diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/mtd/chips |
Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/mtd/chips')
-rw-r--r-- | drivers/mtd/chips/Kconfig | 286 | ||||
-rw-r--r-- | drivers/mtd/chips/Makefile | 26 | ||||
-rw-r--r-- | drivers/mtd/chips/amd_flash.c | 1415 | ||||
-rw-r--r-- | drivers/mtd/chips/cfi_cmdset_0001.c | 2160 | ||||
-rw-r--r-- | drivers/mtd/chips/cfi_cmdset_0002.c | 1515 | ||||
-rw-r--r-- | drivers/mtd/chips/cfi_cmdset_0020.c | 1418 | ||||
-rw-r--r-- | drivers/mtd/chips/cfi_probe.c | 445 | ||||
-rw-r--r-- | drivers/mtd/chips/cfi_util.c | 196 | ||||
-rw-r--r-- | drivers/mtd/chips/chipreg.c | 111 | ||||
-rw-r--r-- | drivers/mtd/chips/fwh_lock.h | 107 | ||||
-rw-r--r-- | drivers/mtd/chips/gen_probe.c | 255 | ||||
-rw-r--r-- | drivers/mtd/chips/jedec.c | 934 | ||||
-rw-r--r-- | drivers/mtd/chips/jedec_probe.c | 2127 | ||||
-rw-r--r-- | drivers/mtd/chips/map_absent.c | 117 | ||||
-rw-r--r-- | drivers/mtd/chips/map_ram.c | 143 | ||||
-rw-r--r-- | drivers/mtd/chips/map_rom.c | 94 | ||||
-rw-r--r-- | drivers/mtd/chips/sharp.c | 596 |
17 files changed, 11945 insertions, 0 deletions
diff --git a/drivers/mtd/chips/Kconfig b/drivers/mtd/chips/Kconfig new file mode 100644 index 00000000000..d682dbc8157 --- /dev/null +++ b/drivers/mtd/chips/Kconfig | |||
@@ -0,0 +1,286 @@ | |||
1 | # drivers/mtd/chips/Kconfig | ||
2 | # $Id: Kconfig,v 1.13 2004/12/01 15:49:10 nico Exp $ | ||
3 | |||
4 | menu "RAM/ROM/Flash chip drivers" | ||
5 | depends on MTD!=n | ||
6 | |||
7 | config MTD_CFI | ||
8 | tristate "Detect flash chips by Common Flash Interface (CFI) probe" | ||
9 | depends on MTD | ||
10 | select MTD_GEN_PROBE | ||
11 | help | ||
12 | The Common Flash Interface specification was developed by Intel, | ||
13 | AMD and other flash manufactures that provides a universal method | ||
14 | for probing the capabilities of flash devices. If you wish to | ||
15 | support any device that is CFI-compliant, you need to enable this | ||
16 | option. Visit <http://www.amd.com/products/nvd/overview/cfi.html> | ||
17 | for more information on CFI. | ||
18 | |||
19 | config MTD_JEDECPROBE | ||
20 | tristate "Detect non-CFI AMD/JEDEC-compatible flash chips" | ||
21 | depends on MTD | ||
22 | select MTD_GEN_PROBE | ||
23 | help | ||
24 | This option enables JEDEC-style probing of flash chips which are not | ||
25 | compatible with the Common Flash Interface, but will use the common | ||
26 | CFI-targetted flash drivers for any chips which are identified which | ||
27 | are in fact compatible in all but the probe method. This actually | ||
28 | covers most AMD/Fujitsu-compatible chips, and will shortly cover also | ||
29 | non-CFI Intel chips (that code is in MTD CVS and should shortly be sent | ||
30 | for inclusion in Linus' tree) | ||
31 | |||
32 | config MTD_GEN_PROBE | ||
33 | tristate | ||
34 | |||
35 | config MTD_CFI_ADV_OPTIONS | ||
36 | bool "Flash chip driver advanced configuration options" | ||
37 | depends on MTD_GEN_PROBE | ||
38 | help | ||
39 | If you need to specify a specific endianness for access to flash | ||
40 | chips, or if you wish to reduce the size of the kernel by including | ||
41 | support for only specific arrangements of flash chips, say 'Y'. This | ||
42 | option does not directly affect the code, but will enable other | ||
43 | configuration options which allow you to do so. | ||
44 | |||
45 | If unsure, say 'N'. | ||
46 | |||
47 | choice | ||
48 | prompt "Flash cmd/query data swapping" | ||
49 | depends on MTD_CFI_ADV_OPTIONS | ||
50 | default MTD_CFI_NOSWAP | ||
51 | |||
52 | config MTD_CFI_NOSWAP | ||
53 | bool "NO" | ||
54 | ---help--- | ||
55 | This option defines the way in which the CPU attempts to arrange | ||
56 | data bits when writing the 'magic' commands to the chips. Saying | ||
57 | 'NO', which is the default when CONFIG_MTD_CFI_ADV_OPTIONS isn't | ||
58 | enabled, means that the CPU will not do any swapping; the chips | ||
59 | are expected to be wired to the CPU in 'host-endian' form. | ||
60 | Specific arrangements are possible with the BIG_ENDIAN_BYTE and | ||
61 | LITTLE_ENDIAN_BYTE, if the bytes are reversed. | ||
62 | |||
63 | If you have a LART, on which the data (and address) lines were | ||
64 | connected in a fashion which ensured that the nets were as short | ||
65 | as possible, resulting in a bit-shuffling which seems utterly | ||
66 | random to the untrained eye, you need the LART_ENDIAN_BYTE option. | ||
67 | |||
68 | Yes, there really exists something sicker than PDP-endian :) | ||
69 | |||
70 | config MTD_CFI_BE_BYTE_SWAP | ||
71 | bool "BIG_ENDIAN_BYTE" | ||
72 | |||
73 | config MTD_CFI_LE_BYTE_SWAP | ||
74 | bool "LITTLE_ENDIAN_BYTE" | ||
75 | |||
76 | endchoice | ||
77 | |||
78 | config MTD_CFI_GEOMETRY | ||
79 | bool "Specific CFI Flash geometry selection" | ||
80 | depends on MTD_CFI_ADV_OPTIONS | ||
81 | help | ||
82 | This option does not affect the code directly, but will enable | ||
83 | some other configuration options which would allow you to reduce | ||
84 | the size of the kernel by including support for only certain | ||
85 | arrangements of CFI chips. If unsure, say 'N' and all options | ||
86 | which are supported by the current code will be enabled. | ||
87 | |||
88 | config MTD_MAP_BANK_WIDTH_1 | ||
89 | bool "Support 8-bit buswidth" if MTD_CFI_GEOMETRY | ||
90 | default y | ||
91 | help | ||
92 | If you wish to support CFI devices on a physical bus which is | ||
93 | 8 bits wide, say 'Y'. | ||
94 | |||
95 | config MTD_MAP_BANK_WIDTH_2 | ||
96 | bool "Support 16-bit buswidth" if MTD_CFI_GEOMETRY | ||
97 | default y | ||
98 | help | ||
99 | If you wish to support CFI devices on a physical bus which is | ||
100 | 16 bits wide, say 'Y'. | ||
101 | |||
102 | config MTD_MAP_BANK_WIDTH_4 | ||
103 | bool "Support 32-bit buswidth" if MTD_CFI_GEOMETRY | ||
104 | default y | ||
105 | help | ||
106 | If you wish to support CFI devices on a physical bus which is | ||
107 | 32 bits wide, say 'Y'. | ||
108 | |||
109 | config MTD_MAP_BANK_WIDTH_8 | ||
110 | bool "Support 64-bit buswidth" if MTD_CFI_GEOMETRY | ||
111 | default n | ||
112 | help | ||
113 | If you wish to support CFI devices on a physical bus which is | ||
114 | 64 bits wide, say 'Y'. | ||
115 | |||
116 | config MTD_MAP_BANK_WIDTH_16 | ||
117 | bool "Support 128-bit buswidth" if MTD_CFI_GEOMETRY | ||
118 | default n | ||
119 | help | ||
120 | If you wish to support CFI devices on a physical bus which is | ||
121 | 128 bits wide, say 'Y'. | ||
122 | |||
123 | config MTD_MAP_BANK_WIDTH_32 | ||
124 | bool "Support 256-bit buswidth" if MTD_CFI_GEOMETRY | ||
125 | default n | ||
126 | help | ||
127 | If you wish to support CFI devices on a physical bus which is | ||
128 | 256 bits wide, say 'Y'. | ||
129 | |||
130 | config MTD_CFI_I1 | ||
131 | bool "Support 1-chip flash interleave" if MTD_CFI_GEOMETRY | ||
132 | default y | ||
133 | help | ||
134 | If your flash chips are not interleaved - i.e. you only have one | ||
135 | flash chip addressed by each bus cycle, then say 'Y'. | ||
136 | |||
137 | config MTD_CFI_I2 | ||
138 | bool "Support 2-chip flash interleave" if MTD_CFI_GEOMETRY | ||
139 | default y | ||
140 | help | ||
141 | If your flash chips are interleaved in pairs - i.e. you have two | ||
142 | flash chips addressed by each bus cycle, then say 'Y'. | ||
143 | |||
144 | config MTD_CFI_I4 | ||
145 | bool "Support 4-chip flash interleave" if MTD_CFI_GEOMETRY | ||
146 | default n | ||
147 | help | ||
148 | If your flash chips are interleaved in fours - i.e. you have four | ||
149 | flash chips addressed by each bus cycle, then say 'Y'. | ||
150 | |||
151 | config MTD_CFI_I8 | ||
152 | bool "Support 8-chip flash interleave" if MTD_CFI_GEOMETRY | ||
153 | default n | ||
154 | help | ||
155 | If your flash chips are interleaved in eights - i.e. you have eight | ||
156 | flash chips addressed by each bus cycle, then say 'Y'. | ||
157 | |||
158 | config MTD_CFI_INTELEXT | ||
159 | tristate "Support for Intel/Sharp flash chips" | ||
160 | depends on MTD_GEN_PROBE | ||
161 | select MTD_CFI_UTIL | ||
162 | help | ||
163 | The Common Flash Interface defines a number of different command | ||
164 | sets which a CFI-compliant chip may claim to implement. This code | ||
165 | provides support for one of those command sets, used on Intel | ||
166 | StrataFlash and other parts. | ||
167 | |||
168 | config MTD_CFI_AMDSTD | ||
169 | tristate "Support for AMD/Fujitsu flash chips" | ||
170 | depends on MTD_GEN_PROBE | ||
171 | select MTD_CFI_UTIL | ||
172 | help | ||
173 | The Common Flash Interface defines a number of different command | ||
174 | sets which a CFI-compliant chip may claim to implement. This code | ||
175 | provides support for one of those command sets, used on chips | ||
176 | including the AMD Am29LV320. | ||
177 | |||
178 | config MTD_CFI_AMDSTD_RETRY | ||
179 | int "Retry failed commands (erase/program)" | ||
180 | depends on MTD_CFI_AMDSTD | ||
181 | default "0" | ||
182 | help | ||
183 | Some chips, when attached to a shared bus, don't properly filter | ||
184 | bus traffic that is destined to other devices. This broken | ||
185 | behavior causes erase and program sequences to be aborted when | ||
186 | the sequences are mixed with traffic for other devices. | ||
187 | |||
188 | SST49LF040 (and related) chips are know to be broken. | ||
189 | |||
190 | config MTD_CFI_AMDSTD_RETRY_MAX | ||
191 | int "Max retries of failed commands (erase/program)" | ||
192 | depends on MTD_CFI_AMDSTD_RETRY | ||
193 | default "0" | ||
194 | help | ||
195 | If you have an SST49LF040 (or related chip) then this value should | ||
196 | be set to at least 1. This can also be adjusted at driver load | ||
197 | time with the retry_cmd_max module parameter. | ||
198 | |||
199 | config MTD_CFI_STAA | ||
200 | tristate "Support for ST (Advanced Architecture) flash chips" | ||
201 | depends on MTD_GEN_PROBE | ||
202 | select MTD_CFI_UTIL | ||
203 | help | ||
204 | The Common Flash Interface defines a number of different command | ||
205 | sets which a CFI-compliant chip may claim to implement. This code | ||
206 | provides support for one of those command sets. | ||
207 | |||
208 | config MTD_CFI_UTIL | ||
209 | tristate | ||
210 | |||
211 | config MTD_RAM | ||
212 | tristate "Support for RAM chips in bus mapping" | ||
213 | depends on MTD | ||
214 | help | ||
215 | This option enables basic support for RAM chips accessed through | ||
216 | a bus mapping driver. | ||
217 | |||
218 | config MTD_ROM | ||
219 | tristate "Support for ROM chips in bus mapping" | ||
220 | depends on MTD | ||
221 | help | ||
222 | This option enables basic support for ROM chips accessed through | ||
223 | a bus mapping driver. | ||
224 | |||
225 | config MTD_ABSENT | ||
226 | tristate "Support for absent chips in bus mapping" | ||
227 | depends on MTD | ||
228 | help | ||
229 | This option enables support for a dummy probing driver used to | ||
230 | allocated placeholder MTD devices on systems that have socketed | ||
231 | or removable media. Use of this driver as a fallback chip probe | ||
232 | preserves the expected registration order of MTD device nodes on | ||
233 | the system regardless of media presence. Device nodes created | ||
234 | with this driver will return -ENODEV upon access. | ||
235 | |||
236 | config MTD_OBSOLETE_CHIPS | ||
237 | depends on MTD && BROKEN | ||
238 | bool "Older (theoretically obsoleted now) drivers for non-CFI chips" | ||
239 | help | ||
240 | This option does not enable any code directly, but will allow you to | ||
241 | select some other chip drivers which are now considered obsolete, | ||
242 | because the generic CONFIG_JEDECPROBE code above should now detect | ||
243 | the chips which are supported by these drivers, and allow the generic | ||
244 | CFI-compatible drivers to drive the chips. Say 'N' here unless you have | ||
245 | already tried the CONFIG_JEDECPROBE method and reported its failure | ||
246 | to the MTD mailing list at <linux-mtd@lists.infradead.org> | ||
247 | |||
248 | config MTD_AMDSTD | ||
249 | tristate "AMD compatible flash chip support (non-CFI)" | ||
250 | depends on MTD && MTD_OBSOLETE_CHIPS | ||
251 | help | ||
252 | This option enables support for flash chips using AMD-compatible | ||
253 | commands, including some which are not CFI-compatible and hence | ||
254 | cannot be used with the CONFIG_MTD_CFI_AMDSTD option. | ||
255 | |||
256 | It also works on AMD compatible chips that do conform to CFI. | ||
257 | |||
258 | config MTD_SHARP | ||
259 | tristate "pre-CFI Sharp chip support" | ||
260 | depends on MTD && MTD_OBSOLETE_CHIPS | ||
261 | help | ||
262 | This option enables support for flash chips using Sharp-compatible | ||
263 | commands, including some which are not CFI-compatible and hence | ||
264 | cannot be used with the CONFIG_MTD_CFI_INTELxxx options. | ||
265 | |||
266 | config MTD_JEDEC | ||
267 | tristate "JEDEC device support" | ||
268 | depends on MTD && MTD_OBSOLETE_CHIPS | ||
269 | help | ||
270 | Enable older older JEDEC flash interface devices for self | ||
271 | programming flash. It is commonly used in older AMD chips. It is | ||
272 | only called JEDEC because the JEDEC association | ||
273 | <http://www.jedec.org/> distributes the identification codes for the | ||
274 | chips. | ||
275 | |||
276 | config MTD_XIP | ||
277 | bool "XIP aware MTD support" | ||
278 | depends on !SMP && MTD_CFI_INTELEXT && EXPERIMENTAL | ||
279 | default y if XIP_KERNEL | ||
280 | help | ||
281 | This allows MTD support to work with flash memory which is also | ||
282 | used for XIP purposes. If you're not sure what this is all about | ||
283 | then say N. | ||
284 | |||
285 | endmenu | ||
286 | |||
diff --git a/drivers/mtd/chips/Makefile b/drivers/mtd/chips/Makefile new file mode 100644 index 00000000000..6830489828c --- /dev/null +++ b/drivers/mtd/chips/Makefile | |||
@@ -0,0 +1,26 @@ | |||
1 | # | ||
2 | # linux/drivers/chips/Makefile | ||
3 | # | ||
4 | # $Id: Makefile.common,v 1.4 2004/07/12 16:07:30 dwmw2 Exp $ | ||
5 | |||
6 | # *** BIG UGLY NOTE *** | ||
7 | # | ||
8 | # The removal of get_module_symbol() and replacement with | ||
9 | # inter_module_register() et al has introduced a link order dependency | ||
10 | # here where previously there was none. We now have to ensure that | ||
11 | # the CFI command set drivers are linked before gen_probe.o | ||
12 | |||
13 | obj-$(CONFIG_MTD) += chipreg.o | ||
14 | obj-$(CONFIG_MTD_AMDSTD) += amd_flash.o | ||
15 | obj-$(CONFIG_MTD_CFI) += cfi_probe.o | ||
16 | obj-$(CONFIG_MTD_CFI_UTIL) += cfi_util.o | ||
17 | obj-$(CONFIG_MTD_CFI_STAA) += cfi_cmdset_0020.o | ||
18 | obj-$(CONFIG_MTD_CFI_AMDSTD) += cfi_cmdset_0002.o | ||
19 | obj-$(CONFIG_MTD_CFI_INTELEXT) += cfi_cmdset_0001.o | ||
20 | obj-$(CONFIG_MTD_GEN_PROBE) += gen_probe.o | ||
21 | obj-$(CONFIG_MTD_JEDEC) += jedec.o | ||
22 | obj-$(CONFIG_MTD_JEDECPROBE) += jedec_probe.o | ||
23 | obj-$(CONFIG_MTD_RAM) += map_ram.o | ||
24 | obj-$(CONFIG_MTD_ROM) += map_rom.o | ||
25 | obj-$(CONFIG_MTD_SHARP) += sharp.o | ||
26 | obj-$(CONFIG_MTD_ABSENT) += map_absent.o | ||
diff --git a/drivers/mtd/chips/amd_flash.c b/drivers/mtd/chips/amd_flash.c new file mode 100644 index 00000000000..41e2e3e3160 --- /dev/null +++ b/drivers/mtd/chips/amd_flash.c | |||
@@ -0,0 +1,1415 @@ | |||
1 | /* | ||
2 | * MTD map driver for AMD compatible flash chips (non-CFI) | ||
3 | * | ||
4 | * Author: Jonas Holmberg <jonas.holmberg@axis.com> | ||
5 | * | ||
6 | * $Id: amd_flash.c,v 1.26 2004/11/20 12:49:04 dwmw2 Exp $ | ||
7 | * | ||
8 | * Copyright (c) 2001 Axis Communications AB | ||
9 | * | ||
10 | * This file is under GPL. | ||
11 | * | ||
12 | */ | ||
13 | |||
14 | #include <linux/module.h> | ||
15 | #include <linux/types.h> | ||
16 | #include <linux/kernel.h> | ||
17 | #include <linux/sched.h> | ||
18 | #include <linux/errno.h> | ||
19 | #include <linux/slab.h> | ||
20 | #include <linux/delay.h> | ||
21 | #include <linux/interrupt.h> | ||
22 | #include <linux/init.h> | ||
23 | #include <linux/mtd/map.h> | ||
24 | #include <linux/mtd/mtd.h> | ||
25 | #include <linux/mtd/flashchip.h> | ||
26 | |||
27 | /* There's no limit. It exists only to avoid realloc. */ | ||
28 | #define MAX_AMD_CHIPS 8 | ||
29 | |||
30 | #define DEVICE_TYPE_X8 (8 / 8) | ||
31 | #define DEVICE_TYPE_X16 (16 / 8) | ||
32 | #define DEVICE_TYPE_X32 (32 / 8) | ||
33 | |||
34 | /* Addresses */ | ||
35 | #define ADDR_MANUFACTURER 0x0000 | ||
36 | #define ADDR_DEVICE_ID 0x0001 | ||
37 | #define ADDR_SECTOR_LOCK 0x0002 | ||
38 | #define ADDR_HANDSHAKE 0x0003 | ||
39 | #define ADDR_UNLOCK_1 0x0555 | ||
40 | #define ADDR_UNLOCK_2 0x02AA | ||
41 | |||
42 | /* Commands */ | ||
43 | #define CMD_UNLOCK_DATA_1 0x00AA | ||
44 | #define CMD_UNLOCK_DATA_2 0x0055 | ||
45 | #define CMD_MANUFACTURER_UNLOCK_DATA 0x0090 | ||
46 | #define CMD_UNLOCK_BYPASS_MODE 0x0020 | ||
47 | #define CMD_PROGRAM_UNLOCK_DATA 0x00A0 | ||
48 | #define CMD_RESET_DATA 0x00F0 | ||
49 | #define CMD_SECTOR_ERASE_UNLOCK_DATA 0x0080 | ||
50 | #define CMD_SECTOR_ERASE_UNLOCK_DATA_2 0x0030 | ||
51 | |||
52 | #define CMD_UNLOCK_SECTOR 0x0060 | ||
53 | |||
54 | /* Manufacturers */ | ||
55 | #define MANUFACTURER_AMD 0x0001 | ||
56 | #define MANUFACTURER_ATMEL 0x001F | ||
57 | #define MANUFACTURER_FUJITSU 0x0004 | ||
58 | #define MANUFACTURER_ST 0x0020 | ||
59 | #define MANUFACTURER_SST 0x00BF | ||
60 | #define MANUFACTURER_TOSHIBA 0x0098 | ||
61 | |||
62 | /* AMD */ | ||
63 | #define AM29F800BB 0x2258 | ||
64 | #define AM29F800BT 0x22D6 | ||
65 | #define AM29LV800BB 0x225B | ||
66 | #define AM29LV800BT 0x22DA | ||
67 | #define AM29LV160DT 0x22C4 | ||
68 | #define AM29LV160DB 0x2249 | ||
69 | #define AM29BDS323D 0x22D1 | ||
70 | #define AM29BDS643D 0x227E | ||
71 | |||
72 | /* Atmel */ | ||
73 | #define AT49xV16x 0x00C0 | ||
74 | #define AT49xV16xT 0x00C2 | ||
75 | |||
76 | /* Fujitsu */ | ||
77 | #define MBM29LV160TE 0x22C4 | ||
78 | #define MBM29LV160BE 0x2249 | ||
79 | #define MBM29LV800BB 0x225B | ||
80 | |||
81 | /* ST - www.st.com */ | ||
82 | #define M29W800T 0x00D7 | ||
83 | #define M29W160DT 0x22C4 | ||
84 | #define M29W160DB 0x2249 | ||
85 | |||
86 | /* SST */ | ||
87 | #define SST39LF800 0x2781 | ||
88 | #define SST39LF160 0x2782 | ||
89 | |||
90 | /* Toshiba */ | ||
91 | #define TC58FVT160 0x00C2 | ||
92 | #define TC58FVB160 0x0043 | ||
93 | |||
94 | #define D6_MASK 0x40 | ||
95 | |||
96 | struct amd_flash_private { | ||
97 | int device_type; | ||
98 | int interleave; | ||
99 | int numchips; | ||
100 | unsigned long chipshift; | ||
101 | // const char *im_name; | ||
102 | struct flchip chips[0]; | ||
103 | }; | ||
104 | |||
105 | struct amd_flash_info { | ||
106 | const __u16 mfr_id; | ||
107 | const __u16 dev_id; | ||
108 | const char *name; | ||
109 | const u_long size; | ||
110 | const int numeraseregions; | ||
111 | const struct mtd_erase_region_info regions[4]; | ||
112 | }; | ||
113 | |||
114 | |||
115 | |||
116 | static int amd_flash_read(struct mtd_info *, loff_t, size_t, size_t *, | ||
117 | u_char *); | ||
118 | static int amd_flash_write(struct mtd_info *, loff_t, size_t, size_t *, | ||
119 | const u_char *); | ||
120 | static int amd_flash_erase(struct mtd_info *, struct erase_info *); | ||
121 | static void amd_flash_sync(struct mtd_info *); | ||
122 | static int amd_flash_suspend(struct mtd_info *); | ||
123 | static void amd_flash_resume(struct mtd_info *); | ||
124 | static void amd_flash_destroy(struct mtd_info *); | ||
125 | static struct mtd_info *amd_flash_probe(struct map_info *map); | ||
126 | |||
127 | |||
128 | static struct mtd_chip_driver amd_flash_chipdrv = { | ||
129 | .probe = amd_flash_probe, | ||
130 | .destroy = amd_flash_destroy, | ||
131 | .name = "amd_flash", | ||
132 | .module = THIS_MODULE | ||
133 | }; | ||
134 | |||
135 | |||
136 | |||
137 | static const char im_name[] = "amd_flash"; | ||
138 | |||
139 | |||
140 | |||
141 | static inline __u32 wide_read(struct map_info *map, __u32 addr) | ||
142 | { | ||
143 | if (map->buswidth == 1) { | ||
144 | return map_read8(map, addr); | ||
145 | } else if (map->buswidth == 2) { | ||
146 | return map_read16(map, addr); | ||
147 | } else if (map->buswidth == 4) { | ||
148 | return map_read32(map, addr); | ||
149 | } | ||
150 | |||
151 | return 0; | ||
152 | } | ||
153 | |||
154 | static inline void wide_write(struct map_info *map, __u32 val, __u32 addr) | ||
155 | { | ||
156 | if (map->buswidth == 1) { | ||
157 | map_write8(map, val, addr); | ||
158 | } else if (map->buswidth == 2) { | ||
159 | map_write16(map, val, addr); | ||
160 | } else if (map->buswidth == 4) { | ||
161 | map_write32(map, val, addr); | ||
162 | } | ||
163 | } | ||
164 | |||
165 | static inline __u32 make_cmd(struct map_info *map, __u32 cmd) | ||
166 | { | ||
167 | const struct amd_flash_private *private = map->fldrv_priv; | ||
168 | if ((private->interleave == 2) && | ||
169 | (private->device_type == DEVICE_TYPE_X16)) { | ||
170 | cmd |= (cmd << 16); | ||
171 | } | ||
172 | |||
173 | return cmd; | ||
174 | } | ||
175 | |||
176 | static inline void send_unlock(struct map_info *map, unsigned long base) | ||
177 | { | ||
178 | wide_write(map, (CMD_UNLOCK_DATA_1 << 16) | CMD_UNLOCK_DATA_1, | ||
179 | base + (map->buswidth * ADDR_UNLOCK_1)); | ||
180 | wide_write(map, (CMD_UNLOCK_DATA_2 << 16) | CMD_UNLOCK_DATA_2, | ||
181 | base + (map->buswidth * ADDR_UNLOCK_2)); | ||
182 | } | ||
183 | |||
184 | static inline void send_cmd(struct map_info *map, unsigned long base, __u32 cmd) | ||
185 | { | ||
186 | send_unlock(map, base); | ||
187 | wide_write(map, make_cmd(map, cmd), | ||
188 | base + (map->buswidth * ADDR_UNLOCK_1)); | ||
189 | } | ||
190 | |||
191 | static inline void send_cmd_to_addr(struct map_info *map, unsigned long base, | ||
192 | __u32 cmd, unsigned long addr) | ||
193 | { | ||
194 | send_unlock(map, base); | ||
195 | wide_write(map, make_cmd(map, cmd), addr); | ||
196 | } | ||
197 | |||
198 | static inline int flash_is_busy(struct map_info *map, unsigned long addr, | ||
199 | int interleave) | ||
200 | { | ||
201 | |||
202 | if ((interleave == 2) && (map->buswidth == 4)) { | ||
203 | __u32 read1, read2; | ||
204 | |||
205 | read1 = wide_read(map, addr); | ||
206 | read2 = wide_read(map, addr); | ||
207 | |||
208 | return (((read1 >> 16) & D6_MASK) != | ||
209 | ((read2 >> 16) & D6_MASK)) || | ||
210 | (((read1 & 0xffff) & D6_MASK) != | ||
211 | ((read2 & 0xffff) & D6_MASK)); | ||
212 | } | ||
213 | |||
214 | return ((wide_read(map, addr) & D6_MASK) != | ||
215 | (wide_read(map, addr) & D6_MASK)); | ||
216 | } | ||
217 | |||
218 | static inline void unlock_sector(struct map_info *map, unsigned long sect_addr, | ||
219 | int unlock) | ||
220 | { | ||
221 | /* Sector lock address. A6 = 1 for unlock, A6 = 0 for lock */ | ||
222 | int SLA = unlock ? | ||
223 | (sect_addr | (0x40 * map->buswidth)) : | ||
224 | (sect_addr & ~(0x40 * map->buswidth)) ; | ||
225 | |||
226 | __u32 cmd = make_cmd(map, CMD_UNLOCK_SECTOR); | ||
227 | |||
228 | wide_write(map, make_cmd(map, CMD_RESET_DATA), 0); | ||
229 | wide_write(map, cmd, SLA); /* 1st cycle: write cmd to any address */ | ||
230 | wide_write(map, cmd, SLA); /* 2nd cycle: write cmd to any address */ | ||
231 | wide_write(map, cmd, SLA); /* 3rd cycle: write cmd to SLA */ | ||
232 | } | ||
233 | |||
234 | static inline int is_sector_locked(struct map_info *map, | ||
235 | unsigned long sect_addr) | ||
236 | { | ||
237 | int status; | ||
238 | |||
239 | wide_write(map, CMD_RESET_DATA, 0); | ||
240 | send_cmd(map, sect_addr, CMD_MANUFACTURER_UNLOCK_DATA); | ||
241 | |||
242 | /* status is 0x0000 for unlocked and 0x0001 for locked */ | ||
243 | status = wide_read(map, sect_addr + (map->buswidth * ADDR_SECTOR_LOCK)); | ||
244 | wide_write(map, CMD_RESET_DATA, 0); | ||
245 | return status; | ||
246 | } | ||
247 | |||
248 | static int amd_flash_do_unlock(struct mtd_info *mtd, loff_t ofs, size_t len, | ||
249 | int is_unlock) | ||
250 | { | ||
251 | struct map_info *map; | ||
252 | struct mtd_erase_region_info *merip; | ||
253 | int eraseoffset, erasesize, eraseblocks; | ||
254 | int i; | ||
255 | int retval = 0; | ||
256 | int lock_status; | ||
257 | |||
258 | map = mtd->priv; | ||
259 | |||
260 | /* Pass the whole chip through sector by sector and check for each | ||
261 | sector if the sector and the given interval overlap */ | ||
262 | for(i = 0; i < mtd->numeraseregions; i++) { | ||
263 | merip = &mtd->eraseregions[i]; | ||
264 | |||
265 | eraseoffset = merip->offset; | ||
266 | erasesize = merip->erasesize; | ||
267 | eraseblocks = merip->numblocks; | ||
268 | |||
269 | if (ofs > eraseoffset + erasesize) | ||
270 | continue; | ||
271 | |||
272 | while (eraseblocks > 0) { | ||
273 | if (ofs < eraseoffset + erasesize && ofs + len > eraseoffset) { | ||
274 | unlock_sector(map, eraseoffset, is_unlock); | ||
275 | |||
276 | lock_status = is_sector_locked(map, eraseoffset); | ||
277 | |||
278 | if (is_unlock && lock_status) { | ||
279 | printk("Cannot unlock sector at address %x length %xx\n", | ||
280 | eraseoffset, merip->erasesize); | ||
281 | retval = -1; | ||
282 | } else if (!is_unlock && !lock_status) { | ||
283 | printk("Cannot lock sector at address %x length %x\n", | ||
284 | eraseoffset, merip->erasesize); | ||
285 | retval = -1; | ||
286 | } | ||
287 | } | ||
288 | eraseoffset += erasesize; | ||
289 | eraseblocks --; | ||
290 | } | ||
291 | } | ||
292 | return retval; | ||
293 | } | ||
294 | |||
295 | static int amd_flash_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) | ||
296 | { | ||
297 | return amd_flash_do_unlock(mtd, ofs, len, 1); | ||
298 | } | ||
299 | |||
300 | static int amd_flash_lock(struct mtd_info *mtd, loff_t ofs, size_t len) | ||
301 | { | ||
302 | return amd_flash_do_unlock(mtd, ofs, len, 0); | ||
