
8345
8346#define IPW2100_FW_MAJOR_VERSION 1
8347#define IPW2100_FW_MINOR_VERSION 3
8348
8349#define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8350#define IPW2100_FW_MAJOR(x) (x & 0xff)
8351
8352#define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8353 IPW2100_FW_MAJOR_VERSION)
8354
8355#define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8356"." __stringify(IPW2100_FW_MINOR_VERSION)
8357
8358#define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8359
8360/*
8361
8362BINARY FIRMWARE HEADER FORMAT
8363
8364offset length desc
83650 2 version
83662 2 mode == 0:BSS,1:IBSS,2:MONITOR
83674 4 fw_len
83688 4 uc_len
8369C fw_len firmware data
837012 + fw_len uc_len microcode data
8371
8372*/
8373
8374struct ipw2100_fw_header {
8375 short version;
8376 short mode;
8377 unsigned int fw_size;
8378 unsigned int uc_size;
8379} __attribute__ ((packed));
8380
8381static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8382{
8383 struct ipw2100_fw_header *h =
8384 (struct ipw2100_fw_header *)fw->fw_entry->data;
8385
8386 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8387 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8388 "(detected version id of %u). "
8389 "See Documentation/networking/README.ipw2100\n",
8390 h->version);
8391 return 1;
8392 }
8393
8394 fw->version = h->version;
8395 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8396 fw->fw.size = h->fw_size;
8397 fw->uc.data = fw->fw.data + h->fw_size;
8398 fw->uc.size = h->uc_size;
8399
8400 return 0;
8401}
8402
8403static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8404 struct ipw2100_fw *fw)
8405{
8406 char *fw_name;
8407 int rc;
8408
8409 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8410 priv->net_dev->name);
8411
8412 switch (priv->ieee->iw_mode) {
8413 case IW_MODE_ADHOC:
8414 fw_name = IPW2100_FW_NAME("-i");
8415 break;
8416#ifdef CONFIG_IPW2100_MONITOR
8417 case IW_MODE_MONITOR:
8418 fw_name = IPW2100_FW_NAME("-p");
8419 break;
8420#endif
8421 case IW_MODE_INFRA:
8422 default:
8423 fw_name = IPW2100_FW_NAME("");
8424 break;
8425 }
8426
8427 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8428
8429 if (rc < 0) {
8430 printk(KERN_ERR DRV_NAME ": "
8431 "%s: Firmware '%s' not available or load failed.\n",
8432 priv->net_dev->name, fw_name);
8433 return rc;
8434 }
8435 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8436 fw->fw_entry->size);
8437
8438 ipw2100_mod_firmware_load(fw);
8439
8440 return 0;
8441}
8442
8443static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8444 struct ipw2100_fw *fw)
8445{
8446 fw->version = 0;
8447 if (fw->fw_entry)
8448 release_firmware(fw->fw_entry);
8449 fw->fw_entry = NULL;
8450}
8451
8452static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8453 size_t max)
8454{
8455 char ver[MAX_FW_VERSION_LEN];
8456 u32 len = MAX_FW_VERSION_LEN;
8457 u32 tmp;
8458 int i;
8459 /* firmware version is an ascii string (max len of 14) */
8460 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8461 return -EIO;
8462 tmp = max;
8463 if (len >= max)
8464 len = max - 1;
8465 for (i = 0; i < len; i++)
8466 buf[i] = ver[i];
8467 buf[i] = '\0';
8468 return tmp;
8469}
8470
8471static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8472 size_t max)
8473{
8474 u32 ver;
8475 u32 len = sizeof(ver);
8476 /* microcode version is a 32 bit integer */
8477 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8478 return -EIO;
8479 return snprintf(buf, max, "%08X", ver);
8480}
8481
8482/*
8483 * On exit, the firmware will have been freed from the fw list
8484 */
8485static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8486{
8487 /* firmware is constructed of N contiguous entries, each entry is
8488 * structured as:
8489 *
8490 * offset sie desc
8491 * 0 4 address to write to
8492 * 4 2 length of data run
8493 * 6 length data
8494 */
8495 unsigned int addr;
8496 unsigned short len;
8497
8498 const unsigned char *firmware_data = fw->fw.data;
8499 unsigned int firmware_data_left = fw->fw.size;
8500
8501 while (firmware_data_left > 0) {
8502 addr = *(u32 *) (firmware_data);
8503 firmware_data += 4;
8504 firmware_data_left -= 4;
8505
8506 len = *(u16 *) (firmware_data);
8507 firmware_data += 2;
8508 firmware_data_left -= 2;
8509
8510 if (len > 32) {
8511 printk(KERN_ERR DRV_NAME ": "
8512 "Invalid firmware run-length of %d bytes\n",
8513 len);
8514 return -EINVAL;
8515 }
8516
8517 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8518 firmware_data += len;
8519 firmware_data_left -= len;
8520 }
8521
8522 return 0;
8523}
8524
8525struct symbol_alive_response {
8526 u8 cmd_id;
8527 u8 seq_num;
8528 u8 ucode_rev;
8529 u8 eeprom_valid;
8530 u16 valid_flags;
8531 u8 IEEE_addr[6];
8532 u16 flags;
8533 u16 pcb_rev;
8534 u16 clock_settle_time; // 1us LSB
8535 u16 powerup_settle_time; // 1us LSB
8536 u16 hop_settle_time; // 1us LSB
8537 u8 date[3]; // month, day, year
8538 u8 time[2]; // hours, minutes
8539 u8 ucode_valid;
8540};
8541
8542static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8543 struct ipw2100_fw *fw)
8544{
8545 struct net_device *dev = priv->net_dev;
8546 const unsigned char *microcode_data = fw->uc.data;
8547 unsigned int microcode_data_left = fw->uc.size;
8548 void __iomem *reg = (void __iomem *)dev->base_addr;
8549
8550 struct symbol_alive_response response;
8551 int i, j;
8552 u8 data;
8553
8554 /* Symbol control */
8555 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8556 readl(reg);
8557 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8558 readl(reg);
8559
8560 /* HW config */
8561 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8562 readl(reg);
8563 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8564 readl(reg);
8565
8566 /* EN_CS_ACCESS bit to reset control store pointer */
8567 write_nic_byte(dev, 0x210000, 0x40);
8568 readl(reg);
8569 write_nic_byte(dev, 0x210000, 0x0);
8570 readl(reg);
8571 write_nic_byte(dev, 0x210000, 0x40);
8572 readl(reg);
8573
8574 /* copy microcode from buffer into Symbol */
8575
8576 while (microcode_data_left > 0) {
8577 write_nic_byte(dev, 0x210010, *microcode_data++);
8578 write_nic_byte(dev, 0x210010, *microcode_data++);
8579 microcode_data_left -= 2;
8580 }
8581
8582 /* EN_CS_ACCESS bit to reset the control store pointer */
8583 write_nic_byte(dev, 0x210000, 0x0);
8584 readl(reg);
8585
8586 /* Enable System (Reg 0)
8587 * first enable causes garbage in RX FIFO */
8588 write_nic_byte(dev, 0x210000, 0x0);
8589 readl(reg);
8590 write_nic_byte(dev, 0x210000, 0x80);
8591 readl(reg);
8592
8593 /* Reset External Baseband Reg */
8594 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8595 readl(reg);
8596 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8597 readl(reg);
8598
8599 /* HW Config (Reg 5) */
8600 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8601 readl(reg);
8602 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8603 readl(reg);
8604
8605 /* Enable System (Reg 0)
8606 * second enable should be OK */
8607 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8608 readl(reg);
8609 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8610
8611 /* check Symbol is enabled - upped this from 5 as it wasn't always
8612 * catching the update */
8613 for (i = 0; i < 10; i++) {
8614 udelay(10);
8615
8616 /* check Dino is enabled bit */
8617 read_nic_byte(dev, 0x210000, &data);
8618 if (data & 0x1)
8619 break;
8620 }
8621
8622 if (i == 10) {
8623 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8624 dev->name);
8625 return -EIO;
8626 }
8627
8628 /* Get Symbol alive response */
8629 for (i = 0; i < 30; i++) {
8630 /* Read alive response structure */
8631 for (j = 0;
8632 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8633 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8634
8635 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8636 break;
8637 udelay(10);
8638 }
8639
8640 if (i == 30) {
8641 printk(KERN_ERR DRV_NAME
8642 ": %s: No response from Symbol - hw not alive\n",
8643 dev->name);
8644 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8645 return -EIO;
8646 }
8647
8648 return 0;
8649}
diff --git a/drivers/net/wireless/ipw2x00/ipw2100.h b/drivers/net/wireless/ipw2x00/ipw2100.h
new file mode 100644
index 00000000000..bbf1ddcafba
--- /dev/null
+++ b/drivers/net/wireless/ipw2x00/ipw2100.h
@@ -0,0 +1,1162 @@
1/******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25******************************************************************************/
26#ifndef _IPW2100_H
27#define _IPW2100_H
28
29#include <linux/sched.h>
30#include <linux/interrupt.h>
31#include <linux/netdevice.h>
32#include <linux/etherdevice.h>
33#include <linux/list.h>
34#include <linux/delay.h>
35#include <linux/skbuff.h>
36#include <asm/io.h>
37#include <linux/socket.h>
38#include <linux/if_arp.h>
39#include <linux/wireless.h>
40#include <net/iw_handler.h> // new driver API
41
42#include <net/ieee80211.h>
43
44#ifdef CONFIG_IPW2100_MONITOR
45#include <net/ieee80211_radiotap.h>
46#endif
47
48#include <linux/workqueue.h>
49#include <linux/mutex.h>
50
51struct ipw2100_priv;
52struct ipw2100_tx_packet;
53struct ipw2100_rx_packet;
54
55#define IPW_DL_UNINIT 0x80000000
56#define IPW_DL_NONE 0x00000000
57#define IPW_DL_ALL 0x7FFFFFFF
58
59/*
60 * To use the debug system;
61 *
62 * If you are defining a new debug classification, simply add it to the #define
63 * list here in the form of:
64 *
65 * #define IPW_DL_xxxx VALUE
66 *
67 * shifting value to the left one bit from the previous entry. xxxx should be
68 * the name of the classification (for example, WEP)
69 *
70 * You then need to either add a IPW2100_xxxx_DEBUG() macro definition for your
71 * classification, or use IPW_DEBUG(IPW_DL_xxxx, ...) whenever you want
72 * to send output to that classification.
73 *
74 * To add your debug level to the list of levels seen when you perform
75 *
76 * % cat /proc/net/ipw2100/debug_level
77 *
78 * you simply need to add your entry to the ipw2100_debug_levels array.
79 *
80 * If you do not see debug_level in /proc/net/ipw2100 then you do not have
81 * CONFIG_IPW2100_DEBUG defined in your kernel configuration
82 *
83 */
84
85#define IPW_DL_ERROR (1<<0)
86#define IPW_DL_WARNING (1<<1)
87#define IPW_DL_INFO (1<<2)
88#define IPW_DL_WX (1<<3)
89#define IPW_DL_HC (1<<5)
90#define IPW_DL_STATE (1<<6)
91
92#define IPW_DL_NOTIF (1<<10)
93#define IPW_DL_SCAN (1<<11)
94#define IPW_DL_ASSOC (1<<12)
95#define IPW_DL_DROP (1<<13)
96
97#define IPW_DL_IOCTL (1<<14)
98#define IPW_DL_RF_KILL (1<<17)
99
100#define IPW_DL_MANAGE (1<<15)
101#define IPW_DL_FW (1<<16)
102
103#define IPW_DL_FRAG (1<<21)
104#define IPW_DL_WEP (1<<22)
105#define IPW_DL_TX (1<<23)
106#define IPW_DL_RX (1<<24)
107#define IPW_DL_ISR (1<<25)
108#define IPW_DL_IO (1<<26)
109#define IPW_DL_TRACE (1<<28)
110
111#define IPW_DEBUG_ERROR(f, a...) printk(KERN_ERR DRV_NAME ": " f, ## a)
112#define IPW_DEBUG_WARNING(f, a...) printk(KERN_WARNING DRV_NAME ": " f, ## a)
113#define IPW_DEBUG_INFO(f...) IPW_DEBUG(IPW_DL_INFO, ## f)
114#define IPW_DEBUG_WX(f...) IPW_DEBUG(IPW_DL_WX, ## f)
115#define IPW_DEBUG_SCAN(f...) IPW_DEBUG(IPW_DL_SCAN, ## f)
116#define IPW_DEBUG_NOTIF(f...) IPW_DEBUG(IPW_DL_NOTIF, ## f)
117#define IPW_DEBUG_TRACE(f...) IPW_DEBUG(IPW_DL_TRACE, ## f)
118#define IPW_DEBUG_RX(f...) IPW_DEBUG(IPW_DL_RX, ## f)
119#define IPW_DEBUG_TX(f...) IPW_DEBUG(IPW_DL_TX, ## f)
120#define IPW_DEBUG_ISR(f...) IPW_DEBUG(IPW_DL_ISR, ## f)
121#define IPW_DEBUG_MANAGEMENT(f...) IPW_DEBUG(IPW_DL_MANAGE, ## f)
122#define IPW_DEBUG_WEP(f...) IPW_DEBUG(IPW_DL_WEP, ## f)
123#define IPW_DEBUG_HC(f...) IPW_DEBUG(IPW_DL_HC, ## f)
124#define IPW_DEBUG_FRAG(f...) IPW_DEBUG(IPW_DL_FRAG, ## f)
125#define IPW_DEBUG_FW(f...) IPW_DEBUG(IPW_DL_FW, ## f)
126#define IPW_DEBUG_RF_KILL(f...) IPW_DEBUG(IPW_DL_RF_KILL, ## f)
127#define IPW_DEBUG_DROP(f...) IPW_DEBUG(IPW_DL_DROP, ## f)
128#define IPW_DEBUG_IO(f...) IPW_DEBUG(IPW_DL_IO, ## f)
129#define IPW_DEBUG_IOCTL(f...) IPW_DEBUG(IPW_DL_IOCTL, ## f)
130#define IPW_DEBUG_STATE(f, a...) IPW_DEBUG(IPW_DL_STATE | IPW_DL_ASSOC | IPW_DL_INFO, f, ## a)
131#define IPW_DEBUG_ASSOC(f, a...) IPW_DEBUG(IPW_DL_ASSOC | IPW_DL_INFO, f, ## a)
132
133enum {
134 IPW_HW_STATE_DISABLED = 1,
135 IPW_HW_STATE_ENABLED = 0
136};
137
138struct ssid_context {
139 char ssid[IW_ESSID_MAX_SIZE + 1];
140 int ssid_len;
141 unsigned char bssid[ETH_ALEN];
142 int port_type;
143 int channel;
144
145};
146
147extern const char *port_type_str[];
148extern const char *band_str[];
149
150#define NUMBER_OF_BD_PER_COMMAND_PACKET 1
151#define NUMBER_OF_BD_PER_DATA_PACKET 2
152
153#define IPW_MAX_BDS 6
154#define NUMBER_OF_OVERHEAD_BDS_PER_PACKETR 2
155#define NUMBER_OF_BDS_TO_LEAVE_FOR_COMMANDS 1
156
157#define REQUIRED_SPACE_IN_RING_FOR_COMMAND_PACKET \
158 (IPW_BD_QUEUE_W_R_MIN_SPARE + NUMBER_OF_BD_PER_COMMAND_PACKET)
159
160struct bd_status {
161 union {
162 struct {
163 u8 nlf:1, txType:2, intEnabled:1, reserved:4;
164 } fields;
165 u8 field;
166 } info;
167} __attribute__ ((packed));
168
169struct ipw2100_bd {
170 u32 host_addr;
171 u32 buf_length;
172 struct bd_status status;
173 /* number of fragments for frame (should be set only for
174 * 1st TBD) */
175 u8 num_fragments;
176 u8 reserved[6];
177} __attribute__ ((packed));
178
179#define IPW_BD_QUEUE_LENGTH(n) (1<<n)
180#define IPW_BD_ALIGNMENT(L) (L*sizeof(struct ipw2100_bd))
181
182#define IPW_BD_STATUS_TX_FRAME_802_3 0x00
183#define IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT 0x01
184#define IPW_BD_STATUS_TX_FRAME_COMMAND 0x02
185#define IPW_BD_STATUS_TX_FRAME_802_11 0x04
186#define IPW_BD_STATUS_TX_INTERRUPT_ENABLE 0x08
187
188struct ipw2100_bd_queue {
189 /* driver (virtual) pointer to queue */
190 struct ipw2100_bd *drv;
191
192 /* firmware (physical) pointer to queue */
193 dma_addr_t nic;
194
195 /* Length of phy memory allocated for BDs */
196 u32 size;
197
198 /* Number of BDs in queue (and in array) */
199 u32 entries;
200
201 /* Number of available BDs (invalid for NIC BDs) */
202 u32 available;
203
204 /* Offset of oldest used BD in array (next one to
205 * check for completion) */
206 u32 oldest;
207
208 /* Offset of next available (unused) BD */
209 u32 next;
210};
211
212#define RX_QUEUE_LENGTH 256
213#define TX_QUEUE_LENGTH 256
214#define HW_QUEUE_LENGTH 256
215
216#define TX_PENDED_QUEUE_LENGTH (TX_QUEUE_LENGTH / NUMBER_OF_BD_PER_DATA_PACKET)
217
218#define STATUS_TYPE_MASK 0x0000000f
219#define COMMAND_STATUS_VAL 0
220#define STATUS_CHANGE_VAL 1
221#define P80211_DATA_VAL 2
222#define P8023_DATA_VAL 3
223#define HOST_NOTIFICATION_VAL 4
224
225#define IPW2100_RSSI_TO_DBM (-98)
226
227struct ipw2100_status {
228 u32 frame_size;
229 u16 status_fields;
230 u8 flags;
231#define IPW_STATUS_FLAG_DECRYPTED (1<<0)
232#define IPW_STATUS_FLAG_WEP_ENCRYPTED (1<<1)
233#define IPW_STATUS_FLAG_CRC_ERROR (1<<2)
234 u8 rssi;
235} __attribute__ ((packed));
236
237struct ipw2100_status_queue {
238 /* driver (virtual) pointer to queue */
239 struct ipw2100_status *drv;
240
241 /* firmware (physical) pointer to queue */
242 dma_addr_t nic;
243
244 /* Length of phy memory allocated for BDs */
245 u32 size;
246};
247
248#define HOST_COMMAND_PARAMS_REG_LEN 100
249#define CMD_STATUS_PARAMS_REG_LEN 3
250
251#define IPW_WPA_CAPABILITIES 0x1
252#define IPW_WPA_LISTENINTERVAL 0x2
253#define IPW_WPA_AP_ADDRESS 0x4
254
255#define IPW_MAX_VAR_IE_LEN ((HOST_COMMAND_PARAMS_REG_LEN - 4) * sizeof(u32))
256
257struct ipw2100_wpa_assoc_frame {
258 u16 fixed_ie_mask;
259 struct {
260 u16 capab_info;
261 u16 listen_interval;
262 u8 current_ap[ETH_ALEN];
263 } fixed_ies;
264 u32 var_ie_len;
265 u8 var_ie[IPW_MAX_VAR_IE_LEN];
266};
267
268#define IPW_BSS 1
269#define IPW_MONITOR 2
270#define IPW_IBSS 3
271
272/**
273 * @struct _tx_cmd - HWCommand
274 * @brief H/W command structure.
275 */
276struct ipw2100_cmd_header {
277 u32 host_command_reg;
278 u32 host_command_reg1;
279 u32 sequence;
280 u32 host_command_len_reg;
281 u32 host_command_params_reg[HOST_COMMAND_PARAMS_REG_LEN];
282 u32 cmd_status_reg;
283 u32 cmd_status_params_reg[CMD_STATUS_PARAMS_REG_LEN];
284 u32 rxq_base_ptr;
285 u32 rxq_next_ptr;
286 u32 rxq_host_ptr;
287 u32 txq_base_ptr;
288 u32 txq_next_ptr;
289 u32 txq_host_ptr;
290 u32 tx_status_reg;
291 u32 reserved;
292 u32 status_change_reg;
293 u32 reserved1[3];
294 u32 *ordinal1_ptr;
295 u32 *ordinal2_ptr;
296} __attribute__ ((packed));
297
298struct ipw2100_data_header {
299 u32 host_command_reg;
300 u32 host_command_reg1;
301 u8 encrypted; // BOOLEAN in win! TRUE if frame is enc by driver
302 u8 needs_encryption; // BOOLEAN in win! TRUE if frma need to be enc in NIC
303 u8 wep_index; // 0 no key, 1-4 key index, 0xff immediate key
304 u8 key_size; // 0 no imm key, 0x5 64bit encr, 0xd 128bit encr, 0x10 128bit encr and 128bit IV
305 u8 key[16];
306 u8 reserved[10]; // f/w reserved
307 u8 src_addr[ETH_ALEN];
308 u8 dst_addr[ETH_ALEN];
309 u16 fragment_size;
310} __attribute__ ((packed));
311
312/* Host command data structure */
313struct host_command {
314 u32 host_command; // COMMAND ID
315 u32 host_command1; // COMMAND ID
316 u32 host_command_sequence; // UNIQUE COMMAND NUMBER (ID)
317 u32 host_command_length; // LENGTH
318 u32 host_command_parameters[HOST_COMMAND_PARAMS_REG_LEN]; // COMMAND PARAMETERS
319} __attribute__ ((packed));
320
321typedef enum {
322 POWER_ON_RESET,
323 EXIT_POWER_DOWN_RESET,
324 SW_RESET,
325 EEPROM_RW,
326 SW_RE_INIT
327} ipw2100_reset_event;
328
329enum {
330 COMMAND = 0xCAFE,
331 DATA,
332 RX
333};
334
335struct ipw2100_tx_packet {
336 int type;
337 int index;
338 union {
339 struct { /* COMMAND */
340 struct ipw2100_cmd_header *cmd;
341 dma_addr_t cmd_phys;
342 } c_struct;
343 struct { /* DATA */
344 struct ipw2100_data_header *data;
345 dma_addr_t data_phys;
346 struct ieee80211_txb *txb;
347 } d_struct;
348 } info;
349 int jiffy_start;
350
351 struct list_head list;
352};
353
354struct ipw2100_rx_packet {
355 struct ipw2100_rx *rxp;
356 dma_addr_t dma_addr;
357 int jiffy_start;
358 struct sk_buff *skb;
359 struct list_head list;
360};
361
362#define FRAG_DISABLED (1<<31)
363#define RTS_DISABLED (1<<31)
364#define MAX_RTS_THRESHOLD 2304U
365#define MIN_RTS_THRESHOLD 1U
366#define DEFAULT_RTS_THRESHOLD 1000U
367
368#define DEFAULT_BEACON_INTERVAL 100U
369#define DEFAULT_SHORT_RETRY_LIMIT 7U
370#define DEFAULT_LONG_RETRY_LIMIT 4U
371
372struct ipw2100_ordinals {
373 u32 table1_addr;
374 u32 table2_addr;
375 u32 table1_size;
376 u32 table2_size;
377};
378
379/* Host Notification header */
380struct ipw2100_notification {
381 u32 hnhdr_subtype; /* type of host notification */
382 u32 hnhdr_size; /* size in bytes of data
383 or number of entries, if table.
384 Does NOT include header */
385} __attribute__ ((packed));
386
387#define MAX_KEY_SIZE 16
388#define MAX_KEYS 8
389
390#define IPW2100_WEP_ENABLE (1<<1)
391#define IPW2100_WEP_DROP_CLEAR (1<<2)
392
393#define IPW_NONE_CIPHER (1<<0)
394#define IPW_WEP40_CIPHER (1<<1)
395#define IPW_TKIP_CIPHER (1<<2)
396#define IPW_CCMP_CIPHER (1<<4)
397#define IPW_WEP104_CIPHER (1<<5)
398#define IPW_CKIP_CIPHER (1<<6)
399
400#define IPW_AUTH_OPEN 0
401#define IPW_AUTH_SHARED 1
402#define IPW_AUTH_LEAP 2
403#define IPW_AUTH_LEAP_CISCO_ID 0x80
404
405struct statistic {
406 int value;
407 int hi;
408 int lo;
409};
410
411#define INIT_STAT(x) do { \
412 (x)->value = (x)->hi = 0; \
413 (x)->lo = 0x7fffffff; \
414} while (0)
415#define SET_STAT(x,y) do { \
416 (x)->value = y; \
417 if ((x)->value > (x)->hi) (x)->hi = (x)->value; \
418 if ((x)->value < (x)->lo) (x)->lo = (x)->value; \
419} while (0)
420#define INC_STAT(x) do { if (++(x)->value > (x)->hi) (x)->hi = (x)->value; } \
421while (0)
422#define DEC_STAT(x) do { if (--(x)->value < (x)->lo) (x)->lo = (x)->value; } \
423while (0)
424
425#define IPW2100_ERROR_QUEUE 5
426
427/* Power management code: enable or disable? */
428enum {
429#ifdef CONFIG_PM
430 IPW2100_PM_DISABLED = 0,
431 PM_STATE_SIZE = 16,
432#else
433 IPW2100_PM_DISABLED = 1,
434 PM_STATE_SIZE = 0,
435#endif
436};
437
438#define STATUS_POWERED (1<<0)
439#define STATUS_CMD_ACTIVE (1<<1) /**< host command in progress */
440#define STATUS_RUNNING (1<<2) /* Card initialized, but not enabled */
441#define STATUS_ENABLED (1<<3) /* Card enabled -- can scan,Tx,Rx */
442#define STATUS_STOPPING (1<<4) /* Card is in shutdown phase */
443#define STATUS_INITIALIZED (1<<5) /* Card is ready for external calls */
444#define STATUS_ASSOCIATING (1<<9) /* Associated, but no BSSID yet */
445#define STATUS_ASSOCIATED (1<<10) /* Associated and BSSID valid */
446#define STATUS_INT_ENABLED (1<<11)
447#define STATUS_RF_KILL_HW (1<<12)
448#define STATUS_RF_KILL_SW (1<<13)
449#define STATUS_RF_KILL_MASK (STATUS_RF_KILL_HW | STATUS_RF_KILL_SW)
450#define STATUS_EXIT_PENDING (1<<14)
451
452#define STATUS_SCAN_PENDING (1<<23)
453#define STATUS_SCANNING (1<<24)
454#define STATUS_SCAN_ABORTING (1<<25)
455#define STATUS_SCAN_COMPLETE (1<<26)
456#define STATUS_WX_EVENT_PENDING (1<<27)
457#define STATUS_RESET_PENDING (1<<29)
458#define STATUS_SECURITY_UPDATED (1<<30) /* Security sync needed */
459
460/* Internal NIC states */
461#define IPW_STATE_INITIALIZED (1<<0)
462#define IPW_STATE_COUNTRY_FOUND (1<<1)
463#define IPW_STATE_ASSOCIATED (1<<2)
464#define IPW_STATE_ASSN_LOST (1<<3)
465#define IPW_STATE_ASSN_CHANGED (1<<4)
466#define IPW_STATE_SCAN_COMPLETE (1<<5)
467#define IPW_STATE_ENTERED_PSP (1<<6)
468#define IPW_STATE_LEFT_PSP (1<<7)
469#define IPW_STATE_RF_KILL (1<<8)
470#define IPW_STATE_DISABLED (1<<9)
471#define IPW_STATE_POWER_DOWN (1<<10)
472#define IPW_STATE_SCANNING (1<<11)
473
474#define CFG_STATIC_CHANNEL (1<<0) /* Restrict assoc. to single channel */
475#define CFG_STATIC_ESSID (1<<1) /* Restrict assoc. to single SSID */
476#define CFG_STATIC_BSSID (1<<2) /* Restrict assoc. to single BSSID */
477#define CFG_CUSTOM_MAC (1<<3)
478#define CFG_LONG_PREAMBLE (1<<4)
479#define CFG_ASSOCIATE (1<<6)
480#define CFG_FIXED_RATE (1<<7)
481#define CFG_ADHOC_CREATE (1<<8)
482#define CFG_PASSIVE_SCAN (1<<10)
483#ifdef CONFIG_IPW2100_MONITOR
484#define CFG_CRC_CHECK (1<<11)
485#endif
486
487#define CAP_SHARED_KEY (1<<0) /* Off = OPEN */
488#define CAP_PRIVACY_ON (1<<1) /* Off = No privacy */
489
490struct ipw2100_priv {
491
492 int stop_hang_check; /* Set 1 when shutting down to kill hang_check */
493 int stop_rf_kill; /* Set 1 when shutting down to kill rf_kill */
494
495 struct ieee80211_device *ieee;
496 unsigned long status;
497 unsigned long config;
498 unsigned long capability;
499
500 /* Statistics */
501 int resets;
502 int reset_backoff;
503
504 /* Context */
505 u8 essid[IW_ESSID_MAX_SIZE];
506 u8 essid_len;
507 u8 bssid[ETH_ALEN];
508 u8 channel;
509 int last_mode;
510
511 unsigned long connect_start;
512 unsigned long last_reset;
513
514 u32 channel_mask;
515 u32 fatal_error;
516 u32 fatal_errors[IPW2100_ERROR_QUEUE];
517 u32 fatal_index;
518 int eeprom_version;
519 int firmware_version;
520 unsigned long hw_features;
521 int hangs;
522 u32 last_rtc;
523 int dump_raw; /* 1 to dump raw bytes in /sys/.../memory */
524 u8 *snapshot[0x30];
525
526 u8 mandatory_bssid_mac[ETH_ALEN];
527 u8 mac_addr[ETH_ALEN];
528
529 int power_mode;
530
531 int messages_sent;
532
533 int short_retry_limit;
534 int long_retry_limit;
535
536 u32 rts_threshold;
537 u32 frag_threshold;
538
539 int in_isr;
540
541 u32 tx_rates;
542 int tx_power;
543 u32 beacon_interval;
544
545 char nick[IW_ESSID_MAX_SIZE + 1];
546
547 struct ipw2100_status_queue status_queue;
548
549 struct statistic txq_stat;
550 struct statistic rxq_stat;
551 struct ipw2100_bd_queue rx_queue;
552 struct ipw2100_bd_queue tx_queue;
553 struct ipw2100_rx_packet *rx_buffers;
554
555 struct statistic fw_pend_stat;
556 struct list_head fw_pend_list;
557
558 struct statistic msg_free_stat;
559 struct statistic msg_pend_stat;
560 struct list_head msg_free_list;
561 struct list_head msg_pend_list;
562 struct ipw2100_tx_packet *msg_buffers;
563
564 struct statistic tx_free_stat;
565 struct statistic tx_pend_stat;
566 struct list_head tx_free_list;
567 struct list_head tx_pend_list;
568 struct ipw2100_tx_packet *tx_buffers;
569
570 struct ipw2100_ordinals ordinals;
571
572 struct pci_dev *pci_dev;
573
574 struct proc_dir_entry *dir_dev;
575
576 struct net_device *net_dev;
577 struct iw_statistics wstats;
578
579 struct iw_public_data wireless_data;
580
581 struct tasklet_struct irq_tasklet;
582
583 struct workqueue_struct *workqueue;
584 struct delayed_work reset_work;
585 struct delayed_work security_work;
586 struct delayed_work wx_event_work;
587 struct delayed_work hang_check;
588 struct delayed_work rf_kill;
589 struct work_struct scan_event_now;
590 struct delayed_work scan_event_later;
591
592 int user_requested_scan;
593
594 u32 interrupts;
595 int tx_interrupts;
596 int rx_interrupts;
597 int inta_other;
598
599 spinlock_t low_lock;
600 struct mutex action_mutex;
601 struct mutex adapter_mutex;
602
603 wait_queue_head_t wait_command_queue;
604};
605
606/*********************************************************
607 * Host Command -> From Driver to FW
608 *********************************************************/
609
610/**
611 * Host command identifiers
612 */
613#define HOST_COMPLETE 2
614#define SYSTEM_CONFIG 6
615#define SSID 8
616#define MANDATORY_BSSID 9
617#define AUTHENTICATION_TYPE 10
618#define ADAPTER_ADDRESS 11
619#define PORT_TYPE 12
620#define INTERNATIONAL_MODE 13
621#define CHANNEL 14
622#define RTS_THRESHOLD 15
623#define FRAG_THRESHOLD 16
624#define POWER_MODE 17
625#define TX_RATES 18
626#define BASIC_TX_RATES 19
627#define WEP_KEY_INFO 20
628#define WEP_KEY_INDEX 25
629#define WEP_FLAGS 26
630#define ADD_MULTICAST 27
631#define CLEAR_ALL_MULTICAST 28
632#define BEACON_INTERVAL 29
633#define ATIM_WINDOW 30
634#define CLEAR_STATISTICS 31
635#define SEND 33
636#define TX_POWER_INDEX 36
637#define BROADCAST_SCAN 43
638#define CARD_DISABLE 44
639#define PREFERRED_BSSID 45
640#define SET_SCAN_OPTIONS 46
641#define SCAN_DWELL_TIME 47
642#define SWEEP_TABLE 48
643#define AP_OR_STATION_TABLE 49
644#define GROUP_ORDINALS 50
645#define SHORT_RETRY_LIMIT 51
646#define LONG_RETRY_LIMIT 52
647
648#define HOST_PRE_POWER_DOWN 58
649#define CARD_DISABLE_PHY_OFF 61
650#define MSDU_TX_RATES 62
651
652/* Rogue AP Detection */
653#define SET_STATION_STAT_BITS 64
654#define CLEAR_STATIONS_STAT_BITS 65
655#define LEAP_ROGUE_MODE 66 //TODO tbw replaced by CFG_LEAP_ROGUE_AP
656#define SET_SECURITY_INFORMATION 67
657#define DISASSOCIATION_BSSID 68
658#define SET_WPA_IE 69
659
660/* system configuration bit mask: */
661#define IPW_CFG_MONITOR 0x00004
662#define IPW_CFG_PREAMBLE_AUTO 0x00010
663#define IPW_CFG_IBSS_AUTO_START 0x00020
664#define IPW_CFG_LOOPBACK 0x00100
665#define IPW_CFG_ANSWER_BCSSID_PROBE 0x00800
666#define IPW_CFG_BT_SIDEBAND_SIGNAL 0x02000
667#define IPW_CFG_802_1x_ENABLE 0x04000
668#define IPW_CFG_BSS_MASK 0x08000
669#define IPW_CFG_IBSS_MASK 0x10000
670
671#define IPW_SCAN_NOASSOCIATE (1<<0)
672#define IPW_SCAN_MIXED_CELL (1<<1)
673/* RESERVED (1<<2) */
674#define IPW_SCAN_PASSIVE (1<<3)
675
676#define IPW_NIC_FATAL_ERROR 0x2A7F0
677#define IPW_ERROR_ADDR(x) (x & 0x3FFFF)
678#define IPW_ERROR_CODE(x) ((x & 0xFF000000) >> 24)
679#define IPW2100_ERR_C3_CORRUPTION (0x10 << 24)
680#define IPW2100_ERR_MSG_TIMEOUT (0x11 << 24)
681#define IPW2100_ERR_FW_LOAD (0x12 << 24)
682
683#define IPW_MEM_SRAM_HOST_SHARED_LOWER_BOUND 0x200
684#define IPW_MEM_SRAM_HOST_INTERRUPT_AREA_LOWER_BOUND IPW_MEM_SRAM_HOST_SHARED_LOWER_BOUND + 0x0D80
685
686#define IPW_MEM_HOST_SHARED_RX_BD_BASE (IPW_MEM_SRAM_HOST_SHARED_LOWER_BOUND + 0x40)
687#define IPW_MEM_HOST_SHARED_RX_STATUS_BASE (IPW_MEM_SRAM_HOST_SHARED_LOWER_BOUND + 0x44)
688#define IPW_MEM_HOST_SHARED_RX_BD_SIZE (IPW_MEM_SRAM_HOST_SHARED_LOWER_BOUND + 0x48)
689#define IPW_MEM_HOST_SHARED_RX_READ_INDEX (IPW_MEM_SRAM_HOST_SHARED_LOWER_BOUND + 0xa0)
690
691#define IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE (IPW_MEM_SRAM_HOST_SHARED_LOWER_BOUND + 0x00)
692#define IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE (IPW_MEM_SRAM_HOST_SHARED_LOWER_BOUND + 0x04)
693#define IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX (IPW_MEM_SRAM_HOST_SHARED_LOWER_BOUND + 0x80)
694
695#define IPW_MEM_HOST_SHARED_RX_WRITE_INDEX \
696 (IPW_MEM_SRAM_HOST_INTERRUPT_AREA_LOWER_BOUND + 0x20)
697
698#define IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX \
699 (IPW_MEM_SRAM_HOST_INTERRUPT_AREA_LOWER_BOUND)
700
701#define IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1 (IPW_MEM_SRAM_HOST_SHARED_LOWER_BOUND + 0x180)
702#define IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2 (IPW_MEM_SRAM_HOST_SHARED_LOWER_BOUND + 0x184)
703
704#define IPW2100_INTA_TX_TRANSFER (0x00000001) // Bit 0 (LSB)
705#define IPW2100_INTA_RX_TRANSFER (0x00000002) // Bit 1
706#define IPW2100_INTA_TX_COMPLETE (0x00000004) // Bit 2
707#define IPW2100_INTA_EVENT_INTERRUPT (0x00000008) // Bit 3
708#define IPW2100_INTA_STATUS_CHANGE (0x00000010) // Bit 4
709#define IPW2100_INTA_BEACON_PERIOD_EXPIRED (0x00000020) // Bit 5
710#define IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE (0x00010000) // Bit 16
711#define IPW2100_INTA_FW_INIT_DONE (0x01000000) // Bit 24
712#define IPW2100_INTA_FW_CALIBRATION_CALC (0x02000000) // Bit 25
713#define IPW2100_INTA_FATAL_ERROR (0x40000000) // Bit 30
714#define IPW2100_INTA_PARITY_ERROR (0x80000000) // Bit 31 (MSB)
715
716#define IPW_AUX_HOST_RESET_REG_PRINCETON_RESET (0x00000001)
717#define IPW_AUX_HOST_RESET_REG_FORCE_NMI (0x00000002)
718#define IPW_AUX_HOST_RESET_REG_PCI_HOST_CLUSTER_FATAL_NMI (0x00000004)
719#define IPW_AUX_HOST_RESET_REG_CORE_FATAL_NMI (0x00000008)
720#define IPW_AUX_HOST_RESET_REG_SW_RESET (0x00000080)
721#define IPW_AUX_HOST_RESET_REG_MASTER_DISABLED (0x00000100)
722#define IPW_AUX_HOST_RESET_REG_STOP_MASTER (0x00000200)
723
724#define IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY (0x00000001) // Bit 0 (LSB)
725#define IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY (0x00000002) // Bit 1
726#define IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE (0x00000004) // Bit 2
727#define IPW_AUX_HOST_GP_CNTRL_BITS_SYS_CONFIG (0x000007c0) // Bits 6-10
728#define IPW_AUX_HOST_GP_CNTRL_BIT_BUS_TYPE (0x00000200) // Bit 9
729#define IPW_AUX_HOST_GP_CNTRL_BIT_BAR0_BLOCK_SIZE (0x00000400) // Bit 10
730#define IPW_AUX_HOST_GP_CNTRL_BIT_USB_MODE (0x20000000) // Bit 29
731#define IPW_AUX_HOST_GP_CNTRL_BIT_HOST_FORCES_SYS_CLK (0x40000000) // Bit 30
732#define IPW_AUX_HOST_GP_CNTRL_BIT_FW_FORCES_SYS_CLK (0x80000000) // Bit 31 (MSB)
733
734#define IPW_BIT_GPIO_GPIO1_MASK 0x0000000C
735#define IPW_BIT_GPIO_GPIO3_MASK 0x000000C0
736#define IPW_BIT_GPIO_GPIO1_ENABLE 0x00000008
737#define IPW_BIT_GPIO_RF_KILL 0x00010000
738
739#define IPW_BIT_GPIO_LED_OFF 0x00002000 // Bit 13 = 1
740
741#define IPW_REG_DOMAIN_0_OFFSET 0x0000
742#define IPW_REG_DOMAIN_1_OFFSET IPW_MEM_SRAM_HOST_SHARED_LOWER_BOUND
743
744#define IPW_REG_INTA IPW_REG_DOMAIN_0_OFFSET + 0x0008
745#define IPW_REG_INTA_MASK IPW_REG_DOMAIN_0_OFFSET + 0x000C
746#define IPW_REG_INDIRECT_ACCESS_ADDRESS IPW_REG_DOMAIN_0_OFFSET + 0x0010
747#define IPW_REG_INDIRECT_ACCESS_DATA IPW_REG_DOMAIN_0_OFFSET + 0x0014
748#define IPW_REG_AUTOINCREMENT_ADDRESS IPW_REG_DOMAIN_0_OFFSET + 0x0018
749#define IPW_REG_AUTOINCREMENT_DATA IPW_REG_DOMAIN_0_OFFSET + 0x001C
750#define IPW_REG_RESET_REG IPW_REG_DOMAIN_0_OFFSET + 0x0020
751#define IPW_REG_GP_CNTRL IPW_REG_DOMAIN_0_OFFSET + 0x0024
752#define IPW_REG_GPIO IPW_REG_DOMAIN_0_OFFSET + 0x0030
753#define IPW_REG_FW_TYPE IPW_REG_DOMAIN_1_OFFSET + 0x0188
754#define IPW_REG_FW_VERSION IPW_REG_DOMAIN_1_OFFSET + 0x018C
755#define IPW_REG_FW_COMPATABILITY_VERSION IPW_REG_DOMAIN_1_OFFSET + 0x0190
756
757#define IPW_REG_INDIRECT_ADDR_MASK 0x00FFFFFC
758
759#define IPW_INTERRUPT_MASK 0xC1010013
760
761#define IPW2100_CONTROL_REG 0x220000
762#define IPW2100_CONTROL_PHY_OFF 0x8
763
764#define IPW2100_COMMAND 0x00300004
765#define IPW2100_COMMAND_PHY_ON 0x0
766#define IPW2100_COMMAND_PHY_OFF 0x1
767
768/* in DEBUG_AREA, values of memory always 0xd55555d5 */
769#define IPW_REG_DOA_DEBUG_AREA_START IPW_REG_DOMAIN_0_OFFSET + 0x0090
770#define IPW_REG_DOA_DEBUG_AREA_END IPW_REG_DOMAIN_0_OFFSET + 0x00FF
771#define IPW_DATA_DOA_DEBUG_VALUE 0xd55555d5
772
773#define IPW_INTERNAL_REGISTER_HALT_AND_RESET 0x003000e0
774
775#define IPW_WAIT_CLOCK_STABILIZATION_DELAY 50 // micro seconds
776#define IPW_WAIT_RESET_ARC_COMPLETE_DELAY 10 // micro seconds
777#define IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY 10 // micro seconds
778
779// BD ring queue read/write difference
780#define IPW_BD_QUEUE_W_R_MIN_SPARE 2
781
782#define IPW_CACHE_LINE_LENGTH_DEFAULT 0x80
783
784#define IPW_CARD_DISABLE_PHY_OFF_COMPLETE_WAIT 100 // 100 milli
785#define IPW_PREPARE_POWER_DOWN_COMPLETE_WAIT 100 // 100 milli
786
787#define IPW_HEADER_802_11_SIZE sizeof(struct ieee80211_hdr_3addr)
788#define IPW_MAX_80211_PAYLOAD_SIZE 2304U
789#define IPW_MAX_802_11_PAYLOAD_LENGTH 2312
790#define IPW_MAX_ACCEPTABLE_TX_FRAME_LENGTH 1536
791#define IPW_MIN_ACCEPTABLE_RX_FRAME_LENGTH 60
792#define IPW_MAX_ACCEPTABLE_RX_FRAME_LENGTH \
793 (IPW_MAX_ACCEPTABLE_TX_FRAME_LENGTH + IPW_HEADER_802_11_SIZE - \
794 sizeof(struct ethhdr))
795
796#define IPW_802_11_FCS_LENGTH 4
797#define IPW_RX_NIC_BUFFER_LENGTH \
798 (IPW_MAX_802_11_PAYLOAD_LENGTH + IPW_HEADER_802_11_SIZE + \
799 IPW_802_11_FCS_LENGTH)
800
801#define IPW_802_11_PAYLOAD_OFFSET \
802 (sizeof(struct ieee80211_hdr_3addr) + \
803 sizeof(struct ieee80211_snap_hdr))
804
805struct ipw2100_rx {
806 union {
807 unsigned char payload[IPW_RX_NIC_BUFFER_LENGTH];
808 struct ieee80211_hdr_4addr header;
809 u32 status;
810 struct ipw2100_notification notification;
811 struct ipw2100_cmd_header command;
812 } rx_data;
813} __attribute__ ((packed));
814
815/* Bit 0-7 are for 802.11b tx rates - . Bit 5-7 are reserved */
816#define TX_RATE_1_MBIT 0x0001
817#define TX_RATE_2_MBIT 0x0002
818#define TX_RATE_5_5_MBIT 0x0004
819#define TX_RATE_11_MBIT 0x0008
820#define TX_RATE_MASK 0x000F
821#define DEFAULT_TX_RATES 0x000F
822
823#define IPW_POWER_MODE_CAM 0x00 //(always on)
824#define IPW_POWER_INDEX_1 0x01
825#define IPW_POWER_INDEX_2 0x02
826#define IPW_POWER_INDEX_3 0x03
827#define IPW_POWER_INDEX_4 0x04
828#define IPW_POWER_INDEX_5 0x05
829#define IPW_POWER_AUTO 0x06
830#define IPW_POWER_MASK 0x0F
831#define IPW_POWER_ENABLED 0x10
832#define IPW_POWER_LEVEL(x) ((x) & IPW_POWER_MASK)
833
834#define IPW_TX_POWER_AUTO 0
835#define IPW_TX_POWER_ENHANCED 1
836
837#define IPW_TX_POWER_DEFAULT 32
838#define IPW_TX_POWER_MIN 0
839#define IPW_TX_POWER_MAX 16
840#define IPW_TX_POWER_MIN_DBM (-12)
841#define IPW_TX_POWER_MAX_DBM 16
842
843#define FW_SCAN_DONOT_ASSOCIATE 0x0001 // Dont Attempt to Associate after Scan
844#define FW_SCAN_PASSIVE 0x0008 // Force PASSSIVE Scan
845
846#define REG_MIN_CHANNEL 0
847#define REG_MAX_CHANNEL 14
848
849#define REG_CHANNEL_MASK 0x00003FFF
850#define IPW_IBSS_11B_DEFAULT_MASK 0x87ff
851
852#define DIVERSITY_EITHER 0 // Use both antennas
853#define DIVERSITY_ANTENNA_A 1 // Use antenna A
854#define DIVERSITY_ANTENNA_B 2 // Use antenna B
855
856#define HOST_COMMAND_WAIT 0
857#define HOST_COMMAND_NO_WAIT 1
858
859#define LOCK_NONE 0
860#define LOCK_DRIVER 1
861#define LOCK_FW 2
862
863#define TYPE_SWEEP_ORD 0x000D
864#define TYPE_IBSS_STTN_ORD 0x000E
865#define TYPE_BSS_AP_ORD 0x000F
866#define TYPE_RAW_BEACON_ENTRY 0x0010
867#define TYPE_CALIBRATION_DATA 0x0011
868#define TYPE_ROGUE_AP_DATA 0x0012
869#define TYPE_ASSOCIATION_REQUEST 0x0013
870#define TYPE_REASSOCIATION_REQUEST 0x0014
871
872#define HW_FEATURE_RFKILL 0x0001
873#define RF_KILLSWITCH_OFF 1
874#define RF_KILLSWITCH_ON 0
875
876#define IPW_COMMAND_POOL_SIZE 40
877
878#define IPW_START_ORD_TAB_1 1
879#define IPW_START_ORD_TAB_2 1000
880
881#define IPW_ORD_TAB_1_ENTRY_SIZE sizeof(u32)
882
883#define IS_ORDINAL_TABLE_ONE(mgr,id) \
884 ((id >= IPW_START_ORD_TAB_1) && (id < mgr->table1_size))
885#define IS_ORDINAL_TABLE_TWO(mgr,id) \
886 ((id >= IPW_START_ORD_TAB_2) && (id < (mgr->table2_size + IPW_START_ORD_TAB_2)))
887
888#define BSS_ID_LENGTH 6
889
890// Fixed size data: Ordinal Table 1
891typedef enum _ORDINAL_TABLE_1 { // NS - means Not Supported by FW
892// Transmit statistics
893 IPW_ORD_STAT_TX_HOST_REQUESTS = 1, // # of requested Host Tx's (MSDU)
894 IPW_ORD_STAT_TX_HOST_COMPLETE, // # of successful Host Tx's (MSDU)
895 IPW_ORD_STAT_TX_DIR_DATA, // # of successful Directed Tx's (MSDU)
896
897 IPW_ORD_STAT_TX_DIR_DATA1 = 4, // # of successful Directed Tx's (MSDU) @ 1MB
898 IPW_ORD_STAT_TX_DIR_DATA2, // # of successful Directed Tx's (MSDU) @ 2MB
899 IPW_ORD_STAT_TX_DIR_DATA5_5, // # of successful Directed Tx's (MSDU) @ 5_5MB
900 IPW_ORD_STAT_TX_DIR_DATA11, // # of successful Directed Tx's (MSDU) @ 11MB
901 IPW_ORD_STAT_TX_DIR_DATA22, // # of successful Directed Tx's (MSDU) @ 22MB
902
903 IPW_ORD_STAT_TX_NODIR_DATA1 = 13, // # of successful Non_Directed Tx's (MSDU) @ 1MB
904 IPW_ORD_STAT_TX_NODIR_DATA2, // # of successful Non_Directed Tx's (MSDU) @ 2MB
905 IPW_ORD_STAT_TX_NODIR_DATA5_5, // # of successful Non_Directed Tx's (MSDU) @ 5.5MB
906 IPW_ORD_STAT_TX_NODIR_DATA11, // # of successful Non_Directed Tx's (MSDU) @ 11MB
907
908 IPW_ORD_STAT_NULL_DATA = 21, // # of successful NULL data Tx's
909 IPW_ORD_STAT_TX_RTS, // # of successful Tx RTS
910 IPW_ORD_STAT_TX_CTS, // # of successful Tx CTS
911 IPW_ORD_STAT_TX_ACK, // # of successful Tx ACK
912 IPW_ORD_STAT_TX_ASSN, // # of successful Association Tx's
913 IPW_ORD_STAT_TX_ASSN_RESP, // # of successful Association response Tx's
914 IPW_ORD_STAT_TX_REASSN, // # of successful Reassociation Tx's
915 IPW_ORD_STAT_TX_REASSN_RESP, // # of successful Reassociation response Tx's
916 IPW_ORD_STAT_TX_PROBE, // # of probes successfully transmitted
917 IPW_ORD_STAT_TX_PROBE_RESP, // # of probe responses successfully transmitted
918 IPW_ORD_STAT_TX_BEACON, // # of tx beacon
919 IPW_ORD_STAT_TX_ATIM, // # of Tx ATIM
920 IPW_ORD_STAT_TX_DISASSN, // # of successful Disassociation TX
921 IPW_ORD_STAT_TX_AUTH, // # of successful Authentication Tx
922 IPW_ORD_STAT_TX_DEAUTH, // # of successful Deauthentication TX
923
924 IPW_ORD_STAT_TX_TOTAL_BYTES = 41, // Total successful Tx data bytes
925 IPW_ORD_STAT_TX_RETRIES, // # of Tx retries
926 IPW_ORD_STAT_TX_RETRY1, // # of Tx retries at 1MBPS
927 IPW_ORD_STAT_TX_RETRY2, // # of Tx retries at 2MBPS
928 IPW_ORD_STAT_TX_RETRY5_5, // # of Tx retries at 5.5MBPS
929 IPW_ORD_STAT_TX_RETRY11, // # of Tx retries at 11MBPS
930
931 IPW_ORD_STAT_TX_FAILURES = 51, // # of Tx Failures
932 IPW_ORD_STAT_TX_ABORT_AT_HOP, //NS // # of Tx's aborted at hop time
933 IPW_ORD_STAT_TX_MAX_TRIES_IN_HOP, // # of times max tries in a hop failed
934 IPW_ORD_STAT_TX_ABORT_LATE_DMA, //NS // # of times tx aborted due to late dma setup
935 IPW_ORD_STAT_TX_ABORT_STX, //NS // # of times backoff aborted
936 IPW_ORD_STAT_TX_DISASSN_FAIL, // # of times disassociation failed
937 IPW_ORD_STAT_TX_ERR_CTS, // # of missed/bad CTS frames
938 IPW_ORD_STAT_TX_BPDU, //NS // # of spanning tree BPDUs sent
939 IPW_ORD_STAT_TX_ERR_ACK, // # of tx err due to acks
940
941 // Receive statistics
942 IPW_ORD_STAT_RX_HOST = 61, // # of packets passed to host
943 IPW_ORD_STAT_RX_DIR_DATA, // # of directed packets
944 IPW_ORD_STAT_RX_DIR_DATA1, // # of directed packets at 1MB
945 IPW_ORD_STAT_RX_DIR_DATA2, // # of directed packets at 2MB
946 IPW_ORD_STAT_RX_DIR_DATA5_5, // # of directed packets at 5.5MB
947 IPW_ORD_STAT_RX_DIR_DATA11, // # of directed packets at 11MB
948 IPW_ORD_STAT_RX_DIR_DATA22, // # of directed packets at 22MB
949
950 IPW_ORD_STAT_RX_NODIR_DATA = 71, // # of nondirected packets
951 IPW_ORD_STAT_RX_NODIR_DATA1, // # of nondirected packets at 1MB
952 IPW_ORD_STAT_RX_NODIR_DATA2, // # of nondirected packets at 2MB
953 IPW_ORD_STAT_RX_NODIR_DATA5_5, // # of nondirected packets at 5.5MB
954 IPW_ORD_STAT_RX_NODIR_DATA11, // # of nondirected packets at 11MB
955
956 IPW_ORD_STAT_RX_NULL_DATA = 80, // # of null data rx's
957 IPW_ORD_STAT_RX_POLL, //NS // # of poll rx
958 IPW_ORD_STAT_RX_RTS, // # of Rx RTS
959 IPW_ORD_STAT_RX_CTS, // # of Rx CTS
960 IPW_ORD_STAT_RX_ACK, // # of Rx ACK
961 IPW_ORD_STAT_RX_CFEND, // # of Rx CF End
962 IPW_ORD_STAT_RX_CFEND_ACK, // # of Rx CF End + CF Ack
963 IPW_ORD_STAT_RX_ASSN, // # of Association Rx's
964 IPW_ORD_STAT_RX_ASSN_RESP, // # of Association response Rx's
965 IPW_ORD_STAT_RX_REASSN, // # of Reassociation Rx's
966 IPW_ORD_STAT_RX_REASSN_RESP, // # of Reassociation response Rx's
967 IPW_ORD_STAT_RX_PROBE, // # of probe Rx's
968 IPW_ORD_STAT_RX_PROBE_RESP, // # of probe response Rx's
969 IPW_ORD_STAT_RX_BEACON, // # of Rx beacon
970 IPW_ORD_STAT_RX_ATIM, // # of Rx ATIM
971 IPW_ORD_STAT_RX_DISASSN, // # of disassociation Rx
972 IPW_ORD_STAT_RX_AUTH, // # of authentication Rx
973 IPW_ORD_STAT_RX_DEAUTH, // # of deauthentication Rx
974
975 IPW_ORD_STAT_RX_TOTAL_BYTES = 101, // Total rx data bytes received
976 IPW_ORD_STAT_RX_ERR_CRC, // # of packets with Rx CRC error
977 IPW_ORD_STAT_RX_ERR_CRC1, // # of Rx CRC errors at 1MB
978 IPW_ORD_STAT_RX_ERR_CRC2, // # of Rx CRC errors at 2MB
979 IPW_ORD_STAT_RX_ERR_CRC5_5, // # of Rx CRC errors at 5.5MB
980 IPW_ORD_STAT_RX_ERR_CRC11, // # of Rx CRC errors at 11MB
981
982 IPW_ORD_STAT_RX_DUPLICATE1 = 112, // # of duplicate rx packets at 1MB
983 IPW_ORD_STAT_RX_DUPLICATE2, // # of duplicate rx packets at 2MB
984 IPW_ORD_STAT_RX_DUPLICATE5_5, // # of duplicate rx packets at 5.5MB
985 IPW_ORD_STAT_RX_DUPLICATE11, // # of duplicate rx packets at 11MB
986 IPW_ORD_STAT_RX_DUPLICATE = 119, // # of duplicate rx packets
987
988 IPW_ORD_PERS_DB_LOCK = 120, // # locking fw permanent db
989 IPW_ORD_PERS_DB_SIZE, // # size of fw permanent db
990 IPW_ORD_PERS_DB_ADDR, // # address of fw permanent db
991 IPW_ORD_STAT_RX_INVALID_PROTOCOL, // # of rx frames with invalid protocol
992 IPW_ORD_SYS_BOOT_TIME, // # Boot time
993 IPW_ORD_STAT_RX_NO_BUFFER, // # of rx frames rejected due to no buffer
994 IPW_ORD_STAT_RX_ABORT_LATE_DMA, //NS // # of rx frames rejected due to dma setup too late
995 IPW_ORD_STAT_RX_ABORT_AT_HOP, //NS // # of rx frames aborted due to hop
996 IPW_ORD_STAT_RX_MISSING_FRAG, // # of rx frames dropped due to missing fragment
997 IPW_ORD_STAT_RX_ORPHAN_FRAG, // # of rx frames dropped due to non-sequential fragment
998 IPW_ORD_STAT_RX_ORPHAN_FRAME, // # of rx frames dropped due to unmatched 1st frame
999 IPW_ORD_STAT_RX_FRAG_AGEOUT, // # of rx frames dropped due to uncompleted frame
1000 IPW_ORD_STAT_RX_BAD_SSID, //NS // Bad SSID (unused)
1001 IPW_ORD_STAT_RX_ICV_ERRORS, // # of ICV errors during decryption
1002
1003// PSP Statistics
1004 IPW_ORD_STAT_PSP_SUSPENSION = 137, // # of times adapter suspended
1005 IPW_ORD_STAT_PSP_BCN_TIMEOUT, // # of beacon timeout
1006 IPW_ORD_STAT_PSP_POLL_TIMEOUT, // # of poll response timeouts
1007 IPW_ORD_STAT_PSP_NONDIR_TIMEOUT, // # of timeouts waiting for last broadcast/muticast pkt
1008 IPW_ORD_STAT_PSP_RX_DTIMS, // # of PSP DTIMs received
1009 IPW_ORD_STAT_PSP_RX_TIMS, // # of PSP TIMs received
1010 IPW_ORD_STAT_PSP_STATION_ID, // PSP Station ID
1011
1012// Association and roaming
1013 IPW_ORD_LAST_ASSN_TIME = 147, // RTC time of last association
1014 IPW_ORD_STAT_PERCENT_MISSED_BCNS, // current calculation of % missed beacons
1015 IPW_ORD_STAT_PERCENT_RETRIES, // current calculation of % missed tx retries
1016 IPW_ORD_ASSOCIATED_AP_PTR, // If associated, this is ptr to the associated
1017 // AP table entry. set to 0 if not associated
1018 IPW_ORD_AVAILABLE_AP_CNT, // # of AP's decsribed in the AP table
1019 IPW_ORD_AP_LIST_PTR, // Ptr to list of available APs
1020 IPW_ORD_STAT_AP_ASSNS, // # of associations
1021 IPW_ORD_STAT_ASSN_FAIL, // # of association failures
1022 IPW_ORD_STAT_ASSN_RESP_FAIL, // # of failuresdue to response fail
1023 IPW_ORD_STAT_FULL_SCANS, // # of full scans
1024
1025 IPW_ORD_CARD_DISABLED, // # Card Disabled
1026 IPW_ORD_STAT_ROAM_INHIBIT, // # of times roaming was inhibited due to ongoing activity
1027 IPW_FILLER_40,
1028 IPW_ORD_RSSI_AT_ASSN = 160, // RSSI of associated AP at time of association
1029 IPW_ORD_STAT_ASSN_CAUSE1, // # of reassociations due to no tx from AP in last N
1030 // hops or no prob_ responses in last 3 minutes
1031 IPW_ORD_STAT_ASSN_CAUSE2, // # of reassociations due to poor tx/rx quality
1032 IPW_ORD_STAT_ASSN_CAUSE3, // # of reassociations due to tx/rx quality with excessive
1033 // load at the AP
1034 IPW_ORD_STAT_ASSN_CAUSE4, // # of reassociations due to AP RSSI level fell below
1035 // eligible group
1036 IPW_ORD_STAT_ASSN_CAUSE5, // # of reassociations due to load leveling
1037 IPW_ORD_STAT_ASSN_CAUSE6, //NS // # of reassociations due to dropped by Ap
1038 IPW_FILLER_41,
1039 IPW_FILLER_42,
1040 IPW_FILLER_43,
1041 IPW_ORD_STAT_AUTH_FAIL, // # of times authentication failed
1042 IPW_ORD_STAT_AUTH_RESP_FAIL, // # of times authentication response failed
1043 IPW_ORD_STATION_TABLE_CNT, // # of entries in association table
1044
1045// Other statistics
1046 IPW_ORD_RSSI_AVG_CURR = 173, // Current avg RSSI
1047 IPW_ORD_STEST_RESULTS_CURR, //NS // Current self test results word
1048 IPW_ORD_STEST_RESULTS_CUM, //NS // Cummulative self test results word
1049 IPW_ORD_SELF_TEST_STATUS, //NS //
1050 IPW_ORD_POWER_MGMT_MODE, // Power mode - 0=CAM, 1=PSP
1051 IPW_ORD_POWER_MGMT_INDEX, //NS //
1052 IPW_ORD_COUNTRY_CODE, // IEEE country code as recv'd from beacon
1053 IPW_ORD_COUNTRY_CHANNELS, // channels suported by country
1054// IPW_ORD_COUNTRY_CHANNELS:
1055// For 11b the lower 2-byte are used for channels from 1-14
1056// and the higher 2-byte are not used.
