diff options
author | Casey Leedom <leedom@chelsio.com> | 2010-06-25 08:14:15 -0400 |
---|---|---|
committer | David S. Miller <davem@davemloft.net> | 2010-06-29 02:59:36 -0400 |
commit | be839e391725d7f3a61714530d0e90d7a773a871 (patch) | |
tree | dac32bd4fab64e9c5ad4dcc198b518f52782e205 /drivers/net/cxgb4vf | |
parent | c6e0d91464da214081af546496dd3a4b6d19db70 (diff) |
cxgb4vf: Add main T4 PCI-E SR-IOV Virtual Function driver for cxgb4vf
Add main T4 PCI-E SR-IOV Virtual Function driver for "cxgb4vf".
Signed-off-by: Casey Leedom
Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'drivers/net/cxgb4vf')
-rw-r--r-- | drivers/net/cxgb4vf/adapter.h | 540 | ||||
-rw-r--r-- | drivers/net/cxgb4vf/cxgb4vf_main.c | 2906 |
2 files changed, 3446 insertions, 0 deletions
diff --git a/drivers/net/cxgb4vf/adapter.h b/drivers/net/cxgb4vf/adapter.h new file mode 100644 index 00000000000..8ea01962e04 --- /dev/null +++ b/drivers/net/cxgb4vf/adapter.h | |||
@@ -0,0 +1,540 @@ | |||
1 | /* | ||
2 | * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet | ||
3 | * driver for Linux. | ||
4 | * | ||
5 | * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. | ||
6 | * | ||
7 | * This software is available to you under a choice of one of two | ||
8 | * licenses. You may choose to be licensed under the terms of the GNU | ||
9 | * General Public License (GPL) Version 2, available from the file | ||
10 | * COPYING in the main directory of this source tree, or the | ||
11 | * OpenIB.org BSD license below: | ||
12 | * | ||
13 | * Redistribution and use in source and binary forms, with or | ||
14 | * without modification, are permitted provided that the following | ||
15 | * conditions are met: | ||
16 | * | ||
17 | * - Redistributions of source code must retain the above | ||
18 | * copyright notice, this list of conditions and the following | ||
19 | * disclaimer. | ||
20 | * | ||
21 | * - Redistributions in binary form must reproduce the above | ||
22 | * copyright notice, this list of conditions and the following | ||
23 | * disclaimer in the documentation and/or other materials | ||
24 | * provided with the distribution. | ||
25 | * | ||
26 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
27 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
28 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
29 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
30 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
31 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
32 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
33 | * SOFTWARE. | ||
34 | */ | ||
35 | |||
36 | /* | ||
37 | * This file should not be included directly. Include t4vf_common.h instead. | ||
38 | */ | ||
39 | |||
40 | #ifndef __CXGB4VF_ADAPTER_H__ | ||
41 | #define __CXGB4VF_ADAPTER_H__ | ||
42 | |||
43 | #include <linux/pci.h> | ||
44 | #include <linux/spinlock.h> | ||
45 | #include <linux/skbuff.h> | ||
46 | #include <linux/if_ether.h> | ||
47 | #include <linux/netdevice.h> | ||
48 | |||
49 | #include "../cxgb4/t4_hw.h" | ||
50 | |||
51 | /* | ||
52 | * Constants of the implementation. | ||
53 | */ | ||
54 | enum { | ||
55 | MAX_NPORTS = 1, /* max # of "ports" */ | ||
56 | MAX_PORT_QSETS = 8, /* max # of Queue Sets / "port" */ | ||
57 | MAX_ETH_QSETS = MAX_NPORTS*MAX_PORT_QSETS, | ||
58 | |||
59 | /* | ||
60 | * MSI-X interrupt index usage. | ||
61 | */ | ||
62 | MSIX_FW = 0, /* MSI-X index for firmware Q */ | ||
63 | MSIX_NIQFLINT = 1, /* MSI-X index base for Ingress Qs */ | ||
64 | MSIX_EXTRAS = 1, | ||
65 | MSIX_ENTRIES = MAX_ETH_QSETS + MSIX_EXTRAS, | ||
66 | |||
67 | /* | ||
68 | * The maximum number of Ingress and Egress Queues is determined by | ||
69 | * the maximum number of "Queue Sets" which we support plus any | ||
70 | * ancillary queues. Each "Queue Set" requires one Ingress Queue | ||
71 | * for RX Packet Ingress Event notifications and two Egress Queues for | ||
72 | * a Free List and an Ethernet TX list. | ||
73 | */ | ||
74 | INGQ_EXTRAS = 2, /* firmware event queue and */ | ||
75 | /* forwarded interrupts */ | ||
76 | MAX_INGQ = MAX_ETH_QSETS+INGQ_EXTRAS, | ||
77 | MAX_EGRQ = MAX_ETH_QSETS*2, | ||
78 | }; | ||
79 | |||
80 | /* | ||
81 | * Forward structure definition references. | ||
82 | */ | ||
83 | struct adapter; | ||
84 | struct sge_eth_rxq; | ||
85 | struct sge_rspq; | ||
86 | |||
87 | /* | ||
88 | * Per-"port" information. This is really per-Virtual Interface information | ||
89 | * but the use of the "port" nomanclature makes it easier to go back and forth | ||
90 | * between the PF and VF drivers ... | ||
91 | */ | ||
92 | struct port_info { | ||
93 | struct adapter *adapter; /* our adapter */ | ||
94 | struct vlan_group *vlan_grp; /* out VLAN group */ | ||
95 | u16 viid; /* virtual interface ID */ | ||
96 | s16 xact_addr_filt; /* index of our MAC address filter */ | ||
97 | u16 rss_size; /* size of VI's RSS table slice */ | ||
98 | u8 pidx; /* index into adapter port[] */ | ||
99 | u8 port_id; /* physical port ID */ | ||
100 | u8 rx_offload; /* CSO, etc. */ | ||
101 | u8 nqsets; /* # of "Queue Sets" */ | ||
102 | u8 first_qset; /* index of first "Queue Set" */ | ||
103 | struct link_config link_cfg; /* physical port configuration */ | ||
104 | }; | ||
105 | |||
106 | /* port_info.rx_offload flags */ | ||
107 | enum { | ||
108 | RX_CSO = 1 << 0, | ||
109 | }; | ||
110 | |||
111 | /* | ||
112 | * Scatter Gather Engine resources for the "adapter". Our ingress and egress | ||
113 | * queues are organized into "Queue Sets" with one ingress and one egress | ||
114 | * queue per Queue Set. These Queue Sets are aportionable between the "ports" | ||
115 | * (Virtual Interfaces). One extra ingress queue is used to receive | ||
116 | * asynchronous messages from the firmware. Note that the "Queue IDs" that we | ||
117 | * use here are really "Relative Queue IDs" which are returned as part of the | ||
118 | * firmware command to allocate queues. These queue IDs are relative to the | ||
119 | * absolute Queue ID base of the section of the Queue ID space allocated to | ||
120 | * the PF/VF. | ||
121 | */ | ||
122 | |||
123 | /* | ||
124 | * SGE free-list queue state. | ||
125 | */ | ||
126 | struct rx_sw_desc; | ||
127 | struct sge_fl { | ||
128 | unsigned int avail; /* # of available RX buffers */ | ||
129 | unsigned int pend_cred; /* new buffers since last FL DB ring */ | ||
130 | unsigned int cidx; /* consumer index */ | ||
131 | unsigned int pidx; /* producer index */ | ||
132 | unsigned long alloc_failed; /* # of buffer allocation failures */ | ||
133 | unsigned long large_alloc_failed; | ||
134 | unsigned long starving; /* # of times FL was found starving */ | ||
135 | |||
136 | /* | ||
137 | * Write-once/infrequently fields. | ||
138 | * ------------------------------- | ||
139 | */ | ||
140 | |||
141 | unsigned int cntxt_id; /* SGE relative QID for the free list */ | ||
142 | unsigned int abs_id; /* SGE absolute QID for the free list */ | ||
143 | unsigned int size; /* capacity of free list */ | ||
144 | struct rx_sw_desc *sdesc; /* address of SW RX descriptor ring */ | ||
145 | __be64 *desc; /* address of HW RX descriptor ring */ | ||
146 | dma_addr_t addr; /* PCI bus address of hardware ring */ | ||
147 | }; | ||
148 | |||
149 | /* | ||
150 | * An ingress packet gather list. | ||
151 | */ | ||
152 | struct pkt_gl { | ||
153 | skb_frag_t frags[MAX_SKB_FRAGS]; | ||
154 | void *va; /* virtual address of first byte */ | ||
155 | unsigned int nfrags; /* # of fragments */ | ||
156 | unsigned int tot_len; /* total length of fragments */ | ||
157 | }; | ||
158 | |||
159 | typedef int (*rspq_handler_t)(struct sge_rspq *, const __be64 *, | ||
160 | const struct pkt_gl *); | ||
161 | |||
162 | /* | ||
163 | * State for an SGE Response Queue. | ||
164 | */ | ||
165 | struct sge_rspq { | ||
166 | struct napi_struct napi; /* NAPI scheduling control */ | ||
167 | const __be64 *cur_desc; /* current descriptor in queue */ | ||
168 | unsigned int cidx; /* consumer index */ | ||
169 | u8 gen; /* current generation bit */ | ||
170 | u8 next_intr_params; /* holdoff params for next interrupt */ | ||
171 | int offset; /* offset into current FL buffer */ | ||
172 | |||
173 | unsigned int unhandled_irqs; /* bogus interrupts */ | ||
174 | |||
175 | /* | ||
176 | * Write-once/infrequently fields. | ||
177 | * ------------------------------- | ||
178 | */ | ||
179 | |||
180 | u8 intr_params; /* interrupt holdoff parameters */ | ||
181 | u8 pktcnt_idx; /* interrupt packet threshold */ | ||
182 | u8 idx; /* queue index within its group */ | ||
183 | u16 cntxt_id; /* SGE rel QID for the response Q */ | ||
184 | u16 abs_id; /* SGE abs QID for the response Q */ | ||
185 | __be64 *desc; /* address of hardware response ring */ | ||
186 | dma_addr_t phys_addr; /* PCI bus address of ring */ | ||
187 | unsigned int iqe_len; /* entry size */ | ||
188 | unsigned int size; /* capcity of response Q */ | ||
189 | struct adapter *adapter; /* our adapter */ | ||
190 | struct net_device *netdev; /* associated net device */ | ||
191 | rspq_handler_t handler; /* the handler for this response Q */ | ||
192 | }; | ||
193 | |||
194 | /* | ||
195 | * Ethernet queue statistics | ||
196 | */ | ||
197 | struct sge_eth_stats { | ||
198 | unsigned long pkts; /* # of ethernet packets */ | ||
199 | unsigned long lro_pkts; /* # of LRO super packets */ | ||
200 | unsigned long lro_merged; /* # of wire packets merged by LRO */ | ||
201 | unsigned long rx_cso; /* # of Rx checksum offloads */ | ||
202 | unsigned long vlan_ex; /* # of Rx VLAN extractions */ | ||
203 | unsigned long rx_drops; /* # of packets dropped due to no mem */ | ||
204 | }; | ||
205 | |||
206 | /* | ||
207 | * State for an Ethernet Receive Queue. | ||
208 | */ | ||
209 | struct sge_eth_rxq { | ||
210 | struct sge_rspq rspq; /* Response Queue */ | ||
211 | struct sge_fl fl; /* Free List */ | ||
212 | struct sge_eth_stats stats; /* receive statistics */ | ||
213 | }; | ||
214 | |||
215 | /* | ||
216 | * SGE Transmit Queue state. This contains all of the resources associated | ||
217 | * with the hardware status of a TX Queue which is a circular ring of hardware | ||
218 | * TX Descriptors. For convenience, it also contains a pointer to a parallel | ||
219 | * "Software Descriptor" array but we don't know anything about it here other | ||
220 | * than its type name. | ||
221 | */ | ||
222 | struct tx_desc { | ||
223 | /* | ||
224 | * Egress Queues are measured in units of SGE_EQ_IDXSIZE by the | ||
225 | * hardware: Sizes, Producer and Consumer indices, etc. | ||
226 | */ | ||
227 | __be64 flit[SGE_EQ_IDXSIZE/sizeof(__be64)]; | ||
228 | }; | ||
229 | struct tx_sw_desc; | ||
230 | struct sge_txq { | ||
231 | unsigned int in_use; /* # of in-use TX descriptors */ | ||
232 | unsigned int size; /* # of descriptors */ | ||
233 | unsigned int cidx; /* SW consumer index */ | ||
234 | unsigned int pidx; /* producer index */ | ||
235 | unsigned long stops; /* # of times queue has been stopped */ | ||
236 | unsigned long restarts; /* # of queue restarts */ | ||
237 | |||
238 | /* | ||
239 | * Write-once/infrequently fields. | ||
240 | * ------------------------------- | ||
241 | */ | ||
242 | |||
243 | unsigned int cntxt_id; /* SGE relative QID for the TX Q */ | ||
244 | unsigned int abs_id; /* SGE absolute QID for the TX Q */ | ||
245 | struct tx_desc *desc; /* address of HW TX descriptor ring */ | ||
246 | struct tx_sw_desc *sdesc; /* address of SW TX descriptor ring */ | ||
247 | struct sge_qstat *stat; /* queue status entry */ | ||
248 | dma_addr_t phys_addr; /* PCI bus address of hardware ring */ | ||
249 | }; | ||
250 | |||
251 | /* | ||
252 | * State for an Ethernet Transmit Queue. | ||
253 | */ | ||
254 | struct sge_eth_txq { | ||
255 | struct sge_txq q; /* SGE TX Queue */ | ||
256 | struct netdev_queue *txq; /* associated netdev TX queue */ | ||
257 | unsigned long tso; /* # of TSO requests */ | ||
258 | unsigned long tx_cso; /* # of TX checksum offloads */ | ||
259 | unsigned long vlan_ins; /* # of TX VLAN insertions */ | ||
260 | unsigned long mapping_err; /* # of I/O MMU packet mapping errors */ | ||
261 | }; | ||
262 | |||
263 | /* | ||
264 | * The complete set of Scatter/Gather Engine resources. | ||
265 | */ | ||
266 | struct sge { | ||
267 | /* | ||
268 | * Our "Queue Sets" ... | ||
269 | */ | ||
270 | struct sge_eth_txq ethtxq[MAX_ETH_QSETS]; | ||
271 | struct sge_eth_rxq ethrxq[MAX_ETH_QSETS]; | ||
272 | |||
273 | /* | ||
274 | * Extra ingress queues for asynchronous firmware events and | ||
275 | * forwarded interrupts (when in MSI mode). | ||
276 | */ | ||
277 | struct sge_rspq fw_evtq ____cacheline_aligned_in_smp; | ||
278 | |||
279 | struct sge_rspq intrq ____cacheline_aligned_in_smp; | ||
280 | spinlock_t intrq_lock; | ||
281 | |||
282 | /* | ||
283 | * State for managing "starving Free Lists" -- Free Lists which have | ||
284 | * fallen below a certain threshold of buffers available to the | ||
285 | * hardware and attempts to refill them up to that threshold have | ||
286 | * failed. We have a regular "slow tick" timer process which will | ||
287 | * make periodic attempts to refill these starving Free Lists ... | ||
288 | */ | ||
289 | DECLARE_BITMAP(starving_fl, MAX_EGRQ); | ||
290 | struct timer_list rx_timer; | ||
291 | |||
292 | /* | ||
293 | * State for cleaning up completed TX descriptors. | ||
294 | */ | ||
295 | struct timer_list tx_timer; | ||
296 | |||
297 | /* | ||
298 | * Write-once/infrequently fields. | ||
299 | * ------------------------------- | ||
300 | */ | ||
301 | |||
302 | u16 max_ethqsets; /* # of available Ethernet queue sets */ | ||
303 | u16 ethqsets; /* # of active Ethernet queue sets */ | ||
304 | u16 ethtxq_rover; /* Tx queue to clean up next */ | ||
305 | u16 timer_val[SGE_NTIMERS]; /* interrupt holdoff timer array */ | ||
306 | u8 counter_val[SGE_NCOUNTERS]; /* interrupt RX threshold array */ | ||
307 | |||
308 | /* | ||
309 | * Reverse maps from Absolute Queue IDs to associated queue pointers. | ||
310 | * The absolute Queue IDs are in a compact range which start at a | ||
311 | * [potentially large] Base Queue ID. We perform the reverse map by | ||
312 | * first converting the Absolute Queue ID into a Relative Queue ID by | ||
313 | * subtracting off the Base Queue ID and then use a Relative Queue ID | ||
314 | * indexed table to get the pointer to the corresponding software | ||
315 | * queue structure. | ||
316 | */ | ||
317 | unsigned int egr_base; | ||
318 | unsigned int ingr_base; | ||
319 | void *egr_map[MAX_EGRQ]; | ||
320 | struct sge_rspq *ingr_map[MAX_INGQ]; | ||
321 | }; | ||
322 | |||
323 | /* | ||
324 | * Utility macros to convert Absolute- to Relative-Queue indices and Egress- | ||
325 | * and Ingress-Queues. The EQ_MAP() and IQ_MAP() macros which provide | ||
326 | * pointers to Ingress- and Egress-Queues can be used as both L- and R-values | ||
327 | */ | ||
328 | #define EQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->egr_base)) | ||
329 | #define IQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->ingr_base)) | ||
330 | |||
331 | #define EQ_MAP(s, abs_id) ((s)->egr_map[EQ_IDX(s, abs_id)]) | ||
332 | #define IQ_MAP(s, abs_id) ((s)->ingr_map[IQ_IDX(s, abs_id)]) | ||
333 | |||
334 | /* | ||
335 | * Macro to iterate across Queue Sets ("rxq" is a historic misnomer). | ||
336 | */ | ||
337 | #define for_each_ethrxq(sge, iter) \ | ||
338 | for (iter = 0; iter < (sge)->ethqsets; iter++) | ||
339 | |||
340 | /* | ||
341 | * Per-"adapter" (Virtual Function) information. | ||
342 | */ | ||
343 | struct adapter { | ||
344 | /* PCI resources */ | ||
345 | void __iomem *regs; | ||
346 | struct pci_dev *pdev; | ||
347 | struct device *pdev_dev; | ||
348 | |||
349 | /* "adapter" resources */ | ||
350 | unsigned long registered_device_map; | ||
351 | unsigned long open_device_map; | ||
352 | unsigned long flags; | ||
353 | struct adapter_params params; | ||
354 | |||
355 | /* queue and interrupt resources */ | ||
356 | struct { | ||
357 | unsigned short vec; | ||
358 | char desc[22]; | ||
359 | } msix_info[MSIX_ENTRIES]; | ||
360 | struct sge sge; | ||
361 | |||
362 | /* Linux network device resources */ | ||