303 | } | ||
304 | |||
305 | |||
306 | /* | ||
307 | * Reads JEDEC manufacturer ID and device ID and returns the index of the first | ||
308 | * matching table entry (-1 if not found or alias for already found chip). | ||
309 | */ | ||
310 | static int probe_new_chip(struct mtd_info *mtd, __u32 base, | ||
311 | struct flchip *chips, | ||
312 | struct amd_flash_private *private, | ||
313 | const struct amd_flash_info *table, int table_size) | ||
314 | { | ||
315 | __u32 mfr_id; | ||
316 | __u32 dev_id; | ||
317 | struct map_info *map = mtd->priv; | ||
318 | struct amd_flash_private temp; | ||
319 | int i; | ||
320 | |||
321 | temp.device_type = DEVICE_TYPE_X16; // Assume X16 (FIXME) | ||
322 | temp.interleave = 2; | ||
323 | map->fldrv_priv = &temp; | ||
324 | |||
325 | /* Enter autoselect mode. */ | ||
326 | send_cmd(map, base, CMD_RESET_DATA); | ||
327 | send_cmd(map, base, CMD_MANUFACTURER_UNLOCK_DATA); | ||
328 | |||
329 | mfr_id = wide_read(map, base + (map->buswidth * ADDR_MANUFACTURER)); | ||
330 | dev_id = wide_read(map, base + (map->buswidth * ADDR_DEVICE_ID)); | ||
331 | |||
332 | if ((map->buswidth == 4) && ((mfr_id >> 16) == (mfr_id & 0xffff)) && | ||
333 | ((dev_id >> 16) == (dev_id & 0xffff))) { | ||
334 | mfr_id &= 0xffff; | ||
335 | dev_id &= 0xffff; | ||
336 | } else { | ||
337 | temp.interleave = 1; | ||
338 | } | ||
339 | |||
340 | for (i = 0; i < table_size; i++) { | ||
341 | if ((mfr_id == table[i].mfr_id) && | ||
342 | (dev_id == table[i].dev_id)) { | ||
343 | if (chips) { | ||
344 | int j; | ||
345 | |||
346 | /* Is this an alias for an already found chip? | ||
347 | * In that case that chip should be in | ||
348 | * autoselect mode now. | ||
349 | */ | ||
350 | for (j = 0; j < private->numchips; j++) { | ||
351 | __u32 mfr_id_other; | ||
352 | __u32 dev_id_other; | ||
353 | |||
354 | mfr_id_other = | ||
355 | wide_read(map, chips[j].start + | ||
356 | (map->buswidth * | ||
357 | ADDR_MANUFACTURER | ||
358 | )); | ||
359 | dev_id_other = | ||
360 | wide_read(map, chips[j].start + | ||
361 | (map->buswidth * | ||
362 | ADDR_DEVICE_ID)); | ||
363 | if (temp.interleave == 2) { | ||
364 | mfr_id_other &= 0xffff; | ||
365 | dev_id_other &= 0xffff; | ||
366 | } | ||
367 | if ((mfr_id_other == mfr_id) && | ||
368 | (dev_id_other == dev_id)) { | ||
369 | |||
370 | /* Exit autoselect mode. */ | ||
371 | send_cmd(map, base, | ||
372 | CMD_RESET_DATA); | ||
373 | |||
374 | return -1; | ||
375 | } | ||
376 | } | ||
377 | |||
378 | if (private->numchips == MAX_AMD_CHIPS) { | ||
379 | printk(KERN_WARNING | ||
380 | "%s: Too many flash chips " | ||
381 | "detected. Increase " | ||
382 | "MAX_AMD_CHIPS from %d.\n", | ||
383 | map->name, MAX_AMD_CHIPS); | ||
384 | |||
385 | return -1; | ||
386 | } | ||
387 | |||
388 | chips[private->numchips].start = base; | ||
389 | chips[private->numchips].state = FL_READY; | ||
390 | chips[private->numchips].mutex = | ||
391 | &chips[private->numchips]._spinlock; | ||
392 | private->numchips++; | ||
393 | } | ||
394 | |||
395 | printk("%s: Found %d x %ldMiB %s at 0x%x\n", map->name, | ||
396 | temp.interleave, (table[i].size)/(1024*1024), | ||
397 | table[i].name, base); | ||
398 | |||
399 | mtd->size += table[i].size * temp.interleave; | ||
400 | mtd->numeraseregions += table[i].numeraseregions; | ||
401 | |||
402 | break; | ||
403 | } | ||
404 | } | ||
405 | |||
406 | /* Exit autoselect mode. */ | ||
407 | send_cmd(map, base, CMD_RESET_DATA); | ||
408 | |||
409 | if (i == table_size) { | ||
410 | printk(KERN_DEBUG "%s: unknown flash device at 0x%x, " | ||
411 | "mfr id 0x%x, dev id 0x%x\n", map->name, | ||
412 | base, mfr_id, dev_id); | ||
413 | map->fldrv_priv = NULL; | ||
414 | |||
415 | return -1; | ||
416 | } | ||
417 | |||
418 | private->device_type = temp.device_type; | ||
419 | private->interleave = temp.interleave; | ||
420 | |||
421 | return i; | ||
422 | } | ||
423 | |||
424 | |||
425 | |||
426 | static struct mtd_info *amd_flash_probe(struct map_info *map) | ||
427 | { | ||
428 | static const struct amd_flash_info table[] = { | ||
429 | { | ||
430 | .mfr_id = MANUFACTURER_AMD, | ||
431 | .dev_id = AM29LV160DT, | ||
432 | .name = "AMD AM29LV160DT", | ||
433 | .size = 0x00200000, | ||
434 | .numeraseregions = 4, | ||
435 | .regions = { | ||
436 | { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 }, | ||
437 | { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks = 1 }, | ||
438 | { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks = 2 }, | ||
439 | { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks = 1 } | ||
440 | } | ||
441 | }, { | ||
442 | .mfr_id = MANUFACTURER_AMD, | ||
443 | .dev_id = AM29LV160DB, | ||
444 | .name = "AMD AM29LV160DB", | ||
445 | .size = 0x00200000, | ||
446 | .numeraseregions = 4, | ||
447 | .regions = { | ||
448 | { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 }, | ||
449 | { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 }, | ||
450 | { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 }, | ||
451 | { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 } | ||
452 | } | ||
453 | }, { | ||
454 | .mfr_id = MANUFACTURER_TOSHIBA, | ||
455 | .dev_id = TC58FVT160, | ||
456 | .name = "Toshiba TC58FVT160", | ||
457 | .size = 0x00200000, | ||
458 | .numeraseregions = 4, | ||
459 | .regions = { | ||
460 | { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 }, | ||
461 | { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks = 1 }, | ||
462 | { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks = 2 }, | ||
463 | { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks = 1 } | ||
464 | } | ||
465 | }, { | ||
466 | .mfr_id = MANUFACTURER_FUJITSU, | ||
467 | .dev_id = MBM29LV160TE, | ||
468 | .name = "Fujitsu MBM29LV160TE", | ||
469 | .size = 0x00200000, | ||
470 | .numeraseregions = 4, | ||
471 | .regions = { | ||
472 | { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 }, | ||
473 | { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks = 1 }, | ||
474 | { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks = 2 }, | ||
475 | { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks = 1 } | ||
476 | } | ||
477 | }, { | ||
478 | .mfr_id = MANUFACTURER_TOSHIBA, | ||
479 | .dev_id = TC58FVB160, | ||
480 | .name = "Toshiba TC58FVB160", | ||
481 | .size = 0x00200000, | ||
482 | .numeraseregions = 4, | ||
483 | .regions = { | ||
484 | { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 }, | ||
485 | { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 }, | ||
486 | { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 }, | ||
487 | { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 } | ||
488 | } | ||
489 | }, { | ||
490 | .mfr_id = MANUFACTURER_FUJITSU, | ||
491 | .dev_id = MBM29LV160BE, | ||
492 | .name = "Fujitsu MBM29LV160BE", | ||
493 | .size = 0x00200000, | ||
494 | .numeraseregions = 4, | ||
495 | .regions = { | ||
496 | { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 }, | ||
497 | { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 }, | ||
498 | { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 }, | ||
499 | { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 } | ||
500 | } | ||
501 | }, { | ||
502 | .mfr_id = MANUFACTURER_AMD, | ||
503 | .dev_id = AM29LV800BB, | ||
504 | .name = "AMD AM29LV800BB", | ||
505 | .size = 0x00100000, | ||
506 | .numeraseregions = 4, | ||
507 | .regions = { | ||
508 | { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 }, | ||
509 | { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 }, | ||
510 | { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 }, | ||
511 | { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 } | ||
512 | } | ||
513 | }, { | ||
514 | .mfr_id = MANUFACTURER_AMD, | ||
515 | .dev_id = AM29F800BB, | ||
516 | .name = "AMD AM29F800BB", | ||
517 | .size = 0x00100000, | ||
518 | .numeraseregions = 4, | ||
519 | .regions = { | ||
520 | { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 }, | ||
521 | { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 }, | ||
522 | { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 }, | ||
523 | { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 } | ||
524 | } | ||
525 | }, { | ||
526 | .mfr_id = MANUFACTURER_AMD, | ||
527 | .dev_id = AM29LV800BT, | ||
528 | .name = "AMD AM29LV800BT", | ||
529 | .size = 0x00100000, | ||
530 | .numeraseregions = 4, | ||
531 | .regions = { | ||
532 | { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 }, | ||
533 | { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks = 1 }, | ||
534 | { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks = 2 }, | ||
535 | { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks = 1 } | ||
536 | } | ||
537 | }, { | ||
538 | .mfr_id = MANUFACTURER_AMD, | ||
539 | .dev_id = AM29F800BT, | ||
540 | .name = "AMD AM29F800BT", | ||
541 | .size = 0x00100000, | ||
542 | .numeraseregions = 4, | ||
543 | .regions = { | ||
544 | { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 }, | ||
545 | { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks = 1 }, | ||
546 | { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks = 2 }, | ||
547 | { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks = 1 } | ||
548 | } | ||
549 | }, { | ||
550 | .mfr_id = MANUFACTURER_AMD, | ||
551 | .dev_id = AM29LV800BB, | ||
552 | .name = "AMD AM29LV800BB", | ||
553 | .size = 0x00100000, | ||
554 | .numeraseregions = 4, | ||
555 | .regions = { | ||
556 | { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 }, | ||
557 | { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks = 1 }, | ||
558 | { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks = 2 }, | ||
559 | { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks = 1 } | ||
560 | } | ||
561 | }, { | ||
562 | .mfr_id = MANUFACTURER_FUJITSU, | ||
563 | .dev_id = MBM29LV800BB, | ||
564 | .name = "Fujitsu MBM29LV800BB", | ||
565 | .size = 0x00100000, | ||
566 | .numeraseregions = 4, | ||
567 | .regions = { | ||
568 | { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 }, | ||
569 | { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 }, | ||
570 | { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 }, | ||
571 | { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 } | ||
572 | } | ||
573 | }, { | ||
574 | .mfr_id = MANUFACTURER_ST, | ||
575 | .dev_id = M29W800T, | ||
576 | .name = "ST M29W800T", | ||
577 | .size = 0x00100000, | ||
578 | .numeraseregions = 4, | ||
579 | .regions = { | ||
580 | { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 }, | ||
581 | { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks = 1 }, | ||
582 | { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks = 2 }, | ||
583 | { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks = 1 } | ||
584 | } | ||
585 | }, { | ||
586 | .mfr_id = MANUFACTURER_ST, | ||
587 | .dev_id = M29W160DT, | ||
588 | .name = "ST M29W160DT", | ||
589 | .size = 0x00200000, | ||
590 | .numeraseregions = 4, | ||
591 | .regions = { | ||
592 | { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 }, | ||
593 | { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks = 1 }, | ||
594 | { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks = 2 }, | ||
595 | { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks = 1 } | ||
596 | } | ||
597 | }, { | ||
598 | .mfr_id = MANUFACTURER_ST, | ||
599 | .dev_id = M29W160DB, | ||
600 | .name = "ST M29W160DB", | ||
601 | .size = 0x00200000, | ||
602 | .numeraseregions = 4, | ||
603 | .regions = { | ||
604 | { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 }, | ||
605 | { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 }, | ||
606 | { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 }, | ||
607 | { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 } | ||
608 | } | ||
609 | }, { | ||
610 | .mfr_id = MANUFACTURER_AMD, | ||
611 | .dev_id = AM29BDS323D, | ||
612 | .name = "AMD AM29BDS323D", | ||
613 | .size = 0x00400000, | ||
614 | .numeraseregions = 3, | ||
615 | .regions = { | ||
616 | { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 48 }, | ||
617 | { .offset = 0x300000, .erasesize = 0x10000, .numblocks = 15 }, | ||
618 | { .offset = 0x3f0000, .erasesize = 0x02000, .numblocks = 8 }, | ||
619 | } | ||
620 | }, { | ||
621 | .mfr_id = MANUFACTURER_AMD, | ||
622 | .dev_id = AM29BDS643D, | ||
623 | .name = "AMD AM29BDS643D", | ||
624 | .size = 0x00800000, | ||
625 | .numeraseregions = 3, | ||
626 | .regions = { | ||
627 | { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 96 }, | ||
628 | { .offset = 0x600000, .erasesize = 0x10000, .numblocks = 31 }, | ||
629 | { .offset = 0x7f0000, .erasesize = 0x02000, .numblocks = 8 }, | ||
630 | } | ||
631 | }, { | ||
632 | .mfr_id = MANUFACTURER_ATMEL, | ||
633 | .dev_id = AT49xV16x, | ||
634 | .name = "Atmel AT49xV16x", | ||
635 | .size = 0x00200000, | ||
636 | .numeraseregions = 2, | ||
637 | .regions = { | ||
638 | { .offset = 0x000000, .erasesize = 0x02000, .numblocks = 8 }, | ||
639 | { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 } | ||
640 | } | ||
641 | }, { | ||
642 | .mfr_id = MANUFACTURER_ATMEL, | ||
643 | .dev_id = AT49xV16xT, | ||
644 | .name = "Atmel AT49xV16xT", | ||
645 | .size = 0x00200000, | ||
646 | .numeraseregions = 2, | ||
647 | .regions = { | ||
648 | { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 }, | ||
649 | { .offset = 0x1F0000, .erasesize = 0x02000, .numblocks = 8 } | ||
650 | } | ||
651 | } | ||
652 | }; | ||
653 | |||
654 | struct mtd_info *mtd; | ||
655 | struct flchip chips[MAX_AMD_CHIPS]; | ||
656 | int table_pos[MAX_AMD_CHIPS]; | ||
657 | struct amd_flash_private temp; | ||
658 | struct amd_flash_private *private; | ||
659 | u_long size; | ||
660 | unsigned long base; | ||
661 | int i; | ||
662 | int reg_idx; | ||
663 | int offset; | ||
664 | |||
665 | mtd = (struct mtd_info*)kmalloc(sizeof(*mtd), GFP_KERNEL); | ||
666 | if (!mtd) { | ||
667 | printk(KERN_WARNING | ||
668 | "%s: kmalloc failed for info structure\n", map->name); | ||
669 | return NULL; | ||
670 | } | ||
671 | memset(mtd, 0, sizeof(*mtd)); | ||
672 | mtd->priv = map; | ||
673 | |||
674 | memset(&temp, 0, sizeof(temp)); | ||
675 | |||
676 | printk("%s: Probing for AMD compatible flash...\n", map->name); | ||
677 | |||
678 | if ((table_pos[0] = probe_new_chip(mtd, 0, NULL, &temp, table, | ||
679 | sizeof(table)/sizeof(table[0]))) | ||
680 | == -1) { | ||
681 | printk(KERN_WARNING | ||
682 | "%s: Found no AMD compatible device at location zero\n", | ||
683 | map->name); | ||
684 | kfree(mtd); | ||
685 | |||
686 | return NULL; | ||
687 | } | ||
688 | |||
689 | chips[0].start = 0; | ||
690 | chips[0].state = FL_READY; | ||
691 | chips[0].mutex = &chips[0]._spinlock; | ||
692 | temp.numchips = 1; | ||
693 | for (size = mtd->size; size > 1; size >>= 1) { | ||
694 | temp.chipshift++; | ||
695 | } | ||
696 | switch (temp.interleave) { | ||
697 | case 2: | ||
698 | temp.chipshift += 1; | ||
699 | break; | ||
700 | case 4: | ||
701 | temp.chipshift += 2; | ||
702 | break; | ||
703 | } | ||
704 | |||
705 | /* Find out if there are any more chips in the map. */ | ||
706 | for (base = (1 << temp.chipshift); | ||
707 | base < map->size; | ||
708 | base += (1 << temp.chipshift)) { | ||
709 | int numchips = temp.numchips; | ||
710 | table_pos[numchips] = probe_new_chip(mtd, base, chips, | ||
711 | &temp, table, sizeof(table)/sizeof(table[0])); | ||
712 | } | ||
713 | |||
714 | mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) * | ||
715 | mtd->numeraseregions, GFP_KERNEL); | ||
716 | if (!mtd->eraseregions) { | ||
717 | printk(KERN_WARNING "%s: Failed to allocate " | ||
718 | "memory for MTD erase region info\n", map->name); | ||
719 | kfree(mtd); | ||
720 | map->fldrv_priv = NULL; | ||
721 | return NULL; | ||
722 | } | ||
723 | |||
724 | reg_idx = 0; | ||
725 | offset = 0; | ||
726 | for (i = 0; i < temp.numchips; i++) { | ||
727 | int dev_size; | ||
728 | int j; | ||
729 | |||
730 | dev_size = 0; | ||
731 | for (j = 0; j < table[table_pos[i]].numeraseregions; j++) { | ||
732 | mtd->eraseregions[reg_idx].offset = offset + | ||
733 | (table[table_pos[i]].regions[j].offset * | ||
734 | temp.interleave); | ||
735 | mtd->eraseregions[reg_idx].erasesize = | ||
736 | table[table_pos[i]].regions[j].erasesize * | ||
737 | temp.interleave; | ||
738 | mtd->eraseregions[reg_idx].numblocks = | ||
739 | table[table_pos[i]].regions[j].numblocks; | ||
740 | if (mtd->erasesize < | ||
741 | mtd->eraseregions[reg_idx].erasesize) { | ||
742 | mtd->erasesize = | ||
743 | mtd->eraseregions[reg_idx].erasesize; | ||
744 | } | ||
745 | dev_size += mtd->eraseregions[reg_idx].erasesize * | ||
746 | mtd->eraseregions[reg_idx].numblocks; | ||
747 | reg_idx++; | ||
748 | } | ||
749 | offset += dev_size; | ||
750 | } | ||
751 | mtd->type = MTD_NORFLASH; | ||
752 | mtd->flags = MTD_CAP_NORFLASH; | ||
753 | mtd->name = map->name; | ||
754 | mtd->erase = amd_flash_erase; | ||
755 | mtd->read = amd_flash_read; | ||
756 | mtd->write = amd_flash_write; | ||
757 | mtd->sync = amd_flash_sync; | ||
758 | mtd->suspend = amd_flash_suspend; | ||
759 | mtd->resume = amd_flash_resume; | ||
760 | mtd->lock = amd_flash_lock; | ||
761 | mtd->unlock = amd_flash_unlock; | ||
762 | |||
763 | private = kmalloc(sizeof(*private) + (sizeof(struct flchip) * | ||
764 | temp.numchips), GFP_KERNEL); | ||
765 | if (!private) { | ||
766 | printk(KERN_WARNING | ||
767 | "%s: kmalloc failed for private structure\n", map->name); | ||
768 | kfree(mtd); | ||
769 | map->fldrv_priv = NULL; | ||
770 | return NULL; | ||
771 | } | ||
772 | memcpy(private, &temp, sizeof(temp)); | ||
773 | memcpy(private->chips, chips, | ||
774 | sizeof(struct flchip) * private->numchips); | ||
775 | for (i = 0; i < private->numchips; i++) { | ||
776 | init_waitqueue_head(&private->chips[i].wq); | ||
777 | spin_lock_init(&private->chips[i]._spinlock); | ||
778 | } | ||
779 | |||
780 | map->fldrv_priv = private; | ||
781 | |||
782 | map->fldrv = &amd_flash_chipdrv; | ||
783 | |||
784 | __module_get(THIS_MODULE); | ||
785 | return mtd; | ||
786 | } | ||
787 | |||
788 | |||
789 | |||
790 | static inline int read_one_chip(struct map_info *map, struct flchip *chip, | ||
791 | loff_t adr, size_t len, u_char *buf) | ||
792 | { | ||
793 | DECLARE_WAITQUEUE(wait, current); | ||
794 | unsigned long timeo = jiffies + HZ; | ||
795 | |||
796 | retry: | ||
797 | spin_lock_bh(chip->mutex); | ||
798 | |||
799 | if (chip->state != FL_READY){ | ||
800 | printk(KERN_INFO "%s: waiting for chip to read, state = %d\n", | ||
801 | map->name, chip->state); | ||
802 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
803 | add_wait_queue(&chip->wq, &wait); | ||
804 | |||
805 | spin_unlock_bh(chip->mutex); | ||
806 | |||
807 | schedule(); | ||
808 | remove_wait_queue(&chip->wq, &wait); | ||
809 | |||
810 | if(signal_pending(current)) { | ||
811 | return -EINTR; | ||
812 | } | ||
813 | |||
814 | timeo = jiffies + HZ; | ||
815 | |||
816 | goto retry; | ||
817 | } | ||
818 | |||
819 | adr += chip->start; | ||
820 | |||
821 | chip->state = FL_READY; | ||
822 | |||
823 | map_copy_from(map, buf, adr, len); | ||
824 | |||
825 | wake_up(&chip->wq); | ||
826 | spin_unlock_bh(chip->mutex); | ||
827 | |||
828 | return 0; | ||
829 | } | ||
830 | |||
831 | |||
832 | |||
833 | static int amd_flash_read(struct mtd_info *mtd, loff_t from, size_t len, | ||
834 | size_t *retlen, u_char *buf) | ||
835 | { | ||
836 | struct map_info *map = mtd->priv; | ||
837 | struct amd_flash_private *private = map->fldrv_priv; | ||
838 | unsigned long ofs; | ||
839 | int chipnum; | ||
840 | int ret = 0; | ||
841 | |||
842 | if ((from + len) > mtd->size) { | ||
843 | printk(KERN_WARNING "%s: read request past end of device " | ||
844 | "(0x%lx)\n", map->name, (unsigned long)from + len); | ||
845 | |||
846 | return -EINVAL; | ||
847 | } | ||
848 | |||
849 | /* Offset within the first chip that the first read should start. */ | ||
850 | chipnum = (from >> private->chipshift); | ||
851 | ofs = from - (chipnum << private->chipshift); | ||
852 | |||
853 | *retlen = 0; | ||
854 | |||
855 | while (len) { | ||
856 | unsigned long this_len; | ||
857 | |||
858 | if (chipnum >= private->numchips) { | ||
859 | break; | ||
860 | } | ||
861 | |||
862 | if ((len + ofs - 1) >> private->chipshift) { | ||
863 | this_len = (1 << private->chipshift) - ofs; | ||
864 | } else { | ||
865 | this_len = len; | ||
866 | } | ||
867 | |||
868 | ret = read_one_chip(map, &private->chips[chipnum], ofs, | ||
869 | this_len, buf); | ||
870 | if (ret) { | ||
871 | break; | ||
872 | } | ||
873 | |||
874 | *retlen += this_len; | ||
875 | len -= this_len; | ||
876 | buf += this_len; | ||
877 | |||
878 | ofs = 0; | ||
879 | chipnum++; | ||
880 | } | ||
881 | |||
882 | return ret; | ||
883 | } | ||
884 | |||
885 | |||
886 | |||
887 | static int write_one_word(struct map_info *map, struct flchip *chip, | ||
888 | unsigned long adr, __u32 datum) | ||
889 | { | ||
890 | unsigned long timeo = jiffies + HZ; | ||
891 | struct amd_flash_private *private = map->fldrv_priv; | ||
892 | DECLARE_WAITQUEUE(wait, current); | ||
893 | int ret = 0; | ||
894 | int times_left; | ||
895 | |||
896 | retry: | ||
897 | spin_lock_bh(chip->mutex); | ||
898 | |||
899 | if (chip->state != FL_READY){ | ||
900 | printk("%s: waiting for chip to write, state = %d\n", | ||
901 | map->name, chip->state); | ||
902 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
903 | add_wait_queue(&chip->wq, &wait); | ||
904 | |||
905 | spin_unlock_bh(chip->mutex); | ||
906 | |||
907 | schedule(); | ||
908 | remove_wait_queue(&chip->wq, &wait); | ||
909 | printk(KERN_INFO "%s: woke up to write\n", map->name); | ||
910 | if(signal_pending(current)) | ||
911 | return -EINTR; | ||
912 | |||
913 | timeo = jiffies + HZ; | ||
914 | |||
915 | goto retry; | ||
916 | } | ||
917 | |||
918 | chip->state = FL_WRITING; | ||
919 | |||
920 | adr += chip->start; | ||
921 | ENABLE_VPP(map); | ||
922 | send_cmd(map, chip->start, CMD_PROGRAM_UNLOCK_DATA); | ||
923 | wide_write(map, datum, adr); | ||
924 | |||
925 | times_left = 500000; | ||
926 | while (times_left-- && flash_is_busy(map, adr, private->interleave)) { | ||
927 | if (need_resched()) { | ||
928 | spin_unlock_bh(chip->mutex); | ||
929 | schedule(); | ||
930 | spin_lock_bh(chip->mutex); | ||
931 | } | ||
932 | } | ||
933 | |||
934 | if (!times_left) { | ||
935 | printk(KERN_WARNING "%s: write to 0x%lx timed out!\n", | ||
936 | map->name, adr); | ||
937 | ret = -EIO; | ||
938 | } else { | ||
939 | __u32 verify; | ||
940 | if ((verify = wide_read(map, adr)) != datum) { | ||
941 | printk(KERN_WARNING "%s: write to 0x%lx failed. " | ||
942 | "datum = %x, verify = %x\n", | ||
943 | map->name, adr, datum, verify); | ||
944 | ret = -EIO; | ||
945 | } | ||
946 | } | ||
947 | |||
948 | DISABLE_VPP(map); | ||
949 | chip->state = FL_READY; | ||
950 | wake_up(&chip->wq); | ||
951 | spin_unlock_bh(chip->mutex); | ||
952 | |||
953 | return ret; | ||
954 | } | ||
955 | |||
956 | |||
957 | |||
958 | static int amd_flash_write(struct mtd_info *mtd, loff_t to , size_t len, | ||
959 | size_t *retlen, const u_char *buf) | ||
960 | { | ||
961 | struct map_info *map = mtd->priv; | ||
962 | struct amd_flash_private *private = map->fldrv_priv; | ||
963 | int ret = 0; | ||
964 | int chipnum; | ||
965 | unsigned long ofs; | ||
966 | unsigned long chipstart; | ||
967 | |||
968 | *retlen = 0; | ||
969 | if (!len) { | ||
970 | return 0; | ||
971 | } | ||
972 | |||
973 | chipnum = to >> private->chipshift; | ||
974 | ofs = to - (chipnum << private->chipshift); | ||
975 | chipstart = private->chips[chipnum].start; | ||
976 | |||
977 | /* If it's not bus-aligned, do the first byte write. */ | ||
978 | if (ofs & (map->buswidth - 1)) { | ||
979 | unsigned long bus_ofs = ofs & ~(map->buswidth - 1); | ||
980 | int i = ofs - bus_ofs; | ||
981 | int n = 0; | ||
982 | u_char tmp_buf[4]; | ||
983 | __u32 datum; | ||
984 | |||
985 | map_copy_from(map, tmp_buf, | ||
986 | bus_ofs + private->chips[chipnum].start, | ||
987 | map->buswidth); | ||
988 | while (len && i < map->buswidth) | ||
989 | tmp_buf[i++] = buf[n++], len--; | ||
990 | |||
991 | if (map->buswidth == 2) { | ||
992 | datum = *(__u16*)tmp_buf; | ||
993 | } else if (map->buswidth == 4) { | ||
994 | datum = *(__u32*)tmp_buf; | ||
995 | } else { | ||
996 | return -EINVAL; /* should never happen, but be safe */ | ||
997 | } | ||
998 | |||
999 | ret = write_one_word(map, &private->chips[chipnum], bus_ofs, | ||
1000 | datum); | ||
1001 | if (ret) { | ||
1002 | return ret; | ||
1003 | } | ||
1004 | |||
1005 | ofs += n; | ||
1006 | buf += n; | ||
1007 | (*retlen) += n; | ||
1008 | |||
1009 | if (ofs >> private->chipshift) { | ||
1010 | chipnum++; | ||
1011 | ofs = 0; | ||
1012 | if (chipnum == private->numchips) { | ||
1013 | return 0; | ||
1014 | } | ||
1015 | } | ||
1016 | } | ||
1017 | |||
1018 | /* We are now aligned, write as much as possible. */ | ||
1019 | while(len >= map->buswidth) { | ||
1020 | __u32 datum; | ||
1021 | |||
1022 | if (map->buswidth == 1) { | ||
1023 | datum = *(__u8*)buf; | ||
1024 | } else if (map->buswidth == 2) { | ||
1025 | datum = *(__u16*)buf; | ||
1026 | } else if (map->buswidth == 4) { | ||
1027 | datum = *(__u32*)buf; | ||
1028 | } else { | ||
1029 | return -EINVAL; | ||
1030 | } | ||
1031 | |||
1032 | ret = write_one_word(map, &private->chips[chipnum], ofs, datum); | ||
1033 | |||
1034 | if (ret) { | ||
1035 | return ret; | ||
1036 | } | ||
1037 | |||
1038 | ofs += map->buswidth; | ||
1039 | buf += map->buswidth; | ||
1040 | (*retlen) += map->buswidth; | ||
1041 | len -= map->buswidth; | ||
1042 | |||
1043 | if (ofs >> private->chipshift) { | ||
1044 | chipnum++; | ||
1045 | ofs = 0; | ||
1046 | if (chipnum == private->numchips) { | ||
1047 | return 0; | ||
1048 | } | ||