1057 IPW_ORD_RESET_CNT, // # of adapter resets (warm)
1058 IPW_ORD_BEACON_INTERVAL, // Beacon interval
1059
1060 IPW_ORD_PRINCETON_VERSION = 184, //NS // Princeton Version
1061 IPW_ORD_ANTENNA_DIVERSITY, // TRUE if antenna diversity is disabled
1062 IPW_ORD_CCA_RSSI, //NS // CCA RSSI value (factory programmed)
1063 IPW_ORD_STAT_EEPROM_UPDATE, //NS // # of times config EEPROM updated
1064 IPW_ORD_DTIM_PERIOD, // # of beacon intervals between DTIMs
1065 IPW_ORD_OUR_FREQ, // current radio freq lower digits - channel ID
1066
1067 IPW_ORD_RTC_TIME = 190, // current RTC time
1068 IPW_ORD_PORT_TYPE, // operating mode
1069 IPW_ORD_CURRENT_TX_RATE, // current tx rate
1070 IPW_ORD_SUPPORTED_RATES, // Bitmap of supported tx rates
1071 IPW_ORD_ATIM_WINDOW, // current ATIM Window
1072 IPW_ORD_BASIC_RATES, // bitmap of basic tx rates
1073 IPW_ORD_NIC_HIGHEST_RATE, // bitmap of basic tx rates
1074 IPW_ORD_AP_HIGHEST_RATE, // bitmap of basic tx rates
1075 IPW_ORD_CAPABILITIES, // Management frame capability field
1076 IPW_ORD_AUTH_TYPE, // Type of authentication
1077 IPW_ORD_RADIO_TYPE, // Adapter card platform type
1078 IPW_ORD_RTS_THRESHOLD = 201, // Min length of packet after which RTS handshaking is used
1079 IPW_ORD_INT_MODE, // International mode
1080 IPW_ORD_FRAGMENTATION_THRESHOLD, // protocol frag threshold
1081 IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, // EEPROM offset in SRAM
1082 IPW_ORD_EEPROM_SRAM_DB_BLOCK_SIZE, // EEPROM size in SRAM
1083 IPW_ORD_EEPROM_SKU_CAPABILITY, // EEPROM SKU Capability 206 =
1084 IPW_ORD_EEPROM_IBSS_11B_CHANNELS, // EEPROM IBSS 11b channel set
1085
1086 IPW_ORD_MAC_VERSION = 209, // MAC Version
1087 IPW_ORD_MAC_REVISION, // MAC Revision
1088 IPW_ORD_RADIO_VERSION, // Radio Version
1089 IPW_ORD_NIC_MANF_DATE_TIME, // MANF Date/Time STAMP
1090 IPW_ORD_UCODE_VERSION, // Ucode Version
1091 IPW_ORD_HW_RF_SWITCH_STATE = 214, // HW RF Kill Switch State
1092} ORDINALTABLE1;
1093
1094// ordinal table 2
1095// Variable length data:
1096#define IPW_FIRST_VARIABLE_LENGTH_ORDINAL 1001
1097
1098typedef enum _ORDINAL_TABLE_2 { // NS - means Not Supported by FW
1099 IPW_ORD_STAT_BASE = 1000, // contains number of variable ORDs
1100 IPW_ORD_STAT_ADAPTER_MAC = 1001, // 6 bytes: our adapter MAC address
1101 IPW_ORD_STAT_PREFERRED_BSSID = 1002, // 6 bytes: BSSID of the preferred AP
1102 IPW_ORD_STAT_MANDATORY_BSSID = 1003, // 6 bytes: BSSID of the mandatory AP
1103 IPW_FILL_1, //NS //
1104 IPW_ORD_STAT_COUNTRY_TEXT = 1005, // 36 bytes: Country name text, First two bytes are Country code
1105 IPW_ORD_STAT_ASSN_SSID = 1006, // 32 bytes: ESSID String
1106 IPW_ORD_STATION_TABLE = 1007, // ? bytes: Station/AP table (via Direct SSID Scans)
1107 IPW_ORD_STAT_SWEEP_TABLE = 1008, // ? bytes: Sweep/Host Table table (via Broadcast Scans)
1108 IPW_ORD_STAT_ROAM_LOG = 1009, // ? bytes: Roaming log
1109 IPW_ORD_STAT_RATE_LOG = 1010, //NS // 0 bytes: Rate log
1110 IPW_ORD_STAT_FIFO = 1011, //NS // 0 bytes: Fifo buffer data structures
1111 IPW_ORD_STAT_FW_VER_NUM = 1012, // 14 bytes: fw version ID string as in (a.bb.ccc; "0.08.011")
1112 IPW_ORD_STAT_FW_DATE = 1013, // 14 bytes: fw date string (mmm dd yyyy; "Mar 13 2002")
1113 IPW_ORD_STAT_ASSN_AP_BSSID = 1014, // 6 bytes: MAC address of associated AP
1114 IPW_ORD_STAT_DEBUG = 1015, //NS // ? bytes:
1115 IPW_ORD_STAT_NIC_BPA_NUM = 1016, // 11 bytes: NIC BPA number in ASCII
1116 IPW_ORD_STAT_UCODE_DATE = 1017, // 5 bytes: uCode date
1117 IPW_ORD_SECURITY_NGOTIATION_RESULT = 1018,
1118} ORDINALTABLE2; // NS - means Not Supported by FW
1119
1120#define IPW_LAST_VARIABLE_LENGTH_ORDINAL 1018
1121
1122#ifndef WIRELESS_SPY
1123#define WIRELESS_SPY // enable iwspy support
1124#endif
1125
1126#define IPW_HOST_FW_SHARED_AREA0 0x0002f200
1127#define IPW_HOST_FW_SHARED_AREA0_END 0x0002f510 // 0x310 bytes
1128
1129#define IPW_HOST_FW_SHARED_AREA1 0x0002f610
1130#define IPW_HOST_FW_SHARED_AREA1_END 0x0002f630 // 0x20 bytes
1131
1132#define IPW_HOST_FW_SHARED_AREA2 0x0002fa00
1133#define IPW_HOST_FW_SHARED_AREA2_END 0x0002fa20 // 0x20 bytes
1134
1135#define IPW_HOST_FW_SHARED_AREA3 0x0002fc00
1136#define IPW_HOST_FW_SHARED_AREA3_END 0x0002fc10 // 0x10 bytes
1137
1138#define IPW_HOST_FW_INTERRUPT_AREA 0x0002ff80
1139#define IPW_HOST_FW_INTERRUPT_AREA_END 0x00030000 // 0x80 bytes
1140
1141struct ipw2100_fw_chunk {
1142 unsigned char *buf;
1143 long len;
1144 long pos;
1145 struct list_head list;
1146};
1147
1148struct ipw2100_fw_chunk_set {
1149 const void *data;
1150 unsigned long size;
1151};
1152
1153struct ipw2100_fw {
1154 int version;
1155 struct ipw2100_fw_chunk_set fw;
1156 struct ipw2100_fw_chunk_set uc;
1157 const struct firmware *fw_entry;
1158};
1159
1160#define MAX_FW_VERSION_LEN 14
1161
1162#endif /* _IPW2100_H */
diff --git a/drivers/net/wireless/ipw2x00/ipw2200.c b/drivers/net/wireless/ipw2x00/ipw2200.c
new file mode 100644
index 00000000000..d2a2b7586d0
--- /dev/null
+++ b/drivers/net/wireless/ipw2x00/ipw2200.c
@@ -0,0 +1,11984 @@
1/******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
14
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
19
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
26
27 Contact Information:
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31******************************************************************************/
32
33#include "ipw2200.h"
34
35
36#ifndef KBUILD_EXTMOD
37#define VK "k"
38#else
39#define VK
40#endif
41
42#ifdef CONFIG_IPW2200_DEBUG
43#define VD "d"
44#else
45#define VD
46#endif
47
48#ifdef CONFIG_IPW2200_MONITOR
49#define VM "m"
50#else
51#define VM
52#endif
53
54#ifdef CONFIG_IPW2200_PROMISCUOUS
55#define VP "p"
56#else
57#define VP
58#endif
59
60#ifdef CONFIG_IPW2200_RADIOTAP
61#define VR "r"
62#else
63#define VR
64#endif
65
66#ifdef CONFIG_IPW2200_QOS
67#define VQ "q"
68#else
69#define VQ
70#endif
71
72#define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
73#define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
74#define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
75#define DRV_VERSION IPW2200_VERSION
76
77#define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
78
79MODULE_DESCRIPTION(DRV_DESCRIPTION);
80MODULE_VERSION(DRV_VERSION);
81MODULE_AUTHOR(DRV_COPYRIGHT);
82MODULE_LICENSE("GPL");
83
84static int cmdlog = 0;
85static int debug = 0;
86static int channel = 0;
87static int mode = 0;
88
89static u32 ipw_debug_level;
90static int associate;
91static int auto_create = 1;
92static int led = 0;
93static int disable = 0;
94static int bt_coexist = 0;
95static int hwcrypto = 0;
96static int roaming = 1;
97static const char ipw_modes[] = {
98 'a', 'b', 'g', '?'
99};
100static int antenna = CFG_SYS_ANTENNA_BOTH;
101
102#ifdef CONFIG_IPW2200_PROMISCUOUS
103static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
104#endif
105
106
107#ifdef CONFIG_IPW2200_QOS
108static int qos_enable = 0;
109static int qos_burst_enable = 0;
110static int qos_no_ack_mask = 0;
111static int burst_duration_CCK = 0;
112static int burst_duration_OFDM = 0;
113
114static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
115 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
116 QOS_TX3_CW_MIN_OFDM},
117 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
118 QOS_TX3_CW_MAX_OFDM},
119 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
120 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
121 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
122 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
123};
124
125static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
126 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
127 QOS_TX3_CW_MIN_CCK},
128 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
129 QOS_TX3_CW_MAX_CCK},
130 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
131 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
132 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
133 QOS_TX3_TXOP_LIMIT_CCK}
134};
135
136static struct ieee80211_qos_parameters def_parameters_OFDM = {
137 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
138 DEF_TX3_CW_MIN_OFDM},
139 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
140 DEF_TX3_CW_MAX_OFDM},
141 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
142 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
143 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
144 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
145};
146
147static struct ieee80211_qos_parameters def_parameters_CCK = {
148 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
149 DEF_TX3_CW_MIN_CCK},
150 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
151 DEF_TX3_CW_MAX_CCK},
152 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
153 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
154 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
155 DEF_TX3_TXOP_LIMIT_CCK}
156};
157
158static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
159
160static int from_priority_to_tx_queue[] = {
161 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
162 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
163};
164
165static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
166
167static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
168 *qos_param);
169static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
170 *qos_param);
171#endif /* CONFIG_IPW2200_QOS */
172
173static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
174static void ipw_remove_current_network(struct ipw_priv *priv);
175static void ipw_rx(struct ipw_priv *priv);
176static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
177 struct clx2_tx_queue *txq, int qindex);
178static int ipw_queue_reset(struct ipw_priv *priv);
179
180static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
181 int len, int sync);
182
183static void ipw_tx_queue_free(struct ipw_priv *);
184
185static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
186static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
187static void ipw_rx_queue_replenish(void *);
188static int ipw_up(struct ipw_priv *);
189static void ipw_bg_up(struct work_struct *work);
190static void ipw_down(struct ipw_priv *);
191static void ipw_bg_down(struct work_struct *work);
192static int ipw_config(struct ipw_priv *);
193static int init_supported_rates(struct ipw_priv *priv,
194 struct ipw_supported_rates *prates);
195static void ipw_set_hwcrypto_keys(struct ipw_priv *);
196static void ipw_send_wep_keys(struct ipw_priv *, int);
197
198static int snprint_line(char *buf, size_t count,
199 const u8 * data, u32 len, u32 ofs)
200{
201 int out, i, j, l;
202 char c;
203
204 out = snprintf(buf, count, "%08X", ofs);
205
206 for (l = 0, i = 0; i < 2; i++) {
207 out += snprintf(buf + out, count - out, " ");
208 for (j = 0; j < 8 && l < len; j++, l++)
209 out += snprintf(buf + out, count - out, "%02X ",
210 data[(i * 8 + j)]);
211 for (; j < 8; j++)
212 out += snprintf(buf + out, count - out, " ");
213 }
214
215 out += snprintf(buf + out, count - out, " ");
216 for (l = 0, i = 0; i < 2; i++) {
217 out += snprintf(buf + out, count - out, " ");
218 for (j = 0; j < 8 && l < len; j++, l++) {
219 c = data[(i * 8 + j)];
220 if (!isascii(c) || !isprint(c))
221 c = '.';
222
223 out += snprintf(buf + out, count - out, "%c", c);
224 }
225
226 for (; j < 8; j++)
227 out += snprintf(buf + out, count - out, " ");
228 }
229
230 return out;
231}
232
233static void printk_buf(int level, const u8 * data, u32 len)
234{
235 char line[81];
236 u32 ofs = 0;
237 if (!(ipw_debug_level & level))
238 return;
239
240 while (len) {
241 snprint_line(line, sizeof(line), &data[ofs],
242 min(len, 16U), ofs);
243 printk(KERN_DEBUG "%s\n", line);
244 ofs += 16;
245 len -= min(len, 16U);
246 }
247}
248
249static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
250{
251 size_t out = size;
252 u32 ofs = 0;
253 int total = 0;
254
255 while (size && len) {
256 out = snprint_line(output, size, &data[ofs],
257 min_t(size_t, len, 16U), ofs);
258
259 ofs += 16;
260 output += out;
261 size -= out;
262 len -= min_t(size_t, len, 16U);
263 total += out;
264 }
265 return total;
266}
267
268/* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
269static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
270#define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
271
272/* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
273static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
274#define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
275
276/* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
277static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
278static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
279{
280 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
281 __LINE__, (u32) (b), (u32) (c));
282 _ipw_write_reg8(a, b, c);
283}
284
285/* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
286static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
287static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
288{
289 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
290 __LINE__, (u32) (b), (u32) (c));
291 _ipw_write_reg16(a, b, c);
292}
293
294/* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
295static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
296static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
297{
298 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
299 __LINE__, (u32) (b), (u32) (c));
300 _ipw_write_reg32(a, b, c);
301}
302
303/* 8-bit direct write (low 4K) */
304#define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
305
306/* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
307#define ipw_write8(ipw, ofs, val) do { \
308 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
309 _ipw_write8(ipw, ofs, val); \
310 } while (0)
311
312/* 16-bit direct write (low 4K) */
313#define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
314
315/* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316#define ipw_write16(ipw, ofs, val) \
317 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318 _ipw_write16(ipw, ofs, val)
319
320/* 32-bit direct write (low 4K) */
321#define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
322
323/* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324#define ipw_write32(ipw, ofs, val) \
325 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326 _ipw_write32(ipw, ofs, val)
327
328/* 8-bit direct read (low 4K) */
329#define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
330
331/* 8-bit direct read (low 4K), with debug wrapper */
332static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
333{
334 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335 return _ipw_read8(ipw, ofs);
336}
337
338/* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339#define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
340
341/* 16-bit direct read (low 4K) */
342#define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
343
344/* 16-bit direct read (low 4K), with debug wrapper */
345static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
346{
347 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348 return _ipw_read16(ipw, ofs);
349}
350
351/* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352#define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
353
354/* 32-bit direct read (low 4K) */
355#define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
356
357/* 32-bit direct read (low 4K), with debug wrapper */
358static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
359{
360 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361 return _ipw_read32(ipw, ofs);
362}
363
364/* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365#define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
366
367/* multi-byte read (above 4K), with debug wrapper */
368static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369static inline void __ipw_read_indirect(const char *f, int l,
370 struct ipw_priv *a, u32 b, u8 * c, int d)
371{
372 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
373 d);
374 _ipw_read_indirect(a, b, c, d);
375}
376
377/* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378#define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
379
380/* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
382 int num);
383#define ipw_write_indirect(a, b, c, d) \
384 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385 _ipw_write_indirect(a, b, c, d)
386
387/* 32-bit indirect write (above 4K) */
388static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
389{
390 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
393}
394
395/* 8-bit indirect write (above 4K) */
396static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
397{
398 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
399 u32 dif_len = reg - aligned_addr;
400
401 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
404}
405
406/* 16-bit indirect write (above 4K) */
407static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
408{
409 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
410 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
411
412 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
415}
416
417/* 8-bit indirect read (above 4K) */
418static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
419{
420 u32 word;
421 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424 return (word >> ((reg & 0x3) * 8)) & 0xff;
425}
426
427/* 32-bit indirect read (above 4K) */
428static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
429{
430 u32 value;
431
432 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
433
434 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
437 return value;
438}
439
440/* General purpose, no alignment requirement, iterative (multi-byte) read, */
441/* for area above 1st 4K of SRAM/reg space */
442static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
443 int num)
444{
445 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
446 u32 dif_len = addr - aligned_addr;
447 u32 i;
448
449 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
450
451 if (num <= 0) {
452 return;
453 }
454
455 /* Read the first dword (or portion) byte by byte */
456 if (unlikely(dif_len)) {
457 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458 /* Start reading at aligned_addr + dif_len */
459 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
461 aligned_addr += 4;
462 }
463
464 /* Read all of the middle dwords as dwords, with auto-increment */
465 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
468
469 /* Read the last dword (or portion) byte by byte */
470 if (unlikely(num)) {
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472 for (i = 0; num > 0; i++, num--)
473 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
474 }
475}
476
477/* General purpose, no alignment requirement, iterative (multi-byte) write, */
478/* for area above 1st 4K of SRAM/reg space */
479static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
480 int num)
481{
482 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
483 u32 dif_len = addr - aligned_addr;
484 u32 i;
485
486 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
487
488 if (num <= 0) {
489 return;
490 }
491
492 /* Write the first dword (or portion) byte by byte */
493 if (unlikely(dif_len)) {
494 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495 /* Start writing at aligned_addr + dif_len */
496 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
498 aligned_addr += 4;
499 }
500
501 /* Write all of the middle dwords as dwords, with auto-increment */
502 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
505
506 /* Write the last dword (or portion) byte by byte */
507 if (unlikely(num)) {
508 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509 for (i = 0; num > 0; i++, num--, buf++)
510 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
511 }
512}
513
514/* General purpose, no alignment requirement, iterative (multi-byte) write, */
515/* for 1st 4K of SRAM/regs space */
516static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
517 int num)
518{
519 memcpy_toio((priv->hw_base + addr), buf, num);
520}
521
522/* Set bit(s) in low 4K of SRAM/regs */
523static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
524{
525 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
526}
527
528/* Clear bit(s) in low 4K of SRAM/regs */
529static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
530{
531 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
532}
533
534static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
535{
536 if (priv->status & STATUS_INT_ENABLED)
537 return;
538 priv->status |= STATUS_INT_ENABLED;
539 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
540}
541
542static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
543{
544 if (!(priv->status & STATUS_INT_ENABLED))
545 return;
546 priv->status &= ~STATUS_INT_ENABLED;
547 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
548}
549
550static inline void ipw_enable_interrupts(struct ipw_priv *priv)
551{
552 unsigned long flags;
553
554 spin_lock_irqsave(&priv->irq_lock, flags);
555 __ipw_enable_interrupts(priv);
556 spin_unlock_irqrestore(&priv->irq_lock, flags);
557}
558
559static inline void ipw_disable_interrupts(struct ipw_priv *priv)
560{
561 unsigned long flags;
562
563 spin_lock_irqsave(&priv->irq_lock, flags);
564 __ipw_disable_interrupts(priv);
565 spin_unlock_irqrestore(&priv->irq_lock, flags);
566}
567
568static char *ipw_error_desc(u32 val)
569{
570 switch (val) {
571 case IPW_FW_ERROR_OK:
572 return "ERROR_OK";
573 case IPW_FW_ERROR_FAIL:
574 return "ERROR_FAIL";
575 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576 return "MEMORY_UNDERFLOW";
577 case IPW_FW_ERROR_MEMORY_OVERFLOW:
578 return "MEMORY_OVERFLOW";
579 case IPW_FW_ERROR_BAD_PARAM:
580 return "BAD_PARAM";
581 case IPW_FW_ERROR_BAD_CHECKSUM:
582 return "BAD_CHECKSUM";
583 case IPW_FW_ERROR_NMI_INTERRUPT:
584 return "NMI_INTERRUPT";
585 case IPW_FW_ERROR_BAD_DATABASE:
586 return "BAD_DATABASE";
587 case IPW_FW_ERROR_ALLOC_FAIL:
588 return "ALLOC_FAIL";
589 case IPW_FW_ERROR_DMA_UNDERRUN:
590 return "DMA_UNDERRUN";
591 case IPW_FW_ERROR_DMA_STATUS:
592 return "DMA_STATUS";
593 case IPW_FW_ERROR_DINO_ERROR:
594 return "DINO_ERROR";
595 case IPW_FW_ERROR_EEPROM_ERROR:
596 return "EEPROM_ERROR";
597 case IPW_FW_ERROR_SYSASSERT:
598 return "SYSASSERT";
599 case IPW_FW_ERROR_FATAL_ERROR:
600 return "FATAL_ERROR";
601 default:
602 return "UNKNOWN_ERROR";
603 }
604}
605
606static void ipw_dump_error_log(struct ipw_priv *priv,
607 struct ipw_fw_error *error)
608{
609 u32 i;
610
611 if (!error) {
612 IPW_ERROR("Error allocating and capturing error log. "
613 "Nothing to dump.\n");
614 return;
615 }
616
617 IPW_ERROR("Start IPW Error Log Dump:\n");
618 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619 error->status, error->config);
620
621 for (i = 0; i < error->elem_len; i++)
622 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
623 ipw_error_desc(error->elem[i].desc),
624 error->elem[i].time,
625 error->elem[i].blink1,
626 error->elem[i].blink2,
627 error->elem[i].link1,
628 error->elem[i].link2, error->elem[i].data);
629 for (i = 0; i < error->log_len; i++)
630 IPW_ERROR("%i\t0x%08x\t%i\n",
631 error->log[i].time,
632 error->log[i].data, error->log[i].event);
633}
634
635static inline int ipw_is_init(struct ipw_priv *priv)
636{
637 return (priv->status & STATUS_INIT) ? 1 : 0;
638}
639
640static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
641{
642 u32 addr, field_info, field_len, field_count, total_len;
643
644 IPW_DEBUG_ORD("ordinal = %i\n", ord);
645
646 if (!priv || !val || !len) {
647 IPW_DEBUG_ORD("Invalid argument\n");
648 return -EINVAL;
649 }
650
651 /* verify device ordinal tables have been initialized */
652 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653 IPW_DEBUG_ORD("Access ordinals before initialization\n");
654 return -EINVAL;
655 }
656
657 switch (IPW_ORD_TABLE_ID_MASK & ord) {
658 case IPW_ORD_TABLE_0_MASK:
659 /*
660 * TABLE 0: Direct access to a table of 32 bit values
661 *
662 * This is a very simple table with the data directly
663 * read from the table
664 */
665
666 /* remove the table id from the ordinal */
667 ord &= IPW_ORD_TABLE_VALUE_MASK;
668
669 /* boundary check */
670 if (ord > priv->table0_len) {
671 IPW_DEBUG_ORD("ordinal value (%i) longer then "
672 "max (%i)\n", ord, priv->table0_len);
673 return -EINVAL;
674 }
675
676 /* verify we have enough room to store the value */
677 if (*len < sizeof(u32)) {
678 IPW_DEBUG_ORD("ordinal buffer length too small, "
679 "need %zd\n", sizeof(u32));
680 return -EINVAL;
681 }
682
683 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684 ord, priv->table0_addr + (ord << 2));
685
686 *len = sizeof(u32);
687 ord <<= 2;
688 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
689 break;
690
691 case IPW_ORD_TABLE_1_MASK:
692 /*
693 * TABLE 1: Indirect access to a table of 32 bit values
694 *
695 * This is a fairly large table of u32 values each
696 * representing starting addr for the data (which is
697 * also a u32)
698 */
699
700 /* remove the table id from the ordinal */
701 ord &= IPW_ORD_TABLE_VALUE_MASK;
702
703 /* boundary check */
704 if (ord > priv->table1_len) {
705 IPW_DEBUG_ORD("ordinal value too long\n");
706 return -EINVAL;
707 }
708
709 /* verify we have enough room to store the value */
710 if (*len < sizeof(u32)) {
711 IPW_DEBUG_ORD("ordinal buffer length too small, "
712 "need %zd\n", sizeof(u32));
713 return -EINVAL;
714 }
715
716 *((u32 *) val) =
717 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
718 *len = sizeof(u32);
719 break;
720
721 case IPW_ORD_TABLE_2_MASK:
722 /*
723 * TABLE 2: Indirect access to a table of variable sized values
724 *
725 * This table consist of six values, each containing
726 * - dword containing the starting offset of the data
727 * - dword containing the lengh in the first 16bits
728 * and the count in the second 16bits
729 */
730
731 /* remove the table id from the ordinal */
732 ord &= IPW_ORD_TABLE_VALUE_MASK;
733
734 /* boundary check */
735 if (ord > priv->table2_len) {
736 IPW_DEBUG_ORD("ordinal value too long\n");
737 return -EINVAL;
738 }
739
740 /* get the address of statistic */
741 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
742
743 /* get the second DW of statistics ;
744 * two 16-bit words - first is length, second is count */
745 field_info =
746 ipw_read_reg32(priv,
747 priv->table2_addr + (ord << 3) +
748 sizeof(u32));
749
750 /* get each entry length */
751 field_len = *((u16 *) & field_info);
752
753 /* get number of entries */
754 field_count = *(((u16 *) & field_info) + 1);
755
756 /* abort if not enought memory */
757 total_len = field_len * field_count;
758 if (total_len > *len) {
759 *len = total_len;
760 return -EINVAL;
761 }
762
763 *len = total_len;
764 if (!total_len)
765 return 0;
766
767 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768 "field_info = 0x%08x\n",
769 addr, total_len, field_info);
770 ipw_read_indirect(priv, addr, val, total_len);
771 break;
772
773 default:
774 IPW_DEBUG_ORD("Invalid ordinal!\n");
775 return -EINVAL;
776
777 }
778
779 return 0;
780}
781
782static void ipw_init_ordinals(struct ipw_priv *priv)
783{
784 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785 priv->table0_len = ipw_read32(priv, priv->table0_addr);
786
787 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788 priv->table0_addr, priv->table0_len);
789
790 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
792
793 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794 priv->table1_addr, priv->table1_len);
795
796 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798 priv->table2_len &= 0x0000ffff; /* use first two bytes */
799
800 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801 priv->table2_addr, priv->table2_len);
802
803}
804
805static u32 ipw_register_toggle(u32 reg)
806{
807 reg &= ~IPW_START_STANDBY;
808 if (reg & IPW_GATE_ODMA)
809 reg &= ~IPW_GATE_ODMA;
810 if (reg & IPW_GATE_IDMA)
811 reg &= ~IPW_GATE_IDMA;
812 if (reg & IPW_GATE_ADMA)
813 reg &= ~IPW_GATE_ADMA;
814 return reg;
815}
816
817/*
818 * LED behavior:
819 * - On radio ON, turn on any LEDs that require to be on during start
820 * - On initialization, start unassociated blink
821 * - On association, disable unassociated blink
822 * - On disassociation, start unassociated blink
823 * - On radio OFF, turn off any LEDs started during radio on
824 *
825 */
826#define LD_TIME_LINK_ON msecs_to_jiffies(300)
827#define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828#define LD_TIME_ACT_ON msecs_to_jiffies(250)
829
830static void ipw_led_link_on(struct ipw_priv *priv)
831{
832 unsigned long flags;
833 u32 led;
834
835 /* If configured to not use LEDs, or nic_type is 1,
836 * then we don't toggle a LINK led */
837 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
838 return;
839
840 spin_lock_irqsave(&priv->lock, flags);
841
842 if (!(priv->status & STATUS_RF_KILL_MASK) &&
843 !(priv->status & STATUS_LED_LINK_ON)) {
844 IPW_DEBUG_LED("Link LED On\n");
845 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846 led |= priv->led_association_on;
847
848 led = ipw_register_toggle(led);
849
850 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851 ipw_write_reg32(priv, IPW_EVENT_REG, led);
852
853 priv->status |= STATUS_LED_LINK_ON;
854
855 /* If we aren't associated, schedule turning the LED off */
856 if (!(priv->status & STATUS_ASSOCIATED))
857 queue_delayed_work(priv->workqueue,
858 &priv->led_link_off,
859 LD_TIME_LINK_ON);
860 }
861
862 spin_unlock_irqrestore(&priv->lock, flags);
863}
864
865static void ipw_bg_led_link_on(struct work_struct *work)
866{
867 struct ipw_priv *priv =
868 container_of(work, struct ipw_priv, led_link_on.work);
869 mutex_lock(&priv->mutex);
870 ipw_led_link_on(priv);
871 mutex_unlock(&priv->mutex);
872}
873
874static void ipw_led_link_off(struct ipw_priv *priv)
875{
876 unsigned long flags;
877 u32 led;
878
879 /* If configured not to use LEDs, or nic type is 1,
880 * then we don't goggle the LINK led. */
881 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
882 return;
883
884 spin_lock_irqsave(&priv->lock, flags);
885
886 if (priv->status & STATUS_LED_LINK_ON) {
887 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888 led &= priv->led_association_off;
889 led = ipw_register_toggle(led);
890
891 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892 ipw_write_reg32(priv, IPW_EVENT_REG, led);
893
894 IPW_DEBUG_LED("Link LED Off\n");
895
896 priv->status &= ~STATUS_LED_LINK_ON;
897
898 /* If we aren't associated and the radio is on, schedule
899 * turning the LED on (blink while unassociated) */
900 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901 !(priv->status & STATUS_ASSOCIATED))
902 queue_delayed_work(priv->workqueue, &priv->led_link_on,
903 LD_TIME_LINK_OFF);
904
905 }
906
907 spin_unlock_irqrestore(&priv->lock, flags);
908}
909
910static void ipw_bg_led_link_off(struct work_struct *work)
911{
912 struct ipw_priv *priv =
913 container_of(work, struct ipw_priv, led_link_off.work);
914 mutex_lock(&priv->mutex);
915 ipw_led_link_off(priv);
916 mutex_unlock(&priv->mutex);
917}
918
919static void __ipw_led_activity_on(struct ipw_priv *priv)
920{
921 u32 led;
922
923 if (priv->config & CFG_NO_LED)
924 return;
925
926 if (priv->status & STATUS_RF_KILL_MASK)
927 return;
928
929 if (!(priv->status & STATUS_LED_ACT_ON)) {
930 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931 led |= priv->led_activity_on;
932
933 led = ipw_register_toggle(led);
934
935 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936 ipw_write_reg32(priv, IPW_EVENT_REG, led);
937
938 IPW_DEBUG_LED("Activity LED On\n");
939
940 priv->status |= STATUS_LED_ACT_ON;
941
942 cancel_delayed_work(&priv->led_act_off);
943 queue_delayed_work(priv->workqueue, &priv->led_act_off,
944 LD_TIME_ACT_ON);
945 } else {
946 /* Reschedule LED off for full time period */
947 cancel_delayed_work(&priv->led_act_off);
948 queue_delayed_work(priv->workqueue, &priv->led_act_off,
949 LD_TIME_ACT_ON);
950 }
951}
952
953#if 0
954void ipw_led_activity_on(struct ipw_priv *priv)
955{
956 unsigned long flags;
957 spin_lock_irqsave(&priv->lock, flags);
958 __ipw_led_activity_on(priv);
959 spin_unlock_irqrestore(&priv->lock, flags);
960}
961#endif /* 0 */
962
963static void ipw_led_activity_off(struct ipw_priv *priv)
964{
965 unsigned long flags;
966 u32 led;
967
968 if (priv->config & CFG_NO_LED)
969 return;
970
971 spin_lock_irqsave(&priv->lock, flags);
972
973 if (priv->status & STATUS_LED_ACT_ON) {
974 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975 led &= priv->led_activity_off;
976
977 led = ipw_register_toggle(led);
978
979 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980 ipw_write_reg32(priv, IPW_EVENT_REG, led);
981
982 IPW_DEBUG_LED("Activity LED Off\n");
983
984 priv->status &= ~STATUS_LED_ACT_ON;
985 }
986
987 spin_unlock_irqrestore(&priv->lock, flags);
988}
989
990static void ipw_bg_led_activity_off(struct work_struct *work)
991{
992 struct ipw_priv *priv =
993 container_of(work, struct ipw_priv, led_act_off.work);
994 mutex_lock(&priv->mutex);
995 ipw_led_activity_off(priv);
996 mutex_unlock(&priv->mutex);
997}
998
999static void ipw_led_band_on(struct ipw_priv *priv)
1000{
1001 unsigned long flags;
1002 u32 led;
1003
1004 /* Only nic type 1 supports mode LEDs */
1005 if (priv->config & CFG_NO_LED ||
1006 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1007 return;
1008
1009 spin_lock_irqsave(&priv->lock, flags);
1010
1011 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012 if (priv->assoc_network->mode == IEEE_A) {
1013 led |= priv->led_ofdm_on;
1014 led &= priv->led_association_off;
1015 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016 } else if (priv->assoc_network->mode == IEEE_G) {
1017 led |= priv->led_ofdm_on;
1018 led |= priv->led_association_on;
1019 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1020 } else {
1021 led &= priv->led_ofdm_off;
1022 led |= priv->led_association_on;
1023 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1024 }
1025
1026 led = ipw_register_toggle(led);
1027
1028 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1030
1031 spin_unlock_irqrestore(&priv->lock, flags);
1032}
1033
1034static void ipw_led_band_off(struct ipw_priv *priv)
1035{
1036 unsigned long flags;
1037 u32 led;
1038
1039 /* Only nic type 1 supports mode LEDs */
1040 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1041 return;
1042
1043 spin_lock_irqsave(&priv->lock, flags);
1044
1045 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046 led &= priv->led_ofdm_off;
1047 led &= priv->led_association_off;
1048
1049 led = ipw_register_toggle(led);
1050
1051 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1053
1054 spin_unlock_irqrestore(&priv->lock, flags);
1055}
1056
1057static void ipw_led_radio_on(struct ipw_priv *priv)
1058{
1059 ipw_led_link_on(priv);
1060}
1061
1062static void ipw_led_radio_off(struct ipw_priv *priv)
1063{
1064 ipw_led_activity_off(priv);
1065 ipw_led_link_off(priv);
1066}
1067
1068static void ipw_led_link_up(struct ipw_priv *priv)
1069{
1070 /* Set the Link Led on for all nic types */
1071 ipw_led_link_on(priv);
1072}
1073
1074static void ipw_led_link_down(struct ipw_priv *priv)
1075{
1076 ipw_led_activity_off(priv);
1077 ipw_led_link_off(priv);
1078
1079 if (priv->status & STATUS_RF_KILL_MASK)
1080 ipw_led_radio_off(priv);
1081}
1082
1083static void ipw_led_init(struct ipw_priv *priv)
1084{
1085 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1086
1087 /* Set the default PINs for the link and activity leds */
1088 priv->led_activity_on = IPW_ACTIVITY_LED;
1089 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1090
1091 priv->led_association_on = IPW_ASSOCIATED_LED;
1092 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1093
1094 /* Set the default PINs for the OFDM leds */
1095 priv->led_ofdm_on = IPW_OFDM_LED;
1096 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1097
1098 switch (priv->nic_type) {
1099 case EEPROM_NIC_TYPE_1:
1100 /* In this NIC type, the LEDs are reversed.... */
1101 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103 priv->led_association_on = IPW_ACTIVITY_LED;
1104 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1105
1106 if (!(priv->config & CFG_NO_LED))
1107 ipw_led_band_on(priv);
1108
1109 /* And we don't blink link LEDs for this nic, so
1110 * just return here */
1111 return;
1112
1113 case EEPROM_NIC_TYPE_3:
1114 case EEPROM_NIC_TYPE_2:
1115 case EEPROM_NIC_TYPE_4:
1116 case EEPROM_NIC_TYPE_0:
1117 break;
1118
1119 default:
1120 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1121 priv->nic_type);
1122 priv->nic_type = EEPROM_NIC_TYPE_0;
1123 break;
1124 }
1125
1126 if (!(priv->config & CFG_NO_LED)) {
1127 if (priv->status & STATUS_ASSOCIATED)
1128 ipw_led_link_on(priv);
1129 else
1130 ipw_led_link_off(priv);
1131 }
1132}
1133
1134static void ipw_led_shutdown(struct ipw_priv *priv)
1135{
1136 ipw_led_activity_off(priv);
1137 ipw_led_link_off(priv);
1138 ipw_led_band_off(priv);
1139 cancel_delayed_work(&priv->led_link_on);
1140 cancel_delayed_work(&priv->led_link_off);
1141 cancel_delayed_work(&priv->led_act_off);
1142}
1143
1144/*
1145 * The following adds a new attribute to the sysfs representation
1146 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147 * used for controling the debug level.
1148 *
1149 * See the level definitions in ipw for details.
1150 */
1151static ssize_t show_debug_level(struct device_driver *d, char *buf)
1152{
1153 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1154}
1155
1156static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1157 size_t count)
1158{
1159 char *p = (char *)buf;
1160 u32 val;
1161
1162 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1163 p++;
1164 if (p[0] == 'x' || p[0] == 'X')
1165 p++;
1166 val = simple_strtoul(p, &p, 16);
1167 } else
1168 val = simple_strtoul(p, &p, 10);
1169 if (p == buf)
1170 printk(KERN_INFO DRV_NAME
1171 ": %s is not in hex or decimal form.\n", buf);
1172 else
1173 ipw_debug_level = val;
1174
1175 return strnlen(buf, count);
1176}
1177
1178static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179 show_debug_level, store_debug_level);
1180
1181static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1182{
1183 /* length = 1st dword in log */
1184 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1185}
1186
1187static void ipw_capture_event_log(struct ipw_priv *priv,
1188 u32 log_len, struct ipw_event *log)
1189{
1190 u32 base;
1191
1192 if (log_len) {
1193 base = ipw_read32(priv, IPW_EVENT_LOG);
1194 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195 (u8 *) log, sizeof(*log) * log_len);
1196 }
1197}
1198
1199static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1200{
1201 struct ipw_fw_error *error;
1202 u32 log_len = ipw_get_event_log_len(priv);
1203 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204 u32 elem_len = ipw_read_reg32(priv, base);
1205
1206 error = kmalloc(sizeof(*error) +
1207 sizeof(*error->elem) * elem_len +
1208 sizeof(*error->log) * log_len, GFP_ATOMIC);
1209 if (!error) {
1210 IPW_ERROR("Memory allocation for firmware error log "
1211 "failed.\n");
1212 return NULL;
1213 }
1214 error->jiffies = jiffies;
1215 error->status = priv->status;
1216 error->config = priv->config;
1217 error->elem_len = elem_len;
1218 error->log_len = log_len;
1219 error->elem = (struct ipw_error_elem *)error->payload;
1220 error->log = (struct ipw_event *)(error->elem + elem_len);
1221
1222 ipw_capture_event_log(priv, log_len, error->log);
1223
1224 if (elem_len)
1225 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226 sizeof(*error->elem) * elem_len);
1227
1228 return error;
1229}
1230
1231static ssize_t show_event_log(struct device *d,
1232 struct device_attribute *attr, char *buf)
1233{
1234 struct ipw_priv *priv = dev_get_drvdata(d);
1235 u32 log_len = ipw_get_event_log_len(priv);
1236 u32 log_size;
1237 struct ipw_event *log;
1238 u32 len = 0, i;
1239
1240 /* not using min() because of its strict type checking */
1241 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1242 sizeof(*log) * log_len : PAGE_SIZE;
1243 log = kzalloc(log_size, GFP_KERNEL);
1244 if (!log) {
1245 IPW_ERROR("Unable to allocate memory for log\n");
1246 return 0;
1247 }
1248 log_len = log_size / sizeof(*log);
1249 ipw_capture_event_log(priv, log_len, log);
1250
1251 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1252 for (i = 0; i < log_len; i++)
1253 len += snprintf(buf + len, PAGE_SIZE - len,
1254 "\n%08X%08X%08X",
1255 log[i].time, log[i].event, log[i].data);
1256 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1257 kfree(log);
1258 return len;
1259}
1260
1261static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1262
1263static ssize_t show_error(struct device *d,
1264 struct device_attribute *attr, char *buf)
1265{
1266 struct ipw_priv *priv = dev_get_drvdata(d);
1267 u32 len = 0, i;
1268 if (!priv->error)
1269 return 0;
1270 len += snprintf(buf + len, PAGE_SIZE - len,
1271 "%08lX%08X%08X%08X",
1272 priv->error->jiffies,
1273 priv->error->status,
1274 priv->error->config, priv->error->elem_len);
1275 for (i = 0; i < priv->error->elem_len; i++)
1276 len += snprintf(buf + len, PAGE_SIZE - len,
1277 "\n%08X%08X%08X%08X%08X%08X%08X",
1278 priv->error->elem[i].time,
1279 priv->error->elem[i].desc,
1280 priv->error->elem[i].blink1,
1281 priv->error->elem[i].blink2,
1282 priv->error->elem[i].link1,
1283 priv->error->elem[i].link2,
1284 priv->error->elem[i].data);
1285
1286 len += snprintf(buf + len, PAGE_SIZE - len,
1287 "\n%08X", priv->error->log_len);
1288 for (i = 0; i < priv->error->log_len; i++)
1289 len += snprintf(buf + len, PAGE_SIZE - len,
1290 "\n%08X%08X%08X",
1291 priv->error->log[i].time,
1292 priv->error->log[i].event,
1293 priv->error->log[i].data);
1294 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1295 return len;
1296}
1297
1298static ssize_t clear_error(struct device *d,
1299 struct device_attribute *attr,
1300 const char *buf, size_t count)
1301{
1302 struct ipw_priv *priv = dev_get_drvdata(d);
1303
1304 kfree(priv->error);
1305 priv->error = NULL;
1306 return count;
1307}
1308
1309static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1310
1311static ssize_t show_cmd_log(struct device *d,
1312 struct device_attribute *attr, char *buf)
1313{
1314 struct ipw_priv *priv = dev_get_drvdata(d);
1315 u32 len = 0, i;
1316 if (!priv->cmdlog)
1317 return 0;
1318 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1319 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1320 i = (i + 1) % priv->cmdlog_len) {
1321 len +=
1322 snprintf(buf + len, PAGE_SIZE - len,
1323 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1324 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1325 priv->cmdlog[i].cmd.len);
1326 len +=
1327 snprintk_buf(buf + len, PAGE_SIZE - len,
1328 (u8 *) priv->cmdlog[i].cmd.param,
1329 priv->cmdlog[i].cmd.len);
1330 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1331 }
1332 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1333 return len;
1334}
1335
1336static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1337
1338#ifdef CONFIG_IPW2200_PROMISCUOUS
1339static void ipw_prom_free(struct ipw_priv *priv);
1340static int ipw_prom_alloc(struct ipw_priv *priv);
1341static ssize_t store_rtap_iface(struct device *d,
1342 struct device_attribute *attr,
1343 const char *buf, size_t count)
1344{
1345 struct ipw_priv *priv = dev_get_drvdata(d);
1346 int rc = 0;
1347
1348 if (count < 1)
1349 return -EINVAL;
1350
1351 switch (buf[0]) {
1352 case '0':
1353 if (!rtap_iface)
1354 return count;
1355
1356 if (netif_running(priv->prom_net_dev)) {
1357 IPW_WARNING("Interface is up. Cannot unregister.\n");
1358 return count;
1359 }
1360
1361 ipw_prom_free(priv);
1362 rtap_iface = 0;
1363 break;
1364
1365 case '1':
1366 if (rtap_iface)
1367 return count;
1368
1369 rc = ipw_prom_alloc(priv);
1370 if (!rc)
1371 rtap_iface = 1;
1372 break;
1373
1374 default:
1375 return -EINVAL;
1376 }
1377
1378 if (rc) {
1379 IPW_ERROR("Failed to register promiscuous network "
1380 "device (error %d).\n", rc);
1381 }
1382
1383 return count;
1384}
1385
1386static ssize_t show_rtap_iface(struct device *d,
1387 struct device_attribute *attr,
1388 char *buf)
1389{
1390 struct ipw_priv *priv = dev_get_drvdata(d);
1391 if (rtap_iface)
1392 return sprintf(buf, "%s", priv->prom_net_dev->name);
1393 else {
1394 buf[0] = '-';
1395 buf[1] = '1';
1396 buf[2] = '\0';
1397 return 3;
1398 }
1399}
1400
1401static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1402 store_rtap_iface);
1403
1404static ssize_t store_rtap_filter(struct device *d,
1405 struct device_attribute *attr,
1406 const char *buf, size_t count)
1407{
1408 struct ipw_priv *priv = dev_get_drvdata(d);
1409
1410 if (!priv->prom_priv) {
1411 IPW_ERROR("Attempting to set filter without "
1412 "rtap_iface enabled.\n");
1413 return -EPERM;
1414 }
1415
1416 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1417
1418 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1419 BIT_ARG16(priv->prom_priv->filter));
1420
1421 return count;
1422}
1423
1424static ssize_t show_rtap_filter(struct device *d,
1425 struct device_attribute *attr,
1426 char *buf)
1427{
1428 struct ipw_priv *priv = dev_get_drvdata(d);
1429 return sprintf(buf, "0x%04X",
1430 priv->prom_priv ? priv->prom_priv->filter : 0);
1431}
1432
1433static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1434 store_rtap_filter);
1435#endif
1436
1437static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1438 char *buf)
1439{
1440 struct ipw_priv *priv = dev_get_drvdata(d);
1441 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1442}
1443
1444static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1445 const char *buf, size_t count)
1446{
1447 struct ipw_priv *priv = dev_get_drvdata(d);
1448 struct net_device *dev = priv->net_dev;
1449 char buffer[] = "00000000";
1450 unsigned long len =
1451 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1452 unsigned long val;
1453 char *p = buffer;
1454
1455 IPW_DEBUG_INFO("enter\n");
1456
1457 strncpy(buffer, buf, len);
1458 buffer[len] = 0;
1459
1460 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1461 p++;
1462 if (p[0] == 'x' || p[0] == 'X')
1463 p++;
1464 val = simple_strtoul(p, &p, 16);
1465 } else
1466 val = simple_strtoul(p, &p, 10);
1467 if (p == buffer) {
1468 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1469 } else {
1470 priv->ieee->scan_age = val;
1471 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1472 }
1473
1474 IPW_DEBUG_INFO("exit\n");
1475 return len;
1476}
1477
1478static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1479
1480static ssize_t show_led(struct device *d, struct device_attribute *attr,
1481 char *buf)
1482{
1483 struct ipw_priv *priv = dev_get_drvdata(d);
1484 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1485}
1486
1487static ssize_t store_led(struct device *d, struct device_attribute *attr,
1488 const char *buf, size_t count)
1489{
1490 struct ipw_priv *priv = dev_get_drvdata(d);
1491
1492 IPW_DEBUG_INFO("enter\n");
1493
1494 if (count == 0)
1495 return 0;
1496
1497 if (*buf == 0) {
1498 IPW_DEBUG_LED("Disabling LED control.\n");
1499 priv->config |= CFG_NO_LED;
1500 ipw_led_shutdown(priv);
1501 } else {
1502 IPW_DEBUG_LED("Enabling LED control.\n");
1503 priv->config &= ~CFG_NO_LED;
1504 ipw_led_init(priv);
1505 }
1506
1507 IPW_DEBUG_INFO("exit\n");
1508 return count;
1509}
1510
1511static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1512
1513static ssize_t show_status(struct device *d,
1514 struct device_attribute *attr, char *buf)
1515{
1516 struct ipw_priv *p = d->driver_data;
1517 return sprintf(buf, "0x%08x\n", (int)p->status);
1518}
1519
1520static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1521
1522static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1523 char *buf)
1524{
1525 struct ipw_priv *p = d->driver_data;
1526 return sprintf(buf, "0x%08x\n", (int)p->config);
1527}
1528
1529static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1530
1531static ssize_t show_nic_type(struct device *d,
1532 struct device_attribute *attr, char *buf)
1533{
1534 struct ipw_priv *priv = d->driver_data;
1535 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1536}
1537
1538static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1539
1540static ssize_t show_ucode_version(struct device *d,
1541 struct device_attribute *attr, char *buf)
1542{
1543 u32 len = sizeof(u32), tmp = 0;
1544 struct ipw_priv *p = d->driver_data;
1545
1546 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1547 return 0;
1548
1549 return sprintf(buf, "0x%08x\n", tmp);
1550}
1551
1552static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1553
1554static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1555 char *buf)
1556{
1557 u32 len = sizeof(u32), tmp = 0;
1558 struct ipw_priv *p = d->driver_data;
1559
1560 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1561 return 0;
1562
1563 return sprintf(buf, "0x%08x\n", tmp);
1564}
1565
1566static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1567
1568/*
1569 * Add a device attribute to view/control the delay between eeprom
1570 * operations.
1571 */
1572static ssize_t show_eeprom_delay(struct device *d,
1573 struct device_attribute *attr, char *buf)
1574{
1575 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1576 return sprintf(buf, "%i\n", n);
1577}
1578static ssize_t store_eeprom_delay(struct device *d,
1579 struct device_attribute *attr,
1580 const char *buf, size_t count)
1581{
1582 struct ipw_priv *p = d->driver_data;
1583 sscanf(buf, "%i", &p->eeprom_delay);
1584 return strnlen(buf, count);
1585}
1586
1587static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1588 show_eeprom_delay, store_eeprom_delay);
1589
1590static ssize_t show_command_event_reg(struct device *d,
1591 struct device_attribute *attr, char *buf)
1592{
1593 u32 reg = 0;
1594 struct ipw_priv *p = d->driver_data;
1595
1596 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1597 return sprintf(buf, "0x%08x\n", reg);
1598}
1599static ssize_t store_command_event_reg(struct device *d,
1600 struct device_attribute *attr,
1601 const char *buf, size_t count)
1602{
1603 u32 reg;
1604 struct ipw_priv *p = d->driver_data;
1605
1606 sscanf(buf, "%x", &reg);
1607 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1608 return strnlen(buf, count);
1609}
1610
1611static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1612 show_command_event_reg, store_command_event_reg);
1613
1614static ssize_t show_mem_gpio_reg(struct device *d,
1615 struct device_attribute *attr, char *buf)
1616{
1617 u32 reg = 0;
1618 struct ipw_priv *p = d->driver_data;
1619
1620 reg = ipw_read_reg32(p, 0x301100);
1621 return sprintf(buf, "0x%08x\n", reg);
1622}
1623static ssize_t store_mem_gpio_reg(struct device *d,
1624 struct device_attribute *attr,
1625 const char *buf, size_t count)
1626{
1627 u32 reg;
1628 struct ipw_priv *p = d->driver_data;
1629
1630 sscanf(buf, "%x", &reg);
1631 ipw_write_reg32(p, 0x301100, reg);
1632 return strnlen(buf, count);
1633}
1634
1635static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1636 show_mem_gpio_reg, store_mem_gpio_reg);
1637
1638static ssize_t show_indirect_dword(struct device *d,
1639 struct device_attribute *attr, char *buf)
1640{
1641 u32 reg = 0;
1642 struct ipw_priv *priv = d->driver_data;
1643
1644 if (priv->status & STATUS_INDIRECT_DWORD)
1645 reg = ipw_read_reg32(priv, priv->indirect_dword);
1646 else
1647 reg = 0;
1648
1649 return sprintf(buf, "0x%08x\n", reg);
1650}
1651static ssize_t store_indirect_dword(struct device *d,
1652 struct device_attribute *attr,
1653 const char *buf, size_t count)
1654{
1655 struct ipw_priv *priv = d->driver_data;
1656
1657 sscanf(buf, "%x", &priv->indirect_dword);
1658 priv->status |= STATUS_INDIRECT_DWORD;
1659 return strnlen(buf, count);
1660}
1661
1662static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1663 show_indirect_dword, store_indirect_dword);
1664
1665static ssize_t show_indirect_byte(struct device *d,
1666 struct device_attribute *attr, char *buf)
1667{
1668 u8 reg = 0;
1669 struct ipw_priv *priv = d->driver_data;
1670
1671 if (priv->status & STATUS_INDIRECT_BYTE)
1672 reg = ipw_read_reg8(priv, priv->indirect_byte);
1673 else
1674 reg = 0;
1675
1676 return sprintf(buf, "0x%02x\n", reg);
1677}
1678static ssize_t store_indirect_byte(struct device *d,
1679 struct device_attribute *attr,
1680 const char *buf, size_t count)
1681{
1682 struct ipw_priv *priv = d->driver_data;
1683
1684 sscanf(buf, "%x", &priv->indirect_byte);
1685 priv->status |= STATUS_INDIRECT_BYTE;
1686 return strnlen(buf, count);
1687}
1688
1689static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1690 show_indirect_byte, store_indirect_byte);
1691
1692static ssize_t show_direct_dword(struct device *d,
1693 struct device_attribute *attr, char *buf)
1694{
1695 u32 reg = 0;
1696 struct ipw_priv *priv = d->driver_data;
1697
1698 if (priv->status & STATUS_DIRECT_DWORD)
1699 reg = ipw_read32(priv, priv->direct_dword);
1700 else
1701 reg = 0;
1702
1703 return sprintf(buf, "0x%08x\n", reg);
1704}
1705static ssize_t store_direct_dword(struct device *d,
1706 struct device_attribute *attr,
1707 const char *buf, size_t count)
1708{
1709 struct ipw_priv *priv = d->driver_data;
1710
1711 sscanf(buf, "%x", &priv->direct_dword);
1712 priv->status |= STATUS_DIRECT_DWORD;
1713 return strnlen(buf, count);
1714}
1715
1716static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1717 show_direct_dword, store_direct_dword);
1718
1719static int rf_kill_active(struct ipw_priv *priv)
1720{
1721 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1722 priv->status |= STATUS_RF_KILL_HW;
1723 else
1724 priv->status &= ~STATUS_RF_KILL_HW;
1725
1726 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1727}
1728
1729static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1730 char *buf)
1731{
1732 /* 0 - RF kill not enabled
1733 1 - SW based RF kill active (sysfs)
1734 2 - HW based RF kill active
1735 3 - Both HW and SW baed RF kill active */
1736 struct ipw_priv *priv = d->driver_data;
1737 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1738 (rf_kill_active(priv) ? 0x2 : 0x0);
1739 return sprintf(buf, "%i\n", val);
1740}
1741
1742static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1743{
1744 if ((disable_radio ? 1 : 0) ==
1745 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1746 return 0;
1747
1748 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1749 disable_radio ? "OFF" : "ON");
1750
1751 if (disable_radio) {
1752 priv->status |= STATUS_RF_KILL_SW;
1753
1754 if (priv->workqueue) {
1755 cancel_delayed_work(&priv->request_scan);
1756 cancel_delayed_work(&priv->request_direct_scan);
1757 cancel_delayed_work(&priv->request_passive_scan);
1758 cancel_delayed_work(&priv->scan_event);
1759 }
1760 queue_work(priv->workqueue, &priv->down);
1761 } else {
1762 priv->status &= ~STATUS_RF_KILL_SW;
1763 if (rf_kill_active(priv)) {
1764 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1765 "disabled by HW switch\n");
1766 /* Make sure the RF_KILL check timer is running */
1767 cancel_delayed_work(&priv->rf_kill);
1768 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1769 round_jiffies_relative(2 * HZ));
1770 } else
1771 queue_work(priv->workqueue, &priv->up);
1772 }
1773
1774 return 1;
1775}
1776
1777static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1778 const char *buf, size_t count)
1779{
1780 struct ipw_priv *priv = d->driver_data;
1781
1782 ipw_radio_kill_sw(priv, buf[0] == '1');
1783
1784 return count;
1785}
1786
1787static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1788
1789static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1790 char *buf)
1791{
1792 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1793 int pos = 0, len = 0;
1794 if (priv->config & CFG_SPEED_SCAN) {
1795 while (priv->speed_scan[pos] != 0)
1796 len += sprintf(&buf[len], "%d ",
1797 priv->speed_scan[pos++]);
1798 return len + sprintf(&buf[len], "\n");
1799 }
1800
1801 return sprintf(buf, "0\n");
1802}
1803
1804static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1805 const char *buf, size_t count)
1806{
1807 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1808 int channel, pos = 0;
1809 const char *p = buf;
1810
1811 /* list of space separated channels to scan, optionally ending with 0 */
1812 while ((channel = simple_strtol(p, NULL, 0))) {
1813 if (pos == MAX_SPEED_SCAN - 1) {
1814 priv->speed_scan[pos] = 0;
1815 break;
1816 }
1817
1818 if (ieee80211_is_valid_channel(priv->ieee, channel))
1819 priv->speed_scan[pos++] = channel;
1820 else
1821 IPW_WARNING("Skipping invalid channel request: %d\n",
1822 channel);
1823 p = strchr(p, ' ');
1824 if (!p)
1825 break;
1826 while (*p == ' ' || *p == '\t')
1827 p++;
1828 }
1829
1830 if (pos == 0)
1831 priv->config &= ~CFG_SPEED_SCAN;
1832 else {
1833 priv->speed_scan_pos = 0;
1834 priv->config |= CFG_SPEED_SCAN;
1835 }
1836
1837 return count;
1838}
1839
1840static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1841 store_speed_scan);
1842
1843static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1844 char *buf)
1845{
1846 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1847 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1848}
1849
1850static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1851 const char *buf, size_t count)
1852{
1853 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1854 if (buf[0] == '1')
1855 priv->config |= CFG_NET_STATS;
1856 else
1857 priv->config &= ~CFG_NET_STATS;
1858
1859 return count;
1860}
1861
1862static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1863 show_net_stats, store_net_stats);
1864
1865static ssize_t show_channels(struct device *d,
1866 struct device_attribute *attr,
1867 char *buf)
1868{
1869 struct ipw_priv *priv = dev_get_drvdata(d);
1870 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1871 int len = 0, i;
1872
1873 len = sprintf(&buf[len],
1874 "Displaying %d channels in 2.4Ghz band "
1875 "(802.11bg):\n", geo->bg_channels);
1876
1877 for (i = 0; i < geo->bg_channels; i++) {
1878 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1879 geo->bg[i].channel,
1880 geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1881 " (radar spectrum)" : "",
1882 ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1883 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1884 ? "" : ", IBSS",
1885 geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1886 "passive only" : "active/passive",
1887 geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1888 "B" : "B/G");
1889 }
1890
1891 len += sprintf(&buf[len],
1892 "Displaying %d channels in 5.2Ghz band "
1893 "(802.11a):\n", geo->a_channels);
1894 for (i = 0; i < geo->a_channels; i++) {
1895 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1896 geo->a[i].channel,
1897 geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1898 " (radar spectrum)" : "",
1899 ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1900 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1901 ? "" : ", IBSS",
1902 geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1903 "passive only" : "active/passive");
1904 }
1905
1906 return len;
1907}
1908
1909static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1910
1911static void notify_wx_assoc_event(struct ipw_priv *priv)
1912{
1913 union iwreq_data wrqu;
1914 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1915 if (priv->status & STATUS_ASSOCIATED)
1916 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1917 else
1918 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1919 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1920}
1921
1922static void ipw_irq_tasklet(struct ipw_priv *priv)
1923{
1924 u32 inta, inta_mask, handled = 0;
1925 unsigned long flags;
1926 int rc = 0;
1927
1928 spin_lock_irqsave(&priv->irq_lock, flags);
1929
1930 inta = ipw_read32(priv, IPW_INTA_RW);
1931 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1932 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1933
1934 /* Add any cached INTA values that need to be handled */
1935 inta |= priv->isr_inta;
1936
1937 spin_unlock_irqrestore(&priv->irq_lock, flags);
1938
1939 spin_lock_irqsave(&priv->lock, flags);
1940
1941 /* handle all the justifications for the interrupt */
1942 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1943 ipw_rx(priv);
1944 handled |= IPW_INTA_BIT_RX_TRANSFER;
1945 }
1946
1947 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1948 IPW_DEBUG_HC("Command completed.\n");
1949 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1950 priv->status &= ~STATUS_HCMD_ACTIVE;
1951 wake_up_interruptible(&priv->wait_command_queue);
1952 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1953 }
1954
1955 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1956 IPW_DEBUG_TX("TX_QUEUE_1\n");
1957 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1958 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1959 }
1960
1961 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1962 IPW_DEBUG_TX("TX_QUEUE_2\n");
1963 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1964 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1965 }
1966
1967 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1968 IPW_DEBUG_TX("TX_QUEUE_3\n");
1969 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1970 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1971 }
1972
1973 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1974 IPW_DEBUG_TX("TX_QUEUE_4\n");
1975 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1976 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1977 }
1978
1979 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1980 IPW_WARNING("STATUS_CHANGE\n");
1981 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1982 }
1983
1984 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1985 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1986 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1987 }
1988
1989 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1990 IPW_WARNING("HOST_CMD_DONE\n");
1991 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1992 }
1993
1994 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1995 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1996 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1997 }
1998
1999 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2000 IPW_WARNING("PHY_OFF_DONE\n");
2001 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2002 }
2003
2004 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2005 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2006 priv->status |= STATUS_RF_KILL_HW;
2007 wake_up_interruptible(&priv->wait_command_queue);
2008 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2009 cancel_delayed_work(&priv->request_scan);
2010 cancel_delayed_work(&priv->request_direct_scan);
2011 cancel_delayed_work(&priv->request_passive_scan);
2012 cancel_delayed_work(&priv->scan_event);
2013 schedule_work(&priv->link_down);
2014 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2015 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2016 }
2017
2018 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2019 IPW_WARNING("Firmware error detected. Restarting.\n");
2020 if (priv->error) {
2021 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2022 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2023 struct ipw_fw_error *error =
2024 ipw_alloc_error_log(priv);
2025 ipw_dump_error_log(priv, error);
2026 kfree(error);
2027 }
2028 } else {
2029 priv->error = ipw_alloc_error_log(priv);
2030 if (priv->error)
2031 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2032 else
2033 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2034 "log.\n");
2035 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2036 ipw_dump_error_log(priv, priv->error);
2037 }
2038
2039 /* XXX: If hardware encryption is for WPA/WPA2,
2040 * we have to notify the supplicant. */
2041 if (priv->ieee->sec.encrypt) {
2042 priv->status &= ~STATUS_ASSOCIATED;
2043 notify_wx_assoc_event(priv);
2044 }
2045
2046 /* Keep the restart process from trying to send host
2047 * commands by clearing the INIT status bit */
2048 priv->status &= ~STATUS_INIT;
2049
2050 /* Cancel currently queued command. */
2051 priv->status &= ~STATUS_HCMD_ACTIVE;
2052 wake_up_interruptible(&priv->wait_command_queue);
2053
2054 queue_work(priv->workqueue, &priv->adapter_restart);
2055 handled |= IPW_INTA_BIT_FATAL_ERROR;
2056 }
2057
2058 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2059 IPW_ERROR("Parity error\n");
2060 handled |= IPW_INTA_BIT_PARITY_ERROR;
2061 }
2062
2063 if (handled != inta) {
2064 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2065 }
2066
2067 spin_unlock_irqrestore(&priv->lock, flags);
2068
2069 /* enable all interrupts */
2070 ipw_enable_interrupts(priv);
2071}
2072
2073#define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2074static char *get_cmd_string(u8 cmd)
2075{
2076 switch (cmd) {
2077 IPW_CMD(HOST_COMPLETE);
2078 IPW_CMD(POWER_DOWN);
2079 IPW_CMD(SYSTEM_CONFIG);
2080 IPW_CMD(MULTICAST_ADDRESS);
2081 IPW_CMD(SSID);
2082 IPW_CMD(ADAPTER_ADDRESS);
2083 IPW_CMD(PORT_TYPE);
2084 IPW_CMD(RTS_THRESHOLD);
2085 IPW_CMD(FRAG_THRESHOLD);
2086 IPW_CMD(POWER_MODE);
2087 IPW_CMD(WEP_KEY);
2088 IPW_CMD(TGI_TX_KEY);
2089 IPW_CMD(SCAN_REQUEST);
2090 IPW_CMD(SCAN_REQUEST_EXT);
2091 IPW_CMD(ASSOCIATE);
2092 IPW_CMD(SUPPORTED_RATES);
2093 IPW_CMD(SCAN_ABORT);
2094 IPW_CMD(TX_FLUSH);
2095 IPW_CMD(QOS_PARAMETERS);
2096 IPW_CMD(DINO_CONFIG);
2097 IPW_CMD(RSN_CAPABILITIES);
2098 IPW_CMD(RX_KEY);
2099 IPW_CMD(CARD_DISABLE);
2100 IPW_CMD(SEED_NUMBER);
2101 IPW_CMD(TX_POWER);
2102 IPW_CMD(COUNTRY_INFO);
2103 IPW_CMD(AIRONET_INFO);
2104 IPW_CMD(AP_TX_POWER);
2105 IPW_CMD(CCKM_INFO);
2106 IPW_CMD(CCX_VER_INFO);
2107 IPW_CMD(SET_CALIBRATION);
2108 IPW_CMD(SENSITIVITY_CALIB);
2109 IPW_CMD(RETRY_LIMIT);
2110 IPW_CMD(IPW_PRE_POWER_DOWN);
2111 IPW_CMD(VAP_BEACON_TEMPLATE);
2112 IPW_CMD(VAP_DTIM_PERIOD);
2113 IPW_CMD(EXT_SUPPORTED_RATES);
2114 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2115 IPW_CMD(VAP_QUIET_INTERVALS);
2116 IPW_CMD(VAP_CHANNEL_SWITCH);
2117 IPW_CMD(VAP_MANDATORY_CHANNELS);
2118 IPW_CMD(VAP_CELL_PWR_LIMIT);
2119 IPW_CMD(VAP_CF_PARAM_SET);
2120 IPW_CMD(VAP_SET_BEACONING_STATE);
2121 IPW_CMD(MEASUREMENT);
2122 IPW_CMD(POWER_CAPABILITY);
2123 IPW_CMD(SUPPORTED_CHANNELS);
2124 IPW_CMD(TPC_REPORT);
2125 IPW_CMD(WME_INFO);
2126 IPW_CMD(PRODUCTION_COMMAND);
2127 default:
2128 return "UNKNOWN";
2129 }
2130}
2131
2132#define HOST_COMPLETE_TIMEOUT HZ
2133
2134static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2135{
2136 int rc = 0;
2137 unsigned long flags;
2138
2139 spin_lock_irqsave(&priv->lock, flags);
2140 if (priv->status & STATUS_HCMD_ACTIVE) {
2141 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2142 get_cmd_string(cmd->cmd));
2143 spin_unlock_irqrestore(&priv->lock, flags);
2144 return -EAGAIN;
2145 }
2146
2147 priv->status |= STATUS_HCMD_ACTIVE;
2148
2149 if (priv->cmdlog) {
2150 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2151 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2152 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2153 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2154 cmd->len);
2155 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2156 }
2157
2158 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2159 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2160 priv->status);
2161
2162#ifndef DEBUG_CMD_WEP_KEY
2163 if (cmd->cmd == IPW_CMD_WEP_KEY)
2164 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2165 else
2166#endif
2167 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2168
2169 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2170 if (rc) {
2171 priv->status &= ~STATUS_HCMD_ACTIVE;
2172 IPW_ERROR("Failed to send %s: Reason %d\n",
2173 get_cmd_string(cmd->cmd), rc);
2174 spin_unlock_irqrestore(&priv->lock, flags);
2175 goto exit;
2176 }
2177 spin_unlock_irqrestore(&priv->lock, flags);
2178
2179 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2180 !(priv->
2181 status & STATUS_HCMD_ACTIVE),
2182 HOST_COMPLETE_TIMEOUT);
2183 if (rc == 0) {
2184 spin_lock_irqsave(&priv->lock, flags);
2185 if (priv->status & STATUS_HCMD_ACTIVE) {
2186 IPW_ERROR("Failed to send %s: Command timed out.\n",
2187 get_cmd_string(cmd->cmd));
2188 priv->status &= ~STATUS_HCMD_ACTIVE;
2189 spin_unlock_irqrestore(&priv->lock, flags);
2190 rc = -EIO;
2191 goto exit;
2192 }
2193 spin_unlock_irqrestore(&priv->lock, flags);
2194 } else
2195 rc = 0;
2196
2197 if (priv->status & STATUS_RF_KILL_HW) {
2198 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2199 get_cmd_string(cmd->cmd));
2200 rc = -EIO;
2201 goto exit;
2202 }
2203
2204 exit:
2205 if (priv->cmdlog) {
2206 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2207 priv->cmdlog_pos %= priv->cmdlog_len;
2208 }
2209 return rc;
2210}
2211
2212static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2213{
2214 struct host_cmd cmd = {
2215 .cmd = command,
2216 };
2217
2218 return __ipw_send_cmd(priv, &cmd);
2219}
2220
2221static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2222 void *data)
2223{
2224 struct host_cmd cmd = {
2225 .cmd = command,
2226 .len = len,
2227 .param = data,
2228 };
2229
2230 return __ipw_send_cmd(priv, &cmd);
2231}
2232
2233static int ipw_send_host_complete(struct ipw_priv *priv)
2234{
2235 if (!priv) {
2236 IPW_ERROR("Invalid args\n");
2237 return -1;
2238 }
2239
2240 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2241}
2242
2243static int ipw_send_system_config(struct ipw_priv *priv)
2244{
2245 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2246 sizeof(priv->sys_config),
2247 &priv->sys_config);
2248}
2249
2250static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2251{
2252 if (!priv || !ssid) {
2253 IPW_ERROR("Invalid args\n");
2254 return -1;
2255 }
2256
2257 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2258 ssid);
2259}
2260
2261static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2262{
2263 if (!priv || !mac) {
2264 IPW_ERROR("Invalid args\n");
2265 return -1;
2266 }
2267
2268 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2269 priv->net_dev->name, mac);
2270
2271 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2272}
2273
2274/*
2275 * NOTE: This must be executed from our workqueue as it results in udelay
2276 * being called which may corrupt the keyboard if executed on default
2277 * workqueue
2278 */
2279static void ipw_adapter_restart(void *adapter)
2280{
2281 struct ipw_priv *priv = adapter;
2282
2283 if (priv->status & STATUS_RF_KILL_MASK)
2284 return;
2285
2286 ipw_down(priv);
2287
2288 if (priv->assoc_network &&
2289 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2290 ipw_remove_current_network(priv);
2291
2292 if (ipw_up(priv)) {
2293 IPW_ERROR("Failed to up device\n");
2294 return;
2295 }
2296}
2297
2298static void ipw_bg_adapter_restart(struct work_struct *work)
2299{
2300 struct ipw_priv *priv =
2301 container_of(work, struct ipw_priv, adapter_restart);
2302 mutex_lock(&priv->mutex);
2303 ipw_adapter_restart(priv);
2304 mutex_unlock(&priv->mutex);
2305}
2306
2307#define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2308
2309static void ipw_scan_check(void *data)
2310{
2311 struct ipw_priv *priv = data;
2312 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2313 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2314 "adapter after (%dms).\n",
2315 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2316 queue_work(priv->workqueue, &priv->adapter_restart);
2317 }
2318}
2319
2320static void ipw_bg_scan_check(struct work_struct *work)
2321{
2322 struct ipw_priv *priv =
2323 container_of(work, struct ipw_priv, scan_check.work);
2324 mutex_lock(&priv->mutex);
2325 ipw_scan_check(priv);
2326 mutex_unlock(&priv->mutex);
2327}
2328
2329static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2330 struct ipw_scan_request_ext *request)
2331{
2332 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2333 sizeof(*request), request);
2334}
2335
2336static int ipw_send_scan_abort(struct ipw_priv *priv)
2337{
2338 if (!priv) {
2339 IPW_ERROR("Invalid args\n");
2340 return -1;
2341 }
2342
2343 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2344}
2345
2346static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2347{
2348 struct ipw_sensitivity_calib calib = {
2349 .beacon_rssi_raw = cpu_to_le16(sens),
2350 };
2351
2352 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2353 &calib);
2354}
2355
2356static int ipw_send_associate(struct ipw_priv *priv,
2357 struct ipw_associate *associate)
2358{
2359 if (!priv || !associate) {
2360 IPW_ERROR("Invalid args\n");
2361 return -1;
2362 }
2363
2364 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2365 associate);
2366}
2367
2368static int ipw_send_supported_rates(struct ipw_priv *priv,
2369 struct ipw_supported_rates *rates)
2370{
2371 if (!priv || !rates) {
2372 IPW_ERROR("Invalid args\n");
2373 return -1;
2374 }
2375
2376 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2377 rates);
2378}
2379
2380static int ipw_set_random_seed(struct ipw_priv *priv)
2381{
2382 u32 val;
2383
2384 if (!priv) {
2385 IPW_ERROR("Invalid args\n");
2386 return -1;
2387 }
2388
2389 get_random_bytes(&val, sizeof(val));
2390
2391 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2392}
2393
2394static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2395{
2396 __le32 v = cpu_to_le32(phy_off);
2397 if (!priv) {
2398 IPW_ERROR("Invalid args\n");
2399 return -1;
2400 }
2401
2402 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2403}
2404
2405static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2406{
2407 if (!priv || !power) {
2408 IPW_ERROR("Invalid args\n");
2409 return -1;
2410 }
2411
2412 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2413}
2414
2415static int ipw_set_tx_power(struct ipw_priv *priv)
2416{
2417 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2418 struct ipw_tx_power tx_power;
2419 s8 max_power;
2420 int i;
2421
2422 memset(&tx_power, 0, sizeof(tx_power));
2423
2424 /* configure device for 'G' band */
2425 tx_power.ieee_mode = IPW_G_MODE;
2426 tx_power.num_channels = geo->bg_channels;
2427 for (i = 0; i < geo->bg_channels; i++) {
2428 max_power = geo->bg[i].max_power;
2429 tx_power.channels_tx_power[i].channel_number =
2430 geo->bg[i].channel;
2431 tx_power.channels_tx_power[i].tx_power = max_power ?