363 | struct net_device *port[MAX_NPORTS]; | ||
364 | const char *name; | ||
365 | unsigned int msg_enable; | ||
366 | |||
367 | /* debugfs resources */ | ||
368 | struct dentry *debugfs_root; | ||
369 | |||
370 | /* various locks */ | ||
371 | spinlock_t stats_lock; | ||
372 | }; | ||
373 | |||
374 | enum { /* adapter flags */ | ||
375 | FULL_INIT_DONE = (1UL << 0), | ||
376 | USING_MSI = (1UL << 1), | ||
377 | USING_MSIX = (1UL << 2), | ||
378 | QUEUES_BOUND = (1UL << 3), | ||
379 | }; | ||
380 | |||
381 | /* | ||
382 | * The following register read/write routine definitions are required by | ||
383 | * the common code. | ||
384 | */ | ||
385 | |||
386 | /** | ||
387 | * t4_read_reg - read a HW register | ||
388 | * @adapter: the adapter | ||
389 | * @reg_addr: the register address | ||
390 | * | ||
391 | * Returns the 32-bit value of the given HW register. | ||
392 | */ | ||
393 | static inline u32 t4_read_reg(struct adapter *adapter, u32 reg_addr) | ||
394 | { | ||
395 | return readl(adapter->regs + reg_addr); | ||
396 | } | ||
397 | |||
398 | /** | ||
399 | * t4_write_reg - write a HW register | ||
400 | * @adapter: the adapter | ||
401 | * @reg_addr: the register address | ||
402 | * @val: the value to write | ||
403 | * | ||
404 | * Write a 32-bit value into the given HW register. | ||
405 | */ | ||
406 | static inline void t4_write_reg(struct adapter *adapter, u32 reg_addr, u32 val) | ||
407 | { | ||
408 | writel(val, adapter->regs + reg_addr); | ||
409 | } | ||
410 | |||
411 | #ifndef readq | ||
412 | static inline u64 readq(const volatile void __iomem *addr) | ||
413 | { | ||
414 | return readl(addr) + ((u64)readl(addr + 4) << 32); | ||
415 | } | ||
416 | |||
417 | static inline void writeq(u64 val, volatile void __iomem *addr) | ||
418 | { | ||
419 | writel(val, addr); | ||
420 | writel(val >> 32, addr + 4); | ||
421 | } | ||
422 | #endif | ||
423 | |||
424 | /** | ||
425 | * t4_read_reg64 - read a 64-bit HW register | ||
426 | * @adapter: the adapter | ||
427 | * @reg_addr: the register address | ||
428 | * | ||
429 | * Returns the 64-bit value of the given HW register. | ||
430 | */ | ||
431 | static inline u64 t4_read_reg64(struct adapter *adapter, u32 reg_addr) | ||
432 | { | ||
433 | return readq(adapter->regs + reg_addr); | ||
434 | } | ||
435 | |||
436 | /** | ||
437 | * t4_write_reg64 - write a 64-bit HW register | ||
438 | * @adapter: the adapter | ||
439 | * @reg_addr: the register address | ||
440 | * @val: the value to write | ||
441 | * | ||
442 | * Write a 64-bit value into the given HW register. | ||
443 | */ | ||
444 | static inline void t4_write_reg64(struct adapter *adapter, u32 reg_addr, | ||
445 | u64 val) | ||
446 | { | ||
447 | writeq(val, adapter->regs + reg_addr); | ||
448 | } | ||
449 | |||
450 | /** | ||
451 | * port_name - return the string name of a port | ||
452 | * @adapter: the adapter | ||
453 | * @pidx: the port index | ||
454 | * | ||
455 | * Return the string name of the selected port. | ||
456 | */ | ||
457 | static inline const char *port_name(struct adapter *adapter, int pidx) | ||
458 | { | ||
459 | return adapter->port[pidx]->name; | ||
460 | } | ||
461 | |||
462 | /** | ||
463 | * t4_os_set_hw_addr - store a port's MAC address in SW | ||
464 | * @adapter: the adapter | ||
465 | * @pidx: the port index | ||
466 | * @hw_addr: the Ethernet address | ||
467 | * | ||
468 | * Store the Ethernet address of the given port in SW. Called by the common | ||
469 | * code when it retrieves a port's Ethernet address from EEPROM. | ||
470 | */ | ||
471 | static inline void t4_os_set_hw_addr(struct adapter *adapter, int pidx, | ||
472 | u8 hw_addr[]) | ||
473 | { | ||
474 | memcpy(adapter->port[pidx]->dev_addr, hw_addr, ETH_ALEN); | ||
475 | memcpy(adapter->port[pidx]->perm_addr, hw_addr, ETH_ALEN); | ||
476 | } | ||
477 | |||
478 | /** | ||
479 | * netdev2pinfo - return the port_info structure associated with a net_device | ||
480 | * @dev: the netdev | ||
481 | * | ||
482 | * Return the struct port_info associated with a net_device | ||
483 | */ | ||
484 | static inline struct port_info *netdev2pinfo(const struct net_device *dev) | ||
485 | { | ||
486 | return netdev_priv(dev); | ||
487 | } | ||
488 | |||
489 | /** | ||
490 | * adap2pinfo - return the port_info of a port | ||
491 | * @adap: the adapter | ||
492 | * @pidx: the port index | ||
493 | * | ||
494 | * Return the port_info structure for the adapter. | ||
495 | */ | ||
496 | static inline struct port_info *adap2pinfo(struct adapter *adapter, int pidx) | ||
497 | { | ||
498 | return netdev_priv(adapter->port[pidx]); | ||
499 | } | ||
500 | |||
501 | /** | ||
502 | * netdev2adap - return the adapter structure associated with a net_device | ||
503 | * @dev: the netdev | ||
504 | * | ||
505 | * Return the struct adapter associated with a net_device | ||
506 | */ | ||
507 | static inline struct adapter *netdev2adap(const struct net_device *dev) | ||
508 | { | ||
509 | return netdev2pinfo(dev)->adapter; | ||
510 | } | ||
511 | |||
512 | /* | ||
513 | * OS "Callback" function declarations. These are functions that the OS code | ||
514 | * is "contracted" to provide for the common code. | ||
515 | */ | ||
516 | void t4vf_os_link_changed(struct adapter *, int, int); | ||
517 | |||
518 | /* | ||
519 | * SGE function prototype declarations. | ||
520 | */ | ||
521 | int t4vf_sge_alloc_rxq(struct adapter *, struct sge_rspq *, bool, | ||
522 | struct net_device *, int, | ||
523 | struct sge_fl *, rspq_handler_t); | ||
524 | int t4vf_sge_alloc_eth_txq(struct adapter *, struct sge_eth_txq *, | ||
525 | struct net_device *, struct netdev_queue *, | ||
526 | unsigned int); | ||
527 | void t4vf_free_sge_resources(struct adapter *); | ||
528 | |||
529 | int t4vf_eth_xmit(struct sk_buff *, struct net_device *); | ||
530 | int t4vf_ethrx_handler(struct sge_rspq *, const __be64 *, | ||
531 | const struct pkt_gl *); | ||
532 | |||
533 | irq_handler_t t4vf_intr_handler(struct adapter *); | ||
534 | irqreturn_t t4vf_sge_intr_msix(int, void *); | ||
535 | |||
536 | int t4vf_sge_init(struct adapter *); | ||
537 | void t4vf_sge_start(struct adapter *); | ||
538 | void t4vf_sge_stop(struct adapter *); | ||
539 | |||
540 | #endif /* __CXGB4VF_ADAPTER_H__ */ | ||
diff --git a/drivers/net/cxgb4vf/cxgb4vf_main.c b/drivers/net/cxgb4vf/cxgb4vf_main.c new file mode 100644 index 00000000000..bd73ff5b51b --- /dev/null +++ b/drivers/net/cxgb4vf/cxgb4vf_main.c | |||
@@ -0,0 +1,2906 @@ | |||
1 | /* | ||
2 | * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet | ||
3 | * driver for Linux. | ||
4 | * | ||
5 | * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. | ||
6 | * | ||
7 | * This software is available to you under a choice of one of two | ||
8 | * licenses. You may choose to be licensed under the terms of the GNU | ||
9 | * General Public License (GPL) Version 2, available from the file | ||
10 | * COPYING in the main directory of this source tree, or the | ||
11 | * OpenIB.org BSD license below: | ||
12 | * | ||
13 | * Redistribution and use in source and binary forms, with or | ||
14 | * without modification, are permitted provided that the following | ||
15 | * conditions are met: | ||
16 | * | ||
17 | * - Redistributions of source code must retain the above | ||
18 | * copyright notice, this list of conditions and the following | ||
19 | * disclaimer. | ||
20 | * | ||
21 | * - Redistributions in binary form must reproduce the above | ||
22 | * copyright notice, this list of conditions and the following | ||
23 | * disclaimer in the documentation and/or other materials | ||
24 | * provided with the distribution. | ||
25 | * | ||
26 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
27 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
28 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
29 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
30 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
31 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
32 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
33 | * SOFTWARE. | ||
34 | */ | ||
35 | |||
36 | #include <linux/version.h> | ||
37 | #include <linux/module.h> | ||
38 | #include <linux/moduleparam.h> | ||
39 | #include <linux/init.h> | ||
40 | #include <linux/pci.h> | ||
41 | #include <linux/dma-mapping.h> | ||
42 | #include <linux/netdevice.h> | ||
43 | #include <linux/etherdevice.h> | ||
44 | #include <linux/debugfs.h> | ||
45 | #include <linux/ethtool.h> | ||
46 | |||
47 | #include "t4vf_common.h" | ||
48 | #include "t4vf_defs.h" | ||
49 | |||
50 | #include "../cxgb4/t4_regs.h" | ||
51 | #include "../cxgb4/t4_msg.h" | ||
52 | |||
53 | /* | ||
54 | * Generic information about the driver. | ||
55 | */ | ||
56 | #define DRV_VERSION "1.0.0" | ||
57 | #define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver" | ||
58 | |||
59 | /* | ||
60 | * Module Parameters. | ||
61 | * ================== | ||
62 | */ | ||
63 | |||
64 | /* | ||
65 | * Default ethtool "message level" for adapters. | ||
66 | */ | ||
67 | #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ | ||
68 | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ | ||
69 | NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) | ||
70 | |||
71 | static int dflt_msg_enable = DFLT_MSG_ENABLE; | ||
72 | |||
73 | module_param(dflt_msg_enable, int, 0644); | ||
74 | MODULE_PARM_DESC(dflt_msg_enable, | ||
75 | "default adapter ethtool message level bitmap"); | ||
76 | |||
77 | /* | ||
78 | * The driver uses the best interrupt scheme available on a platform in the | ||
79 | * order MSI-X then MSI. This parameter determines which of these schemes the | ||
80 | * driver may consider as follows: | ||
81 | * | ||
82 | * msi = 2: choose from among MSI-X and MSI | ||
83 | * msi = 1: only consider MSI interrupts | ||
84 | * | ||
85 | * Note that unlike the Physical Function driver, this Virtual Function driver | ||
86 | * does _not_ support legacy INTx interrupts (this limitation is mandated by | ||
87 | * the PCI-E SR-IOV standard). | ||
88 | */ | ||
89 | #define MSI_MSIX 2 | ||
90 | #define MSI_MSI 1 | ||
91 | #define MSI_DEFAULT MSI_MSIX | ||
92 | |||
93 | static int msi = MSI_DEFAULT; | ||
94 | |||
95 | module_param(msi, int, 0644); | ||
96 | MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI"); | ||
97 | |||
98 | /* | ||
99 | * Fundamental constants. | ||
100 | * ====================== | ||
101 | */ | ||
102 | |||
103 | enum { | ||
104 | MAX_TXQ_ENTRIES = 16384, | ||
105 | MAX_RSPQ_ENTRIES = 16384, | ||
106 | MAX_RX_BUFFERS = 16384, | ||
107 | |||
108 | MIN_TXQ_ENTRIES = 32, | ||
109 | MIN_RSPQ_ENTRIES = 128, | ||
110 | MIN_FL_ENTRIES = 16, | ||
111 | |||
112 | /* | ||
113 | * For purposes of manipulating the Free List size we need to | ||
114 | * recognize that Free Lists are actually Egress Queues (the host | ||
115 | * produces free buffers which the hardware consumes), Egress Queues | ||
116 | * indices are all in units of Egress Context Units bytes, and free | ||
117 | * list entries are 64-bit PCI DMA addresses. And since the state of | ||
118 | * the Producer Index == the Consumer Index implies an EMPTY list, we | ||
119 | * always have at least one Egress Unit's worth of Free List entries | ||
120 | * unused. See sge.c for more details ... | ||
121 | */ | ||
122 | EQ_UNIT = SGE_EQ_IDXSIZE, | ||
123 | FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), | ||
124 | MIN_FL_RESID = FL_PER_EQ_UNIT, | ||
125 | }; | ||
126 | |||
127 | /* | ||
128 | * Global driver state. | ||
129 | * ==================== | ||
130 | */ | ||
131 | |||
132 | static struct dentry *cxgb4vf_debugfs_root; | ||
133 | |||
134 | /* | ||
135 | * OS "Callback" functions. | ||
136 | * ======================== | ||
137 | */ | ||
138 | |||
139 | /* | ||
140 | * The link status has changed on the indicated "port" (Virtual Interface). | ||
141 | */ | ||
142 | void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok) | ||
143 | { | ||
144 | struct net_device *dev = adapter->port[pidx]; | ||
145 | |||
146 | /* | ||
147 | * If the port is disabled or the current recorded "link up" | ||
148 | * status matches the new status, just return. | ||
149 | */ | ||
150 | if (!netif_running(dev) || link_ok == netif_carrier_ok(dev)) | ||
151 | return; | ||
152 | |||
153 | /* | ||
154 | * Tell the OS that the link status has changed and print a short | ||
155 | * informative message on the console about the event. | ||
156 | */ | ||
157 | if (link_ok) { | ||
158 | const char *s; | ||
159 | const char *fc; | ||
160 | const struct port_info *pi = netdev_priv(dev); | ||
161 | |||
162 | netif_carrier_on(dev); | ||
163 | |||
164 | switch (pi->link_cfg.speed) { | ||
165 | case SPEED_10000: | ||
166 | s = "10Gbps"; | ||
167 | break; | ||
168 | |||
169 | case SPEED_1000: | ||
170 | s = "1000Mbps"; | ||
171 | break; | ||
172 | |||
173 | case SPEED_100: | ||
174 | s = "100Mbps"; | ||
175 | break; | ||
176 | |||
177 | default: | ||
178 | s = "unknown"; | ||
179 | break; | ||
180 | } | ||
181 | |||
182 | switch (pi->link_cfg.fc) { | ||
183 | case PAUSE_RX: | ||
184 | fc = "RX"; | ||
185 | break; | ||
186 | |||
187 | case PAUSE_TX: | ||
188 | fc = "TX"; | ||
189 | break; | ||
190 | |||
191 | case PAUSE_RX|PAUSE_TX: | ||
192 | fc = "RX/TX"; | ||
193 | break; | ||
194 | |||
195 | default: | ||
196 | fc = "no"; | ||
197 | break; | ||
198 | } | ||
199 | |||
200 | printk(KERN_INFO "%s: link up, %s, full-duplex, %s PAUSE\n", | ||
201 | dev->name, s, fc); | ||
202 | } else { | ||
203 | netif_carrier_off(dev); | ||
204 | printk(KERN_INFO "%s: link down\n", dev->name); | ||
205 | } | ||
206 | } | ||
207 | |||
208 | /* | ||
209 | * Net device operations. | ||
210 | * ====================== | ||
211 | */ | ||
212 | |||
213 | /* | ||
214 | * Record our new VLAN Group and enable/disable hardware VLAN Tag extraction | ||
215 | * based on whether the specified VLAN Group pointer is NULL or not. | ||
216 | */ | ||
217 | static void cxgb4vf_vlan_rx_register(struct net_device *dev, | ||
218 | struct vlan_group *grp) | ||
219 | { | ||
220 | struct port_info *pi = netdev_priv(dev); | ||
221 | |||
222 | pi->vlan_grp = grp; | ||
223 | t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, grp != NULL, 0); | ||
224 | } | ||
225 | |||
226 | /* | ||
227 | * Perform the MAC and PHY actions needed to enable a "port" (Virtual | ||
228 | * Interface). | ||
229 | */ | ||
230 | static int link_start(struct net_device *dev) | ||
231 | { | ||
232 | int ret; | ||
233 | struct port_info *pi = netdev_priv(dev); | ||
234 | |||
235 | /* | ||
236 | * We do not set address filters and promiscuity here, the stack does | ||
237 | * that step explicitly. | ||
238 | */ | ||
239 | ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, -1, | ||
240 | true); | ||
241 | if (ret == 0) { | ||
242 | ret = t4vf_change_mac(pi->adapter, pi->viid, | ||
243 | pi->xact_addr_filt, dev->dev_addr, true); | ||
244 | if (ret >= 0) { | ||
245 | pi->xact_addr_filt = ret; | ||
246 | ret = 0; | ||
247 | } | ||
248 | } | ||
249 | |||
250 | /* | ||
251 | * We don't need to actually "start the link" itself since the | ||
252 | * firmware will do that for us when the first Virtual Interface | ||
253 | * is enabled on a port. | ||
254 | */ | ||
255 | if (ret == 0) | ||
256 | ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true); | ||
257 | return ret; | ||
258 | } | ||
259 | |||
260 | /* | ||
261 | * Name the MSI-X interrupts. | ||
262 | */ | ||
263 | static void name_msix_vecs(struct adapter *adapter) | ||
264 | { | ||
265 | int namelen = sizeof(adapter->msix_info[0].desc) - 1; | ||
266 | int pidx; | ||
267 | |||
268 | /* | ||
269 | * Firmware events. | ||
270 | */ | ||
271 | snprintf(adapter->msix_info[MSIX_FW].desc, namelen, | ||
272 | "%s-FWeventq", adapter->name); | ||
273 | adapter->msix_info[MSIX_FW].desc[namelen] = 0; | ||
274 | |||
275 | /* | ||
276 | * Ethernet queues. | ||
277 | */ | ||
278 | for_each_port(adapter, pidx) { | ||
279 | struct net_device *dev = adapter->port[pidx]; | ||
280 | const struct port_info *pi = netdev_priv(dev); | ||
281 | int qs, msi; | ||
282 | |||
283 | for (qs = 0, msi = MSIX_NIQFLINT; | ||
284 | qs < pi->nqsets; | ||
285 | qs++, msi++) { | ||