1049 | chipstart = private->chips[chipnum].start; | ||
1050 | } | ||
1051 | } | ||
1052 | |||
1053 | if (len & (map->buswidth - 1)) { | ||
1054 | int i = 0, n = 0; | ||
1055 | u_char tmp_buf[2]; | ||
1056 | __u32 datum; | ||
1057 | |||
1058 | map_copy_from(map, tmp_buf, | ||
1059 | ofs + private->chips[chipnum].start, | ||
1060 | map->buswidth); | ||
1061 | while (len--) { | ||
1062 | tmp_buf[i++] = buf[n++]; | ||
1063 | } | ||
1064 | |||
1065 | if (map->buswidth == 2) { | ||
1066 | datum = *(__u16*)tmp_buf; | ||
1067 | } else if (map->buswidth == 4) { | ||
1068 | datum = *(__u32*)tmp_buf; | ||
1069 | } else { | ||
1070 | return -EINVAL; /* should never happen, but be safe */ | ||
1071 | } | ||
1072 | |||
1073 | ret = write_one_word(map, &private->chips[chipnum], ofs, datum); | ||
1074 | |||
1075 | if (ret) { | ||
1076 | return ret; | ||
1077 | } | ||
1078 | |||
1079 | (*retlen) += n; | ||
1080 | } | ||
1081 | |||
1082 | return 0; | ||
1083 | } | ||
1084 | |||
1085 | |||
1086 | |||
1087 | static inline int erase_one_block(struct map_info *map, struct flchip *chip, | ||
1088 | unsigned long adr, u_long size) | ||
1089 | { | ||
1090 | unsigned long timeo = jiffies + HZ; | ||
1091 | struct amd_flash_private *private = map->fldrv_priv; | ||
1092 | DECLARE_WAITQUEUE(wait, current); | ||
1093 | |||
1094 | retry: | ||
1095 | spin_lock_bh(chip->mutex); | ||
1096 | |||
1097 | if (chip->state != FL_READY){ | ||
1098 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
1099 | add_wait_queue(&chip->wq, &wait); | ||
1100 | |||
1101 | spin_unlock_bh(chip->mutex); | ||
1102 | |||
1103 | schedule(); | ||
1104 | remove_wait_queue(&chip->wq, &wait); | ||
1105 | |||
1106 | if (signal_pending(current)) { | ||
1107 | return -EINTR; | ||
1108 | } | ||
1109 | |||
1110 | timeo = jiffies + HZ; | ||
1111 | |||
1112 | goto retry; | ||
1113 | } | ||
1114 | |||
1115 | chip->state = FL_ERASING; | ||
1116 | |||
1117 | adr += chip->start; | ||
1118 | ENABLE_VPP(map); | ||
1119 | send_cmd(map, chip->start, CMD_SECTOR_ERASE_UNLOCK_DATA); | ||
1120 | send_cmd_to_addr(map, chip->start, CMD_SECTOR_ERASE_UNLOCK_DATA_2, adr); | ||
1121 | |||
1122 | timeo = jiffies + (HZ * 20); | ||
1123 | |||
1124 | spin_unlock_bh(chip->mutex); | ||
1125 | msleep(1000); | ||
1126 | spin_lock_bh(chip->mutex); | ||
1127 | |||
1128 | while (flash_is_busy(map, adr, private->interleave)) { | ||
1129 | |||
1130 | if (chip->state != FL_ERASING) { | ||
1131 | /* Someone's suspended the erase. Sleep */ | ||
1132 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
1133 | add_wait_queue(&chip->wq, &wait); | ||
1134 | |||
1135 | spin_unlock_bh(chip->mutex); | ||
1136 | printk(KERN_INFO "%s: erase suspended. Sleeping\n", | ||
1137 | map->name); | ||
1138 | schedule(); | ||
1139 | remove_wait_queue(&chip->wq, &wait); | ||
1140 | |||
1141 | if (signal_pending(current)) { | ||
1142 | return -EINTR; | ||
1143 | } | ||
1144 | |||
1145 | timeo = jiffies + (HZ*2); /* FIXME */ | ||
1146 | spin_lock_bh(chip->mutex); | ||
1147 | continue; | ||
1148 | } | ||
1149 | |||
1150 | /* OK Still waiting */ | ||
1151 | if (time_after(jiffies, timeo)) { | ||
1152 | chip->state = FL_READY; | ||
1153 | spin_unlock_bh(chip->mutex); | ||
1154 | printk(KERN_WARNING "%s: waiting for erase to complete " | ||
1155 | "timed out.\n", map->name); | ||
1156 | DISABLE_VPP(map); | ||
1157 | |||
1158 | return -EIO; | ||
1159 | } | ||
1160 | |||
1161 | /* Latency issues. Drop the lock, wait a while and retry */ | ||
1162 | spin_unlock_bh(chip->mutex); | ||
1163 | |||
1164 | if (need_resched()) | ||
1165 | schedule(); | ||
1166 | else | ||
1167 | udelay(1); | ||
1168 | |||
1169 | spin_lock_bh(chip->mutex); | ||
1170 | } | ||
1171 | |||
1172 | /* Verify every single word */ | ||
1173 | { | ||
1174 | int address; | ||
1175 | int error = 0; | ||
1176 | __u8 verify; | ||
1177 | |||
1178 | for (address = adr; address < (adr + size); address++) { | ||
1179 | if ((verify = map_read8(map, address)) != 0xFF) { | ||
1180 | error = 1; | ||
1181 | break; | ||
1182 | } | ||
1183 | } | ||
1184 | if (error) { | ||
1185 | chip->state = FL_READY; | ||
1186 | spin_unlock_bh(chip->mutex); | ||
1187 | printk(KERN_WARNING | ||
1188 | "%s: verify error at 0x%x, size %ld.\n", | ||
1189 | map->name, address, size); | ||
1190 | DISABLE_VPP(map); | ||
1191 | |||
1192 | return -EIO; | ||
1193 | } | ||
1194 | } | ||
1195 | |||
1196 | DISABLE_VPP(map); | ||
1197 | chip->state = FL_READY; | ||
1198 | wake_up(&chip->wq); | ||
1199 | spin_unlock_bh(chip->mutex); | ||
1200 | |||
1201 | return 0; | ||
1202 | } | ||
1203 | |||
1204 | |||
1205 | |||
1206 | static int amd_flash_erase(struct mtd_info *mtd, struct erase_info *instr) | ||
1207 | { | ||
1208 | struct map_info *map = mtd->priv; | ||
1209 | struct amd_flash_private *private = map->fldrv_priv; | ||
1210 | unsigned long adr, len; | ||
1211 | int chipnum; | ||
1212 | int ret = 0; | ||
1213 | int i; | ||
1214 | int first; | ||
1215 | struct mtd_erase_region_info *regions = mtd->eraseregions; | ||
1216 | |||
1217 | if (instr->addr > mtd->size) { | ||
1218 | return -EINVAL; | ||
1219 | } | ||
1220 | |||
1221 | if ((instr->len + instr->addr) > mtd->size) { | ||
1222 | return -EINVAL; | ||
1223 | } | ||
1224 | |||
1225 | /* Check that both start and end of the requested erase are | ||
1226 | * aligned with the erasesize at the appropriate addresses. | ||
1227 | */ | ||
1228 | |||
1229 | i = 0; | ||
1230 | |||
1231 | /* Skip all erase regions which are ended before the start of | ||
1232 | the requested erase. Actually, to save on the calculations, | ||
1233 | we skip to the first erase region which starts after the | ||
1234 | start of the requested erase, and then go back one. | ||
1235 | */ | ||
1236 | |||
1237 | while ((i < mtd->numeraseregions) && | ||
1238 | (instr->addr >= regions[i].offset)) { | ||
1239 | i++; | ||
1240 | } | ||
1241 | i--; | ||
1242 | |||
1243 | /* OK, now i is pointing at the erase region in which this | ||
1244 | * erase request starts. Check the start of the requested | ||
1245 | * erase range is aligned with the erase size which is in | ||
1246 | * effect here. | ||
1247 | */ | ||
1248 | |||
1249 | if (instr->addr & (regions[i].erasesize-1)) { | ||
1250 | return -EINVAL; | ||
1251 | } | ||
1252 | |||
1253 | /* Remember the erase region we start on. */ | ||
1254 | |||
1255 | first = i; | ||
1256 | |||
1257 | /* Next, check that the end of the requested erase is aligned | ||
1258 | * with the erase region at that address. | ||
1259 | */ | ||
1260 | |||
1261 | while ((i < mtd->numeraseregions) && | ||
1262 | ((instr->addr + instr->len) >= regions[i].offset)) { | ||
1263 | i++; | ||
1264 | } | ||
1265 | |||
1266 | /* As before, drop back one to point at the region in which | ||
1267 | * the address actually falls. | ||
1268 | */ | ||
1269 | |||
1270 | i--; | ||
1271 | |||
1272 | if ((instr->addr + instr->len) & (regions[i].erasesize-1)) { | ||
1273 | return -EINVAL; | ||
1274 | } | ||
1275 | |||
1276 | chipnum = instr->addr >> private->chipshift; | ||
1277 | adr = instr->addr - (chipnum << private->chipshift); | ||
1278 | len = instr->len; | ||
1279 | |||
1280 | i = first; | ||
1281 | |||
1282 | while (len) { | ||
1283 | ret = erase_one_block(map, &private->chips[chipnum], adr, | ||
1284 | regions[i].erasesize); | ||
1285 | |||
1286 | if (ret) { | ||
1287 | return ret; | ||
1288 | } | ||
1289 | |||
1290 | adr += regions[i].erasesize; | ||
1291 | len -= regions[i].erasesize; | ||
1292 | |||
1293 | if ((adr % (1 << private->chipshift)) == | ||
1294 | ((regions[i].offset + (regions[i].erasesize * | ||
1295 | regions[i].numblocks)) | ||
1296 | % (1 << private->chipshift))) { | ||
1297 | i++; | ||
1298 | } | ||
1299 | |||
1300 | if (adr >> private->chipshift) { | ||
1301 | adr = 0; | ||
1302 | chipnum++; | ||
1303 | if (chipnum >= private->numchips) { | ||
1304 | break; | ||
1305 | } | ||
1306 | } | ||
1307 | } | ||
1308 | |||
1309 | instr->state = MTD_ERASE_DONE; | ||
1310 | mtd_erase_callback(instr); | ||
1311 | |||
1312 | return 0; | ||
1313 | } | ||
1314 | |||
1315 | |||
1316 | |||
1317 | static void amd_flash_sync(struct mtd_info *mtd) | ||
1318 | { | ||
1319 | struct map_info *map = mtd->priv; | ||
1320 | struct amd_flash_private *private = map->fldrv_priv; | ||
1321 | int i; | ||
1322 | struct flchip *chip; | ||
1323 | int ret = 0; | ||
1324 | DECLARE_WAITQUEUE(wait, current); | ||
1325 | |||
1326 | for (i = 0; !ret && (i < private->numchips); i++) { | ||
1327 | chip = &private->chips[i]; | ||
1328 | |||
1329 | retry: | ||
1330 | spin_lock_bh(chip->mutex); | ||
1331 | |||
1332 | switch(chip->state) { | ||
1333 | case FL_READY: | ||
1334 | case FL_STATUS: | ||
1335 | case FL_CFI_QUERY: | ||
1336 | case FL_JEDEC_QUERY: | ||
1337 | chip->oldstate = chip->state; | ||
1338 | chip->state = FL_SYNCING; | ||
1339 | /* No need to wake_up() on this state change - | ||
1340 | * as the whole point is that nobody can do anything | ||
1341 | * with the chip now anyway. | ||
1342 | */ | ||
1343 | case FL_SYNCING: | ||
1344 | spin_unlock_bh(chip->mutex); | ||
1345 | break; | ||
1346 | |||
1347 | default: | ||
1348 | /* Not an idle state */ | ||
1349 | add_wait_queue(&chip->wq, &wait); | ||
1350 | |||
1351 | spin_unlock_bh(chip->mutex); | ||
1352 | |||
1353 | schedule(); | ||
1354 | |||
1355 | remove_wait_queue(&chip->wq, &wait); | ||
1356 | |||
1357 | goto retry; | ||
1358 | } | ||
1359 | } | ||
1360 | |||
1361 | /* Unlock the chips again */ | ||
1362 | for (i--; i >= 0; i--) { | ||
1363 | chip = &private->chips[i]; | ||
1364 | |||
1365 | spin_lock_bh(chip->mutex); | ||
1366 | |||
1367 | if (chip->state == FL_SYNCING) { | ||
1368 | chip->state = chip->oldstate; | ||
1369 | wake_up(&chip->wq); | ||
1370 | } | ||
1371 | spin_unlock_bh(chip->mutex); | ||
1372 | } | ||
1373 | } | ||
1374 | |||
1375 | |||
1376 | |||
1377 | static int amd_flash_suspend(struct mtd_info *mtd) | ||
1378 | { | ||
1379 | printk("amd_flash_suspend(): not implemented!\n"); | ||
1380 | return -EINVAL; | ||
1381 | } | ||
1382 | |||
1383 | |||
1384 | |||
1385 | static void amd_flash_resume(struct mtd_info *mtd) | ||
1386 | { | ||
1387 | printk("amd_flash_resume(): not implemented!\n"); | ||
1388 | } | ||
1389 | |||
1390 | |||
1391 | |||
1392 | static void amd_flash_destroy(struct mtd_info *mtd) | ||
1393 | { | ||
1394 | struct map_info *map = mtd->priv; | ||
1395 | struct amd_flash_private *private = map->fldrv_priv; | ||
1396 | kfree(private); | ||
1397 | } | ||
1398 | |||
1399 | int __init amd_flash_init(void) | ||
1400 | { | ||
1401 | register_mtd_chip_driver(&amd_flash_chipdrv); | ||
1402 | return 0; | ||
1403 | } | ||
1404 | |||
1405 | void __exit amd_flash_exit(void) | ||
1406 | { | ||
1407 | unregister_mtd_chip_driver(&amd_flash_chipdrv); | ||
1408 | } | ||
1409 | |||
1410 | module_init(amd_flash_init); | ||
1411 | module_exit(amd_flash_exit); | ||
1412 | |||
1413 | MODULE_LICENSE("GPL"); | ||
1414 | MODULE_AUTHOR("Jonas Holmberg <jonas.holmberg@axis.com>"); | ||
1415 | MODULE_DESCRIPTION("Old MTD chip driver for AMD flash chips"); | ||
diff --git a/drivers/mtd/chips/cfi_cmdset_0001.c b/drivers/mtd/chips/cfi_cmdset_0001.c new file mode 100644 index 00000000000..c268bcd7172 --- /dev/null +++ b/drivers/mtd/chips/cfi_cmdset_0001.c | |||
@@ -0,0 +1,2160 @@ | |||
1 | /* | ||
2 | * Common Flash Interface support: | ||
3 | * Intel Extended Vendor Command Set (ID 0x0001) | ||
4 | * | ||
5 | * (C) 2000 Red Hat. GPL'd | ||
6 | * | ||
7 | * $Id: cfi_cmdset_0001.c,v 1.164 2004/11/16 18:29:00 dwmw2 Exp $ | ||
8 | * | ||
9 | * | ||
10 | * 10/10/2000 Nicolas Pitre <nico@cam.org> | ||
11 | * - completely revamped method functions so they are aware and | ||
12 | * independent of the flash geometry (buswidth, interleave, etc.) | ||
13 | * - scalability vs code size is completely set at compile-time | ||
14 | * (see include/linux/mtd/cfi.h for selection) | ||
15 | * - optimized write buffer method | ||
16 | * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com> | ||
17 | * - reworked lock/unlock/erase support for var size flash | ||
18 | */ | ||
19 | |||
20 | #include <linux/module.h> | ||
21 | #include <linux/types.h> | ||
22 | #include <linux/kernel.h> | ||
23 | #include <linux/sched.h> | ||
24 | #include <linux/init.h> | ||
25 | #include <asm/io.h> | ||
26 | #include <asm/byteorder.h> | ||
27 | |||
28 | #include <linux/errno.h> | ||
29 | #include <linux/slab.h> | ||
30 | #include <linux/delay.h> | ||
31 | #include <linux/interrupt.h> | ||
32 | #include <linux/mtd/xip.h> | ||
33 | #include <linux/mtd/map.h> | ||
34 | #include <linux/mtd/mtd.h> | ||
35 | #include <linux/mtd/compatmac.h> | ||
36 | #include <linux/mtd/cfi.h> | ||
37 | |||
38 | /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */ | ||
39 | /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */ | ||
40 | |||
41 | // debugging, turns off buffer write mode if set to 1 | ||
42 | #define FORCE_WORD_WRITE 0 | ||
43 | |||
44 | #define MANUFACTURER_INTEL 0x0089 | ||
45 | #define I82802AB 0x00ad | ||
46 | #define I82802AC 0x00ac | ||
47 | #define MANUFACTURER_ST 0x0020 | ||
48 | #define M50LPW080 0x002F | ||
49 | |||
50 | static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); | ||
51 | //static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); | ||
52 | //static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); | ||
53 | static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); | ||
54 | static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); | ||
55 | static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *); | ||
56 | static void cfi_intelext_sync (struct mtd_info *); | ||
57 | static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len); | ||
58 | static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len); | ||
59 | static int cfi_intelext_suspend (struct mtd_info *); | ||
60 | static void cfi_intelext_resume (struct mtd_info *); | ||
61 | |||
62 | static void cfi_intelext_destroy(struct mtd_info *); | ||
63 | |||
64 | struct mtd_info *cfi_cmdset_0001(struct map_info *, int); | ||
65 | |||
66 | static struct mtd_info *cfi_intelext_setup (struct mtd_info *); | ||
67 | static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **); | ||
68 | |||
69 | static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, | ||
70 | size_t *retlen, u_char **mtdbuf); | ||
71 | static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, | ||
72 | size_t len); | ||
73 | |||
74 | static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode); | ||
75 | static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr); | ||
76 | #include "fwh_lock.h" | ||
77 | |||
78 | |||
79 | |||
80 | /* | ||
81 | * *********** SETUP AND PROBE BITS *********** | ||
82 | */ | ||
83 | |||
84 | static struct mtd_chip_driver cfi_intelext_chipdrv = { | ||
85 | .probe = NULL, /* Not usable directly */ | ||
86 | .destroy = cfi_intelext_destroy, | ||
87 | .name = "cfi_cmdset_0001", | ||
88 | .module = THIS_MODULE | ||
89 | }; | ||
90 | |||
91 | /* #define DEBUG_LOCK_BITS */ | ||
92 | /* #define DEBUG_CFI_FEATURES */ | ||
93 | |||
94 | #ifdef DEBUG_CFI_FEATURES | ||
95 | static void cfi_tell_features(struct cfi_pri_intelext *extp) | ||
96 | { | ||
97 | int i; | ||
98 | printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport); | ||
99 | printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported"); | ||
100 | printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported"); | ||
101 | printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported"); | ||
102 | printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported"); | ||
103 | printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported"); | ||
104 | printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported"); | ||
105 | printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported"); | ||
106 | printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported"); | ||
107 | printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported"); | ||
108 | printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported"); | ||
109 | for (i=10; i<32; i++) { | ||
110 | if (extp->FeatureSupport & (1<<i)) | ||
111 | printk(" - Unknown Bit %X: supported\n", i); | ||
112 | } | ||
113 | |||
114 | printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport); | ||
115 | printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported"); | ||
116 | for (i=1; i<8; i++) { | ||
117 | if (extp->SuspendCmdSupport & (1<<i)) | ||
118 | printk(" - Unknown Bit %X: supported\n", i); | ||
119 | } | ||
120 | |||
121 | printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask); | ||
122 | printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no"); | ||
123 | printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no"); | ||
124 | for (i=2; i<16; i++) { | ||
125 | if (extp->BlkStatusRegMask & (1<<i)) | ||
126 | printk(" - Unknown Bit %X Active: yes\n",i); | ||
127 | } | ||
128 | |||
129 | printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n", | ||
130 | extp->VccOptimal >> 4, extp->VccOptimal & 0xf); | ||
131 | if (extp->VppOptimal) | ||
132 | printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n", | ||
133 | extp->VppOptimal >> 4, extp->VppOptimal & 0xf); | ||
134 | } | ||
135 | #endif | ||
136 | |||
137 | #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE | ||
138 | /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */ | ||
139 | static void fixup_intel_strataflash(struct mtd_info *mtd, void* param) | ||
140 | { | ||
141 | struct map_info *map = mtd->priv; | ||
142 | struct cfi_private *cfi = map->fldrv_priv; | ||
143 | struct cfi_pri_amdstd *extp = cfi->cmdset_priv; | ||
144 | |||
145 | printk(KERN_WARNING "cfi_cmdset_0001: Suspend " | ||
146 | "erase on write disabled.\n"); | ||
147 | extp->SuspendCmdSupport &= ~1; | ||
148 | } | ||
149 | #endif | ||
150 | |||
151 | #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND | ||
152 | static void fixup_no_write_suspend(struct mtd_info *mtd, void* param) | ||
153 | { | ||
154 | struct map_info *map = mtd->priv; | ||
155 | struct cfi_private *cfi = map->fldrv_priv; | ||
156 | struct cfi_pri_intelext *cfip = cfi->cmdset_priv; | ||
157 | |||
158 | if (cfip && (cfip->FeatureSupport&4)) { | ||
159 | cfip->FeatureSupport &= ~4; | ||
160 | printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n"); | ||
161 | } | ||
162 | } | ||
163 | #endif | ||
164 | |||
165 | static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param) | ||
166 | { | ||
167 | struct map_info *map = mtd->priv; | ||
168 | struct cfi_private *cfi = map->fldrv_priv; | ||
169 | |||
170 | cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */ | ||
171 | cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */ | ||
172 | } | ||
173 | |||
174 | static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param) | ||
175 | { | ||
176 | struct map_info *map = mtd->priv; | ||
177 | struct cfi_private *cfi = map->fldrv_priv; | ||
178 | |||
179 | /* Note this is done after the region info is endian swapped */ | ||
180 | cfi->cfiq->EraseRegionInfo[1] = | ||
181 | (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e; | ||
182 | }; | ||
183 | |||
184 | static void fixup_use_point(struct mtd_info *mtd, void *param) | ||
185 | { | ||
186 | struct map_info *map = mtd->priv; | ||
187 | if (!mtd->point && map_is_linear(map)) { | ||
188 | mtd->point = cfi_intelext_point; | ||
189 | mtd->unpoint = cfi_intelext_unpoint; | ||
190 | } | ||
191 | } | ||
192 | |||
193 | static void fixup_use_write_buffers(struct mtd_info *mtd, void *param) | ||
194 | { | ||
195 | struct map_info *map = mtd->priv; | ||
196 | struct cfi_private *cfi = map->fldrv_priv; | ||
197 | if (cfi->cfiq->BufWriteTimeoutTyp) { | ||
198 | printk(KERN_INFO "Using buffer write method\n" ); | ||
199 | mtd->write = cfi_intelext_write_buffers; | ||
200 | } | ||
201 | } | ||
202 | |||
203 | static struct cfi_fixup cfi_fixup_table[] = { | ||
204 | #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE | ||
205 | { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL }, | ||
206 | #endif | ||
207 | #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND | ||
208 | { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL }, | ||
209 | #endif | ||
210 | #if !FORCE_WORD_WRITE | ||
211 | { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL }, | ||
212 | #endif | ||
213 | { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL }, | ||
214 | { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL }, | ||
215 | { 0, 0, NULL, NULL } | ||
216 | }; | ||
217 | |||
218 | static struct cfi_fixup jedec_fixup_table[] = { | ||
219 | { MANUFACTURER_INTEL, I82802AB, fixup_use_fwh_lock, NULL, }, | ||
220 | { MANUFACTURER_INTEL, I82802AC, fixup_use_fwh_lock, NULL, }, | ||
221 | { MANUFACTURER_ST, M50LPW080, fixup_use_fwh_lock, NULL, }, | ||
222 | { 0, 0, NULL, NULL } | ||
223 | }; | ||
224 | static struct cfi_fixup fixup_table[] = { | ||
225 | /* The CFI vendor ids and the JEDEC vendor IDs appear | ||
226 | * to be common. It is like the devices id's are as | ||
227 | * well. This table is to pick all cases where | ||
228 | * we know that is the case. | ||
229 | */ | ||
230 | { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL }, | ||
231 | { 0, 0, NULL, NULL } | ||
232 | }; | ||
233 | |||
234 | static inline struct cfi_pri_intelext * | ||
235 | read_pri_intelext(struct map_info *map, __u16 adr) | ||
236 | { | ||
237 | struct cfi_pri_intelext *extp; | ||
238 | unsigned int extp_size = sizeof(*extp); | ||
239 | |||
240 | again: | ||
241 | extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp"); | ||
242 | if (!extp) | ||
243 | return NULL; | ||
244 | |||
245 | /* Do some byteswapping if necessary */ | ||
246 | extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport); | ||
247 | extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask); | ||
248 | extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr); | ||
249 | |||
250 | if (extp->MajorVersion == '1' && extp->MinorVersion == '3') { | ||
251 | unsigned int extra_size = 0; | ||
252 | int nb_parts, i; | ||
253 | |||
254 | /* Protection Register info */ | ||
255 | extra_size += (extp->NumProtectionFields - 1) * (4 + 6); | ||
256 | |||
257 | /* Burst Read info */ | ||
258 | extra_size += 6; | ||
259 | |||
260 | /* Number of hardware-partitions */ | ||
261 | extra_size += 1; | ||
262 | if (extp_size < sizeof(*extp) + extra_size) | ||
263 | goto need_more; | ||
264 | nb_parts = extp->extra[extra_size - 1]; | ||
265 | |||
266 | for (i = 0; i < nb_parts; i++) { | ||
267 | struct cfi_intelext_regioninfo *rinfo; | ||
268 | rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size]; | ||
269 | extra_size += sizeof(*rinfo); | ||
270 | if (extp_size < sizeof(*extp) + extra_size) | ||
271 | goto need_more; | ||
272 | rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions); | ||
273 | extra_size += (rinfo->NumBlockTypes - 1) | ||
274 | * sizeof(struct cfi_intelext_blockinfo); | ||
275 | } | ||
276 | |||
277 | if (extp_size < sizeof(*extp) + extra_size) { | ||
278 | need_more: | ||
279 | extp_size = sizeof(*extp) + extra_size; | ||
280 | kfree(extp); | ||
281 | if (extp_size > 4096) { | ||
282 | printk(KERN_ERR | ||
283 | "%s: cfi_pri_intelext is too fat\n", | ||
284 | __FUNCTION__); | ||
285 | return NULL; | ||
286 | } | ||
287 | goto again; | ||
288 | } | ||
289 | } | ||
290 | |||
291 | return extp; | ||
292 | } | ||
293 | |||
294 | /* This routine is made available to other mtd code via | ||
295 | * inter_module_register. It must only be accessed through | ||
296 | * inter_module_get which will bump the use count of this module. The | ||
297 | * addresses passed back in cfi are valid as long as the use count of | ||
298 | * this module is non-zero, i.e. between inter_module_get and | ||
299 | * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000. | ||
300 | */ | ||
301 | struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary) | ||
302 | { | ||
303 | struct cfi_private *cfi = map->fldrv_priv; | ||
304 | struct mtd_info *mtd; | ||
305 | int i; | ||
306 | |||
307 | mtd = kmalloc(sizeof(*mtd), GFP_KERNEL); | ||
308 | if (!mtd) { | ||
309 | printk(KERN_ERR "Failed to allocate memory for MTD device\n"); | ||
310 | return NULL; | ||
311 | } | ||
312 | memset(mtd, 0, sizeof(*mtd)); | ||
313 | mtd->priv = map; | ||
314 | mtd->type = MTD_NORFLASH; | ||
315 | |||
316 | /* Fill in the default mtd operations */ | ||
317 | mtd->erase = cfi_intelext_erase_varsize; | ||
318 | mtd->read = cfi_intelext_read; | ||
319 | mtd->write = cfi_intelext_write_words; | ||
320 | mtd->sync = cfi_intelext_sync; | ||
321 | mtd->lock = cfi_intelext_lock; | ||
322 | mtd->unlock = cfi_intelext_unlock; | ||
323 | mtd->suspend = cfi_intelext_suspend; | ||
324 | mtd->resume = cfi_intelext_resume; | ||
325 | mtd->flags = MTD_CAP_NORFLASH; | ||
326 | mtd->name = map->name; | ||
327 | |||
328 | if (cfi->cfi_mode == CFI_MODE_CFI) { | ||
329 | /* | ||
330 | * It's a real CFI chip, not one for which the probe | ||
331 | * routine faked a CFI structure. So we read the feature | ||
332 | * table from it. | ||
333 | */ | ||
334 | __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; | ||
335 | struct cfi_pri_intelext *extp; | ||
336 | |||
337 | extp = read_pri_intelext(map, adr); | ||
338 | if (!extp) { | ||
339 | kfree(mtd); | ||
340 | return NULL; | ||
341 | } | ||
342 | |||
343 | /* Install our own private info structure */ | ||
344 | cfi->cmdset_priv = extp; | ||
345 | |||
346 | cfi_fixup(mtd, cfi_fixup_table); | ||
347 | |||
348 | #ifdef DEBUG_CFI_FEATURES | ||
349 | /* Tell the user about it in lots of lovely detail */ | ||
350 | cfi_tell_features(extp); | ||
351 | #endif | ||
352 | |||
353 | if(extp->SuspendCmdSupport & 1) { | ||
354 | printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n"); | ||