2432 min(max_power, priv->tx_power) : priv->tx_power;
2433 }
2434 if (ipw_send_tx_power(priv, &tx_power))
2435 return -EIO;
2436
2437 /* configure device to also handle 'B' band */
2438 tx_power.ieee_mode = IPW_B_MODE;
2439 if (ipw_send_tx_power(priv, &tx_power))
2440 return -EIO;
2441
2442 /* configure device to also handle 'A' band */
2443 if (priv->ieee->abg_true) {
2444 tx_power.ieee_mode = IPW_A_MODE;
2445 tx_power.num_channels = geo->a_channels;
2446 for (i = 0; i < tx_power.num_channels; i++) {
2447 max_power = geo->a[i].max_power;
2448 tx_power.channels_tx_power[i].channel_number =
2449 geo->a[i].channel;
2450 tx_power.channels_tx_power[i].tx_power = max_power ?
2451 min(max_power, priv->tx_power) : priv->tx_power;
2452 }
2453 if (ipw_send_tx_power(priv, &tx_power))
2454 return -EIO;
2455 }
2456 return 0;
2457}
2458
2459static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2460{
2461 struct ipw_rts_threshold rts_threshold = {
2462 .rts_threshold = cpu_to_le16(rts),
2463 };
2464
2465 if (!priv) {
2466 IPW_ERROR("Invalid args\n");
2467 return -1;
2468 }
2469
2470 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2471 sizeof(rts_threshold), &rts_threshold);
2472}
2473
2474static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2475{
2476 struct ipw_frag_threshold frag_threshold = {
2477 .frag_threshold = cpu_to_le16(frag),
2478 };
2479
2480 if (!priv) {
2481 IPW_ERROR("Invalid args\n");
2482 return -1;
2483 }
2484
2485 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2486 sizeof(frag_threshold), &frag_threshold);
2487}
2488
2489static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2490{
2491 __le32 param;
2492
2493 if (!priv) {
2494 IPW_ERROR("Invalid args\n");
2495 return -1;
2496 }
2497
2498 /* If on battery, set to 3, if AC set to CAM, else user
2499 * level */
2500 switch (mode) {
2501 case IPW_POWER_BATTERY:
2502 param = cpu_to_le32(IPW_POWER_INDEX_3);
2503 break;
2504 case IPW_POWER_AC:
2505 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2506 break;
2507 default:
2508 param = cpu_to_le32(mode);
2509 break;
2510 }
2511
2512 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2513 &param);
2514}
2515
2516static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2517{
2518 struct ipw_retry_limit retry_limit = {
2519 .short_retry_limit = slimit,
2520 .long_retry_limit = llimit
2521 };
2522
2523 if (!priv) {
2524 IPW_ERROR("Invalid args\n");
2525 return -1;
2526 }
2527
2528 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2529 &retry_limit);
2530}
2531
2532/*
2533 * The IPW device contains a Microwire compatible EEPROM that stores
2534 * various data like the MAC address. Usually the firmware has exclusive
2535 * access to the eeprom, but during device initialization (before the
2536 * device driver has sent the HostComplete command to the firmware) the
2537 * device driver has read access to the EEPROM by way of indirect addressing
2538 * through a couple of memory mapped registers.
2539 *
2540 * The following is a simplified implementation for pulling data out of the
2541 * the eeprom, along with some helper functions to find information in
2542 * the per device private data's copy of the eeprom.
2543 *
2544 * NOTE: To better understand how these functions work (i.e what is a chip
2545 * select and why do have to keep driving the eeprom clock?), read
2546 * just about any data sheet for a Microwire compatible EEPROM.
2547 */
2548
2549/* write a 32 bit value into the indirect accessor register */
2550static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2551{
2552 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2553
2554 /* the eeprom requires some time to complete the operation */
2555 udelay(p->eeprom_delay);
2556
2557 return;
2558}
2559
2560/* perform a chip select operation */
2561static void eeprom_cs(struct ipw_priv *priv)
2562{
2563 eeprom_write_reg(priv, 0);
2564 eeprom_write_reg(priv, EEPROM_BIT_CS);
2565 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2566 eeprom_write_reg(priv, EEPROM_BIT_CS);
2567}
2568
2569/* perform a chip select operation */
2570static void eeprom_disable_cs(struct ipw_priv *priv)
2571{
2572 eeprom_write_reg(priv, EEPROM_BIT_CS);
2573 eeprom_write_reg(priv, 0);
2574 eeprom_write_reg(priv, EEPROM_BIT_SK);
2575}
2576
2577/* push a single bit down to the eeprom */
2578static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2579{
2580 int d = (bit ? EEPROM_BIT_DI : 0);
2581 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2582 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2583}
2584
2585/* push an opcode followed by an address down to the eeprom */
2586static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2587{
2588 int i;
2589
2590 eeprom_cs(priv);
2591 eeprom_write_bit(priv, 1);
2592 eeprom_write_bit(priv, op & 2);
2593 eeprom_write_bit(priv, op & 1);
2594 for (i = 7; i >= 0; i--) {
2595 eeprom_write_bit(priv, addr & (1 << i));
2596 }
2597}
2598
2599/* pull 16 bits off the eeprom, one bit at a time */
2600static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2601{
2602 int i;
2603 u16 r = 0;
2604
2605 /* Send READ Opcode */
2606 eeprom_op(priv, EEPROM_CMD_READ, addr);
2607
2608 /* Send dummy bit */
2609 eeprom_write_reg(priv, EEPROM_BIT_CS);
2610
2611 /* Read the byte off the eeprom one bit at a time */
2612 for (i = 0; i < 16; i++) {
2613 u32 data = 0;
2614 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2615 eeprom_write_reg(priv, EEPROM_BIT_CS);
2616 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2617 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2618 }
2619
2620 /* Send another dummy bit */
2621 eeprom_write_reg(priv, 0);
2622 eeprom_disable_cs(priv);
2623
2624 return r;
2625}
2626
2627/* helper function for pulling the mac address out of the private */
2628/* data's copy of the eeprom data */
2629static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2630{
2631 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2632}
2633
2634/*
2635 * Either the device driver (i.e. the host) or the firmware can
2636 * load eeprom data into the designated region in SRAM. If neither
2637 * happens then the FW will shutdown with a fatal error.
2638 *
2639 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2640 * bit needs region of shared SRAM needs to be non-zero.
2641 */
2642static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2643{
2644 int i;
2645 __le16 *eeprom = (__le16 *) priv->eeprom;
2646
2647 IPW_DEBUG_TRACE(">>\n");
2648
2649 /* read entire contents of eeprom into private buffer */
2650 for (i = 0; i < 128; i++)
2651 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2652
2653 /*
2654 If the data looks correct, then copy it to our private
2655 copy. Otherwise let the firmware know to perform the operation
2656 on its own.
2657 */
2658 if (priv->eeprom[EEPROM_VERSION] != 0) {
2659 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2660
2661 /* write the eeprom data to sram */
2662 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2663 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2664
2665 /* Do not load eeprom data on fatal error or suspend */
2666 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2667 } else {
2668 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2669
2670 /* Load eeprom data on fatal error or suspend */
2671 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2672 }
2673
2674 IPW_DEBUG_TRACE("<<\n");
2675}
2676
2677static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2678{
2679 count >>= 2;
2680 if (!count)
2681 return;
2682 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2683 while (count--)
2684 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2685}
2686
2687static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2688{
2689 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2690 CB_NUMBER_OF_ELEMENTS_SMALL *
2691 sizeof(struct command_block));
2692}
2693
2694static int ipw_fw_dma_enable(struct ipw_priv *priv)
2695{ /* start dma engine but no transfers yet */
2696
2697 IPW_DEBUG_FW(">> : \n");
2698
2699 /* Start the dma */
2700 ipw_fw_dma_reset_command_blocks(priv);
2701
2702 /* Write CB base address */
2703 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2704
2705 IPW_DEBUG_FW("<< : \n");
2706 return 0;
2707}
2708
2709static void ipw_fw_dma_abort(struct ipw_priv *priv)
2710{
2711 u32 control = 0;
2712
2713 IPW_DEBUG_FW(">> :\n");
2714
2715 /* set the Stop and Abort bit */
2716 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2717 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2718 priv->sram_desc.last_cb_index = 0;
2719
2720 IPW_DEBUG_FW("<< \n");
2721}
2722
2723static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2724 struct command_block *cb)
2725{
2726 u32 address =
2727 IPW_SHARED_SRAM_DMA_CONTROL +
2728 (sizeof(struct command_block) * index);
2729 IPW_DEBUG_FW(">> :\n");
2730
2731 ipw_write_indirect(priv, address, (u8 *) cb,
2732 (int)sizeof(struct command_block));
2733
2734 IPW_DEBUG_FW("<< :\n");
2735 return 0;
2736
2737}
2738
2739static int ipw_fw_dma_kick(struct ipw_priv *priv)
2740{
2741 u32 control = 0;
2742 u32 index = 0;
2743
2744 IPW_DEBUG_FW(">> :\n");
2745
2746 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2747 ipw_fw_dma_write_command_block(priv, index,
2748 &priv->sram_desc.cb_list[index]);
2749
2750 /* Enable the DMA in the CSR register */
2751 ipw_clear_bit(priv, IPW_RESET_REG,
2752 IPW_RESET_REG_MASTER_DISABLED |
2753 IPW_RESET_REG_STOP_MASTER);
2754
2755 /* Set the Start bit. */
2756 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2757 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2758
2759 IPW_DEBUG_FW("<< :\n");
2760 return 0;
2761}
2762
2763static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2764{
2765 u32 address;
2766 u32 register_value = 0;
2767 u32 cb_fields_address = 0;
2768
2769 IPW_DEBUG_FW(">> :\n");
2770 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2771 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2772
2773 /* Read the DMA Controlor register */
2774 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2775 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2776
2777 /* Print the CB values */
2778 cb_fields_address = address;
2779 register_value = ipw_read_reg32(priv, cb_fields_address);
2780 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2781
2782 cb_fields_address += sizeof(u32);
2783 register_value = ipw_read_reg32(priv, cb_fields_address);
2784 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2785
2786 cb_fields_address += sizeof(u32);
2787 register_value = ipw_read_reg32(priv, cb_fields_address);
2788 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2789 register_value);
2790
2791 cb_fields_address += sizeof(u32);
2792 register_value = ipw_read_reg32(priv, cb_fields_address);
2793 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2794
2795 IPW_DEBUG_FW(">> :\n");
2796}
2797
2798static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2799{
2800 u32 current_cb_address = 0;
2801 u32 current_cb_index = 0;
2802
2803 IPW_DEBUG_FW("<< :\n");
2804 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2805
2806 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2807 sizeof(struct command_block);
2808
2809 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2810 current_cb_index, current_cb_address);
2811
2812 IPW_DEBUG_FW(">> :\n");
2813 return current_cb_index;
2814
2815}
2816
2817static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2818 u32 src_address,
2819 u32 dest_address,
2820 u32 length,
2821 int interrupt_enabled, int is_last)
2822{
2823
2824 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2825 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2826 CB_DEST_SIZE_LONG;
2827 struct command_block *cb;
2828 u32 last_cb_element = 0;
2829
2830 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2831 src_address, dest_address, length);
2832
2833 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2834 return -1;
2835
2836 last_cb_element = priv->sram_desc.last_cb_index;
2837 cb = &priv->sram_desc.cb_list[last_cb_element];
2838 priv->sram_desc.last_cb_index++;
2839
2840 /* Calculate the new CB control word */
2841 if (interrupt_enabled)
2842 control |= CB_INT_ENABLED;
2843
2844 if (is_last)
2845 control |= CB_LAST_VALID;
2846
2847 control |= length;
2848
2849 /* Calculate the CB Element's checksum value */
2850 cb->status = control ^ src_address ^ dest_address;
2851
2852 /* Copy the Source and Destination addresses */
2853 cb->dest_addr = dest_address;
2854 cb->source_addr = src_address;
2855
2856 /* Copy the Control Word last */
2857 cb->control = control;
2858
2859 return 0;
2860}
2861
2862static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2863 u32 src_phys, u32 dest_address, u32 length)
2864{
2865 u32 bytes_left = length;
2866 u32 src_offset = 0;
2867 u32 dest_offset = 0;
2868 int status = 0;
2869 IPW_DEBUG_FW(">> \n");
2870 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2871 src_phys, dest_address, length);
2872 while (bytes_left > CB_MAX_LENGTH) {
2873 status = ipw_fw_dma_add_command_block(priv,
2874 src_phys + src_offset,
2875 dest_address +
2876 dest_offset,
2877 CB_MAX_LENGTH, 0, 0);
2878 if (status) {
2879 IPW_DEBUG_FW_INFO(": Failed\n");
2880 return -1;
2881 } else
2882 IPW_DEBUG_FW_INFO(": Added new cb\n");
2883
2884 src_offset += CB_MAX_LENGTH;
2885 dest_offset += CB_MAX_LENGTH;
2886 bytes_left -= CB_MAX_LENGTH;
2887 }
2888
2889 /* add the buffer tail */
2890 if (bytes_left > 0) {
2891 status =
2892 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2893 dest_address + dest_offset,
2894 bytes_left, 0, 0);
2895 if (status) {
2896 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2897 return -1;
2898 } else
2899 IPW_DEBUG_FW_INFO
2900 (": Adding new cb - the buffer tail\n");
2901 }
2902
2903 IPW_DEBUG_FW("<< \n");
2904 return 0;
2905}
2906
2907static int ipw_fw_dma_wait(struct ipw_priv *priv)
2908{
2909 u32 current_index = 0, previous_index;
2910 u32 watchdog = 0;
2911
2912 IPW_DEBUG_FW(">> : \n");
2913
2914 current_index = ipw_fw_dma_command_block_index(priv);
2915 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2916 (int)priv->sram_desc.last_cb_index);
2917
2918 while (current_index < priv->sram_desc.last_cb_index) {
2919 udelay(50);
2920 previous_index = current_index;
2921 current_index = ipw_fw_dma_command_block_index(priv);
2922
2923 if (previous_index < current_index) {
2924 watchdog = 0;
2925 continue;
2926 }
2927 if (++watchdog > 400) {
2928 IPW_DEBUG_FW_INFO("Timeout\n");
2929 ipw_fw_dma_dump_command_block(priv);
2930 ipw_fw_dma_abort(priv);
2931 return -1;
2932 }
2933 }
2934
2935 ipw_fw_dma_abort(priv);
2936
2937 /*Disable the DMA in the CSR register */
2938 ipw_set_bit(priv, IPW_RESET_REG,
2939 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2940
2941 IPW_DEBUG_FW("<< dmaWaitSync \n");
2942 return 0;
2943}
2944
2945static void ipw_remove_current_network(struct ipw_priv *priv)
2946{
2947 struct list_head *element, *safe;
2948 struct ieee80211_network *network = NULL;
2949 unsigned long flags;
2950
2951 spin_lock_irqsave(&priv->ieee->lock, flags);
2952 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2953 network = list_entry(element, struct ieee80211_network, list);
2954 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2955 list_del(element);
2956 list_add_tail(&network->list,
2957 &priv->ieee->network_free_list);
2958 }
2959 }
2960 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2961}
2962
2963/**
2964 * Check that card is still alive.
2965 * Reads debug register from domain0.
2966 * If card is present, pre-defined value should
2967 * be found there.
2968 *
2969 * @param priv
2970 * @return 1 if card is present, 0 otherwise
2971 */
2972static inline int ipw_alive(struct ipw_priv *priv)
2973{
2974 return ipw_read32(priv, 0x90) == 0xd55555d5;
2975}
2976
2977/* timeout in msec, attempted in 10-msec quanta */
2978static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2979 int timeout)
2980{
2981 int i = 0;
2982
2983 do {
2984 if ((ipw_read32(priv, addr) & mask) == mask)
2985 return i;
2986 mdelay(10);
2987 i += 10;
2988 } while (i < timeout);
2989
2990 return -ETIME;
2991}
2992
2993/* These functions load the firmware and micro code for the operation of
2994 * the ipw hardware. It assumes the buffer has all the bits for the
2995 * image and the caller is handling the memory allocation and clean up.
2996 */
2997
2998static int ipw_stop_master(struct ipw_priv *priv)
2999{
3000 int rc;
3001
3002 IPW_DEBUG_TRACE(">> \n");
3003 /* stop master. typical delay - 0 */
3004 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3005
3006 /* timeout is in msec, polled in 10-msec quanta */
3007 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3008 IPW_RESET_REG_MASTER_DISABLED, 100);
3009 if (rc < 0) {
3010 IPW_ERROR("wait for stop master failed after 100ms\n");
3011 return -1;
3012 }
3013
3014 IPW_DEBUG_INFO("stop master %dms\n", rc);
3015
3016 return rc;
3017}
3018
3019static void ipw_arc_release(struct ipw_priv *priv)
3020{
3021 IPW_DEBUG_TRACE(">> \n");
3022 mdelay(5);
3023
3024 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3025
3026 /* no one knows timing, for safety add some delay */
3027 mdelay(5);
3028}
3029
3030struct fw_chunk {
3031 __le32 address;
3032 __le32 length;
3033};
3034
3035static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3036{
3037 int rc = 0, i, addr;
3038 u8 cr = 0;
3039 __le16 *image;
3040
3041 image = (__le16 *) data;
3042
3043 IPW_DEBUG_TRACE(">> \n");
3044
3045 rc = ipw_stop_master(priv);
3046
3047 if (rc < 0)
3048 return rc;
3049
3050 for (addr = IPW_SHARED_LOWER_BOUND;
3051 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3052 ipw_write32(priv, addr, 0);
3053 }
3054
3055 /* no ucode (yet) */
3056 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3057 /* destroy DMA queues */
3058 /* reset sequence */
3059
3060 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3061 ipw_arc_release(priv);
3062 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3063 mdelay(1);
3064
3065 /* reset PHY */
3066 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3067 mdelay(1);
3068
3069 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3070 mdelay(1);
3071
3072 /* enable ucode store */
3073 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3074 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3075 mdelay(1);
3076
3077 /* write ucode */
3078 /**
3079 * @bug
3080 * Do NOT set indirect address register once and then
3081 * store data to indirect data register in the loop.
3082 * It seems very reasonable, but in this case DINO do not
3083 * accept ucode. It is essential to set address each time.
3084 */
3085 /* load new ipw uCode */
3086 for (i = 0; i < len / 2; i++)
3087 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3088 le16_to_cpu(image[i]));
3089
3090 /* enable DINO */
3091 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3092 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3093
3094 /* this is where the igx / win driver deveates from the VAP driver. */
3095
3096 /* wait for alive response */
3097 for (i = 0; i < 100; i++) {
3098 /* poll for incoming data */
3099 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3100 if (cr & DINO_RXFIFO_DATA)
3101 break;
3102 mdelay(1);
3103 }
3104
3105 if (cr & DINO_RXFIFO_DATA) {
3106 /* alive_command_responce size is NOT multiple of 4 */
3107 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3108
3109 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3110 response_buffer[i] =
3111 cpu_to_le32(ipw_read_reg32(priv,
3112 IPW_BASEBAND_RX_FIFO_READ));
3113 memcpy(&priv->dino_alive, response_buffer,
3114 sizeof(priv->dino_alive));
3115 if (priv->dino_alive.alive_command == 1
3116 && priv->dino_alive.ucode_valid == 1) {
3117 rc = 0;
3118 IPW_DEBUG_INFO
3119 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3120 "of %02d/%02d/%02d %02d:%02d\n",
3121 priv->dino_alive.software_revision,
3122 priv->dino_alive.software_revision,
3123 priv->dino_alive.device_identifier,
3124 priv->dino_alive.device_identifier,
3125 priv->dino_alive.time_stamp[0],
3126 priv->dino_alive.time_stamp[1],
3127 priv->dino_alive.time_stamp[2],
3128 priv->dino_alive.time_stamp[3],
3129 priv->dino_alive.time_stamp[4]);
3130 } else {
3131 IPW_DEBUG_INFO("Microcode is not alive\n");
3132 rc = -EINVAL;
3133 }
3134 } else {
3135 IPW_DEBUG_INFO("No alive response from DINO\n");
3136 rc = -ETIME;
3137 }
3138
3139 /* disable DINO, otherwise for some reason
3140 firmware have problem getting alive resp. */
3141 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3142
3143 return rc;
3144}
3145
3146static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3147{
3148 int rc = -1;
3149 int offset = 0;
3150 struct fw_chunk *chunk;
3151 dma_addr_t shared_phys;
3152 u8 *shared_virt;
3153
3154 IPW_DEBUG_TRACE("<< : \n");
3155 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3156
3157 if (!shared_virt)
3158 return -ENOMEM;
3159
3160 memmove(shared_virt, data, len);
3161
3162 /* Start the Dma */
3163 rc = ipw_fw_dma_enable(priv);
3164
3165 if (priv->sram_desc.last_cb_index > 0) {
3166 /* the DMA is already ready this would be a bug. */
3167 BUG();
3168 goto out;
3169 }
3170
3171 do {
3172 chunk = (struct fw_chunk *)(data + offset);
3173 offset += sizeof(struct fw_chunk);
3174 /* build DMA packet and queue up for sending */
3175 /* dma to chunk->address, the chunk->length bytes from data +
3176 * offeset*/
3177 /* Dma loading */
3178 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3179 le32_to_cpu(chunk->address),
3180 le32_to_cpu(chunk->length));
3181 if (rc) {
3182 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3183 goto out;
3184 }
3185
3186 offset += le32_to_cpu(chunk->length);
3187 } while (offset < len);
3188
3189 /* Run the DMA and wait for the answer */
3190 rc = ipw_fw_dma_kick(priv);
3191 if (rc) {
3192 IPW_ERROR("dmaKick Failed\n");
3193 goto out;
3194 }
3195
3196 rc = ipw_fw_dma_wait(priv);
3197 if (rc) {
3198 IPW_ERROR("dmaWaitSync Failed\n");
3199 goto out;
3200 }
3201 out:
3202 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3203 return rc;
3204}
3205
3206/* stop nic */
3207static int ipw_stop_nic(struct ipw_priv *priv)
3208{
3209 int rc = 0;
3210
3211 /* stop */
3212 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3213
3214 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3215 IPW_RESET_REG_MASTER_DISABLED, 500);
3216 if (rc < 0) {
3217 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3218 return rc;
3219 }
3220
3221 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3222
3223 return rc;
3224}
3225
3226static void ipw_start_nic(struct ipw_priv *priv)
3227{
3228 IPW_DEBUG_TRACE(">>\n");
3229
3230 /* prvHwStartNic release ARC */
3231 ipw_clear_bit(priv, IPW_RESET_REG,
3232 IPW_RESET_REG_MASTER_DISABLED |
3233 IPW_RESET_REG_STOP_MASTER |
3234 CBD_RESET_REG_PRINCETON_RESET);
3235
3236 /* enable power management */
3237 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3238 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3239
3240 IPW_DEBUG_TRACE("<<\n");
3241}
3242
3243static int ipw_init_nic(struct ipw_priv *priv)
3244{
3245 int rc;
3246
3247 IPW_DEBUG_TRACE(">>\n");
3248 /* reset */
3249 /*prvHwInitNic */
3250 /* set "initialization complete" bit to move adapter to D0 state */
3251 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3252
3253 /* low-level PLL activation */
3254 ipw_write32(priv, IPW_READ_INT_REGISTER,
3255 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3256
3257 /* wait for clock stabilization */
3258 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3259 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3260 if (rc < 0)
3261 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3262
3263 /* assert SW reset */
3264 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3265
3266 udelay(10);
3267
3268 /* set "initialization complete" bit to move adapter to D0 state */
3269 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3270
3271 IPW_DEBUG_TRACE(">>\n");
3272 return 0;
3273}
3274
3275/* Call this function from process context, it will sleep in request_firmware.
3276 * Probe is an ok place to call this from.
3277 */
3278static int ipw_reset_nic(struct ipw_priv *priv)
3279{
3280 int rc = 0;
3281 unsigned long flags;
3282
3283 IPW_DEBUG_TRACE(">>\n");
3284
3285 rc = ipw_init_nic(priv);
3286
3287 spin_lock_irqsave(&priv->lock, flags);
3288 /* Clear the 'host command active' bit... */
3289 priv->status &= ~STATUS_HCMD_ACTIVE;
3290 wake_up_interruptible(&priv->wait_command_queue);
3291 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3292 wake_up_interruptible(&priv->wait_state);
3293 spin_unlock_irqrestore(&priv->lock, flags);
3294
3295 IPW_DEBUG_TRACE("<<\n");
3296 return rc;
3297}
3298
3299
3300struct ipw_fw {
3301 __le32 ver;
3302 __le32 boot_size;
3303 __le32 ucode_size;
3304 __le32 fw_size;
3305 u8 data[0];
3306};
3307
3308static int ipw_get_fw(struct ipw_priv *priv,
3309 const struct firmware **raw, const char *name)
3310{
3311 struct ipw_fw *fw;
3312 int rc;
3313
3314 /* ask firmware_class module to get the boot firmware off disk */
3315 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3316 if (rc < 0) {
3317 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3318 return rc;
3319 }
3320
3321 if ((*raw)->size < sizeof(*fw)) {
3322 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3323 return -EINVAL;
3324 }
3325
3326 fw = (void *)(*raw)->data;
3327
3328 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3329 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3330 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3331 name, (*raw)->size);
3332 return -EINVAL;
3333 }
3334
3335 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3336 name,
3337 le32_to_cpu(fw->ver) >> 16,
3338 le32_to_cpu(fw->ver) & 0xff,
3339 (*raw)->size - sizeof(*fw));
3340 return 0;
3341}
3342
3343#define IPW_RX_BUF_SIZE (3000)
3344
3345static void ipw_rx_queue_reset(struct ipw_priv *priv,
3346 struct ipw_rx_queue *rxq)
3347{
3348 unsigned long flags;
3349 int i;
3350
3351 spin_lock_irqsave(&rxq->lock, flags);
3352
3353 INIT_LIST_HEAD(&rxq->rx_free);
3354 INIT_LIST_HEAD(&rxq->rx_used);
3355
3356 /* Fill the rx_used queue with _all_ of the Rx buffers */
3357 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3358 /* In the reset function, these buffers may have been allocated
3359 * to an SKB, so we need to unmap and free potential storage */
3360 if (rxq->pool[i].skb != NULL) {
3361 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3362 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3363 dev_kfree_skb(rxq->pool[i].skb);
3364 rxq->pool[i].skb = NULL;
3365 }
3366 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3367 }
3368
3369 /* Set us so that we have processed and used all buffers, but have
3370 * not restocked the Rx queue with fresh buffers */
3371 rxq->read = rxq->write = 0;
3372 rxq->free_count = 0;
3373 spin_unlock_irqrestore(&rxq->lock, flags);
3374}
3375
3376#ifdef CONFIG_PM
3377static int fw_loaded = 0;
3378static const struct firmware *raw = NULL;
3379
3380static void free_firmware(void)
3381{
3382 if (fw_loaded) {
3383 release_firmware(raw);
3384 raw = NULL;
3385 fw_loaded = 0;
3386 }
3387}
3388#else
3389#define free_firmware() do {} while (0)
3390#endif
3391
3392static int ipw_load(struct ipw_priv *priv)
3393{
3394#ifndef CONFIG_PM
3395 const struct firmware *raw = NULL;
3396#endif
3397 struct ipw_fw *fw;
3398 u8 *boot_img, *ucode_img, *fw_img;
3399 u8 *name = NULL;
3400 int rc = 0, retries = 3;
3401
3402 switch (priv->ieee->iw_mode) {
3403 case IW_MODE_ADHOC:
3404 name = "ipw2200-ibss.fw";
3405 break;
3406#ifdef CONFIG_IPW2200_MONITOR
3407 case IW_MODE_MONITOR:
3408 name = "ipw2200-sniffer.fw";
3409 break;
3410#endif
3411 case IW_MODE_INFRA:
3412 name = "ipw2200-bss.fw";
3413 break;
3414 }
3415
3416 if (!name) {
3417 rc = -EINVAL;
3418 goto error;
3419 }
3420
3421#ifdef CONFIG_PM
3422 if (!fw_loaded) {
3423#endif
3424 rc = ipw_get_fw(priv, &raw, name);
3425 if (rc < 0)
3426 goto error;
3427#ifdef CONFIG_PM
3428 }
3429#endif
3430
3431 fw = (void *)raw->data;
3432 boot_img = &fw->data[0];
3433 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3434 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3435 le32_to_cpu(fw->ucode_size)];
3436
3437 if (rc < 0)
3438 goto error;
3439
3440 if (!priv->rxq)
3441 priv->rxq = ipw_rx_queue_alloc(priv);
3442 else
3443 ipw_rx_queue_reset(priv, priv->rxq);
3444 if (!priv->rxq) {
3445 IPW_ERROR("Unable to initialize Rx queue\n");
3446 goto error;
3447 }
3448
3449 retry:
3450 /* Ensure interrupts are disabled */
3451 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3452 priv->status &= ~STATUS_INT_ENABLED;
3453
3454 /* ack pending interrupts */
3455 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3456
3457 ipw_stop_nic(priv);
3458
3459 rc = ipw_reset_nic(priv);
3460 if (rc < 0) {
3461 IPW_ERROR("Unable to reset NIC\n");
3462 goto error;
3463 }
3464
3465 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3466 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3467
3468 /* DMA the initial boot firmware into the device */
3469 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3470 if (rc < 0) {
3471 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3472 goto error;
3473 }
3474
3475 /* kick start the device */
3476 ipw_start_nic(priv);
3477
3478 /* wait for the device to finish its initial startup sequence */
3479 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3480 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3481 if (rc < 0) {
3482 IPW_ERROR("device failed to boot initial fw image\n");
3483 goto error;
3484 }
3485 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3486
3487 /* ack fw init done interrupt */
3488 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3489
3490 /* DMA the ucode into the device */
3491 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3492 if (rc < 0) {
3493 IPW_ERROR("Unable to load ucode: %d\n", rc);
3494 goto error;
3495 }
3496
3497 /* stop nic */
3498 ipw_stop_nic(priv);
3499
3500 /* DMA bss firmware into the device */
3501 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3502 if (rc < 0) {
3503 IPW_ERROR("Unable to load firmware: %d\n", rc);
3504 goto error;
3505 }
3506#ifdef CONFIG_PM
3507 fw_loaded = 1;
3508#endif
3509
3510 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3511
3512 rc = ipw_queue_reset(priv);
3513 if (rc < 0) {
3514 IPW_ERROR("Unable to initialize queues\n");
3515 goto error;
3516 }
3517
3518 /* Ensure interrupts are disabled */
3519 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3520 /* ack pending interrupts */
3521 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3522
3523 /* kick start the device */
3524 ipw_start_nic(priv);
3525
3526 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3527 if (retries > 0) {
3528 IPW_WARNING("Parity error. Retrying init.\n");
3529 retries--;
3530 goto retry;
3531 }
3532
3533 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3534 rc = -EIO;
3535 goto error;
3536 }
3537
3538 /* wait for the device */
3539 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3540 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3541 if (rc < 0) {
3542 IPW_ERROR("device failed to start within 500ms\n");
3543 goto error;
3544 }
3545 IPW_DEBUG_INFO("device response after %dms\n", rc);
3546
3547 /* ack fw init done interrupt */
3548 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3549
3550 /* read eeprom data and initialize the eeprom region of sram */
3551 priv->eeprom_delay = 1;
3552 ipw_eeprom_init_sram(priv);
3553
3554 /* enable interrupts */
3555 ipw_enable_interrupts(priv);
3556
3557 /* Ensure our queue has valid packets */
3558 ipw_rx_queue_replenish(priv);
3559
3560 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3561
3562 /* ack pending interrupts */
3563 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3564
3565#ifndef CONFIG_PM
3566 release_firmware(raw);
3567#endif
3568 return 0;
3569
3570 error:
3571 if (priv->rxq) {
3572 ipw_rx_queue_free(priv, priv->rxq);
3573 priv->rxq = NULL;
3574 }
3575 ipw_tx_queue_free(priv);
3576 if (raw)
3577 release_firmware(raw);
3578#ifdef CONFIG_PM
3579 fw_loaded = 0;
3580 raw = NULL;
3581#endif
3582
3583 return rc;
3584}
3585
3586/**
3587 * DMA services
3588 *
3589 * Theory of operation
3590 *
3591 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3592 * 2 empty entries always kept in the buffer to protect from overflow.
3593 *
3594 * For Tx queue, there are low mark and high mark limits. If, after queuing
3595 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3596 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3597 * Tx queue resumed.
3598 *
3599 * The IPW operates with six queues, one receive queue in the device's
3600 * sram, one transmit queue for sending commands to the device firmware,
3601 * and four transmit queues for data.
3602 *
3603 * The four transmit queues allow for performing quality of service (qos)
3604 * transmissions as per the 802.11 protocol. Currently Linux does not
3605 * provide a mechanism to the user for utilizing prioritized queues, so
3606 * we only utilize the first data transmit queue (queue1).
3607 */
3608
3609/**
3610 * Driver allocates buffers of this size for Rx
3611 */
3612
3613/**
3614 * ipw_rx_queue_space - Return number of free slots available in queue.
3615 */
3616static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3617{
3618 int s = q->read - q->write;
3619 if (s <= 0)
3620 s += RX_QUEUE_SIZE;
3621 /* keep some buffer to not confuse full and empty queue */
3622 s -= 2;
3623 if (s < 0)
3624 s = 0;
3625 return s;
3626}
3627
3628static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3629{
3630 int s = q->last_used - q->first_empty;
3631 if (s <= 0)
3632 s += q->n_bd;
3633 s -= 2; /* keep some reserve to not confuse empty and full situations */
3634 if (s < 0)
3635 s = 0;
3636 return s;
3637}
3638
3639static inline int ipw_queue_inc_wrap(int index, int n_bd)
3640{
3641 return (++index == n_bd) ? 0 : index;
3642}
3643
3644/**
3645 * Initialize common DMA queue structure
3646 *
3647 * @param q queue to init
3648 * @param count Number of BD's to allocate. Should be power of 2
3649 * @param read_register Address for 'read' register
3650 * (not offset within BAR, full address)
3651 * @param write_register Address for 'write' register
3652 * (not offset within BAR, full address)
3653 * @param base_register Address for 'base' register
3654 * (not offset within BAR, full address)
3655 * @param size Address for 'size' register
3656 * (not offset within BAR, full address)
3657 */
3658static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3659 int count, u32 read, u32 write, u32 base, u32 size)
3660{
3661 q->n_bd = count;
3662
3663 q->low_mark = q->n_bd / 4;
3664 if (q->low_mark < 4)
3665 q->low_mark = 4;
3666
3667 q->high_mark = q->n_bd / 8;
3668 if (q->high_mark < 2)
3669 q->high_mark = 2;
3670
3671 q->first_empty = q->last_used = 0;
3672 q->reg_r = read;
3673 q->reg_w = write;
3674
3675 ipw_write32(priv, base, q->dma_addr);
3676 ipw_write32(priv, size, count);
3677 ipw_write32(priv, read, 0);
3678 ipw_write32(priv, write, 0);
3679
3680 _ipw_read32(priv, 0x90);
3681}
3682
3683static int ipw_queue_tx_init(struct ipw_priv *priv,
3684 struct clx2_tx_queue *q,
3685 int count, u32 read, u32 write, u32 base, u32 size)
3686{
3687 struct pci_dev *dev = priv->pci_dev;
3688
3689 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3690 if (!q->txb) {
3691 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3692 return -ENOMEM;
3693 }
3694
3695 q->bd =
3696 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3697 if (!q->bd) {
3698 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3699 sizeof(q->bd[0]) * count);
3700 kfree(q->txb);
3701 q->txb = NULL;
3702 return -ENOMEM;
3703 }
3704
3705 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3706 return 0;
3707}
3708
3709/**
3710 * Free one TFD, those at index [txq->q.last_used].
3711 * Do NOT advance any indexes
3712 *
3713 * @param dev
3714 * @param txq
3715 */
3716static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3717 struct clx2_tx_queue *txq)
3718{
3719 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3720 struct pci_dev *dev = priv->pci_dev;
3721 int i;
3722
3723 /* classify bd */
3724 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3725 /* nothing to cleanup after for host commands */
3726 return;
3727
3728 /* sanity check */
3729 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3730 IPW_ERROR("Too many chunks: %i\n",
3731 le32_to_cpu(bd->u.data.num_chunks));
3732 /** @todo issue fatal error, it is quite serious situation */
3733 return;
3734 }
3735
3736 /* unmap chunks if any */
3737 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3738 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3739 le16_to_cpu(bd->u.data.chunk_len[i]),
3740 PCI_DMA_TODEVICE);
3741 if (txq->txb[txq->q.last_used]) {
3742 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3743 txq->txb[txq->q.last_used] = NULL;
3744 }
3745 }
3746}
3747
3748/**
3749 * Deallocate DMA queue.
3750 *
3751 * Empty queue by removing and destroying all BD's.
3752 * Free all buffers.
3753 *
3754 * @param dev
3755 * @param q
3756 */
3757static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3758{
3759 struct clx2_queue *q = &txq->q;
3760 struct pci_dev *dev = priv->pci_dev;
3761
3762 if (q->n_bd == 0)
3763 return;
3764
3765 /* first, empty all BD's */
3766 for (; q->first_empty != q->last_used;
3767 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3768 ipw_queue_tx_free_tfd(priv, txq);
3769 }
3770
3771 /* free buffers belonging to queue itself */
3772 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3773 q->dma_addr);
3774 kfree(txq->txb);
3775
3776 /* 0 fill whole structure */
3777 memset(txq, 0, sizeof(*txq));
3778}
3779
3780/**
3781 * Destroy all DMA queues and structures
3782 *
3783 * @param priv
3784 */
3785static void ipw_tx_queue_free(struct ipw_priv *priv)
3786{
3787 /* Tx CMD queue */
3788 ipw_queue_tx_free(priv, &priv->txq_cmd);
3789
3790 /* Tx queues */
3791 ipw_queue_tx_free(priv, &priv->txq[0]);
3792 ipw_queue_tx_free(priv, &priv->txq[1]);
3793 ipw_queue_tx_free(priv, &priv->txq[2]);
3794 ipw_queue_tx_free(priv, &priv->txq[3]);
3795}
3796
3797static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3798{
3799 /* First 3 bytes are manufacturer */
3800 bssid[0] = priv->mac_addr[0];
3801 bssid[1] = priv->mac_addr[1];
3802 bssid[2] = priv->mac_addr[2];
3803
3804 /* Last bytes are random */
3805 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3806
3807 bssid[0] &= 0xfe; /* clear multicast bit */
3808 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3809}
3810
3811static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3812{
3813 struct ipw_station_entry entry;
3814 int i;
3815
3816 for (i = 0; i < priv->num_stations; i++) {
3817 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3818 /* Another node is active in network */
3819 priv->missed_adhoc_beacons = 0;
3820 if (!(priv->config & CFG_STATIC_CHANNEL))
3821 /* when other nodes drop out, we drop out */
3822 priv->config &= ~CFG_ADHOC_PERSIST;
3823
3824 return i;
3825 }
3826 }
3827
3828 if (i == MAX_STATIONS)
3829 return IPW_INVALID_STATION;
3830
3831 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3832
3833 entry.reserved = 0;
3834 entry.support_mode = 0;
3835 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3836 memcpy(priv->stations[i], bssid, ETH_ALEN);
3837 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3838 &entry, sizeof(entry));
3839 priv->num_stations++;
3840
3841 return i;
3842}
3843
3844static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3845{
3846 int i;
3847
3848 for (i = 0; i < priv->num_stations; i++)
3849 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3850 return i;
3851
3852 return IPW_INVALID_STATION;
3853}
3854
3855static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3856{
3857 int err;
3858
3859 if (priv->status & STATUS_ASSOCIATING) {
3860 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3861 queue_work(priv->workqueue, &priv->disassociate);
3862 return;
3863 }
3864
3865 if (!(priv->status & STATUS_ASSOCIATED)) {
3866 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3867 return;
3868 }
3869
3870 IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3871 "on channel %d.\n",
3872 priv->assoc_request.bssid,
3873 priv->assoc_request.channel);
3874
3875 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3876 priv->status |= STATUS_DISASSOCIATING;
3877
3878 if (quiet)
3879 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3880 else
3881 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3882
3883 err = ipw_send_associate(priv, &priv->assoc_request);
3884 if (err) {
3885 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3886 "failed.\n");
3887 return;
3888 }
3889
3890}
3891
3892static int ipw_disassociate(void *data)
3893{
3894 struct ipw_priv *priv = data;
3895 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3896 return 0;
3897 ipw_send_disassociate(data, 0);
3898 return 1;
3899}
3900
3901static void ipw_bg_disassociate(struct work_struct *work)
3902{
3903 struct ipw_priv *priv =
3904 container_of(work, struct ipw_priv, disassociate);
3905 mutex_lock(&priv->mutex);
3906 ipw_disassociate(priv);
3907 mutex_unlock(&priv->mutex);
3908}
3909
3910static void ipw_system_config(struct work_struct *work)
3911{
3912 struct ipw_priv *priv =
3913 container_of(work, struct ipw_priv, system_config);
3914
3915#ifdef CONFIG_IPW2200_PROMISCUOUS
3916 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3917 priv->sys_config.accept_all_data_frames = 1;
3918 priv->sys_config.accept_non_directed_frames = 1;
3919 priv->sys_config.accept_all_mgmt_bcpr = 1;
3920 priv->sys_config.accept_all_mgmt_frames = 1;
3921 }
3922#endif
3923
3924 ipw_send_system_config(priv);
3925}
3926
3927struct ipw_status_code {
3928 u16 status;
3929 const char *reason;
3930};
3931
3932static const struct ipw_status_code ipw_status_codes[] = {
3933 {0x00, "Successful"},
3934 {0x01, "Unspecified failure"},
3935 {0x0A, "Cannot support all requested capabilities in the "
3936 "Capability information field"},
3937 {0x0B, "Reassociation denied due to inability to confirm that "
3938 "association exists"},
3939 {0x0C, "Association denied due to reason outside the scope of this "
3940 "standard"},
3941 {0x0D,
3942 "Responding station does not support the specified authentication "
3943 "algorithm"},
3944 {0x0E,
3945 "Received an Authentication frame with authentication sequence "
3946 "transaction sequence number out of expected sequence"},
3947 {0x0F, "Authentication rejected because of challenge failure"},
3948 {0x10, "Authentication rejected due to timeout waiting for next "
3949 "frame in sequence"},
3950 {0x11, "Association denied because AP is unable to handle additional "
3951 "associated stations"},
3952 {0x12,
3953 "Association denied due to requesting station not supporting all "
3954 "of the datarates in the BSSBasicServiceSet Parameter"},
3955 {0x13,
3956 "Association denied due to requesting station not supporting "
3957 "short preamble operation"},
3958 {0x14,
3959 "Association denied due to requesting station not supporting "
3960 "PBCC encoding"},
3961 {0x15,
3962 "Association denied due to requesting station not supporting "
3963 "channel agility"},
3964 {0x19,
3965 "Association denied due to requesting station not supporting "
3966 "short slot operation"},
3967 {0x1A,
3968 "Association denied due to requesting station not supporting "
3969 "DSSS-OFDM operation"},
3970 {0x28, "Invalid Information Element"},
3971 {0x29, "Group Cipher is not valid"},
3972 {0x2A, "Pairwise Cipher is not valid"},
3973 {0x2B, "AKMP is not valid"},
3974 {0x2C, "Unsupported RSN IE version"},
3975 {0x2D, "Invalid RSN IE Capabilities"},
3976 {0x2E, "Cipher suite is rejected per security policy"},
3977};
3978
3979static const char *ipw_get_status_code(u16 status)
3980{
3981 int i;
3982 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3983 if (ipw_status_codes[i].status == (status & 0xff))
3984 return ipw_status_codes[i].reason;
3985 return "Unknown status value.";
3986}
3987
3988static void inline average_init(struct average *avg)
3989{
3990 memset(avg, 0, sizeof(*avg));
3991}
3992
3993#define DEPTH_RSSI 8
3994#define DEPTH_NOISE 16
3995static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3996{
3997 return ((depth-1)*prev_avg + val)/depth;
3998}
3999
4000static void average_add(struct average *avg, s16 val)
4001{
4002 avg->sum -= avg->entries[avg->pos];
4003 avg->sum += val;
4004 avg->entries[avg->pos++] = val;
4005 if (unlikely(avg->pos == AVG_ENTRIES)) {
4006 avg->init = 1;
4007 avg->pos = 0;
4008 }
4009}
4010
4011static s16 average_value(struct average *avg)
4012{
4013 if (!unlikely(avg->init)) {
4014 if (avg->pos)
4015 return avg->sum / avg->pos;
4016 return 0;
4017 }
4018
4019 return avg->sum / AVG_ENTRIES;
4020}
4021
4022static void ipw_reset_stats(struct ipw_priv *priv)
4023{
4024 u32 len = sizeof(u32);
4025
4026 priv->quality = 0;
4027
4028 average_init(&priv->average_missed_beacons);
4029 priv->exp_avg_rssi = -60;
4030 priv->exp_avg_noise = -85 + 0x100;
4031
4032 priv->last_rate = 0;
4033 priv->last_missed_beacons = 0;
4034 priv->last_rx_packets = 0;
4035 priv->last_tx_packets = 0;
4036 priv->last_tx_failures = 0;
4037
4038 /* Firmware managed, reset only when NIC is restarted, so we have to
4039 * normalize on the current value */
4040 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4041 &priv->last_rx_err, &len);
4042 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4043 &priv->last_tx_failures, &len);
4044
4045 /* Driver managed, reset with each association */
4046 priv->missed_adhoc_beacons = 0;
4047 priv->missed_beacons = 0;
4048 priv->tx_packets = 0;
4049 priv->rx_packets = 0;
4050
4051}
4052
4053static u32 ipw_get_max_rate(struct ipw_priv *priv)
4054{
4055 u32 i = 0x80000000;
4056 u32 mask = priv->rates_mask;
4057 /* If currently associated in B mode, restrict the maximum
4058 * rate match to B rates */
4059 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4060 mask &= IEEE80211_CCK_RATES_MASK;
4061
4062 /* TODO: Verify that the rate is supported by the current rates
4063 * list. */
4064
4065 while (i && !(mask & i))
4066 i >>= 1;
4067 switch (i) {
4068 case IEEE80211_CCK_RATE_1MB_MASK:
4069 return 1000000;
4070 case IEEE80211_CCK_RATE_2MB_MASK:
4071 return 2000000;
4072 case IEEE80211_CCK_RATE_5MB_MASK:
4073 return 5500000;
4074 case IEEE80211_OFDM_RATE_6MB_MASK:
4075 return 6000000;
4076 case IEEE80211_OFDM_RATE_9MB_MASK:
4077 return 9000000;
4078 case IEEE80211_CCK_RATE_11MB_MASK:
4079 return 11000000;
4080 case IEEE80211_OFDM_RATE_12MB_MASK:
4081 return 12000000;
4082 case IEEE80211_OFDM_RATE_18MB_MASK:
4083 return 18000000;
4084 case IEEE80211_OFDM_RATE_24MB_MASK:
4085 return 24000000;
4086 case IEEE80211_OFDM_RATE_36MB_MASK:
4087 return 36000000;
4088 case IEEE80211_OFDM_RATE_48MB_MASK:
4089 return 48000000;
4090 case IEEE80211_OFDM_RATE_54MB_MASK:
4091 return 54000000;
4092 }
4093
4094 if (priv->ieee->mode == IEEE_B)
4095 return 11000000;
4096 else
4097 return 54000000;
4098}
4099
4100static u32 ipw_get_current_rate(struct ipw_priv *priv)
4101{
4102 u32 rate, len = sizeof(rate);
4103 int err;
4104
4105 if (!(priv->status & STATUS_ASSOCIATED))
4106 return 0;
4107
4108 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4109 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4110 &len);
4111 if (err) {
4112 IPW_DEBUG_INFO("failed querying ordinals.\n");
4113 return 0;
4114 }
4115 } else
4116 return ipw_get_max_rate(priv);
4117
4118 switch (rate) {
4119 case IPW_TX_RATE_1MB:
4120 return 1000000;
4121 case IPW_TX_RATE_2MB:
4122 return 2000000;
4123 case IPW_TX_RATE_5MB:
4124 return 5500000;
4125 case IPW_TX_RATE_6MB:
4126 return 6000000;
4127 case IPW_TX_RATE_9MB:
4128 return 9000000;
4129 case IPW_TX_RATE_11MB:
4130 return 11000000;
4131 case IPW_TX_RATE_12MB:
4132 return 12000000;
4133 case IPW_TX_RATE_18MB:
4134 return 18000000;
4135 case IPW_TX_RATE_24MB:
4136 return 24000000;
4137 case IPW_TX_RATE_36MB:
4138 return 36000000;
4139 case IPW_TX_RATE_48MB:
4140 return 48000000;
4141 case IPW_TX_RATE_54MB:
4142 return 54000000;
4143 }
4144
4145 return 0;
4146}
4147
4148#define IPW_STATS_INTERVAL (2 * HZ)
4149static void ipw_gather_stats(struct ipw_priv *priv)
4150{
4151 u32 rx_err, rx_err_delta, rx_packets_delta;
4152 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4153 u32 missed_beacons_percent, missed_beacons_delta;
4154 u32 quality = 0;
4155 u32 len = sizeof(u32);
4156 s16 rssi;
4157 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4158 rate_quality;
4159 u32 max_rate;
4160
4161 if (!(priv->status & STATUS_ASSOCIATED)) {
4162 priv->quality = 0;
4163 return;
4164 }
4165
4166 /* Update the statistics */
4167 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4168 &priv->missed_beacons, &len);
4169 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4170 priv->last_missed_beacons = priv->missed_beacons;
4171 if (priv->assoc_request.beacon_interval) {
4172 missed_beacons_percent = missed_beacons_delta *
4173 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4174 (IPW_STATS_INTERVAL * 10);
4175 } else {
4176 missed_beacons_percent = 0;
4177 }
4178 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4179
4180 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4181 rx_err_delta = rx_err - priv->last_rx_err;
4182 priv->last_rx_err = rx_err;
4183
4184 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4185 tx_failures_delta = tx_failures - priv->last_tx_failures;
4186 priv->last_tx_failures = tx_failures;
4187
4188 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4189 priv->last_rx_packets = priv->rx_packets;
4190
4191 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4192 priv->last_tx_packets = priv->tx_packets;
4193
4194 /* Calculate quality based on the following:
4195 *
4196 * Missed beacon: 100% = 0, 0% = 70% missed
4197 * Rate: 60% = 1Mbs, 100% = Max
4198 * Rx and Tx errors represent a straight % of total Rx/Tx
4199 * RSSI: 100% = > -50, 0% = < -80
4200 * Rx errors: 100% = 0, 0% = 50% missed
4201 *
4202 * The lowest computed quality is used.
4203 *
4204 */
4205#define BEACON_THRESHOLD 5
4206 beacon_quality = 100 - missed_beacons_percent;
4207 if (beacon_quality < BEACON_THRESHOLD)
4208 beacon_quality = 0;
4209 else
4210 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4211 (100 - BEACON_THRESHOLD);
4212 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4213 beacon_quality, missed_beacons_percent);
4214
4215 priv->last_rate = ipw_get_current_rate(priv);
4216 max_rate = ipw_get_max_rate(priv);
4217 rate_quality = priv->last_rate * 40 / max_rate + 60;
4218 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4219 rate_quality, priv->last_rate / 1000000);
4220
4221 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4222 rx_quality = 100 - (rx_err_delta * 100) /
4223 (rx_packets_delta + rx_err_delta);
4224 else
4225 rx_quality = 100;
4226 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4227 rx_quality, rx_err_delta, rx_packets_delta);
4228
4229 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4230 tx_quality = 100 - (tx_failures_delta * 100) /
4231 (tx_packets_delta + tx_failures_delta);
4232 else
4233 tx_quality = 100;
4234 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4235 tx_quality, tx_failures_delta, tx_packets_delta);
4236
4237 rssi = priv->exp_avg_rssi;
4238 signal_quality =
4239 (100 *
4240 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4241 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4242 (priv->ieee->perfect_rssi - rssi) *
4243 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4244 62 * (priv->ieee->perfect_rssi - rssi))) /
4245 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4246 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4247 if (signal_quality > 100)
4248 signal_quality = 100;
4249 else if (signal_quality < 1)
4250 signal_quality = 0;
4251
4252 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4253 signal_quality, rssi);
4254
4255 quality = min(beacon_quality,
4256 min(rate_quality,
4257 min(tx_quality, min(rx_quality, signal_quality))));
4258 if (quality == beacon_quality)
4259 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4260 quality);
4261 if (quality == rate_quality)
4262 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4263 quality);
4264 if (quality == tx_quality)
4265 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4266 quality);
4267 if (quality == rx_quality)
4268 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4269 quality);
4270 if (quality == signal_quality)
4271 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4272 quality);
4273
4274 priv->quality = quality;
4275
4276 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4277 IPW_STATS_INTERVAL);
4278}
4279
4280static void ipw_bg_gather_stats(struct work_struct *work)
4281{
4282 struct ipw_priv *priv =
4283 container_of(work, struct ipw_priv, gather_stats.work);
4284 mutex_lock(&priv->mutex);
4285 ipw_gather_stats(priv);
4286 mutex_unlock(&priv->mutex);
4287}
4288
4289/* Missed beacon behavior:
4290 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4291 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4292 * Above disassociate threshold, give up and stop scanning.
4293 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4294static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4295 int missed_count)
4296{
4297 priv->notif_missed_beacons = missed_count;
4298
4299 if (missed_count > priv->disassociate_threshold &&
4300 priv->status & STATUS_ASSOCIATED) {
4301 /* If associated and we've hit the missed
4302 * beacon threshold, disassociate, turn
4303 * off roaming, and abort any active scans */
4304 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4305 IPW_DL_STATE | IPW_DL_ASSOC,
4306 "Missed beacon: %d - disassociate\n", missed_count);
4307 priv->status &= ~STATUS_ROAMING;
4308 if (priv->status & STATUS_SCANNING) {
4309 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4310 IPW_DL_STATE,
4311 "Aborting scan with missed beacon.\n");
4312 queue_work(priv->workqueue, &priv->abort_scan);
4313 }
4314
4315 queue_work(priv->workqueue, &priv->disassociate);
4316 return;
4317 }
4318
4319 if (priv->status & STATUS_ROAMING) {
4320 /* If we are currently roaming, then just
4321 * print a debug statement... */
4322 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4323 "Missed beacon: %d - roam in progress\n",
4324 missed_count);
4325 return;
4326 }
4327
4328 if (roaming &&
4329 (missed_count > priv->roaming_threshold &&
4330 missed_count <= priv->disassociate_threshold)) {
4331 /* If we are not already roaming, set the ROAM
4332 * bit in the status and kick off a scan.