286 | snprintf(adapter->msix_info[msi].desc, namelen, | ||
287 | "%s-%d", dev->name, qs); | ||
288 | adapter->msix_info[msi].desc[namelen] = 0; | ||
289 | } | ||
290 | } | ||
291 | } | ||
292 | |||
293 | /* | ||
294 | * Request all of our MSI-X resources. | ||
295 | */ | ||
296 | static int request_msix_queue_irqs(struct adapter *adapter) | ||
297 | { | ||
298 | struct sge *s = &adapter->sge; | ||
299 | int rxq, msi, err; | ||
300 | |||
301 | /* | ||
302 | * Firmware events. | ||
303 | */ | ||
304 | err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix, | ||
305 | 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq); | ||
306 | if (err) | ||
307 | return err; | ||
308 | |||
309 | /* | ||
310 | * Ethernet queues. | ||
311 | */ | ||
312 | msi = MSIX_NIQFLINT; | ||
313 | for_each_ethrxq(s, rxq) { | ||
314 | err = request_irq(adapter->msix_info[msi].vec, | ||
315 | t4vf_sge_intr_msix, 0, | ||
316 | adapter->msix_info[msi].desc, | ||
317 | &s->ethrxq[rxq].rspq); | ||
318 | if (err) | ||
319 | goto err_free_irqs; | ||
320 | msi++; | ||
321 | } | ||
322 | return 0; | ||
323 | |||
324 | err_free_irqs: | ||
325 | while (--rxq >= 0) | ||
326 | free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq); | ||
327 | free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); | ||
328 | return err; | ||
329 | } | ||
330 | |||
331 | /* | ||
332 | * Free our MSI-X resources. | ||
333 | */ | ||
334 | static void free_msix_queue_irqs(struct adapter *adapter) | ||
335 | { | ||
336 | struct sge *s = &adapter->sge; | ||
337 | int rxq, msi; | ||
338 | |||
339 | free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); | ||
340 | msi = MSIX_NIQFLINT; | ||
341 | for_each_ethrxq(s, rxq) | ||
342 | free_irq(adapter->msix_info[msi++].vec, | ||
343 | &s->ethrxq[rxq].rspq); | ||
344 | } | ||
345 | |||
346 | /* | ||
347 | * Turn on NAPI and start up interrupts on a response queue. | ||
348 | */ | ||
349 | static void qenable(struct sge_rspq *rspq) | ||
350 | { | ||
351 | napi_enable(&rspq->napi); | ||
352 | |||
353 | /* | ||
354 | * 0-increment the Going To Sleep register to start the timer and | ||
355 | * enable interrupts. | ||
356 | */ | ||
357 | t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, | ||
358 | CIDXINC(0) | | ||
359 | SEINTARM(rspq->intr_params) | | ||
360 | INGRESSQID(rspq->cntxt_id)); | ||
361 | } | ||
362 | |||
363 | /* | ||
364 | * Enable NAPI scheduling and interrupt generation for all Receive Queues. | ||
365 | */ | ||
366 | static void enable_rx(struct adapter *adapter) | ||
367 | { | ||
368 | int rxq; | ||
369 | struct sge *s = &adapter->sge; | ||
370 | |||
371 | for_each_ethrxq(s, rxq) | ||
372 | qenable(&s->ethrxq[rxq].rspq); | ||
373 | qenable(&s->fw_evtq); | ||
374 | |||
375 | /* | ||
376 | * The interrupt queue doesn't use NAPI so we do the 0-increment of | ||
377 | * its Going To Sleep register here to get it started. | ||
378 | */ | ||
379 | if (adapter->flags & USING_MSI) | ||
380 | t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, | ||
381 | CIDXINC(0) | | ||
382 | SEINTARM(s->intrq.intr_params) | | ||
383 | INGRESSQID(s->intrq.cntxt_id)); | ||
384 | |||
385 | } | ||
386 | |||
387 | /* | ||
388 | * Wait until all NAPI handlers are descheduled. | ||
389 | */ | ||
390 | static void quiesce_rx(struct adapter *adapter) | ||
391 | { | ||
392 | struct sge *s = &adapter->sge; | ||
393 | int rxq; | ||
394 | |||
395 | for_each_ethrxq(s, rxq) | ||
396 | napi_disable(&s->ethrxq[rxq].rspq.napi); | ||
397 | napi_disable(&s->fw_evtq.napi); | ||
398 | } | ||
399 | |||
400 | /* | ||
401 | * Response queue handler for the firmware event queue. | ||
402 | */ | ||
403 | static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp, | ||
404 | const struct pkt_gl *gl) | ||
405 | { | ||
406 | /* | ||
407 | * Extract response opcode and get pointer to CPL message body. | ||
408 | */ | ||
409 | struct adapter *adapter = rspq->adapter; | ||
410 | u8 opcode = ((const struct rss_header *)rsp)->opcode; | ||
411 | void *cpl = (void *)(rsp + 1); | ||
412 | |||
413 | switch (opcode) { | ||
414 | case CPL_FW6_MSG: { | ||
415 | /* | ||
416 | * We've received an asynchronous message from the firmware. | ||
417 | */ | ||
418 | const struct cpl_fw6_msg *fw_msg = cpl; | ||
419 | if (fw_msg->type == FW6_TYPE_CMD_RPL) | ||
420 | t4vf_handle_fw_rpl(adapter, fw_msg->data); | ||
421 | break; | ||
422 | } | ||
423 | |||
424 | case CPL_SGE_EGR_UPDATE: { | ||
425 | /* | ||
426 | * We've received an Egress Queue status update message. | ||
427 | * We get these, as the SGE is currently configured, when | ||
428 | * the firmware passes certain points in processing our | ||
429 | * TX Ethernet Queue. We use these updates to determine | ||
430 | * when we may need to restart a TX Ethernet Queue which | ||
431 | * was stopped for lack of free slots ... | ||
432 | */ | ||
433 | const struct cpl_sge_egr_update *p = (void *)cpl; | ||
434 | unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid)); | ||
435 | struct sge *s = &adapter->sge; | ||
436 | struct sge_txq *tq; | ||
437 | struct sge_eth_txq *txq; | ||
438 | unsigned int eq_idx; | ||
439 | int hw_cidx, reclaimable, in_use; | ||
440 | |||
441 | /* | ||
442 | * Perform sanity checking on the Queue ID to make sure it | ||
443 | * really refers to one of our TX Ethernet Egress Queues which | ||
444 | * is active and matches the queue's ID. None of these error | ||
445 | * conditions should ever happen so we may want to either make | ||
446 | * them fatal and/or conditionalized under DEBUG. | ||
447 | */ | ||
448 | eq_idx = EQ_IDX(s, qid); | ||
449 | if (unlikely(eq_idx >= MAX_EGRQ)) { | ||
450 | dev_err(adapter->pdev_dev, | ||
451 | "Egress Update QID %d out of range\n", qid); | ||
452 | break; | ||
453 | } | ||
454 | tq = s->egr_map[eq_idx]; | ||
455 | if (unlikely(tq == NULL)) { | ||
456 | dev_err(adapter->pdev_dev, | ||
457 | "Egress Update QID %d TXQ=NULL\n", qid); | ||
458 | break; | ||
459 | } | ||
460 | txq = container_of(tq, struct sge_eth_txq, q); | ||
461 | if (unlikely(tq->abs_id != qid)) { | ||
462 | dev_err(adapter->pdev_dev, | ||
463 | "Egress Update QID %d refers to TXQ %d\n", | ||
464 | qid, tq->abs_id); | ||
465 | break; | ||
466 | } | ||
467 | |||
468 | /* | ||
469 | * Skip TX Queues which aren't stopped. | ||
470 | */ | ||
471 | if (likely(!netif_tx_queue_stopped(txq->txq))) | ||
472 | break; | ||
473 | |||
474 | /* | ||
475 | * Skip stopped TX Queues which have more than half of their | ||
476 | * DMA rings occupied with unacknowledged writes. | ||
477 | */ | ||
478 | hw_cidx = be16_to_cpu(txq->q.stat->cidx); | ||
479 | reclaimable = hw_cidx - txq->q.cidx; | ||
480 | if (reclaimable < 0) | ||
481 | reclaimable += txq->q.size; | ||
482 | in_use = txq->q.in_use - reclaimable; | ||
483 | if (in_use >= txq->q.size/2) | ||
484 | break; | ||
485 | |||
486 | /* | ||
487 | * Restart a stopped TX Queue which has less than half of its | ||
488 | * TX ring in use ... | ||
489 | */ | ||
490 | txq->q.restarts++; | ||
491 | netif_tx_wake_queue(txq->txq); | ||
492 | break; | ||
493 | } | ||
494 | |||
495 | default: | ||
496 | dev_err(adapter->pdev_dev, | ||
497 | "unexpected CPL %#x on FW event queue\n", opcode); | ||
498 | } | ||
499 | |||
500 | return 0; | ||
501 | } | ||
502 | |||
503 | /* | ||
504 | * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues | ||
505 | * to use and initializes them. We support multiple "Queue Sets" per port if | ||
506 | * we have MSI-X, otherwise just one queue set per port. | ||
507 | */ | ||
508 | static int setup_sge_queues(struct adapter *adapter) | ||
509 | { | ||
510 | struct sge *s = &adapter->sge; | ||
511 | int err, pidx, msix; | ||
512 | |||
513 | /* | ||
514 | * Clear "Queue Set" Free List Starving and TX Queue Mapping Error | ||
515 | * state. | ||
516 | */ | ||
517 | bitmap_zero(s->starving_fl, MAX_EGRQ); | ||
518 | |||
519 | /* | ||
520 | * If we're using MSI interrupt mode we need to set up a "forwarded | ||
521 | * interrupt" queue which we'll set up with our MSI vector. The rest | ||
522 | * of the ingress queues will be set up to forward their interrupts to | ||
523 | * this queue ... This must be first since t4vf_sge_alloc_rxq() uses | ||
524 | * the intrq's queue ID as the interrupt forwarding queue for the | ||
525 | * subsequent calls ... | ||
526 | */ | ||
527 | if (adapter->flags & USING_MSI) { | ||
528 | err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false, | ||
529 | adapter->port[0], 0, NULL, NULL); | ||
530 | if (err) | ||
531 | goto err_free_queues; | ||
532 | } | ||
533 | |||
534 | /* | ||
535 | * Allocate our ingress queue for asynchronous firmware messages. | ||
536 | */ | ||
537 | err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0], | ||
538 | MSIX_FW, NULL, fwevtq_handler); | ||
539 | if (err) | ||
540 | goto err_free_queues; | ||
541 | |||
542 | /* | ||
543 | * Allocate each "port"'s initial Queue Sets. These can be changed | ||
544 | * later on ... up to the point where any interface on the adapter is | ||
545 | * brought up at which point lots of things get nailed down | ||
546 | * permanently ... | ||
547 | */ | ||
548 | msix = MSIX_NIQFLINT; | ||
549 | for_each_port(adapter, pidx) { | ||
550 | struct net_device *dev = adapter->port[pidx]; | ||
551 | struct port_info *pi = netdev_priv(dev); | ||
552 | struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; | ||
553 | struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; | ||
554 | int nqsets = (adapter->flags & USING_MSIX) ? pi->nqsets : 1; | ||
555 | int qs; | ||
556 | |||
557 | for (qs = 0; qs < nqsets; qs++, rxq++, txq++) { | ||
558 | err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false, | ||
559 | dev, msix++, | ||
560 | &rxq->fl, t4vf_ethrx_handler); | ||
561 | if (err) | ||
562 | goto err_free_queues; | ||
563 | |||
564 | err = t4vf_sge_alloc_eth_txq(adapter, txq, dev, | ||
565 | netdev_get_tx_queue(dev, qs), | ||
566 | s->fw_evtq.cntxt_id); | ||
567 | if (err) | ||
568 | goto err_free_queues; | ||
569 | |||
570 | rxq->rspq.idx = qs; | ||
571 | memset(&rxq->stats, 0, sizeof(rxq->stats)); | ||
572 | } | ||
573 | } | ||
574 | |||
575 | /* | ||
576 | * Create the reverse mappings for the queues. | ||
577 | */ | ||
578 | s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id; | ||
579 | s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id; | ||
580 | IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq; | ||
581 | for_each_port(adapter, pidx) { | ||
582 | struct net_device *dev = adapter->port[pidx]; | ||
583 | struct port_info *pi = netdev_priv(dev); | ||
584 | struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; | ||
585 | struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; | ||
586 | int nqsets = (adapter->flags & USING_MSIX) ? pi->nqsets : 1; | ||
587 | int qs; | ||
588 | |||
589 | for (qs = 0; qs < nqsets; qs++, rxq++, txq++) { | ||
590 | IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq; | ||
591 | EQ_MAP(s, txq->q.abs_id) = &txq->q; | ||
592 | |||
593 | /* | ||
594 | * The FW_IQ_CMD doesn't return the Absolute Queue IDs | ||
595 | * for Free Lists but since all of the Egress Queues | ||
596 | * (including Free Lists) have Relative Queue IDs | ||
597 | * which are computed as Absolute - Base Queue ID, we | ||
598 | * can synthesize the Absolute Queue IDs for the Free | ||
599 | * Lists. This is useful for debugging purposes when | ||
600 | * we want to dump Queue Contexts via the PF Driver. | ||
601 | */ | ||
602 | rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base; | ||
603 | EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl; | ||
604 | } | ||
605 | } | ||
606 | return 0; | ||
607 | |||
608 | err_free_queues: | ||
609 | t4vf_free_sge_resources(adapter); | ||
610 | return err; | ||
611 | } | ||
612 | |||
613 | /* | ||
614 | * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive | ||
615 | * queues. We configure the RSS CPU lookup table to distribute to the number | ||
616 | * of HW receive queues, and the response queue lookup table to narrow that | ||
617 | * down to the response queues actually configured for each "port" (Virtual | ||
618 | * Interface). We always configure the RSS mapping for all ports since the | ||
619 | * mapping table has plenty of entries. | ||
620 | */ | ||
621 | static int setup_rss(struct adapter *adapter) | ||
622 | { | ||
623 | int pidx; | ||
624 | |||
625 | for_each_port(adapter, pidx) { | ||
626 | struct port_info *pi = adap2pinfo(adapter, pidx); | ||
627 | struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; | ||
628 | u16 rss[MAX_PORT_QSETS]; | ||
629 | int qs, err; | ||
630 | |||
631 | for (qs = 0; qs < pi->nqsets; qs++) | ||
632 | rss[qs] = rxq[qs].rspq.abs_id; | ||
633 | |||
634 | err = t4vf_config_rss_range(adapter, pi->viid, | ||
635 | 0, pi->rss_size, rss, pi->nqsets); | ||
636 | if (err) | ||
637 | return err; | ||
638 | |||
639 | /* | ||
640 | * Perform Global RSS Mode-specific initialization. | ||
641 | */ | ||
642 | switch (adapter->params.rss.mode) { | ||
643 | case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: | ||
644 | /* | ||
645 | * If Tunnel All Lookup isn't specified in the global | ||
646 | * RSS Configuration, then we need to specify a | ||
647 | * default Ingress Queue for any ingress packets which | ||
648 | * aren't hashed. We'll use our first ingress queue | ||
649 | * ... | ||
650 | */ | ||
651 | if (!adapter->params.rss.u.basicvirtual.tnlalllookup) { | ||
652 | union rss_vi_config config; | ||
653 | err = t4vf_read_rss_vi_config(adapter, | ||
654 | pi->viid, | ||
655 | &config); | ||
656 | if (err) | ||
657 | return err; | ||
658 | config.basicvirtual.defaultq = | ||
659 | rxq[0].rspq.abs_id; | ||
660 | err = t4vf_write_rss_vi_config(adapter, | ||
661 | pi->viid, | ||
662 | &config); | ||
663 | if (err) | ||
664 | return err; | ||
665 | } | ||
666 | break; | ||
667 | } | ||
668 | } | ||
669 | |||
670 | return 0; | ||
671 | } | ||
672 | |||
673 | /* | ||
674 | * Bring the adapter up. Called whenever we go from no "ports" open to having | ||
675 | * one open. This function performs the actions necessary to make an adapter | ||
676 | * operational, such as completing the initialization of HW modules, and | ||
677 | * enabling interrupts. Must be called with the rtnl lock held. (Note that | ||
678 | * this is called "cxgb_up" in the PF Driver.) | ||
679 | */ | ||
680 | static int adapter_up(struct adapter *adapter) | ||
681 | { | ||
682 | int err; | ||
683 | |||
684 | /* | ||
685 | * If this is the first time we've been called, perform basic | ||
686 | * adapter setup. Once we've done this, many of our adapter | ||
687 | * parameters can no longer be changed ... | ||
688 | */ | ||
689 | if ((adapter->flags & FULL_INIT_DONE) == 0) { | ||
690 | err = setup_sge_queues(adapter); | ||
691 | if (err) | ||
692 | return err; | ||
693 | err = setup_rss(adapter); | ||
694 | if (err) { | ||
695 | t4vf_free_sge_resources(adapter); | ||
696 | return err; | ||
697 | } | ||
698 | |||
699 | if (adapter->flags & USING_MSIX) | ||
700 | name_msix_vecs(adapter); | ||
701 | adapter->flags |= FULL_INIT_DONE; | ||
702 | } | ||
703 | |||
704 | /* | ||
705 | * Acquire our interrupt resources. We only support MSI-X and MSI. | ||
706 | */ | ||
707 | BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); | ||
708 | if (adapter->flags & USING_MSIX) | ||
709 | err = request_msix_queue_irqs(adapter); | ||
710 | else | ||
711 | err = request_irq(adapter->pdev->irq, | ||
712 | t4vf_intr_handler(adapter), 0, | ||
713 | adapter->name, adapter); | ||
714 | if (err) { | ||
715 | dev_err(adapter->pdev_dev, "request_irq failed, err %d\n", | ||
716 | err); | ||
717 | return err; | ||
718 | } | ||
719 | |||
720 | /* | ||
721 | * Enable NAPI ingress processing and return success. | ||
722 | */ | ||
723 | enable_rx(adapter); | ||
724 | t4vf_sge_start(adapter); | ||
725 | return 0; | ||
726 | } | ||
727 | |||
728 | /* | ||
729 | * Bring the adapter down. Called whenever the last "port" (Virtual | ||
730 | * Interface) closed. (Note that this routine is called "cxgb_down" in the PF | ||
731 | * Driver.) | ||
732 | */ | ||
733 | static void adapter_down(struct adapter *adapter) | ||
734 | { | ||
735 | /* | ||