355 | } | ||
356 | } | ||
357 | else if (cfi->cfi_mode == CFI_MODE_JEDEC) { | ||
358 | /* Apply jedec specific fixups */ | ||
359 | cfi_fixup(mtd, jedec_fixup_table); | ||
360 | } | ||
361 | /* Apply generic fixups */ | ||
362 | cfi_fixup(mtd, fixup_table); | ||
363 | |||
364 | for (i=0; i< cfi->numchips; i++) { | ||
365 | cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp; | ||
366 | cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp; | ||
367 | cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp; | ||
368 | cfi->chips[i].ref_point_counter = 0; | ||
369 | } | ||
370 | |||
371 | map->fldrv = &cfi_intelext_chipdrv; | ||
372 | |||
373 | return cfi_intelext_setup(mtd); | ||
374 | } | ||
375 | |||
376 | static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd) | ||
377 | { | ||
378 | struct map_info *map = mtd->priv; | ||
379 | struct cfi_private *cfi = map->fldrv_priv; | ||
380 | unsigned long offset = 0; | ||
381 | int i,j; | ||
382 | unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; | ||
383 | |||
384 | //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips); | ||
385 | |||
386 | mtd->size = devsize * cfi->numchips; | ||
387 | |||
388 | mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; | ||
389 | mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) | ||
390 | * mtd->numeraseregions, GFP_KERNEL); | ||
391 | if (!mtd->eraseregions) { | ||
392 | printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n"); | ||
393 | goto setup_err; | ||
394 | } | ||
395 | |||
396 | for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { | ||
397 | unsigned long ernum, ersize; | ||
398 | ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; | ||
399 | ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; | ||
400 | |||
401 | if (mtd->erasesize < ersize) { | ||
402 | mtd->erasesize = ersize; | ||
403 | } | ||
404 | for (j=0; j<cfi->numchips; j++) { | ||
405 | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; | ||
406 | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; | ||
407 | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; | ||
408 | } | ||
409 | offset += (ersize * ernum); | ||
410 | } | ||
411 | |||
412 | if (offset != devsize) { | ||
413 | /* Argh */ | ||
414 | printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); | ||
415 | goto setup_err; | ||
416 | } | ||
417 | |||
418 | for (i=0; i<mtd->numeraseregions;i++){ | ||
419 | printk(KERN_DEBUG "%d: offset=0x%x,size=0x%x,blocks=%d\n", | ||
420 | i,mtd->eraseregions[i].offset, | ||
421 | mtd->eraseregions[i].erasesize, | ||
422 | mtd->eraseregions[i].numblocks); | ||
423 | } | ||
424 | |||
425 | #if 0 | ||
426 | mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg; | ||
427 | mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg; | ||
428 | #endif | ||
429 | |||
430 | /* This function has the potential to distort the reality | ||
431 | a bit and therefore should be called last. */ | ||
432 | if (cfi_intelext_partition_fixup(mtd, &cfi) != 0) | ||
433 | goto setup_err; | ||
434 | |||
435 | __module_get(THIS_MODULE); | ||
436 | return mtd; | ||
437 | |||
438 | setup_err: | ||
439 | if(mtd) { | ||
440 | if(mtd->eraseregions) | ||
441 | kfree(mtd->eraseregions); | ||
442 | kfree(mtd); | ||
443 | } | ||
444 | kfree(cfi->cmdset_priv); | ||
445 | return NULL; | ||
446 | } | ||
447 | |||
448 | static int cfi_intelext_partition_fixup(struct mtd_info *mtd, | ||
449 | struct cfi_private **pcfi) | ||
450 | { | ||
451 | struct map_info *map = mtd->priv; | ||
452 | struct cfi_private *cfi = *pcfi; | ||
453 | struct cfi_pri_intelext *extp = cfi->cmdset_priv; | ||
454 | |||
455 | /* | ||
456 | * Probing of multi-partition flash ships. | ||
457 | * | ||
458 | * To support multiple partitions when available, we simply arrange | ||
459 | * for each of them to have their own flchip structure even if they | ||
460 | * are on the same physical chip. This means completely recreating | ||
461 | * a new cfi_private structure right here which is a blatent code | ||
462 | * layering violation, but this is still the least intrusive | ||
463 | * arrangement at this point. This can be rearranged in the future | ||
464 | * if someone feels motivated enough. --nico | ||
465 | */ | ||
466 | if (extp && extp->MajorVersion == '1' && extp->MinorVersion == '3' | ||
467 | && extp->FeatureSupport & (1 << 9)) { | ||
468 | struct cfi_private *newcfi; | ||
469 | struct flchip *chip; | ||
470 | struct flchip_shared *shared; | ||
471 | int offs, numregions, numparts, partshift, numvirtchips, i, j; | ||
472 | |||
473 | /* Protection Register info */ | ||
474 | offs = (extp->NumProtectionFields - 1) * (4 + 6); | ||
475 | |||
476 | /* Burst Read info */ | ||
477 | offs += 6; | ||
478 | |||
479 | /* Number of partition regions */ | ||
480 | numregions = extp->extra[offs]; | ||
481 | offs += 1; | ||
482 | |||
483 | /* Number of hardware partitions */ | ||
484 | numparts = 0; | ||
485 | for (i = 0; i < numregions; i++) { | ||
486 | struct cfi_intelext_regioninfo *rinfo; | ||
487 | rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs]; | ||
488 | numparts += rinfo->NumIdentPartitions; | ||
489 | offs += sizeof(*rinfo) | ||
490 | + (rinfo->NumBlockTypes - 1) * | ||
491 | sizeof(struct cfi_intelext_blockinfo); | ||
492 | } | ||
493 | |||
494 | /* | ||
495 | * All functions below currently rely on all chips having | ||
496 | * the same geometry so we'll just assume that all hardware | ||
497 | * partitions are of the same size too. | ||
498 | */ | ||
499 | partshift = cfi->chipshift - __ffs(numparts); | ||
500 | |||
501 | if ((1 << partshift) < mtd->erasesize) { | ||
502 | printk( KERN_ERR | ||
503 | "%s: bad number of hw partitions (%d)\n", | ||
504 | __FUNCTION__, numparts); | ||
505 | return -EINVAL; | ||
506 | } | ||
507 | |||
508 | numvirtchips = cfi->numchips * numparts; | ||
509 | newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL); | ||
510 | if (!newcfi) | ||
511 | return -ENOMEM; | ||
512 | shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL); | ||
513 | if (!shared) { | ||
514 | kfree(newcfi); | ||
515 | return -ENOMEM; | ||
516 | } | ||
517 | memcpy(newcfi, cfi, sizeof(struct cfi_private)); | ||
518 | newcfi->numchips = numvirtchips; | ||
519 | newcfi->chipshift = partshift; | ||
520 | |||
521 | chip = &newcfi->chips[0]; | ||
522 | for (i = 0; i < cfi->numchips; i++) { | ||
523 | shared[i].writing = shared[i].erasing = NULL; | ||
524 | spin_lock_init(&shared[i].lock); | ||
525 | for (j = 0; j < numparts; j++) { | ||
526 | *chip = cfi->chips[i]; | ||
527 | chip->start += j << partshift; | ||
528 | chip->priv = &shared[i]; | ||
529 | /* those should be reset too since | ||
530 | they create memory references. */ | ||
531 | init_waitqueue_head(&chip->wq); | ||
532 | spin_lock_init(&chip->_spinlock); | ||
533 | chip->mutex = &chip->_spinlock; | ||
534 | chip++; | ||
535 | } | ||
536 | } | ||
537 | |||
538 | printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips " | ||
539 | "--> %d partitions of %d KiB\n", | ||
540 | map->name, cfi->numchips, cfi->interleave, | ||
541 | newcfi->numchips, 1<<(newcfi->chipshift-10)); | ||
542 | |||
543 | map->fldrv_priv = newcfi; | ||
544 | *pcfi = newcfi; | ||
545 | kfree(cfi); | ||
546 | } | ||
547 | |||
548 | return 0; | ||
549 | } | ||
550 | |||
551 | /* | ||
552 | * *********** CHIP ACCESS FUNCTIONS *********** | ||
553 | */ | ||
554 | |||
555 | static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode) | ||
556 | { | ||
557 | DECLARE_WAITQUEUE(wait, current); | ||
558 | struct cfi_private *cfi = map->fldrv_priv; | ||
559 | map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01); | ||
560 | unsigned long timeo; | ||
561 | struct cfi_pri_intelext *cfip = cfi->cmdset_priv; | ||
562 | |||
563 | resettime: | ||
564 | timeo = jiffies + HZ; | ||
565 | retry: | ||
566 | if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)) { | ||
567 | /* | ||
568 | * OK. We have possibility for contension on the write/erase | ||
569 | * operations which are global to the real chip and not per | ||
570 | * partition. So let's fight it over in the partition which | ||
571 | * currently has authority on the operation. | ||
572 | * | ||
573 | * The rules are as follows: | ||
574 | * | ||
575 | * - any write operation must own shared->writing. | ||
576 | * | ||
577 | * - any erase operation must own _both_ shared->writing and | ||
578 | * shared->erasing. | ||
579 | * | ||
580 | * - contension arbitration is handled in the owner's context. | ||
581 | * | ||
582 | * The 'shared' struct can be read when its lock is taken. | ||
583 | * However any writes to it can only be made when the current | ||
584 | * owner's lock is also held. | ||
585 | */ | ||
586 | struct flchip_shared *shared = chip->priv; | ||
587 | struct flchip *contender; | ||
588 | spin_lock(&shared->lock); | ||
589 | contender = shared->writing; | ||
590 | if (contender && contender != chip) { | ||
591 | /* | ||
592 | * The engine to perform desired operation on this | ||
593 | * partition is already in use by someone else. | ||
594 | * Let's fight over it in the context of the chip | ||
595 | * currently using it. If it is possible to suspend, | ||
596 | * that other partition will do just that, otherwise | ||
597 | * it'll happily send us to sleep. In any case, when | ||
598 | * get_chip returns success we're clear to go ahead. | ||
599 | */ | ||
600 | int ret = spin_trylock(contender->mutex); | ||
601 | spin_unlock(&shared->lock); | ||
602 | if (!ret) | ||
603 | goto retry; | ||
604 | spin_unlock(chip->mutex); | ||
605 | ret = get_chip(map, contender, contender->start, mode); | ||
606 | spin_lock(chip->mutex); | ||
607 | if (ret) { | ||
608 | spin_unlock(contender->mutex); | ||
609 | return ret; | ||
610 | } | ||
611 | timeo = jiffies + HZ; | ||
612 | spin_lock(&shared->lock); | ||
613 | } | ||
614 | |||
615 | /* We now own it */ | ||
616 | shared->writing = chip; | ||
617 | if (mode == FL_ERASING) | ||
618 | shared->erasing = chip; | ||
619 | if (contender && contender != chip) | ||
620 | spin_unlock(contender->mutex); | ||
621 | spin_unlock(&shared->lock); | ||
622 | } | ||
623 | |||
624 | switch (chip->state) { | ||
625 | |||
626 | case FL_STATUS: | ||
627 | for (;;) { | ||
628 | status = map_read(map, adr); | ||
629 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
630 | break; | ||
631 | |||
632 | /* At this point we're fine with write operations | ||
633 | in other partitions as they don't conflict. */ | ||
634 | if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS)) | ||
635 | break; | ||
636 | |||
637 | if (time_after(jiffies, timeo)) { | ||
638 | printk(KERN_ERR "Waiting for chip to be ready timed out. Status %lx\n", | ||
639 | status.x[0]); | ||
640 | return -EIO; | ||
641 | } | ||
642 | spin_unlock(chip->mutex); | ||
643 | cfi_udelay(1); | ||
644 | spin_lock(chip->mutex); | ||
645 | /* Someone else might have been playing with it. */ | ||
646 | goto retry; | ||
647 | } | ||
648 | |||
649 | case FL_READY: | ||
650 | case FL_CFI_QUERY: | ||
651 | case FL_JEDEC_QUERY: | ||
652 | return 0; | ||
653 | |||
654 | case FL_ERASING: | ||
655 | if (!cfip || | ||
656 | !(cfip->FeatureSupport & 2) || | ||
657 | !(mode == FL_READY || mode == FL_POINT || | ||
658 | (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1)))) | ||
659 | goto sleep; | ||
660 | |||
661 | |||
662 | /* Erase suspend */ | ||
663 | map_write(map, CMD(0xB0), adr); | ||
664 | |||
665 | /* If the flash has finished erasing, then 'erase suspend' | ||
666 | * appears to make some (28F320) flash devices switch to | ||
667 | * 'read' mode. Make sure that we switch to 'read status' | ||
668 | * mode so we get the right data. --rmk | ||
669 | */ | ||
670 | map_write(map, CMD(0x70), adr); | ||
671 | chip->oldstate = FL_ERASING; | ||
672 | chip->state = FL_ERASE_SUSPENDING; | ||
673 | chip->erase_suspended = 1; | ||
674 | for (;;) { | ||
675 | status = map_read(map, adr); | ||
676 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
677 | break; | ||
678 | |||
679 | if (time_after(jiffies, timeo)) { | ||
680 | /* Urgh. Resume and pretend we weren't here. */ | ||
681 | map_write(map, CMD(0xd0), adr); | ||
682 | /* Make sure we're in 'read status' mode if it had finished */ | ||
683 | map_write(map, CMD(0x70), adr); | ||
684 | chip->state = FL_ERASING; | ||
685 | chip->oldstate = FL_READY; | ||
686 | printk(KERN_ERR "Chip not ready after erase " | ||
687 | "suspended: status = 0x%lx\n", status.x[0]); | ||
688 | return -EIO; | ||
689 | } | ||
690 | |||
691 | spin_unlock(chip->mutex); | ||
692 | cfi_udelay(1); | ||
693 | spin_lock(chip->mutex); | ||
694 | /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING. | ||
695 | So we can just loop here. */ | ||
696 | } | ||
697 | chip->state = FL_STATUS; | ||
698 | return 0; | ||
699 | |||
700 | case FL_XIP_WHILE_ERASING: | ||
701 | if (mode != FL_READY && mode != FL_POINT && | ||
702 | (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1))) | ||
703 | goto sleep; | ||
704 | chip->oldstate = chip->state; | ||
705 | chip->state = FL_READY; | ||
706 | return 0; | ||
707 | |||
708 | case FL_POINT: | ||
709 | /* Only if there's no operation suspended... */ | ||
710 | if (mode == FL_READY && chip->oldstate == FL_READY) | ||
711 | return 0; | ||
712 | |||
713 | default: | ||
714 | sleep: | ||
715 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
716 | add_wait_queue(&chip->wq, &wait); | ||
717 | spin_unlock(chip->mutex); | ||
718 | schedule(); | ||
719 | remove_wait_queue(&chip->wq, &wait); | ||
720 | spin_lock(chip->mutex); | ||
721 | goto resettime; | ||
722 | } | ||
723 | } | ||
724 | |||
725 | static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr) | ||
726 | { | ||
727 | struct cfi_private *cfi = map->fldrv_priv; | ||
728 | |||
729 | if (chip->priv) { | ||
730 | struct flchip_shared *shared = chip->priv; | ||
731 | spin_lock(&shared->lock); | ||
732 | if (shared->writing == chip && chip->oldstate == FL_READY) { | ||
733 | /* We own the ability to write, but we're done */ | ||
734 | shared->writing = shared->erasing; | ||
735 | if (shared->writing && shared->writing != chip) { | ||
736 | /* give back ownership to who we loaned it from */ | ||
737 | struct flchip *loaner = shared->writing; | ||
738 | spin_lock(loaner->mutex); | ||
739 | spin_unlock(&shared->lock); | ||
740 | spin_unlock(chip->mutex); | ||
741 | put_chip(map, loaner, loaner->start); | ||
742 | spin_lock(chip->mutex); | ||
743 | spin_unlock(loaner->mutex); | ||
744 | wake_up(&chip->wq); | ||
745 | return; | ||
746 | } | ||
747 | shared->erasing = NULL; | ||
748 | shared->writing = NULL; | ||
749 | } else if (shared->erasing == chip && shared->writing != chip) { | ||
750 | /* | ||
751 | * We own the ability to erase without the ability | ||
752 | * to write, which means the erase was suspended | ||
753 | * and some other partition is currently writing. | ||
754 | * Don't let the switch below mess things up since | ||
755 | * we don't have ownership to resume anything. | ||
756 | */ | ||
757 | spin_unlock(&shared->lock); | ||
758 | wake_up(&chip->wq); | ||
759 | return; | ||
760 | } | ||
761 | spin_unlock(&shared->lock); | ||
762 | } | ||
763 | |||
764 | switch(chip->oldstate) { | ||
765 | case FL_ERASING: | ||
766 | chip->state = chip->oldstate; | ||
767 | /* What if one interleaved chip has finished and the | ||
768 | other hasn't? The old code would leave the finished | ||
769 | one in READY mode. That's bad, and caused -EROFS | ||
770 | errors to be returned from do_erase_oneblock because | ||
771 | that's the only bit it checked for at the time. | ||
772 | As the state machine appears to explicitly allow | ||
773 | sending the 0x70 (Read Status) command to an erasing | ||
774 | chip and expecting it to be ignored, that's what we | ||
775 | do. */ | ||
776 | map_write(map, CMD(0xd0), adr); | ||
777 | map_write(map, CMD(0x70), adr); | ||
778 | chip->oldstate = FL_READY; | ||
779 | chip->state = FL_ERASING; | ||
780 | break; | ||
781 | |||
782 | case FL_XIP_WHILE_ERASING: | ||
783 | chip->state = chip->oldstate; | ||
784 | chip->oldstate = FL_READY; | ||
785 | break; | ||
786 | |||
787 | case FL_READY: | ||
788 | case FL_STATUS: | ||
789 | case FL_JEDEC_QUERY: | ||
790 | /* We should really make set_vpp() count, rather than doing this */ | ||
791 | DISABLE_VPP(map); | ||
792 | break; | ||
793 | default: | ||
794 | printk(KERN_ERR "put_chip() called with oldstate %d!!\n", chip->oldstate); | ||
795 | } | ||
796 | wake_up(&chip->wq); | ||
797 | } | ||
798 | |||
799 | #ifdef CONFIG_MTD_XIP | ||
800 | |||
801 | /* | ||
802 | * No interrupt what so ever can be serviced while the flash isn't in array | ||
803 | * mode. This is ensured by the xip_disable() and xip_enable() functions | ||
804 | * enclosing any code path where the flash is known not to be in array mode. | ||
805 | * And within a XIP disabled code path, only functions marked with __xipram | ||
806 | * may be called and nothing else (it's a good thing to inspect generated | ||
807 | * assembly to make sure inline functions were actually inlined and that gcc | ||
808 | * didn't emit calls to its own support functions). Also configuring MTD CFI | ||
809 | * support to a single buswidth and a single interleave is also recommended. | ||
810 | * Note that not only IRQs are disabled but the preemption count is also | ||
811 | * increased to prevent other locking primitives (namely spin_unlock) from | ||
812 | * decrementing the preempt count to zero and scheduling the CPU away while | ||
813 | * not in array mode. | ||
814 | */ | ||
815 | |||
816 | static void xip_disable(struct map_info *map, struct flchip *chip, | ||
817 | unsigned long adr) | ||
818 | { | ||
819 | /* TODO: chips with no XIP use should ignore and return */ | ||
820 | (void) map_read(map, adr); /* ensure mmu mapping is up to date */ | ||
821 | preempt_disable(); | ||
822 | local_irq_disable(); | ||
823 | } | ||
824 | |||
825 | static void __xipram xip_enable(struct map_info *map, struct flchip *chip, | ||
826 | unsigned long adr) | ||
827 | { | ||
828 | struct cfi_private *cfi = map->fldrv_priv; | ||
829 | if (chip->state != FL_POINT && chip->state != FL_READY) { | ||
830 | map_write(map, CMD(0xff), adr); | ||
831 | chip->state = FL_READY; | ||
832 | } | ||
833 | (void) map_read(map, adr); | ||
834 | asm volatile (".rep 8; nop; .endr"); /* fill instruction prefetch */ | ||
835 | local_irq_enable(); | ||
836 | preempt_enable(); | ||
837 | } | ||
838 | |||
839 | /* | ||
840 | * When a delay is required for the flash operation to complete, the | ||
841 | * xip_udelay() function is polling for both the given timeout and pending | ||
842 | * (but still masked) hardware interrupts. Whenever there is an interrupt | ||
843 | * pending then the flash erase or write operation is suspended, array mode | ||
844 | * restored and interrupts unmasked. Task scheduling might also happen at that | ||
845 | * point. The CPU eventually returns from the interrupt or the call to | ||
846 | * schedule() and the suspended flash operation is resumed for the remaining | ||
847 | * of the delay period. | ||
848 | * | ||
849 | * Warning: this function _will_ fool interrupt latency tracing tools. | ||
850 | */ | ||
851 | |||
852 | static void __xipram xip_udelay(struct map_info *map, struct flchip *chip, | ||
853 | unsigned long adr, int usec) | ||
854 | { | ||
855 | struct cfi_private *cfi = map->fldrv_priv; | ||
856 | struct cfi_pri_intelext *cfip = cfi->cmdset_priv; | ||
857 | map_word status, OK = CMD(0x80); | ||
858 | unsigned long suspended, start = xip_currtime(); | ||
859 | flstate_t oldstate, newstate; | ||
860 | |||
861 | do { | ||
862 | cpu_relax(); | ||
863 | if (xip_irqpending() && cfip && | ||
864 | ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) || | ||
865 | (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) && | ||
866 | (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) { | ||
867 | /* | ||
868 | * Let's suspend the erase or write operation when | ||
869 | * supported. Note that we currently don't try to | ||
870 | * suspend interleaved chips if there is already | ||
871 | * another operation suspended (imagine what happens | ||
872 | * when one chip was already done with the current | ||
873 | * operation while another chip suspended it, then | ||
874 | * we resume the whole thing at once). Yes, it | ||
875 | * can happen! | ||
876 | */ | ||
877 | map_write(map, CMD(0xb0), adr); | ||
878 | map_write(map, CMD(0x70), adr); | ||
879 | usec -= xip_elapsed_since(start); | ||
880 | suspended = xip_currtime(); | ||
881 | do { | ||
882 | if (xip_elapsed_since(suspended) > 100000) { | ||
883 | /* | ||
884 | * The chip doesn't want to suspend | ||
885 | * after waiting for 100 msecs. | ||
886 | * This is a critical error but there | ||
887 | * is not much we can do here. | ||
888 | */ | ||
889 | return; | ||
890 | } | ||
891 | status = map_read(map, adr); | ||
892 | } while (!map_word_andequal(map, status, OK, OK)); | ||
893 | |||
894 | /* Suspend succeeded */ | ||
895 | oldstate = chip->state; | ||
896 | if (oldstate == FL_ERASING) { | ||
897 | if (!map_word_bitsset(map, status, CMD(0x40))) | ||
898 | break; | ||
899 | newstate = FL_XIP_WHILE_ERASING; | ||
900 | chip->erase_suspended = 1; | ||
901 | } else { | ||
902 | if (!map_word_bitsset(map, status, CMD(0x04))) | ||
903 | break; | ||
904 | newstate = FL_XIP_WHILE_WRITING; | ||
905 | chip->write_suspended = 1; | ||
906 | } | ||
907 | chip->state = newstate; | ||
908 | map_write(map, CMD(0xff), adr); | ||
909 | (void) map_read(map, adr); | ||
910 | asm volatile (".rep 8; nop; .endr"); | ||
911 | local_irq_enable(); | ||
912 | preempt_enable(); | ||
913 | asm volatile (".rep 8; nop; .endr"); | ||
914 | cond_resched(); | ||
915 | |||
916 | /* | ||
917 | * We're back. However someone else might have | ||
918 | * decided to go write to the chip if we are in | ||
919 | * a suspended erase state. If so let's wait | ||
920 | * until it's done. | ||
921 | */ | ||
922 | preempt_disable(); | ||
923 | while (chip->state != newstate) { | ||
924 | DECLARE_WAITQUEUE(wait, current); | ||
925 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
926 | add_wait_queue(&chip->wq, &wait); | ||
927 | preempt_enable(); | ||
928 | schedule(); | ||
929 | remove_wait_queue(&chip->wq, &wait); | ||
930 | preempt_disable(); | ||
931 | } | ||
932 | /* Disallow XIP again */ | ||
933 | local_irq_disable(); | ||
934 | |||
935 | /* Resume the write or erase operation */ | ||
936 | map_write(map, CMD(0xd0), adr); | ||
937 | map_write(map, CMD(0x70), adr); | ||
938 | chip->state = oldstate; | ||
939 | start = xip_currtime(); | ||
940 | } else if (usec >= 1000000/HZ) { | ||
941 | /* | ||
942 | * Try to save on CPU power when waiting delay | ||
943 | * is at least a system timer tick period. | ||
944 | * No need to be extremely accurate here. | ||
945 | */ | ||
946 | xip_cpu_idle(); | ||
947 | } | ||
948 | status = map_read(map, adr); | ||
949 | } while (!map_word_andequal(map, status, OK, OK) | ||
950 | && xip_elapsed_since(start) < usec); | ||
951 | } | ||
952 | |||
953 | #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec) | ||
954 | |||
955 | /* | ||
956 | * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while | ||
957 | * the flash is actively programming or erasing since we have to poll for | ||
958 | * the operation to complete anyway. We can't do that in a generic way with | ||
959 | * a XIP setup so do it before the actual flash operation in this case. | ||
960 | */ | ||
961 | #undef INVALIDATE_CACHED_RANGE | ||
962 | #define INVALIDATE_CACHED_RANGE(x...) | ||
963 | #define XIP_INVAL_CACHED_RANGE(map, from, size) \ | ||
964 | do { if(map->inval_cache) map->inval_cache(map, from, size); } while(0) | ||
965 | |||
966 | /* | ||
967 | * Extra notes: | ||
968 | * | ||
969 | * Activating this XIP support changes the way the code works a bit. For | ||
970 | * example the code to suspend the current process when concurrent access | ||
971 | * happens is never executed because xip_udelay() will always return with the | ||
972 | * same chip state as it was entered with. This is why there is no care for | ||
973 | * the presence of add_wait_queue() or schedule() calls from within a couple | ||
974 | * xip_disable()'d areas of code, like in do_erase_oneblock for example. | ||
975 | * The queueing and scheduling are always happening within xip_udelay(). | ||
976 | * | ||
977 | * Similarly, get_chip() and put_chip() just happen to always be executed | ||
978 | * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state | ||
979 | * is in array mode, therefore never executing many cases therein and not | ||
980 | * causing any problem with XIP. | ||
981 | */ | ||
982 | |||
983 | #else | ||
984 | |||
985 | #define xip_disable(map, chip, adr) | ||
986 | #define xip_enable(map, chip, adr) | ||
987 | |||
988 | #define UDELAY(map, chip, adr, usec) cfi_udelay(usec) | ||
989 | |||
990 | #define XIP_INVAL_CACHED_RANGE(x...) | ||
991 | |||
992 | #endif | ||
993 | |||
994 | static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len) | ||
995 | { | ||
996 | unsigned long cmd_addr; | ||
997 | struct cfi_private *cfi = map->fldrv_priv; | ||
998 | int ret = 0; | ||
999 | |||
1000 | adr += chip->start; | ||
1001 | |||
1002 | /* Ensure cmd read/writes are aligned. */ | ||
1003 | cmd_addr = adr & ~(map_bankwidth(map)-1); | ||
1004 | |||
1005 | spin_lock(chip->mutex); | ||
1006 | |||
1007 | ret = get_chip(map, chip, cmd_addr, FL_POINT); | ||
1008 | |||
1009 | if (!ret) { | ||
1010 | if (chip->state != FL_POINT && chip->state != FL_READY) | ||
1011 | map_write(map, CMD(0xff), cmd_addr); | ||
1012 | |||
1013 | chip->state = FL_POINT; | ||
1014 | chip->ref_point_counter++; | ||