4333 * This can happen several times before we reach
4334 * disassociate_threshold. */
4335 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4336 "Missed beacon: %d - initiate "
4337 "roaming\n", missed_count);
4338 if (!(priv->status & STATUS_ROAMING)) {
4339 priv->status |= STATUS_ROAMING;
4340 if (!(priv->status & STATUS_SCANNING))
4341 queue_delayed_work(priv->workqueue,
4342 &priv->request_scan, 0);
4343 }
4344 return;
4345 }
4346
4347 if (priv->status & STATUS_SCANNING) {
4348 /* Stop scan to keep fw from getting
4349 * stuck (only if we aren't roaming --
4350 * otherwise we'll never scan more than 2 or 3
4351 * channels..) */
4352 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4353 "Aborting scan with missed beacon.\n");
4354 queue_work(priv->workqueue, &priv->abort_scan);
4355 }
4356
4357 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4358}
4359
4360static void ipw_scan_event(struct work_struct *work)
4361{
4362 union iwreq_data wrqu;
4363
4364 struct ipw_priv *priv =
4365 container_of(work, struct ipw_priv, scan_event.work);
4366
4367 wrqu.data.length = 0;
4368 wrqu.data.flags = 0;
4369 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4370}
4371
4372static void handle_scan_event(struct ipw_priv *priv)
4373{
4374 /* Only userspace-requested scan completion events go out immediately */
4375 if (!priv->user_requested_scan) {
4376 if (!delayed_work_pending(&priv->scan_event))
4377 queue_delayed_work(priv->workqueue, &priv->scan_event,
4378 round_jiffies_relative(msecs_to_jiffies(4000)));
4379 } else {
4380 union iwreq_data wrqu;
4381
4382 priv->user_requested_scan = 0;
4383 cancel_delayed_work(&priv->scan_event);
4384
4385 wrqu.data.length = 0;
4386 wrqu.data.flags = 0;
4387 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4388 }
4389}
4390
4391/**
4392 * Handle host notification packet.
4393 * Called from interrupt routine
4394 */
4395static void ipw_rx_notification(struct ipw_priv *priv,
4396 struct ipw_rx_notification *notif)
4397{
4398 DECLARE_SSID_BUF(ssid);
4399 u16 size = le16_to_cpu(notif->size);
4400 notif->size = le16_to_cpu(notif->size);
4401
4402 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4403
4404 switch (notif->subtype) {
4405 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4406 struct notif_association *assoc = &notif->u.assoc;
4407
4408 switch (assoc->state) {
4409 case CMAS_ASSOCIATED:{
4410 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4411 IPW_DL_ASSOC,
4412 "associated: '%s' %pM \n",
4413 print_ssid(ssid, priv->essid,
4414 priv->essid_len),
4415 priv->bssid);
4416
4417 switch (priv->ieee->iw_mode) {
4418 case IW_MODE_INFRA:
4419 memcpy(priv->ieee->bssid,
4420 priv->bssid, ETH_ALEN);
4421 break;
4422
4423 case IW_MODE_ADHOC:
4424 memcpy(priv->ieee->bssid,
4425 priv->bssid, ETH_ALEN);
4426
4427 /* clear out the station table */
4428 priv->num_stations = 0;
4429
4430 IPW_DEBUG_ASSOC
4431 ("queueing adhoc check\n");
4432 queue_delayed_work(priv->
4433 workqueue,
4434 &priv->
4435 adhoc_check,
4436 le16_to_cpu(priv->
4437 assoc_request.
4438 beacon_interval));
4439 break;
4440 }
4441
4442 priv->status &= ~STATUS_ASSOCIATING;
4443 priv->status |= STATUS_ASSOCIATED;
4444 queue_work(priv->workqueue,
4445 &priv->system_config);
4446
4447#ifdef CONFIG_IPW2200_QOS
4448#define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4449 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4450 if ((priv->status & STATUS_AUTH) &&
4451 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4452 == IEEE80211_STYPE_ASSOC_RESP)) {
4453 if ((sizeof
4454 (struct
4455 ieee80211_assoc_response)
4456 <= size)
4457 && (size <= 2314)) {
4458 struct
4459 ieee80211_rx_stats
4460 stats = {
4461 .len = size - 1,
4462 };
4463
4464 IPW_DEBUG_QOS
4465 ("QoS Associate "
4466 "size %d\n", size);
4467 ieee80211_rx_mgt(priv->
4468 ieee,
4469 (struct
4470 ieee80211_hdr_4addr
4471 *)
4472 &notif->u.raw, &stats);
4473 }
4474 }
4475#endif
4476
4477 schedule_work(&priv->link_up);
4478
4479 break;
4480 }
4481
4482 case CMAS_AUTHENTICATED:{
4483 if (priv->
4484 status & (STATUS_ASSOCIATED |
4485 STATUS_AUTH)) {
4486 struct notif_authenticate *auth
4487 = &notif->u.auth;
4488 IPW_DEBUG(IPW_DL_NOTIF |
4489 IPW_DL_STATE |
4490 IPW_DL_ASSOC,
4491 "deauthenticated: '%s' "
4492 "%pM"
4493 ": (0x%04X) - %s \n",
4494 print_ssid(ssid,
4495 priv->
4496 essid,
4497 priv->
4498 essid_len),
4499 priv->bssid,
4500 le16_to_cpu(auth->status),
4501 ipw_get_status_code
4502 (le16_to_cpu
4503 (auth->status)));
4504
4505 priv->status &=
4506 ~(STATUS_ASSOCIATING |
4507 STATUS_AUTH |
4508 STATUS_ASSOCIATED);
4509
4510 schedule_work(&priv->link_down);
4511 break;
4512 }
4513
4514 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4515 IPW_DL_ASSOC,
4516 "authenticated: '%s' %pM\n",
4517 print_ssid(ssid, priv->essid,
4518 priv->essid_len),
4519 priv->bssid);
4520 break;
4521 }
4522
4523 case CMAS_INIT:{
4524 if (priv->status & STATUS_AUTH) {
4525 struct
4526 ieee80211_assoc_response
4527 *resp;
4528 resp =
4529 (struct
4530 ieee80211_assoc_response
4531 *)&notif->u.raw;
4532 IPW_DEBUG(IPW_DL_NOTIF |
4533 IPW_DL_STATE |
4534 IPW_DL_ASSOC,
4535 "association failed (0x%04X): %s\n",
4536 le16_to_cpu(resp->status),
4537 ipw_get_status_code
4538 (le16_to_cpu
4539 (resp->status)));
4540 }
4541
4542 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4543 IPW_DL_ASSOC,
4544 "disassociated: '%s' %pM \n",
4545 print_ssid(ssid, priv->essid,
4546 priv->essid_len),
4547 priv->bssid);
4548
4549 priv->status &=
4550 ~(STATUS_DISASSOCIATING |
4551 STATUS_ASSOCIATING |
4552 STATUS_ASSOCIATED | STATUS_AUTH);
4553 if (priv->assoc_network
4554 && (priv->assoc_network->
4555 capability &
4556 WLAN_CAPABILITY_IBSS))
4557 ipw_remove_current_network
4558 (priv);
4559
4560 schedule_work(&priv->link_down);
4561
4562 break;
4563 }
4564
4565 case CMAS_RX_ASSOC_RESP:
4566 break;
4567
4568 default:
4569 IPW_ERROR("assoc: unknown (%d)\n",
4570 assoc->state);
4571 break;
4572 }
4573
4574 break;
4575 }
4576
4577 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4578 struct notif_authenticate *auth = &notif->u.auth;
4579 switch (auth->state) {
4580 case CMAS_AUTHENTICATED:
4581 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4582 "authenticated: '%s' %pM \n",
4583 print_ssid(ssid, priv->essid,
4584 priv->essid_len),
4585 priv->bssid);
4586 priv->status |= STATUS_AUTH;
4587 break;
4588
4589 case CMAS_INIT:
4590 if (priv->status & STATUS_AUTH) {
4591 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4592 IPW_DL_ASSOC,
4593 "authentication failed (0x%04X): %s\n",
4594 le16_to_cpu(auth->status),
4595 ipw_get_status_code(le16_to_cpu
4596 (auth->
4597 status)));
4598 }
4599 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4600 IPW_DL_ASSOC,
4601 "deauthenticated: '%s' %pM\n",
4602 print_ssid(ssid, priv->essid,
4603 priv->essid_len),
4604 priv->bssid);
4605
4606 priv->status &= ~(STATUS_ASSOCIATING |
4607 STATUS_AUTH |
4608 STATUS_ASSOCIATED);
4609
4610 schedule_work(&priv->link_down);
4611 break;
4612
4613 case CMAS_TX_AUTH_SEQ_1:
4614 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4615 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4616 break;
4617 case CMAS_RX_AUTH_SEQ_2:
4618 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4619 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4620 break;
4621 case CMAS_AUTH_SEQ_1_PASS:
4622 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4623 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4624 break;
4625 case CMAS_AUTH_SEQ_1_FAIL:
4626 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4627 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4628 break;
4629 case CMAS_TX_AUTH_SEQ_3:
4630 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4631 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4632 break;
4633 case CMAS_RX_AUTH_SEQ_4:
4634 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4635 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4636 break;
4637 case CMAS_AUTH_SEQ_2_PASS:
4638 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4639 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4640 break;
4641 case CMAS_AUTH_SEQ_2_FAIL:
4642 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4643 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4644 break;
4645 case CMAS_TX_ASSOC:
4646 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4647 IPW_DL_ASSOC, "TX_ASSOC\n");
4648 break;
4649 case CMAS_RX_ASSOC_RESP:
4650 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4651 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4652
4653 break;
4654 case CMAS_ASSOCIATED:
4655 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4656 IPW_DL_ASSOC, "ASSOCIATED\n");
4657 break;
4658 default:
4659 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4660 auth->state);
4661 break;
4662 }
4663 break;
4664 }
4665
4666 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4667 struct notif_channel_result *x =
4668 &notif->u.channel_result;
4669
4670 if (size == sizeof(*x)) {
4671 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4672 x->channel_num);
4673 } else {
4674 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4675 "(should be %zd)\n",
4676 size, sizeof(*x));
4677 }
4678 break;
4679 }
4680
4681 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4682 struct notif_scan_complete *x = &notif->u.scan_complete;
4683 if (size == sizeof(*x)) {
4684 IPW_DEBUG_SCAN
4685 ("Scan completed: type %d, %d channels, "
4686 "%d status\n", x->scan_type,
4687 x->num_channels, x->status);
4688 } else {
4689 IPW_ERROR("Scan completed of wrong size %d "
4690 "(should be %zd)\n",
4691 size, sizeof(*x));
4692 }
4693
4694 priv->status &=
4695 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4696
4697 wake_up_interruptible(&priv->wait_state);
4698 cancel_delayed_work(&priv->scan_check);
4699
4700 if (priv->status & STATUS_EXIT_PENDING)
4701 break;
4702
4703 priv->ieee->scans++;
4704
4705#ifdef CONFIG_IPW2200_MONITOR
4706 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4707 priv->status |= STATUS_SCAN_FORCED;
4708 queue_delayed_work(priv->workqueue,
4709 &priv->request_scan, 0);
4710 break;
4711 }
4712 priv->status &= ~STATUS_SCAN_FORCED;
4713#endif /* CONFIG_IPW2200_MONITOR */
4714
4715 /* Do queued direct scans first */
4716 if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4717 queue_delayed_work(priv->workqueue,
4718 &priv->request_direct_scan, 0);
4719 }
4720
4721 if (!(priv->status & (STATUS_ASSOCIATED |
4722 STATUS_ASSOCIATING |
4723 STATUS_ROAMING |
4724 STATUS_DISASSOCIATING)))
4725 queue_work(priv->workqueue, &priv->associate);
4726 else if (priv->status & STATUS_ROAMING) {
4727 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4728 /* If a scan completed and we are in roam mode, then
4729 * the scan that completed was the one requested as a
4730 * result of entering roam... so, schedule the
4731 * roam work */
4732 queue_work(priv->workqueue,
4733 &priv->roam);
4734 else
4735 /* Don't schedule if we aborted the scan */
4736 priv->status &= ~STATUS_ROAMING;
4737 } else if (priv->status & STATUS_SCAN_PENDING)
4738 queue_delayed_work(priv->workqueue,
4739 &priv->request_scan, 0);
4740 else if (priv->config & CFG_BACKGROUND_SCAN
4741 && priv->status & STATUS_ASSOCIATED)
4742 queue_delayed_work(priv->workqueue,
4743 &priv->request_scan,
4744 round_jiffies_relative(HZ));
4745
4746 /* Send an empty event to user space.
4747 * We don't send the received data on the event because
4748 * it would require us to do complex transcoding, and
4749 * we want to minimise the work done in the irq handler
4750 * Use a request to extract the data.
4751 * Also, we generate this even for any scan, regardless
4752 * on how the scan was initiated. User space can just
4753 * sync on periodic scan to get fresh data...
4754 * Jean II */
4755 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4756 handle_scan_event(priv);
4757 break;
4758 }
4759
4760 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4761 struct notif_frag_length *x = &notif->u.frag_len;
4762
4763 if (size == sizeof(*x))
4764 IPW_ERROR("Frag length: %d\n",
4765 le16_to_cpu(x->frag_length));
4766 else
4767 IPW_ERROR("Frag length of wrong size %d "
4768 "(should be %zd)\n",
4769 size, sizeof(*x));
4770 break;
4771 }
4772
4773 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4774 struct notif_link_deterioration *x =
4775 &notif->u.link_deterioration;
4776
4777 if (size == sizeof(*x)) {
4778 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4779 "link deterioration: type %d, cnt %d\n",
4780 x->silence_notification_type,
4781 x->silence_count);
4782 memcpy(&priv->last_link_deterioration, x,
4783 sizeof(*x));
4784 } else {
4785 IPW_ERROR("Link Deterioration of wrong size %d "
4786 "(should be %zd)\n",
4787 size, sizeof(*x));
4788 }
4789 break;
4790 }
4791
4792 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4793 IPW_ERROR("Dino config\n");
4794 if (priv->hcmd
4795 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4796 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4797
4798 break;
4799 }
4800
4801 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4802 struct notif_beacon_state *x = &notif->u.beacon_state;
4803 if (size != sizeof(*x)) {
4804 IPW_ERROR
4805 ("Beacon state of wrong size %d (should "
4806 "be %zd)\n", size, sizeof(*x));
4807 break;
4808 }
4809
4810 if (le32_to_cpu(x->state) ==
4811 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4812 ipw_handle_missed_beacon(priv,
4813 le32_to_cpu(x->
4814 number));
4815
4816 break;
4817 }
4818
4819 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4820 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4821 if (size == sizeof(*x)) {
4822 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4823 "0x%02x station %d\n",
4824 x->key_state, x->security_type,
4825 x->station_index);
4826 break;
4827 }
4828
4829 IPW_ERROR
4830 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4831 size, sizeof(*x));
4832 break;
4833 }
4834
4835 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4836 struct notif_calibration *x = &notif->u.calibration;
4837
4838 if (size == sizeof(*x)) {
4839 memcpy(&priv->calib, x, sizeof(*x));
4840 IPW_DEBUG_INFO("TODO: Calibration\n");
4841 break;
4842 }
4843
4844 IPW_ERROR
4845 ("Calibration of wrong size %d (should be %zd)\n",
4846 size, sizeof(*x));
4847 break;
4848 }
4849
4850 case HOST_NOTIFICATION_NOISE_STATS:{
4851 if (size == sizeof(u32)) {
4852 priv->exp_avg_noise =
4853 exponential_average(priv->exp_avg_noise,
4854 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4855 DEPTH_NOISE);
4856 break;
4857 }
4858
4859 IPW_ERROR
4860 ("Noise stat is wrong size %d (should be %zd)\n",
4861 size, sizeof(u32));
4862 break;
4863 }
4864
4865 default:
4866 IPW_DEBUG_NOTIF("Unknown notification: "
4867 "subtype=%d,flags=0x%2x,size=%d\n",
4868 notif->subtype, notif->flags, size);
4869 }
4870}
4871
4872/**
4873 * Destroys all DMA structures and initialise them again
4874 *
4875 * @param priv
4876 * @return error code
4877 */
4878static int ipw_queue_reset(struct ipw_priv *priv)
4879{
4880 int rc = 0;
4881 /** @todo customize queue sizes */
4882 int nTx = 64, nTxCmd = 8;
4883 ipw_tx_queue_free(priv);
4884 /* Tx CMD queue */
4885 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4886 IPW_TX_CMD_QUEUE_READ_INDEX,
4887 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4888 IPW_TX_CMD_QUEUE_BD_BASE,
4889 IPW_TX_CMD_QUEUE_BD_SIZE);
4890 if (rc) {
4891 IPW_ERROR("Tx Cmd queue init failed\n");
4892 goto error;
4893 }
4894 /* Tx queue(s) */
4895 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4896 IPW_TX_QUEUE_0_READ_INDEX,
4897 IPW_TX_QUEUE_0_WRITE_INDEX,
4898 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4899 if (rc) {
4900 IPW_ERROR("Tx 0 queue init failed\n");
4901 goto error;
4902 }
4903 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4904 IPW_TX_QUEUE_1_READ_INDEX,
4905 IPW_TX_QUEUE_1_WRITE_INDEX,
4906 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4907 if (rc) {
4908 IPW_ERROR("Tx 1 queue init failed\n");
4909 goto error;
4910 }
4911 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4912 IPW_TX_QUEUE_2_READ_INDEX,
4913 IPW_TX_QUEUE_2_WRITE_INDEX,
4914 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4915 if (rc) {
4916 IPW_ERROR("Tx 2 queue init failed\n");
4917 goto error;
4918 }
4919 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4920 IPW_TX_QUEUE_3_READ_INDEX,
4921 IPW_TX_QUEUE_3_WRITE_INDEX,
4922 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4923 if (rc) {
4924 IPW_ERROR("Tx 3 queue init failed\n");
4925 goto error;
4926 }
4927 /* statistics */
4928 priv->rx_bufs_min = 0;
4929 priv->rx_pend_max = 0;
4930 return rc;
4931
4932 error:
4933 ipw_tx_queue_free(priv);
4934 return rc;
4935}
4936
4937/**
4938 * Reclaim Tx queue entries no more used by NIC.
4939 *
4940 * When FW advances 'R' index, all entries between old and
4941 * new 'R' index need to be reclaimed. As result, some free space
4942 * forms. If there is enough free space (> low mark), wake Tx queue.
4943 *
4944 * @note Need to protect against garbage in 'R' index
4945 * @param priv
4946 * @param txq
4947 * @param qindex
4948 * @return Number of used entries remains in the queue
4949 */
4950static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4951 struct clx2_tx_queue *txq, int qindex)
4952{
4953 u32 hw_tail;
4954 int used;
4955 struct clx2_queue *q = &txq->q;
4956
4957 hw_tail = ipw_read32(priv, q->reg_r);
4958 if (hw_tail >= q->n_bd) {
4959 IPW_ERROR
4960 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4961 hw_tail, q->n_bd);
4962 goto done;
4963 }
4964 for (; q->last_used != hw_tail;
4965 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4966 ipw_queue_tx_free_tfd(priv, txq);
4967 priv->tx_packets++;
4968 }
4969 done:
4970 if ((ipw_tx_queue_space(q) > q->low_mark) &&
4971 (qindex >= 0))
4972 netif_wake_queue(priv->net_dev);
4973 used = q->first_empty - q->last_used;
4974 if (used < 0)
4975 used += q->n_bd;
4976
4977 return used;
4978}
4979
4980static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4981 int len, int sync)
4982{
4983 struct clx2_tx_queue *txq = &priv->txq_cmd;
4984 struct clx2_queue *q = &txq->q;
4985 struct tfd_frame *tfd;
4986
4987 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
4988 IPW_ERROR("No space for Tx\n");
4989 return -EBUSY;
4990 }
4991
4992 tfd = &txq->bd[q->first_empty];
4993 txq->txb[q->first_empty] = NULL;
4994
4995 memset(tfd, 0, sizeof(*tfd));
4996 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4997 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4998 priv->hcmd_seq++;
4999 tfd->u.cmd.index = hcmd;
5000 tfd->u.cmd.length = len;
5001 memcpy(tfd->u.cmd.payload, buf, len);
5002 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5003 ipw_write32(priv, q->reg_w, q->first_empty);
5004 _ipw_read32(priv, 0x90);
5005
5006 return 0;
5007}
5008
5009/*
5010 * Rx theory of operation
5011 *
5012 * The host allocates 32 DMA target addresses and passes the host address
5013 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5014 * 0 to 31
5015 *
5016 * Rx Queue Indexes
5017 * The host/firmware share two index registers for managing the Rx buffers.
5018 *
5019 * The READ index maps to the first position that the firmware may be writing
5020 * to -- the driver can read up to (but not including) this position and get
5021 * good data.
5022 * The READ index is managed by the firmware once the card is enabled.
5023 *
5024 * The WRITE index maps to the last position the driver has read from -- the
5025 * position preceding WRITE is the last slot the firmware can place a packet.
5026 *
5027 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5028 * WRITE = READ.
5029 *
5030 * During initialization the host sets up the READ queue position to the first
5031 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5032 *
5033 * When the firmware places a packet in a buffer it will advance the READ index
5034 * and fire the RX interrupt. The driver can then query the READ index and
5035 * process as many packets as possible, moving the WRITE index forward as it
5036 * resets the Rx queue buffers with new memory.
5037 *
5038 * The management in the driver is as follows:
5039 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5040 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5041 * to replensish the ipw->rxq->rx_free.
5042 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5043 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5044 * 'processed' and 'read' driver indexes as well)
5045 * + A received packet is processed and handed to the kernel network stack,
5046 * detached from the ipw->rxq. The driver 'processed' index is updated.
5047 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5048 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5049 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5050 * were enough free buffers and RX_STALLED is set it is cleared.
5051 *
5052 *
5053 * Driver sequence:
5054 *
5055 * ipw_rx_queue_alloc() Allocates rx_free
5056 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5057 * ipw_rx_queue_restock
5058 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5059 * queue, updates firmware pointers, and updates
5060 * the WRITE index. If insufficient rx_free buffers
5061 * are available, schedules ipw_rx_queue_replenish
5062 *
5063 * -- enable interrupts --
5064 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5065 * READ INDEX, detaching the SKB from the pool.
5066 * Moves the packet buffer from queue to rx_used.
5067 * Calls ipw_rx_queue_restock to refill any empty
5068 * slots.
5069 * ...
5070 *
5071 */
5072
5073/*
5074 * If there are slots in the RX queue that need to be restocked,
5075 * and we have free pre-allocated buffers, fill the ranks as much
5076 * as we can pulling from rx_free.
5077 *
5078 * This moves the 'write' index forward to catch up with 'processed', and
5079 * also updates the memory address in the firmware to reference the new
5080 * target buffer.
5081 */
5082static void ipw_rx_queue_restock(struct ipw_priv *priv)
5083{
5084 struct ipw_rx_queue *rxq = priv->rxq;
5085 struct list_head *element;
5086 struct ipw_rx_mem_buffer *rxb;
5087 unsigned long flags;
5088 int write;
5089
5090 spin_lock_irqsave(&rxq->lock, flags);
5091 write = rxq->write;
5092 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5093 element = rxq->rx_free.next;
5094 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5095 list_del(element);
5096
5097 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5098 rxb->dma_addr);
5099 rxq->queue[rxq->write] = rxb;
5100 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5101 rxq->free_count--;
5102 }
5103 spin_unlock_irqrestore(&rxq->lock, flags);
5104
5105 /* If the pre-allocated buffer pool is dropping low, schedule to
5106 * refill it */
5107 if (rxq->free_count <= RX_LOW_WATERMARK)
5108 queue_work(priv->workqueue, &priv->rx_replenish);
5109
5110 /* If we've added more space for the firmware to place data, tell it */
5111 if (write != rxq->write)
5112 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5113}
5114
5115/*
5116 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5117 * Also restock the Rx queue via ipw_rx_queue_restock.
5118 *
5119 * This is called as a scheduled work item (except for during intialization)
5120 */
5121static void ipw_rx_queue_replenish(void *data)
5122{
5123 struct ipw_priv *priv = data;
5124 struct ipw_rx_queue *rxq = priv->rxq;
5125 struct list_head *element;
5126 struct ipw_rx_mem_buffer *rxb;
5127 unsigned long flags;
5128
5129 spin_lock_irqsave(&rxq->lock, flags);
5130 while (!list_empty(&rxq->rx_used)) {
5131 element = rxq->rx_used.next;
5132 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5133 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5134 if (!rxb->skb) {
5135 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5136 priv->net_dev->name);
5137 /* We don't reschedule replenish work here -- we will
5138 * call the restock method and if it still needs
5139 * more buffers it will schedule replenish */
5140 break;
5141 }
5142 list_del(element);
5143
5144 rxb->dma_addr =
5145 pci_map_single(priv->pci_dev, rxb->skb->data,
5146 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5147
5148 list_add_tail(&rxb->list, &rxq->rx_free);
5149 rxq->free_count++;
5150 }
5151 spin_unlock_irqrestore(&rxq->lock, flags);
5152
5153 ipw_rx_queue_restock(priv);
5154}
5155
5156static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5157{
5158 struct ipw_priv *priv =
5159 container_of(work, struct ipw_priv, rx_replenish);
5160 mutex_lock(&priv->mutex);
5161 ipw_rx_queue_replenish(priv);
5162 mutex_unlock(&priv->mutex);
5163}
5164
5165/* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5166 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5167 * This free routine walks the list of POOL entries and if SKB is set to
5168 * non NULL it is unmapped and freed
5169 */
5170static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5171{
5172 int i;
5173
5174 if (!rxq)
5175 return;
5176
5177 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5178 if (rxq->pool[i].skb != NULL) {
5179 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5180 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5181 dev_kfree_skb(rxq->pool[i].skb);
5182 }
5183 }
5184
5185 kfree(rxq);
5186}
5187
5188static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5189{
5190 struct ipw_rx_queue *rxq;
5191 int i;
5192
5193 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5194 if (unlikely(!rxq)) {
5195 IPW_ERROR("memory allocation failed\n");
5196 return NULL;
5197 }
5198 spin_lock_init(&rxq->lock);
5199 INIT_LIST_HEAD(&rxq->rx_free);
5200 INIT_LIST_HEAD(&rxq->rx_used);
5201
5202 /* Fill the rx_used queue with _all_ of the Rx buffers */
5203 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5204 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5205
5206 /* Set us so that we have processed and used all buffers, but have
5207 * not restocked the Rx queue with fresh buffers */
5208 rxq->read = rxq->write = 0;
5209 rxq->free_count = 0;
5210
5211 return rxq;
5212}
5213
5214static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5215{
5216 rate &= ~IEEE80211_BASIC_RATE_MASK;
5217 if (ieee_mode == IEEE_A) {
5218 switch (rate) {
5219 case IEEE80211_OFDM_RATE_6MB:
5220 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5221 1 : 0;
5222 case IEEE80211_OFDM_RATE_9MB:
5223 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5224 1 : 0;
5225 case IEEE80211_OFDM_RATE_12MB:
5226 return priv->
5227 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5228 case IEEE80211_OFDM_RATE_18MB:
5229 return priv->
5230 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5231 case IEEE80211_OFDM_RATE_24MB:
5232 return priv->
5233 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5234 case IEEE80211_OFDM_RATE_36MB:
5235 return priv->
5236 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5237 case IEEE80211_OFDM_RATE_48MB:
5238 return priv->
5239 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5240 case IEEE80211_OFDM_RATE_54MB:
5241 return priv->
5242 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5243 default:
5244 return 0;
5245 }
5246 }
5247
5248 /* B and G mixed */
5249 switch (rate) {
5250 case IEEE80211_CCK_RATE_1MB:
5251 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5252 case IEEE80211_CCK_RATE_2MB:
5253 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5254 case IEEE80211_CCK_RATE_5MB:
5255 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5256 case IEEE80211_CCK_RATE_11MB:
5257 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5258 }
5259
5260 /* If we are limited to B modulations, bail at this point */
5261 if (ieee_mode == IEEE_B)
5262 return 0;
5263
5264 /* G */
5265 switch (rate) {
5266 case IEEE80211_OFDM_RATE_6MB:
5267 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5268 case IEEE80211_OFDM_RATE_9MB:
5269 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5270 case IEEE80211_OFDM_RATE_12MB:
5271 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5272 case IEEE80211_OFDM_RATE_18MB:
5273 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5274 case IEEE80211_OFDM_RATE_24MB:
5275 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5276 case IEEE80211_OFDM_RATE_36MB:
5277 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5278 case IEEE80211_OFDM_RATE_48MB:
5279 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5280 case IEEE80211_OFDM_RATE_54MB:
5281 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5282 }
5283
5284 return 0;
5285}
5286
5287static int ipw_compatible_rates(struct ipw_priv *priv,
5288 const struct ieee80211_network *network,
5289 struct ipw_supported_rates *rates)
5290{
5291 int num_rates, i;
5292
5293 memset(rates, 0, sizeof(*rates));
5294 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5295 rates->num_rates = 0;
5296 for (i = 0; i < num_rates; i++) {
5297 if (!ipw_is_rate_in_mask(priv, network->mode,
5298 network->rates[i])) {
5299
5300 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5301 IPW_DEBUG_SCAN("Adding masked mandatory "
5302 "rate %02X\n",
5303 network->rates[i]);
5304 rates->supported_rates[rates->num_rates++] =
5305 network->rates[i];
5306 continue;
5307 }
5308
5309 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5310 network->rates[i], priv->rates_mask);
5311 continue;
5312 }
5313
5314 rates->supported_rates[rates->num_rates++] = network->rates[i];
5315 }
5316
5317 num_rates = min(network->rates_ex_len,
5318 (u8) (IPW_MAX_RATES - num_rates));
5319 for (i = 0; i < num_rates; i++) {
5320 if (!ipw_is_rate_in_mask(priv, network->mode,
5321 network->rates_ex[i])) {
5322 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5323 IPW_DEBUG_SCAN("Adding masked mandatory "
5324 "rate %02X\n",
5325 network->rates_ex[i]);
5326 rates->supported_rates[rates->num_rates++] =
5327 network->rates[i];
5328 continue;
5329 }
5330
5331 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5332 network->rates_ex[i], priv->rates_mask);
5333 continue;
5334 }
5335
5336 rates->supported_rates[rates->num_rates++] =
5337 network->rates_ex[i];
5338 }
5339
5340 return 1;
5341}
5342
5343static void ipw_copy_rates(struct ipw_supported_rates *dest,
5344 const struct ipw_supported_rates *src)
5345{
5346 u8 i;
5347 for (i = 0; i < src->num_rates; i++)
5348 dest->supported_rates[i] = src->supported_rates[i];
5349 dest->num_rates = src->num_rates;
5350}
5351
5352/* TODO: Look at sniffed packets in the air to determine if the basic rate
5353 * mask should ever be used -- right now all callers to add the scan rates are
5354 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5355static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5356 u8 modulation, u32 rate_mask)
5357{
5358 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5359 IEEE80211_BASIC_RATE_MASK : 0;
5360
5361 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5362 rates->supported_rates[rates->num_rates++] =
5363 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5364
5365 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5366 rates->supported_rates[rates->num_rates++] =
5367 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5368
5369 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5370 rates->supported_rates[rates->num_rates++] = basic_mask |
5371 IEEE80211_CCK_RATE_5MB;
5372
5373 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5374 rates->supported_rates[rates->num_rates++] = basic_mask |
5375 IEEE80211_CCK_RATE_11MB;
5376}
5377
5378static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5379 u8 modulation, u32 rate_mask)
5380{
5381 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5382 IEEE80211_BASIC_RATE_MASK : 0;
5383
5384 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5385 rates->supported_rates[rates->num_rates++] = basic_mask |
5386 IEEE80211_OFDM_RATE_6MB;
5387
5388 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5389 rates->supported_rates[rates->num_rates++] =
5390 IEEE80211_OFDM_RATE_9MB;
5391
5392 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5393 rates->supported_rates[rates->num_rates++] = basic_mask |
5394 IEEE80211_OFDM_RATE_12MB;
5395
5396 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5397 rates->supported_rates[rates->num_rates++] =
5398 IEEE80211_OFDM_RATE_18MB;
5399
5400 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5401 rates->supported_rates[rates->num_rates++] = basic_mask |
5402 IEEE80211_OFDM_RATE_24MB;
5403
5404 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5405 rates->supported_rates[rates->num_rates++] =
5406 IEEE80211_OFDM_RATE_36MB;
5407
5408 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5409 rates->supported_rates[rates->num_rates++] =
5410 IEEE80211_OFDM_RATE_48MB;
5411
5412 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5413 rates->supported_rates[rates->num_rates++] =
5414 IEEE80211_OFDM_RATE_54MB;
5415}
5416
5417struct ipw_network_match {
5418 struct ieee80211_network *network;
5419 struct ipw_supported_rates rates;
5420};
5421
5422static int ipw_find_adhoc_network(struct ipw_priv *priv,
5423 struct ipw_network_match *match,
5424 struct ieee80211_network *network,
5425 int roaming)
5426{
5427 struct ipw_supported_rates rates;
5428 DECLARE_SSID_BUF(ssid);
5429
5430 /* Verify that this network's capability is compatible with the
5431 * current mode (AdHoc or Infrastructure) */
5432 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5433 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5434 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5435 "capability mismatch.\n",
5436 print_ssid(ssid, network->ssid,
5437 network->ssid_len),
5438 network->bssid);
5439 return 0;
5440 }
5441
5442 if (unlikely(roaming)) {
5443 /* If we are roaming, then ensure check if this is a valid
5444 * network to try and roam to */
5445 if ((network->ssid_len != match->network->ssid_len) ||
5446 memcmp(network->ssid, match->network->ssid,
5447 network->ssid_len)) {
5448 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5449 "because of non-network ESSID.\n",
5450 print_ssid(ssid, network->ssid,
5451 network->ssid_len),
5452 network->bssid);
5453 return 0;
5454 }
5455 } else {
5456 /* If an ESSID has been configured then compare the broadcast
5457 * ESSID to ours */
5458 if ((priv->config & CFG_STATIC_ESSID) &&
5459 ((network->ssid_len != priv->essid_len) ||
5460 memcmp(network->ssid, priv->essid,
5461 min(network->ssid_len, priv->essid_len)))) {
5462 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5463
5464 strncpy(escaped,
5465 print_ssid(ssid, network->ssid,
5466 network->ssid_len),
5467 sizeof(escaped));
5468 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5469 "because of ESSID mismatch: '%s'.\n",
5470 escaped, network->bssid,
5471 print_ssid(ssid, priv->essid,
5472 priv->essid_len));
5473 return 0;
5474 }
5475 }
5476
5477 /* If the old network rate is better than this one, don't bother
5478 * testing everything else. */
5479
5480 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5481 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5482 "current network.\n",
5483 print_ssid(ssid, match->network->ssid,
5484 match->network->ssid_len));
5485 return 0;
5486 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5487 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5488 "current network.\n",
5489 print_ssid(ssid, match->network->ssid,
5490 match->network->ssid_len));
5491 return 0;
5492 }
5493
5494 /* Now go through and see if the requested network is valid... */
5495 if (priv->ieee->scan_age != 0 &&
5496 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5497 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5498 "because of age: %ums.\n",
5499 print_ssid(ssid, network->ssid,
5500 network->ssid_len),
5501 network->bssid,
5502 jiffies_to_msecs(jiffies -
5503 network->last_scanned));
5504 return 0;
5505 }
5506
5507 if ((priv->config & CFG_STATIC_CHANNEL) &&
5508 (network->channel != priv->channel)) {
5509 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5510 "because of channel mismatch: %d != %d.\n",
5511 print_ssid(ssid, network->ssid,
5512 network->ssid_len),
5513 network->bssid,
5514 network->channel, priv->channel);
5515 return 0;
5516 }
5517
5518 /* Verify privacy compatability */
5519 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5520 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5521 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5522 "because of privacy mismatch: %s != %s.\n",
5523 print_ssid(ssid, network->ssid,
5524 network->ssid_len),
5525 network->bssid,
5526 priv->
5527 capability & CAP_PRIVACY_ON ? "on" : "off",
5528 network->
5529 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5530 "off");
5531 return 0;
5532 }
5533
5534 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5535 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5536 "because of the same BSSID match: %pM"
5537 ".\n", print_ssid(ssid, network->ssid,
5538 network->ssid_len),
5539 network->bssid,
5540 priv->bssid);
5541 return 0;
5542 }
5543
5544 /* Filter out any incompatible freq / mode combinations */
5545 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5546 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5547 "because of invalid frequency/mode "
5548 "combination.\n",
5549 print_ssid(ssid, network->ssid,
5550 network->ssid_len),
5551 network->bssid);
5552 return 0;
5553 }
5554
5555 /* Ensure that the rates supported by the driver are compatible with
5556 * this AP, including verification of basic rates (mandatory) */
5557 if (!ipw_compatible_rates(priv, network, &rates)) {
5558 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5559 "because configured rate mask excludes "
5560 "AP mandatory rate.\n",
5561 print_ssid(ssid, network->ssid,
5562 network->ssid_len),
5563 network->bssid);
5564 return 0;
5565 }
5566
5567 if (rates.num_rates == 0) {
5568 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5569 "because of no compatible rates.\n",
5570 print_ssid(ssid, network->ssid,
5571 network->ssid_len),
5572 network->bssid);
5573 return 0;
5574 }
5575
5576 /* TODO: Perform any further minimal comparititive tests. We do not
5577 * want to put too much policy logic here; intelligent scan selection
5578 * should occur within a generic IEEE 802.11 user space tool. */
5579
5580 /* Set up 'new' AP to this network */
5581 ipw_copy_rates(&match->rates, &rates);
5582 match->network = network;
5583 IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5584 print_ssid(ssid, network->ssid, network->ssid_len),
5585 network->bssid);
5586
5587 return 1;
5588}
5589
5590static void ipw_merge_adhoc_network(struct work_struct *work)
5591{
5592 DECLARE_SSID_BUF(ssid);
5593 struct ipw_priv *priv =
5594 container_of(work, struct ipw_priv, merge_networks);
5595 struct ieee80211_network *network = NULL;
5596 struct ipw_network_match match = {
5597 .network = priv->assoc_network
5598 };
5599
5600 if ((priv->status & STATUS_ASSOCIATED) &&
5601 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5602 /* First pass through ROAM process -- look for a better
5603 * network */
5604 unsigned long flags;
5605
5606 spin_lock_irqsave(&priv->ieee->lock, flags);
5607 list_for_each_entry(network, &priv->ieee->network_list, list) {
5608 if (network != priv->assoc_network)
5609 ipw_find_adhoc_network(priv, &match, network,
5610 1);
5611 }
5612 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5613
5614 if (match.network == priv->assoc_network) {
5615 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5616 "merge to.\n");
5617 return;
5618 }
5619
5620 mutex_lock(&priv->mutex);
5621 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5622 IPW_DEBUG_MERGE("remove network %s\n",
5623 print_ssid(ssid, priv->essid,
5624 priv->essid_len));
5625 ipw_remove_current_network(priv);
5626 }
5627
5628 ipw_disassociate(priv);
5629 priv->assoc_network = match.network;
5630 mutex_unlock(&priv->mutex);
5631 return;
5632 }
5633}
5634
5635static int ipw_best_network(struct ipw_priv *priv,
5636 struct ipw_network_match *match,
5637 struct ieee80211_network *network, int roaming)
5638{
5639 struct ipw_supported_rates rates;
5640 DECLARE_SSID_BUF(ssid);
5641
5642 /* Verify that this network's capability is compatible with the
5643 * current mode (AdHoc or Infrastructure) */
5644 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5645 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5646 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5647 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5648 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5649 "capability mismatch.\n",
5650 print_ssid(ssid, network->ssid,
5651 network->ssid_len),
5652 network->bssid);
5653 return 0;
5654 }
5655
5656 if (unlikely(roaming)) {
5657 /* If we are roaming, then ensure check if this is a valid
5658 * network to try and roam to */
5659 if ((network->ssid_len != match->network->ssid_len) ||
5660 memcmp(network->ssid, match->network->ssid,
5661 network->ssid_len)) {
5662 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5663 "because of non-network ESSID.\n",
5664 print_ssid(ssid, network->ssid,
5665 network->ssid_len),
5666 network->bssid);
5667 return 0;
5668 }
5669 } else {
5670 /* If an ESSID has been configured then compare the broadcast
5671 * ESSID to ours */
5672 if ((priv->config & CFG_STATIC_ESSID) &&
5673 ((network->ssid_len != priv->essid_len) ||
5674 memcmp(network->ssid, priv->essid,
5675 min(network->ssid_len, priv->essid_len)))) {
5676 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5677 strncpy(escaped,
5678 print_ssid(ssid, network->ssid,
5679 network->ssid_len),
5680 sizeof(escaped));
5681 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5682 "because of ESSID mismatch: '%s'.\n",
5683 escaped, network->bssid,
5684 print_ssid(ssid, priv->essid,
5685 priv->essid_len));
5686 return 0;
5687 }
5688 }
5689
5690 /* If the old network rate is better than this one, don't bother
5691 * testing everything else. */
5692 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5693 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5694 strncpy(escaped,
5695 print_ssid(ssid, network->ssid, network->ssid_len),
5696 sizeof(escaped));
5697 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5698 "'%s (%pM)' has a stronger signal.\n",
5699 escaped, network->bssid,
5700 print_ssid(ssid, match->network->ssid,
5701 match->network->ssid_len),
5702 match->network->bssid);
5703 return 0;
5704 }
5705
5706 /* If this network has already had an association attempt within the
5707 * last 3 seconds, do not try and associate again... */
5708 if (network->last_associate &&
5709 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5710 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5711 "because of storming (%ums since last "
5712 "assoc attempt).\n",
5713 print_ssid(ssid, network->ssid,
5714 network->ssid_len),
5715 network->bssid,
5716 jiffies_to_msecs(jiffies -
5717 network->last_associate));
5718 return 0;
5719 }
5720
5721 /* Now go through and see if the requested network is valid... */
5722 if (priv->ieee->scan_age != 0 &&
5723 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5724 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5725 "because of age: %ums.\n",
5726 print_ssid(ssid, network->ssid,
5727 network->ssid_len),
5728 network->bssid,
5729 jiffies_to_msecs(jiffies -
5730 network->last_scanned));
5731 return 0;
5732 }
5733
5734 if ((priv->config & CFG_STATIC_CHANNEL) &&
5735 (network->channel != priv->channel)) {
5736 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5737 "because of channel mismatch: %d != %d.\n",
5738 print_ssid(ssid, network->ssid,
5739 network->ssid_len),
5740 network->bssid,
5741 network->channel, priv->channel);
5742 return 0;
5743 }
5744
5745 /* Verify privacy compatability */
5746 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5747 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5748 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5749 "because of privacy mismatch: %s != %s.\n",
5750 print_ssid(ssid, network->ssid,
5751 network->ssid_len),
5752 network->bssid,
5753 priv->capability & CAP_PRIVACY_ON ? "on" :
5754 "off",
5755 network->capability &
5756 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5757 return 0;
5758 }
5759
5760 if ((priv->config & CFG_STATIC_BSSID) &&
5761 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5762 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5763 "because of BSSID mismatch: %pM.\n",
5764 print_ssid(ssid, network->ssid,
5765 network->ssid_len),
5766 network->bssid, priv->bssid);
5767 return 0;
5768 }
5769
5770 /* Filter out any incompatible freq / mode combinations */
5771 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5772 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5773 "because of invalid frequency/mode "
5774 "combination.\n",
5775 print_ssid(ssid, network->ssid,
5776 network->ssid_len),
5777 network->bssid);
5778 return 0;
5779 }
5780
5781 /* Filter out invalid channel in current GEO */
5782 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5783 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5784 "because of invalid channel in current GEO\n",
5785 print_ssid(ssid, network->ssid,
5786 network->ssid_len),
5787 network->bssid);
5788 return 0;
5789 }
5790
5791 /* Ensure that the rates supported by the driver are compatible with
5792 * this AP, including verification of basic rates (mandatory) */
5793 if (!ipw_compatible_rates(priv, network, &rates)) {
5794 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5795 "because configured rate mask excludes "
5796 "AP mandatory rate.\n",
5797 print_ssid(ssid, network->ssid,
5798 network->ssid_len),
5799 network->bssid);
5800 return 0;
5801 }
5802
5803 if (rates.num_rates == 0) {
5804 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5805 "because of no compatible rates.\n",
5806 print_ssid(ssid, network->ssid,
5807 network->ssid_len),
5808 network->bssid);
5809 return 0;
5810 }
5811
5812 /* TODO: Perform any further minimal comparititive tests. We do not
5813 * want to put too much policy logic here; intelligent scan selection
5814 * should occur within a generic IEEE 802.11 user space tool. */
5815
5816 /* Set up 'new' AP to this network */
5817 ipw_copy_rates(&match->rates, &rates);
5818 match->network = network;
5819
5820 IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5821 print_ssid(ssid, network->ssid, network->ssid_len),
5822 network->bssid);
5823
5824 return 1;
5825}
5826
5827static void ipw_adhoc_create(struct ipw_priv *priv,
5828 struct ieee80211_network *network)
5829{
5830 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5831 int i;
5832
5833 /*
5834 * For the purposes of scanning, we can set our wireless mode
5835 * to trigger scans across combinations of bands, but when it
5836 * comes to creating a new ad-hoc network, we have tell the FW
5837 * exactly which band to use.
5838 *
5839 * We also have the possibility of an invalid channel for the
5840 * chossen band. Attempting to create a new ad-hoc network
5841 * with an invalid channel for wireless mode will trigger a
5842 * FW fatal error.
5843 *
5844 */
5845 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5846 case IEEE80211_52GHZ_BAND:
5847 network->mode = IEEE_A;
5848 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5849 BUG_ON(i == -1);
5850 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5851 IPW_WARNING("Overriding invalid channel\n");
5852 priv->channel = geo->a[0].channel;
5853 }
5854 break;
5855
5856 case IEEE80211_24GHZ_BAND:
5857 if (priv->ieee->mode & IEEE_G)
5858 network->mode = IEEE_G;
5859 else
5860 network->mode = IEEE_B;
5861 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5862 BUG_ON(i == -1);
5863 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5864 IPW_WARNING("Overriding invalid channel\n");
5865 priv->channel = geo->bg[0].channel;
5866 }
5867 break;
5868
5869 default:
5870 IPW_WARNING("Overriding invalid channel\n");
5871 if (priv->ieee->mode & IEEE_A) {
5872 network->mode = IEEE_A;
5873 priv->channel = geo->a[0].channel;
5874 } else if (priv->ieee->mode & IEEE_G) {
5875 network->mode = IEEE_G;
5876 priv->channel = geo->bg[0].channel;
5877 } else {
5878 network->mode = IEEE_B;
5879 priv->channel = geo->bg[0].channel;
5880 }
5881 break;
5882 }
5883
5884 network->channel = priv->channel;
5885 priv->config |= CFG_ADHOC_PERSIST;
5886 ipw_create_bssid(priv, network->bssid);
5887 network->ssid_len = priv->essid_len;
5888 memcpy(network->ssid, priv->essid, priv->essid_len);
5889 memset(&network->stats, 0, sizeof(network->stats));
5890 network->capability = WLAN_CAPABILITY_IBSS;
5891 if (!(priv->config & CFG_PREAMBLE_LONG))
5892 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5893 if (priv->capability & CAP_PRIVACY_ON)
5894 network->capability |= WLAN_CAPABILITY_PRIVACY;
5895 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5896 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5897 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5898 memcpy(network->rates_ex,
5899 &priv->rates.supported_rates[network->rates_len],
5900 network->rates_ex_len);
5901 network->last_scanned = 0;
5902 network->flags = 0;
5903 network->last_associate = 0;
5904 network->time_stamp[0] = 0;
5905 network->time_stamp[1] = 0;
5906 network->beacon_interval = 100; /* Default */
5907 network->listen_interval = 10; /* Default */
5908 network->atim_window = 0; /* Default */
5909 network->wpa_ie_len = 0;
5910 network->rsn_ie_len = 0;
5911}
5912
5913static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5914{
5915 struct ipw_tgi_tx_key key;
5916
5917 if (!(priv->ieee->sec.flags & (1 << index)))
5918 return;
5919
5920 key.key_id = index;
5921 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5922 key.security_type = type;
5923 key.station_index = 0; /* always 0 for BSS */
5924 key.flags = 0;
5925 /* 0 for new key; previous value of counter (after fatal error) */
5926 key.tx_counter[0] = cpu_to_le32(0);
5927 key.tx_counter[1] = cpu_to_le32(0);
5928
5929 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5930}
5931
5932static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5933{
5934 struct ipw_wep_key key;
5935 int i;
5936
5937 key.cmd_id = DINO_CMD_WEP_KEY;
5938 key.seq_num = 0;
5939
5940 /* Note: AES keys cannot be set for multiple times.
5941 * Only set it at the first time. */
5942 for (i = 0; i < 4; i++) {
5943 key.key_index = i | type;
5944 if (!(priv->ieee->sec.flags & (1 << i))) {
5945 key.key_size = 0;
5946 continue;
5947 }
5948
5949 key.key_size = priv->ieee->sec.key_sizes[i];
5950 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5951
5952 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5953 }
5954}
5955
5956static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5957{
5958 if (priv->ieee->host_encrypt)
5959 return;
5960
5961 switch (level) {
5962 case SEC_LEVEL_3:
5963 priv->sys_config.disable_unicast_decryption = 0;
5964 priv->ieee->host_decrypt = 0;
5965 break;
5966 case SEC_LEVEL_2:
5967 priv->sys_config.disable_unicast_decryption = 1;
5968 priv->ieee->host_decrypt = 1;
5969 break;
5970 case SEC_LEVEL_1:
5971 priv->sys_config.disable_unicast_decryption = 0;
5972 priv->ieee->host_decrypt = 0;
5973 break;
5974 case SEC_LEVEL_0:
5975 priv->sys_config.disable_unicast_decryption = 1;
5976 break;
5977 default:
5978 break;
5979 }
5980}
5981
5982static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5983{
5984 if (priv->ieee->host_encrypt)
5985 return;
5986
5987 switch (level) {
5988 case SEC_LEVEL_3:
5989 priv->sys_config.disable_multicast_decryption = 0;
5990 break;
5991 case SEC_LEVEL_2:
5992 priv->sys_config.disable_multicast_decryption = 1;
5993 break;
5994 case SEC_LEVEL_1:
5995 priv->sys_config.disable_multicast_decryption = 0;
5996 break;
5997 case SEC_LEVEL_0:
5998 priv->sys_config.disable_multicast_decryption = 1;
5999 break;
6000 default:
6001 break;
6002 }
6003}
6004
6005static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6006{
6007 switch (priv->ieee->sec.level) {
6008 case SEC_LEVEL_3:
6009 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6010 ipw_send_tgi_tx_key(priv,
6011 DCT_FLAG_EXT_SECURITY_CCM,
6012 priv->ieee->sec.active_key);
6013
6014 if (!priv->ieee->host_mc_decrypt)
6015 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6016 break;
6017 case SEC_LEVEL_2:
6018 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6019 ipw_send_tgi_tx_key(priv,
6020 DCT_FLAG_EXT_SECURITY_TKIP,
6021 priv->ieee->sec.active_key);
6022 break;
6023 case SEC_LEVEL_1:
6024 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6025 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6026 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6027 break;
6028 case SEC_LEVEL_0:
6029 default:
6030 break;
6031 }
6032}
6033
6034static void ipw_adhoc_check(void *data)
6035{
6036 struct ipw_priv *priv = data;
6037
6038 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6039 !(priv->config & CFG_ADHOC_PERSIST)) {
6040 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6041 IPW_DL_STATE | IPW_DL_ASSOC,
6042 "Missed beacon: %d - disassociate\n",
6043 priv->missed_adhoc_beacons);
6044 ipw_remove_current_network(priv);
6045 ipw_disassociate(priv);
6046 return;
6047 }
6048
6049 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6050 le16_to_cpu(priv->assoc_request.beacon_interval));
6051}
6052
6053static void ipw_bg_adhoc_check(struct work_struct *work)
6054{
6055 struct ipw_priv *priv =
6056 container_of(work, struct ipw_priv, adhoc_check.work);
6057 mutex_lock(&priv->mutex);
6058 ipw_adhoc_check(priv);
6059 mutex_unlock(&priv->mutex);
6060}
6061
6062static void ipw_debug_config(struct ipw_priv *priv)
6063{
6064 DECLARE_SSID_BUF(ssid);
6065 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6066 "[CFG 0x%08X]\n", priv->config);
6067 if (priv->config & CFG_STATIC_CHANNEL)
6068 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6069 else
6070 IPW_DEBUG_INFO("Channel unlocked.\n");
6071 if (priv->config & CFG_STATIC_ESSID)
6072 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6073 print_ssid(ssid, priv->essid, priv->essid_len));
6074 else
6075 IPW_DEBUG_INFO("ESSID unlocked.\n");
6076 if (priv->config & CFG_STATIC_BSSID)
6077 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6078 else
6079 IPW_DEBUG_INFO("BSSID unlocked.\n");
6080 if (priv->capability & CAP_PRIVACY_ON)
6081 IPW_DEBUG_INFO("PRIVACY on\n");
6082 else
6083 IPW_DEBUG_INFO("PRIVACY off\n");
6084 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6085}
6086
6087static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6088{
6089 /* TODO: Verify that this works... */
6090 struct ipw_fixed_rate fr = {
6091 .tx_rates = priv->rates_mask
6092 };
6093 u32 reg;
6094 u16 mask = 0;
6095
6096 /* Identify 'current FW band' and match it with the fixed
6097 * Tx rates */
6098
6099 switch (priv->ieee->freq_band) {
6100 case IEEE80211_52GHZ_BAND: /* A only */
6101 /* IEEE_A */
6102 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6103 /* Invalid fixed rate mask */
6104 IPW_DEBUG_WX
6105 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6106 fr.tx_rates = 0;
6107 break;
6108 }
6109
6110 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6111 break;
6112
6113 default: /* 2.4Ghz or Mixed */
6114 /* IEEE_B */
6115 if (mode == IEEE_B) {
6116 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6117 /* Invalid fixed rate mask */
6118 IPW_DEBUG_WX
6119 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6120 fr.tx_rates = 0;
6121 }
6122 break;
6123 }
6124
6125 /* IEEE_G */
6126 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6127 IEEE80211_OFDM_RATES_MASK)) {
6128 /* Invalid fixed rate mask */
6129 IPW_DEBUG_WX
6130 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6131 fr.tx_rates = 0;
6132 break;
6133 }
6134
6135 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6136 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6137 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6138 }
6139
6140 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6141 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6142 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6143 }
6144
6145 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6146 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6147 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6148 }
6149
6150 fr.tx_rates |= mask;
6151 break;
6152 }
6153
6154 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6155 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6156}
6157
6158static void ipw_abort_scan(struct ipw_priv *priv)
6159{
6160 int err;
6161
6162 if (priv->status & STATUS_SCAN_ABORTING) {
6163 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6164 return;
6165 }
6166 priv->status |= STATUS_SCAN_ABORTING;
6167
6168 err = ipw_send_scan_abort(priv);
6169 if (err)
6170 IPW_DEBUG_HC("Request to abort scan failed.\n");
6171}
6172
6173static void ipw_add_scan_channels(struct ipw_priv *priv,
6174 struct ipw_scan_request_ext *scan,
6175 int scan_type)
6176{
6177 int channel_index = 0;
6178 const struct ieee80211_geo *geo;
6179 int i;
6180
6181 geo = ieee80211_get_geo(priv->ieee);
6182
6183 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6184 int start = channel_index;
6185 for (i = 0; i < geo->a_channels; i++) {
6186 if ((priv->status & STATUS_ASSOCIATED) &&
6187 geo->a[i].channel == priv->channel)
6188 continue;
6189 channel_index++;
6190 scan->channels_list[channel_index] = geo->a[i].channel;
6191 ipw_set_scan_type(scan, channel_index,
6192 geo->a[i].
6193 flags & IEEE80211_CH_PASSIVE_ONLY ?
6194 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6195 scan_type);
6196 }
6197
6198 if (start != channel_index) {
6199 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6200 (channel_index - start);
6201 channel_index++;
6202 }
6203 }
6204
6205 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6206 int start = channel_index;
6207 if (priv->config & CFG_SPEED_SCAN) {
6208 int index;
6209 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6210 /* nop out the list */
6211 [0] = 0
6212 };
6213
6214 u8 channel;
6215 while (channel_index < IPW_SCAN_CHANNELS) {
6216 channel =
6217 priv->speed_scan[priv->speed_scan_pos];
6218 if (channel == 0) {
6219 priv->speed_scan_pos = 0;
6220 channel = priv->speed_scan[0];
6221 }
6222 if ((priv->status & STATUS_ASSOCIATED) &&
6223 channel == priv->channel) {
6224 priv->speed_scan_pos++;
6225 continue;
6226 }
6227
6228 /* If this channel has already been
6229 * added in scan, break from loop
6230 * and this will be the first channel
6231 * in the next scan.
6232 */
6233 if (channels[channel - 1] != 0)
6234 break;
6235
6236 channels[channel - 1] = 1;
6237 priv->speed_scan_pos++;
6238 channel_index++;
6239 scan->channels_list[channel_index] = channel;
6240 index =
6241 ieee80211_channel_to_index(priv->ieee, channel);
6242 ipw_set_scan_type(scan, channel_index,
6243 geo->bg[index].
6244 flags &
6245 IEEE80211_CH_PASSIVE_ONLY ?
6246 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6247 : scan_type);
6248 }
6249 } else {
6250 for (i = 0; i < geo->bg_channels; i++) {
6251 if ((priv->status & STATUS_ASSOCIATED) &&
6252 geo->bg[i].channel == priv->channel)
6253 continue;
6254 channel_index++;
6255 scan->channels_list[channel_index] =
6256 geo->bg[i].channel;
6257 ipw_set_scan_type(scan, channel_index,
6258 geo->bg[i].
6259 flags &
6260 IEEE80211_CH_PASSIVE_ONLY ?
6261 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6262 : scan_type);
6263 }
6264 }
6265
6266 if (start != channel_index) {
6267 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6268 (channel_index - start);
6269 }
6270 }
6271}
6272
6273static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6274{
6275 struct ipw_scan_request_ext scan;
6276 int err = 0, scan_type;
6277
6278 if (!(priv->status & STATUS_INIT) ||
6279 (priv->status & STATUS_EXIT_PENDING))
6280 return 0;
6281
6282 mutex_lock(&priv->mutex);
6283
6284 if (direct && (priv->direct_scan_ssid_len == 0)) {
6285 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6286 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6287 goto done;
6288 }
6289
6290 if (priv->status & STATUS_SCANNING) {
6291 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6292 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6293 STATUS_SCAN_PENDING;
6294 goto done;
6295 }
6296
6297 if (!(priv->status & STATUS_SCAN_FORCED) &&
6298 priv->status & STATUS_SCAN_ABORTING) {
6299 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6300 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6301 STATUS_SCAN_PENDING;
6302 goto done;
6303 }
6304
6305 if (priv->status & STATUS_RF_KILL_MASK) {
6306 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6307 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6308 STATUS_SCAN_PENDING;
6309 goto done;
6310 }
6311
6312 memset(&scan, 0, sizeof(scan));
6313 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6314
6315 if (type == IW_SCAN_TYPE_PASSIVE) {
6316 IPW_DEBUG_WX("use passive scanning\n");
6317 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6318 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6319 cpu_to_le16(120);
6320 ipw_add_scan_channels(priv, &scan, scan_type);
6321 goto send_request;
6322 }
6323
6324 /* Use active scan by default. */
6325 if (priv->config & CFG_SPEED_SCAN)
6326 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6327 cpu_to_le16(30);
6328 else
6329 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6330 cpu_to_le16(20);
6331
6332 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6333 cpu_to_le16(20);
6334
6335 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6336 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6337
6338#ifdef CONFIG_IPW2200_MONITOR
6339 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6340 u8 channel;
6341 u8 band = 0;
6342
6343 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6344 case IEEE80211_52GHZ_BAND:
6345 band = (u8) (IPW_A_MODE << 6) | 1;
6346 channel = priv->channel;
6347 break;
6348
6349 case IEEE80211_24GHZ_BAND:
6350 band = (u8) (IPW_B_MODE << 6) | 1;
6351 channel = priv->channel;
6352 break;
6353
6354 default:
6355 band = (u8) (IPW_B_MODE << 6) | 1;
6356 channel = 9;
6357 break;
6358 }
6359
6360 scan.channels_list[0] = band;
6361 scan.channels_list[1] = channel;
6362 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6363
6364 /* NOTE: The card will sit on this channel for this time
6365 * period. Scan aborts are timing sensitive and frequently
6366 * result in firmware restarts. As such, it is best to
6367 * set a small dwell_time here and just keep re-issuing
6368 * scans. Otherwise fast channel hopping will not actually
6369 * hop channels.