736 | * Free interrupt resources. | ||
737 | */ | ||
738 | if (adapter->flags & USING_MSIX) | ||
739 | free_msix_queue_irqs(adapter); | ||
740 | else | ||
741 | free_irq(adapter->pdev->irq, adapter); | ||
742 | |||
743 | /* | ||
744 | * Wait for NAPI handlers to finish. | ||
745 | */ | ||
746 | quiesce_rx(adapter); | ||
747 | } | ||
748 | |||
749 | /* | ||
750 | * Start up a net device. | ||
751 | */ | ||
752 | static int cxgb4vf_open(struct net_device *dev) | ||
753 | { | ||
754 | int err; | ||
755 | struct port_info *pi = netdev_priv(dev); | ||
756 | struct adapter *adapter = pi->adapter; | ||
757 | |||
758 | /* | ||
759 | * If this is the first interface that we're opening on the "adapter", | ||
760 | * bring the "adapter" up now. | ||
761 | */ | ||
762 | if (adapter->open_device_map == 0) { | ||
763 | err = adapter_up(adapter); | ||
764 | if (err) | ||
765 | return err; | ||
766 | } | ||
767 | |||
768 | /* | ||
769 | * Note that this interface is up and start everything up ... | ||
770 | */ | ||
771 | dev->real_num_tx_queues = pi->nqsets; | ||
772 | set_bit(pi->port_id, &adapter->open_device_map); | ||
773 | link_start(dev); | ||
774 | netif_tx_start_all_queues(dev); | ||
775 | return 0; | ||
776 | } | ||
777 | |||
778 | /* | ||
779 | * Shut down a net device. This routine is called "cxgb_close" in the PF | ||
780 | * Driver ... | ||
781 | */ | ||
782 | static int cxgb4vf_stop(struct net_device *dev) | ||
783 | { | ||
784 | int ret; | ||
785 | struct port_info *pi = netdev_priv(dev); | ||
786 | struct adapter *adapter = pi->adapter; | ||
787 | |||
788 | netif_tx_stop_all_queues(dev); | ||
789 | netif_carrier_off(dev); | ||
790 | ret = t4vf_enable_vi(adapter, pi->viid, false, false); | ||
791 | pi->link_cfg.link_ok = 0; | ||
792 | |||
793 | clear_bit(pi->port_id, &adapter->open_device_map); | ||
794 | if (adapter->open_device_map == 0) | ||
795 | adapter_down(adapter); | ||
796 | return 0; | ||
797 | } | ||
798 | |||
799 | /* | ||
800 | * Translate our basic statistics into the standard "ifconfig" statistics. | ||
801 | */ | ||
802 | static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev) | ||
803 | { | ||
804 | struct t4vf_port_stats stats; | ||
805 | struct port_info *pi = netdev2pinfo(dev); | ||
806 | struct adapter *adapter = pi->adapter; | ||
807 | struct net_device_stats *ns = &dev->stats; | ||
808 | int err; | ||
809 | |||
810 | spin_lock(&adapter->stats_lock); | ||
811 | err = t4vf_get_port_stats(adapter, pi->pidx, &stats); | ||
812 | spin_unlock(&adapter->stats_lock); | ||
813 | |||
814 | memset(ns, 0, sizeof(*ns)); | ||
815 | if (err) | ||
816 | return ns; | ||
817 | |||
818 | ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes + | ||
819 | stats.tx_ucast_bytes + stats.tx_offload_bytes); | ||
820 | ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames + | ||
821 | stats.tx_ucast_frames + stats.tx_offload_frames); | ||
822 | ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes + | ||
823 | stats.rx_ucast_bytes); | ||
824 | ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames + | ||
825 | stats.rx_ucast_frames); | ||
826 | ns->multicast = stats.rx_mcast_frames; | ||
827 | ns->tx_errors = stats.tx_drop_frames; | ||
828 | ns->rx_errors = stats.rx_err_frames; | ||
829 | |||
830 | return ns; | ||
831 | } | ||
832 | |||
833 | /* | ||
834 | * Collect up to maxaddrs worth of a netdevice's unicast addresses into an | ||
835 | * array of addrss pointers and return the number collected. | ||
836 | */ | ||
837 | static inline int collect_netdev_uc_list_addrs(const struct net_device *dev, | ||
838 | const u8 **addr, | ||
839 | unsigned int maxaddrs) | ||
840 | { | ||
841 | unsigned int naddr = 0; | ||
842 | const struct netdev_hw_addr *ha; | ||
843 | |||
844 | for_each_dev_addr(dev, ha) { | ||
845 | addr[naddr++] = ha->addr; | ||
846 | if (naddr >= maxaddrs) | ||
847 | break; | ||
848 | } | ||
849 | return naddr; | ||
850 | } | ||
851 | |||
852 | /* | ||
853 | * Collect up to maxaddrs worth of a netdevice's multicast addresses into an | ||
854 | * array of addrss pointers and return the number collected. | ||
855 | */ | ||
856 | static inline int collect_netdev_mc_list_addrs(const struct net_device *dev, | ||
857 | const u8 **addr, | ||
858 | unsigned int maxaddrs) | ||
859 | { | ||
860 | unsigned int naddr = 0; | ||
861 | const struct netdev_hw_addr *ha; | ||
862 | |||
863 | netdev_for_each_mc_addr(ha, dev) { | ||
864 | addr[naddr++] = ha->addr; | ||
865 | if (naddr >= maxaddrs) | ||
866 | break; | ||
867 | } | ||
868 | return naddr; | ||
869 | } | ||
870 | |||
871 | /* | ||
872 | * Configure the exact and hash address filters to handle a port's multicast | ||
873 | * and secondary unicast MAC addresses. | ||
874 | */ | ||
875 | static int set_addr_filters(const struct net_device *dev, bool sleep) | ||
876 | { | ||
877 | u64 mhash = 0; | ||
878 | u64 uhash = 0; | ||
879 | bool free = true; | ||
880 | u16 filt_idx[7]; | ||
881 | const u8 *addr[7]; | ||
882 | int ret, naddr = 0; | ||
883 | const struct port_info *pi = netdev_priv(dev); | ||
884 | |||
885 | /* first do the secondary unicast addresses */ | ||
886 | naddr = collect_netdev_uc_list_addrs(dev, addr, ARRAY_SIZE(addr)); | ||
887 | if (naddr > 0) { | ||
888 | ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free, | ||
889 | naddr, addr, filt_idx, &uhash, sleep); | ||
890 | if (ret < 0) | ||
891 | return ret; | ||
892 | |||
893 | free = false; | ||
894 | } | ||
895 | |||
896 | /* next set up the multicast addresses */ | ||
897 | naddr = collect_netdev_mc_list_addrs(dev, addr, ARRAY_SIZE(addr)); | ||
898 | if (naddr > 0) { | ||
899 | ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free, | ||
900 | naddr, addr, filt_idx, &mhash, sleep); | ||
901 | if (ret < 0) | ||
902 | return ret; | ||
903 | } | ||
904 | |||
905 | return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0, | ||
906 | uhash | mhash, sleep); | ||
907 | } | ||
908 | |||
909 | /* | ||
910 | * Set RX properties of a port, such as promiscruity, address filters, and MTU. | ||
911 | * If @mtu is -1 it is left unchanged. | ||
912 | */ | ||
913 | static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) | ||
914 | { | ||
915 | int ret; | ||
916 | struct port_info *pi = netdev_priv(dev); | ||
917 | |||
918 | ret = set_addr_filters(dev, sleep_ok); | ||
919 | if (ret == 0) | ||
920 | ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1, | ||
921 | (dev->flags & IFF_PROMISC) != 0, | ||
922 | (dev->flags & IFF_ALLMULTI) != 0, | ||
923 | 1, -1, sleep_ok); | ||
924 | return ret; | ||
925 | } | ||
926 | |||
927 | /* | ||
928 | * Set the current receive modes on the device. | ||
929 | */ | ||
930 | static void cxgb4vf_set_rxmode(struct net_device *dev) | ||
931 | { | ||
932 | /* unfortunately we can't return errors to the stack */ | ||
933 | set_rxmode(dev, -1, false); | ||
934 | } | ||
935 | |||
936 | /* | ||
937 | * Find the entry in the interrupt holdoff timer value array which comes | ||
938 | * closest to the specified interrupt holdoff value. | ||
939 | */ | ||
940 | static int closest_timer(const struct sge *s, int us) | ||
941 | { | ||
942 | int i, timer_idx = 0, min_delta = INT_MAX; | ||
943 | |||
944 | for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { | ||
945 | int delta = us - s->timer_val[i]; | ||
946 | if (delta < 0) | ||
947 | delta = -delta; | ||
948 | if (delta < min_delta) { | ||
949 | min_delta = delta; | ||
950 | timer_idx = i; | ||
951 | } | ||
952 | } | ||
953 | return timer_idx; | ||
954 | } | ||
955 | |||
956 | static int closest_thres(const struct sge *s, int thres) | ||
957 | { | ||
958 | int i, delta, pktcnt_idx = 0, min_delta = INT_MAX; | ||
959 | |||
960 | for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { | ||
961 | delta = thres - s->counter_val[i]; | ||
962 | if (delta < 0) | ||
963 | delta = -delta; | ||
964 | if (delta < min_delta) { | ||
965 | min_delta = delta; | ||
966 | pktcnt_idx = i; | ||
967 | } | ||
968 | } | ||
969 | return pktcnt_idx; | ||
970 | } | ||
971 | |||
972 | /* | ||
973 | * Return a queue's interrupt hold-off time in us. 0 means no timer. | ||
974 | */ | ||
975 | static unsigned int qtimer_val(const struct adapter *adapter, | ||
976 | const struct sge_rspq *rspq) | ||
977 | { | ||
978 | unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params); | ||
979 | |||
980 | return timer_idx < SGE_NTIMERS | ||
981 | ? adapter->sge.timer_val[timer_idx] | ||
982 | : 0; | ||
983 | } | ||
984 | |||
985 | /** | ||
986 | * set_rxq_intr_params - set a queue's interrupt holdoff parameters | ||
987 | * @adapter: the adapter | ||
988 | * @rspq: the RX response queue | ||
989 | * @us: the hold-off time in us, or 0 to disable timer | ||
990 | * @cnt: the hold-off packet count, or 0 to disable counter | ||
991 | * | ||
992 | * Sets an RX response queue's interrupt hold-off time and packet count. | ||
993 | * At least one of the two needs to be enabled for the queue to generate | ||
994 | * interrupts. | ||
995 | */ | ||
996 | static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq, | ||
997 | unsigned int us, unsigned int cnt) | ||
998 | { | ||
999 | unsigned int timer_idx; | ||
1000 | |||
1001 | /* | ||
1002 | * If both the interrupt holdoff timer and count are specified as | ||
1003 | * zero, default to a holdoff count of 1 ... | ||
1004 | */ | ||
1005 | if ((us | cnt) == 0) | ||
1006 | cnt = 1; | ||
1007 | |||
1008 | /* | ||
1009 | * If an interrupt holdoff count has been specified, then find the | ||
1010 | * closest configured holdoff count and use that. If the response | ||
1011 | * queue has already been created, then update its queue context | ||
1012 | * parameters ... | ||
1013 | */ | ||
1014 | if (cnt) { | ||
1015 | int err; | ||
1016 | u32 v, pktcnt_idx; | ||
1017 | |||
1018 | pktcnt_idx = closest_thres(&adapter->sge, cnt); | ||
1019 | if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) { | ||
1020 | v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | | ||
1021 | FW_PARAMS_PARAM_X( | ||
1022 | FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | | ||
1023 | FW_PARAMS_PARAM_YZ(rspq->cntxt_id); | ||
1024 | err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx); | ||
1025 | if (err) | ||
1026 | return err; | ||
1027 | } | ||
1028 | rspq->pktcnt_idx = pktcnt_idx; | ||
1029 | } | ||
1030 | |||
1031 | /* | ||
1032 | * Compute the closest holdoff timer index from the supplied holdoff | ||
1033 | * timer value. | ||
1034 | */ | ||
1035 | timer_idx = (us == 0 | ||
1036 | ? SGE_TIMER_RSTRT_CNTR | ||
1037 | : closest_timer(&adapter->sge, us)); | ||
1038 | |||
1039 | /* | ||
1040 | * Update the response queue's interrupt coalescing parameters and | ||
1041 | * return success. | ||
1042 | */ | ||
1043 | rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) | | ||
1044 | (cnt > 0 ? QINTR_CNT_EN : 0)); | ||
1045 | return 0; | ||
1046 | } | ||
1047 | |||
1048 | /* | ||
1049 | * Return a version number to identify the type of adapter. The scheme is: | ||
1050 | * - bits 0..9: chip version | ||
1051 | * - bits 10..15: chip revision | ||
1052 | */ | ||
1053 | static inline unsigned int mk_adap_vers(const struct adapter *adapter) | ||
1054 | { | ||
1055 | /* | ||
1056 | * Chip version 4, revision 0x3f (cxgb4vf). | ||
1057 | */ | ||
1058 | return 4 | (0x3f << 10); | ||
1059 | } | ||
1060 | |||
1061 | /* | ||
1062 | * Execute the specified ioctl command. | ||
1063 | */ | ||
1064 | static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) | ||
1065 | { | ||
1066 | int ret = 0; | ||
1067 | |||
1068 | switch (cmd) { | ||
1069 | /* | ||
1070 | * The VF Driver doesn't have access to any of the other | ||
1071 | * common Ethernet device ioctl()'s (like reading/writing | ||
1072 | * PHY registers, etc. | ||
1073 | */ | ||
1074 | |||
1075 | default: | ||
1076 | ret = -EOPNOTSUPP; | ||
1077 | break; | ||
1078 | } | ||
1079 | return ret; | ||
1080 | } | ||
1081 | |||
1082 | /* | ||
1083 | * Change the device's MTU. | ||
1084 | */ | ||
1085 | static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu) | ||
1086 | { | ||
1087 | int ret; | ||
1088 | struct port_info *pi = netdev_priv(dev); | ||
1089 | |||
1090 | /* accommodate SACK */ | ||
1091 | if (new_mtu < 81) | ||
1092 | return -EINVAL; | ||
1093 | |||
1094 | ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu, | ||
1095 | -1, -1, -1, -1, true); | ||
1096 | if (!ret) | ||
1097 | dev->mtu = new_mtu; | ||
1098 | return ret; | ||
1099 | } | ||
1100 | |||
1101 | /* | ||
1102 | * Change the devices MAC address. | ||
1103 | */ | ||
1104 | static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr) | ||
1105 | { | ||
1106 | int ret; | ||
1107 | struct sockaddr *addr = _addr; | ||
1108 | struct port_info *pi = netdev_priv(dev); | ||
1109 | |||
1110 | if (!is_valid_ether_addr(addr->sa_data)) | ||
1111 | return -EINVAL; | ||
1112 | |||
1113 | ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt, | ||
1114 | addr->sa_data, true); | ||
1115 | if (ret < 0) | ||
1116 | return ret; | ||
1117 | |||
1118 | memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); | ||
1119 | pi->xact_addr_filt = ret; | ||
1120 | return 0; | ||
1121 | } | ||
1122 | |||
1123 | /* | ||
1124 | * Return a TX Queue on which to send the specified skb. | ||
1125 | */ | ||
1126 | static u16 cxgb4vf_select_queue(struct net_device *dev, struct sk_buff *skb) | ||
1127 | { | ||
1128 | /* | ||
1129 | * XXX For now just use the default hash but we probably want to | ||
1130 | * XXX look at other possibilities ... | ||
1131 | */ | ||
1132 | return skb_tx_hash(dev, skb); | ||
1133 | } | ||
1134 | |||
1135 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
1136 | /* | ||
1137 | * Poll all of our receive queues. This is called outside of normal interrupt | ||
1138 | * context. | ||
1139 | */ | ||
1140 | static void cxgb4vf_poll_controller(struct net_device *dev) | ||
1141 | { | ||
1142 | struct port_info *pi = netdev_priv(dev); | ||
1143 | struct adapter *adapter = pi->adapter; | ||
1144 | |||
1145 | if (adapter->flags & USING_MSIX) { | ||
1146 | struct sge_eth_rxq *rxq; | ||
1147 | int nqsets; | ||
1148 | |||
1149 | rxq = &adapter->sge.ethrxq[pi->first_qset]; | ||
1150 | for (nqsets = pi->nqsets; nqsets; nqsets--) { | ||
1151 | t4vf_sge_intr_msix(0, &rxq->rspq); | ||
1152 | rxq++; | ||
1153 | } | ||
1154 | } else | ||
1155 | t4vf_intr_handler(adapter)(0, adapter); | ||
1156 | } | ||
1157 | #endif | ||
1158 | |||
1159 | /* | ||
1160 | * Ethtool operations. | ||
1161 | * =================== | ||
1162 | * | ||
1163 | * Note that we don't support any ethtool operations which change the physical | ||
1164 | * state of the port to which we're linked. | ||
1165 | */ | ||
1166 | |||
1167 | /* | ||
1168 | * Return current port link settings. | ||
1169 | */ | ||
1170 | static int cxgb4vf_get_settings(struct net_device *dev, | ||
1171 | struct ethtool_cmd *cmd) | ||
1172 | { | ||
1173 | const struct port_info *pi = netdev_priv(dev); | ||
1174 | |||
1175 | cmd->supported = pi->link_cfg.supported; | ||
1176 | cmd->advertising = pi->link_cfg.advertising; | ||
1177 | cmd->speed = netif_carrier_ok(dev) ? pi->link_cfg.speed : -1; | ||
1178 | cmd->duplex = DUPLEX_FULL; | ||
1179 | |||
1180 | cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE; | ||
1181 | cmd->phy_address = pi->port_id; | ||
1182 | cmd->transceiver = XCVR_EXTERNAL; | ||
1183 | cmd->autoneg = pi->link_cfg.autoneg; | ||
1184 | cmd->maxtxpkt = 0; | ||
1185 | cmd->maxrxpkt = 0; | ||
1186 | return 0; | ||
1187 | } | ||
1188 | |||
1189 | /* | ||
1190 | * Return our driver information. | ||
1191 | */ | ||
1192 | static void cxgb4vf_get_drvinfo(struct net_device *dev, | ||
1193 | struct ethtool_drvinfo *drvinfo) | ||
1194 | { | ||
1195 | struct adapter *adapter = netdev2adap(dev); | ||
1196 | |||
1197 | strcpy(drvinfo->driver, KBUILD_MODNAME); | ||
1198 | strcpy(drvinfo->version, DRV_VERSION); | ||
1199 | strcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent))); | ||
1200 | snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), | ||
1201 | "%u.%u.%u.%u, TP %u.%u.%u.%u", | ||
1202 | FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev), | ||
1203 | FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev), | ||