1015 | } | ||
1016 | spin_unlock(chip->mutex); | ||
1017 | |||
1018 | return ret; | ||
1019 | } | ||
1020 | |||
1021 | static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf) | ||
1022 | { | ||
1023 | struct map_info *map = mtd->priv; | ||
1024 | struct cfi_private *cfi = map->fldrv_priv; | ||
1025 | unsigned long ofs; | ||
1026 | int chipnum; | ||
1027 | int ret = 0; | ||
1028 | |||
1029 | if (!map->virt || (from + len > mtd->size)) | ||
1030 | return -EINVAL; | ||
1031 | |||
1032 | *mtdbuf = (void *)map->virt + from; | ||
1033 | *retlen = 0; | ||
1034 | |||
1035 | /* Now lock the chip(s) to POINT state */ | ||
1036 | |||
1037 | /* ofs: offset within the first chip that the first read should start */ | ||
1038 | chipnum = (from >> cfi->chipshift); | ||
1039 | ofs = from - (chipnum << cfi->chipshift); | ||
1040 | |||
1041 | while (len) { | ||
1042 | unsigned long thislen; | ||
1043 | |||
1044 | if (chipnum >= cfi->numchips) | ||
1045 | break; | ||
1046 | |||
1047 | if ((len + ofs -1) >> cfi->chipshift) | ||
1048 | thislen = (1<<cfi->chipshift) - ofs; | ||
1049 | else | ||
1050 | thislen = len; | ||
1051 | |||
1052 | ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen); | ||
1053 | if (ret) | ||
1054 | break; | ||
1055 | |||
1056 | *retlen += thislen; | ||
1057 | len -= thislen; | ||
1058 | |||
1059 | ofs = 0; | ||
1060 | chipnum++; | ||
1061 | } | ||
1062 | return 0; | ||
1063 | } | ||
1064 | |||
1065 | static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len) | ||
1066 | { | ||
1067 | struct map_info *map = mtd->priv; | ||
1068 | struct cfi_private *cfi = map->fldrv_priv; | ||
1069 | unsigned long ofs; | ||
1070 | int chipnum; | ||
1071 | |||
1072 | /* Now unlock the chip(s) POINT state */ | ||
1073 | |||
1074 | /* ofs: offset within the first chip that the first read should start */ | ||
1075 | chipnum = (from >> cfi->chipshift); | ||
1076 | ofs = from - (chipnum << cfi->chipshift); | ||
1077 | |||
1078 | while (len) { | ||
1079 | unsigned long thislen; | ||
1080 | struct flchip *chip; | ||
1081 | |||
1082 | chip = &cfi->chips[chipnum]; | ||
1083 | if (chipnum >= cfi->numchips) | ||
1084 | break; | ||
1085 | |||
1086 | if ((len + ofs -1) >> cfi->chipshift) | ||
1087 | thislen = (1<<cfi->chipshift) - ofs; | ||
1088 | else | ||
1089 | thislen = len; | ||
1090 | |||
1091 | spin_lock(chip->mutex); | ||
1092 | if (chip->state == FL_POINT) { | ||
1093 | chip->ref_point_counter--; | ||
1094 | if(chip->ref_point_counter == 0) | ||
1095 | chip->state = FL_READY; | ||
1096 | } else | ||
1097 | printk(KERN_ERR "Warning: unpoint called on non pointed region\n"); /* Should this give an error? */ | ||
1098 | |||
1099 | put_chip(map, chip, chip->start); | ||
1100 | spin_unlock(chip->mutex); | ||
1101 | |||
1102 | len -= thislen; | ||
1103 | ofs = 0; | ||
1104 | chipnum++; | ||
1105 | } | ||
1106 | } | ||
1107 | |||
1108 | static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) | ||
1109 | { | ||
1110 | unsigned long cmd_addr; | ||
1111 | struct cfi_private *cfi = map->fldrv_priv; | ||
1112 | int ret; | ||
1113 | |||
1114 | adr += chip->start; | ||
1115 | |||
1116 | /* Ensure cmd read/writes are aligned. */ | ||
1117 | cmd_addr = adr & ~(map_bankwidth(map)-1); | ||
1118 | |||
1119 | spin_lock(chip->mutex); | ||
1120 | ret = get_chip(map, chip, cmd_addr, FL_READY); | ||
1121 | if (ret) { | ||
1122 | spin_unlock(chip->mutex); | ||
1123 | return ret; | ||
1124 | } | ||
1125 | |||
1126 | if (chip->state != FL_POINT && chip->state != FL_READY) { | ||
1127 | map_write(map, CMD(0xff), cmd_addr); | ||
1128 | |||
1129 | chip->state = FL_READY; | ||
1130 | } | ||
1131 | |||
1132 | map_copy_from(map, buf, adr, len); | ||
1133 | |||
1134 | put_chip(map, chip, cmd_addr); | ||
1135 | |||
1136 | spin_unlock(chip->mutex); | ||
1137 | return 0; | ||
1138 | } | ||
1139 | |||
1140 | static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) | ||
1141 | { | ||
1142 | struct map_info *map = mtd->priv; | ||
1143 | struct cfi_private *cfi = map->fldrv_priv; | ||
1144 | unsigned long ofs; | ||
1145 | int chipnum; | ||
1146 | int ret = 0; | ||
1147 | |||
1148 | /* ofs: offset within the first chip that the first read should start */ | ||
1149 | chipnum = (from >> cfi->chipshift); | ||
1150 | ofs = from - (chipnum << cfi->chipshift); | ||
1151 | |||
1152 | *retlen = 0; | ||
1153 | |||
1154 | while (len) { | ||
1155 | unsigned long thislen; | ||
1156 | |||
1157 | if (chipnum >= cfi->numchips) | ||
1158 | break; | ||
1159 | |||
1160 | if ((len + ofs -1) >> cfi->chipshift) | ||
1161 | thislen = (1<<cfi->chipshift) - ofs; | ||
1162 | else | ||
1163 | thislen = len; | ||
1164 | |||
1165 | ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); | ||
1166 | if (ret) | ||
1167 | break; | ||
1168 | |||
1169 | *retlen += thislen; | ||
1170 | len -= thislen; | ||
1171 | buf += thislen; | ||
1172 | |||
1173 | ofs = 0; | ||
1174 | chipnum++; | ||
1175 | } | ||
1176 | return ret; | ||
1177 | } | ||
1178 | |||
1179 | #if 0 | ||
1180 | static int __xipram cfi_intelext_read_prot_reg (struct mtd_info *mtd, | ||
1181 | loff_t from, size_t len, | ||
1182 | size_t *retlen, | ||
1183 | u_char *buf, | ||
1184 | int base_offst, int reg_sz) | ||
1185 | { | ||
1186 | struct map_info *map = mtd->priv; | ||
1187 | struct cfi_private *cfi = map->fldrv_priv; | ||
1188 | struct cfi_pri_intelext *extp = cfi->cmdset_priv; | ||
1189 | struct flchip *chip; | ||
1190 | int ofs_factor = cfi->interleave * cfi->device_type; | ||
1191 | int count = len; | ||
1192 | int chip_num, offst; | ||
1193 | int ret; | ||
1194 | |||
1195 | chip_num = ((unsigned int)from/reg_sz); | ||
1196 | offst = from - (reg_sz*chip_num)+base_offst; | ||
1197 | |||
1198 | while (count) { | ||
1199 | /* Calculate which chip & protection register offset we need */ | ||
1200 | |||
1201 | if (chip_num >= cfi->numchips) | ||
1202 | goto out; | ||
1203 | |||
1204 | chip = &cfi->chips[chip_num]; | ||
1205 | |||
1206 | spin_lock(chip->mutex); | ||
1207 | ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY); | ||
1208 | if (ret) { | ||
1209 | spin_unlock(chip->mutex); | ||
1210 | return (len-count)?:ret; | ||
1211 | } | ||
1212 | |||
1213 | xip_disable(map, chip, chip->start); | ||
1214 | |||
1215 | if (chip->state != FL_JEDEC_QUERY) { | ||
1216 | map_write(map, CMD(0x90), chip->start); | ||
1217 | chip->state = FL_JEDEC_QUERY; | ||
1218 | } | ||
1219 | |||
1220 | while (count && ((offst-base_offst) < reg_sz)) { | ||
1221 | *buf = map_read8(map,(chip->start+((extp->ProtRegAddr+1)*ofs_factor)+offst)); | ||
1222 | buf++; | ||
1223 | offst++; | ||
1224 | count--; | ||
1225 | } | ||
1226 | |||
1227 | xip_enable(map, chip, chip->start); | ||
1228 | put_chip(map, chip, chip->start); | ||
1229 | spin_unlock(chip->mutex); | ||
1230 | |||
1231 | /* Move on to the next chip */ | ||
1232 | chip_num++; | ||
1233 | offst = base_offst; | ||
1234 | } | ||
1235 | |||
1236 | out: | ||
1237 | return len-count; | ||
1238 | } | ||
1239 | |||
1240 | static int cfi_intelext_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) | ||
1241 | { | ||
1242 | struct map_info *map = mtd->priv; | ||
1243 | struct cfi_private *cfi = map->fldrv_priv; | ||
1244 | struct cfi_pri_intelext *extp=cfi->cmdset_priv; | ||
1245 | int base_offst,reg_sz; | ||
1246 | |||
1247 | /* Check that we actually have some protection registers */ | ||
1248 | if(!extp || !(extp->FeatureSupport&64)){ | ||
1249 | printk(KERN_WARNING "%s: This flash device has no protection data to read!\n",map->name); | ||
1250 | return 0; | ||
1251 | } | ||
1252 | |||
1253 | base_offst=(1<<extp->FactProtRegSize); | ||
1254 | reg_sz=(1<<extp->UserProtRegSize); | ||
1255 | |||
1256 | return cfi_intelext_read_prot_reg(mtd, from, len, retlen, buf, base_offst, reg_sz); | ||
1257 | } | ||
1258 | |||
1259 | static int cfi_intelext_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) | ||
1260 | { | ||
1261 | struct map_info *map = mtd->priv; | ||
1262 | struct cfi_private *cfi = map->fldrv_priv; | ||
1263 | struct cfi_pri_intelext *extp=cfi->cmdset_priv; | ||
1264 | int base_offst,reg_sz; | ||
1265 | |||
1266 | /* Check that we actually have some protection registers */ | ||
1267 | if(!extp || !(extp->FeatureSupport&64)){ | ||
1268 | printk(KERN_WARNING "%s: This flash device has no protection data to read!\n",map->name); | ||
1269 | return 0; | ||
1270 | } | ||
1271 | |||
1272 | base_offst=0; | ||
1273 | reg_sz=(1<<extp->FactProtRegSize); | ||
1274 | |||
1275 | return cfi_intelext_read_prot_reg(mtd, from, len, retlen, buf, base_offst, reg_sz); | ||
1276 | } | ||
1277 | #endif | ||
1278 | |||
1279 | static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, | ||
1280 | unsigned long adr, map_word datum) | ||
1281 | { | ||
1282 | struct cfi_private *cfi = map->fldrv_priv; | ||
1283 | map_word status, status_OK; | ||
1284 | unsigned long timeo; | ||
1285 | int z, ret=0; | ||
1286 | |||
1287 | adr += chip->start; | ||
1288 | |||
1289 | /* Let's determine this according to the interleave only once */ | ||
1290 | status_OK = CMD(0x80); | ||
1291 | |||
1292 | spin_lock(chip->mutex); | ||
1293 | ret = get_chip(map, chip, adr, FL_WRITING); | ||
1294 | if (ret) { | ||
1295 | spin_unlock(chip->mutex); | ||
1296 | return ret; | ||
1297 | } | ||
1298 | |||
1299 | XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map)); | ||
1300 | ENABLE_VPP(map); | ||
1301 | xip_disable(map, chip, adr); | ||
1302 | map_write(map, CMD(0x40), adr); | ||
1303 | map_write(map, datum, adr); | ||
1304 | chip->state = FL_WRITING; | ||
1305 | |||
1306 | spin_unlock(chip->mutex); | ||
1307 | INVALIDATE_CACHED_RANGE(map, adr, map_bankwidth(map)); | ||
1308 | UDELAY(map, chip, adr, chip->word_write_time); | ||
1309 | spin_lock(chip->mutex); | ||
1310 | |||
1311 | timeo = jiffies + (HZ/2); | ||
1312 | z = 0; | ||
1313 | for (;;) { | ||
1314 | if (chip->state != FL_WRITING) { | ||
1315 | /* Someone's suspended the write. Sleep */ | ||
1316 | DECLARE_WAITQUEUE(wait, current); | ||
1317 | |||
1318 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
1319 | add_wait_queue(&chip->wq, &wait); | ||
1320 | spin_unlock(chip->mutex); | ||
1321 | schedule(); | ||
1322 | remove_wait_queue(&chip->wq, &wait); | ||
1323 | timeo = jiffies + (HZ / 2); /* FIXME */ | ||
1324 | spin_lock(chip->mutex); | ||
1325 | continue; | ||
1326 | } | ||
1327 | |||
1328 | status = map_read(map, adr); | ||
1329 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
1330 | break; | ||
1331 | |||
1332 | /* OK Still waiting */ | ||
1333 | if (time_after(jiffies, timeo)) { | ||
1334 | chip->state = FL_STATUS; | ||
1335 | xip_enable(map, chip, adr); | ||
1336 | printk(KERN_ERR "waiting for chip to be ready timed out in word write\n"); | ||
1337 | ret = -EIO; | ||
1338 | goto out; | ||
1339 | } | ||
1340 | |||
1341 | /* Latency issues. Drop the lock, wait a while and retry */ | ||
1342 | spin_unlock(chip->mutex); | ||
1343 | z++; | ||
1344 | UDELAY(map, chip, adr, 1); | ||
1345 | spin_lock(chip->mutex); | ||
1346 | } | ||
1347 | if (!z) { | ||
1348 | chip->word_write_time--; | ||
1349 | if (!chip->word_write_time) | ||
1350 | chip->word_write_time++; | ||
1351 | } | ||
1352 | if (z > 1) | ||
1353 | chip->word_write_time++; | ||
1354 | |||
1355 | /* Done and happy. */ | ||
1356 | chip->state = FL_STATUS; | ||
1357 | |||
1358 | /* check for lock bit */ | ||
1359 | if (map_word_bitsset(map, status, CMD(0x02))) { | ||
1360 | /* clear status */ | ||
1361 | map_write(map, CMD(0x50), adr); | ||
1362 | /* put back into read status register mode */ | ||
1363 | map_write(map, CMD(0x70), adr); | ||
1364 | ret = -EROFS; | ||
1365 | } | ||
1366 | |||
1367 | xip_enable(map, chip, adr); | ||
1368 | out: put_chip(map, chip, adr); | ||
1369 | spin_unlock(chip->mutex); | ||
1370 | |||
1371 | return ret; | ||
1372 | } | ||
1373 | |||
1374 | |||
1375 | static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf) | ||
1376 | { | ||
1377 | struct map_info *map = mtd->priv; | ||
1378 | struct cfi_private *cfi = map->fldrv_priv; | ||
1379 | int ret = 0; | ||
1380 | int chipnum; | ||
1381 | unsigned long ofs; | ||
1382 | |||
1383 | *retlen = 0; | ||
1384 | if (!len) | ||
1385 | return 0; | ||
1386 | |||
1387 | chipnum = to >> cfi->chipshift; | ||
1388 | ofs = to - (chipnum << cfi->chipshift); | ||
1389 | |||
1390 | /* If it's not bus-aligned, do the first byte write */ | ||
1391 | if (ofs & (map_bankwidth(map)-1)) { | ||
1392 | unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1); | ||
1393 | int gap = ofs - bus_ofs; | ||
1394 | int n; | ||
1395 | map_word datum; | ||
1396 | |||
1397 | n = min_t(int, len, map_bankwidth(map)-gap); | ||
1398 | datum = map_word_ff(map); | ||
1399 | datum = map_word_load_partial(map, datum, buf, gap, n); | ||
1400 | |||
1401 | ret = do_write_oneword(map, &cfi->chips[chipnum], | ||
1402 | bus_ofs, datum); | ||
1403 | if (ret) | ||
1404 | return ret; | ||
1405 | |||
1406 | len -= n; | ||
1407 | ofs += n; | ||
1408 | buf += n; | ||
1409 | (*retlen) += n; | ||
1410 | |||
1411 | if (ofs >> cfi->chipshift) { | ||
1412 | chipnum ++; | ||
1413 | ofs = 0; | ||
1414 | if (chipnum == cfi->numchips) | ||
1415 | return 0; | ||
1416 | } | ||
1417 | } | ||
1418 | |||
1419 | while(len >= map_bankwidth(map)) { | ||
1420 | map_word datum = map_word_load(map, buf); | ||
1421 | |||
1422 | ret = do_write_oneword(map, &cfi->chips[chipnum], | ||
1423 | ofs, datum); | ||
1424 | if (ret) | ||
1425 | return ret; | ||
1426 | |||
1427 | ofs += map_bankwidth(map); | ||
1428 | buf += map_bankwidth(map); | ||
1429 | (*retlen) += map_bankwidth(map); | ||
1430 | len -= map_bankwidth(map); | ||
1431 | |||
1432 | if (ofs >> cfi->chipshift) { | ||
1433 | chipnum ++; | ||
1434 | ofs = 0; | ||
1435 | if (chipnum == cfi->numchips) | ||
1436 | return 0; | ||
1437 | } | ||
1438 | } | ||
1439 | |||
1440 | if (len & (map_bankwidth(map)-1)) { | ||
1441 | map_word datum; | ||
1442 | |||
1443 | datum = map_word_ff(map); | ||
1444 | datum = map_word_load_partial(map, datum, buf, 0, len); | ||
1445 | |||
1446 | ret = do_write_oneword(map, &cfi->chips[chipnum], | ||
1447 | ofs, datum); | ||
1448 | if (ret) | ||
1449 | return ret; | ||
1450 | |||
1451 | (*retlen) += len; | ||
1452 | } | ||
1453 | |||
1454 | return 0; | ||
1455 | } | ||
1456 | |||
1457 | |||
1458 | static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, | ||
1459 | unsigned long adr, const u_char *buf, int len) | ||
1460 | { | ||
1461 | struct cfi_private *cfi = map->fldrv_priv; | ||
1462 | map_word status, status_OK; | ||
1463 | unsigned long cmd_adr, timeo; | ||
1464 | int wbufsize, z, ret=0, bytes, words; | ||
1465 | |||
1466 | wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; | ||
1467 | adr += chip->start; | ||
1468 | cmd_adr = adr & ~(wbufsize-1); | ||
1469 | |||
1470 | /* Let's determine this according to the interleave only once */ | ||
1471 | status_OK = CMD(0x80); | ||
1472 | |||
1473 | spin_lock(chip->mutex); | ||
1474 | ret = get_chip(map, chip, cmd_adr, FL_WRITING); | ||
1475 | if (ret) { | ||
1476 | spin_unlock(chip->mutex); | ||
1477 | return ret; | ||
1478 | } | ||
1479 | |||
1480 | XIP_INVAL_CACHED_RANGE(map, adr, len); | ||
1481 | ENABLE_VPP(map); | ||
1482 | xip_disable(map, chip, cmd_adr); | ||
1483 | |||
1484 | /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set | ||
1485 | [...], the device will not accept any more Write to Buffer commands". | ||
1486 | So we must check here and reset those bits if they're set. Otherwise | ||
1487 | we're just pissing in the wind */ | ||
1488 | if (chip->state != FL_STATUS) | ||
1489 | map_write(map, CMD(0x70), cmd_adr); | ||
1490 | status = map_read(map, cmd_adr); | ||
1491 | if (map_word_bitsset(map, status, CMD(0x30))) { | ||
1492 | xip_enable(map, chip, cmd_adr); | ||
1493 | printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]); | ||
1494 | xip_disable(map, chip, cmd_adr); | ||
1495 | map_write(map, CMD(0x50), cmd_adr); | ||
1496 | map_write(map, CMD(0x70), cmd_adr); | ||
1497 | } | ||
1498 | |||
1499 | chip->state = FL_WRITING_TO_BUFFER; | ||
1500 | |||
1501 | z = 0; | ||
1502 | for (;;) { | ||
1503 | map_write(map, CMD(0xe8), cmd_adr); | ||
1504 | |||
1505 | status = map_read(map, cmd_adr); | ||
1506 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
1507 | break; | ||
1508 | |||
1509 | spin_unlock(chip->mutex); | ||
1510 | UDELAY(map, chip, cmd_adr, 1); | ||
1511 | spin_lock(chip->mutex); | ||
1512 | |||
1513 | if (++z > 20) { | ||
1514 | /* Argh. Not ready for write to buffer */ | ||
1515 | map_word Xstatus; | ||
1516 | map_write(map, CMD(0x70), cmd_adr); | ||
1517 | chip->state = FL_STATUS; | ||
1518 | Xstatus = map_read(map, cmd_adr); | ||
1519 | /* Odd. Clear status bits */ | ||
1520 | map_write(map, CMD(0x50), cmd_adr); | ||
1521 | map_write(map, CMD(0x70), cmd_adr); | ||
1522 | xip_enable(map, chip, cmd_adr); | ||
1523 | printk(KERN_ERR "Chip not ready for buffer write. status = %lx, Xstatus = %lx\n", | ||
1524 | status.x[0], Xstatus.x[0]); | ||
1525 | ret = -EIO; | ||
1526 | goto out; | ||
1527 | } | ||
1528 | } | ||
1529 | |||
1530 | /* Write length of data to come */ | ||
1531 | bytes = len & (map_bankwidth(map)-1); | ||
1532 | words = len / map_bankwidth(map); | ||
1533 | map_write(map, CMD(words - !bytes), cmd_adr ); | ||
1534 | |||
1535 | /* Write data */ | ||
1536 | z = 0; | ||
1537 | while(z < words * map_bankwidth(map)) { | ||
1538 | map_word datum = map_word_load(map, buf); | ||
1539 | map_write(map, datum, adr+z); | ||
1540 | |||
1541 | z += map_bankwidth(map); | ||
1542 | buf += map_bankwidth(map); | ||
1543 | } | ||
1544 | |||
1545 | if (bytes) { | ||
1546 | map_word datum; | ||
1547 | |||
1548 | datum = map_word_ff(map); | ||
1549 | datum = map_word_load_partial(map, datum, buf, 0, bytes); | ||
1550 | map_write(map, datum, adr+z); | ||
1551 | } | ||
1552 | |||
1553 | /* GO GO GO */ | ||
1554 | map_write(map, CMD(0xd0), cmd_adr); | ||
1555 | chip->state = FL_WRITING; | ||
1556 | |||
1557 | spin_unlock(chip->mutex); | ||
1558 | INVALIDATE_CACHED_RANGE(map, adr, len); | ||
1559 | UDELAY(map, chip, cmd_adr, chip->buffer_write_time); | ||
1560 | spin_lock(chip->mutex); | ||
1561 | |||
1562 | timeo = jiffies + (HZ/2); | ||
1563 | z = 0; | ||
1564 | for (;;) { | ||
1565 | if (chip->state != FL_WRITING) { | ||
1566 | /* Someone's suspended the write. Sleep */ | ||
1567 | DECLARE_WAITQUEUE(wait, current); | ||
1568 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
1569 | add_wait_queue(&chip->wq, &wait); | ||
1570 | spin_unlock(chip->mutex); | ||
1571 | schedule(); | ||
1572 | remove_wait_queue(&chip->wq, &wait); | ||
1573 | timeo = jiffies + (HZ / 2); /* FIXME */ | ||
1574 | spin_lock(chip->mutex); | ||
1575 | continue; | ||
1576 | } | ||
1577 | |||
1578 | status = map_read(map, cmd_adr); | ||
1579 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
1580 | break; | ||
1581 | |||
1582 | /* OK Still waiting */ | ||
1583 | if (time_after(jiffies, timeo)) { | ||
1584 | chip->state = FL_STATUS; | ||
1585 | xip_enable(map, chip, cmd_adr); | ||
1586 | printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n"); | ||
1587 | ret = -EIO; | ||
1588 | goto out; | ||
1589 | } | ||
1590 | |||
1591 | /* Latency issues. Drop the lock, wait a while and retry */ | ||
1592 | spin_unlock(chip->mutex); | ||
1593 | UDELAY(map, chip, cmd_adr, 1); | ||
1594 | z++; | ||
1595 | spin_lock(chip->mutex); | ||
1596 | } | ||
1597 | if (!z) { | ||
1598 | chip->buffer_write_time--; | ||
1599 | if (!chip->buffer_write_time) | ||
1600 | chip->buffer_write_time++; | ||
1601 | } | ||
1602 | if (z > 1) | ||
1603 | chip->buffer_write_time++; | ||
1604 | |||
1605 | /* Done and happy. */ | ||
1606 | chip->state = FL_STATUS; | ||
1607 | |||
1608 | /* check for lock bit */ | ||
1609 | if (map_word_bitsset(map, status, CMD(0x02))) { | ||
1610 | /* clear status */ | ||
1611 | map_write(map, CMD(0x50), cmd_adr); | ||
1612 | /* put back into read status register mode */ | ||
1613 | map_write(map, CMD(0x70), adr); | ||
1614 | ret = -EROFS; | ||
1615 | } | ||
1616 | |||
1617 | xip_enable(map, chip, cmd_adr); | ||
1618 | out: put_chip(map, chip, cmd_adr); | ||
1619 | spin_unlock(chip->mutex); | ||
1620 | return ret; | ||
1621 | } | ||
1622 | |||
1623 | static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to, | ||
1624 | size_t len, size_t *retlen, const u_char *buf) | ||
1625 | { | ||
1626 | struct map_info *map = mtd->priv; | ||
1627 | struct cfi_private *cfi = map->fldrv_priv; | ||
1628 | int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; | ||
1629 | int ret = 0; | ||
1630 | int chipnum; | ||
1631 | unsigned long ofs; | ||
1632 | |||
1633 | *retlen = 0; | ||
1634 | if (!len) | ||
1635 | return 0; | ||
1636 | |||
1637 | chipnum = to >> cfi->chipshift; | ||
1638 | ofs = to - (chipnum << cfi->chipshift); | ||
1639 | |||
1640 | /* If it's not bus-aligned, do the first word write */ | ||
1641 | if (ofs & (map_bankwidth(map)-1)) { | ||
1642 | size_t local_len = (-ofs)&(map_bankwidth(map)-1); | ||
1643 | if (local_len > len) | ||
1644 | local_len = len; | ||
1645 | ret = cfi_intelext_write_words(mtd, to, local_len, | ||
1646 | retlen, buf); | ||
1647 | if (ret) | ||
1648 | return ret; | ||
1649 | ofs += local_len; | ||
1650 | buf += local_len; | ||
1651 | len -= local_len; | ||
1652 | |||
1653 | if (ofs >> cfi->chipshift) { | ||
1654 | chipnum ++; | ||
1655 | ofs = 0; | ||
1656 | if (chipnum == cfi->numchips) | ||
1657 | return 0; | ||
1658 | } | ||
1659 | } | ||
1660 | |||
1661 | while(len) { | ||
1662 | /* We must not cross write block boundaries */ | ||
1663 | int size = wbufsize - (ofs & (wbufsize-1)); | ||
1664 | |||
1665 | if (size > len) | ||
1666 | size = len; | ||
1667 | ret = do_write_buffer(map, &cfi->chips[chipnum], | ||
1668 | ofs, buf, size); | ||
1669 | if (ret) | ||
1670 | return ret; | ||
1671 | |||
1672 | ofs += size; | ||
1673 | buf += size; | ||
1674 | (*retlen) += size; | ||
1675 | len -= size; | ||
1676 | |||
1677 | if (ofs >> cfi->chipshift) { | ||
1678 | chipnum ++; | ||
1679 | ofs = 0; | ||
1680 | if (chipnum == cfi->numchips) | ||
1681 | return 0; | ||
1682 | } | ||
1683 | } | ||
1684 | return 0; | ||
1685 | } | ||
1686 | |||
1687 | static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, | ||
1688 | unsigned long adr, int len, void *thunk) | ||
1689 | { | ||
1690 | struct cfi_private *cfi = map->fldrv_priv; | ||
1691 | map_word status, status_OK; | ||
1692 | unsigned long timeo; | ||
1693 | int retries = 3; | ||
1694 | DECLARE_WAITQUEUE(wait, current); | ||
1695 | int ret = 0; | ||
1696 | |||
1697 | adr += chip->start; | ||
1698 | |||
1699 | /* Let's determine this according to the interleave only once */ | ||
1700 | status_OK = CMD(0x80); | ||
1701 | |||
1702 | retry: | ||
1703 | spin_lock(chip->mutex); | ||
1704 | ret = get_chip(map, chip, adr, FL_ERASING); | ||
1705 | if (ret) { | ||
1706 | spin_unlock(chip->mutex); | ||
1707 | return ret; | ||
1708 | } | ||
1709 | |||
1710 | XIP_INVAL_CACHED_RANGE(map, adr, len); | ||
1711 | ENABLE_VPP(map); | ||
1712 | xip_disable(map, chip, adr); | ||
1713 | |||
1714 | /* Clear the status register first */ | ||
1715 | map_write(map, CMD(0x50), adr); | ||
1716 | |||
1717 | /* Now erase */ | ||
1718 | map_write(map, CMD(0x20), adr); | ||
1719 | map_write(map, CMD(0xD0), adr); | ||
1720 | chip->state = FL_ERASING; | ||
1721 | chip->erase_suspended = 0; | ||
1722 | |||
1723 | spin_unlock(chip->mutex); | ||
1724 | INVALIDATE_CACHED_RANGE(map, adr, len); | ||
1725 | UDELAY(map, chip, adr, chip->erase_time*1000/2); | ||
1726 | spin_lock(chip->mutex); | ||
1727 | |||
1728 | /* FIXME. Use a timer to check this, and return immediately. */ | ||
1729 | /* Once the state machine's known to be working I'll do that */ | ||
1730 | |||
1731 | timeo = jiffies + (HZ*20); | ||
1732 | for (;;) { | ||
1733 | if (chip->state != FL_ERASING) { | ||
1734 | /* Someone's suspended the erase. Sleep */ | ||
1735 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
1736 | add_wait_queue(&chip->wq, &wait); | ||
1737 | spin_unlock(chip->mutex); | ||
1738 | schedule(); | ||
1739 | remove_wait_queue(&chip->wq, &wait); | ||
1740 | spin_lock(chip->mutex); | ||
1741 | continue; | ||
1742 | } | ||
1743 | if (chip->erase_suspended) { | ||
1744 | /* This erase was suspended and resumed. | ||
1745 | Adjust the timeout */ | ||
1746 | timeo = jiffies + (HZ*20); /* FIXME */ | ||
1747 | chip->erase_suspended = 0; | ||
1748 | } | ||
1749 | |||
1750 | status = map_read(map, adr); | ||
1751 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
1752 | break; | ||
1753 | |||
1754 | /* OK Still waiting */ | ||
1755 | if (time_after(jiffies, timeo)) { | ||
1756 | map_word Xstatus; | ||
1757 | map_write(map, CMD(0x70), adr); | ||
1758 | chip->state = FL_STATUS; | ||
1759 | Xstatus = map_read(map, adr); | ||
1760 | /* Clear status bits */ | ||
1761 | map_write(map, CMD(0x50), adr); | ||
1762 | map_write(map, CMD(0x70), adr); | ||
1763 | xip_enable(map, chip, adr); | ||
1764 | printk(KERN_ERR "waiting for erase at %08lx to complete timed out. status = %lx, Xstatus = %lx.\n", | ||
1765 | adr, status.x[0], Xstatus.x[0]); | ||
1766 | ret = -EIO; | ||
1767 | goto out; | ||
1768 | } | ||
1769 | |||
1770 | /* Latency issues. Drop the lock, wait a while and retry */ | ||
1771 | spin_unlock(chip->mutex); | ||
1772 | UDELAY(map, chip, adr, 1000000/HZ); | ||
1773 | spin_lock(chip->mutex); | ||
1774 | } | ||
1775 | |||
1776 | /* We've broken this before. It doesn't hurt to be safe */ | ||
1777 | map_write(map, CMD(0x70), adr); | ||
1778 | chip->state = FL_STATUS; | ||
1779 | status = map_read(map, adr); | ||
1780 | |||
1781 | /* check for lock bit */ | ||
1782 | if (map_word_bitsset(map, status, CMD(0x3a))) { | ||
1783 | unsigned char chipstatus; | ||
1784 | |||
1785 | /* Reset the error bits */ | ||