6370 *
6371 * TODO: Move SPEED SCAN support to all modes and bands */
6372 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6373 cpu_to_le16(2000);
6374 } else {
6375#endif /* CONFIG_IPW2200_MONITOR */
6376 /* Honor direct scans first, otherwise if we are roaming make
6377 * this a direct scan for the current network. Finally,
6378 * ensure that every other scan is a fast channel hop scan */
6379 if (direct) {
6380 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6381 priv->direct_scan_ssid_len);
6382 if (err) {
6383 IPW_DEBUG_HC("Attempt to send SSID command "
6384 "failed\n");
6385 goto done;
6386 }
6387
6388 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6389 } else if ((priv->status & STATUS_ROAMING)
6390 || (!(priv->status & STATUS_ASSOCIATED)
6391 && (priv->config & CFG_STATIC_ESSID)
6392 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6393 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6394 if (err) {
6395 IPW_DEBUG_HC("Attempt to send SSID command "
6396 "failed.\n");
6397 goto done;
6398 }
6399
6400 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6401 } else
6402 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6403
6404 ipw_add_scan_channels(priv, &scan, scan_type);
6405#ifdef CONFIG_IPW2200_MONITOR
6406 }
6407#endif
6408
6409send_request:
6410 err = ipw_send_scan_request_ext(priv, &scan);
6411 if (err) {
6412 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6413 goto done;
6414 }
6415
6416 priv->status |= STATUS_SCANNING;
6417 if (direct) {
6418 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6419 priv->direct_scan_ssid_len = 0;
6420 } else
6421 priv->status &= ~STATUS_SCAN_PENDING;
6422
6423 queue_delayed_work(priv->workqueue, &priv->scan_check,
6424 IPW_SCAN_CHECK_WATCHDOG);
6425done:
6426 mutex_unlock(&priv->mutex);
6427 return err;
6428}
6429
6430static void ipw_request_passive_scan(struct work_struct *work)
6431{
6432 struct ipw_priv *priv =
6433 container_of(work, struct ipw_priv, request_passive_scan.work);
6434 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6435}
6436
6437static void ipw_request_scan(struct work_struct *work)
6438{
6439 struct ipw_priv *priv =
6440 container_of(work, struct ipw_priv, request_scan.work);
6441 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6442}
6443
6444static void ipw_request_direct_scan(struct work_struct *work)
6445{
6446 struct ipw_priv *priv =
6447 container_of(work, struct ipw_priv, request_direct_scan.work);
6448 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6449}
6450
6451static void ipw_bg_abort_scan(struct work_struct *work)
6452{
6453 struct ipw_priv *priv =
6454 container_of(work, struct ipw_priv, abort_scan);
6455 mutex_lock(&priv->mutex);
6456 ipw_abort_scan(priv);
6457 mutex_unlock(&priv->mutex);
6458}
6459
6460static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6461{
6462 /* This is called when wpa_supplicant loads and closes the driver
6463 * interface. */
6464 priv->ieee->wpa_enabled = value;
6465 return 0;
6466}
6467
6468static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6469{
6470 struct ieee80211_device *ieee = priv->ieee;
6471 struct ieee80211_security sec = {
6472 .flags = SEC_AUTH_MODE,
6473 };
6474 int ret = 0;
6475
6476 if (value & IW_AUTH_ALG_SHARED_KEY) {
6477 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6478 ieee->open_wep = 0;
6479 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6480 sec.auth_mode = WLAN_AUTH_OPEN;
6481 ieee->open_wep = 1;
6482 } else if (value & IW_AUTH_ALG_LEAP) {
6483 sec.auth_mode = WLAN_AUTH_LEAP;
6484 ieee->open_wep = 1;
6485 } else
6486 return -EINVAL;
6487
6488 if (ieee->set_security)
6489 ieee->set_security(ieee->dev, &sec);
6490 else
6491 ret = -EOPNOTSUPP;
6492
6493 return ret;
6494}
6495
6496static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6497 int wpa_ie_len)
6498{
6499 /* make sure WPA is enabled */
6500 ipw_wpa_enable(priv, 1);
6501}
6502
6503static int ipw_set_rsn_capa(struct ipw_priv *priv,
6504 char *capabilities, int length)
6505{
6506 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6507
6508 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6509 capabilities);
6510}
6511
6512/*
6513 * WE-18 support
6514 */
6515
6516/* SIOCSIWGENIE */
6517static int ipw_wx_set_genie(struct net_device *dev,
6518 struct iw_request_info *info,
6519 union iwreq_data *wrqu, char *extra)
6520{
6521 struct ipw_priv *priv = ieee80211_priv(dev);
6522 struct ieee80211_device *ieee = priv->ieee;
6523 u8 *buf;
6524 int err = 0;
6525
6526 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6527 (wrqu->data.length && extra == NULL))
6528 return -EINVAL;
6529
6530 if (wrqu->data.length) {
6531 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6532 if (buf == NULL) {
6533 err = -ENOMEM;
6534 goto out;
6535 }
6536
6537 memcpy(buf, extra, wrqu->data.length);
6538 kfree(ieee->wpa_ie);
6539 ieee->wpa_ie = buf;
6540 ieee->wpa_ie_len = wrqu->data.length;
6541 } else {
6542 kfree(ieee->wpa_ie);
6543 ieee->wpa_ie = NULL;
6544 ieee->wpa_ie_len = 0;
6545 }
6546
6547 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6548 out:
6549 return err;
6550}
6551
6552/* SIOCGIWGENIE */
6553static int ipw_wx_get_genie(struct net_device *dev,
6554 struct iw_request_info *info,
6555 union iwreq_data *wrqu, char *extra)
6556{
6557 struct ipw_priv *priv = ieee80211_priv(dev);
6558 struct ieee80211_device *ieee = priv->ieee;
6559 int err = 0;
6560
6561 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6562 wrqu->data.length = 0;
6563 goto out;
6564 }
6565
6566 if (wrqu->data.length < ieee->wpa_ie_len) {
6567 err = -E2BIG;
6568 goto out;
6569 }
6570
6571 wrqu->data.length = ieee->wpa_ie_len;
6572 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6573
6574 out:
6575 return err;
6576}
6577
6578static int wext_cipher2level(int cipher)
6579{
6580 switch (cipher) {
6581 case IW_AUTH_CIPHER_NONE:
6582 return SEC_LEVEL_0;
6583 case IW_AUTH_CIPHER_WEP40:
6584 case IW_AUTH_CIPHER_WEP104:
6585 return SEC_LEVEL_1;
6586 case IW_AUTH_CIPHER_TKIP:
6587 return SEC_LEVEL_2;
6588 case IW_AUTH_CIPHER_CCMP:
6589 return SEC_LEVEL_3;
6590 default:
6591 return -1;
6592 }
6593}
6594
6595/* SIOCSIWAUTH */
6596static int ipw_wx_set_auth(struct net_device *dev,
6597 struct iw_request_info *info,
6598 union iwreq_data *wrqu, char *extra)
6599{
6600 struct ipw_priv *priv = ieee80211_priv(dev);
6601 struct ieee80211_device *ieee = priv->ieee;
6602 struct iw_param *param = &wrqu->param;
6603 struct lib80211_crypt_data *crypt;
6604 unsigned long flags;
6605 int ret = 0;
6606
6607 switch (param->flags & IW_AUTH_INDEX) {
6608 case IW_AUTH_WPA_VERSION:
6609 break;
6610 case IW_AUTH_CIPHER_PAIRWISE:
6611 ipw_set_hw_decrypt_unicast(priv,
6612 wext_cipher2level(param->value));
6613 break;
6614 case IW_AUTH_CIPHER_GROUP:
6615 ipw_set_hw_decrypt_multicast(priv,
6616 wext_cipher2level(param->value));
6617 break;
6618 case IW_AUTH_KEY_MGMT:
6619 /*
6620 * ipw2200 does not use these parameters
6621 */
6622 break;
6623
6624 case IW_AUTH_TKIP_COUNTERMEASURES:
6625 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6626 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6627 break;
6628
6629 flags = crypt->ops->get_flags(crypt->priv);
6630
6631 if (param->value)
6632 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6633 else
6634 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6635
6636 crypt->ops->set_flags(flags, crypt->priv);
6637
6638 break;
6639
6640 case IW_AUTH_DROP_UNENCRYPTED:{
6641 /* HACK:
6642 *
6643 * wpa_supplicant calls set_wpa_enabled when the driver
6644 * is loaded and unloaded, regardless of if WPA is being
6645 * used. No other calls are made which can be used to
6646 * determine if encryption will be used or not prior to
6647 * association being expected. If encryption is not being
6648 * used, drop_unencrypted is set to false, else true -- we
6649 * can use this to determine if the CAP_PRIVACY_ON bit should
6650 * be set.
6651 */
6652 struct ieee80211_security sec = {
6653 .flags = SEC_ENABLED,
6654 .enabled = param->value,
6655 };
6656 priv->ieee->drop_unencrypted = param->value;
6657 /* We only change SEC_LEVEL for open mode. Others
6658 * are set by ipw_wpa_set_encryption.
6659 */
6660 if (!param->value) {
6661 sec.flags |= SEC_LEVEL;
6662 sec.level = SEC_LEVEL_0;
6663 } else {
6664 sec.flags |= SEC_LEVEL;
6665 sec.level = SEC_LEVEL_1;
6666 }
6667 if (priv->ieee->set_security)
6668 priv->ieee->set_security(priv->ieee->dev, &sec);
6669 break;
6670 }
6671
6672 case IW_AUTH_80211_AUTH_ALG:
6673 ret = ipw_wpa_set_auth_algs(priv, param->value);
6674 break;
6675
6676 case IW_AUTH_WPA_ENABLED:
6677 ret = ipw_wpa_enable(priv, param->value);
6678 ipw_disassociate(priv);
6679 break;
6680
6681 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6682 ieee->ieee802_1x = param->value;
6683 break;
6684
6685 case IW_AUTH_PRIVACY_INVOKED:
6686 ieee->privacy_invoked = param->value;
6687 break;
6688
6689 default:
6690 return -EOPNOTSUPP;
6691 }
6692 return ret;
6693}
6694
6695/* SIOCGIWAUTH */
6696static int ipw_wx_get_auth(struct net_device *dev,
6697 struct iw_request_info *info,
6698 union iwreq_data *wrqu, char *extra)
6699{
6700 struct ipw_priv *priv = ieee80211_priv(dev);
6701 struct ieee80211_device *ieee = priv->ieee;
6702 struct lib80211_crypt_data *crypt;
6703 struct iw_param *param = &wrqu->param;
6704 int ret = 0;
6705
6706 switch (param->flags & IW_AUTH_INDEX) {
6707 case IW_AUTH_WPA_VERSION:
6708 case IW_AUTH_CIPHER_PAIRWISE:
6709 case IW_AUTH_CIPHER_GROUP:
6710 case IW_AUTH_KEY_MGMT:
6711 /*
6712 * wpa_supplicant will control these internally
6713 */
6714 ret = -EOPNOTSUPP;
6715 break;
6716
6717 case IW_AUTH_TKIP_COUNTERMEASURES:
6718 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6719 if (!crypt || !crypt->ops->get_flags)
6720 break;
6721
6722 param->value = (crypt->ops->get_flags(crypt->priv) &
6723 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6724
6725 break;
6726
6727 case IW_AUTH_DROP_UNENCRYPTED:
6728 param->value = ieee->drop_unencrypted;
6729 break;
6730
6731 case IW_AUTH_80211_AUTH_ALG:
6732 param->value = ieee->sec.auth_mode;
6733 break;
6734
6735 case IW_AUTH_WPA_ENABLED:
6736 param->value = ieee->wpa_enabled;
6737 break;
6738
6739 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6740 param->value = ieee->ieee802_1x;
6741 break;
6742
6743 case IW_AUTH_ROAMING_CONTROL:
6744 case IW_AUTH_PRIVACY_INVOKED:
6745 param->value = ieee->privacy_invoked;
6746 break;
6747
6748 default:
6749 return -EOPNOTSUPP;
6750 }
6751 return 0;
6752}
6753
6754/* SIOCSIWENCODEEXT */
6755static int ipw_wx_set_encodeext(struct net_device *dev,
6756 struct iw_request_info *info,
6757 union iwreq_data *wrqu, char *extra)
6758{
6759 struct ipw_priv *priv = ieee80211_priv(dev);
6760 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6761
6762 if (hwcrypto) {
6763 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6764 /* IPW HW can't build TKIP MIC,
6765 host decryption still needed */
6766 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6767 priv->ieee->host_mc_decrypt = 1;
6768 else {
6769 priv->ieee->host_encrypt = 0;
6770 priv->ieee->host_encrypt_msdu = 1;
6771 priv->ieee->host_decrypt = 1;
6772 }
6773 } else {
6774 priv->ieee->host_encrypt = 0;
6775 priv->ieee->host_encrypt_msdu = 0;
6776 priv->ieee->host_decrypt = 0;
6777 priv->ieee->host_mc_decrypt = 0;
6778 }
6779 }
6780
6781 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6782}
6783
6784/* SIOCGIWENCODEEXT */
6785static int ipw_wx_get_encodeext(struct net_device *dev,
6786 struct iw_request_info *info,
6787 union iwreq_data *wrqu, char *extra)
6788{
6789 struct ipw_priv *priv = ieee80211_priv(dev);
6790 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6791}
6792
6793/* SIOCSIWMLME */
6794static int ipw_wx_set_mlme(struct net_device *dev,
6795 struct iw_request_info *info,
6796 union iwreq_data *wrqu, char *extra)
6797{
6798 struct ipw_priv *priv = ieee80211_priv(dev);
6799 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6800 __le16 reason;
6801
6802 reason = cpu_to_le16(mlme->reason_code);
6803
6804 switch (mlme->cmd) {
6805 case IW_MLME_DEAUTH:
6806 /* silently ignore */
6807 break;
6808
6809 case IW_MLME_DISASSOC:
6810 ipw_disassociate(priv);
6811 break;
6812
6813 default:
6814 return -EOPNOTSUPP;
6815 }
6816 return 0;
6817}
6818
6819#ifdef CONFIG_IPW2200_QOS
6820
6821/* QoS */
6822/*
6823* get the modulation type of the current network or
6824* the card current mode
6825*/
6826static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6827{
6828 u8 mode = 0;
6829
6830 if (priv->status & STATUS_ASSOCIATED) {
6831 unsigned long flags;
6832
6833 spin_lock_irqsave(&priv->ieee->lock, flags);
6834 mode = priv->assoc_network->mode;
6835 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6836 } else {
6837 mode = priv->ieee->mode;
6838 }
6839 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6840 return mode;
6841}
6842
6843/*
6844* Handle management frame beacon and probe response
6845*/
6846static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6847 int active_network,
6848 struct ieee80211_network *network)
6849{
6850 u32 size = sizeof(struct ieee80211_qos_parameters);
6851
6852 if (network->capability & WLAN_CAPABILITY_IBSS)
6853 network->qos_data.active = network->qos_data.supported;
6854
6855 if (network->flags & NETWORK_HAS_QOS_MASK) {
6856 if (active_network &&
6857 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6858 network->qos_data.active = network->qos_data.supported;
6859
6860 if ((network->qos_data.active == 1) && (active_network == 1) &&
6861 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6862 (network->qos_data.old_param_count !=
6863 network->qos_data.param_count)) {
6864 network->qos_data.old_param_count =
6865 network->qos_data.param_count;
6866 schedule_work(&priv->qos_activate);
6867 IPW_DEBUG_QOS("QoS parameters change call "
6868 "qos_activate\n");
6869 }
6870 } else {
6871 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6872 memcpy(&network->qos_data.parameters,
6873 &def_parameters_CCK, size);
6874 else
6875 memcpy(&network->qos_data.parameters,
6876 &def_parameters_OFDM, size);
6877
6878 if ((network->qos_data.active == 1) && (active_network == 1)) {
6879 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6880 schedule_work(&priv->qos_activate);
6881 }
6882
6883 network->qos_data.active = 0;
6884 network->qos_data.supported = 0;
6885 }
6886 if ((priv->status & STATUS_ASSOCIATED) &&
6887 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6888 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6889 if (network->capability & WLAN_CAPABILITY_IBSS)
6890 if ((network->ssid_len ==
6891 priv->assoc_network->ssid_len) &&
6892 !memcmp(network->ssid,
6893 priv->assoc_network->ssid,
6894 network->ssid_len)) {
6895 queue_work(priv->workqueue,
6896 &priv->merge_networks);
6897 }
6898 }
6899
6900 return 0;
6901}
6902
6903/*
6904* This function set up the firmware to support QoS. It sends
6905* IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6906*/
6907static int ipw_qos_activate(struct ipw_priv *priv,
6908 struct ieee80211_qos_data *qos_network_data)
6909{
6910 int err;
6911 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6912 struct ieee80211_qos_parameters *active_one = NULL;
6913 u32 size = sizeof(struct ieee80211_qos_parameters);
6914 u32 burst_duration;
6915 int i;
6916 u8 type;
6917
6918 type = ipw_qos_current_mode(priv);
6919
6920 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6921 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6922 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6923 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6924
6925 if (qos_network_data == NULL) {
6926 if (type == IEEE_B) {
6927 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6928 active_one = &def_parameters_CCK;
6929 } else
6930 active_one = &def_parameters_OFDM;
6931
6932 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6933 burst_duration = ipw_qos_get_burst_duration(priv);
6934 for (i = 0; i < QOS_QUEUE_NUM; i++)
6935 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6936 cpu_to_le16(burst_duration);
6937 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6938 if (type == IEEE_B) {
6939 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6940 type);
6941 if (priv->qos_data.qos_enable == 0)
6942 active_one = &def_parameters_CCK;
6943 else
6944 active_one = priv->qos_data.def_qos_parm_CCK;
6945 } else {
6946 if (priv->qos_data.qos_enable == 0)
6947 active_one = &def_parameters_OFDM;
6948 else
6949 active_one = priv->qos_data.def_qos_parm_OFDM;
6950 }
6951 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6952 } else {
6953 unsigned long flags;
6954 int active;
6955
6956 spin_lock_irqsave(&priv->ieee->lock, flags);
6957 active_one = &(qos_network_data->parameters);
6958 qos_network_data->old_param_count =
6959 qos_network_data->param_count;
6960 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6961 active = qos_network_data->supported;
6962 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6963
6964 if (active == 0) {
6965 burst_duration = ipw_qos_get_burst_duration(priv);
6966 for (i = 0; i < QOS_QUEUE_NUM; i++)
6967 qos_parameters[QOS_PARAM_SET_ACTIVE].
6968 tx_op_limit[i] = cpu_to_le16(burst_duration);
6969 }
6970 }
6971
6972 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6973 err = ipw_send_qos_params_command(priv,
6974 (struct ieee80211_qos_parameters *)
6975 &(qos_parameters[0]));
6976 if (err)
6977 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6978
6979 return err;
6980}
6981
6982/*
6983* send IPW_CMD_WME_INFO to the firmware
6984*/
6985static int ipw_qos_set_info_element(struct ipw_priv *priv)
6986{
6987 int ret = 0;
6988 struct ieee80211_qos_information_element qos_info;
6989
6990 if (priv == NULL)
6991 return -1;
6992
6993 qos_info.elementID = QOS_ELEMENT_ID;
6994 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6995
6996 qos_info.version = QOS_VERSION_1;
6997 qos_info.ac_info = 0;
6998
6999 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7000 qos_info.qui_type = QOS_OUI_TYPE;
7001 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7002
7003 ret = ipw_send_qos_info_command(priv, &qos_info);
7004 if (ret != 0) {
7005 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7006 }
7007 return ret;
7008}
7009
7010/*
7011* Set the QoS parameter with the association request structure
7012*/
7013static int ipw_qos_association(struct ipw_priv *priv,
7014 struct ieee80211_network *network)
7015{
7016 int err = 0;
7017 struct ieee80211_qos_data *qos_data = NULL;
7018 struct ieee80211_qos_data ibss_data = {
7019 .supported = 1,
7020 .active = 1,
7021 };
7022
7023 switch (priv->ieee->iw_mode) {
7024 case IW_MODE_ADHOC:
7025 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7026
7027 qos_data = &ibss_data;
7028 break;
7029
7030 case IW_MODE_INFRA:
7031 qos_data = &network->qos_data;
7032 break;
7033
7034 default:
7035 BUG();
7036 break;
7037 }
7038
7039 err = ipw_qos_activate(priv, qos_data);
7040 if (err) {
7041 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7042 return err;
7043 }
7044
7045 if (priv->qos_data.qos_enable && qos_data->supported) {
7046 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7047 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7048 return ipw_qos_set_info_element(priv);
7049 }
7050
7051 return 0;
7052}
7053
7054/*
7055* handling the beaconing responses. if we get different QoS setting
7056* off the network from the associated setting, adjust the QoS
7057* setting
7058*/
7059static int ipw_qos_association_resp(struct ipw_priv *priv,
7060 struct ieee80211_network *network)
7061{
7062 int ret = 0;
7063 unsigned long flags;
7064 u32 size = sizeof(struct ieee80211_qos_parameters);
7065 int set_qos_param = 0;
7066
7067 if ((priv == NULL) || (network == NULL) ||
7068 (priv->assoc_network == NULL))
7069 return ret;
7070
7071 if (!(priv->status & STATUS_ASSOCIATED))
7072 return ret;
7073
7074 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7075 return ret;
7076
7077 spin_lock_irqsave(&priv->ieee->lock, flags);
7078 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7079 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7080 sizeof(struct ieee80211_qos_data));
7081 priv->assoc_network->qos_data.active = 1;
7082 if ((network->qos_data.old_param_count !=
7083 network->qos_data.param_count)) {
7084 set_qos_param = 1;
7085 network->qos_data.old_param_count =
7086 network->qos_data.param_count;
7087 }
7088
7089 } else {
7090 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7091 memcpy(&priv->assoc_network->qos_data.parameters,
7092 &def_parameters_CCK, size);
7093 else
7094 memcpy(&priv->assoc_network->qos_data.parameters,
7095 &def_parameters_OFDM, size);
7096 priv->assoc_network->qos_data.active = 0;
7097 priv->assoc_network->qos_data.supported = 0;
7098 set_qos_param = 1;
7099 }
7100
7101 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7102
7103 if (set_qos_param == 1)
7104 schedule_work(&priv->qos_activate);
7105
7106 return ret;
7107}
7108
7109static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7110{
7111 u32 ret = 0;
7112
7113 if ((priv == NULL))
7114 return 0;
7115
7116 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7117 ret = priv->qos_data.burst_duration_CCK;
7118 else
7119 ret = priv->qos_data.burst_duration_OFDM;
7120
7121 return ret;
7122}
7123
7124/*
7125* Initialize the setting of QoS global
7126*/
7127static void ipw_qos_init(struct ipw_priv *priv, int enable,
7128 int burst_enable, u32 burst_duration_CCK,
7129 u32 burst_duration_OFDM)
7130{
7131 priv->qos_data.qos_enable = enable;
7132
7133 if (priv->qos_data.qos_enable) {
7134 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7135 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7136 IPW_DEBUG_QOS("QoS is enabled\n");
7137 } else {
7138 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7139 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7140 IPW_DEBUG_QOS("QoS is not enabled\n");
7141 }
7142
7143 priv->qos_data.burst_enable = burst_enable;
7144
7145 if (burst_enable) {
7146 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7147 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7148 } else {
7149 priv->qos_data.burst_duration_CCK = 0;
7150 priv->qos_data.burst_duration_OFDM = 0;
7151 }
7152}
7153
7154/*
7155* map the packet priority to the right TX Queue
7156*/
7157static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7158{
7159 if (priority > 7 || !priv->qos_data.qos_enable)
7160 priority = 0;
7161
7162 return from_priority_to_tx_queue[priority] - 1;
7163}
7164
7165static int ipw_is_qos_active(struct net_device *dev,
7166 struct sk_buff *skb)
7167{
7168 struct ipw_priv *priv = ieee80211_priv(dev);
7169 struct ieee80211_qos_data *qos_data = NULL;
7170 int active, supported;
7171 u8 *daddr = skb->data + ETH_ALEN;
7172 int unicast = !is_multicast_ether_addr(daddr);
7173
7174 if (!(priv->status & STATUS_ASSOCIATED))
7175 return 0;
7176
7177 qos_data = &priv->assoc_network->qos_data;
7178
7179 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7180 if (unicast == 0)
7181 qos_data->active = 0;
7182 else
7183 qos_data->active = qos_data->supported;
7184 }
7185 active = qos_data->active;
7186 supported = qos_data->supported;
7187 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7188 "unicast %d\n",
7189 priv->qos_data.qos_enable, active, supported, unicast);
7190 if (active && priv->qos_data.qos_enable)
7191 return 1;
7192
7193 return 0;
7194
7195}
7196/*
7197* add QoS parameter to the TX command
7198*/
7199static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7200 u16 priority,
7201 struct tfd_data *tfd)
7202{
7203 int tx_queue_id = 0;
7204
7205
7206 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7207 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7208
7209 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7210 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7211 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7212 }
7213 return 0;
7214}
7215
7216/*
7217* background support to run QoS activate functionality
7218*/
7219static void ipw_bg_qos_activate(struct work_struct *work)
7220{
7221 struct ipw_priv *priv =
7222 container_of(work, struct ipw_priv, qos_activate);
7223
7224 if (priv == NULL)
7225 return;
7226
7227 mutex_lock(&priv->mutex);
7228
7229 if (priv->status & STATUS_ASSOCIATED)
7230 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7231
7232 mutex_unlock(&priv->mutex);
7233}
7234
7235static int ipw_handle_probe_response(struct net_device *dev,
7236 struct ieee80211_probe_response *resp,
7237 struct ieee80211_network *network)
7238{
7239 struct ipw_priv *priv = ieee80211_priv(dev);
7240 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7241 (network == priv->assoc_network));
7242
7243 ipw_qos_handle_probe_response(priv, active_network, network);
7244
7245 return 0;
7246}
7247
7248static int ipw_handle_beacon(struct net_device *dev,
7249 struct ieee80211_beacon *resp,
7250 struct ieee80211_network *network)
7251{
7252 struct ipw_priv *priv = ieee80211_priv(dev);
7253 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7254 (network == priv->assoc_network));
7255
7256 ipw_qos_handle_probe_response(priv, active_network, network);
7257
7258 return 0;
7259}
7260
7261static int ipw_handle_assoc_response(struct net_device *dev,
7262 struct ieee80211_assoc_response *resp,
7263 struct ieee80211_network *network)
7264{
7265 struct ipw_priv *priv = ieee80211_priv(dev);
7266 ipw_qos_association_resp(priv, network);
7267 return 0;
7268}
7269
7270static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7271 *qos_param)
7272{
7273 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7274 sizeof(*qos_param) * 3, qos_param);
7275}
7276
7277static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7278 *qos_param)
7279{
7280 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7281 qos_param);
7282}
7283
7284#endif /* CONFIG_IPW2200_QOS */
7285
7286static int ipw_associate_network(struct ipw_priv *priv,
7287 struct ieee80211_network *network,
7288 struct ipw_supported_rates *rates, int roaming)
7289{
7290 int err;
7291 DECLARE_SSID_BUF(ssid);
7292
7293 if (priv->config & CFG_FIXED_RATE)
7294 ipw_set_fixed_rate(priv, network->mode);
7295
7296 if (!(priv->config & CFG_STATIC_ESSID)) {
7297 priv->essid_len = min(network->ssid_len,
7298 (u8) IW_ESSID_MAX_SIZE);
7299 memcpy(priv->essid, network->ssid, priv->essid_len);
7300 }
7301
7302 network->last_associate = jiffies;
7303
7304 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7305 priv->assoc_request.channel = network->channel;
7306 priv->assoc_request.auth_key = 0;
7307
7308 if ((priv->capability & CAP_PRIVACY_ON) &&
7309 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7310 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7311 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7312
7313 if (priv->ieee->sec.level == SEC_LEVEL_1)
7314 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7315
7316 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7317 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7318 priv->assoc_request.auth_type = AUTH_LEAP;
7319 else
7320 priv->assoc_request.auth_type = AUTH_OPEN;
7321
7322 if (priv->ieee->wpa_ie_len) {
7323 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7324 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7325 priv->ieee->wpa_ie_len);
7326 }
7327
7328 /*
7329 * It is valid for our ieee device to support multiple modes, but
7330 * when it comes to associating to a given network we have to choose
7331 * just one mode.
7332 */
7333 if (network->mode & priv->ieee->mode & IEEE_A)
7334 priv->assoc_request.ieee_mode = IPW_A_MODE;
7335 else if (network->mode & priv->ieee->mode & IEEE_G)
7336 priv->assoc_request.ieee_mode = IPW_G_MODE;
7337 else if (network->mode & priv->ieee->mode & IEEE_B)
7338 priv->assoc_request.ieee_mode = IPW_B_MODE;
7339
7340 priv->assoc_request.capability = cpu_to_le16(network->capability);
7341 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7342 && !(priv->config & CFG_PREAMBLE_LONG)) {
7343 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7344 } else {
7345 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7346
7347 /* Clear the short preamble if we won't be supporting it */
7348 priv->assoc_request.capability &=
7349 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7350 }
7351
7352 /* Clear capability bits that aren't used in Ad Hoc */
7353 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7354 priv->assoc_request.capability &=
7355 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7356
7357 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7358 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7359 roaming ? "Rea" : "A",
7360 print_ssid(ssid, priv->essid, priv->essid_len),
7361 network->channel,
7362 ipw_modes[priv->assoc_request.ieee_mode],
7363 rates->num_rates,
7364 (priv->assoc_request.preamble_length ==
7365 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7366 network->capability &
7367 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7368 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7369 priv->capability & CAP_PRIVACY_ON ?
7370 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7371 "(open)") : "",
7372 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7373 priv->capability & CAP_PRIVACY_ON ?
7374 '1' + priv->ieee->sec.active_key : '.',
7375 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7376
7377 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7378 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7379 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7380 priv->assoc_request.assoc_type = HC_IBSS_START;
7381 priv->assoc_request.assoc_tsf_msw = 0;
7382 priv->assoc_request.assoc_tsf_lsw = 0;
7383 } else {
7384 if (unlikely(roaming))
7385 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7386 else
7387 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7388 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7389 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7390 }
7391
7392 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7393
7394 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7395 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7396 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7397 } else {
7398 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7399 priv->assoc_request.atim_window = 0;
7400 }
7401
7402 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7403
7404 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7405 if (err) {
7406 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7407 return err;
7408 }
7409
7410 rates->ieee_mode = priv->assoc_request.ieee_mode;
7411 rates->purpose = IPW_RATE_CONNECT;
7412 ipw_send_supported_rates(priv, rates);
7413
7414 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7415 priv->sys_config.dot11g_auto_detection = 1;
7416 else
7417 priv->sys_config.dot11g_auto_detection = 0;
7418
7419 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7420 priv->sys_config.answer_broadcast_ssid_probe = 1;
7421 else
7422 priv->sys_config.answer_broadcast_ssid_probe = 0;
7423
7424 err = ipw_send_system_config(priv);
7425 if (err) {
7426 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7427 return err;
7428 }
7429
7430 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7431 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7432 if (err) {
7433 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7434 return err;
7435 }
7436
7437 /*
7438 * If preemption is enabled, it is possible for the association
7439 * to complete before we return from ipw_send_associate. Therefore
7440 * we have to be sure and update our priviate data first.
7441 */
7442 priv->channel = network->channel;
7443 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7444 priv->status |= STATUS_ASSOCIATING;
7445 priv->status &= ~STATUS_SECURITY_UPDATED;
7446
7447 priv->assoc_network = network;
7448
7449#ifdef CONFIG_IPW2200_QOS
7450 ipw_qos_association(priv, network);
7451#endif
7452
7453 err = ipw_send_associate(priv, &priv->assoc_request);
7454 if (err) {
7455 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7456 return err;
7457 }
7458
7459 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM \n",
7460 print_ssid(ssid, priv->essid, priv->essid_len),
7461 priv->bssid);
7462
7463 return 0;
7464}
7465
7466static void ipw_roam(void *data)
7467{
7468 struct ipw_priv *priv = data;
7469 struct ieee80211_network *network = NULL;
7470 struct ipw_network_match match = {
7471 .network = priv->assoc_network
7472 };
7473
7474 /* The roaming process is as follows:
7475 *
7476 * 1. Missed beacon threshold triggers the roaming process by
7477 * setting the status ROAM bit and requesting a scan.
7478 * 2. When the scan completes, it schedules the ROAM work
7479 * 3. The ROAM work looks at all of the known networks for one that
7480 * is a better network than the currently associated. If none
7481 * found, the ROAM process is over (ROAM bit cleared)
7482 * 4. If a better network is found, a disassociation request is
7483 * sent.
7484 * 5. When the disassociation completes, the roam work is again
7485 * scheduled. The second time through, the driver is no longer
7486 * associated, and the newly selected network is sent an
7487 * association request.
7488 * 6. At this point ,the roaming process is complete and the ROAM
7489 * status bit is cleared.
7490 */
7491
7492 /* If we are no longer associated, and the roaming bit is no longer
7493 * set, then we are not actively roaming, so just return */
7494 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7495 return;
7496
7497 if (priv->status & STATUS_ASSOCIATED) {
7498 /* First pass through ROAM process -- look for a better
7499 * network */
7500 unsigned long flags;
7501 u8 rssi = priv->assoc_network->stats.rssi;
7502 priv->assoc_network->stats.rssi = -128;
7503 spin_lock_irqsave(&priv->ieee->lock, flags);
7504 list_for_each_entry(network, &priv->ieee->network_list, list) {
7505 if (network != priv->assoc_network)
7506 ipw_best_network(priv, &match, network, 1);
7507 }
7508 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7509 priv->assoc_network->stats.rssi = rssi;
7510
7511 if (match.network == priv->assoc_network) {
7512 IPW_DEBUG_ASSOC("No better APs in this network to "
7513 "roam to.\n");
7514 priv->status &= ~STATUS_ROAMING;
7515 ipw_debug_config(priv);
7516 return;
7517 }
7518
7519 ipw_send_disassociate(priv, 1);
7520 priv->assoc_network = match.network;
7521
7522 return;
7523 }
7524
7525 /* Second pass through ROAM process -- request association */
7526 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7527 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7528 priv->status &= ~STATUS_ROAMING;
7529}
7530
7531static void ipw_bg_roam(struct work_struct *work)
7532{
7533 struct ipw_priv *priv =
7534 container_of(work, struct ipw_priv, roam);
7535 mutex_lock(&priv->mutex);
7536 ipw_roam(priv);
7537 mutex_unlock(&priv->mutex);
7538}
7539
7540static int ipw_associate(void *data)
7541{
7542 struct ipw_priv *priv = data;
7543
7544 struct ieee80211_network *network = NULL;
7545 struct ipw_network_match match = {
7546 .network = NULL
7547 };
7548 struct ipw_supported_rates *rates;
7549 struct list_head *element;
7550 unsigned long flags;
7551 DECLARE_SSID_BUF(ssid);
7552
7553 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7554 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7555 return 0;
7556 }
7557
7558 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7559 IPW_DEBUG_ASSOC("Not attempting association (already in "
7560 "progress)\n");
7561 return 0;
7562 }
7563
7564 if (priv->status & STATUS_DISASSOCIATING) {
7565 IPW_DEBUG_ASSOC("Not attempting association (in "
7566 "disassociating)\n ");
7567 queue_work(priv->workqueue, &priv->associate);
7568 return 0;
7569 }
7570
7571 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7572 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7573 "initialized)\n");
7574 return 0;
7575 }
7576
7577 if (!(priv->config & CFG_ASSOCIATE) &&
7578 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7579 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7580 return 0;
7581 }
7582
7583 /* Protect our use of the network_list */
7584 spin_lock_irqsave(&priv->ieee->lock, flags);
7585 list_for_each_entry(network, &priv->ieee->network_list, list)
7586 ipw_best_network(priv, &match, network, 0);
7587
7588 network = match.network;
7589 rates = &match.rates;
7590
7591 if (network == NULL &&
7592 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7593 priv->config & CFG_ADHOC_CREATE &&
7594 priv->config & CFG_STATIC_ESSID &&
7595 priv->config & CFG_STATIC_CHANNEL) {
7596 /* Use oldest network if the free list is empty */
7597 if (list_empty(&priv->ieee->network_free_list)) {
7598 struct ieee80211_network *oldest = NULL;
7599 struct ieee80211_network *target;
7600
7601 list_for_each_entry(target, &priv->ieee->network_list, list) {
7602 if ((oldest == NULL) ||
7603 (target->last_scanned < oldest->last_scanned))
7604 oldest = target;
7605 }
7606
7607 /* If there are no more slots, expire the oldest */
7608 list_del(&oldest->list);
7609 target = oldest;
7610 IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7611 "network list.\n",
7612 print_ssid(ssid, target->ssid,
7613 target->ssid_len),
7614 target->bssid);
7615 list_add_tail(&target->list,
7616 &priv->ieee->network_free_list);
7617 }
7618
7619 element = priv->ieee->network_free_list.next;
7620 network = list_entry(element, struct ieee80211_network, list);
7621 ipw_adhoc_create(priv, network);
7622 rates = &priv->rates;
7623 list_del(element);
7624 list_add_tail(&network->list, &priv->ieee->network_list);
7625 }
7626 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7627
7628 /* If we reached the end of the list, then we don't have any valid
7629 * matching APs */
7630 if (!network) {
7631 ipw_debug_config(priv);
7632
7633 if (!(priv->status & STATUS_SCANNING)) {
7634 if (!(priv->config & CFG_SPEED_SCAN))
7635 queue_delayed_work(priv->workqueue,
7636 &priv->request_scan,
7637 SCAN_INTERVAL);
7638 else
7639 queue_delayed_work(priv->workqueue,
7640 &priv->request_scan, 0);
7641 }
7642
7643 return 0;
7644 }
7645
7646 ipw_associate_network(priv, network, rates, 0);
7647
7648 return 1;
7649}
7650
7651static void ipw_bg_associate(struct work_struct *work)
7652{
7653 struct ipw_priv *priv =
7654 container_of(work, struct ipw_priv, associate);
7655 mutex_lock(&priv->mutex);
7656 ipw_associate(priv);
7657 mutex_unlock(&priv->mutex);
7658}
7659
7660static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7661 struct sk_buff *skb)
7662{
7663 struct ieee80211_hdr *hdr;
7664 u16 fc;
7665
7666 hdr = (struct ieee80211_hdr *)skb->data;
7667 fc = le16_to_cpu(hdr->frame_control);
7668 if (!(fc & IEEE80211_FCTL_PROTECTED))
7669 return;
7670
7671 fc &= ~IEEE80211_FCTL_PROTECTED;
7672 hdr->frame_control = cpu_to_le16(fc);
7673 switch (priv->ieee->sec.level) {
7674 case SEC_LEVEL_3:
7675 /* Remove CCMP HDR */
7676 memmove(skb->data + IEEE80211_3ADDR_LEN,
7677 skb->data + IEEE80211_3ADDR_LEN + 8,
7678 skb->len - IEEE80211_3ADDR_LEN - 8);
7679 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7680 break;
7681 case SEC_LEVEL_2:
7682 break;
7683 case SEC_LEVEL_1:
7684 /* Remove IV */
7685 memmove(skb->data + IEEE80211_3ADDR_LEN,
7686 skb->data + IEEE80211_3ADDR_LEN + 4,
7687 skb->len - IEEE80211_3ADDR_LEN - 4);
7688 skb_trim(skb, skb->len - 8); /* IV + ICV */
7689 break;
7690 case SEC_LEVEL_0:
7691 break;
7692 default:
7693 printk(KERN_ERR "Unknow security level %d\n",
7694 priv->ieee->sec.level);
7695 break;
7696 }
7697}
7698
7699static void ipw_handle_data_packet(struct ipw_priv *priv,
7700 struct ipw_rx_mem_buffer *rxb,
7701 struct ieee80211_rx_stats *stats)
7702{
7703 struct ieee80211_hdr_4addr *hdr;
7704 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7705
7706 /* We received data from the HW, so stop the watchdog */
7707 priv->net_dev->trans_start = jiffies;
7708
7709 /* We only process data packets if the
7710 * interface is open */
7711 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7712 skb_tailroom(rxb->skb))) {
7713 priv->ieee->stats.rx_errors++;
7714 priv->wstats.discard.misc++;
7715 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7716 return;
7717 } else if (unlikely(!netif_running(priv->net_dev))) {
7718 priv->ieee->stats.rx_dropped++;
7719 priv->wstats.discard.misc++;
7720 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7721 return;
7722 }
7723
7724 /* Advance skb->data to the start of the actual payload */
7725 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7726
7727 /* Set the size of the skb to the size of the frame */
7728 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7729
7730 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7731
7732 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7733 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7734 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7735 (is_multicast_ether_addr(hdr->addr1) ?
7736 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7737 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7738
7739 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7740 priv->ieee->stats.rx_errors++;
7741 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7742 rxb->skb = NULL;
7743 __ipw_led_activity_on(priv);
7744 }
7745}
7746
7747#ifdef CONFIG_IPW2200_RADIOTAP
7748static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7749 struct ipw_rx_mem_buffer *rxb,
7750 struct ieee80211_rx_stats *stats)
7751{
7752 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7753 struct ipw_rx_frame *frame = &pkt->u.frame;
7754
7755 /* initial pull of some data */
7756 u16 received_channel = frame->received_channel;
7757 u8 antennaAndPhy = frame->antennaAndPhy;
7758 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7759 u16 pktrate = frame->rate;
7760
7761 /* Magic struct that slots into the radiotap header -- no reason
7762 * to build this manually element by element, we can write it much
7763 * more efficiently than we can parse it. ORDER MATTERS HERE */
7764 struct ipw_rt_hdr *ipw_rt;
7765
7766 short len = le16_to_cpu(pkt->u.frame.length);
7767
7768 /* We received data from the HW, so stop the watchdog */
7769 priv->net_dev->trans_start = jiffies;
7770
7771 /* We only process data packets if the
7772 * interface is open */
7773 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7774 skb_tailroom(rxb->skb))) {
7775 priv->ieee->stats.rx_errors++;
7776 priv->wstats.discard.misc++;
7777 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7778 return;
7779 } else if (unlikely(!netif_running(priv->net_dev))) {
7780 priv->ieee->stats.rx_dropped++;
7781 priv->wstats.discard.misc++;
7782 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7783 return;
7784 }
7785
7786 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7787 * that now */
7788 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7789 /* FIXME: Should alloc bigger skb instead */
7790 priv->ieee->stats.rx_dropped++;
7791 priv->wstats.discard.misc++;
7792 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7793 return;
7794 }
7795
7796 /* copy the frame itself */
7797 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7798 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7799
7800 /* Zero the radiotap static buffer ... We only need to zero the bytes NOT
7801 * part of our real header, saves a little time.
7802 *
7803 * No longer necessary since we fill in all our data. Purge before merging
7804 * patch officially.
7805 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7806 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7807 */
7808
7809 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7810
7811 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7812 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7813 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7814
7815 /* Big bitfield of all the fields we provide in radiotap */
7816 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7817 (1 << IEEE80211_RADIOTAP_TSFT) |
7818 (1 << IEEE80211_RADIOTAP_FLAGS) |
7819 (1 << IEEE80211_RADIOTAP_RATE) |
7820 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7821 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7822 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7823 (1 << IEEE80211_RADIOTAP_ANTENNA));
7824
7825 /* Zero the flags, we'll add to them as we go */
7826 ipw_rt->rt_flags = 0;
7827 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7828 frame->parent_tsf[2] << 16 |
7829 frame->parent_tsf[1] << 8 |
7830 frame->parent_tsf[0]);
7831
7832 /* Convert signal to DBM */
7833 ipw_rt->rt_dbmsignal = antsignal;
7834 ipw_rt->rt_dbmnoise = frame->noise;
7835
7836 /* Convert the channel data and set the flags */
7837 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7838 if (received_channel > 14) { /* 802.11a */
7839 ipw_rt->rt_chbitmask =
7840 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7841 } else if (antennaAndPhy & 32) { /* 802.11b */
7842 ipw_rt->rt_chbitmask =
7843 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7844 } else { /* 802.11g */
7845 ipw_rt->rt_chbitmask =
7846 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7847 }
7848
7849 /* set the rate in multiples of 500k/s */
7850 switch (pktrate) {
7851 case IPW_TX_RATE_1MB:
7852 ipw_rt->rt_rate = 2;
7853 break;
7854 case IPW_TX_RATE_2MB:
7855 ipw_rt->rt_rate = 4;
7856 break;
7857 case IPW_TX_RATE_5MB:
7858 ipw_rt->rt_rate = 10;
7859 break;
7860 case IPW_TX_RATE_6MB:
7861 ipw_rt->rt_rate = 12;
7862 break;
7863 case IPW_TX_RATE_9MB:
7864 ipw_rt->rt_rate = 18;
7865 break;
7866 case IPW_TX_RATE_11MB:
7867 ipw_rt->rt_rate = 22;
7868 break;
7869 case IPW_TX_RATE_12MB:
7870 ipw_rt->rt_rate = 24;
7871 break;
7872 case IPW_TX_RATE_18MB:
7873 ipw_rt->rt_rate = 36;
7874 break;
7875 case IPW_TX_RATE_24MB:
7876 ipw_rt->rt_rate = 48;
7877 break;
7878 case IPW_TX_RATE_36MB:
7879 ipw_rt->rt_rate = 72;
7880 break;
7881 case IPW_TX_RATE_48MB:
7882 ipw_rt->rt_rate = 96;
7883 break;
7884 case IPW_TX_RATE_54MB:
7885 ipw_rt->rt_rate = 108;
7886 break;
7887 default:
7888 ipw_rt->rt_rate = 0;
7889 break;
7890 }
7891
7892 /* antenna number */
7893 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7894
7895 /* set the preamble flag if we have it */
7896 if ((antennaAndPhy & 64))
7897 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7898
7899 /* Set the size of the skb to the size of the frame */
7900 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7901
7902 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7903
7904 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7905 priv->ieee->stats.rx_errors++;
7906 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7907 rxb->skb = NULL;
7908 /* no LED during capture */
7909 }
7910}
7911#endif
7912
7913#ifdef CONFIG_IPW2200_PROMISCUOUS
7914#define ieee80211_is_probe_response(fc) \
7915 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7916 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7917
7918#define ieee80211_is_management(fc) \
7919 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7920
7921#define ieee80211_is_control(fc) \
7922 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7923
7924#define ieee80211_is_data(fc) \
7925 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7926
7927#define ieee80211_is_assoc_request(fc) \
7928 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7929
7930#define ieee80211_is_reassoc_request(fc) \
7931 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7932
7933static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7934 struct ipw_rx_mem_buffer *rxb,
7935 struct ieee80211_rx_stats *stats)
7936{
7937 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7938 struct ipw_rx_frame *frame = &pkt->u.frame;
7939 struct ipw_rt_hdr *ipw_rt;
7940
7941 /* First cache any information we need before we overwrite
7942 * the information provided in the skb from the hardware */
7943 struct ieee80211_hdr *hdr;
7944 u16 channel = frame->received_channel;
7945 u8 phy_flags = frame->antennaAndPhy;
7946 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7947 s8 noise = frame->noise;
7948 u8 rate = frame->rate;
7949 short len = le16_to_cpu(pkt->u.frame.length);
7950 struct sk_buff *skb;
7951 int hdr_only = 0;
7952 u16 filter = priv->prom_priv->filter;
7953
7954 /* If the filter is set to not include Rx frames then return */
7955 if (filter & IPW_PROM_NO_RX)
7956 return;
7957
7958 /* We received data from the HW, so stop the watchdog */
7959 priv->prom_net_dev->trans_start = jiffies;
7960
7961 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7962 priv->prom_priv->ieee->stats.rx_errors++;
7963 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7964 return;
7965 }
7966
7967 /* We only process data packets if the interface is open */
7968 if (unlikely(!netif_running(priv->prom_net_dev))) {
7969 priv->prom_priv->ieee->stats.rx_dropped++;
7970 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7971 return;
7972 }
7973
7974 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7975 * that now */
7976 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7977 /* FIXME: Should alloc bigger skb instead */
7978 priv->prom_priv->ieee->stats.rx_dropped++;
7979 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7980 return;
7981 }
7982
7983 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7984 if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
7985 if (filter & IPW_PROM_NO_MGMT)
7986 return;
7987 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7988 hdr_only = 1;
7989 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
7990 if (filter & IPW_PROM_NO_CTL)
7991 return;
7992 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7993 hdr_only = 1;
7994 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
7995 if (filter & IPW_PROM_NO_DATA)
7996 return;
7997 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7998 hdr_only = 1;
7999 }
8000
8001 /* Copy the SKB since this is for the promiscuous side */
8002 skb = skb_copy(rxb->skb, GFP_ATOMIC);
8003 if (skb == NULL) {
8004 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8005 return;
8006 }
8007
8008 /* copy the frame data to write after where the radiotap header goes */
8009 ipw_rt = (void *)skb->data;
8010
8011 if (hdr_only)
8012 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
8013
8014 memcpy(ipw_rt->payload, hdr, len);
8015
8016 /* Zero the radiotap static buffer ... We only need to zero the bytes
8017 * NOT part of our real header, saves a little time.
8018 *
8019 * No longer necessary since we fill in all our data. Purge before
8020 * merging patch officially.
8021 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
8022 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
8023 */
8024
8025 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8026 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
8027 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
8028
8029 /* Set the size of the skb to the size of the frame */
8030 skb_put(skb, sizeof(*ipw_rt) + len);
8031
8032 /* Big bitfield of all the fields we provide in radiotap */
8033 ipw_rt->rt_hdr.it_present = cpu_to_le32(
8034 (1 << IEEE80211_RADIOTAP_TSFT) |
8035 (1 << IEEE80211_RADIOTAP_FLAGS) |
8036 (1 << IEEE80211_RADIOTAP_RATE) |
8037 (1 << IEEE80211_RADIOTAP_CHANNEL) |
8038 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8039 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8040 (1 << IEEE80211_RADIOTAP_ANTENNA));
8041
8042 /* Zero the flags, we'll add to them as we go */
8043 ipw_rt->rt_flags = 0;
8044 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8045 frame->parent_tsf[2] << 16 |
8046 frame->parent_tsf[1] << 8 |
8047 frame->parent_tsf[0]);
8048
8049 /* Convert to DBM */
8050 ipw_rt->rt_dbmsignal = signal;
8051 ipw_rt->rt_dbmnoise = noise;
8052
8053 /* Convert the channel data and set the flags */
8054 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8055 if (channel > 14) { /* 802.11a */
8056 ipw_rt->rt_chbitmask =
8057 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8058 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8059 ipw_rt->rt_chbitmask =
8060 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8061 } else { /* 802.11g */
8062 ipw_rt->rt_chbitmask =
8063 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8064 }
8065
8066 /* set the rate in multiples of 500k/s */
8067 switch (rate) {
8068 case IPW_TX_RATE_1MB:
8069 ipw_rt->rt_rate = 2;
8070 break;
8071 case IPW_TX_RATE_2MB:
8072 ipw_rt->rt_rate = 4;
8073 break;
8074 case IPW_TX_RATE_5MB:
8075 ipw_rt->rt_rate = 10;
8076 break;
8077 case IPW_TX_RATE_6MB:
8078 ipw_rt->rt_rate = 12;
8079 break;
8080 case IPW_TX_RATE_9MB:
8081 ipw_rt->rt_rate = 18;
8082 break;
8083 case IPW_TX_RATE_11MB:
8084 ipw_rt->rt_rate = 22;
8085 break;
8086 case IPW_TX_RATE_12MB:
8087 ipw_rt->rt_rate = 24;
8088 break;
8089 case IPW_TX_RATE_18MB:
8090 ipw_rt->rt_rate = 36;
8091 break;
8092 case IPW_TX_RATE_24MB:
8093 ipw_rt->rt_rate = 48;
8094 break;
8095 case IPW_TX_RATE_36MB:
8096 ipw_rt->rt_rate = 72;
8097 break;
8098 case IPW_TX_RATE_48MB:
8099 ipw_rt->rt_rate = 96;
8100 break;
8101 case IPW_TX_RATE_54MB:
8102 ipw_rt->rt_rate = 108;
8103 break;
8104 default:
8105 ipw_rt->rt_rate = 0;
8106 break;
8107 }
8108
8109 /* antenna number */
8110 ipw_rt->rt_antenna = (phy_flags & 3);
8111
8112 /* set the preamble flag if we have it */
8113 if (phy_flags & (1 << 6))
8114 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8115
8116 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8117
8118 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8119 priv->prom_priv->ieee->stats.rx_errors++;
8120 dev_kfree_skb_any(skb);
8121 }
8122}
8123#endif
8124
8125static int is_network_packet(struct ipw_priv *priv,
8126 struct ieee80211_hdr_4addr *header)
8127{
8128 /* Filter incoming packets to determine if they are targetted toward
8129 * this network, discarding packets coming from ourselves */
8130 switch (priv->ieee->iw_mode) {
8131 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8132 /* packets from our adapter are dropped (echo) */
8133 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8134 return 0;
8135
8136 /* {broad,multi}cast packets to our BSSID go through */
8137 if (is_multicast_ether_addr(header->addr1))
8138 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8139
8140 /* packets to our adapter go through */
8141 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8142 ETH_ALEN);
8143
8144 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8145 /* packets from our adapter are dropped (echo) */
8146 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8147 return 0;
8148
8149 /* {broad,multi}cast packets to our BSS go through */
8150 if (is_multicast_ether_addr(header->addr1))
8151 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8152
8153 /* packets to our adapter go through */
8154 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8155 ETH_ALEN);
8156 }
8157
8158 return 1;
8159}
8160
8161#define IPW_PACKET_RETRY_TIME HZ
8162
8163static int is_duplicate_packet(struct ipw_priv *priv,
8164 struct ieee80211_hdr_4addr *header)
8165{
8166 u16 sc = le16_to_cpu(header->seq_ctl);
8167 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8168 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8169 u16 *last_seq, *last_frag;
8170 unsigned long *last_time;
8171
8172 switch (priv->ieee->iw_mode) {
8173 case IW_MODE_ADHOC:
8174 {
8175 struct list_head *p;
8176 struct ipw_ibss_seq *entry = NULL;
8177 u8 *mac = header->addr2;
8178 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8179
8180 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8181 entry =
8182 list_entry(p, struct ipw_ibss_seq, list);
8183 if (!memcmp(entry->mac, mac, ETH_ALEN))
8184 break;
8185 }
8186 if (p == &priv->ibss_mac_hash[index]) {
8187 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8188 if (!entry) {
8189 IPW_ERROR
8190 ("Cannot malloc new mac entry\n");
8191 return 0;
8192 }
8193 memcpy(entry->mac, mac, ETH_ALEN);
8194 entry->seq_num = seq;
8195 entry->frag_num = frag;
8196 entry->packet_time = jiffies;
8197 list_add(&entry->list,
8198 &priv->ibss_mac_hash[index]);
8199 return 0;
8200 }
8201 last_seq = &entry->seq_num;
8202 last_frag = &entry->frag_num;
8203 last_time = &entry->packet_time;
8204 break;
8205 }
8206 case IW_MODE_INFRA:
8207 last_seq = &priv->last_seq_num;
8208 last_frag = &priv->last_frag_num;
8209 last_time = &priv->last_packet_time;
8210 break;
8211 default:
8212 return 0;
8213 }
8214 if ((*last_seq == seq) &&
8215 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8216 if (*last_frag == frag)
8217 goto drop;
8218 if (*last_frag + 1 != frag)
8219 /* out-of-order fragment */
8220 goto drop;
8221 } else
8222 *last_seq = seq;
8223
8224 *last_frag = frag;
8225 *last_time = jiffies;
8226 return 0;
8227
8228 drop:
8229 /* Comment this line now since we observed the card receives
8230 * duplicate packets but the FCTL_RETRY bit is not set in the
8231 * IBSS mode with fragmentation enabled.
8232 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8233 return 1;
8234}
8235
8236static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8237 struct ipw_rx_mem_buffer *rxb,
8238 struct ieee80211_rx_stats *stats)
8239{
8240 struct sk_buff *skb = rxb->skb;
8241 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8242 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8243 (skb->data + IPW_RX_FRAME_SIZE);
8244
8245 ieee80211_rx_mgt(priv->ieee, header, stats);
8246
8247 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8248 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8249 IEEE80211_STYPE_PROBE_RESP) ||
8250 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8251 IEEE80211_STYPE_BEACON))) {
8252 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8253 ipw_add_station(priv, header->addr2);
8254 }
8255
8256 if (priv->config & CFG_NET_STATS) {
8257 IPW_DEBUG_HC("sending stat packet\n");
8258
8259 /* Set the size of the skb to the size of the full
8260 * ipw header and 802.11 frame */
8261 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8262 IPW_RX_FRAME_SIZE);
8263
8264 /* Advance past the ipw packet header to the 802.11 frame */
8265 skb_pull(skb, IPW_RX_FRAME_SIZE);
8266
8267 /* Push the ieee80211_rx_stats before the 802.11 frame */
8268 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8269
8270 skb->dev = priv->ieee->dev;
8271
8272 /* Point raw at the ieee80211_stats */
8273 skb_reset_mac_header(skb);
8274
8275 skb->pkt_type = PACKET_OTHERHOST;
8276 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8277 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8278 netif_rx(skb);
8279 rxb->skb = NULL;
8280 }
8281}
8282
8283/*
8284 * Main entry function for recieving a packet with 80211 headers. This
8285 * should be called when ever the FW has notified us that there is a new
8286 * skb in the recieve queue.
8287 */
8288static void ipw_rx(struct ipw_priv *priv)
8289{
8290 struct ipw_rx_mem_buffer *rxb;
8291 struct ipw_rx_packet *pkt;
8292 struct ieee80211_hdr_4addr *header;
8293 u32 r, w, i;
8294 u8 network_packet;
8295 u8 fill_rx = 0;
8296
8297 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8298 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8299 i = priv->rxq->read;
8300
8301 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8302 fill_rx = 1;
8303
8304 while (i != r) {
8305 rxb = priv->rxq->queue[i];
8306 if (unlikely(rxb == NULL)) {
8307 printk(KERN_CRIT "Queue not allocated!\n");
8308 break;
8309 }
8310 priv->rxq->queue[i] = NULL;
8311
8312 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8313 IPW_RX_BUF_SIZE,
8314 PCI_DMA_FROMDEVICE);
8315
8316 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8317 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8318 pkt->header.message_type,
8319 pkt->header.rx_seq_num, pkt->header.control_bits);
8320
8321 switch (pkt->header.message_type) {
8322 case RX_FRAME_TYPE: /* 802.11 frame */ {
8323 struct ieee80211_rx_stats stats = {
8324 .rssi = pkt->u.frame.rssi_dbm -
8325 IPW_RSSI_TO_DBM,
8326 .signal =
8327 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8328 IPW_RSSI_TO_DBM + 0x100,
8329 .noise =
8330 le16_to_cpu(pkt->u.frame.noise),
8331 .rate = pkt->u.frame.rate,
8332 .mac_time = jiffies,
8333 .received_channel =
8334 pkt->u.frame.received_channel,
8335 .freq =
8336 (pkt->u.frame.
8337 control & (1 << 0)) ?
8338 IEEE80211_24GHZ_BAND :
8339 IEEE80211_52GHZ_BAND,
8340 .len = le16_to_cpu(pkt->u.frame.length),
8341 };
8342
8343 if (stats.rssi != 0)
8344 stats.mask |= IEEE80211_STATMASK_RSSI;
8345 if (stats.signal != 0)
8346 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8347 if (stats.noise != 0)
8348 stats.mask |= IEEE80211_STATMASK_NOISE;
8349 if (stats.rate != 0)
8350 stats.mask |= IEEE80211_STATMASK_RATE;
8351
8352 priv->rx_packets++;
8353
8354#ifdef CONFIG_IPW2200_PROMISCUOUS
8355 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8356 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8357#endif
8358
8359#ifdef CONFIG_IPW2200_MONITOR
8360 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8361#ifdef CONFIG_IPW2200_RADIOTAP
8362
8363 ipw_handle_data_packet_monitor(priv,
8364 rxb,
8365 &stats);
8366#else
8367 ipw_handle_data_packet(priv, rxb,
8368 &stats);
8369#endif
8370 break;
8371 }
8372#endif
8373
8374 header =
8375 (struct ieee80211_hdr_4addr *)(rxb->skb->
8376 data +
8377 IPW_RX_FRAME_SIZE);
8378 /* TODO: Check Ad-Hoc dest/source and make sure
8379 * that we are actually parsing these packets
8380 * correctly -- we should probably use the
8381 * frame control of the packet and disregard
8382 * the current iw_mode */
8383
8384 network_packet =
8385 is_network_packet(priv, header);
8386 if (network_packet && priv->assoc_network) {
8387 priv->assoc_network->stats.rssi =
8388 stats.rssi;
8389 priv->exp_avg_rssi =
8390 exponential_average(priv->exp_avg_rssi,
8391 stats.rssi, DEPTH_RSSI);
8392 }
8393
8394 IPW_DEBUG_RX("Frame: len=%u\n",
8395 le16_to_cpu(pkt->u.frame.length));
8396
8397 if (le16_to_cpu(pkt->u.frame.length) <
8398 ieee80211_get_hdrlen(le16_to_cpu(
8399 header->frame_ctl))) {
8400 IPW_DEBUG_DROP
8401 ("Received packet is too small. "
8402 "Dropping.\n");
8403 priv->ieee->stats.rx_errors++;
8404 priv->wstats.discard.misc++;
8405 break;
8406 }
8407
8408 switch (WLAN_FC_GET_TYPE
8409 (le16_to_cpu(header->frame_ctl))) {
8410
8411 case IEEE80211_FTYPE_MGMT:
8412 ipw_handle_mgmt_packet(priv, rxb,
8413 &stats);
8414 break;
8415
8416 case IEEE80211_FTYPE_CTL:
8417 break;
8418
8419 case IEEE80211_FTYPE_DATA:
8420 if (unlikely(!network_packet ||
8421 is_duplicate_packet(priv,
8422 header)))
8423 {
8424 IPW_DEBUG_DROP("Dropping: "
8425 "%pM, "
8426 "%pM, "
8427 "%pM\n",
8428 header->addr1,
8429 header->addr2,
8430 header->addr3);
8431 break;
8432 }
8433
8434 ipw_handle_data_packet(priv, rxb,
8435 &stats);
8436
8437 break;
8438 }
8439 break;
8440 }
8441
8442 case RX_HOST_NOTIFICATION_TYPE:{
8443 IPW_DEBUG_RX
8444 ("Notification: subtype=%02X flags=%02X size=%d\n",
8445 pkt->u.notification.subtype,
8446 pkt->u.notification.flags,
8447 le16_to_cpu(pkt->u.notification.size));
8448 ipw_rx_notification(priv, &pkt->u.notification);
8449 break;
8450 }
8451
8452 default:
8453 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8454 pkt->header.message_type);
8455 break;
8456 }
8457
8458 /* For now we just don't re-use anything. We can tweak this
8459 * later to try and re-use notification packets and SKBs that
8460 * fail to Rx correctly */
8461 if (rxb->skb != NULL) {
8462 dev_kfree_skb_any(rxb->skb);
8463 rxb->skb = NULL;
8464 }
8465
8466 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8467 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8468 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8469
8470 i = (i + 1) % RX_QUEUE_SIZE;
8471
8472 /* If there are a lot of unsued frames, restock the Rx queue
8473 * so the ucode won't assert */
8474 if (fill_rx) {
8475 priv->rxq->read = i;
8476 ipw_rx_queue_replenish(priv);
8477 }
8478 }
8479
8480 /* Backtrack one entry */
8481 priv->rxq->read = i;
8482 ipw_rx_queue_restock(priv);
8483}
8484
8485#define DEFAULT_RTS_THRESHOLD 2304U
8486#define MIN_RTS_THRESHOLD 1U
8487#define MAX_RTS_THRESHOLD 2304U
8488#define DEFAULT_BEACON_INTERVAL 100U
8489#define DEFAULT_SHORT_RETRY_LIMIT 7U
8490#define DEFAULT_LONG_RETRY_LIMIT 4U
8491
8492/**
8493 * ipw_sw_reset
8494 * @option: options to control different reset behaviour
8495 * 0 = reset everything except the 'disable' module_param
8496 * 1 = reset everything and print out driver info (for probe only)
8497 * 2 = reset everything
8498 */
8499static int ipw_sw_reset(struct ipw_priv *priv, int option)
8500{
8501 int band, modulation;
8502 int old_mode = priv->ieee->iw_mode;
8503
8504 /* Initialize module parameter values here */
8505 priv->config = 0;
8506
8507 /* We default to disabling the LED code as right now it causes
8508 * too many systems to lock up... */
8509 if (!led)
8510 priv->config |= CFG_NO_LED;
8511
8512 if (associate)
8513 priv->config |= CFG_ASSOCIATE;
8514 else
8515 IPW_DEBUG_INFO("Auto associate disabled.\n");
8516
8517 if (auto_create)
8518 priv->config |= CFG_ADHOC_CREATE;
8519 else
8520 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8521
8522 priv->config &= ~CFG_STATIC_ESSID;
8523 priv->essid_len = 0;
8524 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8525
8526 if (disable && option) {
8527 priv->status |= STATUS_RF_KILL_SW;
8528 IPW_DEBUG_INFO("Radio disabled.\n");
8529 }
8530
8531 if (channel != 0) {
8532 priv->config |= CFG_STATIC_CHANNEL;
8533 priv->channel = channel;
8534 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8535 /* TODO: Validate that provided channel is in range */
8536 }
8537#ifdef CONFIG_IPW2200_QOS
8538 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8539 burst_duration_CCK, burst_duration_OFDM);
8540#endif /* CONFIG_IPW2200_QOS */
8541
8542 switch (mode) {
8543 case 1:
8544 priv->ieee->iw_mode = IW_MODE_ADHOC;
8545 priv->net_dev->type = ARPHRD_ETHER;
8546
8547 break;
8548#ifdef CONFIG_IPW2200_MONITOR
8549 case 2:
8550 priv->ieee->iw_mode = IW_MODE_MONITOR;
8551#ifdef CONFIG_IPW2200_RADIOTAP
8552 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8553#else
8554 priv->net_dev->type = ARPHRD_IEEE80211;
8555#endif
8556 break;
8557#endif
8558 default:
8559 case 0:
8560 priv->net_dev->type = ARPHRD_ETHER;
8561 priv->ieee->iw_mode = IW_MODE_INFRA;
8562 break;
8563 }
8564
8565 if (hwcrypto) {
8566 priv->ieee->host_encrypt = 0;
8567 priv->ieee->host_encrypt_msdu = 0;
8568 priv->ieee->host_decrypt = 0;
8569 priv->ieee->host_mc_decrypt = 0;
8570 }
8571 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8572
8573 /* IPW2200/2915 is abled to do hardware fragmentation. */
8574 priv->ieee->host_open_frag = 0;
8575
8576 if ((priv->pci_dev->device == 0x4223) ||
8577 (priv->pci_dev->device == 0x4224)) {
8578 if (option == 1)
8579 printk(KERN_INFO DRV_NAME
8580 ": Detected Intel PRO/Wireless 2915ABG Network "
8581 "Connection\n");
8582 priv->ieee->abg_true = 1;
8583 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8584 modulation = IEEE80211_OFDM_MODULATION |
8585 IEEE80211_CCK_MODULATION;
8586 priv->adapter = IPW_2915ABG;
8587 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8588 } else {
8589 if (option == 1)
8590 printk(KERN_INFO DRV_NAME
8591 ": Detected Intel PRO/Wireless 2200BG Network "
8592 "Connection\n");
8593
8594 priv->ieee->abg_true = 0;
8595 band = IEEE80211_24GHZ_BAND;
8596 modulation = IEEE80211_OFDM_MODULATION |
8597 IEEE80211_CCK_MODULATION;
8598 priv->adapter = IPW_2200BG;
8599 priv->ieee->mode = IEEE_G | IEEE_B;
8600 }
8601
8602 priv->ieee->freq_band = band;
8603 priv->ieee->modulation = modulation;
8604
8605 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8606
8607 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8608 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8609
8610 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8611 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8612 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8613
8614 /* If power management is turned on, default to AC mode */
8615 priv->power_mode = IPW_POWER_AC;
8616 priv->tx_power = IPW_TX_POWER_DEFAULT;
8617
8618 return old_mode == priv->ieee->iw_mode;
8619}
8620
8621/*
8622 * This file defines the Wireless Extension handlers. It does not
8623 * define any methods of hardware manipulation and relies on the
8624 * functions defined in ipw_main to provide the HW interaction.