1204 | FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev), | ||
1205 | FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev), | ||
1206 | FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev), | ||
1207 | FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev), | ||
1208 | FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev), | ||
1209 | FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev)); | ||
1210 | } | ||
1211 | |||
1212 | /* | ||
1213 | * Return current adapter message level. | ||
1214 | */ | ||
1215 | static u32 cxgb4vf_get_msglevel(struct net_device *dev) | ||
1216 | { | ||
1217 | return netdev2adap(dev)->msg_enable; | ||
1218 | } | ||
1219 | |||
1220 | /* | ||
1221 | * Set current adapter message level. | ||
1222 | */ | ||
1223 | static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel) | ||
1224 | { | ||
1225 | netdev2adap(dev)->msg_enable = msglevel; | ||
1226 | } | ||
1227 | |||
1228 | /* | ||
1229 | * Return the device's current Queue Set ring size parameters along with the | ||
1230 | * allowed maximum values. Since ethtool doesn't understand the concept of | ||
1231 | * multi-queue devices, we just return the current values associated with the | ||
1232 | * first Queue Set. | ||
1233 | */ | ||
1234 | static void cxgb4vf_get_ringparam(struct net_device *dev, | ||
1235 | struct ethtool_ringparam *rp) | ||
1236 | { | ||
1237 | const struct port_info *pi = netdev_priv(dev); | ||
1238 | const struct sge *s = &pi->adapter->sge; | ||
1239 | |||
1240 | rp->rx_max_pending = MAX_RX_BUFFERS; | ||
1241 | rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES; | ||
1242 | rp->rx_jumbo_max_pending = 0; | ||
1243 | rp->tx_max_pending = MAX_TXQ_ENTRIES; | ||
1244 | |||
1245 | rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID; | ||
1246 | rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; | ||
1247 | rp->rx_jumbo_pending = 0; | ||
1248 | rp->tx_pending = s->ethtxq[pi->first_qset].q.size; | ||
1249 | } | ||
1250 | |||
1251 | /* | ||
1252 | * Set the Queue Set ring size parameters for the device. Again, since | ||
1253 | * ethtool doesn't allow for the concept of multiple queues per device, we'll | ||
1254 | * apply these new values across all of the Queue Sets associated with the | ||
1255 | * device -- after vetting them of course! | ||
1256 | */ | ||
1257 | static int cxgb4vf_set_ringparam(struct net_device *dev, | ||
1258 | struct ethtool_ringparam *rp) | ||
1259 | { | ||
1260 | const struct port_info *pi = netdev_priv(dev); | ||
1261 | struct adapter *adapter = pi->adapter; | ||
1262 | struct sge *s = &adapter->sge; | ||
1263 | int qs; | ||
1264 | |||
1265 | if (rp->rx_pending > MAX_RX_BUFFERS || | ||
1266 | rp->rx_jumbo_pending || | ||
1267 | rp->tx_pending > MAX_TXQ_ENTRIES || | ||
1268 | rp->rx_mini_pending > MAX_RSPQ_ENTRIES || | ||
1269 | rp->rx_mini_pending < MIN_RSPQ_ENTRIES || | ||
1270 | rp->rx_pending < MIN_FL_ENTRIES || | ||
1271 | rp->tx_pending < MIN_TXQ_ENTRIES) | ||
1272 | return -EINVAL; | ||
1273 | |||
1274 | if (adapter->flags & FULL_INIT_DONE) | ||
1275 | return -EBUSY; | ||
1276 | |||
1277 | for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) { | ||
1278 | s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID; | ||
1279 | s->ethrxq[qs].rspq.size = rp->rx_mini_pending; | ||
1280 | s->ethtxq[qs].q.size = rp->tx_pending; | ||
1281 | } | ||
1282 | return 0; | ||
1283 | } | ||
1284 | |||
1285 | /* | ||
1286 | * Return the interrupt holdoff timer and count for the first Queue Set on the | ||
1287 | * device. Our extension ioctl() (the cxgbtool interface) allows the | ||
1288 | * interrupt holdoff timer to be read on all of the device's Queue Sets. | ||
1289 | */ | ||
1290 | static int cxgb4vf_get_coalesce(struct net_device *dev, | ||
1291 | struct ethtool_coalesce *coalesce) | ||
1292 | { | ||
1293 | const struct port_info *pi = netdev_priv(dev); | ||
1294 | const struct adapter *adapter = pi->adapter; | ||
1295 | const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq; | ||
1296 | |||
1297 | coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq); | ||
1298 | coalesce->rx_max_coalesced_frames = | ||
1299 | ((rspq->intr_params & QINTR_CNT_EN) | ||
1300 | ? adapter->sge.counter_val[rspq->pktcnt_idx] | ||
1301 | : 0); | ||
1302 | return 0; | ||
1303 | } | ||
1304 | |||
1305 | /* | ||
1306 | * Set the RX interrupt holdoff timer and count for the first Queue Set on the | ||
1307 | * interface. Our extension ioctl() (the cxgbtool interface) allows us to set | ||
1308 | * the interrupt holdoff timer on any of the device's Queue Sets. | ||
1309 | */ | ||
1310 | static int cxgb4vf_set_coalesce(struct net_device *dev, | ||
1311 | struct ethtool_coalesce *coalesce) | ||
1312 | { | ||
1313 | const struct port_info *pi = netdev_priv(dev); | ||
1314 | struct adapter *adapter = pi->adapter; | ||
1315 | |||
1316 | return set_rxq_intr_params(adapter, | ||
1317 | &adapter->sge.ethrxq[pi->first_qset].rspq, | ||
1318 | coalesce->rx_coalesce_usecs, | ||
1319 | coalesce->rx_max_coalesced_frames); | ||
1320 | } | ||
1321 | |||
1322 | /* | ||
1323 | * Report current port link pause parameter settings. | ||
1324 | */ | ||
1325 | static void cxgb4vf_get_pauseparam(struct net_device *dev, | ||
1326 | struct ethtool_pauseparam *pauseparam) | ||
1327 | { | ||
1328 | struct port_info *pi = netdev_priv(dev); | ||
1329 | |||
1330 | pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; | ||
1331 | pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0; | ||
1332 | pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0; | ||
1333 | } | ||
1334 | |||
1335 | /* | ||
1336 | * Return whether RX Checksum Offloading is currently enabled for the device. | ||
1337 | */ | ||
1338 | static u32 cxgb4vf_get_rx_csum(struct net_device *dev) | ||
1339 | { | ||
1340 | struct port_info *pi = netdev_priv(dev); | ||
1341 | |||
1342 | return (pi->rx_offload & RX_CSO) != 0; | ||
1343 | } | ||
1344 | |||
1345 | /* | ||
1346 | * Turn RX Checksum Offloading on or off for the device. | ||
1347 | */ | ||
1348 | static int cxgb4vf_set_rx_csum(struct net_device *dev, u32 csum) | ||
1349 | { | ||
1350 | struct port_info *pi = netdev_priv(dev); | ||
1351 | |||
1352 | if (csum) | ||
1353 | pi->rx_offload |= RX_CSO; | ||
1354 | else | ||
1355 | pi->rx_offload &= ~RX_CSO; | ||
1356 | return 0; | ||
1357 | } | ||
1358 | |||
1359 | /* | ||
1360 | * Identify the port by blinking the port's LED. | ||
1361 | */ | ||
1362 | static int cxgb4vf_phys_id(struct net_device *dev, u32 id) | ||
1363 | { | ||
1364 | struct port_info *pi = netdev_priv(dev); | ||
1365 | |||
1366 | return t4vf_identify_port(pi->adapter, pi->viid, 5); | ||
1367 | } | ||
1368 | |||
1369 | /* | ||
1370 | * Port stats maintained per queue of the port. | ||
1371 | */ | ||
1372 | struct queue_port_stats { | ||
1373 | u64 tso; | ||
1374 | u64 tx_csum; | ||
1375 | u64 rx_csum; | ||
1376 | u64 vlan_ex; | ||
1377 | u64 vlan_ins; | ||
1378 | }; | ||
1379 | |||
1380 | /* | ||
1381 | * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that | ||
1382 | * these need to match the order of statistics returned by | ||
1383 | * t4vf_get_port_stats(). | ||
1384 | */ | ||
1385 | static const char stats_strings[][ETH_GSTRING_LEN] = { | ||
1386 | /* | ||
1387 | * These must match the layout of the t4vf_port_stats structure. | ||
1388 | */ | ||
1389 | "TxBroadcastBytes ", | ||
1390 | "TxBroadcastFrames ", | ||
1391 | "TxMulticastBytes ", | ||
1392 | "TxMulticastFrames ", | ||
1393 | "TxUnicastBytes ", | ||
1394 | "TxUnicastFrames ", | ||
1395 | "TxDroppedFrames ", | ||
1396 | "TxOffloadBytes ", | ||
1397 | "TxOffloadFrames ", | ||
1398 | "RxBroadcastBytes ", | ||
1399 | "RxBroadcastFrames ", | ||
1400 | "RxMulticastBytes ", | ||
1401 | "RxMulticastFrames ", | ||
1402 | "RxUnicastBytes ", | ||
1403 | "RxUnicastFrames ", | ||
1404 | "RxErrorFrames ", | ||
1405 | |||
1406 | /* | ||
1407 | * These are accumulated per-queue statistics and must match the | ||
1408 | * order of the fields in the queue_port_stats structure. | ||
1409 | */ | ||
1410 | "TSO ", | ||
1411 | "TxCsumOffload ", | ||
1412 | "RxCsumGood ", | ||
1413 | "VLANextractions ", | ||
1414 | "VLANinsertions ", | ||
1415 | }; | ||
1416 | |||
1417 | /* | ||
1418 | * Return the number of statistics in the specified statistics set. | ||
1419 | */ | ||
1420 | static int cxgb4vf_get_sset_count(struct net_device *dev, int sset) | ||
1421 | { | ||
1422 | switch (sset) { | ||
1423 | case ETH_SS_STATS: | ||
1424 | return ARRAY_SIZE(stats_strings); | ||
1425 | default: | ||
1426 | return -EOPNOTSUPP; | ||
1427 | } | ||
1428 | /*NOTREACHED*/ | ||
1429 | } | ||
1430 | |||
1431 | /* | ||
1432 | * Return the strings for the specified statistics set. | ||
1433 | */ | ||
1434 | static void cxgb4vf_get_strings(struct net_device *dev, | ||
1435 | u32 sset, | ||
1436 | u8 *data) | ||
1437 | { | ||
1438 | switch (sset) { | ||
1439 | case ETH_SS_STATS: | ||
1440 | memcpy(data, stats_strings, sizeof(stats_strings)); | ||
1441 | break; | ||
1442 | } | ||
1443 | } | ||
1444 | |||
1445 | /* | ||
1446 | * Small utility routine to accumulate queue statistics across the queues of | ||
1447 | * a "port". | ||
1448 | */ | ||
1449 | static void collect_sge_port_stats(const struct adapter *adapter, | ||
1450 | const struct port_info *pi, | ||
1451 | struct queue_port_stats *stats) | ||
1452 | { | ||
1453 | const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset]; | ||
1454 | const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; | ||
1455 | int qs; | ||
1456 | |||
1457 | memset(stats, 0, sizeof(*stats)); | ||
1458 | for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { | ||
1459 | stats->tso += txq->tso; | ||
1460 | stats->tx_csum += txq->tx_cso; | ||
1461 | stats->rx_csum += rxq->stats.rx_cso; | ||
1462 | stats->vlan_ex += rxq->stats.vlan_ex; | ||
1463 | stats->vlan_ins += txq->vlan_ins; | ||
1464 | } | ||
1465 | } | ||
1466 | |||
1467 | /* | ||
1468 | * Return the ETH_SS_STATS statistics set. | ||
1469 | */ | ||
1470 | static void cxgb4vf_get_ethtool_stats(struct net_device *dev, | ||
1471 | struct ethtool_stats *stats, | ||
1472 | u64 *data) | ||
1473 | { | ||
1474 | struct port_info *pi = netdev2pinfo(dev); | ||
1475 | struct adapter *adapter = pi->adapter; | ||
1476 | int err = t4vf_get_port_stats(adapter, pi->pidx, | ||
1477 | (struct t4vf_port_stats *)data); | ||
1478 | if (err) | ||
1479 | memset(data, 0, sizeof(struct t4vf_port_stats)); | ||
1480 | |||
1481 | data += sizeof(struct t4vf_port_stats) / sizeof(u64); | ||
1482 | collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); | ||
1483 | } | ||
1484 | |||
1485 | /* | ||
1486 | * Return the size of our register map. | ||
1487 | */ | ||
1488 | static int cxgb4vf_get_regs_len(struct net_device *dev) | ||
1489 | { | ||
1490 | return T4VF_REGMAP_SIZE; | ||
1491 | } | ||
1492 | |||
1493 | /* | ||
1494 | * Dump a block of registers, start to end inclusive, into a buffer. | ||
1495 | */ | ||
1496 | static void reg_block_dump(struct adapter *adapter, void *regbuf, | ||
1497 | unsigned int start, unsigned int end) | ||
1498 | { | ||
1499 | u32 *bp = regbuf + start - T4VF_REGMAP_START; | ||
1500 | |||
1501 | for ( ; start <= end; start += sizeof(u32)) { | ||
1502 | /* | ||
1503 | * Avoid reading the Mailbox Control register since that | ||
1504 | * can trigger a Mailbox Ownership Arbitration cycle and | ||
1505 | * interfere with communication with the firmware. | ||
1506 | */ | ||
1507 | if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL) | ||
1508 | *bp++ = 0xffff; | ||
1509 | else | ||
1510 | *bp++ = t4_read_reg(adapter, start); | ||
1511 | } | ||
1512 | } | ||
1513 | |||
1514 | /* | ||
1515 | * Copy our entire register map into the provided buffer. | ||
1516 | */ | ||
1517 | static void cxgb4vf_get_regs(struct net_device *dev, | ||
1518 | struct ethtool_regs *regs, | ||
1519 | void *regbuf) | ||
1520 | { | ||
1521 | struct adapter *adapter = netdev2adap(dev); | ||
1522 | |||
1523 | regs->version = mk_adap_vers(adapter); | ||
1524 | |||
1525 | /* | ||
1526 | * Fill in register buffer with our register map. | ||
1527 | */ | ||
1528 | memset(regbuf, 0, T4VF_REGMAP_SIZE); | ||
1529 | |||
1530 | reg_block_dump(adapter, regbuf, | ||
1531 | T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST, | ||
1532 | T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST); | ||
1533 | reg_block_dump(adapter, regbuf, | ||
1534 | T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST, | ||
1535 | T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST); | ||
1536 | reg_block_dump(adapter, regbuf, | ||
1537 | T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST, | ||
1538 | T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_LAST); | ||
1539 | reg_block_dump(adapter, regbuf, | ||
1540 | T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST, | ||
1541 | T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST); | ||
1542 | |||
1543 | reg_block_dump(adapter, regbuf, | ||
1544 | T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST, | ||
1545 | T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST); | ||
1546 | } | ||
1547 | |||
1548 | /* | ||
1549 | * Report current Wake On LAN settings. | ||
1550 | */ | ||
1551 | static void cxgb4vf_get_wol(struct net_device *dev, | ||
1552 | struct ethtool_wolinfo *wol) | ||
1553 | { | ||
1554 | wol->supported = 0; | ||
1555 | wol->wolopts = 0; | ||
1556 | memset(&wol->sopass, 0, sizeof(wol->sopass)); | ||
1557 | } | ||
1558 | |||
1559 | /* | ||
1560 | * Set TCP Segmentation Offloading feature capabilities. | ||
1561 | */ | ||
1562 | static int cxgb4vf_set_tso(struct net_device *dev, u32 tso) | ||
1563 | { | ||
1564 | if (tso) | ||
1565 | dev->features |= NETIF_F_TSO | NETIF_F_TSO6; | ||
1566 | else | ||
1567 | dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); | ||
1568 | return 0; | ||
1569 | } | ||
1570 | |||
1571 | static struct ethtool_ops cxgb4vf_ethtool_ops = { | ||
1572 | .get_settings = cxgb4vf_get_settings, | ||
1573 | .get_drvinfo = cxgb4vf_get_drvinfo, | ||
1574 | .get_msglevel = cxgb4vf_get_msglevel, | ||
1575 | .set_msglevel = cxgb4vf_set_msglevel, | ||
1576 | .get_ringparam = cxgb4vf_get_ringparam, | ||
1577 | .set_ringparam = cxgb4vf_set_ringparam, | ||
1578 | .get_coalesce = cxgb4vf_get_coalesce, | ||
1579 | .set_coalesce = cxgb4vf_set_coalesce, | ||
1580 | .get_pauseparam = cxgb4vf_get_pauseparam, | ||
1581 | .get_rx_csum = cxgb4vf_get_rx_csum, | ||
1582 | .set_rx_csum = cxgb4vf_set_rx_csum, | ||
1583 | .set_tx_csum = ethtool_op_set_tx_ipv6_csum, | ||
1584 | .set_sg = ethtool_op_set_sg, | ||
1585 | .get_link = ethtool_op_get_link, | ||
1586 | .get_strings = cxgb4vf_get_strings, | ||
1587 | .phys_id = cxgb4vf_phys_id, | ||
1588 | .get_sset_count = cxgb4vf_get_sset_count, | ||
1589 | .get_ethtool_stats = cxgb4vf_get_ethtool_stats, | ||
1590 | .get_regs_len = cxgb4vf_get_regs_len, | ||
1591 | .get_regs = cxgb4vf_get_regs, | ||
1592 | .get_wol = cxgb4vf_get_wol, | ||
1593 | .set_tso = cxgb4vf_set_tso, | ||
1594 | }; | ||
1595 | |||
1596 | /* | ||
1597 | * /sys/kernel/debug/cxgb4vf support code and data. | ||
1598 | * ================================================ | ||
1599 | */ | ||
1600 | |||
1601 | /* | ||
1602 | * Show SGE Queue Set information. We display QPL Queues Sets per line. | ||
1603 | */ | ||
1604 | #define QPL 4 | ||
1605 | |||
1606 | static int sge_qinfo_show(struct seq_file *seq, void *v) | ||
1607 | { | ||
1608 | struct adapter *adapter = seq->private; | ||
1609 | int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); | ||
1610 | int qs, r = (uintptr_t)v - 1; | ||
1611 | |||
1612 | if (r) | ||
1613 | seq_putc(seq, '\n'); | ||
1614 | |||
1615 | #define S3(fmt_spec, s, v) \ | ||
1616 | do {\ | ||
1617 | seq_printf(seq, "%-12s", s); \ | ||
1618 | for (qs = 0; qs < n; ++qs) \ | ||
1619 | seq_printf(seq, " %16" fmt_spec, v); \ | ||
1620 | seq_putc(seq, '\n'); \ | ||
1621 | } while (0) | ||
1622 | #define S(s, v) S3("s", s, v) | ||
1623 | #define T(s, v) S3("u", s, txq[qs].v) | ||
1624 | #define R(s, v) S3("u", s, rxq[qs].v) | ||
1625 | |||
1626 | if (r < eth_entries) { | ||
1627 | const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; | ||