1786 | map_write(map, CMD(0x50), adr); | ||
1787 | map_write(map, CMD(0x70), adr); | ||
1788 | xip_enable(map, chip, adr); | ||
1789 | |||
1790 | chipstatus = status.x[0]; | ||
1791 | if (!map_word_equal(map, status, CMD(chipstatus))) { | ||
1792 | int i, w; | ||
1793 | for (w=0; w<map_words(map); w++) { | ||
1794 | for (i = 0; i<cfi_interleave(cfi); i++) { | ||
1795 | chipstatus |= status.x[w] >> (cfi->device_type * 8); | ||
1796 | } | ||
1797 | } | ||
1798 | printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n", | ||
1799 | status.x[0], chipstatus); | ||
1800 | } | ||
1801 | |||
1802 | if ((chipstatus & 0x30) == 0x30) { | ||
1803 | printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus); | ||
1804 | ret = -EIO; | ||
1805 | } else if (chipstatus & 0x02) { | ||
1806 | /* Protection bit set */ | ||
1807 | ret = -EROFS; | ||
1808 | } else if (chipstatus & 0x8) { | ||
1809 | /* Voltage */ | ||
1810 | printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus); | ||
1811 | ret = -EIO; | ||
1812 | } else if (chipstatus & 0x20) { | ||
1813 | if (retries--) { | ||
1814 | printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus); | ||
1815 | timeo = jiffies + HZ; | ||
1816 | put_chip(map, chip, adr); | ||
1817 | spin_unlock(chip->mutex); | ||
1818 | goto retry; | ||
1819 | } | ||
1820 | printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus); | ||
1821 | ret = -EIO; | ||
1822 | } | ||
1823 | } else { | ||
1824 | xip_enable(map, chip, adr); | ||
1825 | ret = 0; | ||
1826 | } | ||
1827 | |||
1828 | out: put_chip(map, chip, adr); | ||
1829 | spin_unlock(chip->mutex); | ||
1830 | return ret; | ||
1831 | } | ||
1832 | |||
1833 | int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) | ||
1834 | { | ||
1835 | unsigned long ofs, len; | ||
1836 | int ret; | ||
1837 | |||
1838 | ofs = instr->addr; | ||
1839 | len = instr->len; | ||
1840 | |||
1841 | ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL); | ||
1842 | if (ret) | ||
1843 | return ret; | ||
1844 | |||
1845 | instr->state = MTD_ERASE_DONE; | ||
1846 | mtd_erase_callback(instr); | ||
1847 | |||
1848 | return 0; | ||
1849 | } | ||
1850 | |||
1851 | static void cfi_intelext_sync (struct mtd_info *mtd) | ||
1852 | { | ||
1853 | struct map_info *map = mtd->priv; | ||
1854 | struct cfi_private *cfi = map->fldrv_priv; | ||
1855 | int i; | ||
1856 | struct flchip *chip; | ||
1857 | int ret = 0; | ||
1858 | |||
1859 | for (i=0; !ret && i<cfi->numchips; i++) { | ||
1860 | chip = &cfi->chips[i]; | ||
1861 | |||
1862 | spin_lock(chip->mutex); | ||
1863 | ret = get_chip(map, chip, chip->start, FL_SYNCING); | ||
1864 | |||
1865 | if (!ret) { | ||
1866 | chip->oldstate = chip->state; | ||
1867 | chip->state = FL_SYNCING; | ||
1868 | /* No need to wake_up() on this state change - | ||
1869 | * as the whole point is that nobody can do anything | ||
1870 | * with the chip now anyway. | ||
1871 | */ | ||
1872 | } | ||
1873 | spin_unlock(chip->mutex); | ||
1874 | } | ||
1875 | |||
1876 | /* Unlock the chips again */ | ||
1877 | |||
1878 | for (i--; i >=0; i--) { | ||
1879 | chip = &cfi->chips[i]; | ||
1880 | |||
1881 | spin_lock(chip->mutex); | ||
1882 | |||
1883 | if (chip->state == FL_SYNCING) { | ||
1884 | chip->state = chip->oldstate; | ||
1885 | wake_up(&chip->wq); | ||
1886 | } | ||
1887 | spin_unlock(chip->mutex); | ||
1888 | } | ||
1889 | } | ||
1890 | |||
1891 | #ifdef DEBUG_LOCK_BITS | ||
1892 | static int __xipram do_printlockstatus_oneblock(struct map_info *map, | ||
1893 | struct flchip *chip, | ||
1894 | unsigned long adr, | ||
1895 | int len, void *thunk) | ||
1896 | { | ||
1897 | struct cfi_private *cfi = map->fldrv_priv; | ||
1898 | int status, ofs_factor = cfi->interleave * cfi->device_type; | ||
1899 | |||
1900 | xip_disable(map, chip, adr+(2*ofs_factor)); | ||
1901 | cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); | ||
1902 | chip->state = FL_JEDEC_QUERY; | ||
1903 | status = cfi_read_query(map, adr+(2*ofs_factor)); | ||
1904 | xip_enable(map, chip, 0); | ||
1905 | printk(KERN_DEBUG "block status register for 0x%08lx is %x\n", | ||
1906 | adr, status); | ||
1907 | return 0; | ||
1908 | } | ||
1909 | #endif | ||
1910 | |||
1911 | #define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1) | ||
1912 | #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2) | ||
1913 | |||
1914 | static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip, | ||
1915 | unsigned long adr, int len, void *thunk) | ||
1916 | { | ||
1917 | struct cfi_private *cfi = map->fldrv_priv; | ||
1918 | map_word status, status_OK; | ||
1919 | unsigned long timeo = jiffies + HZ; | ||
1920 | int ret; | ||
1921 | |||
1922 | adr += chip->start; | ||
1923 | |||
1924 | /* Let's determine this according to the interleave only once */ | ||
1925 | status_OK = CMD(0x80); | ||
1926 | |||
1927 | spin_lock(chip->mutex); | ||
1928 | ret = get_chip(map, chip, adr, FL_LOCKING); | ||
1929 | if (ret) { | ||
1930 | spin_unlock(chip->mutex); | ||
1931 | return ret; | ||
1932 | } | ||
1933 | |||
1934 | ENABLE_VPP(map); | ||
1935 | xip_disable(map, chip, adr); | ||
1936 | |||
1937 | map_write(map, CMD(0x60), adr); | ||
1938 | if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) { | ||
1939 | map_write(map, CMD(0x01), adr); | ||
1940 | chip->state = FL_LOCKING; | ||
1941 | } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) { | ||
1942 | map_write(map, CMD(0xD0), adr); | ||
1943 | chip->state = FL_UNLOCKING; | ||
1944 | } else | ||
1945 | BUG(); | ||
1946 | |||
1947 | spin_unlock(chip->mutex); | ||
1948 | UDELAY(map, chip, adr, 1000000/HZ); | ||
1949 | spin_lock(chip->mutex); | ||
1950 | |||
1951 | /* FIXME. Use a timer to check this, and return immediately. */ | ||
1952 | /* Once the state machine's known to be working I'll do that */ | ||
1953 | |||
1954 | timeo = jiffies + (HZ*20); | ||
1955 | for (;;) { | ||
1956 | |||
1957 | status = map_read(map, adr); | ||
1958 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
1959 | break; | ||
1960 | |||
1961 | /* OK Still waiting */ | ||
1962 | if (time_after(jiffies, timeo)) { | ||
1963 | map_word Xstatus; | ||
1964 | map_write(map, CMD(0x70), adr); | ||
1965 | chip->state = FL_STATUS; | ||
1966 | Xstatus = map_read(map, adr); | ||
1967 | xip_enable(map, chip, adr); | ||
1968 | printk(KERN_ERR "waiting for unlock to complete timed out. status = %lx, Xstatus = %lx.\n", | ||
1969 | status.x[0], Xstatus.x[0]); | ||
1970 | put_chip(map, chip, adr); | ||
1971 | spin_unlock(chip->mutex); | ||
1972 | return -EIO; | ||
1973 | } | ||
1974 | |||
1975 | /* Latency issues. Drop the lock, wait a while and retry */ | ||
1976 | spin_unlock(chip->mutex); | ||
1977 | UDELAY(map, chip, adr, 1); | ||
1978 | spin_lock(chip->mutex); | ||
1979 | } | ||
1980 | |||
1981 | /* Done and happy. */ | ||
1982 | chip->state = FL_STATUS; | ||
1983 | xip_enable(map, chip, adr); | ||
1984 | put_chip(map, chip, adr); | ||
1985 | spin_unlock(chip->mutex); | ||
1986 | return 0; | ||
1987 | } | ||
1988 | |||
1989 | static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len) | ||
1990 | { | ||
1991 | int ret; | ||
1992 | |||
1993 | #ifdef DEBUG_LOCK_BITS | ||
1994 | printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", | ||
1995 | __FUNCTION__, ofs, len); | ||
1996 | cfi_varsize_frob(mtd, do_printlockstatus_oneblock, | ||
1997 | ofs, len, 0); | ||
1998 | #endif | ||
1999 | |||
2000 | ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, | ||
2001 | ofs, len, DO_XXLOCK_ONEBLOCK_LOCK); | ||
2002 | |||
2003 | #ifdef DEBUG_LOCK_BITS | ||
2004 | printk(KERN_DEBUG "%s: lock status after, ret=%d\n", | ||
2005 | __FUNCTION__, ret); | ||
2006 | cfi_varsize_frob(mtd, do_printlockstatus_oneblock, | ||
2007 | ofs, len, 0); | ||
2008 | #endif | ||
2009 | |||
2010 | return ret; | ||
2011 | } | ||
2012 | |||
2013 | static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) | ||
2014 | { | ||
2015 | int ret; | ||
2016 | |||
2017 | #ifdef DEBUG_LOCK_BITS | ||
2018 | printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", | ||
2019 | __FUNCTION__, ofs, len); | ||
2020 | cfi_varsize_frob(mtd, do_printlockstatus_oneblock, | ||
2021 | ofs, len, 0); | ||
2022 | #endif | ||
2023 | |||
2024 | ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, | ||
2025 | ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK); | ||
2026 | |||
2027 | #ifdef DEBUG_LOCK_BITS | ||
2028 | printk(KERN_DEBUG "%s: lock status after, ret=%d\n", | ||
2029 | __FUNCTION__, ret); | ||
2030 | cfi_varsize_frob(mtd, do_printlockstatus_oneblock, | ||
2031 | ofs, len, 0); | ||
2032 | #endif | ||
2033 | |||
2034 | return ret; | ||
2035 | } | ||
2036 | |||
2037 | static int cfi_intelext_suspend(struct mtd_info *mtd) | ||
2038 | { | ||
2039 | struct map_info *map = mtd->priv; | ||
2040 | struct cfi_private *cfi = map->fldrv_priv; | ||
2041 | int i; | ||
2042 | struct flchip *chip; | ||
2043 | int ret = 0; | ||
2044 | |||
2045 | for (i=0; !ret && i<cfi->numchips; i++) { | ||
2046 | chip = &cfi->chips[i]; | ||
2047 | |||
2048 | spin_lock(chip->mutex); | ||
2049 | |||
2050 | switch (chip->state) { | ||
2051 | case FL_READY: | ||
2052 | case FL_STATUS: | ||
2053 | case FL_CFI_QUERY: | ||
2054 | case FL_JEDEC_QUERY: | ||
2055 | if (chip->oldstate == FL_READY) { | ||
2056 | chip->oldstate = chip->state; | ||
2057 | chip->state = FL_PM_SUSPENDED; | ||
2058 | /* No need to wake_up() on this state change - | ||
2059 | * as the whole point is that nobody can do anything | ||
2060 | * with the chip now anyway. | ||
2061 | */ | ||
2062 | } else { | ||
2063 | /* There seems to be an operation pending. We must wait for it. */ | ||
2064 | printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate); | ||
2065 | ret = -EAGAIN; | ||
2066 | } | ||
2067 | break; | ||
2068 | default: | ||
2069 | /* Should we actually wait? Once upon a time these routines weren't | ||
2070 | allowed to. Or should we return -EAGAIN, because the upper layers | ||
2071 | ought to have already shut down anything which was using the device | ||
2072 | anyway? The latter for now. */ | ||
2073 | printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate); | ||
2074 | ret = -EAGAIN; | ||
2075 | case FL_PM_SUSPENDED: | ||
2076 | break; | ||
2077 | } | ||
2078 | spin_unlock(chip->mutex); | ||
2079 | } | ||
2080 | |||
2081 | /* Unlock the chips again */ | ||
2082 | |||
2083 | if (ret) { | ||
2084 | for (i--; i >=0; i--) { | ||
2085 | chip = &cfi->chips[i]; | ||
2086 | |||
2087 | spin_lock(chip->mutex); | ||
2088 | |||
2089 | if (chip->state == FL_PM_SUSPENDED) { | ||
2090 | /* No need to force it into a known state here, | ||
2091 | because we're returning failure, and it didn't | ||
2092 | get power cycled */ | ||
2093 | chip->state = chip->oldstate; | ||
2094 | chip->oldstate = FL_READY; | ||
2095 | wake_up(&chip->wq); | ||
2096 | } | ||
2097 | spin_unlock(chip->mutex); | ||
2098 | } | ||
2099 | } | ||
2100 | |||
2101 | return ret; | ||
2102 | } | ||
2103 | |||
2104 | static void cfi_intelext_resume(struct mtd_info *mtd) | ||
2105 | { | ||
2106 | struct map_info *map = mtd->priv; | ||
2107 | struct cfi_private *cfi = map->fldrv_priv; | ||
2108 | int i; | ||
2109 | struct flchip *chip; | ||
2110 | |||
2111 | for (i=0; i<cfi->numchips; i++) { | ||
2112 | |||
2113 | chip = &cfi->chips[i]; | ||
2114 | |||
2115 | spin_lock(chip->mutex); | ||
2116 | |||
2117 | /* Go to known state. Chip may have been power cycled */ | ||
2118 | if (chip->state == FL_PM_SUSPENDED) { | ||
2119 | map_write(map, CMD(0xFF), cfi->chips[i].start); | ||
2120 | chip->oldstate = chip->state = FL_READY; | ||
2121 | wake_up(&chip->wq); | ||
2122 | } | ||
2123 | |||
2124 | spin_unlock(chip->mutex); | ||
2125 | } | ||
2126 | } | ||
2127 | |||
2128 | static void cfi_intelext_destroy(struct mtd_info *mtd) | ||
2129 | { | ||
2130 | struct map_info *map = mtd->priv; | ||
2131 | struct cfi_private *cfi = map->fldrv_priv; | ||
2132 | kfree(cfi->cmdset_priv); | ||
2133 | kfree(cfi->cfiq); | ||
2134 | kfree(cfi->chips[0].priv); | ||
2135 | kfree(cfi); | ||
2136 | kfree(mtd->eraseregions); | ||
2137 | } | ||
2138 | |||
2139 | static char im_name_1[]="cfi_cmdset_0001"; | ||
2140 | static char im_name_3[]="cfi_cmdset_0003"; | ||
2141 | |||
2142 | static int __init cfi_intelext_init(void) | ||
2143 | { | ||
2144 | inter_module_register(im_name_1, THIS_MODULE, &cfi_cmdset_0001); | ||
2145 | inter_module_register(im_name_3, THIS_MODULE, &cfi_cmdset_0001); | ||
2146 | return 0; | ||
2147 | } | ||
2148 | |||
2149 | static void __exit cfi_intelext_exit(void) | ||
2150 | { | ||
2151 | inter_module_unregister(im_name_1); | ||
2152 | inter_module_unregister(im_name_3); | ||
2153 | } | ||
2154 | |||
2155 | module_init(cfi_intelext_init); | ||
2156 | module_exit(cfi_intelext_exit); | ||
2157 | |||
2158 | MODULE_LICENSE("GPL"); | ||
2159 | MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); | ||
2160 | MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips"); | ||
diff --git a/drivers/mtd/chips/cfi_cmdset_0002.c b/drivers/mtd/chips/cfi_cmdset_0002.c new file mode 100644 index 00000000000..fca8ff6f7e1 --- /dev/null +++ b/drivers/mtd/chips/cfi_cmdset_0002.c | |||
@@ -0,0 +1,1515 @@ | |||
1 | /* | ||
2 | * Common Flash Interface support: | ||
3 | * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002) | ||
4 | * | ||
5 | * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp> | ||
6 | * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com> | ||
7 | * | ||
8 | * 2_by_8 routines added by Simon Munton | ||
9 | * | ||
10 | * 4_by_16 work by Carolyn J. Smith | ||
11 | * | ||
12 | * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com | ||
13 | * | ||
14 | * This code is GPL | ||
15 | * | ||
16 | * $Id: cfi_cmdset_0002.c,v 1.114 2004/12/11 15:43:53 dedekind Exp $ | ||
17 | * | ||
18 | */ | ||
19 | |||
20 | #include <linux/config.h> | ||
21 | #include <linux/module.h> | ||
22 | #include <linux/types.h> | ||
23 | #include <linux/kernel.h> | ||
24 | #include <linux/sched.h> | ||
25 | #include <linux/init.h> | ||
26 | #include <asm/io.h> | ||
27 | #include <asm/byteorder.h> | ||
28 | |||
29 | #include <linux/errno.h> | ||
30 | #include <linux/slab.h> | ||
31 | #include <linux/delay.h> | ||
32 | #include <linux/interrupt.h> | ||
33 | #include <linux/mtd/compatmac.h> | ||
34 | #include <linux/mtd/map.h> | ||
35 | #include <linux/mtd/mtd.h> | ||
36 | #include <linux/mtd/cfi.h> | ||
37 | |||
38 | #define AMD_BOOTLOC_BUG | ||
39 | #define FORCE_WORD_WRITE 0 | ||
40 | |||
41 | #define MAX_WORD_RETRIES 3 | ||
42 | |||
43 | #define MANUFACTURER_AMD 0x0001 | ||
44 | #define MANUFACTURER_SST 0x00BF | ||
45 | #define SST49LF004B 0x0060 | ||
46 | |||
47 | static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); | ||
48 | static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); | ||
49 | static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); | ||
50 | static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *); | ||
51 | static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *); | ||
52 | static void cfi_amdstd_sync (struct mtd_info *); | ||
53 | static int cfi_amdstd_suspend (struct mtd_info *); | ||
54 | static void cfi_amdstd_resume (struct mtd_info *); | ||
55 | static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); | ||
56 | |||
57 | static void cfi_amdstd_destroy(struct mtd_info *); | ||
58 | |||
59 | struct mtd_info *cfi_cmdset_0002(struct map_info *, int); | ||
60 | static struct mtd_info *cfi_amdstd_setup (struct mtd_info *); | ||
61 | |||
62 | static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode); | ||
63 | static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr); | ||
64 | #include "fwh_lock.h" | ||
65 | |||
66 | static struct mtd_chip_driver cfi_amdstd_chipdrv = { | ||
67 | .probe = NULL, /* Not usable directly */ | ||
68 | .destroy = cfi_amdstd_destroy, | ||
69 | .name = "cfi_cmdset_0002", | ||
70 | .module = THIS_MODULE | ||
71 | }; | ||
72 | |||
73 | |||
74 | /* #define DEBUG_CFI_FEATURES */ | ||
75 | |||
76 | |||
77 | #ifdef DEBUG_CFI_FEATURES | ||
78 | static void cfi_tell_features(struct cfi_pri_amdstd *extp) | ||
79 | { | ||
80 | const char* erase_suspend[3] = { | ||
81 | "Not supported", "Read only", "Read/write" | ||
82 | }; | ||
83 | const char* top_bottom[6] = { | ||
84 | "No WP", "8x8KiB sectors at top & bottom, no WP", | ||
85 | "Bottom boot", "Top boot", | ||
86 | "Uniform, Bottom WP", "Uniform, Top WP" | ||
87 | }; | ||
88 | |||
89 | printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1); | ||
90 | printk(" Address sensitive unlock: %s\n", | ||
91 | (extp->SiliconRevision & 1) ? "Not required" : "Required"); | ||
92 | |||
93 | if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend)) | ||
94 | printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]); | ||
95 | else | ||
96 | printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend); | ||
97 | |||
98 | if (extp->BlkProt == 0) | ||
99 | printk(" Block protection: Not supported\n"); | ||
100 | else | ||
101 | printk(" Block protection: %d sectors per group\n", extp->BlkProt); | ||
102 | |||
103 | |||
104 | printk(" Temporary block unprotect: %s\n", | ||
105 | extp->TmpBlkUnprotect ? "Supported" : "Not supported"); | ||
106 | printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot); | ||
107 | printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps); | ||
108 | printk(" Burst mode: %s\n", | ||
109 | extp->BurstMode ? "Supported" : "Not supported"); | ||
110 | if (extp->PageMode == 0) | ||
111 | printk(" Page mode: Not supported\n"); | ||
112 | else | ||
113 | printk(" Page mode: %d word page\n", extp->PageMode << 2); | ||
114 | |||
115 | printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n", | ||
116 | extp->VppMin >> 4, extp->VppMin & 0xf); | ||
117 | printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n", | ||
118 | extp->VppMax >> 4, extp->VppMax & 0xf); | ||
119 | |||
120 | if (extp->TopBottom < ARRAY_SIZE(top_bottom)) | ||
121 | printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]); | ||
122 | else | ||
123 | printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom); | ||
124 | } | ||
125 | #endif | ||
126 | |||
127 | #ifdef AMD_BOOTLOC_BUG | ||
128 | /* Wheee. Bring me the head of someone at AMD. */ | ||
129 | static void fixup_amd_bootblock(struct mtd_info *mtd, void* param) | ||
130 | { | ||
131 | struct map_info *map = mtd->priv; | ||
132 | struct cfi_private *cfi = map->fldrv_priv; | ||
133 | struct cfi_pri_amdstd *extp = cfi->cmdset_priv; | ||
134 | __u8 major = extp->MajorVersion; | ||
135 | __u8 minor = extp->MinorVersion; | ||
136 | |||
137 | if (((major << 8) | minor) < 0x3131) { | ||
138 | /* CFI version 1.0 => don't trust bootloc */ | ||
139 | if (cfi->id & 0x80) { | ||
140 | printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id); | ||
141 | extp->TopBottom = 3; /* top boot */ | ||
142 | } else { | ||
143 | extp->TopBottom = 2; /* bottom boot */ | ||
144 | } | ||
145 | } | ||
146 | } | ||
147 | #endif | ||
148 | |||
149 | static void fixup_use_write_buffers(struct mtd_info *mtd, void *param) | ||
150 | { | ||
151 | struct map_info *map = mtd->priv; | ||
152 | struct cfi_private *cfi = map->fldrv_priv; | ||
153 | if (cfi->cfiq->BufWriteTimeoutTyp) { | ||
154 | DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" ); | ||
155 | mtd->write = cfi_amdstd_write_buffers; | ||
156 | } | ||
157 | } | ||
158 | |||
159 | static void fixup_use_secsi(struct mtd_info *mtd, void *param) | ||
160 | { | ||
161 | /* Setup for chips with a secsi area */ | ||
162 | mtd->read_user_prot_reg = cfi_amdstd_secsi_read; | ||
163 | mtd->read_fact_prot_reg = cfi_amdstd_secsi_read; | ||
164 | } | ||
165 | |||
166 | static void fixup_use_erase_chip(struct mtd_info *mtd, void *param) | ||
167 | { | ||
168 | struct map_info *map = mtd->priv; | ||
169 | struct cfi_private *cfi = map->fldrv_priv; | ||
170 | if ((cfi->cfiq->NumEraseRegions == 1) && | ||
171 | ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) { | ||
172 | mtd->erase = cfi_amdstd_erase_chip; | ||
173 | } | ||
174 | |||
175 | } | ||
176 | |||
177 | static struct cfi_fixup cfi_fixup_table[] = { | ||
178 | #ifdef AMD_BOOTLOC_BUG | ||
179 | { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL }, | ||
180 | #endif | ||
181 | { CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, }, | ||
182 | { CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, }, | ||
183 | { CFI_MFR_AMD, 0x0055, fixup_use_secsi, NULL, }, | ||
184 | { CFI_MFR_AMD, 0x0056, fixup_use_secsi, NULL, }, | ||
185 | { CFI_MFR_AMD, 0x005C, fixup_use_secsi, NULL, }, | ||
186 | { CFI_MFR_AMD, 0x005F, fixup_use_secsi, NULL, }, | ||
187 | #if !FORCE_WORD_WRITE | ||
188 | { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL, }, | ||
189 | #endif | ||
190 | { 0, 0, NULL, NULL } | ||
191 | }; | ||
192 | static struct cfi_fixup jedec_fixup_table[] = { | ||
193 | { MANUFACTURER_SST, SST49LF004B, fixup_use_fwh_lock, NULL, }, | ||
194 | { 0, 0, NULL, NULL } | ||
195 | }; | ||
196 | |||
197 | static struct cfi_fixup fixup_table[] = { | ||
198 | /* The CFI vendor ids and the JEDEC vendor IDs appear | ||
199 | * to be common. It is like the devices id's are as | ||
200 | * well. This table is to pick all cases where | ||
201 | * we know that is the case. | ||
202 | */ | ||
203 | { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip, NULL }, | ||
204 | { 0, 0, NULL, NULL } | ||
205 | }; | ||
206 | |||
207 | |||
208 | struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary) | ||
209 | { | ||
210 | struct cfi_private *cfi = map->fldrv_priv; | ||
211 | struct mtd_info *mtd; | ||
212 | int i; | ||
213 | |||
214 | mtd = kmalloc(sizeof(*mtd), GFP_KERNEL); | ||
215 | if (!mtd) { | ||
216 | printk(KERN_WARNING "Failed to allocate memory for MTD device\n"); | ||
217 | return NULL; | ||
218 | } | ||
219 | memset(mtd, 0, sizeof(*mtd)); | ||
220 | mtd->priv = map; | ||
221 | mtd->type = MTD_NORFLASH; | ||
222 | |||
223 | /* Fill in the default mtd operations */ | ||
224 | mtd->erase = cfi_amdstd_erase_varsize; | ||
225 | mtd->write = cfi_amdstd_write_words; | ||
226 | mtd->read = cfi_amdstd_read; | ||
227 | mtd->sync = cfi_amdstd_sync; | ||
228 | mtd->suspend = cfi_amdstd_suspend; | ||
229 | mtd->resume = cfi_amdstd_resume; | ||
230 | mtd->flags = MTD_CAP_NORFLASH; | ||
231 | mtd->name = map->name; | ||
232 | |||
233 | if (cfi->cfi_mode==CFI_MODE_CFI){ | ||
234 | unsigned char bootloc; | ||
235 | /* | ||
236 | * It's a real CFI chip, not one for which the probe | ||
237 | * routine faked a CFI structure. So we read the feature | ||
238 | * table from it. | ||
239 | */ | ||
240 | __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; | ||
241 | struct cfi_pri_amdstd *extp; | ||
242 | |||
243 | extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu"); | ||
244 | if (!extp) { | ||
245 | kfree(mtd); | ||
246 | return NULL; | ||
247 | } | ||
248 | |||
249 | /* Install our own private info structure */ | ||
250 | cfi->cmdset_priv = extp; | ||
251 | |||
252 | /* Apply cfi device specific fixups */ | ||
253 | cfi_fixup(mtd, cfi_fixup_table); | ||
254 | |||
255 | #ifdef DEBUG_CFI_FEATURES | ||
256 | /* Tell the user about it in lots of lovely detail */ | ||
257 | cfi_tell_features(extp); | ||
258 | #endif | ||
259 | |||
260 | bootloc = extp->TopBottom; | ||
261 | if ((bootloc != 2) && (bootloc != 3)) { | ||
262 | printk(KERN_WARNING "%s: CFI does not contain boot " | ||
263 | "bank location. Assuming top.\n", map->name); | ||
264 | bootloc = 2; | ||
265 | } | ||
266 | |||
267 | if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) { | ||
268 | printk(KERN_WARNING "%s: Swapping erase regions for broken CFI table.\n", map->name); | ||
269 | |||
270 | for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) { | ||
271 | int j = (cfi->cfiq->NumEraseRegions-1)-i; | ||
272 | __u32 swap; | ||
273 | |||
274 | swap = cfi->cfiq->EraseRegionInfo[i]; | ||
275 | cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j]; | ||
276 | cfi->cfiq->EraseRegionInfo[j] = swap; | ||
277 | } | ||
278 | } | ||
279 | /* Set the default CFI lock/unlock addresses */ | ||
280 | cfi->addr_unlock1 = 0x555; | ||
281 | cfi->addr_unlock2 = 0x2aa; | ||
282 | /* Modify the unlock address if we are in compatibility mode */ | ||
283 | if ( /* x16 in x8 mode */ | ||
284 | ((cfi->device_type == CFI_DEVICETYPE_X8) && | ||
285 | (cfi->cfiq->InterfaceDesc == 2)) || | ||
286 | /* x32 in x16 mode */ | ||
287 | ((cfi->device_type == CFI_DEVICETYPE_X16) && | ||
288 | (cfi->cfiq->InterfaceDesc == 4))) | ||
289 | { | ||
290 | cfi->addr_unlock1 = 0xaaa; | ||
291 | cfi->addr_unlock2 = 0x555; | ||
292 | } | ||
293 | |||
294 | } /* CFI mode */ | ||
295 | else if (cfi->cfi_mode == CFI_MODE_JEDEC) { | ||
296 | /* Apply jedec specific fixups */ | ||
297 | cfi_fixup(mtd, jedec_fixup_table); | ||
298 | } | ||
299 | /* Apply generic fixups */ | ||
300 | cfi_fixup(mtd, fixup_table); | ||
301 | |||
302 | for (i=0; i< cfi->numchips; i++) { | ||
303 | cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp; | ||
304 | cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp; | ||
305 | cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp; | ||
306 | } | ||
307 | |||
308 | map->fldrv = &cfi_amdstd_chipdrv; | ||
309 | |||
310 | return cfi_amdstd_setup(mtd); | ||
311 | } | ||
312 | |||
313 | |||
314 | static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd) | ||
315 | { | ||
316 | struct map_info *map = mtd->priv; | ||
317 | struct cfi_private *cfi = map->fldrv_priv; | ||
318 | unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; | ||
319 | unsigned long offset = 0; | ||
320 | int i,j; | ||
321 | |||
322 | printk(KERN_NOTICE "number of %s chips: %d\n", | ||
323 | (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips); | ||
324 | /* Select the correct geometry setup */ | ||