8625 *
8626 * The exception to this is the use of the ipw_get_ordinal()
8627 * function used to poll the hardware vs. making unecessary calls.
8628 *
8629 */
8630
8631static int ipw_wx_get_name(struct net_device *dev,
8632 struct iw_request_info *info,
8633 union iwreq_data *wrqu, char *extra)
8634{
8635 struct ipw_priv *priv = ieee80211_priv(dev);
8636 mutex_lock(&priv->mutex);
8637 if (priv->status & STATUS_RF_KILL_MASK)
8638 strcpy(wrqu->name, "radio off");
8639 else if (!(priv->status & STATUS_ASSOCIATED))
8640 strcpy(wrqu->name, "unassociated");
8641 else
8642 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8643 ipw_modes[priv->assoc_request.ieee_mode]);
8644 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8645 mutex_unlock(&priv->mutex);
8646 return 0;
8647}
8648
8649static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8650{
8651 if (channel == 0) {
8652 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8653 priv->config &= ~CFG_STATIC_CHANNEL;
8654 IPW_DEBUG_ASSOC("Attempting to associate with new "
8655 "parameters.\n");
8656 ipw_associate(priv);
8657 return 0;
8658 }
8659
8660 priv->config |= CFG_STATIC_CHANNEL;
8661
8662 if (priv->channel == channel) {
8663 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8664 channel);
8665 return 0;
8666 }
8667
8668 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8669 priv->channel = channel;
8670
8671#ifdef CONFIG_IPW2200_MONITOR
8672 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8673 int i;
8674 if (priv->status & STATUS_SCANNING) {
8675 IPW_DEBUG_SCAN("Scan abort triggered due to "
8676 "channel change.\n");
8677 ipw_abort_scan(priv);
8678 }
8679
8680 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8681 udelay(10);
8682
8683 if (priv->status & STATUS_SCANNING)
8684 IPW_DEBUG_SCAN("Still scanning...\n");
8685 else
8686 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8687 1000 - i);
8688
8689 return 0;
8690 }
8691#endif /* CONFIG_IPW2200_MONITOR */
8692
8693 /* Network configuration changed -- force [re]association */
8694 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8695 if (!ipw_disassociate(priv))
8696 ipw_associate(priv);
8697
8698 return 0;
8699}
8700
8701static int ipw_wx_set_freq(struct net_device *dev,
8702 struct iw_request_info *info,
8703 union iwreq_data *wrqu, char *extra)
8704{
8705 struct ipw_priv *priv = ieee80211_priv(dev);
8706 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8707 struct iw_freq *fwrq = &wrqu->freq;
8708 int ret = 0, i;
8709 u8 channel, flags;
8710 int band;
8711
8712 if (fwrq->m == 0) {
8713 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8714 mutex_lock(&priv->mutex);
8715 ret = ipw_set_channel(priv, 0);
8716 mutex_unlock(&priv->mutex);
8717 return ret;
8718 }
8719 /* if setting by freq convert to channel */
8720 if (fwrq->e == 1) {
8721 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8722 if (channel == 0)
8723 return -EINVAL;
8724 } else
8725 channel = fwrq->m;
8726
8727 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8728 return -EINVAL;
8729
8730 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8731 i = ieee80211_channel_to_index(priv->ieee, channel);
8732 if (i == -1)
8733 return -EINVAL;
8734
8735 flags = (band == IEEE80211_24GHZ_BAND) ?
8736 geo->bg[i].flags : geo->a[i].flags;
8737 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8738 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8739 return -EINVAL;
8740 }
8741 }
8742
8743 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8744 mutex_lock(&priv->mutex);
8745 ret = ipw_set_channel(priv, channel);
8746 mutex_unlock(&priv->mutex);
8747 return ret;
8748}
8749
8750static int ipw_wx_get_freq(struct net_device *dev,
8751 struct iw_request_info *info,
8752 union iwreq_data *wrqu, char *extra)
8753{
8754 struct ipw_priv *priv = ieee80211_priv(dev);
8755
8756 wrqu->freq.e = 0;
8757
8758 /* If we are associated, trying to associate, or have a statically
8759 * configured CHANNEL then return that; otherwise return ANY */
8760 mutex_lock(&priv->mutex);
8761 if (priv->config & CFG_STATIC_CHANNEL ||
8762 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8763 int i;
8764
8765 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8766 BUG_ON(i == -1);
8767 wrqu->freq.e = 1;
8768
8769 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8770 case IEEE80211_52GHZ_BAND:
8771 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8772 break;
8773
8774 case IEEE80211_24GHZ_BAND:
8775 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8776 break;
8777
8778 default:
8779 BUG();
8780 }
8781 } else
8782 wrqu->freq.m = 0;
8783
8784 mutex_unlock(&priv->mutex);
8785 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8786 return 0;
8787}
8788
8789static int ipw_wx_set_mode(struct net_device *dev,
8790 struct iw_request_info *info,
8791 union iwreq_data *wrqu, char *extra)
8792{
8793 struct ipw_priv *priv = ieee80211_priv(dev);
8794 int err = 0;
8795
8796 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8797
8798 switch (wrqu->mode) {
8799#ifdef CONFIG_IPW2200_MONITOR
8800 case IW_MODE_MONITOR:
8801#endif
8802 case IW_MODE_ADHOC:
8803 case IW_MODE_INFRA:
8804 break;
8805 case IW_MODE_AUTO:
8806 wrqu->mode = IW_MODE_INFRA;
8807 break;
8808 default:
8809 return -EINVAL;
8810 }
8811 if (wrqu->mode == priv->ieee->iw_mode)
8812 return 0;
8813
8814 mutex_lock(&priv->mutex);
8815
8816 ipw_sw_reset(priv, 0);
8817
8818#ifdef CONFIG_IPW2200_MONITOR
8819 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8820 priv->net_dev->type = ARPHRD_ETHER;
8821
8822 if (wrqu->mode == IW_MODE_MONITOR)
8823#ifdef CONFIG_IPW2200_RADIOTAP
8824 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8825#else
8826 priv->net_dev->type = ARPHRD_IEEE80211;
8827#endif
8828#endif /* CONFIG_IPW2200_MONITOR */
8829
8830 /* Free the existing firmware and reset the fw_loaded
8831 * flag so ipw_load() will bring in the new firmawre */
8832 free_firmware();
8833
8834 priv->ieee->iw_mode = wrqu->mode;
8835
8836 queue_work(priv->workqueue, &priv->adapter_restart);
8837 mutex_unlock(&priv->mutex);
8838 return err;
8839}
8840
8841static int ipw_wx_get_mode(struct net_device *dev,
8842 struct iw_request_info *info,
8843 union iwreq_data *wrqu, char *extra)
8844{
8845 struct ipw_priv *priv = ieee80211_priv(dev);
8846 mutex_lock(&priv->mutex);
8847 wrqu->mode = priv->ieee->iw_mode;
8848 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8849 mutex_unlock(&priv->mutex);
8850 return 0;
8851}
8852
8853/* Values are in microsecond */
8854static const s32 timeout_duration[] = {
8855 350000,
8856 250000,
8857 75000,
8858 37000,
8859 25000,
8860};
8861
8862static const s32 period_duration[] = {
8863 400000,
8864 700000,
8865 1000000,
8866 1000000,
8867 1000000
8868};
8869
8870static int ipw_wx_get_range(struct net_device *dev,
8871 struct iw_request_info *info,
8872 union iwreq_data *wrqu, char *extra)
8873{
8874 struct ipw_priv *priv = ieee80211_priv(dev);
8875 struct iw_range *range = (struct iw_range *)extra;
8876 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8877 int i = 0, j;
8878
8879 wrqu->data.length = sizeof(*range);
8880 memset(range, 0, sizeof(*range));
8881
8882 /* 54Mbs == ~27 Mb/s real (802.11g) */
8883 range->throughput = 27 * 1000 * 1000;
8884
8885 range->max_qual.qual = 100;
8886 /* TODO: Find real max RSSI and stick here */
8887 range->max_qual.level = 0;
8888 range->max_qual.noise = 0;
8889 range->max_qual.updated = 7; /* Updated all three */
8890
8891 range->avg_qual.qual = 70;
8892 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8893 range->avg_qual.level = 0; /* FIXME to real average level */
8894 range->avg_qual.noise = 0;
8895 range->avg_qual.updated = 7; /* Updated all three */
8896 mutex_lock(&priv->mutex);
8897 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8898
8899 for (i = 0; i < range->num_bitrates; i++)
8900 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8901 500000;
8902
8903 range->max_rts = DEFAULT_RTS_THRESHOLD;
8904 range->min_frag = MIN_FRAG_THRESHOLD;
8905 range->max_frag = MAX_FRAG_THRESHOLD;
8906
8907 range->encoding_size[0] = 5;
8908 range->encoding_size[1] = 13;
8909 range->num_encoding_sizes = 2;
8910 range->max_encoding_tokens = WEP_KEYS;
8911
8912 /* Set the Wireless Extension versions */
8913 range->we_version_compiled = WIRELESS_EXT;
8914 range->we_version_source = 18;
8915
8916 i = 0;
8917 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8918 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8919 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8920 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8921 continue;
8922
8923 range->freq[i].i = geo->bg[j].channel;
8924 range->freq[i].m = geo->bg[j].freq * 100000;
8925 range->freq[i].e = 1;
8926 i++;
8927 }
8928 }
8929
8930 if (priv->ieee->mode & IEEE_A) {
8931 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8932 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8933 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8934 continue;
8935
8936 range->freq[i].i = geo->a[j].channel;
8937 range->freq[i].m = geo->a[j].freq * 100000;
8938 range->freq[i].e = 1;
8939 i++;
8940 }
8941 }
8942
8943 range->num_channels = i;
8944 range->num_frequency = i;
8945
8946 mutex_unlock(&priv->mutex);
8947
8948 /* Event capability (kernel + driver) */
8949 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8950 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8951 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8952 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8953 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8954
8955 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8956 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8957
8958 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8959
8960 IPW_DEBUG_WX("GET Range\n");
8961 return 0;
8962}
8963
8964static int ipw_wx_set_wap(struct net_device *dev,
8965 struct iw_request_info *info,
8966 union iwreq_data *wrqu, char *extra)
8967{
8968 struct ipw_priv *priv = ieee80211_priv(dev);
8969
8970 static const unsigned char any[] = {
8971 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8972 };
8973 static const unsigned char off[] = {
8974 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8975 };
8976
8977 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8978 return -EINVAL;
8979 mutex_lock(&priv->mutex);
8980 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8981 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8982 /* we disable mandatory BSSID association */
8983 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8984 priv->config &= ~CFG_STATIC_BSSID;
8985 IPW_DEBUG_ASSOC("Attempting to associate with new "
8986 "parameters.\n");
8987 ipw_associate(priv);
8988 mutex_unlock(&priv->mutex);
8989 return 0;
8990 }
8991
8992 priv->config |= CFG_STATIC_BSSID;
8993 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8994 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8995 mutex_unlock(&priv->mutex);
8996 return 0;
8997 }
8998
8999 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9000 wrqu->ap_addr.sa_data);
9001
9002 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9003
9004 /* Network configuration changed -- force [re]association */
9005 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9006 if (!ipw_disassociate(priv))
9007 ipw_associate(priv);
9008
9009 mutex_unlock(&priv->mutex);
9010 return 0;
9011}
9012
9013static int ipw_wx_get_wap(struct net_device *dev,
9014 struct iw_request_info *info,
9015 union iwreq_data *wrqu, char *extra)
9016{
9017 struct ipw_priv *priv = ieee80211_priv(dev);
9018
9019 /* If we are associated, trying to associate, or have a statically
9020 * configured BSSID then return that; otherwise return ANY */
9021 mutex_lock(&priv->mutex);
9022 if (priv->config & CFG_STATIC_BSSID ||
9023 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9024 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9025 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9026 } else
9027 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9028
9029 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9030 wrqu->ap_addr.sa_data);
9031 mutex_unlock(&priv->mutex);
9032 return 0;
9033}
9034
9035static int ipw_wx_set_essid(struct net_device *dev,
9036 struct iw_request_info *info,
9037 union iwreq_data *wrqu, char *extra)
9038{
9039 struct ipw_priv *priv = ieee80211_priv(dev);
9040 int length;
9041 DECLARE_SSID_BUF(ssid);
9042
9043 mutex_lock(&priv->mutex);
9044
9045 if (!wrqu->essid.flags)
9046 {
9047 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9048 ipw_disassociate(priv);
9049 priv->config &= ~CFG_STATIC_ESSID;
9050 ipw_associate(priv);
9051 mutex_unlock(&priv->mutex);
9052 return 0;
9053 }
9054
9055 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9056
9057 priv->config |= CFG_STATIC_ESSID;
9058
9059 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9060 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9061 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9062 mutex_unlock(&priv->mutex);
9063 return 0;
9064 }
9065
9066 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9067 print_ssid(ssid, extra, length), length);
9068
9069 priv->essid_len = length;
9070 memcpy(priv->essid, extra, priv->essid_len);
9071
9072 /* Network configuration changed -- force [re]association */
9073 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9074 if (!ipw_disassociate(priv))
9075 ipw_associate(priv);
9076
9077 mutex_unlock(&priv->mutex);
9078 return 0;
9079}
9080
9081static int ipw_wx_get_essid(struct net_device *dev,
9082 struct iw_request_info *info,
9083 union iwreq_data *wrqu, char *extra)
9084{
9085 struct ipw_priv *priv = ieee80211_priv(dev);
9086 DECLARE_SSID_BUF(ssid);
9087
9088 /* If we are associated, trying to associate, or have a statically
9089 * configured ESSID then return that; otherwise return ANY */
9090 mutex_lock(&priv->mutex);
9091 if (priv->config & CFG_STATIC_ESSID ||
9092 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9093 IPW_DEBUG_WX("Getting essid: '%s'\n",
9094 print_ssid(ssid, priv->essid, priv->essid_len));
9095 memcpy(extra, priv->essid, priv->essid_len);
9096 wrqu->essid.length = priv->essid_len;
9097 wrqu->essid.flags = 1; /* active */
9098 } else {
9099 IPW_DEBUG_WX("Getting essid: ANY\n");
9100 wrqu->essid.length = 0;
9101 wrqu->essid.flags = 0; /* active */
9102 }
9103 mutex_unlock(&priv->mutex);
9104 return 0;
9105}
9106
9107static int ipw_wx_set_nick(struct net_device *dev,
9108 struct iw_request_info *info,
9109 union iwreq_data *wrqu, char *extra)
9110{
9111 struct ipw_priv *priv = ieee80211_priv(dev);
9112
9113 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9114 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9115 return -E2BIG;
9116 mutex_lock(&priv->mutex);
9117 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9118 memset(priv->nick, 0, sizeof(priv->nick));
9119 memcpy(priv->nick, extra, wrqu->data.length);
9120 IPW_DEBUG_TRACE("<<\n");
9121 mutex_unlock(&priv->mutex);
9122 return 0;
9123
9124}
9125
9126static int ipw_wx_get_nick(struct net_device *dev,
9127 struct iw_request_info *info,
9128 union iwreq_data *wrqu, char *extra)
9129{
9130 struct ipw_priv *priv = ieee80211_priv(dev);
9131 IPW_DEBUG_WX("Getting nick\n");
9132 mutex_lock(&priv->mutex);
9133 wrqu->data.length = strlen(priv->nick);
9134 memcpy(extra, priv->nick, wrqu->data.length);
9135 wrqu->data.flags = 1; /* active */
9136 mutex_unlock(&priv->mutex);
9137 return 0;
9138}
9139
9140static int ipw_wx_set_sens(struct net_device *dev,
9141 struct iw_request_info *info,
9142 union iwreq_data *wrqu, char *extra)
9143{
9144 struct ipw_priv *priv = ieee80211_priv(dev);
9145 int err = 0;
9146
9147 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9148 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9149 mutex_lock(&priv->mutex);
9150
9151 if (wrqu->sens.fixed == 0)
9152 {
9153 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9154 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9155 goto out;
9156 }
9157 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9158 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9159 err = -EINVAL;
9160 goto out;
9161 }
9162
9163 priv->roaming_threshold = wrqu->sens.value;
9164 priv->disassociate_threshold = 3*wrqu->sens.value;
9165 out:
9166 mutex_unlock(&priv->mutex);
9167 return err;
9168}
9169
9170static int ipw_wx_get_sens(struct net_device *dev,
9171 struct iw_request_info *info,
9172 union iwreq_data *wrqu, char *extra)
9173{
9174 struct ipw_priv *priv = ieee80211_priv(dev);
9175 mutex_lock(&priv->mutex);
9176 wrqu->sens.fixed = 1;
9177 wrqu->sens.value = priv->roaming_threshold;
9178 mutex_unlock(&priv->mutex);
9179
9180 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9181 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9182
9183 return 0;
9184}
9185
9186static int ipw_wx_set_rate(struct net_device *dev,
9187 struct iw_request_info *info,
9188 union iwreq_data *wrqu, char *extra)
9189{
9190 /* TODO: We should use semaphores or locks for access to priv */
9191 struct ipw_priv *priv = ieee80211_priv(dev);
9192 u32 target_rate = wrqu->bitrate.value;
9193 u32 fixed, mask;
9194
9195 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9196 /* value = X, fixed = 1 means only rate X */
9197 /* value = X, fixed = 0 means all rates lower equal X */
9198
9199 if (target_rate == -1) {
9200 fixed = 0;
9201 mask = IEEE80211_DEFAULT_RATES_MASK;
9202 /* Now we should reassociate */
9203 goto apply;
9204 }
9205
9206 mask = 0;
9207 fixed = wrqu->bitrate.fixed;
9208
9209 if (target_rate == 1000000 || !fixed)
9210 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9211 if (target_rate == 1000000)
9212 goto apply;
9213
9214 if (target_rate == 2000000 || !fixed)
9215 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9216 if (target_rate == 2000000)
9217 goto apply;
9218
9219 if (target_rate == 5500000 || !fixed)
9220 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9221 if (target_rate == 5500000)
9222 goto apply;
9223
9224 if (target_rate == 6000000 || !fixed)
9225 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9226 if (target_rate == 6000000)
9227 goto apply;
9228
9229 if (target_rate == 9000000 || !fixed)
9230 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9231 if (target_rate == 9000000)
9232 goto apply;
9233
9234 if (target_rate == 11000000 || !fixed)
9235 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9236 if (target_rate == 11000000)
9237 goto apply;
9238
9239 if (target_rate == 12000000 || !fixed)
9240 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9241 if (target_rate == 12000000)
9242 goto apply;
9243
9244 if (target_rate == 18000000 || !fixed)
9245 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9246 if (target_rate == 18000000)
9247 goto apply;
9248
9249 if (target_rate == 24000000 || !fixed)
9250 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9251 if (target_rate == 24000000)
9252 goto apply;
9253
9254 if (target_rate == 36000000 || !fixed)
9255 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9256 if (target_rate == 36000000)
9257 goto apply;
9258
9259 if (target_rate == 48000000 || !fixed)
9260 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9261 if (target_rate == 48000000)
9262 goto apply;
9263
9264 if (target_rate == 54000000 || !fixed)
9265 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9266 if (target_rate == 54000000)
9267 goto apply;
9268
9269 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9270 return -EINVAL;
9271
9272 apply:
9273 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9274 mask, fixed ? "fixed" : "sub-rates");
9275 mutex_lock(&priv->mutex);
9276 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9277 priv->config &= ~CFG_FIXED_RATE;
9278 ipw_set_fixed_rate(priv, priv->ieee->mode);
9279 } else
9280 priv->config |= CFG_FIXED_RATE;
9281
9282 if (priv->rates_mask == mask) {
9283 IPW_DEBUG_WX("Mask set to current mask.\n");
9284 mutex_unlock(&priv->mutex);
9285 return 0;
9286 }
9287
9288 priv->rates_mask = mask;
9289
9290 /* Network configuration changed -- force [re]association */
9291 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9292 if (!ipw_disassociate(priv))
9293 ipw_associate(priv);
9294
9295 mutex_unlock(&priv->mutex);
9296 return 0;
9297}
9298
9299static int ipw_wx_get_rate(struct net_device *dev,
9300 struct iw_request_info *info,
9301 union iwreq_data *wrqu, char *extra)
9302{
9303 struct ipw_priv *priv = ieee80211_priv(dev);
9304 mutex_lock(&priv->mutex);
9305 wrqu->bitrate.value = priv->last_rate;
9306 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9307 mutex_unlock(&priv->mutex);
9308 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9309 return 0;
9310}
9311
9312static int ipw_wx_set_rts(struct net_device *dev,
9313 struct iw_request_info *info,
9314 union iwreq_data *wrqu, char *extra)
9315{
9316 struct ipw_priv *priv = ieee80211_priv(dev);
9317 mutex_lock(&priv->mutex);
9318 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9319 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9320 else {
9321 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9322 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9323 mutex_unlock(&priv->mutex);
9324 return -EINVAL;
9325 }
9326 priv->rts_threshold = wrqu->rts.value;
9327 }
9328
9329 ipw_send_rts_threshold(priv, priv->rts_threshold);
9330 mutex_unlock(&priv->mutex);
9331 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9332 return 0;
9333}
9334
9335static int ipw_wx_get_rts(struct net_device *dev,
9336 struct iw_request_info *info,
9337 union iwreq_data *wrqu, char *extra)
9338{
9339 struct ipw_priv *priv = ieee80211_priv(dev);
9340 mutex_lock(&priv->mutex);
9341 wrqu->rts.value = priv->rts_threshold;
9342 wrqu->rts.fixed = 0; /* no auto select */
9343 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9344 mutex_unlock(&priv->mutex);
9345 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9346 return 0;
9347}
9348
9349static int ipw_wx_set_txpow(struct net_device *dev,
9350 struct iw_request_info *info,
9351 union iwreq_data *wrqu, char *extra)
9352{
9353 struct ipw_priv *priv = ieee80211_priv(dev);
9354 int err = 0;
9355
9356 mutex_lock(&priv->mutex);
9357 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9358 err = -EINPROGRESS;
9359 goto out;
9360 }
9361
9362 if (!wrqu->power.fixed)
9363 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9364
9365 if (wrqu->power.flags != IW_TXPOW_DBM) {
9366 err = -EINVAL;
9367 goto out;
9368 }
9369
9370 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9371 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9372 err = -EINVAL;
9373 goto out;
9374 }
9375
9376 priv->tx_power = wrqu->power.value;
9377 err = ipw_set_tx_power(priv);
9378 out:
9379 mutex_unlock(&priv->mutex);
9380 return err;
9381}
9382
9383static int ipw_wx_get_txpow(struct net_device *dev,
9384 struct iw_request_info *info,
9385 union iwreq_data *wrqu, char *extra)
9386{
9387 struct ipw_priv *priv = ieee80211_priv(dev);
9388 mutex_lock(&priv->mutex);
9389 wrqu->power.value = priv->tx_power;
9390 wrqu->power.fixed = 1;
9391 wrqu->power.flags = IW_TXPOW_DBM;
9392 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9393 mutex_unlock(&priv->mutex);
9394
9395 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9396 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9397
9398 return 0;
9399}
9400
9401static int ipw_wx_set_frag(struct net_device *dev,
9402 struct iw_request_info *info,
9403 union iwreq_data *wrqu, char *extra)
9404{
9405 struct ipw_priv *priv = ieee80211_priv(dev);
9406 mutex_lock(&priv->mutex);
9407 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9408 priv->ieee->fts = DEFAULT_FTS;
9409 else {
9410 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9411 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9412 mutex_unlock(&priv->mutex);
9413 return -EINVAL;
9414 }
9415
9416 priv->ieee->fts = wrqu->frag.value & ~0x1;
9417 }
9418
9419 ipw_send_frag_threshold(priv, wrqu->frag.value);
9420 mutex_unlock(&priv->mutex);
9421 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9422 return 0;
9423}
9424
9425static int ipw_wx_get_frag(struct net_device *dev,
9426 struct iw_request_info *info,
9427 union iwreq_data *wrqu, char *extra)
9428{
9429 struct ipw_priv *priv = ieee80211_priv(dev);
9430 mutex_lock(&priv->mutex);
9431 wrqu->frag.value = priv->ieee->fts;
9432 wrqu->frag.fixed = 0; /* no auto select */
9433 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9434 mutex_unlock(&priv->mutex);
9435 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9436
9437 return 0;
9438}
9439
9440static int ipw_wx_set_retry(struct net_device *dev,
9441 struct iw_request_info *info,
9442 union iwreq_data *wrqu, char *extra)
9443{
9444 struct ipw_priv *priv = ieee80211_priv(dev);
9445
9446 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9447 return -EINVAL;
9448
9449 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9450 return 0;
9451
9452 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9453 return -EINVAL;
9454
9455 mutex_lock(&priv->mutex);
9456 if (wrqu->retry.flags & IW_RETRY_SHORT)
9457 priv->short_retry_limit = (u8) wrqu->retry.value;
9458 else if (wrqu->retry.flags & IW_RETRY_LONG)
9459 priv->long_retry_limit = (u8) wrqu->retry.value;
9460 else {
9461 priv->short_retry_limit = (u8) wrqu->retry.value;
9462 priv->long_retry_limit = (u8) wrqu->retry.value;
9463 }
9464
9465 ipw_send_retry_limit(priv, priv->short_retry_limit,
9466 priv->long_retry_limit);
9467 mutex_unlock(&priv->mutex);
9468 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9469 priv->short_retry_limit, priv->long_retry_limit);
9470 return 0;
9471}
9472
9473static int ipw_wx_get_retry(struct net_device *dev,
9474 struct iw_request_info *info,
9475 union iwreq_data *wrqu, char *extra)
9476{
9477 struct ipw_priv *priv = ieee80211_priv(dev);
9478
9479 mutex_lock(&priv->mutex);
9480 wrqu->retry.disabled = 0;
9481
9482 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9483 mutex_unlock(&priv->mutex);
9484 return -EINVAL;
9485 }
9486
9487 if (wrqu->retry.flags & IW_RETRY_LONG) {
9488 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9489 wrqu->retry.value = priv->long_retry_limit;
9490 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9491 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9492 wrqu->retry.value = priv->short_retry_limit;
9493 } else {
9494 wrqu->retry.flags = IW_RETRY_LIMIT;
9495 wrqu->retry.value = priv->short_retry_limit;
9496 }
9497 mutex_unlock(&priv->mutex);
9498
9499 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9500
9501 return 0;
9502}
9503
9504static int ipw_wx_set_scan(struct net_device *dev,
9505 struct iw_request_info *info,
9506 union iwreq_data *wrqu, char *extra)
9507{
9508 struct ipw_priv *priv = ieee80211_priv(dev);
9509 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9510 struct delayed_work *work = NULL;
9511
9512 mutex_lock(&priv->mutex);
9513
9514 priv->user_requested_scan = 1;
9515
9516 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9517 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9518 int len = min((int)req->essid_len,
9519 (int)sizeof(priv->direct_scan_ssid));
9520 memcpy(priv->direct_scan_ssid, req->essid, len);
9521 priv->direct_scan_ssid_len = len;
9522 work = &priv->request_direct_scan;
9523 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9524 work = &priv->request_passive_scan;
9525 }
9526 } else {
9527 /* Normal active broadcast scan */
9528 work = &priv->request_scan;
9529 }
9530
9531 mutex_unlock(&priv->mutex);
9532
9533 IPW_DEBUG_WX("Start scan\n");
9534
9535 queue_delayed_work(priv->workqueue, work, 0);
9536
9537 return 0;
9538}
9539
9540static int ipw_wx_get_scan(struct net_device *dev,
9541 struct iw_request_info *info,
9542 union iwreq_data *wrqu, char *extra)
9543{
9544 struct ipw_priv *priv = ieee80211_priv(dev);
9545 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9546}
9547
9548static int ipw_wx_set_encode(struct net_device *dev,
9549 struct iw_request_info *info,
9550 union iwreq_data *wrqu, char *key)
9551{
9552 struct ipw_priv *priv = ieee80211_priv(dev);
9553 int ret;
9554 u32 cap = priv->capability;
9555
9556 mutex_lock(&priv->mutex);
9557 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9558
9559 /* In IBSS mode, we need to notify the firmware to update
9560 * the beacon info after we changed the capability. */
9561 if (cap != priv->capability &&
9562 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9563 priv->status & STATUS_ASSOCIATED)
9564 ipw_disassociate(priv);
9565
9566 mutex_unlock(&priv->mutex);
9567 return ret;
9568}
9569
9570static int ipw_wx_get_encode(struct net_device *dev,
9571 struct iw_request_info *info,
9572 union iwreq_data *wrqu, char *key)
9573{
9574 struct ipw_priv *priv = ieee80211_priv(dev);
9575 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9576}
9577
9578static int ipw_wx_set_power(struct net_device *dev,
9579 struct iw_request_info *info,
9580 union iwreq_data *wrqu, char *extra)
9581{
9582 struct ipw_priv *priv = ieee80211_priv(dev);
9583 int err;
9584 mutex_lock(&priv->mutex);
9585 if (wrqu->power.disabled) {
9586 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9587 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9588 if (err) {
9589 IPW_DEBUG_WX("failed setting power mode.\n");
9590 mutex_unlock(&priv->mutex);
9591 return err;
9592 }
9593 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9594 mutex_unlock(&priv->mutex);
9595 return 0;
9596 }
9597
9598 switch (wrqu->power.flags & IW_POWER_MODE) {
9599 case IW_POWER_ON: /* If not specified */
9600 case IW_POWER_MODE: /* If set all mask */
9601 case IW_POWER_ALL_R: /* If explicitly state all */
9602 break;
9603 default: /* Otherwise we don't support it */
9604 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9605 wrqu->power.flags);
9606 mutex_unlock(&priv->mutex);
9607 return -EOPNOTSUPP;
9608 }
9609
9610 /* If the user hasn't specified a power management mode yet, default
9611 * to BATTERY */
9612 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9613 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9614 else
9615 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9616
9617 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9618 if (err) {
9619 IPW_DEBUG_WX("failed setting power mode.\n");
9620 mutex_unlock(&priv->mutex);
9621 return err;
9622 }
9623
9624 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9625 mutex_unlock(&priv->mutex);
9626 return 0;
9627}
9628
9629static int ipw_wx_get_power(struct net_device *dev,
9630 struct iw_request_info *info,
9631 union iwreq_data *wrqu, char *extra)
9632{
9633 struct ipw_priv *priv = ieee80211_priv(dev);
9634 mutex_lock(&priv->mutex);
9635 if (!(priv->power_mode & IPW_POWER_ENABLED))
9636 wrqu->power.disabled = 1;
9637 else
9638 wrqu->power.disabled = 0;
9639
9640 mutex_unlock(&priv->mutex);
9641 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9642
9643 return 0;
9644}
9645
9646static int ipw_wx_set_powermode(struct net_device *dev,
9647 struct iw_request_info *info,
9648 union iwreq_data *wrqu, char *extra)
9649{
9650 struct ipw_priv *priv = ieee80211_priv(dev);
9651 int mode = *(int *)extra;
9652 int err;
9653
9654 mutex_lock(&priv->mutex);
9655 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9656 mode = IPW_POWER_AC;
9657
9658 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9659 err = ipw_send_power_mode(priv, mode);
9660 if (err) {
9661 IPW_DEBUG_WX("failed setting power mode.\n");
9662 mutex_unlock(&priv->mutex);
9663 return err;
9664 }
9665 priv->power_mode = IPW_POWER_ENABLED | mode;
9666 }
9667 mutex_unlock(&priv->mutex);
9668 return 0;
9669}
9670
9671#define MAX_WX_STRING 80
9672static int ipw_wx_get_powermode(struct net_device *dev,
9673 struct iw_request_info *info,
9674 union iwreq_data *wrqu, char *extra)
9675{
9676 struct ipw_priv *priv = ieee80211_priv(dev);
9677 int level = IPW_POWER_LEVEL(priv->power_mode);
9678 char *p = extra;
9679
9680 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9681
9682 switch (level) {
9683 case IPW_POWER_AC:
9684 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9685 break;
9686 case IPW_POWER_BATTERY:
9687 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9688 break;
9689 default:
9690 p += snprintf(p, MAX_WX_STRING - (p - extra),
9691 "(Timeout %dms, Period %dms)",
9692 timeout_duration[level - 1] / 1000,
9693 period_duration[level - 1] / 1000);
9694 }
9695
9696 if (!(priv->power_mode & IPW_POWER_ENABLED))
9697 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9698
9699 wrqu->data.length = p - extra + 1;
9700
9701 return 0;
9702}
9703
9704static int ipw_wx_set_wireless_mode(struct net_device *dev,
9705 struct iw_request_info *info,
9706 union iwreq_data *wrqu, char *extra)
9707{
9708 struct ipw_priv *priv = ieee80211_priv(dev);
9709 int mode = *(int *)extra;
9710 u8 band = 0, modulation = 0;
9711
9712 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9713 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9714 return -EINVAL;
9715 }
9716 mutex_lock(&priv->mutex);
9717 if (priv->adapter == IPW_2915ABG) {
9718 priv->ieee->abg_true = 1;
9719 if (mode & IEEE_A) {
9720 band |= IEEE80211_52GHZ_BAND;
9721 modulation |= IEEE80211_OFDM_MODULATION;
9722 } else
9723 priv->ieee->abg_true = 0;
9724 } else {
9725 if (mode & IEEE_A) {
9726 IPW_WARNING("Attempt to set 2200BG into "
9727 "802.11a mode\n");
9728 mutex_unlock(&priv->mutex);
9729 return -EINVAL;
9730 }
9731
9732 priv->ieee->abg_true = 0;
9733 }
9734
9735 if (mode & IEEE_B) {
9736 band |= IEEE80211_24GHZ_BAND;
9737 modulation |= IEEE80211_CCK_MODULATION;
9738 } else
9739 priv->ieee->abg_true = 0;
9740
9741 if (mode & IEEE_G) {
9742 band |= IEEE80211_24GHZ_BAND;
9743 modulation |= IEEE80211_OFDM_MODULATION;
9744 } else
9745 priv->ieee->abg_true = 0;
9746
9747 priv->ieee->mode = mode;
9748 priv->ieee->freq_band = band;
9749 priv->ieee->modulation = modulation;
9750 init_supported_rates(priv, &priv->rates);
9751
9752 /* Network configuration changed -- force [re]association */
9753 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9754 if (!ipw_disassociate(priv)) {
9755 ipw_send_supported_rates(priv, &priv->rates);
9756 ipw_associate(priv);
9757 }
9758
9759 /* Update the band LEDs */
9760 ipw_led_band_on(priv);
9761
9762 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9763 mode & IEEE_A ? 'a' : '.',
9764 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9765 mutex_unlock(&priv->mutex);
9766 return 0;
9767}
9768
9769static int ipw_wx_get_wireless_mode(struct net_device *dev,
9770 struct iw_request_info *info,
9771 union iwreq_data *wrqu, char *extra)
9772{
9773 struct ipw_priv *priv = ieee80211_priv(dev);
9774 mutex_lock(&priv->mutex);
9775 switch (priv->ieee->mode) {
9776 case IEEE_A:
9777 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9778 break;
9779 case IEEE_B:
9780 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9781 break;
9782 case IEEE_A | IEEE_B:
9783 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9784 break;
9785 case IEEE_G:
9786 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9787 break;
9788 case IEEE_A | IEEE_G:
9789 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9790 break;
9791 case IEEE_B | IEEE_G:
9792 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9793 break;
9794 case IEEE_A | IEEE_B | IEEE_G:
9795 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9796 break;
9797 default:
9798 strncpy(extra, "unknown", MAX_WX_STRING);
9799 break;
9800 }
9801
9802 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9803
9804 wrqu->data.length = strlen(extra) + 1;
9805 mutex_unlock(&priv->mutex);
9806
9807 return 0;
9808}
9809
9810static int ipw_wx_set_preamble(struct net_device *dev,
9811 struct iw_request_info *info,
9812 union iwreq_data *wrqu, char *extra)
9813{
9814 struct ipw_priv *priv = ieee80211_priv(dev);
9815 int mode = *(int *)extra;
9816 mutex_lock(&priv->mutex);
9817 /* Switching from SHORT -> LONG requires a disassociation */
9818 if (mode == 1) {
9819 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9820 priv->config |= CFG_PREAMBLE_LONG;
9821
9822 /* Network configuration changed -- force [re]association */
9823 IPW_DEBUG_ASSOC
9824 ("[re]association triggered due to preamble change.\n");
9825 if (!ipw_disassociate(priv))
9826 ipw_associate(priv);
9827 }
9828 goto done;
9829 }
9830
9831 if (mode == 0) {
9832 priv->config &= ~CFG_PREAMBLE_LONG;
9833 goto done;
9834 }
9835 mutex_unlock(&priv->mutex);
9836 return -EINVAL;
9837
9838 done:
9839 mutex_unlock(&priv->mutex);
9840 return 0;
9841}
9842
9843static int ipw_wx_get_preamble(struct net_device *dev,
9844 struct iw_request_info *info,
9845 union iwreq_data *wrqu, char *extra)
9846{
9847 struct ipw_priv *priv = ieee80211_priv(dev);
9848 mutex_lock(&priv->mutex);
9849 if (priv->config & CFG_PREAMBLE_LONG)
9850 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9851 else
9852 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9853 mutex_unlock(&priv->mutex);
9854 return 0;
9855}
9856
9857#ifdef CONFIG_IPW2200_MONITOR
9858static int ipw_wx_set_monitor(struct net_device *dev,
9859 struct iw_request_info *info,
9860 union iwreq_data *wrqu, char *extra)
9861{
9862 struct ipw_priv *priv = ieee80211_priv(dev);
9863 int *parms = (int *)extra;
9864 int enable = (parms[0] > 0);
9865 mutex_lock(&priv->mutex);
9866 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9867 if (enable) {
9868 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9869#ifdef CONFIG_IPW2200_RADIOTAP
9870 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9871#else
9872 priv->net_dev->type = ARPHRD_IEEE80211;
9873#endif
9874 queue_work(priv->workqueue, &priv->adapter_restart);
9875 }
9876
9877 ipw_set_channel(priv, parms[1]);
9878 } else {
9879 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9880 mutex_unlock(&priv->mutex);
9881 return 0;
9882 }
9883 priv->net_dev->type = ARPHRD_ETHER;
9884 queue_work(priv->workqueue, &priv->adapter_restart);
9885 }
9886 mutex_unlock(&priv->mutex);
9887 return 0;
9888}
9889
9890#endif /* CONFIG_IPW2200_MONITOR */
9891
9892static int ipw_wx_reset(struct net_device *dev,
9893 struct iw_request_info *info,
9894 union iwreq_data *wrqu, char *extra)
9895{
9896 struct ipw_priv *priv = ieee80211_priv(dev);
9897 IPW_DEBUG_WX("RESET\n");
9898 queue_work(priv->workqueue, &priv->adapter_restart);
9899 return 0;
9900}
9901
9902static int ipw_wx_sw_reset(struct net_device *dev,
9903 struct iw_request_info *info,
9904 union iwreq_data *wrqu, char *extra)
9905{
9906 struct ipw_priv *priv = ieee80211_priv(dev);
9907 union iwreq_data wrqu_sec = {
9908 .encoding = {
9909 .flags = IW_ENCODE_DISABLED,
9910 },
9911 };
9912 int ret;
9913
9914 IPW_DEBUG_WX("SW_RESET\n");
9915
9916 mutex_lock(&priv->mutex);
9917
9918 ret = ipw_sw_reset(priv, 2);
9919 if (!ret) {
9920 free_firmware();
9921 ipw_adapter_restart(priv);
9922 }
9923
9924 /* The SW reset bit might have been toggled on by the 'disable'
9925 * module parameter, so take appropriate action */
9926 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9927
9928 mutex_unlock(&priv->mutex);
9929 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9930 mutex_lock(&priv->mutex);
9931
9932 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9933 /* Configuration likely changed -- force [re]association */
9934 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9935 "reset.\n");
9936 if (!ipw_disassociate(priv))
9937 ipw_associate(priv);
9938 }
9939
9940 mutex_unlock(&priv->mutex);
9941
9942 return 0;
9943}
9944
9945/* Rebase the WE IOCTLs to zero for the handler array */
9946#define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9947static iw_handler ipw_wx_handlers[] = {
9948 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9949 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9950 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9951 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9952 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9953 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9954 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9955 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9956 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9957 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9958 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9959 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9960 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9961 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9962 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9963 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9964 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9965 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9966 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9967 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9968 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9969 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9970 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9971 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9972 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9973 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9974 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9975 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9976 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9977 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9978 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9979 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9980 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9981 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9982 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9983 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9984 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9985 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9986 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9987 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9988 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9989};
9990
9991enum {
9992 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9993 IPW_PRIV_GET_POWER,
9994 IPW_PRIV_SET_MODE,
9995 IPW_PRIV_GET_MODE,
9996 IPW_PRIV_SET_PREAMBLE,
9997 IPW_PRIV_GET_PREAMBLE,
9998 IPW_PRIV_RESET,
9999 IPW_PRIV_SW_RESET,
10000#ifdef CONFIG_IPW2200_MONITOR
10001 IPW_PRIV_SET_MONITOR,
10002#endif
10003};
10004
10005static struct iw_priv_args ipw_priv_args[] = {
10006 {
10007 .cmd = IPW_PRIV_SET_POWER,
10008 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10009 .name = "set_power"},
10010 {
10011 .cmd = IPW_PRIV_GET_POWER,
10012 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10013 .name = "get_power"},
10014 {
10015 .cmd = IPW_PRIV_SET_MODE,
10016 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10017 .name = "set_mode"},
10018 {
10019 .cmd = IPW_PRIV_GET_MODE,
10020 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10021 .name = "get_mode"},
10022 {
10023 .cmd = IPW_PRIV_SET_PREAMBLE,
10024 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10025 .name = "set_preamble"},
10026 {
10027 .cmd = IPW_PRIV_GET_PREAMBLE,
10028 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10029 .name = "get_preamble"},
10030 {
10031 IPW_PRIV_RESET,
10032 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10033 {
10034 IPW_PRIV_SW_RESET,
10035 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10036#ifdef CONFIG_IPW2200_MONITOR
10037 {
10038 IPW_PRIV_SET_MONITOR,
10039 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10040#endif /* CONFIG_IPW2200_MONITOR */
10041};
10042
10043static iw_handler ipw_priv_handler[] = {
10044 ipw_wx_set_powermode,
10045 ipw_wx_get_powermode,
10046 ipw_wx_set_wireless_mode,
10047 ipw_wx_get_wireless_mode,
10048 ipw_wx_set_preamble,
10049 ipw_wx_get_preamble,
10050 ipw_wx_reset,
10051 ipw_wx_sw_reset,
10052#ifdef CONFIG_IPW2200_MONITOR
10053 ipw_wx_set_monitor,
10054#endif
10055};
10056
10057static struct iw_handler_def ipw_wx_handler_def = {
10058 .standard = ipw_wx_handlers,
10059 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10060 .num_private = ARRAY_SIZE(ipw_priv_handler),
10061 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10062 .private = ipw_priv_handler,
10063 .private_args = ipw_priv_args,
10064 .get_wireless_stats = ipw_get_wireless_stats,
10065};
10066
10067/*
10068 * Get wireless statistics.
10069 * Called by /proc/net/wireless
10070 * Also called by SIOCGIWSTATS
10071 */
10072static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10073{
10074 struct ipw_priv *priv = ieee80211_priv(dev);
10075 struct iw_statistics *wstats;
10076
10077 wstats = &priv->wstats;
10078
10079 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10080 * netdev->get_wireless_stats seems to be called before fw is
10081 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10082 * and associated; if not associcated, the values are all meaningless
10083 * anyway, so set them all to NULL and INVALID */
10084 if (!(priv->status & STATUS_ASSOCIATED)) {
10085 wstats->miss.beacon = 0;
10086 wstats->discard.retries = 0;
10087 wstats->qual.qual = 0;
10088 wstats->qual.level = 0;
10089 wstats->qual.noise = 0;
10090 wstats->qual.updated = 7;
10091 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10092 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10093 return wstats;
10094 }
10095
10096 wstats->qual.qual = priv->quality;
10097 wstats->qual.level = priv->exp_avg_rssi;
10098 wstats->qual.noise = priv->exp_avg_noise;
10099 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10100 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10101
10102 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10103 wstats->discard.retries = priv->last_tx_failures;
10104 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10105
10106/* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10107 goto fail_get_ordinal;
10108 wstats->discard.retries += tx_retry; */
10109
10110 return wstats;
10111}
10112
10113/* net device stuff */
10114
10115static void init_sys_config(struct ipw_sys_config *sys_config)
10116{
10117 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10118 sys_config->bt_coexistence = 0;
10119 sys_config->answer_broadcast_ssid_probe = 0;
10120 sys_config->accept_all_data_frames = 0;
10121 sys_config->accept_non_directed_frames = 1;
10122 sys_config->exclude_unicast_unencrypted = 0;
10123 sys_config->disable_unicast_decryption = 1;
10124 sys_config->exclude_multicast_unencrypted = 0;
10125 sys_config->disable_multicast_decryption = 1;
10126 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10127 antenna = CFG_SYS_ANTENNA_BOTH;
10128 sys_config->antenna_diversity = antenna;
10129 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10130 sys_config->dot11g_auto_detection = 0;
10131 sys_config->enable_cts_to_self = 0;
10132 sys_config->bt_coexist_collision_thr = 0;
10133 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10134 sys_config->silence_threshold = 0x1e;
10135}
10136
10137static int ipw_net_open(struct net_device *dev)
10138{
10139 IPW_DEBUG_INFO("dev->open\n");
10140 netif_start_queue(dev);
10141 return 0;
10142}
10143
10144static int ipw_net_stop(struct net_device *dev)
10145{
10146 IPW_DEBUG_INFO("dev->close\n");
10147 netif_stop_queue(dev);
10148 return 0;
10149}
10150
10151/*
10152todo:
10153
10154modify to send one tfd per fragment instead of using chunking. otherwise
10155we need to heavily modify the ieee80211_skb_to_txb.
10156*/
10157
10158static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10159 int pri)
10160{
10161 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10162 txb->fragments[0]->data;
10163 int i = 0;
10164 struct tfd_frame *tfd;
10165#ifdef CONFIG_IPW2200_QOS
10166 int tx_id = ipw_get_tx_queue_number(priv, pri);
10167 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10168#else
10169 struct clx2_tx_queue *txq = &priv->txq[0];
10170#endif
10171 struct clx2_queue *q = &txq->q;
10172 u8 id, hdr_len, unicast;
10173 u16 remaining_bytes;
10174 int fc;
10175
10176 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10177 switch (priv->ieee->iw_mode) {
10178 case IW_MODE_ADHOC:
10179 unicast = !is_multicast_ether_addr(hdr->addr1);
10180 id = ipw_find_station(priv, hdr->addr1);
10181 if (id == IPW_INVALID_STATION) {
10182 id = ipw_add_station(priv, hdr->addr1);
10183 if (id == IPW_INVALID_STATION) {
10184 IPW_WARNING("Attempt to send data to "
10185 "invalid cell: %pM\n",
10186 hdr->addr1);
10187 goto drop;
10188 }
10189 }
10190 break;
10191
10192 case IW_MODE_INFRA:
10193 default:
10194 unicast = !is_multicast_ether_addr(hdr->addr3);
10195 id = 0;
10196 break;
10197 }
10198
10199 tfd = &txq->bd[q->first_empty];
10200 txq->txb[q->first_empty] = txb;
10201 memset(tfd, 0, sizeof(*tfd));
10202 tfd->u.data.station_number = id;
10203
10204 tfd->control_flags.message_type = TX_FRAME_TYPE;
10205 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10206
10207 tfd->u.data.cmd_id = DINO_CMD_TX;
10208 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10209 remaining_bytes = txb->payload_size;
10210
10211 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10212 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10213 else
10214 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10215
10216 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10217 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10218
10219 fc = le16_to_cpu(hdr->frame_ctl);
10220 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10221
10222 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10223
10224 if (likely(unicast))
10225 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10226
10227 if (txb->encrypted && !priv->ieee->host_encrypt) {
10228 switch (priv->ieee->sec.level) {
10229 case SEC_LEVEL_3:
10230 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10231 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10232 /* XXX: ACK flag must be set for CCMP even if it
10233 * is a multicast/broadcast packet, because CCMP
10234 * group communication encrypted by GTK is
10235 * actually done by the AP. */
10236 if (!unicast)
10237 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10238
10239 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10240 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10241 tfd->u.data.key_index = 0;
10242 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10243 break;
10244 case SEC_LEVEL_2:
10245 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10246 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10247 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10248 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10249 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10250 break;
10251 case SEC_LEVEL_1:
10252 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10253 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10254 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10255 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10256 40)
10257 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10258 else
10259 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10260 break;
10261 case SEC_LEVEL_0:
10262 break;
10263 default:
10264 printk(KERN_ERR "Unknow security level %d\n",
10265 priv->ieee->sec.level);
10266 break;
10267 }
10268 } else
10269 /* No hardware encryption */
10270 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10271
10272#ifdef CONFIG_IPW2200_QOS
10273 if (fc & IEEE80211_STYPE_QOS_DATA)
10274 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10275#endif /* CONFIG_IPW2200_QOS */
10276
10277 /* payload */
10278 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10279 txb->nr_frags));
10280 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10281 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10282 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10283 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10284 i, le32_to_cpu(tfd->u.data.num_chunks),
10285 txb->fragments[i]->len - hdr_len);
10286 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10287 i, tfd->u.data.num_chunks,
10288 txb->fragments[i]->len - hdr_len);
10289 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10290 txb->fragments[i]->len - hdr_len);
10291
10292 tfd->u.data.chunk_ptr[i] =
10293 cpu_to_le32(pci_map_single
10294 (priv->pci_dev,
10295 txb->fragments[i]->data + hdr_len,
10296 txb->fragments[i]->len - hdr_len,
10297 PCI_DMA_TODEVICE));
10298 tfd->u.data.chunk_len[i] =
10299 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10300 }
10301
10302 if (i != txb->nr_frags) {
10303 struct sk_buff *skb;
10304 u16 remaining_bytes = 0;
10305 int j;
10306
10307 for (j = i; j < txb->nr_frags; j++)
10308 remaining_bytes += txb->fragments[j]->len - hdr_len;
10309
10310 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10311 remaining_bytes);
10312 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10313 if (skb != NULL) {
10314 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10315 for (j = i; j < txb->nr_frags; j++) {
10316 int size = txb->fragments[j]->len - hdr_len;
10317
10318 printk(KERN_INFO "Adding frag %d %d...\n",
10319 j, size);
10320 memcpy(skb_put(skb, size),
10321 txb->fragments[j]->data + hdr_len, size);
10322 }
10323 dev_kfree_skb_any(txb->fragments[i]);
10324 txb->fragments[i] = skb;
10325 tfd->u.data.chunk_ptr[i] =
10326 cpu_to_le32(pci_map_single
10327 (priv->pci_dev, skb->data,
10328 remaining_bytes,
10329 PCI_DMA_TODEVICE));
10330
10331 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10332 }
10333 }
10334
10335 /* kick DMA */
10336 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10337 ipw_write32(priv, q->reg_w, q->first_empty);
10338
10339 if (ipw_tx_queue_space(q) < q->high_mark)
10340 netif_stop_queue(priv->net_dev);
10341
10342 return NETDEV_TX_OK;
10343
10344 drop:
10345 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10346 ieee80211_txb_free(txb);
10347 return NETDEV_TX_OK;
10348}
10349
10350static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10351{
10352 struct ipw_priv *priv = ieee80211_priv(dev);
10353#ifdef CONFIG_IPW2200_QOS
10354 int tx_id = ipw_get_tx_queue_number(priv, pri);
10355 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10356#else
10357 struct clx2_tx_queue *txq = &priv->txq[0];
10358#endif /* CONFIG_IPW2200_QOS */
10359
10360 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10361 return 1;
10362
10363 return 0;
10364}
10365
10366#ifdef CONFIG_IPW2200_PROMISCUOUS
10367static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10368 struct ieee80211_txb *txb)
10369{
10370 struct ieee80211_rx_stats dummystats;
10371 struct ieee80211_hdr *hdr;
10372 u8 n;
10373 u16 filter = priv->prom_priv->filter;
10374 int hdr_only = 0;
10375
10376 if (filter & IPW_PROM_NO_TX)
10377 return;
10378
10379 memset(&dummystats, 0, sizeof(dummystats));
10380
10381 /* Filtering of fragment chains is done agains the first fragment */
10382 hdr = (void *)txb->fragments[0]->data;
10383 if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
10384 if (filter & IPW_PROM_NO_MGMT)
10385 return;
10386 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10387 hdr_only = 1;
10388 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
10389 if (filter & IPW_PROM_NO_CTL)
10390 return;
10391 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10392 hdr_only = 1;
10393 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
10394 if (filter & IPW_PROM_NO_DATA)
10395 return;
10396 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10397 hdr_only = 1;
10398 }
10399
10400 for(n=0; n<txb->nr_frags; ++n) {
10401 struct sk_buff *src = txb->fragments[n];
10402 struct sk_buff *dst;
10403 struct ieee80211_radiotap_header *rt_hdr;
10404 int len;
10405
10406 if (hdr_only) {
10407 hdr = (void *)src->data;
10408 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
10409 } else
10410 len = src->len;
10411
10412 dst = alloc_skb(
10413 len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10414 if (!dst) continue;
10415
10416 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10417
10418 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10419 rt_hdr->it_pad = 0;
10420 rt_hdr->it_present = 0; /* after all, it's just an idea */
10421 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10422
10423 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10424 ieee80211chan2mhz(priv->channel));
10425 if (priv->channel > 14) /* 802.11a */
10426 *(__le16*)skb_put(dst, sizeof(u16)) =
10427 cpu_to_le16(IEEE80211_CHAN_OFDM |
10428 IEEE80211_CHAN_5GHZ);
10429 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10430 *(__le16*)skb_put(dst, sizeof(u16)) =
10431 cpu_to_le16(IEEE80211_CHAN_CCK |
10432 IEEE80211_CHAN_2GHZ);
10433 else /* 802.11g */
10434 *(__le16*)skb_put(dst, sizeof(u16)) =
10435 cpu_to_le16(IEEE80211_CHAN_OFDM |
10436 IEEE80211_CHAN_2GHZ);
10437
10438 rt_hdr->it_len = cpu_to_le16(dst->len);
10439
10440 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10441
10442 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10443 dev_kfree_skb_any(dst);
10444 }
10445}
10446#endif
10447
10448static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10449 struct net_device *dev, int pri)
10450{
10451 struct ipw_priv *priv = ieee80211_priv(dev);
10452 unsigned long flags;
10453 int ret;
10454
10455 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10456 spin_lock_irqsave(&priv->lock, flags);
10457
10458#ifdef CONFIG_IPW2200_PROMISCUOUS
10459 if (rtap_iface && netif_running(priv->prom_net_dev))
10460 ipw_handle_promiscuous_tx(priv, txb);
10461#endif
10462
10463 ret = ipw_tx_skb(priv, txb, pri);
10464 if (ret == NETDEV_TX_OK)
10465 __ipw_led_activity_on(priv);
10466 spin_unlock_irqrestore(&priv->lock, flags);
10467
10468 return ret;
10469}
10470
10471static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10472{
10473 struct ipw_priv *priv = ieee80211_priv(dev);
10474
10475 priv->ieee->stats.tx_packets = priv->tx_packets;
10476 priv->ieee->stats.rx_packets = priv->rx_packets;
10477 return &priv->ieee->stats;
10478}
10479
10480static void ipw_net_set_multicast_list(struct net_device *dev)
10481{
10482
10483}
10484
10485static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10486{
10487 struct ipw_priv *priv = ieee80211_priv(dev);
10488 struct sockaddr *addr = p;
10489
10490 if (!is_valid_ether_addr(addr->sa_data))
10491 return -EADDRNOTAVAIL;
10492 mutex_lock(&priv->mutex);
10493 priv->config |= CFG_CUSTOM_MAC;
10494 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10495 printk(KERN_INFO "%s: Setting MAC to %pM\n",
10496 priv->net_dev->name, priv->mac_addr);
10497 queue_work(priv->workqueue, &priv->adapter_restart);
10498 mutex_unlock(&priv->mutex);
10499 return 0;
10500}
10501
10502static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10503 struct ethtool_drvinfo *info)
10504{
10505 struct ipw_priv *p = ieee80211_priv(dev);
10506 char vers[64];
10507 char date[32];
10508 u32 len;
10509
10510 strcpy(info->driver, DRV_NAME);
10511 strcpy(info->version, DRV_VERSION);
10512
10513 len = sizeof(vers);
10514 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10515 len = sizeof(date);
10516 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10517
10518 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10519 vers, date);
10520 strcpy(info->bus_info, pci_name(p->pci_dev));
10521 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10522}
10523
10524static u32 ipw_ethtool_get_link(struct net_device *dev)
10525{
10526 struct ipw_priv *priv = ieee80211_priv(dev);
10527 return (priv->status & STATUS_ASSOCIATED) != 0;
10528}
10529
10530static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10531{
10532 return IPW_EEPROM_IMAGE_SIZE;
10533}
10534
10535static int ipw_ethtool_get_eeprom(struct net_device *dev,
10536 struct ethtool_eeprom *eeprom, u8 * bytes)
10537{
10538 struct ipw_priv *p = ieee80211_priv(dev);
10539
10540 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10541 return -EINVAL;
10542 mutex_lock(&p->mutex);
10543 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10544 mutex_unlock(&p->mutex);
10545 return 0;
10546}
10547
10548static int ipw_ethtool_set_eeprom(struct net_device *dev,
10549 struct ethtool_eeprom *eeprom, u8 * bytes)
10550{
10551 struct ipw_priv *p = ieee80211_priv(dev);
10552 int i;
10553
10554 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10555 return -EINVAL;
10556 mutex_lock(&p->mutex);
10557 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10558 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10559 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10560 mutex_unlock(&p->mutex);
10561 return 0;
10562}
10563
10564static const struct ethtool_ops ipw_ethtool_ops = {
10565 .get_link = ipw_ethtool_get_link,
10566 .get_drvinfo = ipw_ethtool_get_drvinfo,
10567 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10568 .get_eeprom = ipw_ethtool_get_eeprom,
10569 .set_eeprom = ipw_ethtool_set_eeprom,
10570};
10571
10572static irqreturn_t ipw_isr(int irq, void *data)
10573{
10574 struct ipw_priv *priv = data;
10575 u32 inta, inta_mask;
10576
10577 if (!priv)
10578 return IRQ_NONE;
10579
10580 spin_lock(&priv->irq_lock);
10581
10582 if (!(priv->status & STATUS_INT_ENABLED)) {
10583 /* IRQ is disabled */
10584 goto none;
10585 }
10586
10587 inta = ipw_read32(priv, IPW_INTA_RW);
10588 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10589
10590 if (inta == 0xFFFFFFFF) {
10591 /* Hardware disappeared */
10592 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10593 goto none;
10594 }
10595
10596 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10597 /* Shared interrupt */
10598 goto none;
10599 }
10600
10601 /* tell the device to stop sending interrupts */
10602 __ipw_disable_interrupts(priv);
10603
10604 /* ack current interrupts */
10605 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10606 ipw_write32(priv, IPW_INTA_RW, inta);
10607
10608 /* Cache INTA value for our tasklet */
10609 priv->isr_inta = inta;
10610
10611 tasklet_schedule(&priv->irq_tasklet);
10612
10613 spin_unlock(&priv->irq_lock);
10614
10615 return IRQ_HANDLED;
10616 none:
10617 spin_unlock(&priv->irq_lock);
10618 return IRQ_NONE;
10619}
10620
10621static void ipw_rf_kill(void *adapter)
10622{
10623 struct ipw_priv *priv = adapter;
10624 unsigned long flags;
10625
10626 spin_lock_irqsave(&priv->lock, flags);
10627
10628 if (rf_kill_active(priv)) {
10629 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10630 if (priv->workqueue)
10631 queue_delayed_work(priv->workqueue,
10632 &priv->rf_kill, 2 * HZ);
10633 goto exit_unlock;
10634 }
10635
10636 /* RF Kill is now disabled, so bring the device back up */
10637
10638 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10639 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10640 "device\n");
10641
10642 /* we can not do an adapter restart while inside an irq lock */
10643 queue_work(priv->workqueue, &priv->adapter_restart);
10644 } else
10645 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10646 "enabled\n");
10647
10648 exit_unlock:
10649 spin_unlock_irqrestore(&priv->lock, flags);
10650}
10651
10652static void ipw_bg_rf_kill(struct work_struct *work)
10653{
10654 struct ipw_priv *priv =
10655 container_of(work, struct ipw_priv, rf_kill.work);
10656 mutex_lock(&priv->mutex);
10657 ipw_rf_kill(priv);
10658 mutex_unlock(&priv->mutex);
10659}
10660
10661static void ipw_link_up(struct ipw_priv *priv)
10662{
10663 priv->last_seq_num = -1;
10664 priv->last_frag_num = -1;
10665 priv->last_packet_time = 0;
10666
10667 netif_carrier_on(priv->net_dev);
10668
10669 cancel_delayed_work(&priv->request_scan);
10670 cancel_delayed_work(&priv->request_direct_scan);
10671 cancel_delayed_work(&priv->request_passive_scan);
10672 cancel_delayed_work(&priv->scan_event);
10673 ipw_reset_stats(priv);
10674 /* Ensure the rate is updated immediately */
10675 priv->last_rate = ipw_get_current_rate(priv);
10676 ipw_gather_stats(priv);
10677 ipw_led_link_up(priv);
10678 notify_wx_assoc_event(priv);
10679
10680 if (priv->config & CFG_BACKGROUND_SCAN)
10681 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10682}
10683
10684static void ipw_bg_link_up(struct work_struct *work)
10685{
10686 struct ipw_priv *priv =
10687 container_of(work, struct ipw_priv, link_up);
10688 mutex_lock(&priv->mutex);
10689 ipw_link_up(priv);
10690 mutex_unlock(&priv->mutex);
10691}
10692
10693static void ipw_link_down(struct ipw_priv *priv)
10694{
10695 ipw_led_link_down(priv);
10696 netif_carrier_off(priv->net_dev);
10697 notify_wx_assoc_event(priv);
10698
10699 /* Cancel any queued work ... */
10700 cancel_delayed_work(&priv->request_scan);
10701 cancel_delayed_work(&priv->request_direct_scan);
10702 cancel_delayed_work(&priv->request_passive_scan);
10703 cancel_delayed_work(&priv->adhoc_check);
10704 cancel_delayed_work(&priv->gather_stats);
10705
10706 ipw_reset_stats(priv);
10707
10708 if (!(priv->status & STATUS_EXIT_PENDING)) {
10709 /* Queue up another scan... */
10710 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10711 } else
10712 cancel_delayed_work(&priv->scan_event);
10713}
10714
10715static void ipw_bg_link_down(struct work_struct *work)
10716{
10717 struct ipw_priv *priv =
10718 container_of(work, struct ipw_priv, link_down);
10719 mutex_lock(&priv->mutex);
10720 ipw_link_down(priv);
10721 mutex_unlock(&priv->mutex);
10722}
10723
10724static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10725{
10726 int ret = 0;
10727
10728 priv->workqueue = create_workqueue(DRV_NAME);
10729 init_waitqueue_head(&priv->wait_command_queue);
10730 init_waitqueue_head(&priv->wait_state);
10731
10732 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10733 INIT_WORK(&priv->associate, ipw_bg_associate);
10734 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10735 INIT_WORK(&priv->system_config, ipw_system_config);
10736 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10737 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10738 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10739 INIT_WORK(&priv->up, ipw_bg_up);
10740 INIT_WORK(&priv->down, ipw_bg_down);
10741 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10742 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10743 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10744 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10745 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10746 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10747 INIT_WORK(&priv->roam, ipw_bg_roam);
10748 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10749 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10750 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10751 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10752 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10753 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10754 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10755
10756#ifdef CONFIG_IPW2200_QOS
10757 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10758#endif /* CONFIG_IPW2200_QOS */
10759
10760 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10761 ipw_irq_tasklet, (unsigned long)priv);
10762
10763 return ret;
10764}
10765
10766static void shim__set_security(struct net_device *dev,
10767 struct ieee80211_security *sec)
10768{
10769 struct ipw_priv *priv = ieee80211_priv(dev);
10770 int i;
10771 for (i = 0; i < 4; i++) {
10772 if (sec->flags & (1 << i)) {
10773 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10774 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10775 if (sec->key_sizes[i] == 0)
10776 priv->ieee->sec.flags &= ~(1 << i);
10777 else {
10778 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10779 sec->key_sizes[i]);
10780 priv->ieee->sec.flags |= (1 << i);
10781 }
10782 priv->status |= STATUS_SECURITY_UPDATED;
10783 } else if (sec->level != SEC_LEVEL_1)
10784 priv->ieee->sec.flags &= ~(1 << i);
10785 }
10786
10787 if (sec->flags & SEC_ACTIVE_KEY) {
10788 if (sec->active_key <= 3) {
10789 priv->ieee->sec.active_key = sec->active_key;
10790 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10791 } else
10792 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10793 priv->status |= STATUS_SECURITY_UPDATED;
10794 } else
10795 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10796
10797 if ((sec->flags & SEC_AUTH_MODE) &&
10798 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10799 priv->ieee->sec.auth_mode = sec->auth_mode;
10800 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10801 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10802 priv->capability |= CAP_SHARED_KEY;
10803 else
10804 priv->capability &= ~CAP_SHARED_KEY;
10805 priv->status |= STATUS_SECURITY_UPDATED;
10806 }
10807
10808 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10809 priv->ieee->sec.flags |= SEC_ENABLED;
10810 priv->ieee->sec.enabled = sec->enabled;
10811 priv->status |= STATUS_SECURITY_UPDATED;
10812 if (sec->enabled)
10813 priv->capability |= CAP_PRIVACY_ON;
10814 else
10815 priv->capability &= ~CAP_PRIVACY_ON;
10816 }
10817
10818 if (sec->flags & SEC_ENCRYPT)
10819 priv->ieee->sec.encrypt = sec->encrypt;
10820
10821 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10822 priv->ieee->sec.level = sec->level;
10823 priv->ieee->sec.flags |= SEC_LEVEL;
10824 priv->status |= STATUS_SECURITY_UPDATED;
10825 }
10826
10827 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10828 ipw_set_hwcrypto_keys(priv);
10829
10830 /* To match current functionality of ipw2100 (which works well w/
10831 * various supplicants, we don't force a disassociate if the
10832 * privacy capability changes ... */
10833#if 0
10834 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10835 (((priv->assoc_request.capability &
10836 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10837 (!(priv->assoc_request.capability &
10838 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10839 IPW_DEBUG_ASSOC("Disassociating due to capability "
10840 "change.\n");
10841 ipw_disassociate(priv);
10842 }
10843#endif
10844}
10845
10846static int init_supported_rates(struct ipw_priv *priv,
10847 struct ipw_supported_rates *rates)
10848{
10849 /* TODO: Mask out rates based on priv->rates_mask */
10850
10851 memset(rates, 0, sizeof(*rates));
10852 /* configure supported rates */
10853 switch (priv->ieee->freq_band) {
10854 case IEEE80211_52GHZ_BAND:
10855 rates->ieee_mode = IPW_A_MODE;
10856 rates->purpose = IPW_RATE_CAPABILITIES;
10857 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10858 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10859 break;
10860
10861 default: /* Mixed or 2.4Ghz */
10862 rates->ieee_mode = IPW_G_MODE;
10863 rates->purpose = IPW_RATE_CAPABILITIES;
10864 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10865 IEEE80211_CCK_DEFAULT_RATES_MASK);
10866 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10867 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10868 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10869 }
10870 break;
10871 }
10872
10873 return 0;
10874}
10875
10876static int ipw_config(struct ipw_priv *priv)
10877{
10878 /* This is only called from ipw_up, which resets/reloads the firmware
10879 so, we don't need to first disable the card before we configure
10880 it */
10881 if (ipw_set_tx_power(priv))
10882 goto error;
10883
10884 /* initialize adapter address */
10885 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10886 goto error;
10887
10888 /* set basic system config settings */
10889 init_sys_config(&priv->sys_config);
10890
10891 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10892 * Does not support BT priority yet (don't abort or defer our Tx) */
10893 if (bt_coexist) {
10894 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10895
10896 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10897 priv->sys_config.bt_coexistence
10898 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10899 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10900 priv->sys_config.bt_coexistence
10901 |= CFG_BT_COEXISTENCE_OOB;
10902 }
10903
10904#ifdef CONFIG_IPW2200_PROMISCUOUS
10905 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10906 priv->sys_config.accept_all_data_frames = 1;
10907 priv->sys_config.accept_non_directed_frames = 1;
10908 priv->sys_config.accept_all_mgmt_bcpr = 1;
10909 priv->sys_config.accept_all_mgmt_frames = 1;
10910 }
10911#endif
10912
10913 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10914 priv->sys_config.answer_broadcast_ssid_probe = 1;
10915 else
10916 priv->sys_config.answer_broadcast_ssid_probe = 0;
10917
10918 if (ipw_send_system_config(priv))
10919 goto error;
10920
10921 init_supported_rates(priv, &priv->rates);
10922 if (ipw_send_supported_rates(priv, &priv->rates))
10923 goto error;
10924
10925 /* Set request-to-send threshold */
10926 if (priv->rts_threshold) {
10927 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10928 goto error;
10929 }
10930#ifdef CONFIG_IPW2200_QOS
10931 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10932 ipw_qos_activate(priv, NULL);
10933#endif /* CONFIG_IPW2200_QOS */
10934
10935 if (ipw_set_random_seed(priv))
10936 goto error;
10937
10938 /* final state transition to the RUN state */
10939 if (ipw_send_host_complete(priv))
10940 goto error;
10941
10942 priv->status |= STATUS_INIT;
10943
10944 ipw_led_init(priv);
10945 ipw_led_radio_on(priv);
10946 priv->notif_missed_beacons = 0;
10947
10948 /* Set hardware WEP key if it is configured. */
10949 if ((priv->capability & CAP_PRIVACY_ON) &&
10950 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10951 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10952 ipw_set_hwcrypto_keys(priv);
10953
10954 return 0;
10955
10956 error:
10957 return -EIO;
10958}
10959
10960/*
10961 * NOTE:
10962 *
10963 * These tables have been tested in conjunction with the
10964 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10965 *
10966 * Altering this values, using it on other hardware, or in geographies
10967 * not intended for resale of the above mentioned Intel adapters has
10968 * not been tested.