1628 | const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; | ||
1629 | int n = min(QPL, adapter->sge.ethqsets - QPL * r); | ||
1630 | |||
1631 | S("QType:", "Ethernet"); | ||
1632 | S("Interface:", | ||
1633 | (rxq[qs].rspq.netdev | ||
1634 | ? rxq[qs].rspq.netdev->name | ||
1635 | : "N/A")); | ||
1636 | S3("d", "Port:", | ||
1637 | (rxq[qs].rspq.netdev | ||
1638 | ? ((struct port_info *) | ||
1639 | netdev_priv(rxq[qs].rspq.netdev))->port_id | ||
1640 | : -1)); | ||
1641 | T("TxQ ID:", q.abs_id); | ||
1642 | T("TxQ size:", q.size); | ||
1643 | T("TxQ inuse:", q.in_use); | ||
1644 | T("TxQ PIdx:", q.pidx); | ||
1645 | T("TxQ CIdx:", q.cidx); | ||
1646 | R("RspQ ID:", rspq.abs_id); | ||
1647 | R("RspQ size:", rspq.size); | ||
1648 | R("RspQE size:", rspq.iqe_len); | ||
1649 | S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq)); | ||
1650 | S3("u", "Intr pktcnt:", | ||
1651 | adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]); | ||
1652 | R("RspQ CIdx:", rspq.cidx); | ||
1653 | R("RspQ Gen:", rspq.gen); | ||
1654 | R("FL ID:", fl.abs_id); | ||
1655 | R("FL size:", fl.size - MIN_FL_RESID); | ||
1656 | R("FL avail:", fl.avail); | ||
1657 | R("FL PIdx:", fl.pidx); | ||
1658 | R("FL CIdx:", fl.cidx); | ||
1659 | return 0; | ||
1660 | } | ||
1661 | |||
1662 | r -= eth_entries; | ||
1663 | if (r == 0) { | ||
1664 | const struct sge_rspq *evtq = &adapter->sge.fw_evtq; | ||
1665 | |||
1666 | seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue"); | ||
1667 | seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id); | ||
1668 | seq_printf(seq, "%-12s %16u\n", "Intr delay:", | ||
1669 | qtimer_val(adapter, evtq)); | ||
1670 | seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", | ||
1671 | adapter->sge.counter_val[evtq->pktcnt_idx]); | ||
1672 | seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx); | ||
1673 | seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen); | ||
1674 | } else if (r == 1) { | ||
1675 | const struct sge_rspq *intrq = &adapter->sge.intrq; | ||
1676 | |||
1677 | seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue"); | ||
1678 | seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id); | ||
1679 | seq_printf(seq, "%-12s %16u\n", "Intr delay:", | ||
1680 | qtimer_val(adapter, intrq)); | ||
1681 | seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", | ||
1682 | adapter->sge.counter_val[intrq->pktcnt_idx]); | ||
1683 | seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx); | ||
1684 | seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen); | ||
1685 | } | ||
1686 | |||
1687 | #undef R | ||
1688 | #undef T | ||
1689 | #undef S | ||
1690 | #undef S3 | ||
1691 | |||
1692 | return 0; | ||
1693 | } | ||
1694 | |||
1695 | /* | ||
1696 | * Return the number of "entries" in our "file". We group the multi-Queue | ||
1697 | * sections with QPL Queue Sets per "entry". The sections of the output are: | ||
1698 | * | ||
1699 | * Ethernet RX/TX Queue Sets | ||
1700 | * Firmware Event Queue | ||
1701 | * Forwarded Interrupt Queue (if in MSI mode) | ||
1702 | */ | ||
1703 | static int sge_queue_entries(const struct adapter *adapter) | ||
1704 | { | ||
1705 | return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + | ||
1706 | ((adapter->flags & USING_MSI) != 0); | ||
1707 | } | ||
1708 | |||
1709 | static void *sge_queue_start(struct seq_file *seq, loff_t *pos) | ||
1710 | { | ||
1711 | int entries = sge_queue_entries(seq->private); | ||
1712 | |||
1713 | return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; | ||
1714 | } | ||
1715 | |||
1716 | static void sge_queue_stop(struct seq_file *seq, void *v) | ||
1717 | { | ||
1718 | } | ||
1719 | |||
1720 | static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos) | ||
1721 | { | ||
1722 | int entries = sge_queue_entries(seq->private); | ||
1723 | |||
1724 | ++*pos; | ||
1725 | return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; | ||
1726 | } | ||
1727 | |||
1728 | static const struct seq_operations sge_qinfo_seq_ops = { | ||
1729 | .start = sge_queue_start, | ||
1730 | .next = sge_queue_next, | ||
1731 | .stop = sge_queue_stop, | ||
1732 | .show = sge_qinfo_show | ||
1733 | }; | ||
1734 | |||
1735 | static int sge_qinfo_open(struct inode *inode, struct file *file) | ||
1736 | { | ||
1737 | int res = seq_open(file, &sge_qinfo_seq_ops); | ||
1738 | |||
1739 | if (!res) { | ||
1740 | struct seq_file *seq = file->private_data; | ||
1741 | seq->private = inode->i_private; | ||
1742 | } | ||
1743 | return res; | ||
1744 | } | ||
1745 | |||
1746 | static const struct file_operations sge_qinfo_debugfs_fops = { | ||
1747 | .owner = THIS_MODULE, | ||
1748 | .open = sge_qinfo_open, | ||
1749 | .read = seq_read, | ||
1750 | .llseek = seq_lseek, | ||
1751 | .release = seq_release, | ||
1752 | }; | ||
1753 | |||
1754 | /* | ||
1755 | * Show SGE Queue Set statistics. We display QPL Queues Sets per line. | ||
1756 | */ | ||
1757 | #define QPL 4 | ||
1758 | |||
1759 | static int sge_qstats_show(struct seq_file *seq, void *v) | ||
1760 | { | ||
1761 | struct adapter *adapter = seq->private; | ||
1762 | int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); | ||
1763 | int qs, r = (uintptr_t)v - 1; | ||
1764 | |||
1765 | if (r) | ||
1766 | seq_putc(seq, '\n'); | ||
1767 | |||
1768 | #define S3(fmt, s, v) \ | ||
1769 | do { \ | ||
1770 | seq_printf(seq, "%-16s", s); \ | ||
1771 | for (qs = 0; qs < n; ++qs) \ | ||
1772 | seq_printf(seq, " %8" fmt, v); \ | ||
1773 | seq_putc(seq, '\n'); \ | ||
1774 | } while (0) | ||
1775 | #define S(s, v) S3("s", s, v) | ||
1776 | |||
1777 | #define T3(fmt, s, v) S3(fmt, s, txq[qs].v) | ||
1778 | #define T(s, v) T3("lu", s, v) | ||
1779 | |||
1780 | #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v) | ||
1781 | #define R(s, v) R3("lu", s, v) | ||
1782 | |||
1783 | if (r < eth_entries) { | ||
1784 | const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; | ||
1785 | const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; | ||
1786 | int n = min(QPL, adapter->sge.ethqsets - QPL * r); | ||
1787 | |||
1788 | S("QType:", "Ethernet"); | ||
1789 | S("Interface:", | ||
1790 | (rxq[qs].rspq.netdev | ||
1791 | ? rxq[qs].rspq.netdev->name | ||
1792 | : "N/A")); | ||
1793 | R3("u", "RspQNullInts", rspq.unhandled_irqs); | ||
1794 | R("RxPackets:", stats.pkts); | ||
1795 | R("RxCSO:", stats.rx_cso); | ||
1796 | R("VLANxtract:", stats.vlan_ex); | ||
1797 | R("LROmerged:", stats.lro_merged); | ||
1798 | R("LROpackets:", stats.lro_pkts); | ||
1799 | R("RxDrops:", stats.rx_drops); | ||
1800 | T("TSO:", tso); | ||
1801 | T("TxCSO:", tx_cso); | ||
1802 | T("VLANins:", vlan_ins); | ||
1803 | T("TxQFull:", q.stops); | ||
1804 | T("TxQRestarts:", q.restarts); | ||
1805 | T("TxMapErr:", mapping_err); | ||
1806 | R("FLAllocErr:", fl.alloc_failed); | ||
1807 | R("FLLrgAlcErr:", fl.large_alloc_failed); | ||
1808 | R("FLStarving:", fl.starving); | ||
1809 | return 0; | ||
1810 | } | ||
1811 | |||
1812 | r -= eth_entries; | ||
1813 | if (r == 0) { | ||
1814 | const struct sge_rspq *evtq = &adapter->sge.fw_evtq; | ||
1815 | |||
1816 | seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue"); | ||
1817 | /* no real response queue statistics available to display */ | ||
1818 | seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx); | ||
1819 | seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen); | ||
1820 | } else if (r == 1) { | ||
1821 | const struct sge_rspq *intrq = &adapter->sge.intrq; | ||
1822 | |||
1823 | seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue"); | ||
1824 | /* no real response queue statistics available to display */ | ||
1825 | seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx); | ||
1826 | seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen); | ||
1827 | } | ||
1828 | |||
1829 | #undef R | ||
1830 | #undef T | ||
1831 | #undef S | ||
1832 | #undef R3 | ||
1833 | #undef T3 | ||
1834 | #undef S3 | ||
1835 | |||
1836 | return 0; | ||
1837 | } | ||
1838 | |||
1839 | /* | ||
1840 | * Return the number of "entries" in our "file". We group the multi-Queue | ||
1841 | * sections with QPL Queue Sets per "entry". The sections of the output are: | ||
1842 | * | ||
1843 | * Ethernet RX/TX Queue Sets | ||
1844 | * Firmware Event Queue | ||
1845 | * Forwarded Interrupt Queue (if in MSI mode) | ||
1846 | */ | ||
1847 | static int sge_qstats_entries(const struct adapter *adapter) | ||
1848 | { | ||
1849 | return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + | ||
1850 | ((adapter->flags & USING_MSI) != 0); | ||
1851 | } | ||
1852 | |||
1853 | static void *sge_qstats_start(struct seq_file *seq, loff_t *pos) | ||
1854 | { | ||
1855 | int entries = sge_qstats_entries(seq->private); | ||
1856 | |||
1857 | return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; | ||
1858 | } | ||
1859 | |||
1860 | static void sge_qstats_stop(struct seq_file *seq, void *v) | ||
1861 | { | ||
1862 | } | ||
1863 | |||
1864 | static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos) | ||
1865 | { | ||
1866 | int entries = sge_qstats_entries(seq->private); | ||
1867 | |||
1868 | (*pos)++; | ||
1869 | return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; | ||
1870 | } | ||
1871 | |||
1872 | static const struct seq_operations sge_qstats_seq_ops = { | ||
1873 | .start = sge_qstats_start, | ||
1874 | .next = sge_qstats_next, | ||
1875 | .stop = sge_qstats_stop, | ||
1876 | .show = sge_qstats_show | ||
1877 | }; | ||
1878 | |||
1879 | static int sge_qstats_open(struct inode *inode, struct file *file) | ||
1880 | { | ||
1881 | int res = seq_open(file, &sge_qstats_seq_ops); | ||
1882 | |||
1883 | if (res == 0) { | ||
1884 | struct seq_file *seq = file->private_data; | ||
1885 | seq->private = inode->i_private; | ||
1886 | } | ||
1887 | return res; | ||
1888 | } | ||
1889 | |||
1890 | static const struct file_operations sge_qstats_proc_fops = { | ||
1891 | .owner = THIS_MODULE, | ||
1892 | .open = sge_qstats_open, | ||
1893 | .read = seq_read, | ||
1894 | .llseek = seq_lseek, | ||
1895 | .release = seq_release, | ||
1896 | }; | ||
1897 | |||
1898 | /* | ||
1899 | * Show PCI-E SR-IOV Virtual Function Resource Limits. | ||
1900 | */ | ||
1901 | static int resources_show(struct seq_file *seq, void *v) | ||
1902 | { | ||
1903 | struct adapter *adapter = seq->private; | ||
1904 | struct vf_resources *vfres = &adapter->params.vfres; | ||
1905 | |||
1906 | #define S(desc, fmt, var) \ | ||
1907 | seq_printf(seq, "%-60s " fmt "\n", \ | ||
1908 | desc " (" #var "):", vfres->var) | ||
1909 | |||
1910 | S("Virtual Interfaces", "%d", nvi); | ||
1911 | S("Egress Queues", "%d", neq); | ||
1912 | S("Ethernet Control", "%d", nethctrl); | ||
1913 | S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint); | ||
1914 | S("Ingress Queues", "%d", niq); | ||
1915 | S("Traffic Class", "%d", tc); | ||
1916 | S("Port Access Rights Mask", "%#x", pmask); | ||
1917 | S("MAC Address Filters", "%d", nexactf); | ||
1918 | S("Firmware Command Read Capabilities", "%#x", r_caps); | ||
1919 | S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps); | ||
1920 | |||
1921 | #undef S | ||
1922 | |||
1923 | return 0; | ||
1924 | } | ||
1925 | |||
1926 | static int resources_open(struct inode *inode, struct file *file) | ||
1927 | { | ||
1928 | return single_open(file, resources_show, inode->i_private); | ||
1929 | } | ||
1930 | |||
1931 | static const struct file_operations resources_proc_fops = { | ||
1932 | .owner = THIS_MODULE, | ||
1933 | .open = resources_open, | ||
1934 | .read = seq_read, | ||
1935 | .llseek = seq_lseek, | ||
1936 | .release = single_release, | ||
1937 | }; | ||
1938 | |||
1939 | /* | ||
1940 | * Show Virtual Interfaces. | ||
1941 | */ | ||
1942 | static int interfaces_show(struct seq_file *seq, void *v) | ||
1943 | { | ||
1944 | if (v == SEQ_START_TOKEN) { | ||
1945 | seq_puts(seq, "Interface Port VIID\n"); | ||
1946 | } else { | ||
1947 | struct adapter *adapter = seq->private; | ||
1948 | int pidx = (uintptr_t)v - 2; | ||
1949 | struct net_device *dev = adapter->port[pidx]; | ||
1950 | struct port_info *pi = netdev_priv(dev); | ||
1951 | |||
1952 | seq_printf(seq, "%9s %4d %#5x\n", | ||
1953 | dev->name, pi->port_id, pi->viid); | ||
1954 | } | ||
1955 | return 0; | ||
1956 | } | ||
1957 | |||
1958 | static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos) | ||
1959 | { | ||
1960 | return pos <= adapter->params.nports | ||
1961 | ? (void *)(uintptr_t)(pos + 1) | ||
1962 | : NULL; | ||
1963 | } | ||
1964 | |||
1965 | static void *interfaces_start(struct seq_file *seq, loff_t *pos) | ||
1966 | { | ||
1967 | return *pos | ||
1968 | ? interfaces_get_idx(seq->private, *pos) | ||
1969 | : SEQ_START_TOKEN; | ||
1970 | } | ||
1971 | |||
1972 | static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos) | ||
1973 | { | ||
1974 | (*pos)++; | ||
1975 | return interfaces_get_idx(seq->private, *pos); | ||
1976 | } | ||
1977 | |||
1978 | static void interfaces_stop(struct seq_file *seq, void *v) | ||
1979 | { | ||
1980 | } | ||
1981 | |||
1982 | static const struct seq_operations interfaces_seq_ops = { | ||
1983 | .start = interfaces_start, | ||
1984 | .next = interfaces_next, | ||
1985 | .stop = interfaces_stop, | ||
1986 | .show = interfaces_show | ||
1987 | }; | ||
1988 | |||
1989 | static int interfaces_open(struct inode *inode, struct file *file) | ||
1990 | { | ||
1991 | int res = seq_open(file, &interfaces_seq_ops); | ||
1992 | |||
1993 | if (res == 0) { | ||
1994 | struct seq_file *seq = file->private_data; | ||
1995 | seq->private = inode->i_private; | ||
1996 | } | ||
1997 | return res; | ||
1998 | } | ||
1999 | |||
2000 | static const struct file_operations interfaces_proc_fops = { | ||
2001 | .owner = THIS_MODULE, | ||
2002 | .open = interfaces_open, | ||
2003 | .read = seq_read, | ||
2004 | .llseek = seq_lseek, | ||
2005 | .release = seq_release, | ||
2006 | }; | ||
2007 | |||
2008 | /* | ||
2009 | * /sys/kernel/debugfs/cxgb4vf/ files list. | ||
2010 | */ | ||
2011 | struct cxgb4vf_debugfs_entry { | ||
2012 | const char *name; /* name of debugfs node */ | ||
2013 | mode_t mode; /* file system mode */ | ||
2014 | const struct file_operations *fops; | ||
2015 | }; | ||
2016 | |||
2017 | static struct cxgb4vf_debugfs_entry debugfs_files[] = { | ||
2018 | { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops }, | ||
2019 | { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops }, | ||
2020 | { "resources", S_IRUGO, &resources_proc_fops }, | ||
2021 | { "interfaces", S_IRUGO, &interfaces_proc_fops }, | ||
2022 | }; | ||
2023 | |||
2024 | /* | ||
2025 | * Module and device initialization and cleanup code. | ||
2026 | * ================================================== | ||
2027 | */ | ||
2028 | |||
2029 | /* | ||
2030 | * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the | ||
2031 | * directory (debugfs_root) has already been set up. | ||
2032 | */ | ||
2033 | static int __devinit setup_debugfs(struct adapter *adapter) | ||
2034 | { | ||
2035 | int i; | ||
2036 | |||
2037 | BUG_ON(adapter->debugfs_root == NULL); | ||
2038 | |||
2039 | /* | ||
2040 | * Debugfs support is best effort. | ||
2041 | */ | ||
2042 | for (i = 0; i < ARRAY_SIZE(debugfs_files); i++) | ||
2043 | (void)debugfs_create_file(debugfs_files[i].name, | ||
2044 | debugfs_files[i].mode, | ||
2045 | adapter->debugfs_root, | ||
2046 | (void *)adapter, | ||
2047 | debugfs_files[i].fops); | ||
2048 | |||
2049 | return 0; | ||
2050 | } | ||
2051 | |||
2052 | /* | ||
2053 | * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave | ||
2054 | * it to our caller to tear down the directory (debugfs_root). | ||
2055 | */ | ||
2056 | static void __devexit cleanup_debugfs(struct adapter *adapter) | ||
2057 | { | ||
2058 | BUG_ON(adapter->debugfs_root == NULL); | ||
2059 | |||
2060 | /* | ||
2061 | * Unlike our sister routine cleanup_proc(), we don't need to remove | ||
2062 | * individual entries because a call will be made to | ||
2063 | * debugfs_remove_recursive(). We just need to clean up any ancillary | ||
2064 | * persistent state. | ||
2065 | */ | ||
2066 | /* nothing to do */ | ||
2067 | } | ||
2068 | |||
2069 | /* | ||