325 | mtd->size = devsize * cfi->numchips; | ||
326 | |||
327 | mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; | ||
328 | mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) | ||
329 | * mtd->numeraseregions, GFP_KERNEL); | ||
330 | if (!mtd->eraseregions) { | ||
331 | printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n"); | ||
332 | goto setup_err; | ||
333 | } | ||
334 | |||
335 | for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { | ||
336 | unsigned long ernum, ersize; | ||
337 | ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; | ||
338 | ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; | ||
339 | |||
340 | if (mtd->erasesize < ersize) { | ||
341 | mtd->erasesize = ersize; | ||
342 | } | ||
343 | for (j=0; j<cfi->numchips; j++) { | ||
344 | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; | ||
345 | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; | ||
346 | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; | ||
347 | } | ||
348 | offset += (ersize * ernum); | ||
349 | } | ||
350 | if (offset != devsize) { | ||
351 | /* Argh */ | ||
352 | printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); | ||
353 | goto setup_err; | ||
354 | } | ||
355 | #if 0 | ||
356 | // debug | ||
357 | for (i=0; i<mtd->numeraseregions;i++){ | ||
358 | printk("%d: offset=0x%x,size=0x%x,blocks=%d\n", | ||
359 | i,mtd->eraseregions[i].offset, | ||
360 | mtd->eraseregions[i].erasesize, | ||
361 | mtd->eraseregions[i].numblocks); | ||
362 | } | ||
363 | #endif | ||
364 | |||
365 | /* FIXME: erase-suspend-program is broken. See | ||
366 | http://lists.infradead.org/pipermail/linux-mtd/2003-December/009001.html */ | ||
367 | printk(KERN_NOTICE "cfi_cmdset_0002: Disabling erase-suspend-program due to code brokenness.\n"); | ||
368 | |||
369 | __module_get(THIS_MODULE); | ||
370 | return mtd; | ||
371 | |||
372 | setup_err: | ||
373 | if(mtd) { | ||
374 | if(mtd->eraseregions) | ||
375 | kfree(mtd->eraseregions); | ||
376 | kfree(mtd); | ||
377 | } | ||
378 | kfree(cfi->cmdset_priv); | ||
379 | kfree(cfi->cfiq); | ||
380 | return NULL; | ||
381 | } | ||
382 | |||
383 | /* | ||
384 | * Return true if the chip is ready. | ||
385 | * | ||
386 | * Ready is one of: read mode, query mode, erase-suspend-read mode (in any | ||
387 | * non-suspended sector) and is indicated by no toggle bits toggling. | ||
388 | * | ||
389 | * Note that anything more complicated than checking if no bits are toggling | ||
390 | * (including checking DQ5 for an error status) is tricky to get working | ||
391 | * correctly and is therefore not done (particulary with interleaved chips | ||
392 | * as each chip must be checked independantly of the others). | ||
393 | */ | ||
394 | static int chip_ready(struct map_info *map, unsigned long addr) | ||
395 | { | ||
396 | map_word d, t; | ||
397 | |||
398 | d = map_read(map, addr); | ||
399 | t = map_read(map, addr); | ||
400 | |||
401 | return map_word_equal(map, d, t); | ||
402 | } | ||
403 | |||
404 | static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode) | ||
405 | { | ||
406 | DECLARE_WAITQUEUE(wait, current); | ||
407 | struct cfi_private *cfi = map->fldrv_priv; | ||
408 | unsigned long timeo; | ||
409 | struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv; | ||
410 | |||
411 | resettime: | ||
412 | timeo = jiffies + HZ; | ||
413 | retry: | ||
414 | switch (chip->state) { | ||
415 | |||
416 | case FL_STATUS: | ||
417 | for (;;) { | ||
418 | if (chip_ready(map, adr)) | ||
419 | break; | ||
420 | |||
421 | if (time_after(jiffies, timeo)) { | ||
422 | printk(KERN_ERR "Waiting for chip to be ready timed out.\n"); | ||
423 | cfi_spin_unlock(chip->mutex); | ||
424 | return -EIO; | ||
425 | } | ||
426 | cfi_spin_unlock(chip->mutex); | ||
427 | cfi_udelay(1); | ||
428 | cfi_spin_lock(chip->mutex); | ||
429 | /* Someone else might have been playing with it. */ | ||
430 | goto retry; | ||
431 | } | ||
432 | |||
433 | case FL_READY: | ||
434 | case FL_CFI_QUERY: | ||
435 | case FL_JEDEC_QUERY: | ||
436 | return 0; | ||
437 | |||
438 | case FL_ERASING: | ||
439 | if (mode == FL_WRITING) /* FIXME: Erase-suspend-program appears broken. */ | ||
440 | goto sleep; | ||
441 | |||
442 | if (!(mode == FL_READY || mode == FL_POINT | ||
443 | || !cfip | ||
444 | || (mode == FL_WRITING && (cfip->EraseSuspend & 0x2)) | ||
445 | || (mode == FL_WRITING && (cfip->EraseSuspend & 0x1)))) | ||
446 | goto sleep; | ||
447 | |||
448 | /* We could check to see if we're trying to access the sector | ||
449 | * that is currently being erased. However, no user will try | ||
450 | * anything like that so we just wait for the timeout. */ | ||
451 | |||
452 | /* Erase suspend */ | ||
453 | /* It's harmless to issue the Erase-Suspend and Erase-Resume | ||
454 | * commands when the erase algorithm isn't in progress. */ | ||
455 | map_write(map, CMD(0xB0), chip->in_progress_block_addr); | ||
456 | chip->oldstate = FL_ERASING; | ||
457 | chip->state = FL_ERASE_SUSPENDING; | ||
458 | chip->erase_suspended = 1; | ||
459 | for (;;) { | ||
460 | if (chip_ready(map, adr)) | ||
461 | break; | ||
462 | |||
463 | if (time_after(jiffies, timeo)) { | ||
464 | /* Should have suspended the erase by now. | ||
465 | * Send an Erase-Resume command as either | ||
466 | * there was an error (so leave the erase | ||
467 | * routine to recover from it) or we trying to | ||
468 | * use the erase-in-progress sector. */ | ||
469 | map_write(map, CMD(0x30), chip->in_progress_block_addr); | ||
470 | chip->state = FL_ERASING; | ||
471 | chip->oldstate = FL_READY; | ||
472 | printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__); | ||
473 | return -EIO; | ||
474 | } | ||
475 | |||
476 | cfi_spin_unlock(chip->mutex); | ||
477 | cfi_udelay(1); | ||
478 | cfi_spin_lock(chip->mutex); | ||
479 | /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING. | ||
480 | So we can just loop here. */ | ||
481 | } | ||
482 | chip->state = FL_READY; | ||
483 | return 0; | ||
484 | |||
485 | case FL_POINT: | ||
486 | /* Only if there's no operation suspended... */ | ||
487 | if (mode == FL_READY && chip->oldstate == FL_READY) | ||
488 | return 0; | ||
489 | |||
490 | default: | ||
491 | sleep: | ||
492 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
493 | add_wait_queue(&chip->wq, &wait); | ||
494 | cfi_spin_unlock(chip->mutex); | ||
495 | schedule(); | ||
496 | remove_wait_queue(&chip->wq, &wait); | ||
497 | cfi_spin_lock(chip->mutex); | ||
498 | goto resettime; | ||
499 | } | ||
500 | } | ||
501 | |||
502 | |||
503 | static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr) | ||
504 | { | ||
505 | struct cfi_private *cfi = map->fldrv_priv; | ||
506 | |||
507 | switch(chip->oldstate) { | ||
508 | case FL_ERASING: | ||
509 | chip->state = chip->oldstate; | ||
510 | map_write(map, CMD(0x30), chip->in_progress_block_addr); | ||
511 | chip->oldstate = FL_READY; | ||
512 | chip->state = FL_ERASING; | ||
513 | break; | ||
514 | |||
515 | case FL_READY: | ||
516 | case FL_STATUS: | ||
517 | /* We should really make set_vpp() count, rather than doing this */ | ||
518 | DISABLE_VPP(map); | ||
519 | break; | ||
520 | default: | ||
521 | printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate); | ||
522 | } | ||
523 | wake_up(&chip->wq); | ||
524 | } | ||
525 | |||
526 | |||
527 | static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) | ||
528 | { | ||
529 | unsigned long cmd_addr; | ||
530 | struct cfi_private *cfi = map->fldrv_priv; | ||
531 | int ret; | ||
532 | |||
533 | adr += chip->start; | ||
534 | |||
535 | /* Ensure cmd read/writes are aligned. */ | ||
536 | cmd_addr = adr & ~(map_bankwidth(map)-1); | ||
537 | |||
538 | cfi_spin_lock(chip->mutex); | ||
539 | ret = get_chip(map, chip, cmd_addr, FL_READY); | ||
540 | if (ret) { | ||
541 | cfi_spin_unlock(chip->mutex); | ||
542 | return ret; | ||
543 | } | ||
544 | |||
545 | if (chip->state != FL_POINT && chip->state != FL_READY) { | ||
546 | map_write(map, CMD(0xf0), cmd_addr); | ||
547 | chip->state = FL_READY; | ||
548 | } | ||
549 | |||
550 | map_copy_from(map, buf, adr, len); | ||
551 | |||
552 | put_chip(map, chip, cmd_addr); | ||
553 | |||
554 | cfi_spin_unlock(chip->mutex); | ||
555 | return 0; | ||
556 | } | ||
557 | |||
558 | |||
559 | static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) | ||
560 | { | ||
561 | struct map_info *map = mtd->priv; | ||
562 | struct cfi_private *cfi = map->fldrv_priv; | ||
563 | unsigned long ofs; | ||
564 | int chipnum; | ||
565 | int ret = 0; | ||
566 | |||
567 | /* ofs: offset within the first chip that the first read should start */ | ||
568 | |||
569 | chipnum = (from >> cfi->chipshift); | ||
570 | ofs = from - (chipnum << cfi->chipshift); | ||
571 | |||
572 | |||
573 | *retlen = 0; | ||
574 | |||
575 | while (len) { | ||
576 | unsigned long thislen; | ||
577 | |||
578 | if (chipnum >= cfi->numchips) | ||
579 | break; | ||
580 | |||
581 | if ((len + ofs -1) >> cfi->chipshift) | ||
582 | thislen = (1<<cfi->chipshift) - ofs; | ||
583 | else | ||
584 | thislen = len; | ||
585 | |||
586 | ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); | ||
587 | if (ret) | ||
588 | break; | ||
589 | |||
590 | *retlen += thislen; | ||
591 | len -= thislen; | ||
592 | buf += thislen; | ||
593 | |||
594 | ofs = 0; | ||
595 | chipnum++; | ||
596 | } | ||
597 | return ret; | ||
598 | } | ||
599 | |||
600 | |||
601 | static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) | ||
602 | { | ||
603 | DECLARE_WAITQUEUE(wait, current); | ||
604 | unsigned long timeo = jiffies + HZ; | ||
605 | struct cfi_private *cfi = map->fldrv_priv; | ||
606 | |||
607 | retry: | ||
608 | cfi_spin_lock(chip->mutex); | ||
609 | |||
610 | if (chip->state != FL_READY){ | ||
611 | #if 0 | ||
612 | printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state); | ||
613 | #endif | ||
614 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
615 | add_wait_queue(&chip->wq, &wait); | ||
616 | |||
617 | cfi_spin_unlock(chip->mutex); | ||
618 | |||
619 | schedule(); | ||
620 | remove_wait_queue(&chip->wq, &wait); | ||
621 | #if 0 | ||
622 | if(signal_pending(current)) | ||
623 | return -EINTR; | ||
624 | #endif | ||
625 | timeo = jiffies + HZ; | ||
626 | |||
627 | goto retry; | ||
628 | } | ||
629 | |||
630 | adr += chip->start; | ||
631 | |||
632 | chip->state = FL_READY; | ||
633 | |||
634 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | ||
635 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | ||
636 | cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | ||
637 | |||
638 | map_copy_from(map, buf, adr, len); | ||
639 | |||
640 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | ||
641 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | ||
642 | cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | ||
643 | cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | ||
644 | |||
645 | wake_up(&chip->wq); | ||
646 | cfi_spin_unlock(chip->mutex); | ||
647 | |||
648 | return 0; | ||
649 | } | ||
650 | |||
651 | static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) | ||
652 | { | ||
653 | struct map_info *map = mtd->priv; | ||
654 | struct cfi_private *cfi = map->fldrv_priv; | ||
655 | unsigned long ofs; | ||
656 | int chipnum; | ||
657 | int ret = 0; | ||
658 | |||
659 | |||
660 | /* ofs: offset within the first chip that the first read should start */ | ||
661 | |||
662 | /* 8 secsi bytes per chip */ | ||
663 | chipnum=from>>3; | ||
664 | ofs=from & 7; | ||
665 | |||
666 | |||
667 | *retlen = 0; | ||
668 | |||
669 | while (len) { | ||
670 | unsigned long thislen; | ||
671 | |||
672 | if (chipnum >= cfi->numchips) | ||
673 | break; | ||
674 | |||
675 | if ((len + ofs -1) >> 3) | ||
676 | thislen = (1<<3) - ofs; | ||
677 | else | ||
678 | thislen = len; | ||
679 | |||
680 | ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); | ||
681 | if (ret) | ||
682 | break; | ||
683 | |||
684 | *retlen += thislen; | ||
685 | len -= thislen; | ||
686 | buf += thislen; | ||
687 | |||
688 | ofs = 0; | ||
689 | chipnum++; | ||
690 | } | ||
691 | return ret; | ||
692 | } | ||
693 | |||
694 | |||
695 | static int do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum) | ||
696 | { | ||
697 | struct cfi_private *cfi = map->fldrv_priv; | ||
698 | unsigned long timeo = jiffies + HZ; | ||
699 | /* | ||
700 | * We use a 1ms + 1 jiffies generic timeout for writes (most devices | ||
701 | * have a max write time of a few hundreds usec). However, we should | ||
702 | * use the maximum timeout value given by the chip at probe time | ||
703 | * instead. Unfortunately, struct flchip does have a field for | ||
704 | * maximum timeout, only for typical which can be far too short | ||
705 | * depending of the conditions. The ' + 1' is to avoid having a | ||
706 | * timeout of 0 jiffies if HZ is smaller than 1000. | ||
707 | */ | ||
708 | unsigned long uWriteTimeout = ( HZ / 1000 ) + 1; | ||
709 | int ret = 0; | ||
710 | map_word oldd; | ||
711 | int retry_cnt = 0; | ||
712 | |||
713 | adr += chip->start; | ||
714 | |||
715 | cfi_spin_lock(chip->mutex); | ||
716 | ret = get_chip(map, chip, adr, FL_WRITING); | ||
717 | if (ret) { | ||
718 | cfi_spin_unlock(chip->mutex); | ||
719 | return ret; | ||
720 | } | ||
721 | |||
722 | DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", | ||
723 | __func__, adr, datum.x[0] ); | ||
724 | |||
725 | /* | ||
726 | * Check for a NOP for the case when the datum to write is already | ||
727 | * present - it saves time and works around buggy chips that corrupt | ||
728 | * data at other locations when 0xff is written to a location that | ||
729 | * already contains 0xff. | ||
730 | */ | ||
731 | oldd = map_read(map, adr); | ||
732 | if (map_word_equal(map, oldd, datum)) { | ||
733 | DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n", | ||
734 | __func__); | ||
735 | goto op_done; | ||
736 | } | ||
737 | |||
738 | ENABLE_VPP(map); | ||
739 | retry: | ||
740 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | ||
741 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | ||
742 | cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | ||
743 | map_write(map, datum, adr); | ||
744 | chip->state = FL_WRITING; | ||
745 | |||
746 | cfi_spin_unlock(chip->mutex); | ||
747 | cfi_udelay(chip->word_write_time); | ||
748 | cfi_spin_lock(chip->mutex); | ||
749 | |||
750 | /* See comment above for timeout value. */ | ||
751 | timeo = jiffies + uWriteTimeout; | ||
752 | for (;;) { | ||
753 | if (chip->state != FL_WRITING) { | ||
754 | /* Someone's suspended the write. Sleep */ | ||
755 | DECLARE_WAITQUEUE(wait, current); | ||
756 | |||
757 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
758 | add_wait_queue(&chip->wq, &wait); | ||
759 | cfi_spin_unlock(chip->mutex); | ||
760 | schedule(); | ||
761 | remove_wait_queue(&chip->wq, &wait); | ||
762 | timeo = jiffies + (HZ / 2); /* FIXME */ | ||
763 | cfi_spin_lock(chip->mutex); | ||
764 | continue; | ||
765 | } | ||
766 | |||
767 | if (chip_ready(map, adr)) | ||
768 | goto op_done; | ||
769 | |||
770 | if (time_after(jiffies, timeo)) | ||
771 | break; | ||
772 | |||
773 | /* Latency issues. Drop the lock, wait a while and retry */ | ||
774 | cfi_spin_unlock(chip->mutex); | ||
775 | cfi_udelay(1); | ||
776 | cfi_spin_lock(chip->mutex); | ||
777 | } | ||
778 | |||
779 | printk(KERN_WARNING "MTD %s(): software timeout\n", __func__); | ||
780 | |||
781 | /* reset on all failures. */ | ||
782 | map_write( map, CMD(0xF0), chip->start ); | ||
783 | /* FIXME - should have reset delay before continuing */ | ||
784 | if (++retry_cnt <= MAX_WORD_RETRIES) | ||
785 | goto retry; | ||
786 | |||
787 | ret = -EIO; | ||
788 | op_done: | ||
789 | chip->state = FL_READY; | ||
790 | put_chip(map, chip, adr); | ||
791 | cfi_spin_unlock(chip->mutex); | ||
792 | |||
793 | return ret; | ||
794 | } | ||
795 | |||
796 | |||
797 | static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len, | ||
798 | size_t *retlen, const u_char *buf) | ||
799 | { | ||
800 | struct map_info *map = mtd->priv; | ||
801 | struct cfi_private *cfi = map->fldrv_priv; | ||
802 | int ret = 0; | ||
803 | int chipnum; | ||
804 | unsigned long ofs, chipstart; | ||
805 | DECLARE_WAITQUEUE(wait, current); | ||
806 | |||
807 | *retlen = 0; | ||
808 | if (!len) | ||
809 | return 0; | ||
810 | |||
811 | chipnum = to >> cfi->chipshift; | ||
812 | ofs = to - (chipnum << cfi->chipshift); | ||
813 | chipstart = cfi->chips[chipnum].start; | ||
814 | |||
815 | /* If it's not bus-aligned, do the first byte write */ | ||
816 | if (ofs & (map_bankwidth(map)-1)) { | ||
817 | unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1); | ||
818 | int i = ofs - bus_ofs; | ||
819 | int n = 0; | ||
820 | map_word tmp_buf; | ||
821 | |||
822 | retry: | ||
823 | cfi_spin_lock(cfi->chips[chipnum].mutex); | ||
824 | |||
825 | if (cfi->chips[chipnum].state != FL_READY) { | ||
826 | #if 0 | ||
827 | printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state); | ||
828 | #endif | ||
829 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
830 | add_wait_queue(&cfi->chips[chipnum].wq, &wait); | ||
831 | |||
832 | cfi_spin_unlock(cfi->chips[chipnum].mutex); | ||
833 | |||
834 | schedule(); | ||
835 | remove_wait_queue(&cfi->chips[chipnum].wq, &wait); | ||
836 | #if 0 | ||
837 | if(signal_pending(current)) | ||
838 | return -EINTR; | ||
839 | #endif | ||
840 | goto retry; | ||
841 | } | ||
842 | |||
843 | /* Load 'tmp_buf' with old contents of flash */ | ||
844 | tmp_buf = map_read(map, bus_ofs+chipstart); | ||
845 | |||
846 | cfi_spin_unlock(cfi->chips[chipnum].mutex); | ||
847 | |||
848 | /* Number of bytes to copy from buffer */ | ||
849 | n = min_t(int, len, map_bankwidth(map)-i); | ||
850 | |||
851 | tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n); | ||
852 | |||
853 | ret = do_write_oneword(map, &cfi->chips[chipnum], | ||
854 | bus_ofs, tmp_buf); | ||
855 | if (ret) | ||
856 | return ret; | ||
857 | |||
858 | ofs += n; | ||
859 | buf += n; | ||
860 | (*retlen) += n; | ||
861 | len -= n; | ||
862 | |||
863 | if (ofs >> cfi->chipshift) { | ||
864 | chipnum ++; | ||
865 | ofs = 0; | ||
866 | if (chipnum == cfi->numchips) | ||
867 | return 0; | ||
868 | } | ||
869 | } | ||
870 | |||
871 | /* We are now aligned, write as much as possible */ | ||
872 | while(len >= map_bankwidth(map)) { | ||
873 | map_word datum; | ||
874 | |||
875 | datum = map_word_load(map, buf); | ||
876 | |||
877 | ret = do_write_oneword(map, &cfi->chips[chipnum], | ||
878 | ofs, datum); | ||
879 | if (ret) | ||
880 | return ret; | ||
881 | |||
882 | ofs += map_bankwidth(map); | ||
883 | buf += map_bankwidth(map); | ||
884 | (*retlen) += map_bankwidth(map); | ||
885 | len -= map_bankwidth(map); | ||
886 | |||
887 | if (ofs >> cfi->chipshift) { | ||
888 | chipnum ++; | ||
889 | ofs = 0; | ||
890 | if (chipnum == cfi->numchips) | ||
891 | return 0; | ||
892 | chipstart = cfi->chips[chipnum].start; | ||
893 | } | ||
894 | } | ||
895 | |||
896 | /* Write the trailing bytes if any */ | ||
897 | if (len & (map_bankwidth(map)-1)) { | ||
898 | map_word tmp_buf; | ||
899 | |||
900 | retry1: | ||
901 | cfi_spin_lock(cfi->chips[chipnum].mutex); | ||
902 | |||
903 | if (cfi->chips[chipnum].state != FL_READY) { | ||
904 | #if 0 | ||
905 | printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state); | ||
906 | #endif | ||
907 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
908 | add_wait_queue(&cfi->chips[chipnum].wq, &wait); | ||
909 | |||
910 | cfi_spin_unlock(cfi->chips[chipnum].mutex); | ||
911 | |||
912 | schedule(); | ||
913 | remove_wait_queue(&cfi->chips[chipnum].wq, &wait); | ||
914 | #if 0 | ||
915 | if(signal_pending(current)) | ||
916 | return -EINTR; | ||
917 | #endif | ||
918 | goto retry1; | ||
919 | } | ||
920 | |||
921 | tmp_buf = map_read(map, ofs + chipstart); | ||
922 | |||
923 | cfi_spin_unlock(cfi->chips[chipnum].mutex); | ||
924 | |||
925 | tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len); | ||
926 | |||
927 | ret = do_write_oneword(map, &cfi->chips[chipnum], | ||
928 | ofs, tmp_buf); | ||
929 | if (ret) | ||
930 | return ret; | ||
931 | |||
932 | (*retlen) += len; | ||
933 | } | ||
934 | |||
935 | return 0; | ||
936 | } | ||
937 | |||
938 | |||
939 | /* | ||
940 | * FIXME: interleaved mode not tested, and probably not supported! | ||
941 | */ | ||
942 | static inline int do_write_buffer(struct map_info *map, struct flchip *chip, | ||
943 | unsigned long adr, const u_char *buf, int len) | ||
944 | { | ||
945 | struct cfi_private *cfi = map->fldrv_priv; | ||
946 | unsigned long timeo = jiffies + HZ; | ||
947 | /* see comments in do_write_oneword() regarding uWriteTimeo. */ | ||
948 | unsigned long uWriteTimeout = ( HZ / 1000 ) + 1; | ||
949 | int ret = -EIO; | ||
950 | unsigned long cmd_adr; | ||
951 | int z, words; | ||
952 | map_word datum; | ||
953 | |||
954 | adr += chip->start; | ||
955 | cmd_adr = adr; | ||
956 | |||
957 | cfi_spin_lock(chip->mutex); | ||
958 | ret = get_chip(map, chip, adr, FL_WRITING); | ||
959 | if (ret) { | ||
960 | cfi_spin_unlock(chip->mutex); | ||
961 | return ret; | ||
962 | } | ||
963 | |||
964 | datum = map_word_load(map, buf); | ||
965 | |||
966 | DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", | ||
967 | __func__, adr, datum.x[0] ); | ||
968 | |||
969 | ENABLE_VPP(map); | ||
970 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | ||
971 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | ||
972 | //cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | ||
973 | |||
974 | /* Write Buffer Load */ | ||
975 | map_write(map, CMD(0x25), cmd_adr); | ||
976 | |||
977 | chip->state = FL_WRITING_TO_BUFFER; | ||
978 | |||
979 | /* Write length of data to come */ | ||
980 | words = len / map_bankwidth(map); | ||
981 | map_write(map, CMD(words - 1), cmd_adr); | ||
982 | /* Write data */ | ||
983 | z = 0; | ||
984 | while(z < words * map_bankwidth(map)) { | ||
985 | datum = map_word_load(map, buf); | ||
986 | map_write(map, datum, adr + z); | ||
987 | |||
988 | z += map_bankwidth(map); | ||
989 | buf += map_bankwidth(map); | ||
990 | } | ||
991 | z -= map_bankwidth(map); | ||
992 | |||
993 | adr += z; | ||
994 | |||
995 | /* Write Buffer Program Confirm: GO GO GO */ | ||
996 | map_write(map, CMD(0x29), cmd_adr); | ||
997 | chip->state = FL_WRITING; | ||
998 | |||
999 | cfi_spin_unlock(chip->mutex); | ||
1000 | cfi_udelay(chip->buffer_write_time); | ||
1001 | cfi_spin_lock(chip->mutex); | ||
1002 | |||
1003 | timeo = jiffies + uWriteTimeout; | ||
1004 | |||
1005 | for (;;) { | ||
1006 | if (chip->state != FL_WRITING) { | ||
1007 | /* Someone's suspended the write. Sleep */ | ||
1008 | DECLARE_WAITQUEUE(wait, current); | ||
1009 | |||
1010 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
1011 | add_wait_queue(&chip->wq, &wait); | ||
1012 | cfi_spin_unlock(chip->mutex); | ||
1013 | schedule(); | ||
1014 | remove_wait_queue(&chip->wq, &wait); | ||
1015 | timeo = jiffies + (HZ / 2); /* FIXME */ | ||
1016 | cfi_spin_lock(chip->mutex); | ||
1017 | continue; | ||
1018 | } | ||
1019 | |||
1020 | if (chip_ready(map, adr)) | ||
1021 | goto op_done; | ||
1022 | |||
1023 | if( time_after(jiffies, timeo)) | ||
1024 | break; | ||
1025 | |||
1026 | /* Latency issues. Drop the lock, wait a while and retry */ | ||
1027 | cfi_spin_unlock(chip->mutex); | ||
1028 | cfi_udelay(1); | ||
1029 | cfi_spin_lock(chip->mutex); | ||
1030 | } | ||
1031 | |||
1032 | printk(KERN_WARNING "MTD %s(): software timeout\n", | ||
1033 | __func__ ); | ||
1034 | |||
1035 | /* reset on all failures. */ | ||
1036 | map_write( map, CMD(0xF0), chip->start ); | ||
1037 | /* FIXME - should have reset delay before continuing */ | ||
1038 | |||
1039 | ret = -EIO; | ||
1040 | op_done: | ||
1041 | chip->state = FL_READY; | ||
1042 | put_chip(map, chip, adr); | ||
1043 | cfi_spin_unlock(chip->mutex); | ||
1044 | |||
1045 | return ret; | ||
1046 | } | ||
1047 | |||
1048 | |||
1049 | static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len, | ||
1050 | size_t *retlen, const u_char *buf) | ||
1051 | { | ||
1052 | struct map_info *map = mtd->priv; | ||
1053 | struct cfi_private *cfi = map->fldrv_priv; | ||
1054 | int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; | ||
1055 | int ret = 0; | ||
1056 | int chipnum; | ||
1057 | unsigned long ofs; | ||
1058 | |||
1059 | *retlen = 0; | ||
1060 | if (!len) | ||
1061 | return 0; | ||
1062 | |||
1063 | chipnum = to >> cfi->chipshift; | ||
1064 | ofs = to - (chipnum << cfi->chipshift); | ||
1065 | |||
1066 | /* If it's not bus-aligned, do the first word write */ | ||
1067 | if (ofs & (map_bankwidth(map)-1)) { | ||
1068 | size_t local_len = (-ofs)&(map_bankwidth(map)-1); | ||
1069 | if (local_len > len) | ||
1070 | local_len = len; | ||
1071 | ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift), | ||
1072 | local_len, retlen, buf); | ||
1073 | if (ret) | ||
1074 | return ret; | ||
1075 | ofs += local_len; | ||
1076 | buf += local_len; | ||
1077 | len -= local_len; | ||
1078 | |||
1079 | if (ofs >> cfi->chipshift) { | ||
1080 | chipnum ++; | ||
1081 | ofs = 0; | ||
1082 | if (chipnum == cfi->numchips) | ||
1083 | return 0; | ||
1084 | } | ||
1085 | } | ||
1086 | |||
1087 | /* Write buffer is worth it only if more than one word to write... */ | ||
1088 | while (len >= map_bankwidth(map) * 2) { | ||
1089 | /* We must not cross write block boundaries */ | ||
1090 | int size = wbufsize - (ofs & (wbufsize-1)); | ||
1091 | |||
1092 | if (size > len) | ||
1093 | size = len; | ||
1094 | if (size % map_bankwidth(map)) | ||
1095 | size -= size % map_bankwidth(map); | ||
1096 | |||
1097 | ret = do_write_buffer(map, &cfi->chips[chipnum], | ||
1098 | ofs, buf, size); | ||
1099 | if (ret) | ||
1100 | return ret; | ||
1101 | |||
1102 | ofs += size; | ||