10969 *
10970 * Remember to update the table in README.ipw2200 when changing this
10971 * table.
10972 *
10973 */
10974static const struct ieee80211_geo ipw_geos[] = {
10975 { /* Restricted */
10976 "---",
10977 .bg_channels = 11,
10978 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10979 {2427, 4}, {2432, 5}, {2437, 6},
10980 {2442, 7}, {2447, 8}, {2452, 9},
10981 {2457, 10}, {2462, 11}},
10982 },
10983
10984 { /* Custom US/Canada */
10985 "ZZF",
10986 .bg_channels = 11,
10987 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10988 {2427, 4}, {2432, 5}, {2437, 6},
10989 {2442, 7}, {2447, 8}, {2452, 9},
10990 {2457, 10}, {2462, 11}},
10991 .a_channels = 8,
10992 .a = {{5180, 36},
10993 {5200, 40},
10994 {5220, 44},
10995 {5240, 48},
10996 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10997 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10998 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10999 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11000 },
11001
11002 { /* Rest of World */
11003 "ZZD",
11004 .bg_channels = 13,
11005 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11006 {2427, 4}, {2432, 5}, {2437, 6},
11007 {2442, 7}, {2447, 8}, {2452, 9},
11008 {2457, 10}, {2462, 11}, {2467, 12},
11009 {2472, 13}},
11010 },
11011
11012 { /* Custom USA & Europe & High */
11013 "ZZA",
11014 .bg_channels = 11,
11015 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11016 {2427, 4}, {2432, 5}, {2437, 6},
11017 {2442, 7}, {2447, 8}, {2452, 9},
11018 {2457, 10}, {2462, 11}},
11019 .a_channels = 13,
11020 .a = {{5180, 36},
11021 {5200, 40},
11022 {5220, 44},
11023 {5240, 48},
11024 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11025 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11026 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11027 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11028 {5745, 149},
11029 {5765, 153},
11030 {5785, 157},
11031 {5805, 161},
11032 {5825, 165}},
11033 },
11034
11035 { /* Custom NA & Europe */
11036 "ZZB",
11037 .bg_channels = 11,
11038 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11039 {2427, 4}, {2432, 5}, {2437, 6},
11040 {2442, 7}, {2447, 8}, {2452, 9},
11041 {2457, 10}, {2462, 11}},
11042 .a_channels = 13,
11043 .a = {{5180, 36},
11044 {5200, 40},
11045 {5220, 44},
11046 {5240, 48},
11047 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11048 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11049 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11050 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11051 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11052 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11053 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11054 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11055 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11056 },
11057
11058 { /* Custom Japan */
11059 "ZZC",
11060 .bg_channels = 11,
11061 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11062 {2427, 4}, {2432, 5}, {2437, 6},
11063 {2442, 7}, {2447, 8}, {2452, 9},
11064 {2457, 10}, {2462, 11}},
11065 .a_channels = 4,
11066 .a = {{5170, 34}, {5190, 38},
11067 {5210, 42}, {5230, 46}},
11068 },
11069
11070 { /* Custom */
11071 "ZZM",
11072 .bg_channels = 11,
11073 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11074 {2427, 4}, {2432, 5}, {2437, 6},
11075 {2442, 7}, {2447, 8}, {2452, 9},
11076 {2457, 10}, {2462, 11}},
11077 },
11078
11079 { /* Europe */
11080 "ZZE",
11081 .bg_channels = 13,
11082 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11083 {2427, 4}, {2432, 5}, {2437, 6},
11084 {2442, 7}, {2447, 8}, {2452, 9},
11085 {2457, 10}, {2462, 11}, {2467, 12},
11086 {2472, 13}},
11087 .a_channels = 19,
11088 .a = {{5180, 36},
11089 {5200, 40},
11090 {5220, 44},
11091 {5240, 48},
11092 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11093 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11094 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11095 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11096 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11097 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11098 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11099 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11100 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11101 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11102 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11103 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11104 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11105 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11106 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11107 },
11108
11109 { /* Custom Japan */
11110 "ZZJ",
11111 .bg_channels = 14,
11112 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11113 {2427, 4}, {2432, 5}, {2437, 6},
11114 {2442, 7}, {2447, 8}, {2452, 9},
11115 {2457, 10}, {2462, 11}, {2467, 12},
11116 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11117 .a_channels = 4,
11118 .a = {{5170, 34}, {5190, 38},
11119 {5210, 42}, {5230, 46}},
11120 },
11121
11122 { /* Rest of World */
11123 "ZZR",
11124 .bg_channels = 14,
11125 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11126 {2427, 4}, {2432, 5}, {2437, 6},
11127 {2442, 7}, {2447, 8}, {2452, 9},
11128 {2457, 10}, {2462, 11}, {2467, 12},
11129 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11130 IEEE80211_CH_PASSIVE_ONLY}},
11131 },
11132
11133 { /* High Band */
11134 "ZZH",
11135 .bg_channels = 13,
11136 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11137 {2427, 4}, {2432, 5}, {2437, 6},
11138 {2442, 7}, {2447, 8}, {2452, 9},
11139 {2457, 10}, {2462, 11},
11140 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11141 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11142 .a_channels = 4,
11143 .a = {{5745, 149}, {5765, 153},
11144 {5785, 157}, {5805, 161}},
11145 },
11146
11147 { /* Custom Europe */
11148 "ZZG",
11149 .bg_channels = 13,
11150 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11151 {2427, 4}, {2432, 5}, {2437, 6},
11152 {2442, 7}, {2447, 8}, {2452, 9},
11153 {2457, 10}, {2462, 11},
11154 {2467, 12}, {2472, 13}},
11155 .a_channels = 4,
11156 .a = {{5180, 36}, {5200, 40},
11157 {5220, 44}, {5240, 48}},
11158 },
11159
11160 { /* Europe */
11161 "ZZK",
11162 .bg_channels = 13,
11163 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11164 {2427, 4}, {2432, 5}, {2437, 6},
11165 {2442, 7}, {2447, 8}, {2452, 9},
11166 {2457, 10}, {2462, 11},
11167 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11168 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11169 .a_channels = 24,
11170 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11171 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11172 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11173 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11174 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11175 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11176 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11177 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11178 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11179 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11180 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11181 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11182 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11183 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11184 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11185 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11186 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11187 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11188 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11189 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11190 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11191 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11192 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11193 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11194 },
11195
11196 { /* Europe */
11197 "ZZL",
11198 .bg_channels = 11,
11199 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11200 {2427, 4}, {2432, 5}, {2437, 6},
11201 {2442, 7}, {2447, 8}, {2452, 9},
11202 {2457, 10}, {2462, 11}},
11203 .a_channels = 13,
11204 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11205 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11206 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11207 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11208 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11209 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11210 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11211 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11212 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11213 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11214 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11215 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11216 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11217 }
11218};
11219
11220#define MAX_HW_RESTARTS 5
11221static int ipw_up(struct ipw_priv *priv)
11222{
11223 int rc, i, j;
11224
11225 if (priv->status & STATUS_EXIT_PENDING)
11226 return -EIO;
11227
11228 if (cmdlog && !priv->cmdlog) {
11229 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11230 GFP_KERNEL);
11231 if (priv->cmdlog == NULL) {
11232 IPW_ERROR("Error allocating %d command log entries.\n",
11233 cmdlog);
11234 return -ENOMEM;
11235 } else {
11236 priv->cmdlog_len = cmdlog;
11237 }
11238 }
11239
11240 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11241 /* Load the microcode, firmware, and eeprom.
11242 * Also start the clocks. */
11243 rc = ipw_load(priv);
11244 if (rc) {
11245 IPW_ERROR("Unable to load firmware: %d\n", rc);
11246 return rc;
11247 }
11248
11249 ipw_init_ordinals(priv);
11250 if (!(priv->config & CFG_CUSTOM_MAC))
11251 eeprom_parse_mac(priv, priv->mac_addr);
11252 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11253
11254 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11255 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11256 ipw_geos[j].name, 3))
11257 break;
11258 }
11259 if (j == ARRAY_SIZE(ipw_geos)) {
11260 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11261 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11262 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11263 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11264 j = 0;
11265 }
11266 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11267 IPW_WARNING("Could not set geography.");
11268 return 0;
11269 }
11270
11271 if (priv->status & STATUS_RF_KILL_SW) {
11272 IPW_WARNING("Radio disabled by module parameter.\n");
11273 return 0;
11274 } else if (rf_kill_active(priv)) {
11275 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11276 "Kill switch must be turned off for "
11277 "wireless networking to work.\n");
11278 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11279 2 * HZ);
11280 return 0;
11281 }
11282
11283 rc = ipw_config(priv);
11284 if (!rc) {
11285 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11286
11287 /* If configure to try and auto-associate, kick
11288 * off a scan. */
11289 queue_delayed_work(priv->workqueue,
11290 &priv->request_scan, 0);
11291
11292 return 0;
11293 }
11294
11295 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11296 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11297 i, MAX_HW_RESTARTS);
11298
11299 /* We had an error bringing up the hardware, so take it
11300 * all the way back down so we can try again */
11301 ipw_down(priv);
11302 }
11303
11304 /* tried to restart and config the device for as long as our
11305 * patience could withstand */
11306 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11307
11308 return -EIO;
11309}
11310
11311static void ipw_bg_up(struct work_struct *work)
11312{
11313 struct ipw_priv *priv =
11314 container_of(work, struct ipw_priv, up);
11315 mutex_lock(&priv->mutex);
11316 ipw_up(priv);
11317 mutex_unlock(&priv->mutex);
11318}
11319
11320static void ipw_deinit(struct ipw_priv *priv)
11321{
11322 int i;
11323
11324 if (priv->status & STATUS_SCANNING) {
11325 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11326 ipw_abort_scan(priv);
11327 }
11328
11329 if (priv->status & STATUS_ASSOCIATED) {
11330 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11331 ipw_disassociate(priv);
11332 }
11333
11334 ipw_led_shutdown(priv);
11335
11336 /* Wait up to 1s for status to change to not scanning and not
11337 * associated (disassociation can take a while for a ful 802.11
11338 * exchange */
11339 for (i = 1000; i && (priv->status &
11340 (STATUS_DISASSOCIATING |
11341 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11342 udelay(10);
11343
11344 if (priv->status & (STATUS_DISASSOCIATING |
11345 STATUS_ASSOCIATED | STATUS_SCANNING))
11346 IPW_DEBUG_INFO("Still associated or scanning...\n");
11347 else
11348 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11349
11350 /* Attempt to disable the card */
11351 ipw_send_card_disable(priv, 0);
11352
11353 priv->status &= ~STATUS_INIT;
11354}
11355
11356static void ipw_down(struct ipw_priv *priv)
11357{
11358 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11359
11360 priv->status |= STATUS_EXIT_PENDING;
11361
11362 if (ipw_is_init(priv))
11363 ipw_deinit(priv);
11364
11365 /* Wipe out the EXIT_PENDING status bit if we are not actually
11366 * exiting the module */
11367 if (!exit_pending)
11368 priv->status &= ~STATUS_EXIT_PENDING;
11369
11370 /* tell the device to stop sending interrupts */
11371 ipw_disable_interrupts(priv);
11372
11373 /* Clear all bits but the RF Kill */
11374 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11375 netif_carrier_off(priv->net_dev);
11376
11377 ipw_stop_nic(priv);
11378
11379 ipw_led_radio_off(priv);
11380}
11381
11382static void ipw_bg_down(struct work_struct *work)
11383{
11384 struct ipw_priv *priv =
11385 container_of(work, struct ipw_priv, down);
11386 mutex_lock(&priv->mutex);
11387 ipw_down(priv);
11388 mutex_unlock(&priv->mutex);
11389}
11390
11391/* Called by register_netdev() */
11392static int ipw_net_init(struct net_device *dev)
11393{
11394 struct ipw_priv *priv = ieee80211_priv(dev);
11395 mutex_lock(&priv->mutex);
11396
11397 if (ipw_up(priv)) {
11398 mutex_unlock(&priv->mutex);
11399 return -EIO;
11400 }
11401
11402 mutex_unlock(&priv->mutex);
11403 return 0;
11404}
11405
11406/* PCI driver stuff */
11407static struct pci_device_id card_ids[] = {
11408 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11409 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11410 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11411 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11412 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11413 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11414 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11415 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11416 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11417 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11418 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11419 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11420 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11421 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11422 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11423 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11424 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11425 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11426 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11427 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11428 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11429 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11430
11431 /* required last entry */
11432 {0,}
11433};
11434
11435MODULE_DEVICE_TABLE(pci, card_ids);
11436
11437static struct attribute *ipw_sysfs_entries[] = {
11438 &dev_attr_rf_kill.attr,
11439 &dev_attr_direct_dword.attr,
11440 &dev_attr_indirect_byte.attr,
11441 &dev_attr_indirect_dword.attr,
11442 &dev_attr_mem_gpio_reg.attr,
11443 &dev_attr_command_event_reg.attr,
11444 &dev_attr_nic_type.attr,
11445 &dev_attr_status.attr,
11446 &dev_attr_cfg.attr,
11447 &dev_attr_error.attr,
11448 &dev_attr_event_log.attr,
11449 &dev_attr_cmd_log.attr,
11450 &dev_attr_eeprom_delay.attr,
11451 &dev_attr_ucode_version.attr,
11452 &dev_attr_rtc.attr,
11453 &dev_attr_scan_age.attr,
11454 &dev_attr_led.attr,
11455 &dev_attr_speed_scan.attr,
11456 &dev_attr_net_stats.attr,
11457 &dev_attr_channels.attr,
11458#ifdef CONFIG_IPW2200_PROMISCUOUS
11459 &dev_attr_rtap_iface.attr,
11460 &dev_attr_rtap_filter.attr,
11461#endif
11462 NULL
11463};
11464
11465static struct attribute_group ipw_attribute_group = {
11466 .name = NULL, /* put in device directory */
11467 .attrs = ipw_sysfs_entries,
11468};
11469
11470#ifdef CONFIG_IPW2200_PROMISCUOUS
11471static int ipw_prom_open(struct net_device *dev)
11472{
11473 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11474 struct ipw_priv *priv = prom_priv->priv;
11475
11476 IPW_DEBUG_INFO("prom dev->open\n");
11477 netif_carrier_off(dev);
11478
11479 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11480 priv->sys_config.accept_all_data_frames = 1;
11481 priv->sys_config.accept_non_directed_frames = 1;
11482 priv->sys_config.accept_all_mgmt_bcpr = 1;
11483 priv->sys_config.accept_all_mgmt_frames = 1;
11484
11485 ipw_send_system_config(priv);
11486 }
11487
11488 return 0;
11489}
11490
11491static int ipw_prom_stop(struct net_device *dev)
11492{
11493 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11494 struct ipw_priv *priv = prom_priv->priv;
11495
11496 IPW_DEBUG_INFO("prom dev->stop\n");
11497
11498 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11499 priv->sys_config.accept_all_data_frames = 0;
11500 priv->sys_config.accept_non_directed_frames = 0;
11501 priv->sys_config.accept_all_mgmt_bcpr = 0;
11502 priv->sys_config.accept_all_mgmt_frames = 0;
11503
11504 ipw_send_system_config(priv);
11505 }
11506
11507 return 0;
11508}
11509
11510static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11511{
11512 IPW_DEBUG_INFO("prom dev->xmit\n");
11513 return -EOPNOTSUPP;
11514}
11515
11516static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11517{
11518 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11519 return &prom_priv->ieee->stats;
11520}
11521
11522static int ipw_prom_alloc(struct ipw_priv *priv)
11523{
11524 int rc = 0;
11525
11526 if (priv->prom_net_dev)
11527 return -EPERM;
11528
11529 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11530 if (priv->prom_net_dev == NULL)
11531 return -ENOMEM;
11532
11533 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11534 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11535 priv->prom_priv->priv = priv;
11536
11537 strcpy(priv->prom_net_dev->name, "rtap%d");
11538 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11539
11540 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11541 priv->prom_net_dev->open = ipw_prom_open;
11542 priv->prom_net_dev->stop = ipw_prom_stop;
11543 priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11544 priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11545
11546 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11547 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11548
11549 rc = register_netdev(priv->prom_net_dev);
11550 if (rc) {
11551 free_ieee80211(priv->prom_net_dev);
11552 priv->prom_net_dev = NULL;
11553 return rc;
11554 }
11555
11556 return 0;
11557}
11558
11559static void ipw_prom_free(struct ipw_priv *priv)
11560{
11561 if (!priv->prom_net_dev)
11562 return;
11563
11564 unregister_netdev(priv->prom_net_dev);
11565 free_ieee80211(priv->prom_net_dev);
11566
11567 priv->prom_net_dev = NULL;
11568}
11569
11570#endif
11571
11572
11573static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11574 const struct pci_device_id *ent)
11575{
11576 int err = 0;
11577 struct net_device *net_dev;
11578 void __iomem *base;
11579 u32 length, val;
11580 struct ipw_priv *priv;
11581 int i;
11582
11583 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11584 if (net_dev == NULL) {
11585 err = -ENOMEM;
11586 goto out;
11587 }
11588
11589 priv = ieee80211_priv(net_dev);
11590 priv->ieee = netdev_priv(net_dev);
11591
11592 priv->net_dev = net_dev;
11593 priv->pci_dev = pdev;
11594 ipw_debug_level = debug;
11595 spin_lock_init(&priv->irq_lock);
11596 spin_lock_init(&priv->lock);
11597 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11598 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11599
11600 mutex_init(&priv->mutex);
11601 if (pci_enable_device(pdev)) {
11602 err = -ENODEV;
11603 goto out_free_ieee80211;
11604 }
11605
11606 pci_set_master(pdev);
11607
11608 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11609 if (!err)
11610 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11611 if (err) {
11612 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11613 goto out_pci_disable_device;
11614 }
11615
11616 pci_set_drvdata(pdev, priv);
11617
11618 err = pci_request_regions(pdev, DRV_NAME);
11619 if (err)
11620 goto out_pci_disable_device;
11621
11622 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11623 * PCI Tx retries from interfering with C3 CPU state */
11624 pci_read_config_dword(pdev, 0x40, &val);
11625 if ((val & 0x0000ff00) != 0)
11626 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11627
11628 length = pci_resource_len(pdev, 0);
11629 priv->hw_len = length;
11630
11631 base = pci_ioremap_bar(pdev, 0);
11632 if (!base) {
11633 err = -ENODEV;
11634 goto out_pci_release_regions;
11635 }
11636
11637 priv->hw_base = base;
11638 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11639 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11640
11641 err = ipw_setup_deferred_work(priv);
11642 if (err) {
11643 IPW_ERROR("Unable to setup deferred work\n");
11644 goto out_iounmap;
11645 }
11646
11647 ipw_sw_reset(priv, 1);
11648
11649 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11650 if (err) {
11651 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11652 goto out_destroy_workqueue;
11653 }
11654
11655 SET_NETDEV_DEV(net_dev, &pdev->dev);
11656
11657 mutex_lock(&priv->mutex);
11658
11659 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11660 priv->ieee->set_security = shim__set_security;
11661 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11662
11663#ifdef CONFIG_IPW2200_QOS
11664 priv->ieee->is_qos_active = ipw_is_qos_active;
11665 priv->ieee->handle_probe_response = ipw_handle_beacon;
11666 priv->ieee->handle_beacon = ipw_handle_probe_response;
11667 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11668#endif /* CONFIG_IPW2200_QOS */
11669
11670 priv->ieee->perfect_rssi = -20;
11671 priv->ieee->worst_rssi = -85;
11672
11673 net_dev->open = ipw_net_open;
11674 net_dev->stop = ipw_net_stop;
11675 net_dev->init = ipw_net_init;
11676 net_dev->get_stats = ipw_net_get_stats;
11677 net_dev->set_multicast_list = ipw_net_set_multicast_list;
11678 net_dev->set_mac_address = ipw_net_set_mac_address;
11679 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11680 net_dev->wireless_data = &priv->wireless_data;
11681 net_dev->wireless_handlers = &ipw_wx_handler_def;
11682 net_dev->ethtool_ops = &ipw_ethtool_ops;
11683 net_dev->irq = pdev->irq;
11684 net_dev->base_addr = (unsigned long)priv->hw_base;
11685 net_dev->mem_start = pci_resource_start(pdev, 0);
11686 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11687
11688 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11689 if (err) {
11690 IPW_ERROR("failed to create sysfs device attributes\n");
11691 mutex_unlock(&priv->mutex);
11692 goto out_release_irq;
11693 }
11694
11695 mutex_unlock(&priv->mutex);
11696 err = register_netdev(net_dev);
11697 if (err) {
11698 IPW_ERROR("failed to register network device\n");
11699 goto out_remove_sysfs;
11700 }
11701
11702#ifdef CONFIG_IPW2200_PROMISCUOUS
11703 if (rtap_iface) {
11704 err = ipw_prom_alloc(priv);
11705 if (err) {
11706 IPW_ERROR("Failed to register promiscuous network "
11707 "device (error %d).\n", err);
11708 unregister_netdev(priv->net_dev);
11709 goto out_remove_sysfs;
11710 }
11711 }
11712#endif
11713
11714 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11715 "channels, %d 802.11a channels)\n",
11716 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11717 priv->ieee->geo.a_channels);
11718
11719 return 0;
11720
11721 out_remove_sysfs:
11722 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11723 out_release_irq:
11724 free_irq(pdev->irq, priv);
11725 out_destroy_workqueue:
11726 destroy_workqueue(priv->workqueue);
11727 priv->workqueue = NULL;
11728 out_iounmap:
11729 iounmap(priv->hw_base);
11730 out_pci_release_regions:
11731 pci_release_regions(pdev);
11732 out_pci_disable_device:
11733 pci_disable_device(pdev);
11734 pci_set_drvdata(pdev, NULL);
11735 out_free_ieee80211:
11736 free_ieee80211(priv->net_dev);
11737 out:
11738 return err;
11739}
11740
11741static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11742{
11743 struct ipw_priv *priv = pci_get_drvdata(pdev);
11744 struct list_head *p, *q;
11745 int i;
11746
11747 if (!priv)
11748 return;
11749
11750 mutex_lock(&priv->mutex);
11751
11752 priv->status |= STATUS_EXIT_PENDING;
11753 ipw_down(priv);
11754 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11755
11756 mutex_unlock(&priv->mutex);
11757
11758 unregister_netdev(priv->net_dev);
11759
11760 if (priv->rxq) {
11761 ipw_rx_queue_free(priv, priv->rxq);
11762 priv->rxq = NULL;
11763 }
11764 ipw_tx_queue_free(priv);
11765
11766 if (priv->cmdlog) {
11767 kfree(priv->cmdlog);
11768 priv->cmdlog = NULL;
11769 }
11770 /* ipw_down will ensure that there is no more pending work
11771 * in the workqueue's, so we can safely remove them now. */
11772 cancel_delayed_work(&priv->adhoc_check);
11773 cancel_delayed_work(&priv->gather_stats);
11774 cancel_delayed_work(&priv->request_scan);
11775 cancel_delayed_work(&priv->request_direct_scan);
11776 cancel_delayed_work(&priv->request_passive_scan);
11777 cancel_delayed_work(&priv->scan_event);
11778 cancel_delayed_work(&priv->rf_kill);
11779 cancel_delayed_work(&priv->scan_check);
11780 destroy_workqueue(priv->workqueue);
11781 priv->workqueue = NULL;
11782
11783 /* Free MAC hash list for ADHOC */
11784 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11785 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11786 list_del(p);
11787 kfree(list_entry(p, struct ipw_ibss_seq, list));
11788 }
11789 }
11790
11791 kfree(priv->error);
11792 priv->error = NULL;
11793
11794#ifdef CONFIG_IPW2200_PROMISCUOUS
11795 ipw_prom_free(priv);
11796#endif
11797
11798 free_irq(pdev->irq, priv);
11799 iounmap(priv->hw_base);
11800 pci_release_regions(pdev);
11801 pci_disable_device(pdev);
11802 pci_set_drvdata(pdev, NULL);
11803 free_ieee80211(priv->net_dev);
11804 free_firmware();
11805}
11806
11807#ifdef CONFIG_PM
11808static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11809{
11810 struct ipw_priv *priv = pci_get_drvdata(pdev);
11811 struct net_device *dev = priv->net_dev;
11812
11813 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11814
11815 /* Take down the device; powers it off, etc. */
11816 ipw_down(priv);
11817
11818 /* Remove the PRESENT state of the device */
11819 netif_device_detach(dev);
11820
11821 pci_save_state(pdev);
11822 pci_disable_device(pdev);
11823 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11824
11825 return 0;
11826}
11827
11828static int ipw_pci_resume(struct pci_dev *pdev)
11829{
11830 struct ipw_priv *priv = pci_get_drvdata(pdev);
11831 struct net_device *dev = priv->net_dev;
11832 int err;
11833 u32 val;
11834
11835 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11836
11837 pci_set_power_state(pdev, PCI_D0);
11838 err = pci_enable_device(pdev);
11839 if (err) {
11840 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11841 dev->name);
11842 return err;
11843 }
11844 pci_restore_state(pdev);
11845
11846 /*
11847 * Suspend/Resume resets the PCI configuration space, so we have to
11848 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11849 * from interfering with C3 CPU state. pci_restore_state won't help
11850 * here since it only restores the first 64 bytes pci config header.
11851 */
11852 pci_read_config_dword(pdev, 0x40, &val);
11853 if ((val & 0x0000ff00) != 0)
11854 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11855
11856 /* Set the device back into the PRESENT state; this will also wake
11857 * the queue of needed */
11858 netif_device_attach(dev);
11859
11860 /* Bring the device back up */
11861 queue_work(priv->workqueue, &priv->up);
11862
11863 return 0;
11864}
11865#endif
11866
11867static void ipw_pci_shutdown(struct pci_dev *pdev)
11868{
11869 struct ipw_priv *priv = pci_get_drvdata(pdev);
11870
11871 /* Take down the device; powers it off, etc. */
11872 ipw_down(priv);
11873
11874 pci_disable_device(pdev);
11875}
11876
11877/* driver initialization stuff */
11878static struct pci_driver ipw_driver = {
11879 .name = DRV_NAME,
11880 .id_table = card_ids,
11881 .probe = ipw_pci_probe,
11882 .remove = __devexit_p(ipw_pci_remove),
11883#ifdef CONFIG_PM
11884 .suspend = ipw_pci_suspend,
11885 .resume = ipw_pci_resume,
11886#endif
11887 .shutdown = ipw_pci_shutdown,
11888};
11889
11890static int __init ipw_init(void)
11891{
11892 int ret;
11893
11894 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11895 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11896
11897 ret = pci_register_driver(&ipw_driver);
11898 if (ret) {
11899 IPW_ERROR("Unable to initialize PCI module\n");
11900 return ret;
11901 }
11902
11903 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11904 if (ret) {
11905 IPW_ERROR("Unable to create driver sysfs file\n");
11906 pci_unregister_driver(&ipw_driver);
11907 return ret;
11908 }
11909
11910 return ret;
11911}
11912
11913static void __exit ipw_exit(void)
11914{
11915 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11916 pci_unregister_driver(&ipw_driver);
11917}
11918
11919module_param(disable, int, 0444);
11920MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11921
11922module_param(associate, int, 0444);
11923MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11924
11925module_param(auto_create, int, 0444);
11926MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11927
11928module_param(led, int, 0444);
11929MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
11930
11931module_param(debug, int, 0444);
11932MODULE_PARM_DESC(debug, "debug output mask");
11933
11934module_param(channel, int, 0444);
11935MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11936
11937#ifdef CONFIG_IPW2200_PROMISCUOUS
11938module_param(rtap_iface, int, 0444);
11939MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11940#endif
11941
11942#ifdef CONFIG_IPW2200_QOS
11943module_param(qos_enable, int, 0444);
11944MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11945
11946module_param(qos_burst_enable, int, 0444);
11947MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11948
11949module_param(qos_no_ack_mask, int, 0444);
11950MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11951
11952module_param(burst_duration_CCK, int, 0444);
11953MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11954
11955module_param(burst_duration_OFDM, int, 0444);
11956MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11957#endif /* CONFIG_IPW2200_QOS */
11958
11959#ifdef CONFIG_IPW2200_MONITOR
11960module_param(mode, int, 0444);
11961MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11962#else
11963module_param(mode, int, 0444);
11964MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11965#endif
11966
11967module_param(bt_coexist, int, 0444);
11968MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11969
11970module_param(hwcrypto, int, 0444);
11971MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11972
11973module_param(cmdlog, int, 0444);
11974MODULE_PARM_DESC(cmdlog,
11975 "allocate a ring buffer for logging firmware commands");
11976
11977module_param(roaming, int, 0444);
11978MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11979
11980module_param(antenna, int, 0444);
11981MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11982
11983module_exit(ipw_exit);
11984module_init(ipw_init);
diff --git a/drivers/net/wireless/ipw2x00/ipw2200.h b/drivers/net/wireless/ipw2x00/ipw2200.h
new file mode 100644
index 00000000000..0a84d52147b
--- /dev/null
+++ b/drivers/net/wireless/ipw2x00/ipw2200.h
@@ -0,0 +1,2011 @@
1/******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25******************************************************************************/
26
27#ifndef __ipw2200_h__
28#define __ipw2200_h__
29
30#define WEXT_USECHANNELS 1
31
32#include <linux/module.h>
33#include <linux/moduleparam.h>
34#include <linux/init.h>
35#include <linux/mutex.h>
36
37#include <linux/pci.h>
38#include <linux/netdevice.h>
39#include <linux/ethtool.h>
40#include <linux/skbuff.h>
41#include <linux/etherdevice.h>
42#include <linux/delay.h>
43#include <linux/random.h>
44#include <linux/dma-mapping.h>
45
46#include <linux/firmware.h>
47#include <linux/wireless.h>
48#include <linux/jiffies.h>
49#include <asm/io.h>
50
51#include <net/lib80211.h>
52#include <net/ieee80211.h>
53#include <net/ieee80211_radiotap.h>
54
55#define DRV_NAME "ipw2200"
56
57#include <linux/workqueue.h>
58
59/* Authentication and Association States */
60enum connection_manager_assoc_states {
61 CMAS_INIT = 0,
62 CMAS_TX_AUTH_SEQ_1,
63 CMAS_RX_AUTH_SEQ_2,
64 CMAS_AUTH_SEQ_1_PASS,
65 CMAS_AUTH_SEQ_1_FAIL,
66 CMAS_TX_AUTH_SEQ_3,
67 CMAS_RX_AUTH_SEQ_4,
68 CMAS_AUTH_SEQ_2_PASS,
69 CMAS_AUTH_SEQ_2_FAIL,
70 CMAS_AUTHENTICATED,
71 CMAS_TX_ASSOC,
72 CMAS_RX_ASSOC_RESP,
73 CMAS_ASSOCIATED,
74 CMAS_LAST
75};
76
77#define IPW_WAIT (1<<0)
78#define IPW_QUIET (1<<1)
79#define IPW_ROAMING (1<<2)
80
81#define IPW_POWER_MODE_CAM 0x00 //(always on)
82#define IPW_POWER_INDEX_1 0x01
83#define IPW_POWER_INDEX_2 0x02
84#define IPW_POWER_INDEX_3 0x03
85#define IPW_POWER_INDEX_4 0x04
86#define IPW_POWER_INDEX_5 0x05
87#define IPW_POWER_AC 0x06
88#define IPW_POWER_BATTERY 0x07
89#define IPW_POWER_LIMIT 0x07
90#define IPW_POWER_MASK 0x0F
91#define IPW_POWER_ENABLED 0x10
92#define IPW_POWER_LEVEL(x) ((x) & IPW_POWER_MASK)
93
94#define IPW_CMD_HOST_COMPLETE 2
95#define IPW_CMD_POWER_DOWN 4
96#define IPW_CMD_SYSTEM_CONFIG 6
97#define IPW_CMD_MULTICAST_ADDRESS 7
98#define IPW_CMD_SSID 8
99#define IPW_CMD_ADAPTER_ADDRESS 11
100#define IPW_CMD_PORT_TYPE 12
101#define IPW_CMD_RTS_THRESHOLD 15
102#define IPW_CMD_FRAG_THRESHOLD 16
103#define IPW_CMD_POWER_MODE 17
104#define IPW_CMD_WEP_KEY 18
105#define IPW_CMD_TGI_TX_KEY 19
106#define IPW_CMD_SCAN_REQUEST 20
107#define IPW_CMD_ASSOCIATE 21
108#define IPW_CMD_SUPPORTED_RATES 22
109#define IPW_CMD_SCAN_ABORT 23
110#define IPW_CMD_TX_FLUSH 24
111#define IPW_CMD_QOS_PARAMETERS 25
112#define IPW_CMD_SCAN_REQUEST_EXT 26
113#define IPW_CMD_DINO_CONFIG 30
114#define IPW_CMD_RSN_CAPABILITIES 31
115#define IPW_CMD_RX_KEY 32
116#define IPW_CMD_CARD_DISABLE 33
117#define IPW_CMD_SEED_NUMBER 34
118#define IPW_CMD_TX_POWER 35
119#define IPW_CMD_COUNTRY_INFO 36
120#define IPW_CMD_AIRONET_INFO 37
121#define IPW_CMD_AP_TX_POWER 38
122#define IPW_CMD_CCKM_INFO 39
123#define IPW_CMD_CCX_VER_INFO 40
124#define IPW_CMD_SET_CALIBRATION 41
125#define IPW_CMD_SENSITIVITY_CALIB 42
126#define IPW_CMD_RETRY_LIMIT 51
127#define IPW_CMD_IPW_PRE_POWER_DOWN 58
128#define IPW_CMD_VAP_BEACON_TEMPLATE 60
129#define IPW_CMD_VAP_DTIM_PERIOD 61
130#define IPW_CMD_EXT_SUPPORTED_RATES 62
131#define IPW_CMD_VAP_LOCAL_TX_PWR_CONSTRAINT 63
132#define IPW_CMD_VAP_QUIET_INTERVALS 64
133#define IPW_CMD_VAP_CHANNEL_SWITCH 65
134#define IPW_CMD_VAP_MANDATORY_CHANNELS 66
135#define IPW_CMD_VAP_CELL_PWR_LIMIT 67
136#define IPW_CMD_VAP_CF_PARAM_SET 68
137#define IPW_CMD_VAP_SET_BEACONING_STATE 69
138#define IPW_CMD_MEASUREMENT 80
139#define IPW_CMD_POWER_CAPABILITY 81
140#define IPW_CMD_SUPPORTED_CHANNELS 82
141#define IPW_CMD_TPC_REPORT 83
142#define IPW_CMD_WME_INFO 84
143#define IPW_CMD_PRODUCTION_COMMAND 85
144#define IPW_CMD_LINKSYS_EOU_INFO 90
145
146#define RFD_SIZE 4
147#define NUM_TFD_CHUNKS 6
148
149#define TX_QUEUE_SIZE 32
150#define RX_QUEUE_SIZE 32
151
152#define DINO_CMD_WEP_KEY 0x08
153#define DINO_CMD_TX 0x0B
154#define DCT_ANTENNA_A 0x01
155#define DCT_ANTENNA_B 0x02
156
157#define IPW_A_MODE 0
158#define IPW_B_MODE 1
159#define IPW_G_MODE 2
160
161/*
162 * TX Queue Flag Definitions
163 */
164
165/* tx wep key definition */
166#define DCT_WEP_KEY_NOT_IMMIDIATE 0x00
167#define DCT_WEP_KEY_64Bit 0x40
168#define DCT_WEP_KEY_128Bit 0x80
169#define DCT_WEP_KEY_128bitIV 0xC0
170#define DCT_WEP_KEY_SIZE_MASK 0xC0
171
172#define DCT_WEP_KEY_INDEX_MASK 0x0F
173#define DCT_WEP_INDEX_USE_IMMEDIATE 0x20
174
175/* abort attempt if mgmt frame is rx'd */
176#define DCT_FLAG_ABORT_MGMT 0x01
177
178/* require CTS */
179#define DCT_FLAG_CTS_REQUIRED 0x02
180
181/* use short preamble */
182#define DCT_FLAG_LONG_PREAMBLE 0x00
183#define DCT_FLAG_SHORT_PREAMBLE 0x04
184
185/* RTS/CTS first */
186#define DCT_FLAG_RTS_REQD 0x08
187
188/* dont calculate duration field */
189#define DCT_FLAG_DUR_SET 0x10
190
191/* even if MAC WEP set (allows pre-encrypt) */
192#define DCT_FLAG_NO_WEP 0x20
193
194/* overwrite TSF field */
195#define DCT_FLAG_TSF_REQD 0x40
196
197/* ACK rx is expected to follow */
198#define DCT_FLAG_ACK_REQD 0x80
199
200/* TX flags extension */
201#define DCT_FLAG_EXT_MODE_CCK 0x01
202#define DCT_FLAG_EXT_MODE_OFDM 0x00
203
204#define DCT_FLAG_EXT_SECURITY_WEP 0x00
205#define DCT_FLAG_EXT_SECURITY_NO DCT_FLAG_EXT_SECURITY_WEP
206#define DCT_FLAG_EXT_SECURITY_CKIP 0x04
207#define DCT_FLAG_EXT_SECURITY_CCM 0x08
208#define DCT_FLAG_EXT_SECURITY_TKIP 0x0C
209#define DCT_FLAG_EXT_SECURITY_MASK 0x0C
210
211#define DCT_FLAG_EXT_QOS_ENABLED 0x10
212
213#define DCT_FLAG_EXT_HC_NO_SIFS_PIFS 0x00
214#define DCT_FLAG_EXT_HC_SIFS 0x20
215#define DCT_FLAG_EXT_HC_PIFS 0x40
216
217#define TX_RX_TYPE_MASK 0xFF
218#define TX_FRAME_TYPE 0x00
219#define TX_HOST_COMMAND_TYPE 0x01
220#define RX_FRAME_TYPE 0x09
221#define RX_HOST_NOTIFICATION_TYPE 0x03
222#define RX_HOST_CMD_RESPONSE_TYPE 0x04
223#define RX_TX_FRAME_RESPONSE_TYPE 0x05
224#define TFD_NEED_IRQ_MASK 0x04
225
226#define HOST_CMD_DINO_CONFIG 30
227
228#define HOST_NOTIFICATION_STATUS_ASSOCIATED 10
229#define HOST_NOTIFICATION_STATUS_AUTHENTICATE 11
230#define HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT 12
231#define HOST_NOTIFICATION_STATUS_SCAN_COMPLETED 13
232#define HOST_NOTIFICATION_STATUS_FRAG_LENGTH 14
233#define HOST_NOTIFICATION_STATUS_LINK_DETERIORATION 15
234#define HOST_NOTIFICATION_DINO_CONFIG_RESPONSE 16
235#define HOST_NOTIFICATION_STATUS_BEACON_STATE 17
236#define HOST_NOTIFICATION_STATUS_TGI_TX_KEY 18
237#define HOST_NOTIFICATION_TX_STATUS 19
238#define HOST_NOTIFICATION_CALIB_KEEP_RESULTS 20
239#define HOST_NOTIFICATION_MEASUREMENT_STARTED 21
240#define HOST_NOTIFICATION_MEASUREMENT_ENDED 22
241#define HOST_NOTIFICATION_CHANNEL_SWITCHED 23
242#define HOST_NOTIFICATION_RX_DURING_QUIET_PERIOD 24
243#define HOST_NOTIFICATION_NOISE_STATS 25
244#define HOST_NOTIFICATION_S36_MEASUREMENT_ACCEPTED 30
245#define HOST_NOTIFICATION_S36_MEASUREMENT_REFUSED 31
246
247#define HOST_NOTIFICATION_STATUS_BEACON_MISSING 1
248#define IPW_MB_ROAMING_THRESHOLD_MIN 1
249#define IPW_MB_ROAMING_THRESHOLD_DEFAULT 8
250#define IPW_MB_ROAMING_THRESHOLD_MAX 30
251#define IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT 3*IPW_MB_ROAMING_THRESHOLD_DEFAULT
252#define IPW_REAL_RATE_RX_PACKET_THRESHOLD 300
253
254#define MACADRR_BYTE_LEN 6
255
256#define DCR_TYPE_AP 0x01
257#define DCR_TYPE_WLAP 0x02
258#define DCR_TYPE_MU_ESS 0x03
259#define DCR_TYPE_MU_IBSS 0x04
260#define DCR_TYPE_MU_PIBSS 0x05
261#define DCR_TYPE_SNIFFER 0x06
262#define DCR_TYPE_MU_BSS DCR_TYPE_MU_ESS
263
264/* QoS definitions */
265
266#define CW_MIN_OFDM 15
267#define CW_MAX_OFDM 1023
268#define CW_MIN_CCK 31
269#define CW_MAX_CCK 1023
270
271#define QOS_TX0_CW_MIN_OFDM cpu_to_le16(CW_MIN_OFDM)
272#define QOS_TX1_CW_MIN_OFDM cpu_to_le16(CW_MIN_OFDM)
273#define QOS_TX2_CW_MIN_OFDM cpu_to_le16((CW_MIN_OFDM + 1)/2 - 1)
274#define QOS_TX3_CW_MIN_OFDM cpu_to_le16((CW_MIN_OFDM + 1)/4 - 1)
275
276#define QOS_TX0_CW_MIN_CCK cpu_to_le16(CW_MIN_CCK)
277#define QOS_TX1_CW_MIN_CCK cpu_to_le16(CW_MIN_CCK)
278#define QOS_TX2_CW_MIN_CCK cpu_to_le16((CW_MIN_CCK + 1)/2 - 1)
279#define QOS_TX3_CW_MIN_CCK cpu_to_le16((CW_MIN_CCK + 1)/4 - 1)
280
281#define QOS_TX0_CW_MAX_OFDM cpu_to_le16(CW_MAX_OFDM)
282#define QOS_TX1_CW_MAX_OFDM cpu_to_le16(CW_MAX_OFDM)
283#define QOS_TX2_CW_MAX_OFDM cpu_to_le16(CW_MIN_OFDM)
284#define QOS_TX3_CW_MAX_OFDM cpu_to_le16((CW_MIN_OFDM + 1)/2 - 1)
285
286#define QOS_TX0_CW_MAX_CCK cpu_to_le16(CW_MAX_CCK)
287#define QOS_TX1_CW_MAX_CCK cpu_to_le16(CW_MAX_CCK)
288#define QOS_TX2_CW_MAX_CCK cpu_to_le16(CW_MIN_CCK)
289#define QOS_TX3_CW_MAX_CCK cpu_to_le16((CW_MIN_CCK + 1)/2 - 1)
290
291#define QOS_TX0_AIFS (3 - QOS_AIFSN_MIN_VALUE)
292#define QOS_TX1_AIFS (7 - QOS_AIFSN_MIN_VALUE)
293#define QOS_TX2_AIFS (2 - QOS_AIFSN_MIN_VALUE)
294#define QOS_TX3_AIFS (2 - QOS_AIFSN_MIN_VALUE)
295
296#define QOS_TX0_ACM 0
297#define QOS_TX1_ACM 0
298#define QOS_TX2_ACM 0
299#define QOS_TX3_ACM 0
300
301#define QOS_TX0_TXOP_LIMIT_CCK 0
302#define QOS_TX1_TXOP_LIMIT_CCK 0
303#define QOS_TX2_TXOP_LIMIT_CCK cpu_to_le16(6016)
304#define QOS_TX3_TXOP_LIMIT_CCK cpu_to_le16(3264)
305
306#define QOS_TX0_TXOP_LIMIT_OFDM 0
307#define QOS_TX1_TXOP_LIMIT_OFDM 0
308#define QOS_TX2_TXOP_LIMIT_OFDM cpu_to_le16(3008)
309#define QOS_TX3_TXOP_LIMIT_OFDM cpu_to_le16(1504)
310
311#define DEF_TX0_CW_MIN_OFDM cpu_to_le16(CW_MIN_OFDM)
312#define DEF_TX1_CW_MIN_OFDM cpu_to_le16(CW_MIN_OFDM)
313#define DEF_TX2_CW_MIN_OFDM cpu_to_le16(CW_MIN_OFDM)
314#define DEF_TX3_CW_MIN_OFDM cpu_to_le16(CW_MIN_OFDM)
315
316#define DEF_TX0_CW_MIN_CCK cpu_to_le16(CW_MIN_CCK)
317#define DEF_TX1_CW_MIN_CCK cpu_to_le16(CW_MIN_CCK)
318#define DEF_TX2_CW_MIN_CCK cpu_to_le16(CW_MIN_CCK)
319#define DEF_TX3_CW_MIN_CCK cpu_to_le16(CW_MIN_CCK)
320
321#define DEF_TX0_CW_MAX_OFDM cpu_to_le16(CW_MAX_OFDM)
322#define DEF_TX1_CW_MAX_OFDM cpu_to_le16(CW_MAX_OFDM)
323#define DEF_TX2_CW_MAX_OFDM cpu_to_le16(CW_MAX_OFDM)
324#define DEF_TX3_CW_MAX_OFDM cpu_to_le16(CW_MAX_OFDM)
325
326#define DEF_TX0_CW_MAX_CCK cpu_to_le16(CW_MAX_CCK)
327#define DEF_TX1_CW_MAX_CCK cpu_to_le16(CW_MAX_CCK)
328#define DEF_TX2_CW_MAX_CCK cpu_to_le16(CW_MAX_CCK)
329#define DEF_TX3_CW_MAX_CCK cpu_to_le16(CW_MAX_CCK)
330
331#define DEF_TX0_AIFS 0
332#define DEF_TX1_AIFS 0
333#define DEF_TX2_AIFS 0
334#define DEF_TX3_AIFS 0
335
336#define DEF_TX0_ACM 0
337#define DEF_TX1_ACM 0
338#define DEF_TX2_ACM 0
339#define DEF_TX3_ACM 0
340
341#define DEF_TX0_TXOP_LIMIT_CCK 0
342#define DEF_TX1_TXOP_LIMIT_CCK 0
343#define DEF_TX2_TXOP_LIMIT_CCK 0
344#define DEF_TX3_TXOP_LIMIT_CCK 0
345
346#define DEF_TX0_TXOP_LIMIT_OFDM 0
347#define DEF_TX1_TXOP_LIMIT_OFDM 0
348#define DEF_TX2_TXOP_LIMIT_OFDM 0
349#define DEF_TX3_TXOP_LIMIT_OFDM 0
350
351#define QOS_QOS_SETS 3
352#define QOS_PARAM_SET_ACTIVE 0
353#define QOS_PARAM_SET_DEF_CCK 1
354#define QOS_PARAM_SET_DEF_OFDM 2
355
356#define CTRL_QOS_NO_ACK (0x0020)
357
358#define IPW_TX_QUEUE_1 1
359#define IPW_TX_QUEUE_2 2
360#define IPW_TX_QUEUE_3 3
361#define IPW_TX_QUEUE_4 4
362
363/* QoS sturctures */
364struct ipw_qos_info {
365 int qos_enable;
366 struct ieee80211_qos_parameters *def_qos_parm_OFDM;
367 struct ieee80211_qos_parameters *def_qos_parm_CCK;
368 u32 burst_duration_CCK;
369 u32 burst_duration_OFDM;
370 u16 qos_no_ack_mask;
371 int burst_enable;
372};
373
374/**************************************************************/
375/**
376 * Generic queue structure
377 *
378 * Contains common data for Rx and Tx queues
379 */
380struct clx2_queue {
381 int n_bd; /**< number of BDs in this queue */
382 int first_empty; /**< 1-st empty entry (index) */
383 int last_used; /**< last used entry (index) */
384 u32 reg_w; /**< 'write' reg (queue head), addr in domain 1 */
385 u32 reg_r; /**< 'read' reg (queue tail), addr in domain 1 */
386 dma_addr_t dma_addr; /**< physical addr for BD's */
387 int low_mark; /**< low watermark, resume queue if free space more than this */
388 int high_mark; /**< high watermark, stop queue if free space less than this */
389} __attribute__ ((packed)); /* XXX */
390
391struct machdr32 {
392 __le16 frame_ctl;
393 __le16 duration; // watch out for endians!
394 u8 addr1[MACADRR_BYTE_LEN];
395 u8 addr2[MACADRR_BYTE_LEN];
396 u8 addr3[MACADRR_BYTE_LEN];
397 __le16 seq_ctrl; // more endians!
398 u8 addr4[MACADRR_BYTE_LEN];
399 __le16 qos_ctrl;
400} __attribute__ ((packed));
401
402struct machdr30 {
403 __le16 frame_ctl;
404 __le16 duration; // watch out for endians!
405 u8 addr1[MACADRR_BYTE_LEN];
406 u8 addr2[MACADRR_BYTE_LEN];
407 u8 addr3[MACADRR_BYTE_LEN];
408 __le16 seq_ctrl; // more endians!
409 u8 addr4[MACADRR_BYTE_LEN];
410} __attribute__ ((packed));
411
412struct machdr26 {
413 __le16 frame_ctl;
414 __le16 duration; // watch out for endians!
415 u8 addr1[MACADRR_BYTE_LEN];
416 u8 addr2[MACADRR_BYTE_LEN];
417 u8 addr3[MACADRR_BYTE_LEN];
418 __le16 seq_ctrl; // more endians!
419 __le16 qos_ctrl;
420} __attribute__ ((packed));
421
422struct machdr24 {
423 __le16 frame_ctl;
424 __le16 duration; // watch out for endians!
425 u8 addr1[MACADRR_BYTE_LEN];
426 u8 addr2[MACADRR_BYTE_LEN];
427 u8 addr3[MACADRR_BYTE_LEN];
428 __le16 seq_ctrl; // more endians!
429} __attribute__ ((packed));
430
431// TX TFD with 32 byte MAC Header
432struct tx_tfd_32 {
433 struct machdr32 mchdr; // 32
434 __le32 uivplaceholder[2]; // 8
435} __attribute__ ((packed));
436
437// TX TFD with 30 byte MAC Header
438struct tx_tfd_30 {
439 struct machdr30 mchdr; // 30
440 u8 reserved[2]; // 2
441 __le32 uivplaceholder[2]; // 8
442} __attribute__ ((packed));
443
444// tx tfd with 26 byte mac header
445struct tx_tfd_26 {
446 struct machdr26 mchdr; // 26
447 u8 reserved1[2]; // 2
448 __le32 uivplaceholder[2]; // 8
449 u8 reserved2[4]; // 4
450} __attribute__ ((packed));
451
452// tx tfd with 24 byte mac header
453struct tx_tfd_24 {
454 struct machdr24 mchdr; // 24
455 __le32 uivplaceholder[2]; // 8
456 u8 reserved[8]; // 8
457} __attribute__ ((packed));
458
459#define DCT_WEP_KEY_FIELD_LENGTH 16
460
461struct tfd_command {
462 u8 index;
463 u8 length;
464 __le16 reserved;
465 u8 payload[0];
466} __attribute__ ((packed));
467
468struct tfd_data {
469 /* Header */
470 __le32 work_area_ptr;
471 u8 station_number; /* 0 for BSS */
472 u8 reserved1;
473 __le16 reserved2;
474
475 /* Tx Parameters */
476 u8 cmd_id;
477 u8 seq_num;
478 __le16 len;
479 u8 priority;
480 u8 tx_flags;
481 u8 tx_flags_ext;
482 u8 key_index;
483 u8 wepkey[DCT_WEP_KEY_FIELD_LENGTH];
484 u8 rate;
485 u8 antenna;
486 __le16 next_packet_duration;
487 __le16 next_frag_len;
488 __le16 back_off_counter; //////txop;
489 u8 retrylimit;
490 __le16 cwcurrent;
491 u8 reserved3;
492
493 /* 802.11 MAC Header */
494 union {
495 struct tx_tfd_24 tfd_24;
496 struct tx_tfd_26 tfd_26;
497 struct tx_tfd_30 tfd_30;
498 struct tx_tfd_32 tfd_32;
499 } tfd;
500
501 /* Payload DMA info */
502 __le32 num_chunks;
503 __le32 chunk_ptr[NUM_TFD_CHUNKS];
504 __le16 chunk_len[NUM_TFD_CHUNKS];
505} __attribute__ ((packed));
506
507struct txrx_control_flags {
508 u8 message_type;
509 u8 rx_seq_num;
510 u8 control_bits;
511 u8 reserved;
512} __attribute__ ((packed));
513
514#define TFD_SIZE 128
515#define TFD_CMD_IMMEDIATE_PAYLOAD_LENGTH (TFD_SIZE - sizeof(struct txrx_control_flags))
516
517struct tfd_frame {
518 struct txrx_control_flags control_flags;
519 union {
520 struct tfd_data data;
521 struct tfd_command cmd;
522 u8 raw[TFD_CMD_IMMEDIATE_PAYLOAD_LENGTH];
523 } u;
524} __attribute__ ((packed));
525
526typedef void destructor_func(const void *);
527
528/**
529 * Tx Queue for DMA. Queue consists of circular buffer of
530 * BD's and required locking structures.
531 */
532struct clx2_tx_queue {
533 struct clx2_queue q;
534 struct tfd_frame *bd;
535 struct ieee80211_txb **txb;
536};
537
538/*
539 * RX related structures and functions
540 */
541#define RX_FREE_BUFFERS 32
542#define RX_LOW_WATERMARK 8
543
544#define SUP_RATE_11A_MAX_NUM_CHANNELS 8
545#define SUP_RATE_11B_MAX_NUM_CHANNELS 4
546#define SUP_RATE_11G_MAX_NUM_CHANNELS 12
547
548// Used for passing to driver number of successes and failures per rate
549struct rate_histogram {
550 union {
551 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
552 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
553 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
554 } success;
555 union {
556 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
557 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
558 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
559 } failed;
560} __attribute__ ((packed));
561
562/* statistics command response */
563struct ipw_cmd_stats {
564 u8 cmd_id;
565 u8 seq_num;
566 __le16 good_sfd;
567 __le16 bad_plcp;
568 __le16 wrong_bssid;
569 __le16 valid_mpdu;
570 __le16 bad_mac_header;
571 __le16 reserved_frame_types;
572 __le16 rx_ina;
573 __le16 bad_crc32;
574 __le16 invalid_cts;
575 __le16 invalid_acks;
576 __le16 long_distance_ina_fina;
577 __le16 dsp_silence_unreachable;
578 __le16 accumulated_rssi;
579 __le16 rx_ovfl_frame_tossed;
580 __le16 rssi_silence_threshold;
581 __le16 rx_ovfl_frame_supplied;
582 __le16 last_rx_frame_signal;
583 __le16 last_rx_frame_noise;
584 __le16 rx_autodetec_no_ofdm;
585 __le16 rx_autodetec_no_barker;
586 __le16 reserved;
587} __attribute__ ((packed));
588
589struct notif_channel_result {
590 u8 channel_num;
591 struct ipw_cmd_stats stats;
592 u8 uReserved;
593} __attribute__ ((packed));
594
595#define SCAN_COMPLETED_STATUS_COMPLETE 1
596#define SCAN_COMPLETED_STATUS_ABORTED 2
597
598struct notif_scan_complete {
599 u8 scan_type;
600 u8 num_channels;
601 u8 status;
602 u8 reserved;
603} __attribute__ ((packed));
604
605struct notif_frag_length {
606 __le16 frag_length;
607 __le16 reserved;
608} __attribute__ ((packed));
609
610struct notif_beacon_state {
611 __le32 state;
612 __le32 number;
613} __attribute__ ((packed));
614
615struct notif_tgi_tx_key {
616 u8 key_state;
617 u8 security_type;
618 u8 station_index;
619 u8 reserved;
620} __attribute__ ((packed));
621
622#define SILENCE_OVER_THRESH (1)
623#define SILENCE_UNDER_THRESH (2)
624
625struct notif_link_deterioration {
626 struct ipw_cmd_stats stats;
627 u8 rate;
628 u8 modulation;
629 struct rate_histogram histogram;
630 u8 silence_notification_type; /* SILENCE_OVER/UNDER_THRESH */
631 __le16 silence_count;
632} __attribute__ ((packed));
633
634struct notif_association {
635 u8 state;
636} __attribute__ ((packed));
637
638struct notif_authenticate {
639 u8 state;
640 struct machdr24 addr;
641 __le16 status;
642} __attribute__ ((packed));
643
644struct notif_calibration {
645 u8 data[104];
646} __attribute__ ((packed));
647
648struct notif_noise {
649 __le32 value;
650} __attribute__ ((packed));
651
652struct ipw_rx_notification {
653 u8 reserved[8];
654 u8 subtype;
655 u8 flags;
656 __le16 size;
657 union {
658 struct notif_association assoc;
659 struct notif_authenticate auth;
660 struct notif_channel_result channel_result;
661 struct notif_scan_complete scan_complete;
662 struct notif_frag_length frag_len;
663 struct notif_beacon_state beacon_state;
664 struct notif_tgi_tx_key tgi_tx_key;
665 struct notif_link_deterioration link_deterioration;
666 struct notif_calibration calibration;
667 struct notif_noise noise;
668 u8 raw[0];
669 } u;
670} __attribute__ ((packed));
671
672struct ipw_rx_frame {
673 __le32 reserved1;
674 u8 parent_tsf[4]; // fw_use[0] is boolean for OUR_TSF_IS_GREATER
675 u8 received_channel; // The channel that this frame was received on.