2070 | * Perform early "adapter" initialization. This is where we discover what | ||
2071 | * adapter parameters we're going to be using and initialize basic adapter | ||
2072 | * hardware support. | ||
2073 | */ | ||
2074 | static int adap_init0(struct adapter *adapter) | ||
2075 | { | ||
2076 | struct vf_resources *vfres = &adapter->params.vfres; | ||
2077 | struct sge_params *sge_params = &adapter->params.sge; | ||
2078 | struct sge *s = &adapter->sge; | ||
2079 | unsigned int ethqsets; | ||
2080 | int err; | ||
2081 | |||
2082 | /* | ||
2083 | * Wait for the device to become ready before proceeding ... | ||
2084 | */ | ||
2085 | err = t4vf_wait_dev_ready(adapter); | ||
2086 | if (err) { | ||
2087 | dev_err(adapter->pdev_dev, "device didn't become ready:" | ||
2088 | " err=%d\n", err); | ||
2089 | return err; | ||
2090 | } | ||
2091 | |||
2092 | /* | ||
2093 | * Grab basic operational parameters. These will predominantly have | ||
2094 | * been set up by the Physical Function Driver or will be hard coded | ||
2095 | * into the adapter. We just have to live with them ... Note that | ||
2096 | * we _must_ get our VPD parameters before our SGE parameters because | ||
2097 | * we need to know the adapter's core clock from the VPD in order to | ||
2098 | * properly decode the SGE Timer Values. | ||
2099 | */ | ||
2100 | err = t4vf_get_dev_params(adapter); | ||
2101 | if (err) { | ||
2102 | dev_err(adapter->pdev_dev, "unable to retrieve adapter" | ||
2103 | " device parameters: err=%d\n", err); | ||
2104 | return err; | ||
2105 | } | ||
2106 | err = t4vf_get_vpd_params(adapter); | ||
2107 | if (err) { | ||
2108 | dev_err(adapter->pdev_dev, "unable to retrieve adapter" | ||
2109 | " VPD parameters: err=%d\n", err); | ||
2110 | return err; | ||
2111 | } | ||
2112 | err = t4vf_get_sge_params(adapter); | ||
2113 | if (err) { | ||
2114 | dev_err(adapter->pdev_dev, "unable to retrieve adapter" | ||
2115 | " SGE parameters: err=%d\n", err); | ||
2116 | return err; | ||
2117 | } | ||
2118 | err = t4vf_get_rss_glb_config(adapter); | ||
2119 | if (err) { | ||
2120 | dev_err(adapter->pdev_dev, "unable to retrieve adapter" | ||
2121 | " RSS parameters: err=%d\n", err); | ||
2122 | return err; | ||
2123 | } | ||
2124 | if (adapter->params.rss.mode != | ||
2125 | FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { | ||
2126 | dev_err(adapter->pdev_dev, "unable to operate with global RSS" | ||
2127 | " mode %d\n", adapter->params.rss.mode); | ||
2128 | return -EINVAL; | ||
2129 | } | ||
2130 | err = t4vf_sge_init(adapter); | ||
2131 | if (err) { | ||
2132 | dev_err(adapter->pdev_dev, "unable to use adapter parameters:" | ||
2133 | " err=%d\n", err); | ||
2134 | return err; | ||
2135 | } | ||
2136 | |||
2137 | /* | ||
2138 | * Retrieve our RX interrupt holdoff timer values and counter | ||
2139 | * threshold values from the SGE parameters. | ||
2140 | */ | ||
2141 | s->timer_val[0] = core_ticks_to_us(adapter, | ||
2142 | TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1)); | ||
2143 | s->timer_val[1] = core_ticks_to_us(adapter, | ||
2144 | TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1)); | ||
2145 | s->timer_val[2] = core_ticks_to_us(adapter, | ||
2146 | TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3)); | ||
2147 | s->timer_val[3] = core_ticks_to_us(adapter, | ||
2148 | TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3)); | ||
2149 | s->timer_val[4] = core_ticks_to_us(adapter, | ||
2150 | TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5)); | ||
2151 | s->timer_val[5] = core_ticks_to_us(adapter, | ||
2152 | TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5)); | ||
2153 | |||
2154 | s->counter_val[0] = | ||
2155 | THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold); | ||
2156 | s->counter_val[1] = | ||
2157 | THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold); | ||
2158 | s->counter_val[2] = | ||
2159 | THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold); | ||
2160 | s->counter_val[3] = | ||
2161 | THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold); | ||
2162 | |||
2163 | /* | ||
2164 | * Grab our Virtual Interface resource allocation, extract the | ||
2165 | * features that we're interested in and do a bit of sanity testing on | ||
2166 | * what we discover. | ||
2167 | */ | ||
2168 | err = t4vf_get_vfres(adapter); | ||
2169 | if (err) { | ||
2170 | dev_err(adapter->pdev_dev, "unable to get virtual interface" | ||
2171 | " resources: err=%d\n", err); | ||
2172 | return err; | ||
2173 | } | ||
2174 | |||
2175 | /* | ||
2176 | * The number of "ports" which we support is equal to the number of | ||
2177 | * Virtual Interfaces with which we've been provisioned. | ||
2178 | */ | ||
2179 | adapter->params.nports = vfres->nvi; | ||
2180 | if (adapter->params.nports > MAX_NPORTS) { | ||
2181 | dev_warn(adapter->pdev_dev, "only using %d of %d allowed" | ||
2182 | " virtual interfaces\n", MAX_NPORTS, | ||
2183 | adapter->params.nports); | ||
2184 | adapter->params.nports = MAX_NPORTS; | ||
2185 | } | ||
2186 | |||
2187 | /* | ||
2188 | * We need to reserve a number of the ingress queues with Free List | ||
2189 | * and Interrupt capabilities for special interrupt purposes (like | ||
2190 | * asynchronous firmware messages, or forwarded interrupts if we're | ||
2191 | * using MSI). The rest of the FL/Intr-capable ingress queues will be | ||
2192 | * matched up one-for-one with Ethernet/Control egress queues in order | ||
2193 | * to form "Queue Sets" which will be aportioned between the "ports". | ||
2194 | * For each Queue Set, we'll need the ability to allocate two Egress | ||
2195 | * Contexts -- one for the Ingress Queue Free List and one for the TX | ||
2196 | * Ethernet Queue. | ||
2197 | */ | ||
2198 | ethqsets = vfres->niqflint - INGQ_EXTRAS; | ||
2199 | if (vfres->nethctrl != ethqsets) { | ||
2200 | dev_warn(adapter->pdev_dev, "unequal number of [available]" | ||
2201 | " ingress/egress queues (%d/%d); using minimum for" | ||
2202 | " number of Queue Sets\n", ethqsets, vfres->nethctrl); | ||
2203 | ethqsets = min(vfres->nethctrl, ethqsets); | ||
2204 | } | ||
2205 | if (vfres->neq < ethqsets*2) { | ||
2206 | dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)" | ||
2207 | " to support Queue Sets (%d); reducing allowed Queue" | ||
2208 | " Sets\n", vfres->neq, ethqsets); | ||
2209 | ethqsets = vfres->neq/2; | ||
2210 | } | ||
2211 | if (ethqsets > MAX_ETH_QSETS) { | ||
2212 | dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue" | ||
2213 | " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets); | ||
2214 | ethqsets = MAX_ETH_QSETS; | ||
2215 | } | ||
2216 | if (vfres->niq != 0 || vfres->neq > ethqsets*2) { | ||
2217 | dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)" | ||
2218 | " ignored\n", vfres->niq, vfres->neq - ethqsets*2); | ||
2219 | } | ||
2220 | adapter->sge.max_ethqsets = ethqsets; | ||
2221 | |||
2222 | /* | ||
2223 | * Check for various parameter sanity issues. Most checks simply | ||
2224 | * result in us using fewer resources than our provissioning but we | ||
2225 | * do need at least one "port" with which to work ... | ||
2226 | */ | ||
2227 | if (adapter->sge.max_ethqsets < adapter->params.nports) { | ||
2228 | dev_warn(adapter->pdev_dev, "only using %d of %d available" | ||
2229 | " virtual interfaces (too few Queue Sets)\n", | ||
2230 | adapter->sge.max_ethqsets, adapter->params.nports); | ||
2231 | adapter->params.nports = adapter->sge.max_ethqsets; | ||
2232 | } | ||
2233 | if (adapter->params.nports == 0) { | ||
2234 | dev_err(adapter->pdev_dev, "no virtual interfaces configured/" | ||
2235 | "usable!\n"); | ||
2236 | return -EINVAL; | ||
2237 | } | ||
2238 | return 0; | ||
2239 | } | ||
2240 | |||
2241 | static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx, | ||
2242 | u8 pkt_cnt_idx, unsigned int size, | ||
2243 | unsigned int iqe_size) | ||
2244 | { | ||
2245 | rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) | | ||
2246 | (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0)); | ||
2247 | rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS | ||
2248 | ? pkt_cnt_idx | ||
2249 | : 0); | ||
2250 | rspq->iqe_len = iqe_size; | ||
2251 | rspq->size = size; | ||
2252 | } | ||
2253 | |||
2254 | /* | ||
2255 | * Perform default configuration of DMA queues depending on the number and | ||
2256 | * type of ports we found and the number of available CPUs. Most settings can | ||
2257 | * be modified by the admin via ethtool and cxgbtool prior to the adapter | ||
2258 | * being brought up for the first time. | ||
2259 | */ | ||
2260 | static void __devinit cfg_queues(struct adapter *adapter) | ||
2261 | { | ||
2262 | struct sge *s = &adapter->sge; | ||
2263 | int q10g, n10g, qidx, pidx, qs; | ||
2264 | |||
2265 | /* | ||
2266 | * We should not be called till we know how many Queue Sets we can | ||
2267 | * support. In particular, this means that we need to know what kind | ||
2268 | * of interrupts we'll be using ... | ||
2269 | */ | ||
2270 | BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); | ||
2271 | |||
2272 | /* | ||
2273 | * Count the number of 10GbE Virtual Interfaces that we have. | ||
2274 | */ | ||
2275 | n10g = 0; | ||
2276 | for_each_port(adapter, pidx) | ||
2277 | n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg); | ||
2278 | |||
2279 | /* | ||
2280 | * We default to 1 queue per non-10G port and up to # of cores queues | ||
2281 | * per 10G port. | ||
2282 | */ | ||
2283 | if (n10g == 0) | ||
2284 | q10g = 0; | ||
2285 | else { | ||
2286 | int n1g = (adapter->params.nports - n10g); | ||
2287 | q10g = (adapter->sge.max_ethqsets - n1g) / n10g; | ||
2288 | if (q10g > num_online_cpus()) | ||
2289 | q10g = num_online_cpus(); | ||
2290 | } | ||
2291 | |||
2292 | /* | ||
2293 | * Allocate the "Queue Sets" to the various Virtual Interfaces. | ||
2294 | * The layout will be established in setup_sge_queues() when the | ||
2295 | * adapter is brough up for the first time. | ||
2296 | */ | ||
2297 | qidx = 0; | ||
2298 | for_each_port(adapter, pidx) { | ||
2299 | struct port_info *pi = adap2pinfo(adapter, pidx); | ||
2300 | |||
2301 | pi->first_qset = qidx; | ||
2302 | pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1; | ||
2303 | qidx += pi->nqsets; | ||
2304 | } | ||
2305 | s->ethqsets = qidx; | ||
2306 | |||
2307 | /* | ||
2308 | * Set up default Queue Set parameters ... Start off with the | ||
2309 | * shortest interrupt holdoff timer. | ||
2310 | */ | ||
2311 | for (qs = 0; qs < s->max_ethqsets; qs++) { | ||
2312 | struct sge_eth_rxq *rxq = &s->ethrxq[qs]; | ||
2313 | struct sge_eth_txq *txq = &s->ethtxq[qs]; | ||
2314 | |||
2315 | init_rspq(&rxq->rspq, 0, 0, 1024, L1_CACHE_BYTES); | ||
2316 | rxq->fl.size = 72; | ||
2317 | txq->q.size = 1024; | ||
2318 | } | ||
2319 | |||
2320 | /* | ||
2321 | * The firmware event queue is used for link state changes and | ||
2322 | * notifications of TX DMA completions. | ||
2323 | */ | ||
2324 | init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, | ||
2325 | L1_CACHE_BYTES); | ||
2326 | |||
2327 | /* | ||
2328 | * The forwarded interrupt queue is used when we're in MSI interrupt | ||
2329 | * mode. In this mode all interrupts associated with RX queues will | ||
2330 | * be forwarded to a single queue which we'll associate with our MSI | ||
2331 | * interrupt vector. The messages dropped in the forwarded interrupt | ||
2332 | * queue will indicate which ingress queue needs servicing ... This | ||
2333 | * queue needs to be large enough to accommodate all of the ingress | ||
2334 | * queues which are forwarding their interrupt (+1 to prevent the PIDX | ||
2335 | * from equalling the CIDX if every ingress queue has an outstanding | ||
2336 | * interrupt). The queue doesn't need to be any larger because no | ||
2337 | * ingress queue will ever have more than one outstanding interrupt at | ||
2338 | * any time ... | ||
2339 | */ | ||
2340 | init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1, | ||
2341 | L1_CACHE_BYTES); | ||
2342 | } | ||
2343 | |||
2344 | /* | ||
2345 | * Reduce the number of Ethernet queues across all ports to at most n. | ||
2346 | * n provides at least one queue per port. | ||
2347 | */ | ||
2348 | static void __devinit reduce_ethqs(struct adapter *adapter, int n) | ||
2349 | { | ||
2350 | int i; | ||
2351 | struct port_info *pi; | ||
2352 | |||
2353 | /* | ||
2354 | * While we have too many active Ether Queue Sets, interate across the | ||
2355 | * "ports" and reduce their individual Queue Set allocations. | ||
2356 | */ | ||
2357 | BUG_ON(n < adapter->params.nports); | ||
2358 | while (n < adapter->sge.ethqsets) | ||
2359 | for_each_port(adapter, i) { | ||
2360 | pi = adap2pinfo(adapter, i); | ||
2361 | if (pi->nqsets > 1) { | ||
2362 | pi->nqsets--; | ||
2363 | adapter->sge.ethqsets--; | ||
2364 | if (adapter->sge.ethqsets <= n) | ||
2365 | break; | ||
2366 | } | ||
2367 | } | ||
2368 | |||
2369 | /* | ||
2370 | * Reassign the starting Queue Sets for each of the "ports" ... | ||
2371 | */ | ||
2372 | n = 0; | ||
2373 | for_each_port(adapter, i) { | ||
2374 | pi = adap2pinfo(adapter, i); | ||
2375 | pi->first_qset = n; | ||
2376 | n += pi->nqsets; | ||
2377 | } | ||
2378 | } | ||
2379 | |||
2380 | /* | ||
2381 | * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally | ||
2382 | * we get a separate MSI-X vector for every "Queue Set" plus any extras we | ||
2383 | * need. Minimally we need one for every Virtual Interface plus those needed | ||
2384 | * for our "extras". Note that this process may lower the maximum number of | ||
2385 | * allowed Queue Sets ... | ||
2386 | */ | ||
2387 | static int __devinit enable_msix(struct adapter *adapter) | ||
2388 | { | ||
2389 | int i, err, want, need; | ||
2390 | struct msix_entry entries[MSIX_ENTRIES]; | ||
2391 | struct sge *s = &adapter->sge; | ||
2392 | |||
2393 | for (i = 0; i < MSIX_ENTRIES; ++i) | ||
2394 | entries[i].entry = i; | ||
2395 | |||
2396 | /* | ||
2397 | * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets" | ||
2398 | * plus those needed for our "extras" (for example, the firmware | ||
2399 | * message queue). We _need_ at least one "Queue Set" per Virtual | ||
2400 | * Interface plus those needed for our "extras". So now we get to see | ||
2401 | * if the song is right ... | ||
2402 | */ | ||
2403 | want = s->max_ethqsets + MSIX_EXTRAS; | ||
2404 | need = adapter->params.nports + MSIX_EXTRAS; | ||
2405 | while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need) | ||
2406 | want = err; | ||
2407 | |||
2408 | if (err == 0) { | ||
2409 | int nqsets = want - MSIX_EXTRAS; | ||
2410 | if (nqsets < s->max_ethqsets) { | ||
2411 | dev_warn(adapter->pdev_dev, "only enough MSI-X vectors" | ||
2412 | " for %d Queue Sets\n", nqsets); | ||
2413 | s->max_ethqsets = nqsets; | ||
2414 | if (nqsets < s->ethqsets) | ||
2415 | reduce_ethqs(adapter, nqsets); | ||
2416 | } | ||
2417 | for (i = 0; i < want; ++i) | ||
2418 | adapter->msix_info[i].vec = entries[i].vector; | ||
2419 | } else if (err > 0) { | ||
2420 | pci_disable_msix(adapter->pdev); | ||
2421 | dev_info(adapter->pdev_dev, "only %d MSI-X vectors left," | ||
2422 | " not using MSI-X\n", err); | ||
2423 | } | ||
2424 | return err; | ||
2425 | } | ||
2426 | |||
2427 | #ifdef HAVE_NET_DEVICE_OPS | ||
2428 | static const struct net_device_ops cxgb4vf_netdev_ops = { | ||
2429 | .ndo_open = cxgb4vf_open, | ||
2430 | .ndo_stop = cxgb4vf_stop, | ||
2431 | .ndo_start_xmit = t4vf_eth_xmit, | ||
2432 | .ndo_get_stats = cxgb4vf_get_stats, | ||
2433 | .ndo_set_rx_mode = cxgb4vf_set_rxmode, | ||
2434 | .ndo_set_mac_address = cxgb4vf_set_mac_addr, | ||
2435 | .ndo_select_queue = cxgb4vf_select_queue, | ||
2436 | .ndo_validate_addr = eth_validate_addr, | ||
2437 | .ndo_do_ioctl = cxgb4vf_do_ioctl, | ||
2438 | .ndo_change_mtu = cxgb4vf_change_mtu, | ||
2439 | .ndo_vlan_rx_register = cxgb4vf_vlan_rx_register, | ||
2440 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
2441 | .ndo_poll_controller = cxgb4vf_poll_controller, | ||
2442 | #endif | ||
2443 | }; | ||
2444 | #endif | ||
2445 | |||
2446 | /* | ||
2447 | * "Probe" a device: initialize a device and construct all kernel and driver | ||