676 // Note that for .11b this does not have to be
677 // the same as the channel that it was sent.
678 // Filled by LMAC
679 u8 frameStatus;
680 u8 rate;
681 u8 rssi;
682 u8 agc;
683 u8 rssi_dbm;
684 __le16 signal;
685 __le16 noise;
686 u8 antennaAndPhy;
687 u8 control; // control bit should be on in bg
688 u8 rtscts_rate; // rate of rts or cts (in rts cts sequence rate
689 // is identical)
690 u8 rtscts_seen; // 0x1 RTS seen ; 0x2 CTS seen
691 __le16 length;
692 u8 data[0];
693} __attribute__ ((packed));
694
695struct ipw_rx_header {
696 u8 message_type;
697 u8 rx_seq_num;
698 u8 control_bits;
699 u8 reserved;
700} __attribute__ ((packed));
701
702struct ipw_rx_packet {
703 struct ipw_rx_header header;
704 union {
705 struct ipw_rx_frame frame;
706 struct ipw_rx_notification notification;
707 } u;
708} __attribute__ ((packed));
709
710#define IPW_RX_NOTIFICATION_SIZE sizeof(struct ipw_rx_header) + 12
711#define IPW_RX_FRAME_SIZE (unsigned int)(sizeof(struct ipw_rx_header) + \
712 sizeof(struct ipw_rx_frame))
713
714struct ipw_rx_mem_buffer {
715 dma_addr_t dma_addr;
716 struct sk_buff *skb;
717 struct list_head list;
718}; /* Not transferred over network, so not __attribute__ ((packed)) */
719
720struct ipw_rx_queue {
721 struct ipw_rx_mem_buffer pool[RX_QUEUE_SIZE + RX_FREE_BUFFERS];
722 struct ipw_rx_mem_buffer *queue[RX_QUEUE_SIZE];
723 u32 processed; /* Internal index to last handled Rx packet */
724 u32 read; /* Shared index to newest available Rx buffer */
725 u32 write; /* Shared index to oldest written Rx packet */
726 u32 free_count; /* Number of pre-allocated buffers in rx_free */
727 /* Each of these lists is used as a FIFO for ipw_rx_mem_buffers */
728 struct list_head rx_free; /* Own an SKBs */
729 struct list_head rx_used; /* No SKB allocated */
730 spinlock_t lock;
731}; /* Not transferred over network, so not __attribute__ ((packed)) */
732
733struct alive_command_responce {
734 u8 alive_command;
735 u8 sequence_number;
736 __le16 software_revision;
737 u8 device_identifier;
738 u8 reserved1[5];
739 __le16 reserved2;
740 __le16 reserved3;
741 __le16 clock_settle_time;
742 __le16 powerup_settle_time;
743 __le16 reserved4;
744 u8 time_stamp[5]; /* month, day, year, hours, minutes */
745 u8 ucode_valid;
746} __attribute__ ((packed));
747
748#define IPW_MAX_RATES 12
749
750struct ipw_rates {
751 u8 num_rates;
752 u8 rates[IPW_MAX_RATES];
753} __attribute__ ((packed));
754
755struct command_block {
756 unsigned int control;
757 u32 source_addr;
758 u32 dest_addr;
759 unsigned int status;
760} __attribute__ ((packed));
761
762#define CB_NUMBER_OF_ELEMENTS_SMALL 64
763struct fw_image_desc {
764 unsigned long last_cb_index;
765 unsigned long current_cb_index;
766 struct command_block cb_list[CB_NUMBER_OF_ELEMENTS_SMALL];
767 void *v_addr;
768 unsigned long p_addr;
769 unsigned long len;
770};
771
772struct ipw_sys_config {
773 u8 bt_coexistence;
774 u8 reserved1;
775 u8 answer_broadcast_ssid_probe;
776 u8 accept_all_data_frames;
777 u8 accept_non_directed_frames;
778 u8 exclude_unicast_unencrypted;
779 u8 disable_unicast_decryption;
780 u8 exclude_multicast_unencrypted;
781 u8 disable_multicast_decryption;
782 u8 antenna_diversity;
783 u8 pass_crc_to_host;
784 u8 dot11g_auto_detection;
785 u8 enable_cts_to_self;
786 u8 enable_multicast_filtering;
787 u8 bt_coexist_collision_thr;
788 u8 silence_threshold;
789 u8 accept_all_mgmt_bcpr;
790 u8 accept_all_mgmt_frames;
791 u8 pass_noise_stats_to_host;
792 u8 reserved3;
793} __attribute__ ((packed));
794
795struct ipw_multicast_addr {
796 u8 num_of_multicast_addresses;
797 u8 reserved[3];
798 u8 mac1[6];
799 u8 mac2[6];
800 u8 mac3[6];
801 u8 mac4[6];
802} __attribute__ ((packed));
803
804#define DCW_WEP_KEY_INDEX_MASK 0x03 /* bits [0:1] */
805#define DCW_WEP_KEY_SEC_TYPE_MASK 0x30 /* bits [4:5] */
806
807#define DCW_WEP_KEY_SEC_TYPE_WEP 0x00
808#define DCW_WEP_KEY_SEC_TYPE_CCM 0x20
809#define DCW_WEP_KEY_SEC_TYPE_TKIP 0x30
810
811#define DCW_WEP_KEY_INVALID_SIZE 0x00 /* 0 = Invalid key */
812#define DCW_WEP_KEY64Bit_SIZE 0x05 /* 64-bit encryption */
813#define DCW_WEP_KEY128Bit_SIZE 0x0D /* 128-bit encryption */
814#define DCW_CCM_KEY128Bit_SIZE 0x10 /* 128-bit key */
815//#define DCW_WEP_KEY128BitIV_SIZE 0x10 /* 128-bit key and 128-bit IV */
816
817struct ipw_wep_key {
818 u8 cmd_id;
819 u8 seq_num;
820 u8 key_index;
821 u8 key_size;
822 u8 key[16];
823} __attribute__ ((packed));
824
825struct ipw_tgi_tx_key {
826 u8 key_id;
827 u8 security_type;
828 u8 station_index;
829 u8 flags;
830 u8 key[16];
831 __le32 tx_counter[2];
832} __attribute__ ((packed));
833
834#define IPW_SCAN_CHANNELS 54
835
836struct ipw_scan_request {
837 u8 scan_type;
838 __le16 dwell_time;
839 u8 channels_list[IPW_SCAN_CHANNELS];
840 u8 channels_reserved[3];
841} __attribute__ ((packed));
842
843enum {
844 IPW_SCAN_PASSIVE_TILL_FIRST_BEACON_SCAN = 0,
845 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN,
846 IPW_SCAN_ACTIVE_DIRECT_SCAN,
847 IPW_SCAN_ACTIVE_BROADCAST_SCAN,
848 IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN,
849 IPW_SCAN_TYPES
850};
851
852struct ipw_scan_request_ext {
853 __le32 full_scan_index;
854 u8 channels_list[IPW_SCAN_CHANNELS];
855 u8 scan_type[IPW_SCAN_CHANNELS / 2];
856 u8 reserved;
857 __le16 dwell_time[IPW_SCAN_TYPES];
858} __attribute__ ((packed));
859
860static inline u8 ipw_get_scan_type(struct ipw_scan_request_ext *scan, u8 index)
861{
862 if (index % 2)
863 return scan->scan_type[index / 2] & 0x0F;
864 else
865 return (scan->scan_type[index / 2] & 0xF0) >> 4;
866}
867
868static inline void ipw_set_scan_type(struct ipw_scan_request_ext *scan,
869 u8 index, u8 scan_type)
870{
871 if (index % 2)
872 scan->scan_type[index / 2] =
873 (scan->scan_type[index / 2] & 0xF0) | (scan_type & 0x0F);
874 else
875 scan->scan_type[index / 2] =
876 (scan->scan_type[index / 2] & 0x0F) |
877 ((scan_type & 0x0F) << 4);
878}
879
880struct ipw_associate {
881 u8 channel;
882#ifdef __LITTLE_ENDIAN_BITFIELD
883 u8 auth_type:4, auth_key:4;
884#else
885 u8 auth_key:4, auth_type:4;
886#endif
887 u8 assoc_type;
888 u8 reserved;
889 __le16 policy_support;
890 u8 preamble_length;
891 u8 ieee_mode;
892 u8 bssid[ETH_ALEN];
893 __le32 assoc_tsf_msw;
894 __le32 assoc_tsf_lsw;
895 __le16 capability;
896 __le16 listen_interval;
897 __le16 beacon_interval;
898 u8 dest[ETH_ALEN];
899 __le16 atim_window;
900 u8 smr;
901 u8 reserved1;
902 __le16 reserved2;
903} __attribute__ ((packed));
904
905struct ipw_supported_rates {
906 u8 ieee_mode;
907 u8 num_rates;
908 u8 purpose;
909 u8 reserved;
910 u8 supported_rates[IPW_MAX_RATES];
911} __attribute__ ((packed));
912
913struct ipw_rts_threshold {
914 __le16 rts_threshold;
915 __le16 reserved;
916} __attribute__ ((packed));
917
918struct ipw_frag_threshold {
919 __le16 frag_threshold;
920 __le16 reserved;
921} __attribute__ ((packed));
922
923struct ipw_retry_limit {
924 u8 short_retry_limit;
925 u8 long_retry_limit;
926 __le16 reserved;
927} __attribute__ ((packed));
928
929struct ipw_dino_config {
930 __le32 dino_config_addr;
931 __le16 dino_config_size;
932 u8 dino_response;
933 u8 reserved;
934} __attribute__ ((packed));
935
936struct ipw_aironet_info {
937 u8 id;
938 u8 length;
939 __le16 reserved;
940} __attribute__ ((packed));
941
942struct ipw_rx_key {
943 u8 station_index;
944 u8 key_type;
945 u8 key_id;
946 u8 key_flag;
947 u8 key[16];
948 u8 station_address[6];
949 u8 key_index;
950 u8 reserved;
951} __attribute__ ((packed));
952
953struct ipw_country_channel_info {
954 u8 first_channel;
955 u8 no_channels;
956 s8 max_tx_power;
957} __attribute__ ((packed));
958
959struct ipw_country_info {
960 u8 id;
961 u8 length;
962 u8 country_str[3];
963 struct ipw_country_channel_info groups[7];
964} __attribute__ ((packed));
965
966struct ipw_channel_tx_power {
967 u8 channel_number;
968 s8 tx_power;
969} __attribute__ ((packed));
970
971#define SCAN_ASSOCIATED_INTERVAL (HZ)
972#define SCAN_INTERVAL (HZ / 10)
973#define MAX_A_CHANNELS 37
974#define MAX_B_CHANNELS 14
975
976struct ipw_tx_power {
977 u8 num_channels;
978 u8 ieee_mode;
979 struct ipw_channel_tx_power channels_tx_power[MAX_A_CHANNELS];
980} __attribute__ ((packed));
981
982struct ipw_rsn_capabilities {
983 u8 id;
984 u8 length;
985 __le16 version;
986} __attribute__ ((packed));
987
988struct ipw_sensitivity_calib {
989 __le16 beacon_rssi_raw;
990 __le16 reserved;
991} __attribute__ ((packed));
992
993/**
994 * Host command structure.
995 *
996 * On input, the following fields should be filled:
997 * - cmd
998 * - len
999 * - status_len
1000 * - param (if needed)
1001 *
1002 * On output,
1003 * - \a status contains status;
1004 * - \a param filled with status parameters.
1005 */
1006struct ipw_cmd { /* XXX */
1007 u32 cmd; /**< Host command */
1008 u32 status;/**< Status */
1009 u32 status_len;
1010 /**< How many 32 bit parameters in the status */
1011 u32 len; /**< incoming parameters length, bytes */
1012 /**
1013 * command parameters.
1014 * There should be enough space for incoming and
1015 * outcoming parameters.
1016 * Incoming parameters listed 1-st, followed by outcoming params.
1017 * nParams=(len+3)/4+status_len
1018 */
1019 u32 param[0];
1020} __attribute__ ((packed));
1021
1022#define STATUS_HCMD_ACTIVE (1<<0) /**< host command in progress */
1023
1024#define STATUS_INT_ENABLED (1<<1)
1025#define STATUS_RF_KILL_HW (1<<2)
1026#define STATUS_RF_KILL_SW (1<<3)
1027#define STATUS_RF_KILL_MASK (STATUS_RF_KILL_HW | STATUS_RF_KILL_SW)
1028
1029#define STATUS_INIT (1<<5)
1030#define STATUS_AUTH (1<<6)
1031#define STATUS_ASSOCIATED (1<<7)
1032#define STATUS_STATE_MASK (STATUS_INIT | STATUS_AUTH | STATUS_ASSOCIATED)
1033
1034#define STATUS_ASSOCIATING (1<<8)
1035#define STATUS_DISASSOCIATING (1<<9)
1036#define STATUS_ROAMING (1<<10)
1037#define STATUS_EXIT_PENDING (1<<11)
1038#define STATUS_DISASSOC_PENDING (1<<12)
1039#define STATUS_STATE_PENDING (1<<13)
1040
1041#define STATUS_DIRECT_SCAN_PENDING (1<<19)
1042#define STATUS_SCAN_PENDING (1<<20)
1043#define STATUS_SCANNING (1<<21)
1044#define STATUS_SCAN_ABORTING (1<<22)
1045#define STATUS_SCAN_FORCED (1<<23)
1046
1047#define STATUS_LED_LINK_ON (1<<24)
1048#define STATUS_LED_ACT_ON (1<<25)
1049
1050#define STATUS_INDIRECT_BYTE (1<<28) /* sysfs entry configured for access */
1051#define STATUS_INDIRECT_DWORD (1<<29) /* sysfs entry configured for access */
1052#define STATUS_DIRECT_DWORD (1<<30) /* sysfs entry configured for access */
1053
1054#define STATUS_SECURITY_UPDATED (1<<31) /* Security sync needed */
1055
1056#define CFG_STATIC_CHANNEL (1<<0) /* Restrict assoc. to single channel */
1057#define CFG_STATIC_ESSID (1<<1) /* Restrict assoc. to single SSID */
1058#define CFG_STATIC_BSSID (1<<2) /* Restrict assoc. to single BSSID */
1059#define CFG_CUSTOM_MAC (1<<3)
1060#define CFG_PREAMBLE_LONG (1<<4)
1061#define CFG_ADHOC_PERSIST (1<<5)
1062#define CFG_ASSOCIATE (1<<6)
1063#define CFG_FIXED_RATE (1<<7)
1064#define CFG_ADHOC_CREATE (1<<8)
1065#define CFG_NO_LED (1<<9)
1066#define CFG_BACKGROUND_SCAN (1<<10)
1067#define CFG_SPEED_SCAN (1<<11)
1068#define CFG_NET_STATS (1<<12)
1069
1070#define CAP_SHARED_KEY (1<<0) /* Off = OPEN */
1071#define CAP_PRIVACY_ON (1<<1) /* Off = No privacy */
1072
1073#define MAX_STATIONS 32
1074#define IPW_INVALID_STATION (0xff)
1075
1076struct ipw_station_entry {
1077 u8 mac_addr[ETH_ALEN];
1078 u8 reserved;
1079 u8 support_mode;
1080};
1081
1082#define AVG_ENTRIES 8
1083struct average {
1084 s16 entries[AVG_ENTRIES];
1085 u8 pos;
1086 u8 init;
1087 s32 sum;
1088};
1089
1090#define MAX_SPEED_SCAN 100
1091#define IPW_IBSS_MAC_HASH_SIZE 31
1092
1093struct ipw_ibss_seq {
1094 u8 mac[ETH_ALEN];
1095 u16 seq_num;
1096 u16 frag_num;
1097 unsigned long packet_time;
1098 struct list_head list;
1099};
1100
1101struct ipw_error_elem { /* XXX */
1102 u32 desc;
1103 u32 time;
1104 u32 blink1;
1105 u32 blink2;
1106 u32 link1;
1107 u32 link2;
1108 u32 data;
1109};
1110
1111struct ipw_event { /* XXX */
1112 u32 event;
1113 u32 time;
1114 u32 data;
1115} __attribute__ ((packed));
1116
1117struct ipw_fw_error { /* XXX */
1118 unsigned long jiffies;
1119 u32 status;
1120 u32 config;
1121 u32 elem_len;
1122 u32 log_len;
1123 struct ipw_error_elem *elem;
1124 struct ipw_event *log;
1125 u8 payload[0];
1126} __attribute__ ((packed));
1127
1128#ifdef CONFIG_IPW2200_PROMISCUOUS
1129
1130enum ipw_prom_filter {
1131 IPW_PROM_CTL_HEADER_ONLY = (1 << 0),
1132 IPW_PROM_MGMT_HEADER_ONLY = (1 << 1),
1133 IPW_PROM_DATA_HEADER_ONLY = (1 << 2),
1134 IPW_PROM_ALL_HEADER_ONLY = 0xf, /* bits 0..3 */
1135 IPW_PROM_NO_TX = (1 << 4),
1136 IPW_PROM_NO_RX = (1 << 5),
1137 IPW_PROM_NO_CTL = (1 << 6),
1138 IPW_PROM_NO_MGMT = (1 << 7),
1139 IPW_PROM_NO_DATA = (1 << 8),
1140};
1141
1142struct ipw_priv;
1143struct ipw_prom_priv {
1144 struct ipw_priv *priv;
1145 struct ieee80211_device *ieee;
1146 enum ipw_prom_filter filter;
1147 int tx_packets;
1148 int rx_packets;
1149};
1150#endif
1151
1152#if defined(CONFIG_IPW2200_RADIOTAP) || defined(CONFIG_IPW2200_PROMISCUOUS)
1153/* Magic struct that slots into the radiotap header -- no reason
1154 * to build this manually element by element, we can write it much
1155 * more efficiently than we can parse it. ORDER MATTERS HERE
1156 *
1157 * When sent to us via the simulated Rx interface in sysfs, the entire
1158 * structure is provided regardless of any bits unset.
1159 */
1160struct ipw_rt_hdr {
1161 struct ieee80211_radiotap_header rt_hdr;
1162 u64 rt_tsf; /* TSF */ /* XXX */
1163 u8 rt_flags; /* radiotap packet flags */
1164 u8 rt_rate; /* rate in 500kb/s */
1165 __le16 rt_channel; /* channel in mhz */
1166 __le16 rt_chbitmask; /* channel bitfield */
1167 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
1168 s8 rt_dbmnoise;
1169 u8 rt_antenna; /* antenna number */
1170 u8 payload[0]; /* payload... */
1171} __attribute__ ((packed));
1172#endif
1173
1174struct ipw_priv {
1175 /* ieee device used by generic ieee processing code */
1176 struct ieee80211_device *ieee;
1177
1178 spinlock_t lock;
1179 spinlock_t irq_lock;
1180 struct mutex mutex;
1181
1182 /* basic pci-network driver stuff */
1183 struct pci_dev *pci_dev;
1184 struct net_device *net_dev;
1185
1186#ifdef CONFIG_IPW2200_PROMISCUOUS
1187 /* Promiscuous mode */
1188 struct ipw_prom_priv *prom_priv;
1189 struct net_device *prom_net_dev;
1190#endif
1191
1192 /* pci hardware address support */
1193 void __iomem *hw_base;
1194 unsigned long hw_len;
1195
1196 struct fw_image_desc sram_desc;
1197
1198 /* result of ucode download */
1199 struct alive_command_responce dino_alive;
1200
1201 wait_queue_head_t wait_command_queue;
1202 wait_queue_head_t wait_state;
1203
1204 /* Rx and Tx DMA processing queues */
1205 struct ipw_rx_queue *rxq;
1206 struct clx2_tx_queue txq_cmd;
1207 struct clx2_tx_queue txq[4];
1208 u32 status;
1209 u32 config;
1210 u32 capability;
1211
1212 struct average average_missed_beacons;
1213 s16 exp_avg_rssi;
1214 s16 exp_avg_noise;
1215 u32 port_type;
1216 int rx_bufs_min; /**< minimum number of bufs in Rx queue */
1217 int rx_pend_max; /**< maximum pending buffers for one IRQ */
1218 u32 hcmd_seq; /**< sequence number for hcmd */
1219 u32 disassociate_threshold;
1220 u32 roaming_threshold;
1221
1222 struct ipw_associate assoc_request;
1223 struct ieee80211_network *assoc_network;
1224
1225 unsigned long ts_scan_abort;
1226 struct ipw_supported_rates rates;
1227 struct ipw_rates phy[3]; /**< PHY restrictions, per band */
1228 struct ipw_rates supp; /**< software defined */
1229 struct ipw_rates extended; /**< use for corresp. IE, AP only */
1230
1231 struct notif_link_deterioration last_link_deterioration; /** for statistics */
1232 struct ipw_cmd *hcmd; /**< host command currently executed */
1233
1234 wait_queue_head_t hcmd_wq; /**< host command waits for execution */
1235 u32 tsf_bcn[2]; /**< TSF from latest beacon */
1236
1237 struct notif_calibration calib; /**< last calibration */
1238
1239 /* ordinal interface with firmware */
1240 u32 table0_addr;
1241 u32 table0_len;
1242 u32 table1_addr;
1243 u32 table1_len;
1244 u32 table2_addr;
1245 u32 table2_len;
1246
1247 /* context information */
1248 u8 essid[IW_ESSID_MAX_SIZE];
1249 u8 essid_len;
1250 u8 nick[IW_ESSID_MAX_SIZE];
1251 u16 rates_mask;
1252 u8 channel;
1253 struct ipw_sys_config sys_config;
1254 u32 power_mode;
1255 u8 bssid[ETH_ALEN];
1256 u16 rts_threshold;
1257 u8 mac_addr[ETH_ALEN];
1258 u8 num_stations;
1259 u8 stations[MAX_STATIONS][ETH_ALEN];
1260 u8 short_retry_limit;
1261 u8 long_retry_limit;
1262
1263 u32 notif_missed_beacons;
1264
1265 /* Statistics and counters normalized with each association */
1266 u32 last_missed_beacons;
1267 u32 last_tx_packets;
1268 u32 last_rx_packets;
1269 u32 last_tx_failures;
1270 u32 last_rx_err;
1271 u32 last_rate;
1272
1273 u32 missed_adhoc_beacons;
1274 u32 missed_beacons;
1275 u32 rx_packets;
1276 u32 tx_packets;
1277 u32 quality;
1278
1279 u8 speed_scan[MAX_SPEED_SCAN];
1280 u8 speed_scan_pos;
1281
1282 u16 last_seq_num;
1283 u16 last_frag_num;
1284 unsigned long last_packet_time;
1285 struct list_head ibss_mac_hash[IPW_IBSS_MAC_HASH_SIZE];
1286
1287 /* eeprom */
1288 u8 eeprom[0x100]; /* 256 bytes of eeprom */
1289 u8 country[4];
1290 int eeprom_delay;
1291
1292 struct iw_statistics wstats;
1293
1294 struct iw_public_data wireless_data;
1295
1296 int user_requested_scan;
1297 u8 direct_scan_ssid[IW_ESSID_MAX_SIZE];
1298 u8 direct_scan_ssid_len;
1299
1300 struct workqueue_struct *workqueue;
1301
1302 struct delayed_work adhoc_check;
1303 struct work_struct associate;
1304 struct work_struct disassociate;
1305 struct work_struct system_config;
1306 struct work_struct rx_replenish;
1307 struct delayed_work request_scan;
1308 struct delayed_work request_direct_scan;
1309 struct delayed_work request_passive_scan;
1310 struct delayed_work scan_event;
1311 struct work_struct adapter_restart;
1312 struct delayed_work rf_kill;
1313 struct work_struct up;
1314 struct work_struct down;
1315 struct delayed_work gather_stats;
1316 struct work_struct abort_scan;
1317 struct work_struct roam;
1318 struct delayed_work scan_check;
1319 struct work_struct link_up;
1320 struct work_struct link_down;
1321
1322 struct tasklet_struct irq_tasklet;
1323
1324 /* LED related variables and work_struct */
1325 u8 nic_type;
1326 u32 led_activity_on;
1327 u32 led_activity_off;
1328 u32 led_association_on;
1329 u32 led_association_off;
1330 u32 led_ofdm_on;
1331 u32 led_ofdm_off;
1332
1333 struct delayed_work led_link_on;
1334 struct delayed_work led_link_off;
1335 struct delayed_work led_act_off;
1336 struct work_struct merge_networks;
1337
1338 struct ipw_cmd_log *cmdlog;
1339 int cmdlog_len;
1340 int cmdlog_pos;
1341
1342#define IPW_2200BG 1
1343#define IPW_2915ABG 2
1344 u8 adapter;
1345
1346 s8 tx_power;
1347
1348#ifdef CONFIG_PM
1349 u32 pm_state[16];
1350#endif
1351
1352 struct ipw_fw_error *error;
1353
1354 /* network state */
1355
1356 /* Used to pass the current INTA value from ISR to Tasklet */
1357 u32 isr_inta;
1358
1359 /* QoS */
1360 struct ipw_qos_info qos_data;
1361 struct work_struct qos_activate;
1362 /*********************************/
1363
1364 /* debugging info */
1365 u32 indirect_dword;
1366 u32 direct_dword;
1367 u32 indirect_byte;
1368}; /*ipw_priv */
1369
1370/* debug macros */
1371
1372/* Debug and printf string expansion helpers for printing bitfields */
1373#define BIT_FMT8 "%c%c%c%c-%c%c%c%c"
1374#define BIT_FMT16 BIT_FMT8 ":" BIT_FMT8
1375#define BIT_FMT32 BIT_FMT16 " " BIT_FMT16
1376
1377#define BITC(x,y) (((x>>y)&1)?'1':'0')
1378#define BIT_ARG8(x) \
1379BITC(x,7),BITC(x,6),BITC(x,5),BITC(x,4),\
1380BITC(x,3),BITC(x,2),BITC(x,1),BITC(x,0)
1381
1382#define BIT_ARG16(x) \
1383BITC(x,15),BITC(x,14),BITC(x,13),BITC(x,12),\
1384BITC(x,11),BITC(x,10),BITC(x,9),BITC(x,8),\
1385BIT_ARG8(x)
1386
1387#define BIT_ARG32(x) \
1388BITC(x,31),BITC(x,30),BITC(x,29),BITC(x,28),\
1389BITC(x,27),BITC(x,26),BITC(x,25),BITC(x,24),\
1390BITC(x,23),BITC(x,22),BITC(x,21),BITC(x,20),\
1391BITC(x,19),BITC(x,18),BITC(x,17),BITC(x,16),\
1392BIT_ARG16(x)
1393
1394
1395#define IPW_DEBUG(level, fmt, args...) \
1396do { if (ipw_debug_level & (level)) \
1397 printk(KERN_DEBUG DRV_NAME": %c %s " fmt, \
1398 in_interrupt() ? 'I' : 'U', __func__ , ## args); } while (0)
1399
1400#ifdef CONFIG_IPW2200_DEBUG
1401#define IPW_LL_DEBUG(level, fmt, args...) \
1402do { if (ipw_debug_level & (level)) \
1403 printk(KERN_DEBUG DRV_NAME": %c %s " fmt, \
1404 in_interrupt() ? 'I' : 'U', __func__ , ## args); } while (0)
1405#else
1406#define IPW_LL_DEBUG(level, fmt, args...) do {} while (0)
1407#endif /* CONFIG_IPW2200_DEBUG */
1408
1409/*
1410 * To use the debug system;
1411 *
1412 * If you are defining a new debug classification, simply add it to the #define
1413 * list here in the form of:
1414 *
1415 * #define IPW_DL_xxxx VALUE
1416 *
1417 * shifting value to the left one bit from the previous entry. xxxx should be
1418 * the name of the classification (for example, WEP)
1419 *
1420 * You then need to either add a IPW_xxxx_DEBUG() macro definition for your
1421 * classification, or use IPW_DEBUG(IPW_DL_xxxx, ...) whenever you want
1422 * to send output to that classification.
1423 *
1424 * To add your debug level to the list of levels seen when you perform
1425 *
1426 * % cat /proc/net/ipw/debug_level
1427 *
1428 * you simply need to add your entry to the ipw_debug_levels array.
1429 *
1430 * If you do not see debug_level in /proc/net/ipw then you do not have
1431 * CONFIG_IPW2200_DEBUG defined in your kernel configuration
1432 *
1433 */
1434
1435#define IPW_DL_ERROR (1<<0)
1436#define IPW_DL_WARNING (1<<1)
1437#define IPW_DL_INFO (1<<2)
1438#define IPW_DL_WX (1<<3)
1439#define IPW_DL_HOST_COMMAND (1<<5)
1440#define IPW_DL_STATE (1<<6)
1441
1442#define IPW_DL_NOTIF (1<<10)
1443#define IPW_DL_SCAN (1<<11)
1444#define IPW_DL_ASSOC (1<<12)
1445#define IPW_DL_DROP (1<<13)
1446#define IPW_DL_IOCTL (1<<14)
1447
1448#define IPW_DL_MANAGE (1<<15)
1449#define IPW_DL_FW (1<<16)
1450#define IPW_DL_RF_KILL (1<<17)
1451#define IPW_DL_FW_ERRORS (1<<18)
1452
1453#define IPW_DL_LED (1<<19)
1454
1455#define IPW_DL_ORD (1<<20)
1456
1457#define IPW_DL_FRAG (1<<21)
1458#define IPW_DL_WEP (1<<22)
1459#define IPW_DL_TX (1<<23)
1460#define IPW_DL_RX (1<<24)
1461#define IPW_DL_ISR (1<<25)
1462#define IPW_DL_FW_INFO (1<<26)
1463#define IPW_DL_IO (1<<27)
1464#define IPW_DL_TRACE (1<<28)
1465
1466#define IPW_DL_STATS (1<<29)
1467#define IPW_DL_MERGE (1<<30)
1468#define IPW_DL_QOS (1<<31)
1469
1470#define IPW_ERROR(f, a...) printk(KERN_ERR DRV_NAME ": " f, ## a)
1471#define IPW_WARNING(f, a...) printk(KERN_WARNING DRV_NAME ": " f, ## a)
1472#define IPW_DEBUG_INFO(f, a...) IPW_DEBUG(IPW_DL_INFO, f, ## a)
1473
1474#define IPW_DEBUG_WX(f, a...) IPW_DEBUG(IPW_DL_WX, f, ## a)
1475#define IPW_DEBUG_SCAN(f, a...) IPW_DEBUG(IPW_DL_SCAN, f, ## a)
1476#define IPW_DEBUG_TRACE(f, a...) IPW_LL_DEBUG(IPW_DL_TRACE, f, ## a)
1477#define IPW_DEBUG_RX(f, a...) IPW_LL_DEBUG(IPW_DL_RX, f, ## a)
1478#define IPW_DEBUG_TX(f, a...) IPW_LL_DEBUG(IPW_DL_TX, f, ## a)
1479#define IPW_DEBUG_ISR(f, a...) IPW_LL_DEBUG(IPW_DL_ISR, f, ## a)
1480#define IPW_DEBUG_MANAGEMENT(f, a...) IPW_DEBUG(IPW_DL_MANAGE, f, ## a)
1481#define IPW_DEBUG_LED(f, a...) IPW_LL_DEBUG(IPW_DL_LED, f, ## a)
1482#define IPW_DEBUG_WEP(f, a...) IPW_LL_DEBUG(IPW_DL_WEP, f, ## a)
1483#define IPW_DEBUG_HC(f, a...) IPW_LL_DEBUG(IPW_DL_HOST_COMMAND, f, ## a)
1484#define IPW_DEBUG_FRAG(f, a...) IPW_LL_DEBUG(IPW_DL_FRAG, f, ## a)
1485#define IPW_DEBUG_FW(f, a...) IPW_LL_DEBUG(IPW_DL_FW, f, ## a)
1486#define IPW_DEBUG_RF_KILL(f, a...) IPW_DEBUG(IPW_DL_RF_KILL, f, ## a)
1487#define IPW_DEBUG_DROP(f, a...) IPW_DEBUG(IPW_DL_DROP, f, ## a)
1488#define IPW_DEBUG_IO(f, a...) IPW_LL_DEBUG(IPW_DL_IO, f, ## a)
1489#define IPW_DEBUG_ORD(f, a...) IPW_LL_DEBUG(IPW_DL_ORD, f, ## a)
1490#define IPW_DEBUG_FW_INFO(f, a...) IPW_LL_DEBUG(IPW_DL_FW_INFO, f, ## a)
1491#define IPW_DEBUG_NOTIF(f, a...) IPW_DEBUG(IPW_DL_NOTIF, f, ## a)
1492#define IPW_DEBUG_STATE(f, a...) IPW_DEBUG(IPW_DL_STATE | IPW_DL_ASSOC | IPW_DL_INFO, f, ## a)
1493#define IPW_DEBUG_ASSOC(f, a...) IPW_DEBUG(IPW_DL_ASSOC | IPW_DL_INFO, f, ## a)
1494#define IPW_DEBUG_STATS(f, a...) IPW_LL_DEBUG(IPW_DL_STATS, f, ## a)
1495#define IPW_DEBUG_MERGE(f, a...) IPW_LL_DEBUG(IPW_DL_MERGE, f, ## a)
1496#define IPW_DEBUG_QOS(f, a...) IPW_LL_DEBUG(IPW_DL_QOS, f, ## a)
1497
1498#include <linux/ctype.h>
1499
1500/*
1501* Register bit definitions
1502*/
1503
1504#define IPW_INTA_RW 0x00000008
1505#define IPW_INTA_MASK_R 0x0000000C
1506#define IPW_INDIRECT_ADDR 0x00000010
1507#define IPW_INDIRECT_DATA 0x00000014
1508#define IPW_AUTOINC_ADDR 0x00000018
1509#define IPW_AUTOINC_DATA 0x0000001C
1510#define IPW_RESET_REG 0x00000020
1511#define IPW_GP_CNTRL_RW 0x00000024
1512
1513#define IPW_READ_INT_REGISTER 0xFF4
1514
1515#define IPW_GP_CNTRL_BIT_INIT_DONE 0x00000004
1516
1517#define IPW_REGISTER_DOMAIN1_END 0x00001000
1518#define IPW_SRAM_READ_INT_REGISTER 0x00000ff4
1519
1520#define IPW_SHARED_LOWER_BOUND 0x00000200
1521#define IPW_INTERRUPT_AREA_LOWER_BOUND 0x00000f80
1522
1523#define IPW_NIC_SRAM_LOWER_BOUND 0x00000000
1524#define IPW_NIC_SRAM_UPPER_BOUND 0x00030000
1525
1526#define IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER (1 << 29)
1527#define IPW_GP_CNTRL_BIT_CLOCK_READY 0x00000001
1528#define IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY 0x00000002
1529
1530/*
1531 * RESET Register Bit Indexes
1532 */
1533#define CBD_RESET_REG_PRINCETON_RESET (1<<0)
1534#define IPW_START_STANDBY (1<<2)
1535#define IPW_ACTIVITY_LED (1<<4)
1536#define IPW_ASSOCIATED_LED (1<<5)
1537#define IPW_OFDM_LED (1<<6)
1538#define IPW_RESET_REG_SW_RESET (1<<7)
1539#define IPW_RESET_REG_MASTER_DISABLED (1<<8)
1540#define IPW_RESET_REG_STOP_MASTER (1<<9)
1541#define IPW_GATE_ODMA (1<<25)
1542#define IPW_GATE_IDMA (1<<26)
1543#define IPW_ARC_KESHET_CONFIG (1<<27)
1544#define IPW_GATE_ADMA (1<<29)
1545
1546#define IPW_CSR_CIS_UPPER_BOUND 0x00000200
1547#define IPW_DOMAIN_0_END 0x1000
1548#define CLX_MEM_BAR_SIZE 0x1000
1549
1550/* Dino/baseband control registers bits */
1551
1552#define DINO_ENABLE_SYSTEM 0x80 /* 1 = baseband processor on, 0 = reset */
1553#define DINO_ENABLE_CS 0x40 /* 1 = enable ucode load */
1554#define DINO_RXFIFO_DATA 0x01 /* 1 = data available */
1555#define IPW_BASEBAND_CONTROL_STATUS 0X00200000
1556#define IPW_BASEBAND_TX_FIFO_WRITE 0X00200004
1557#define IPW_BASEBAND_RX_FIFO_READ 0X00200004
1558#define IPW_BASEBAND_CONTROL_STORE 0X00200010
1559
1560#define IPW_INTERNAL_CMD_EVENT 0X00300004
1561#define IPW_BASEBAND_POWER_DOWN 0x00000001
1562
1563#define IPW_MEM_HALT_AND_RESET 0x003000e0
1564
1565/* defgroup bits_halt_reset MEM_HALT_AND_RESET register bits */
1566#define IPW_BIT_HALT_RESET_ON 0x80000000
1567#define IPW_BIT_HALT_RESET_OFF 0x00000000
1568
1569#define CB_LAST_VALID 0x20000000
1570#define CB_INT_ENABLED 0x40000000
1571#define CB_VALID 0x80000000
1572#define CB_SRC_LE 0x08000000
1573#define CB_DEST_LE 0x04000000
1574#define CB_SRC_AUTOINC 0x00800000
1575#define CB_SRC_IO_GATED 0x00400000
1576#define CB_DEST_AUTOINC 0x00080000
1577#define CB_SRC_SIZE_LONG 0x00200000
1578#define CB_DEST_SIZE_LONG 0x00020000
1579
1580/* DMA DEFINES */
1581
1582#define DMA_CONTROL_SMALL_CB_CONST_VALUE 0x00540000
1583#define DMA_CB_STOP_AND_ABORT 0x00000C00
1584#define DMA_CB_START 0x00000100
1585
1586#define IPW_SHARED_SRAM_SIZE 0x00030000
1587#define IPW_SHARED_SRAM_DMA_CONTROL 0x00027000
1588#define CB_MAX_LENGTH 0x1FFF
1589
1590#define IPW_HOST_EEPROM_DATA_SRAM_SIZE 0xA18
1591#define IPW_EEPROM_IMAGE_SIZE 0x100
1592
1593/* DMA defs */
1594#define IPW_DMA_I_CURRENT_CB 0x003000D0
1595#define IPW_DMA_O_CURRENT_CB 0x003000D4
1596#define IPW_DMA_I_DMA_CONTROL 0x003000A4
1597#define IPW_DMA_I_CB_BASE 0x003000A0
1598
1599#define IPW_TX_CMD_QUEUE_BD_BASE 0x00000200
1600#define IPW_TX_CMD_QUEUE_BD_SIZE 0x00000204
1601#define IPW_TX_QUEUE_0_BD_BASE 0x00000208
1602#define IPW_TX_QUEUE_0_BD_SIZE (0x0000020C)
1603#define IPW_TX_QUEUE_1_BD_BASE 0x00000210
1604#define IPW_TX_QUEUE_1_BD_SIZE 0x00000214
1605#define IPW_TX_QUEUE_2_BD_BASE 0x00000218
1606#define IPW_TX_QUEUE_2_BD_SIZE (0x0000021C)
1607#define IPW_TX_QUEUE_3_BD_BASE 0x00000220
1608#define IPW_TX_QUEUE_3_BD_SIZE 0x00000224
1609#define IPW_RX_BD_BASE 0x00000240
1610#define IPW_RX_BD_SIZE 0x00000244
1611#define IPW_RFDS_TABLE_LOWER 0x00000500
1612
1613#define IPW_TX_CMD_QUEUE_READ_INDEX 0x00000280
1614#define IPW_TX_QUEUE_0_READ_INDEX 0x00000284
1615#define IPW_TX_QUEUE_1_READ_INDEX 0x00000288
1616#define IPW_TX_QUEUE_2_READ_INDEX (0x0000028C)
1617#define IPW_TX_QUEUE_3_READ_INDEX 0x00000290
1618#define IPW_RX_READ_INDEX (0x000002A0)
1619
1620#define IPW_TX_CMD_QUEUE_WRITE_INDEX (0x00000F80)
1621#define IPW_TX_QUEUE_0_WRITE_INDEX (0x00000F84)
1622#define IPW_TX_QUEUE_1_WRITE_INDEX (0x00000F88)
1623#define IPW_TX_QUEUE_2_WRITE_INDEX (0x00000F8C)
1624#define IPW_TX_QUEUE_3_WRITE_INDEX (0x00000F90)
1625#define IPW_RX_WRITE_INDEX (0x00000FA0)
1626
1627/*
1628 * EEPROM Related Definitions
1629 */
1630
1631#define IPW_EEPROM_DATA_SRAM_ADDRESS (IPW_SHARED_LOWER_BOUND + 0x814)
1632#define IPW_EEPROM_DATA_SRAM_SIZE (IPW_SHARED_LOWER_BOUND + 0x818)
1633#define IPW_EEPROM_LOAD_DISABLE (IPW_SHARED_LOWER_BOUND + 0x81C)
1634#define IPW_EEPROM_DATA (IPW_SHARED_LOWER_BOUND + 0x820)
1635#define IPW_EEPROM_UPPER_ADDRESS (IPW_SHARED_LOWER_BOUND + 0x9E0)
1636
1637#define IPW_STATION_TABLE_LOWER (IPW_SHARED_LOWER_BOUND + 0xA0C)
1638#define IPW_STATION_TABLE_UPPER (IPW_SHARED_LOWER_BOUND + 0xB0C)
1639#define IPW_REQUEST_ATIM (IPW_SHARED_LOWER_BOUND + 0xB0C)
1640#define IPW_ATIM_SENT (IPW_SHARED_LOWER_BOUND + 0xB10)
1641#define IPW_WHO_IS_AWAKE (IPW_SHARED_LOWER_BOUND + 0xB14)
1642#define IPW_DURING_ATIM_WINDOW (IPW_SHARED_LOWER_BOUND + 0xB18)
1643
1644#define MSB 1
1645#define LSB 0
1646#define WORD_TO_BYTE(_word) ((_word) * sizeof(u16))
1647
1648#define GET_EEPROM_ADDR(_wordoffset,_byteoffset) \
1649 ( WORD_TO_BYTE(_wordoffset) + (_byteoffset) )
1650
1651/* EEPROM access by BYTE */
1652#define EEPROM_PME_CAPABILITY (GET_EEPROM_ADDR(0x09,MSB)) /* 1 byte */
1653#define EEPROM_MAC_ADDRESS (GET_EEPROM_ADDR(0x21,LSB)) /* 6 byte */
1654#define EEPROM_VERSION (GET_EEPROM_ADDR(0x24,MSB)) /* 1 byte */
1655#define EEPROM_NIC_TYPE (GET_EEPROM_ADDR(0x25,LSB)) /* 1 byte */
1656#define EEPROM_SKU_CAPABILITY (GET_EEPROM_ADDR(0x25,MSB)) /* 1 byte */
1657#define EEPROM_COUNTRY_CODE (GET_EEPROM_ADDR(0x26,LSB)) /* 3 bytes */
1658#define EEPROM_IBSS_CHANNELS_BG (GET_EEPROM_ADDR(0x28,LSB)) /* 2 bytes */
1659#define EEPROM_IBSS_CHANNELS_A (GET_EEPROM_ADDR(0x29,MSB)) /* 5 bytes */
1660#define EEPROM_BSS_CHANNELS_BG (GET_EEPROM_ADDR(0x2c,LSB)) /* 2 bytes */
1661#define EEPROM_HW_VERSION (GET_EEPROM_ADDR(0x72,LSB)) /* 2 bytes */
1662
1663/* NIC type as found in the one byte EEPROM_NIC_TYPE offset */
1664#define EEPROM_NIC_TYPE_0 0
1665#define EEPROM_NIC_TYPE_1 1
1666#define EEPROM_NIC_TYPE_2 2
1667#define EEPROM_NIC_TYPE_3 3
1668#define EEPROM_NIC_TYPE_4 4
1669
1670/* Bluetooth Coexistence capabilities as found in EEPROM_SKU_CAPABILITY */
1671#define EEPROM_SKU_CAP_BT_CHANNEL_SIG 0x01 /* we can tell BT our channel # */
1672#define EEPROM_SKU_CAP_BT_PRIORITY 0x02 /* BT can take priority over us */
1673#define EEPROM_SKU_CAP_BT_OOB 0x04 /* we can signal BT out-of-band */
1674
1675#define FW_MEM_REG_LOWER_BOUND 0x00300000
1676#define FW_MEM_REG_EEPROM_ACCESS (FW_MEM_REG_LOWER_BOUND + 0x40)
1677#define IPW_EVENT_REG (FW_MEM_REG_LOWER_BOUND + 0x04)
1678#define EEPROM_BIT_SK (1<<0)
1679#define EEPROM_BIT_CS (1<<1)
1680#define EEPROM_BIT_DI (1<<2)
1681#define EEPROM_BIT_DO (1<<4)
1682
1683#define EEPROM_CMD_READ 0x2
1684
1685/* Interrupts masks */
1686#define IPW_INTA_NONE 0x00000000
1687
1688#define IPW_INTA_BIT_RX_TRANSFER 0x00000002
1689#define IPW_INTA_BIT_STATUS_CHANGE 0x00000010
1690#define IPW_INTA_BIT_BEACON_PERIOD_EXPIRED 0x00000020
1691
1692//Inta Bits for CF
1693#define IPW_INTA_BIT_TX_CMD_QUEUE 0x00000800
1694#define IPW_INTA_BIT_TX_QUEUE_1 0x00001000
1695#define IPW_INTA_BIT_TX_QUEUE_2 0x00002000
1696#define IPW_INTA_BIT_TX_QUEUE_3 0x00004000
1697#define IPW_INTA_BIT_TX_QUEUE_4 0x00008000
1698
1699#define IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE 0x00010000
1700
1701#define IPW_INTA_BIT_PREPARE_FOR_POWER_DOWN 0x00100000
1702#define IPW_INTA_BIT_POWER_DOWN 0x00200000
1703
1704#define IPW_INTA_BIT_FW_INITIALIZATION_DONE 0x01000000
1705#define IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE 0x02000000
1706#define IPW_INTA_BIT_RF_KILL_DONE 0x04000000
1707#define IPW_INTA_BIT_FATAL_ERROR 0x40000000
1708#define IPW_INTA_BIT_PARITY_ERROR 0x80000000
1709
1710/* Interrupts enabled at init time. */
1711#define IPW_INTA_MASK_ALL \
1712 (IPW_INTA_BIT_TX_QUEUE_1 | \
1713 IPW_INTA_BIT_TX_QUEUE_2 | \
1714 IPW_INTA_BIT_TX_QUEUE_3 | \
1715 IPW_INTA_BIT_TX_QUEUE_4 | \
1716 IPW_INTA_BIT_TX_CMD_QUEUE | \
1717 IPW_INTA_BIT_RX_TRANSFER | \
1718 IPW_INTA_BIT_FATAL_ERROR | \
1719 IPW_INTA_BIT_PARITY_ERROR | \
1720 IPW_INTA_BIT_STATUS_CHANGE | \
1721 IPW_INTA_BIT_FW_INITIALIZATION_DONE | \
1722 IPW_INTA_BIT_BEACON_PERIOD_EXPIRED | \
1723 IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE | \
1724 IPW_INTA_BIT_PREPARE_FOR_POWER_DOWN | \
1725 IPW_INTA_BIT_POWER_DOWN | \
1726 IPW_INTA_BIT_RF_KILL_DONE )
1727
1728/* FW event log definitions */
1729#define EVENT_ELEM_SIZE (3 * sizeof(u32))
1730#define EVENT_START_OFFSET (1 * sizeof(u32) + 2 * sizeof(u16))
1731
1732/* FW error log definitions */
1733#define ERROR_ELEM_SIZE (7 * sizeof(u32))
1734#define ERROR_START_OFFSET (1 * sizeof(u32))
1735
1736/* TX power level (dbm) */
1737#define IPW_TX_POWER_MIN -12
1738#define IPW_TX_POWER_MAX 20
1739#define IPW_TX_POWER_DEFAULT IPW_TX_POWER_MAX
1740
1741enum {
1742 IPW_FW_ERROR_OK = 0,
1743 IPW_FW_ERROR_FAIL,
1744 IPW_FW_ERROR_MEMORY_UNDERFLOW,
1745 IPW_FW_ERROR_MEMORY_OVERFLOW,
1746 IPW_FW_ERROR_BAD_PARAM,
1747 IPW_FW_ERROR_BAD_CHECKSUM,
1748 IPW_FW_ERROR_NMI_INTERRUPT,
1749 IPW_FW_ERROR_BAD_DATABASE,
1750 IPW_FW_ERROR_ALLOC_FAIL,
1751 IPW_FW_ERROR_DMA_UNDERRUN,
1752 IPW_FW_ERROR_DMA_STATUS,
1753 IPW_FW_ERROR_DINO_ERROR,
1754 IPW_FW_ERROR_EEPROM_ERROR,
1755 IPW_FW_ERROR_SYSASSERT,
1756 IPW_FW_ERROR_FATAL_ERROR
1757};
1758
1759#define AUTH_OPEN 0
1760#define AUTH_SHARED_KEY 1
1761#define AUTH_LEAP 2
1762#define AUTH_IGNORE 3
1763
1764#define HC_ASSOCIATE 0
1765#define HC_REASSOCIATE 1
1766#define HC_DISASSOCIATE 2
1767#define HC_IBSS_START 3
1768#define HC_IBSS_RECONF 4
1769#define HC_DISASSOC_QUIET 5
1770
1771#define HC_QOS_SUPPORT_ASSOC cpu_to_le16(0x01)
1772
1773#define IPW_RATE_CAPABILITIES 1
1774#define IPW_RATE_CONNECT 0
1775
1776/*
1777 * Rate values and masks
1778 */
1779#define IPW_TX_RATE_1MB 0x0A
1780#define IPW_TX_RATE_2MB 0x14
1781#define IPW_TX_RATE_5MB 0x37
1782#define IPW_TX_RATE_6MB 0x0D
1783#define IPW_TX_RATE_9MB 0x0F
1784#define IPW_TX_RATE_11MB 0x6E
1785#define IPW_TX_RATE_12MB 0x05
1786#define IPW_TX_RATE_18MB 0x07
1787#define IPW_TX_RATE_24MB 0x09
1788#define IPW_TX_RATE_36MB 0x0B
1789#define IPW_TX_RATE_48MB 0x01
1790#define IPW_TX_RATE_54MB 0x03
1791
1792#define IPW_ORD_TABLE_ID_MASK 0x0000FF00
1793#define IPW_ORD_TABLE_VALUE_MASK 0x000000FF
1794
1795#define IPW_ORD_TABLE_0_MASK 0x0000F000
1796#define IPW_ORD_TABLE_1_MASK 0x0000F100
1797#define IPW_ORD_TABLE_2_MASK 0x0000F200
1798#define IPW_ORD_TABLE_3_MASK 0x0000F300
1799#define IPW_ORD_TABLE_4_MASK 0x0000F400
1800#define IPW_ORD_TABLE_5_MASK 0x0000F500
1801#define IPW_ORD_TABLE_6_MASK 0x0000F600
1802#define IPW_ORD_TABLE_7_MASK 0x0000F700
1803
1804/*
1805 * Table 0 Entries (all entries are 32 bits)
1806 */
1807enum {
1808 IPW_ORD_STAT_TX_CURR_RATE = IPW_ORD_TABLE_0_MASK + 1,
1809 IPW_ORD_STAT_FRAG_TRESHOLD,
1810 IPW_ORD_STAT_RTS_THRESHOLD,
1811 IPW_ORD_STAT_TX_HOST_REQUESTS,
1812 IPW_ORD_STAT_TX_HOST_COMPLETE,
1813 IPW_ORD_STAT_TX_DIR_DATA,
1814 IPW_ORD_STAT_TX_DIR_DATA_B_1,
1815 IPW_ORD_STAT_TX_DIR_DATA_B_2,
1816 IPW_ORD_STAT_TX_DIR_DATA_B_5_5,
1817 IPW_ORD_STAT_TX_DIR_DATA_B_11,
1818 /* Hole */
1819
1820 IPW_ORD_STAT_TX_DIR_DATA_G_1 = IPW_ORD_TABLE_0_MASK + 19,
1821 IPW_ORD_STAT_TX_DIR_DATA_G_2,
1822 IPW_ORD_STAT_TX_DIR_DATA_G_5_5,
1823 IPW_ORD_STAT_TX_DIR_DATA_G_6,
1824 IPW_ORD_STAT_TX_DIR_DATA_G_9,
1825 IPW_ORD_STAT_TX_DIR_DATA_G_11,
1826 IPW_ORD_STAT_TX_DIR_DATA_G_12,
1827 IPW_ORD_STAT_TX_DIR_DATA_G_18,
1828 IPW_ORD_STAT_TX_DIR_DATA_G_24,
1829 IPW_ORD_STAT_TX_DIR_DATA_G_36,
1830 IPW_ORD_STAT_TX_DIR_DATA_G_48,
1831 IPW_ORD_STAT_TX_DIR_DATA_G_54,
1832 IPW_ORD_STAT_TX_NON_DIR_DATA,
1833 IPW_ORD_STAT_TX_NON_DIR_DATA_B_1,
1834 IPW_ORD_STAT_TX_NON_DIR_DATA_B_2,
1835 IPW_ORD_STAT_TX_NON_DIR_DATA_B_5_5,
1836 IPW_ORD_STAT_TX_NON_DIR_DATA_B_11,
1837 /* Hole */
1838
1839 IPW_ORD_STAT_TX_NON_DIR_DATA_G_1 = IPW_ORD_TABLE_0_MASK + 44,
1840 IPW_ORD_STAT_TX_NON_DIR_DATA_G_2,
1841 IPW_ORD_STAT_TX_NON_DIR_DATA_G_5_5,
1842 IPW_ORD_STAT_TX_NON_DIR_DATA_G_6,
1843 IPW_ORD_STAT_TX_NON_DIR_DATA_G_9,
1844 IPW_ORD_STAT_TX_NON_DIR_DATA_G_11,
1845 IPW_ORD_STAT_TX_NON_DIR_DATA_G_12,
1846 IPW_ORD_STAT_TX_NON_DIR_DATA_G_18,
1847 IPW_ORD_STAT_TX_NON_DIR_DATA_G_24,
1848 IPW_ORD_STAT_TX_NON_DIR_DATA_G_36,
1849 IPW_ORD_STAT_TX_NON_DIR_DATA_G_48,
1850 IPW_ORD_STAT_TX_NON_DIR_DATA_G_54,
1851 IPW_ORD_STAT_TX_RETRY,
1852 IPW_ORD_STAT_TX_FAILURE,
1853 IPW_ORD_STAT_RX_ERR_CRC,
1854 IPW_ORD_STAT_RX_ERR_ICV,
1855 IPW_ORD_STAT_RX_NO_BUFFER,
1856 IPW_ORD_STAT_FULL_SCANS,
1857 IPW_ORD_STAT_PARTIAL_SCANS,
1858 IPW_ORD_STAT_TGH_ABORTED_SCANS,
1859 IPW_ORD_STAT_TX_TOTAL_BYTES,
1860 IPW_ORD_STAT_CURR_RSSI_RAW,
1861 IPW_ORD_STAT_RX_BEACON,
1862 IPW_ORD_STAT_MISSED_BEACONS,
1863 IPW_ORD_TABLE_0_LAST
1864};
1865
1866#define IPW_RSSI_TO_DBM 112
1867
1868/* Table 1 Entries
1869 */
1870enum {
1871 IPW_ORD_TABLE_1_LAST = IPW_ORD_TABLE_1_MASK | 1,
1872};
1873
1874/*
1875 * Table 2 Entries
1876 *
1877 * FW_VERSION: 16 byte string
1878 * FW_DATE: 16 byte string (only 14 bytes used)
1879 * UCODE_VERSION: 4 byte version code
1880 * UCODE_DATE: 5 bytes code code
1881 * ADDAPTER_MAC: 6 byte MAC address
1882 * RTC: 4 byte clock
1883 */
1884enum {
1885 IPW_ORD_STAT_FW_VERSION = IPW_ORD_TABLE_2_MASK | 1,
1886 IPW_ORD_STAT_FW_DATE,
1887 IPW_ORD_STAT_UCODE_VERSION,
1888 IPW_ORD_STAT_UCODE_DATE,
1889 IPW_ORD_STAT_ADAPTER_MAC,
1890 IPW_ORD_STAT_RTC,
1891 IPW_ORD_TABLE_2_LAST
1892};
1893
1894/* Table 3 */
1895enum {
1896 IPW_ORD_STAT_TX_PACKET = IPW_ORD_TABLE_3_MASK | 0,
1897 IPW_ORD_STAT_TX_PACKET_FAILURE,
1898 IPW_ORD_STAT_TX_PACKET_SUCCESS,
1899 IPW_ORD_STAT_TX_PACKET_ABORTED,
1900 IPW_ORD_TABLE_3_LAST
1901};
1902
1903/* Table 4 */
1904enum {
1905 IPW_ORD_TABLE_4_LAST = IPW_ORD_TABLE_4_MASK
1906};
1907
1908/* Table 5 */
1909enum {
1910 IPW_ORD_STAT_AVAILABLE_AP_COUNT = IPW_ORD_TABLE_5_MASK,
1911 IPW_ORD_STAT_AP_ASSNS,
1912 IPW_ORD_STAT_ROAM,
1913 IPW_ORD_STAT_ROAM_CAUSE_MISSED_BEACONS,
1914 IPW_ORD_STAT_ROAM_CAUSE_UNASSOC,
1915 IPW_ORD_STAT_ROAM_CAUSE_RSSI,
1916 IPW_ORD_STAT_ROAM_CAUSE_LINK_QUALITY,
1917 IPW_ORD_STAT_ROAM_CAUSE_AP_LOAD_BALANCE,
1918 IPW_ORD_STAT_ROAM_CAUSE_AP_NO_TX,
1919 IPW_ORD_STAT_LINK_UP,
1920 IPW_ORD_STAT_LINK_DOWN,
1921 IPW_ORD_ANTENNA_DIVERSITY,
1922 IPW_ORD_CURR_FREQ,
1923 IPW_ORD_TABLE_5_LAST
1924};
1925
1926/* Table 6 */
1927enum {
1928 IPW_ORD_COUNTRY_CODE = IPW_ORD_TABLE_6_MASK,
1929 IPW_ORD_CURR_BSSID,
1930 IPW_ORD_CURR_SSID,
1931 IPW_ORD_TABLE_6_LAST
1932};
1933
1934/* Table 7 */
1935enum {
1936 IPW_ORD_STAT_PERCENT_MISSED_BEACONS = IPW_ORD_TABLE_7_MASK,
1937 IPW_ORD_STAT_PERCENT_TX_RETRIES,
1938 IPW_ORD_STAT_PERCENT_LINK_QUALITY,
1939 IPW_ORD_STAT_CURR_RSSI_DBM,
1940 IPW_ORD_TABLE_7_LAST
1941};
1942
1943#define IPW_ERROR_LOG (IPW_SHARED_LOWER_BOUND + 0x410)
1944#define IPW_EVENT_LOG (IPW_SHARED_LOWER_BOUND + 0x414)
1945#define IPW_ORDINALS_TABLE_LOWER (IPW_SHARED_LOWER_BOUND + 0x500)
1946#define IPW_ORDINALS_TABLE_0 (IPW_SHARED_LOWER_BOUND + 0x180)
1947#define IPW_ORDINALS_TABLE_1 (IPW_SHARED_LOWER_BOUND + 0x184)
1948#define IPW_ORDINALS_TABLE_2 (IPW_SHARED_LOWER_BOUND + 0x188)
1949#define IPW_MEM_FIXED_OVERRIDE (IPW_SHARED_LOWER_BOUND + 0x41C)
1950
1951struct ipw_fixed_rate {
1952 __le16 tx_rates;
1953 __le16 reserved;
1954} __attribute__ ((packed));
1955
1956#define IPW_INDIRECT_ADDR_MASK (~0x3ul)
1957
1958struct host_cmd {
1959 u8 cmd;
1960 u8 len;
1961 u16 reserved;
1962 u32 *param;
1963} __attribute__ ((packed)); /* XXX */
1964
1965struct cmdlog_host_cmd {
1966 u8 cmd;
1967 u8 len;
1968 __le16 reserved;
1969 char param[124];
1970} __attribute__ ((packed));
1971
1972struct ipw_cmd_log {
1973 unsigned long jiffies;
1974 int retcode;
1975 struct cmdlog_host_cmd cmd;
1976};
1977
1978/* SysConfig command parameters ... */
1979/* bt_coexistence param */
1980#define CFG_BT_COEXISTENCE_SIGNAL_CHNL 0x01 /* tell BT our chnl # */
1981#define CFG_BT_COEXISTENCE_DEFER 0x02 /* defer our Tx if BT traffic */
1982#define CFG_BT_COEXISTENCE_KILL 0x04 /* kill our Tx if BT traffic */
1983#define CFG_BT_COEXISTENCE_WME_OVER_BT 0x08 /* multimedia extensions */
1984#define CFG_BT_COEXISTENCE_OOB 0x10 /* signal BT via out-of-band */
1985
1986/* clear-to-send to self param */
1987#define CFG_CTS_TO_ITSELF_ENABLED_MIN 0x00
1988#define CFG_CTS_TO_ITSELF_ENABLED_MAX 0x01
1989#define CFG_CTS_TO_ITSELF_ENABLED_DEF CFG_CTS_TO_ITSELF_ENABLED_MIN
1990
1991/* Antenna diversity param (h/w can select best antenna, based on signal) */
1992#define CFG_SYS_ANTENNA_BOTH 0x00 /* NIC selects best antenna */
1993#define CFG_SYS_ANTENNA_A 0x01 /* force antenna A */
1994#define CFG_SYS_ANTENNA_B 0x03 /* force antenna B */
1995#define CFG_SYS_ANTENNA_SLOW_DIV 0x02 /* consider background noise */
1996
1997/*
1998 * The definitions below were lifted off the ipw2100 driver, which only
1999 * supports 'b' mode, so I'm sure these are not exactly correct.
2000 *
2001 * Somebody fix these!!
2002 */
2003#define REG_MIN_CHANNEL 0
2004#define REG_MAX_CHANNEL 14
2005
2006#define REG_CHANNEL_MASK 0x00003FFF
2007#define IPW_IBSS_11B_DEFAULT_MASK 0x87ff
2008
2009#define IPW_MAX_CONFIG_RETRIES 10
2010
2011#endif /* __ipw2200_h__ */