2448 | * state needed to manage the device. This routine is called "init_one" in | ||
2449 | * the PF Driver ... | ||
2450 | */ | ||
2451 | static int __devinit cxgb4vf_pci_probe(struct pci_dev *pdev, | ||
2452 | const struct pci_device_id *ent) | ||
2453 | { | ||
2454 | static int version_printed; | ||
2455 | |||
2456 | int pci_using_dac; | ||
2457 | int err, pidx; | ||
2458 | unsigned int pmask; | ||
2459 | struct adapter *adapter; | ||
2460 | struct port_info *pi; | ||
2461 | struct net_device *netdev; | ||
2462 | |||
2463 | /* | ||
2464 | * Vet our module parameters. | ||
2465 | */ | ||
2466 | if (msi != MSI_MSIX && msi != MSI_MSI) { | ||
2467 | dev_err(&pdev->dev, "bad module parameter msi=%d; must be %d" | ||
2468 | " (MSI-X or MSI) or %d (MSI)\n", msi, MSI_MSIX, | ||
2469 | MSI_MSI); | ||
2470 | err = -EINVAL; | ||
2471 | goto err_out; | ||
2472 | } | ||
2473 | |||
2474 | /* | ||
2475 | * Print our driver banner the first time we're called to initialize a | ||
2476 | * device. | ||
2477 | */ | ||
2478 | if (version_printed == 0) { | ||
2479 | printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); | ||
2480 | version_printed = 1; | ||
2481 | } | ||
2482 | |||
2483 | /* | ||
2484 | * Reserve PCI resources for the device. If we can't get them some | ||
2485 | * other driver may have already claimed the device ... | ||
2486 | */ | ||
2487 | err = pci_request_regions(pdev, KBUILD_MODNAME); | ||
2488 | if (err) { | ||
2489 | dev_err(&pdev->dev, "cannot obtain PCI resources\n"); | ||
2490 | return err; | ||
2491 | } | ||
2492 | |||
2493 | /* | ||
2494 | * Initialize generic PCI device state. | ||
2495 | */ | ||
2496 | err = pci_enable_device(pdev); | ||
2497 | if (err) { | ||
2498 | dev_err(&pdev->dev, "cannot enable PCI device\n"); | ||
2499 | goto err_release_regions; | ||
2500 | } | ||
2501 | |||
2502 | /* | ||
2503 | * Set up our DMA mask: try for 64-bit address masking first and | ||
2504 | * fall back to 32-bit if we can't get 64 bits ... | ||
2505 | */ | ||
2506 | err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); | ||
2507 | if (err == 0) { | ||
2508 | err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); | ||
2509 | if (err) { | ||
2510 | dev_err(&pdev->dev, "unable to obtain 64-bit DMA for" | ||
2511 | " coherent allocations\n"); | ||
2512 | goto err_disable_device; | ||
2513 | } | ||
2514 | pci_using_dac = 1; | ||
2515 | } else { | ||
2516 | err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); | ||
2517 | if (err != 0) { | ||
2518 | dev_err(&pdev->dev, "no usable DMA configuration\n"); | ||
2519 | goto err_disable_device; | ||
2520 | } | ||
2521 | pci_using_dac = 0; | ||
2522 | } | ||
2523 | |||
2524 | /* | ||
2525 | * Enable bus mastering for the device ... | ||
2526 | */ | ||
2527 | pci_set_master(pdev); | ||
2528 | |||
2529 | /* | ||
2530 | * Allocate our adapter data structure and attach it to the device. | ||
2531 | */ | ||
2532 | adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); | ||
2533 | if (!adapter) { | ||
2534 | err = -ENOMEM; | ||
2535 | goto err_disable_device; | ||
2536 | } | ||
2537 | pci_set_drvdata(pdev, adapter); | ||
2538 | adapter->pdev = pdev; | ||
2539 | adapter->pdev_dev = &pdev->dev; | ||
2540 | |||
2541 | /* | ||
2542 | * Initialize SMP data synchronization resources. | ||
2543 | */ | ||
2544 | spin_lock_init(&adapter->stats_lock); | ||
2545 | |||
2546 | /* | ||
2547 | * Map our I/O registers in BAR0. | ||
2548 | */ | ||
2549 | adapter->regs = pci_ioremap_bar(pdev, 0); | ||
2550 | if (!adapter->regs) { | ||
2551 | dev_err(&pdev->dev, "cannot map device registers\n"); | ||
2552 | err = -ENOMEM; | ||
2553 | goto err_free_adapter; | ||
2554 | } | ||
2555 | |||
2556 | /* | ||
2557 | * Initialize adapter level features. | ||
2558 | */ | ||
2559 | adapter->name = pci_name(pdev); | ||
2560 | adapter->msg_enable = dflt_msg_enable; | ||
2561 | err = adap_init0(adapter); | ||
2562 | if (err) | ||
2563 | goto err_unmap_bar; | ||
2564 | |||
2565 | /* | ||
2566 | * Allocate our "adapter ports" and stitch everything together. | ||
2567 | */ | ||
2568 | pmask = adapter->params.vfres.pmask; | ||
2569 | for_each_port(adapter, pidx) { | ||
2570 | int port_id, viid; | ||
2571 | |||
2572 | /* | ||
2573 | * We simplistically allocate our virtual interfaces | ||
2574 | * sequentially across the port numbers to which we have | ||
2575 | * access rights. This should be configurable in some manner | ||
2576 | * ... | ||
2577 | */ | ||
2578 | if (pmask == 0) | ||
2579 | break; | ||
2580 | port_id = ffs(pmask) - 1; | ||
2581 | pmask &= ~(1 << port_id); | ||
2582 | viid = t4vf_alloc_vi(adapter, port_id); | ||
2583 | if (viid < 0) { | ||
2584 | dev_err(&pdev->dev, "cannot allocate VI for port %d:" | ||
2585 | " err=%d\n", port_id, viid); | ||
2586 | err = viid; | ||
2587 | goto err_free_dev; | ||
2588 | } | ||
2589 | |||
2590 | /* | ||
2591 | * Allocate our network device and stitch things together. | ||
2592 | */ | ||
2593 | netdev = alloc_etherdev_mq(sizeof(struct port_info), | ||
2594 | MAX_PORT_QSETS); | ||
2595 | if (netdev == NULL) { | ||
2596 | dev_err(&pdev->dev, "cannot allocate netdev for" | ||
2597 | " port %d\n", port_id); | ||
2598 | t4vf_free_vi(adapter, viid); | ||
2599 | err = -ENOMEM; | ||
2600 | goto err_free_dev; | ||
2601 | } | ||
2602 | adapter->port[pidx] = netdev; | ||
2603 | SET_NETDEV_DEV(netdev, &pdev->dev); | ||
2604 | pi = netdev_priv(netdev); | ||
2605 | pi->adapter = adapter; | ||
2606 | pi->pidx = pidx; | ||
2607 | pi->port_id = port_id; | ||
2608 | pi->viid = viid; | ||
2609 | |||
2610 | /* | ||
2611 | * Initialize the starting state of our "port" and register | ||
2612 | * it. | ||
2613 | */ | ||
2614 | pi->xact_addr_filt = -1; | ||
2615 | pi->rx_offload = RX_CSO; | ||
2616 | netif_carrier_off(netdev); | ||
2617 | netif_tx_stop_all_queues(netdev); | ||
2618 | netdev->irq = pdev->irq; | ||
2619 | |||
2620 | netdev->features = (NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 | | ||
2621 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | | ||
2622 | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX | | ||
2623 | NETIF_F_GRO); | ||
2624 | if (pci_using_dac) | ||
2625 | netdev->features |= NETIF_F_HIGHDMA; | ||
2626 | netdev->vlan_features = | ||
2627 | (netdev->features & | ||
2628 | ~(NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX)); | ||
2629 | |||
2630 | #ifdef HAVE_NET_DEVICE_OPS | ||
2631 | netdev->netdev_ops = &cxgb4vf_netdev_ops; | ||
2632 | #else | ||
2633 | netdev->vlan_rx_register = cxgb4vf_vlan_rx_register; | ||
2634 | netdev->open = cxgb4vf_open; | ||
2635 | netdev->stop = cxgb4vf_stop; | ||
2636 | netdev->hard_start_xmit = t4vf_eth_xmit; | ||
2637 | netdev->get_stats = cxgb4vf_get_stats; | ||
2638 | netdev->set_rx_mode = cxgb4vf_set_rxmode; | ||
2639 | netdev->do_ioctl = cxgb4vf_do_ioctl; | ||
2640 | netdev->change_mtu = cxgb4vf_change_mtu; | ||
2641 | netdev->set_mac_address = cxgb4vf_set_mac_addr; | ||
2642 | netdev->select_queue = cxgb4vf_select_queue; | ||
2643 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
2644 | netdev->poll_controller = cxgb4vf_poll_controller; | ||
2645 | #endif | ||
2646 | #endif | ||
2647 | SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops); | ||
2648 | |||
2649 | /* | ||
2650 | * Initialize the hardware/software state for the port. | ||
2651 | */ | ||
2652 | err = t4vf_port_init(adapter, pidx); | ||
2653 | if (err) { | ||
2654 | dev_err(&pdev->dev, "cannot initialize port %d\n", | ||
2655 | pidx); | ||
2656 | goto err_free_dev; | ||
2657 | } | ||
2658 | } | ||
2659 | |||
2660 | /* | ||
2661 | * The "card" is now ready to go. If any errors occur during device | ||
2662 | * registration we do not fail the whole "card" but rather proceed | ||
2663 | * only with the ports we manage to register successfully. However we | ||
2664 | * must register at least one net device. | ||
2665 | */ | ||
2666 | for_each_port(adapter, pidx) { | ||
2667 | netdev = adapter->port[pidx]; | ||
2668 | if (netdev == NULL) | ||
2669 | continue; | ||
2670 | |||
2671 | err = register_netdev(netdev); | ||
2672 | if (err) { | ||
2673 | dev_warn(&pdev->dev, "cannot register net device %s," | ||
2674 | " skipping\n", netdev->name); | ||
2675 | continue; | ||
2676 | } | ||
2677 | |||
2678 | set_bit(pidx, &adapter->registered_device_map); | ||
2679 | } | ||
2680 | if (adapter->registered_device_map == 0) { | ||
2681 | dev_err(&pdev->dev, "could not register any net devices\n"); | ||
2682 | goto err_free_dev; | ||
2683 | } | ||
2684 | |||
2685 | /* | ||
2686 | * Set up our debugfs entries. | ||
2687 | */ | ||
2688 | if (cxgb4vf_debugfs_root) { | ||
2689 | adapter->debugfs_root = | ||
2690 | debugfs_create_dir(pci_name(pdev), | ||
2691 | cxgb4vf_debugfs_root); | ||
2692 | if (adapter->debugfs_root == NULL) | ||
2693 | dev_warn(&pdev->dev, "could not create debugfs" | ||
2694 | " directory"); | ||
2695 | else | ||
2696 | setup_debugfs(adapter); | ||
2697 | } | ||
2698 | |||
2699 | /* | ||
2700 | * See what interrupts we'll be using. If we've been configured to | ||
2701 | * use MSI-X interrupts, try to enable them but fall back to using | ||
2702 | * MSI interrupts if we can't enable MSI-X interrupts. If we can't | ||
2703 | * get MSI interrupts we bail with the error. | ||
2704 | */ | ||
2705 | if (msi == MSI_MSIX && enable_msix(adapter) == 0) | ||
2706 | adapter->flags |= USING_MSIX; | ||
2707 | else { | ||
2708 | err = pci_enable_msi(pdev); | ||
2709 | if (err) { | ||
2710 | dev_err(&pdev->dev, "Unable to allocate %s interrupts;" | ||
2711 | " err=%d\n", | ||
2712 | msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err); | ||
2713 | goto err_free_debugfs; | ||
2714 | } | ||
2715 | adapter->flags |= USING_MSI; | ||
2716 | } | ||
2717 | |||
2718 | /* | ||
2719 | * Now that we know how many "ports" we have and what their types are, | ||
2720 | * and how many Queue Sets we can support, we can configure our queue | ||
2721 | * resources. | ||
2722 | */ | ||
2723 | cfg_queues(adapter); | ||
2724 | |||
2725 | /* | ||
2726 | * Print a short notice on the existance and configuration of the new | ||
2727 | * VF network device ... | ||
2728 | */ | ||
2729 | for_each_port(adapter, pidx) { | ||
2730 | dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n", | ||
2731 | adapter->port[pidx]->name, | ||
2732 | (adapter->flags & USING_MSIX) ? "MSI-X" : | ||
2733 | (adapter->flags & USING_MSI) ? "MSI" : ""); | ||
2734 | } | ||
2735 | |||
2736 | /* | ||
2737 | * Return success! | ||
2738 | */ | ||
2739 | return 0; | ||
2740 | |||
2741 | /* | ||
2742 | * Error recovery and exit code. Unwind state that's been created | ||
2743 | * so far and return the error. | ||
2744 | */ | ||
2745 | |||
2746 | err_free_debugfs: | ||
2747 | if (adapter->debugfs_root) { | ||
2748 | cleanup_debugfs(adapter); | ||
2749 | debugfs_remove_recursive(adapter->debugfs_root); | ||
2750 | } | ||
2751 | |||
2752 | err_free_dev: | ||
2753 | for_each_port(adapter, pidx) { | ||
2754 | netdev = adapter->port[pidx]; | ||
2755 | if (netdev == NULL) | ||
2756 | continue; | ||
2757 | pi = netdev_priv(netdev); | ||
2758 | t4vf_free_vi(adapter, pi->viid); | ||
2759 | if (test_bit(pidx, &adapter->registered_device_map)) | ||
2760 | unregister_netdev(netdev); | ||
2761 | free_netdev(netdev); | ||
2762 | } | ||
2763 | |||
2764 | err_unmap_bar: | ||
2765 | iounmap(adapter->regs); | ||
2766 | |||
2767 | err_free_adapter: | ||
2768 | kfree(adapter); | ||
2769 | pci_set_drvdata(pdev, NULL); | ||
2770 | |||
2771 | err_disable_device: | ||
2772 | pci_disable_device(pdev); | ||
2773 | pci_clear_master(pdev); | ||
2774 | |||
2775 | err_release_regions: | ||
2776 | pci_release_regions(pdev); | ||
2777 | pci_set_drvdata(pdev, NULL); | ||
2778 | |||
2779 | err_out: | ||
2780 | return err; | ||
2781 | } | ||
2782 | |||
2783 | /* | ||
2784 | * "Remove" a device: tear down all kernel and driver state created in the | ||
2785 | * "probe" routine and quiesce the device (disable interrupts, etc.). (Note | ||
2786 | * that this is called "remove_one" in the PF Driver.) | ||
2787 | */ | ||
2788 | static void __devexit cxgb4vf_pci_remove(struct pci_dev *pdev) | ||
2789 | { | ||
2790 | struct adapter *adapter = pci_get_drvdata(pdev); | ||
2791 | |||
2792 | /* | ||
2793 | * Tear down driver state associated with device. | ||
2794 | */ | ||
2795 | if (adapter) { | ||
2796 | int pidx; | ||
2797 | |||
2798 | /* | ||
2799 | * Stop all of our activity. Unregister network port, | ||
2800 | * disable interrupts, etc. | ||
2801 | */ | ||
2802 | for_each_port(adapter, pidx) | ||
2803 | if (test_bit(pidx, &adapter->registered_device_map)) | ||
2804 | unregister_netdev(adapter->port[pidx]); | ||
2805 | t4vf_sge_stop(adapter); | ||
2806 | if (adapter->flags & USING_MSIX) { | ||
2807 | pci_disable_msix(adapter->pdev); | ||
2808 | adapter->flags &= ~USING_MSIX; | ||
2809 | } else if (adapter->flags & USING_MSI) { | ||
2810 | pci_disable_msi(adapter->pdev); | ||
2811 | adapter->flags &= ~USING_MSI; | ||
2812 | } | ||
2813 | |||
2814 | /* | ||
2815 | * Tear down our debugfs entries. | ||
2816 | */ | ||
2817 | if (adapter->debugfs_root) { | ||
2818 | cleanup_debugfs(adapter); | ||
2819 | debugfs_remove_recursive(adapter->debugfs_root); | ||
2820 | } | ||
2821 | |||
2822 | /* | ||
2823 | * Free all of the various resources which we've acquired ... | ||
2824 | */ | ||
2825 | t4vf_free_sge_resources(adapter); | ||
2826 | for_each_port(adapter, pidx) { | ||
2827 | struct net_device *netdev = adapter->port[pidx]; | ||
2828 | struct port_info *pi; | ||
2829 | |||
2830 | if (netdev == NULL) | ||
2831 | continue; | ||
2832 | |||
2833 | pi = netdev_priv(netdev); | ||
2834 | t4vf_free_vi(adapter, pi->viid); | ||
2835 | free_netdev(netdev); | ||
2836 | } | ||
2837 | iounmap(adapter->regs); | ||
2838 | kfree(adapter); | ||
2839 | pci_set_drvdata(pdev, NULL); | ||
2840 | } | ||
2841 | |||
2842 | /* | ||
2843 | * Disable the device and release its PCI resources. | ||
2844 | */ | ||
2845 | pci_disable_device(pdev); | ||
2846 | pci_clear_master(pdev); | ||
2847 | pci_release_regions(pdev); | ||
2848 | } | ||
2849 | |||
2850 | /* | ||
2851 | * PCI Device registration data structures. | ||
2852 | */ | ||
2853 | #define CH_DEVICE(devid, idx) \ | ||
2854 | { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx } | ||
2855 | |||
2856 | static struct pci_device_id cxgb4vf_pci_tbl[] = { | ||
2857 | CH_DEVICE(0xb000, 0), /* PE10K FPGA */ | ||
2858 | CH_DEVICE(0x4800, 0), /* T440-dbg */ | ||
2859 | CH_DEVICE(0x4801, 0), /* T420-cr */ | ||
2860 | CH_DEVICE(0x4802, 0), /* T422-cr */ | ||
2861 | { 0, } | ||
2862 | }; | ||
2863 | |||
2864 | MODULE_DESCRIPTION(DRV_DESC); | ||
2865 | MODULE_AUTHOR("Chelsio Communications"); | ||
2866 | MODULE_LICENSE("Dual BSD/GPL"); | ||
2867 | MODULE_VERSION(DRV_VERSION); | ||
2868 | MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl); | ||
2869 | |||
2870 | static struct pci_driver cxgb4vf_driver = { | ||
2871 | .name = KBUILD_MODNAME, | ||
2872 | .id_table = cxgb4vf_pci_tbl, | ||
2873 | .probe = cxgb4vf_pci_probe, | ||
2874 | .remove = __devexit_p(cxgb4vf_pci_remove), | ||
2875 | }; | ||
2876 | |||
2877 | /* | ||
2878 | * Initialize global driver state. | ||
2879 | */ | ||
2880 | static int __init cxgb4vf_module_init(void) | ||
2881 | { | ||
2882 | int ret; | ||
2883 | |||
2884 | /* Debugfs support is optional, just warn if this fails */ | ||
2885 | cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); | ||
2886 | if (!cxgb4vf_debugfs_root) | ||
2887 | printk(KERN_WARNING KBUILD_MODNAME ": could not create" | ||
2888 | " debugfs entry, continuing\n"); | ||
2889 | |||
2890 | ret = pci_register_driver(&cxgb4vf_driver); | ||
2891 | if (ret < 0) | ||
2892 | debugfs_remove(cxgb4vf_debugfs_root); | ||
2893 | return ret; | ||
2894 | } | ||
2895 | |||
2896 | /* | ||
2897 | * Tear down global driver state. | ||
2898 | */ | ||
2899 | static void __exit cxgb4vf_module_exit(void) | ||
2900 | { | ||
2901 | pci_unregister_driver(&cxgb4vf_driver); | ||
2902 | debugfs_remove(cxgb4vf_debugfs_root); | ||
2903 | } | ||
2904 | |||
2905 | module_init(cxgb4vf_module_init); | ||
2906 | module_exit(cxgb4vf_module_exit); | ||