1103 | buf += size; | ||
1104 | (*retlen) += size; | ||
1105 | len -= size; | ||
1106 | |||
1107 | if (ofs >> cfi->chipshift) { | ||
1108 | chipnum ++; | ||
1109 | ofs = 0; | ||
1110 | if (chipnum == cfi->numchips) | ||
1111 | return 0; | ||
1112 | } | ||
1113 | } | ||
1114 | |||
1115 | if (len) { | ||
1116 | size_t retlen_dregs = 0; | ||
1117 | |||
1118 | ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift), | ||
1119 | len, &retlen_dregs, buf); | ||
1120 | |||
1121 | *retlen += retlen_dregs; | ||
1122 | return ret; | ||
1123 | } | ||
1124 | |||
1125 | return 0; | ||
1126 | } | ||
1127 | |||
1128 | |||
1129 | /* | ||
1130 | * Handle devices with one erase region, that only implement | ||
1131 | * the chip erase command. | ||
1132 | */ | ||
1133 | static inline int do_erase_chip(struct map_info *map, struct flchip *chip) | ||
1134 | { | ||
1135 | struct cfi_private *cfi = map->fldrv_priv; | ||
1136 | unsigned long timeo = jiffies + HZ; | ||
1137 | unsigned long int adr; | ||
1138 | DECLARE_WAITQUEUE(wait, current); | ||
1139 | int ret = 0; | ||
1140 | |||
1141 | adr = cfi->addr_unlock1; | ||
1142 | |||
1143 | cfi_spin_lock(chip->mutex); | ||
1144 | ret = get_chip(map, chip, adr, FL_WRITING); | ||
1145 | if (ret) { | ||
1146 | cfi_spin_unlock(chip->mutex); | ||
1147 | return ret; | ||
1148 | } | ||
1149 | |||
1150 | DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n", | ||
1151 | __func__, chip->start ); | ||
1152 | |||
1153 | ENABLE_VPP(map); | ||
1154 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | ||
1155 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | ||
1156 | cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | ||
1157 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | ||
1158 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | ||
1159 | cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | ||
1160 | |||
1161 | chip->state = FL_ERASING; | ||
1162 | chip->erase_suspended = 0; | ||
1163 | chip->in_progress_block_addr = adr; | ||
1164 | |||
1165 | cfi_spin_unlock(chip->mutex); | ||
1166 | msleep(chip->erase_time/2); | ||
1167 | cfi_spin_lock(chip->mutex); | ||
1168 | |||
1169 | timeo = jiffies + (HZ*20); | ||
1170 | |||
1171 | for (;;) { | ||
1172 | if (chip->state != FL_ERASING) { | ||
1173 | /* Someone's suspended the erase. Sleep */ | ||
1174 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
1175 | add_wait_queue(&chip->wq, &wait); | ||
1176 | cfi_spin_unlock(chip->mutex); | ||
1177 | schedule(); | ||
1178 | remove_wait_queue(&chip->wq, &wait); | ||
1179 | cfi_spin_lock(chip->mutex); | ||
1180 | continue; | ||
1181 | } | ||
1182 | if (chip->erase_suspended) { | ||
1183 | /* This erase was suspended and resumed. | ||
1184 | Adjust the timeout */ | ||
1185 | timeo = jiffies + (HZ*20); /* FIXME */ | ||
1186 | chip->erase_suspended = 0; | ||
1187 | } | ||
1188 | |||
1189 | if (chip_ready(map, adr)) | ||
1190 | goto op_done; | ||
1191 | |||
1192 | if (time_after(jiffies, timeo)) | ||
1193 | break; | ||
1194 | |||
1195 | /* Latency issues. Drop the lock, wait a while and retry */ | ||
1196 | cfi_spin_unlock(chip->mutex); | ||
1197 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
1198 | schedule_timeout(1); | ||
1199 | cfi_spin_lock(chip->mutex); | ||
1200 | } | ||
1201 | |||
1202 | printk(KERN_WARNING "MTD %s(): software timeout\n", | ||
1203 | __func__ ); | ||
1204 | |||
1205 | /* reset on all failures. */ | ||
1206 | map_write( map, CMD(0xF0), chip->start ); | ||
1207 | /* FIXME - should have reset delay before continuing */ | ||
1208 | |||
1209 | ret = -EIO; | ||
1210 | op_done: | ||
1211 | chip->state = FL_READY; | ||
1212 | put_chip(map, chip, adr); | ||
1213 | cfi_spin_unlock(chip->mutex); | ||
1214 | |||
1215 | return ret; | ||
1216 | } | ||
1217 | |||
1218 | |||
1219 | static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk) | ||
1220 | { | ||
1221 | struct cfi_private *cfi = map->fldrv_priv; | ||
1222 | unsigned long timeo = jiffies + HZ; | ||
1223 | DECLARE_WAITQUEUE(wait, current); | ||
1224 | int ret = 0; | ||
1225 | |||
1226 | adr += chip->start; | ||
1227 | |||
1228 | cfi_spin_lock(chip->mutex); | ||
1229 | ret = get_chip(map, chip, adr, FL_ERASING); | ||
1230 | if (ret) { | ||
1231 | cfi_spin_unlock(chip->mutex); | ||
1232 | return ret; | ||
1233 | } | ||
1234 | |||
1235 | DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n", | ||
1236 | __func__, adr ); | ||
1237 | |||
1238 | ENABLE_VPP(map); | ||
1239 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | ||
1240 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | ||
1241 | cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | ||
1242 | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | ||
1243 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | ||
1244 | map_write(map, CMD(0x30), adr); | ||
1245 | |||
1246 | chip->state = FL_ERASING; | ||
1247 | chip->erase_suspended = 0; | ||
1248 | chip->in_progress_block_addr = adr; | ||
1249 | |||
1250 | cfi_spin_unlock(chip->mutex); | ||
1251 | msleep(chip->erase_time/2); | ||
1252 | cfi_spin_lock(chip->mutex); | ||
1253 | |||
1254 | timeo = jiffies + (HZ*20); | ||
1255 | |||
1256 | for (;;) { | ||
1257 | if (chip->state != FL_ERASING) { | ||
1258 | /* Someone's suspended the erase. Sleep */ | ||
1259 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
1260 | add_wait_queue(&chip->wq, &wait); | ||
1261 | cfi_spin_unlock(chip->mutex); | ||
1262 | schedule(); | ||
1263 | remove_wait_queue(&chip->wq, &wait); | ||
1264 | cfi_spin_lock(chip->mutex); | ||
1265 | continue; | ||
1266 | } | ||
1267 | if (chip->erase_suspended) { | ||
1268 | /* This erase was suspended and resumed. | ||
1269 | Adjust the timeout */ | ||
1270 | timeo = jiffies + (HZ*20); /* FIXME */ | ||
1271 | chip->erase_suspended = 0; | ||
1272 | } | ||
1273 | |||
1274 | if (chip_ready(map, adr)) | ||
1275 | goto op_done; | ||
1276 | |||
1277 | if (time_after(jiffies, timeo)) | ||
1278 | break; | ||
1279 | |||
1280 | /* Latency issues. Drop the lock, wait a while and retry */ | ||
1281 | cfi_spin_unlock(chip->mutex); | ||
1282 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
1283 | schedule_timeout(1); | ||
1284 | cfi_spin_lock(chip->mutex); | ||
1285 | } | ||
1286 | |||
1287 | printk(KERN_WARNING "MTD %s(): software timeout\n", | ||
1288 | __func__ ); | ||
1289 | |||
1290 | /* reset on all failures. */ | ||
1291 | map_write( map, CMD(0xF0), chip->start ); | ||
1292 | /* FIXME - should have reset delay before continuing */ | ||
1293 | |||
1294 | ret = -EIO; | ||
1295 | op_done: | ||
1296 | chip->state = FL_READY; | ||
1297 | put_chip(map, chip, adr); | ||
1298 | cfi_spin_unlock(chip->mutex); | ||
1299 | return ret; | ||
1300 | } | ||
1301 | |||
1302 | |||
1303 | int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) | ||
1304 | { | ||
1305 | unsigned long ofs, len; | ||
1306 | int ret; | ||
1307 | |||
1308 | ofs = instr->addr; | ||
1309 | len = instr->len; | ||
1310 | |||
1311 | ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL); | ||
1312 | if (ret) | ||
1313 | return ret; | ||
1314 | |||
1315 | instr->state = MTD_ERASE_DONE; | ||
1316 | mtd_erase_callback(instr); | ||
1317 | |||
1318 | return 0; | ||
1319 | } | ||
1320 | |||
1321 | |||
1322 | static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr) | ||
1323 | { | ||
1324 | struct map_info *map = mtd->priv; | ||
1325 | struct cfi_private *cfi = map->fldrv_priv; | ||
1326 | int ret = 0; | ||
1327 | |||
1328 | if (instr->addr != 0) | ||
1329 | return -EINVAL; | ||
1330 | |||
1331 | if (instr->len != mtd->size) | ||
1332 | return -EINVAL; | ||
1333 | |||
1334 | ret = do_erase_chip(map, &cfi->chips[0]); | ||
1335 | if (ret) | ||
1336 | return ret; | ||
1337 | |||
1338 | instr->state = MTD_ERASE_DONE; | ||
1339 | mtd_erase_callback(instr); | ||
1340 | |||
1341 | return 0; | ||
1342 | } | ||
1343 | |||
1344 | |||
1345 | static void cfi_amdstd_sync (struct mtd_info *mtd) | ||
1346 | { | ||
1347 | struct map_info *map = mtd->priv; | ||
1348 | struct cfi_private *cfi = map->fldrv_priv; | ||
1349 | int i; | ||
1350 | struct flchip *chip; | ||
1351 | int ret = 0; | ||
1352 | DECLARE_WAITQUEUE(wait, current); | ||
1353 | |||
1354 | for (i=0; !ret && i<cfi->numchips; i++) { | ||
1355 | chip = &cfi->chips[i]; | ||
1356 | |||
1357 | retry: | ||
1358 | cfi_spin_lock(chip->mutex); | ||
1359 | |||
1360 | switch(chip->state) { | ||
1361 | case FL_READY: | ||
1362 | case FL_STATUS: | ||
1363 | case FL_CFI_QUERY: | ||
1364 | case FL_JEDEC_QUERY: | ||
1365 | chip->oldstate = chip->state; | ||
1366 | chip->state = FL_SYNCING; | ||
1367 | /* No need to wake_up() on this state change - | ||
1368 | * as the whole point is that nobody can do anything | ||
1369 | * with the chip now anyway. | ||
1370 | */ | ||
1371 | case FL_SYNCING: | ||
1372 | cfi_spin_unlock(chip->mutex); | ||
1373 | break; | ||
1374 | |||
1375 | default: | ||
1376 | /* Not an idle state */ | ||
1377 | add_wait_queue(&chip->wq, &wait); | ||
1378 | |||
1379 | cfi_spin_unlock(chip->mutex); | ||
1380 | |||
1381 | schedule(); | ||
1382 | |||
1383 | remove_wait_queue(&chip->wq, &wait); | ||
1384 | |||
1385 | goto retry; | ||
1386 | } | ||
1387 | } | ||
1388 | |||
1389 | /* Unlock the chips again */ | ||
1390 | |||
1391 | for (i--; i >=0; i--) { | ||
1392 | chip = &cfi->chips[i]; | ||
1393 | |||
1394 | cfi_spin_lock(chip->mutex); | ||
1395 | |||
1396 | if (chip->state == FL_SYNCING) { | ||
1397 | chip->state = chip->oldstate; | ||
1398 | wake_up(&chip->wq); | ||
1399 | } | ||
1400 | cfi_spin_unlock(chip->mutex); | ||
1401 | } | ||
1402 | } | ||
1403 | |||
1404 | |||
1405 | static int cfi_amdstd_suspend(struct mtd_info *mtd) | ||
1406 | { | ||
1407 | struct map_info *map = mtd->priv; | ||
1408 | struct cfi_private *cfi = map->fldrv_priv; | ||
1409 | int i; | ||
1410 | struct flchip *chip; | ||
1411 | int ret = 0; | ||
1412 | |||
1413 | for (i=0; !ret && i<cfi->numchips; i++) { | ||
1414 | chip = &cfi->chips[i]; | ||
1415 | |||
1416 | cfi_spin_lock(chip->mutex); | ||
1417 | |||
1418 | switch(chip->state) { | ||
1419 | case FL_READY: | ||
1420 | case FL_STATUS: | ||
1421 | case FL_CFI_QUERY: | ||
1422 | case FL_JEDEC_QUERY: | ||
1423 | chip->oldstate = chip->state; | ||
1424 | chip->state = FL_PM_SUSPENDED; | ||
1425 | /* No need to wake_up() on this state change - | ||
1426 | * as the whole point is that nobody can do anything | ||
1427 | * with the chip now anyway. | ||
1428 | */ | ||
1429 | case FL_PM_SUSPENDED: | ||
1430 | break; | ||
1431 | |||
1432 | default: | ||
1433 | ret = -EAGAIN; | ||
1434 | break; | ||
1435 | } | ||
1436 | cfi_spin_unlock(chip->mutex); | ||
1437 | } | ||
1438 | |||
1439 | /* Unlock the chips again */ | ||
1440 | |||
1441 | if (ret) { | ||
1442 | for (i--; i >=0; i--) { | ||
1443 | chip = &cfi->chips[i]; | ||
1444 | |||
1445 | cfi_spin_lock(chip->mutex); | ||
1446 | |||
1447 | if (chip->state == FL_PM_SUSPENDED) { | ||
1448 | chip->state = chip->oldstate; | ||
1449 | wake_up(&chip->wq); | ||
1450 | } | ||
1451 | cfi_spin_unlock(chip->mutex); | ||
1452 | } | ||
1453 | } | ||
1454 | |||
1455 | return ret; | ||
1456 | } | ||
1457 | |||
1458 | |||
1459 | static void cfi_amdstd_resume(struct mtd_info *mtd) | ||
1460 | { | ||
1461 | struct map_info *map = mtd->priv; | ||
1462 | struct cfi_private *cfi = map->fldrv_priv; | ||
1463 | int i; | ||
1464 | struct flchip *chip; | ||
1465 | |||
1466 | for (i=0; i<cfi->numchips; i++) { | ||
1467 | |||
1468 | chip = &cfi->chips[i]; | ||
1469 | |||
1470 | cfi_spin_lock(chip->mutex); | ||
1471 | |||
1472 | if (chip->state == FL_PM_SUSPENDED) { | ||
1473 | chip->state = FL_READY; | ||
1474 | map_write(map, CMD(0xF0), chip->start); | ||
1475 | wake_up(&chip->wq); | ||
1476 | } | ||
1477 | else | ||
1478 | printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n"); | ||
1479 | |||
1480 | cfi_spin_unlock(chip->mutex); | ||
1481 | } | ||
1482 | } | ||
1483 | |||
1484 | static void cfi_amdstd_destroy(struct mtd_info *mtd) | ||
1485 | { | ||
1486 | struct map_info *map = mtd->priv; | ||
1487 | struct cfi_private *cfi = map->fldrv_priv; | ||
1488 | kfree(cfi->cmdset_priv); | ||
1489 | kfree(cfi->cfiq); | ||
1490 | kfree(cfi); | ||
1491 | kfree(mtd->eraseregions); | ||
1492 | } | ||
1493 | |||
1494 | static char im_name[]="cfi_cmdset_0002"; | ||
1495 | |||
1496 | |||
1497 | static int __init cfi_amdstd_init(void) | ||
1498 | { | ||
1499 | inter_module_register(im_name, THIS_MODULE, &cfi_cmdset_0002); | ||
1500 | return 0; | ||
1501 | } | ||
1502 | |||
1503 | |||
1504 | static void __exit cfi_amdstd_exit(void) | ||
1505 | { | ||
1506 | inter_module_unregister(im_name); | ||
1507 | } | ||
1508 | |||
1509 | |||
1510 | module_init(cfi_amdstd_init); | ||
1511 | module_exit(cfi_amdstd_exit); | ||
1512 | |||
1513 | MODULE_LICENSE("GPL"); | ||
1514 | MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al."); | ||
1515 | MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips"); | ||
diff --git a/drivers/mtd/chips/cfi_cmdset_0020.c b/drivers/mtd/chips/cfi_cmdset_0020.c new file mode 100644 index 00000000000..8c24e18db3b --- /dev/null +++ b/drivers/mtd/chips/cfi_cmdset_0020.c | |||
@@ -0,0 +1,1418 @@ | |||
1 | /* | ||
2 | * Common Flash Interface support: | ||
3 | * ST Advanced Architecture Command Set (ID 0x0020) | ||
4 | * | ||
5 | * (C) 2000 Red Hat. GPL'd | ||
6 | * | ||
7 | * $Id: cfi_cmdset_0020.c,v 1.17 2004/11/20 12:49:04 dwmw2 Exp $ | ||
8 | * | ||
9 | * 10/10/2000 Nicolas Pitre <nico@cam.org> | ||
10 | * - completely revamped method functions so they are aware and | ||
11 | * independent of the flash geometry (buswidth, interleave, etc.) | ||
12 | * - scalability vs code size is completely set at compile-time | ||
13 | * (see include/linux/mtd/cfi.h for selection) | ||
14 | * - optimized write buffer method | ||
15 | * 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others | ||
16 | * - modified Intel Command Set 0x0001 to support ST Advanced Architecture | ||
17 | * (command set 0x0020) | ||
18 | * - added a writev function | ||
19 | */ | ||
20 | |||
21 | #include <linux/version.h> | ||
22 | #include <linux/module.h> | ||
23 | #include <linux/types.h> | ||
24 | #include <linux/kernel.h> | ||
25 | #include <linux/sched.h> | ||
26 | #include <linux/init.h> | ||
27 | #include <asm/io.h> | ||
28 | #include <asm/byteorder.h> | ||
29 | |||
30 | #include <linux/errno.h> | ||
31 | #include <linux/slab.h> | ||
32 | #include <linux/delay.h> | ||
33 | #include <linux/interrupt.h> | ||
34 | #include <linux/mtd/map.h> | ||
35 | #include <linux/mtd/cfi.h> | ||
36 | #include <linux/mtd/mtd.h> | ||
37 | #include <linux/mtd/compatmac.h> | ||
38 | |||
39 | |||
40 | static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *); | ||
41 | static int cfi_staa_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); | ||
42 | static int cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs, | ||
43 | unsigned long count, loff_t to, size_t *retlen); | ||
44 | static int cfi_staa_erase_varsize(struct mtd_info *, struct erase_info *); | ||
45 | static void cfi_staa_sync (struct mtd_info *); | ||
46 | static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, size_t len); | ||
47 | static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, size_t len); | ||
48 | static int cfi_staa_suspend (struct mtd_info *); | ||
49 | static void cfi_staa_resume (struct mtd_info *); | ||
50 | |||
51 | static void cfi_staa_destroy(struct mtd_info *); | ||
52 | |||
53 | struct mtd_info *cfi_cmdset_0020(struct map_info *, int); | ||
54 | |||
55 | static struct mtd_info *cfi_staa_setup (struct map_info *); | ||
56 | |||
57 | static struct mtd_chip_driver cfi_staa_chipdrv = { | ||
58 | .probe = NULL, /* Not usable directly */ | ||
59 | .destroy = cfi_staa_destroy, | ||
60 | .name = "cfi_cmdset_0020", | ||
61 | .module = THIS_MODULE | ||
62 | }; | ||
63 | |||
64 | /* #define DEBUG_LOCK_BITS */ | ||
65 | //#define DEBUG_CFI_FEATURES | ||
66 | |||
67 | #ifdef DEBUG_CFI_FEATURES | ||
68 | static void cfi_tell_features(struct cfi_pri_intelext *extp) | ||
69 | { | ||
70 | int i; | ||
71 | printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport); | ||
72 | printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported"); | ||
73 | printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported"); | ||
74 | printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported"); | ||
75 | printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported"); | ||
76 | printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported"); | ||
77 | printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported"); | ||
78 | printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported"); | ||
79 | printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported"); | ||
80 | printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported"); | ||
81 | for (i=9; i<32; i++) { | ||
82 | if (extp->FeatureSupport & (1<<i)) | ||
83 | printk(" - Unknown Bit %X: supported\n", i); | ||
84 | } | ||
85 | |||
86 | printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport); | ||
87 | printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported"); | ||
88 | for (i=1; i<8; i++) { | ||
89 | if (extp->SuspendCmdSupport & (1<<i)) | ||
90 | printk(" - Unknown Bit %X: supported\n", i); | ||
91 | } | ||
92 | |||
93 | printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask); | ||
94 | printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no"); | ||
95 | printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no"); | ||
96 | for (i=2; i<16; i++) { | ||
97 | if (extp->BlkStatusRegMask & (1<<i)) | ||
98 | printk(" - Unknown Bit %X Active: yes\n",i); | ||
99 | } | ||
100 | |||
101 | printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n", | ||
102 | extp->VccOptimal >> 8, extp->VccOptimal & 0xf); | ||
103 | if (extp->VppOptimal) | ||
104 | printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n", | ||
105 | extp->VppOptimal >> 8, extp->VppOptimal & 0xf); | ||
106 | } | ||
107 | #endif | ||
108 | |||
109 | /* This routine is made available to other mtd code via | ||
110 | * inter_module_register. It must only be accessed through | ||
111 | * inter_module_get which will bump the use count of this module. The | ||
112 | * addresses passed back in cfi are valid as long as the use count of | ||
113 | * this module is non-zero, i.e. between inter_module_get and | ||
114 | * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000. | ||
115 | */ | ||
116 | struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary) | ||
117 | { | ||
118 | struct cfi_private *cfi = map->fldrv_priv; | ||
119 | int i; | ||
120 | |||
121 | if (cfi->cfi_mode) { | ||
122 | /* | ||
123 | * It's a real CFI chip, not one for which the probe | ||
124 | * routine faked a CFI structure. So we read the feature | ||
125 | * table from it. | ||
126 | */ | ||
127 | __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; | ||
128 | struct cfi_pri_intelext *extp; | ||
129 | |||
130 | extp = (struct cfi_pri_intelext*)cfi_read_pri(map, adr, sizeof(*extp), "ST Microelectronics"); | ||
131 | if (!extp) | ||
132 | return NULL; | ||
133 | |||
134 | /* Do some byteswapping if necessary */ | ||
135 | extp->FeatureSupport = cfi32_to_cpu(extp->FeatureSupport); | ||
136 | extp->BlkStatusRegMask = cfi32_to_cpu(extp->BlkStatusRegMask); | ||
137 | |||
138 | #ifdef DEBUG_CFI_FEATURES | ||
139 | /* Tell the user about it in lots of lovely detail */ | ||
140 | cfi_tell_features(extp); | ||
141 | #endif | ||
142 | |||
143 | /* Install our own private info structure */ | ||
144 | cfi->cmdset_priv = extp; | ||
145 | } | ||
146 | |||
147 | for (i=0; i< cfi->numchips; i++) { | ||
148 | cfi->chips[i].word_write_time = 128; | ||
149 | cfi->chips[i].buffer_write_time = 128; | ||
150 | cfi->chips[i].erase_time = 1024; | ||
151 | } | ||
152 | |||
153 | return cfi_staa_setup(map); | ||
154 | } | ||
155 | |||
156 | static struct mtd_info *cfi_staa_setup(struct map_info *map) | ||
157 | { | ||
158 | struct cfi_private *cfi = map->fldrv_priv; | ||
159 | struct mtd_info *mtd; | ||
160 | unsigned long offset = 0; | ||
161 | int i,j; | ||
162 | unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; | ||
163 | |||
164 | mtd = kmalloc(sizeof(*mtd), GFP_KERNEL); | ||
165 | //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips); | ||
166 | |||
167 | if (!mtd) { | ||
168 | printk(KERN_ERR "Failed to allocate memory for MTD device\n"); | ||
169 | kfree(cfi->cmdset_priv); | ||
170 | return NULL; | ||
171 | } | ||
172 | |||
173 | memset(mtd, 0, sizeof(*mtd)); | ||
174 | mtd->priv = map; | ||
175 | mtd->type = MTD_NORFLASH; | ||
176 | mtd->size = devsize * cfi->numchips; | ||
177 | |||
178 | mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; | ||
179 | mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) | ||
180 | * mtd->numeraseregions, GFP_KERNEL); | ||
181 | if (!mtd->eraseregions) { | ||
182 | printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n"); | ||
183 | kfree(cfi->cmdset_priv); | ||
184 | kfree(mtd); | ||
185 | return NULL; | ||
186 | } | ||
187 | |||
188 | for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { | ||
189 | unsigned long ernum, ersize; | ||
190 | ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; | ||
191 | ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; | ||
192 | |||
193 | if (mtd->erasesize < ersize) { | ||
194 | mtd->erasesize = ersize; | ||
195 | } | ||
196 | for (j=0; j<cfi->numchips; j++) { | ||
197 | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; | ||
198 | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; | ||
199 | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; | ||
200 | } | ||
201 | offset += (ersize * ernum); | ||
202 | } | ||
203 | |||
204 | if (offset != devsize) { | ||
205 | /* Argh */ | ||
206 | printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); | ||
207 | kfree(mtd->eraseregions); | ||
208 | kfree(cfi->cmdset_priv); | ||
209 | kfree(mtd); | ||
210 | return NULL; | ||
211 | } | ||
212 | |||
213 | for (i=0; i<mtd->numeraseregions;i++){ | ||
214 | printk(KERN_DEBUG "%d: offset=0x%x,size=0x%x,blocks=%d\n", | ||
215 | i,mtd->eraseregions[i].offset, | ||
216 | mtd->eraseregions[i].erasesize, | ||
217 | mtd->eraseregions[i].numblocks); | ||
218 | } | ||
219 | |||
220 | /* Also select the correct geometry setup too */ | ||
221 | mtd->erase = cfi_staa_erase_varsize; | ||
222 | mtd->read = cfi_staa_read; | ||
223 | mtd->write = cfi_staa_write_buffers; | ||
224 | mtd->writev = cfi_staa_writev; | ||
225 | mtd->sync = cfi_staa_sync; | ||
226 | mtd->lock = cfi_staa_lock; | ||
227 | mtd->unlock = cfi_staa_unlock; | ||
228 | mtd->suspend = cfi_staa_suspend; | ||
229 | mtd->resume = cfi_staa_resume; | ||
230 | mtd->flags = MTD_CAP_NORFLASH; | ||
231 | mtd->flags |= MTD_ECC; /* FIXME: Not all STMicro flashes have this */ | ||
232 | mtd->eccsize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */ | ||
233 | map->fldrv = &cfi_staa_chipdrv; | ||
234 | __module_get(THIS_MODULE); | ||
235 | mtd->name = map->name; | ||
236 | return mtd; | ||
237 | } | ||
238 | |||
239 | |||
240 | static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) | ||
241 | { | ||
242 | map_word status, status_OK; | ||
243 | unsigned long timeo; | ||
244 | DECLARE_WAITQUEUE(wait, current); | ||
245 | int suspended = 0; | ||
246 | unsigned long cmd_addr; | ||
247 | struct cfi_private *cfi = map->fldrv_priv; | ||
248 | |||
249 | adr += chip->start; | ||
250 | |||
251 | /* Ensure cmd read/writes are aligned. */ | ||
252 | cmd_addr = adr & ~(map_bankwidth(map)-1); | ||
253 | |||
254 | /* Let's determine this according to the interleave only once */ | ||
255 | status_OK = CMD(0x80); | ||
256 | |||
257 | timeo = jiffies + HZ; | ||
258 | retry: | ||
259 | spin_lock_bh(chip->mutex); | ||
260 | |||
261 | /* Check that the chip's ready to talk to us. | ||
262 | * If it's in FL_ERASING state, suspend it and make it talk now. | ||
263 | */ | ||
264 | switch (chip->state) { | ||
265 | case FL_ERASING: | ||
266 | if (!(((struct cfi_pri_intelext *)cfi->cmdset_priv)->FeatureSupport & 2)) | ||
267 | goto sleep; /* We don't support erase suspend */ | ||
268 | |||
269 | map_write (map, CMD(0xb0), cmd_addr); | ||
270 | /* If the flash has finished erasing, then 'erase suspend' | ||
271 | * appears to make some (28F320) flash devices switch to | ||
272 | * 'read' mode. Make sure that we switch to 'read status' | ||
273 | * mode so we get the right data. --rmk | ||
274 | */ | ||
275 | map_write(map, CMD(0x70), cmd_addr); | ||
276 | chip->oldstate = FL_ERASING; | ||
277 | chip->state = FL_ERASE_SUSPENDING; | ||
278 | // printk("Erase suspending at 0x%lx\n", cmd_addr); | ||
279 | for (;;) { | ||
280 | status = map_read(map, cmd_addr); | ||
281 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
282 | break; | ||
283 | |||
284 | if (time_after(jiffies, timeo)) { | ||
285 | /* Urgh */ | ||
286 | map_write(map, CMD(0xd0), cmd_addr); | ||
287 | /* make sure we're in 'read status' mode */ | ||
288 | map_write(map, CMD(0x70), cmd_addr); | ||
289 | chip->state = FL_ERASING; | ||
290 | spin_unlock_bh(chip->mutex); | ||
291 | printk(KERN_ERR "Chip not ready after erase " | ||
292 | "suspended: status = 0x%lx\n", status.x[0]); | ||
293 | return -EIO; | ||
294 | } | ||
295 | |||
296 | spin_unlock_bh(chip->mutex); | ||
297 | cfi_udelay(1); | ||
298 | spin_lock_bh(chip->mutex); | ||
299 | } | ||
300 | |||
301 | suspended = 1; | ||
302 | map_write(map, CMD(0xff), cmd_addr); | ||
303 | chip->state = FL_READY; | ||
304 | break; | ||
305 | |||
306 | #if 0 | ||
307 | case FL_WRITING: | ||
308 | /* Not quite yet */ | ||
309 | #endif | ||
310 | |||
311 | case FL_READY: | ||
312 | break; | ||
313 | |||
314 | case FL_CFI_QUERY: | ||
315 | case FL_JEDEC_QUERY: | ||
316 | map_write(map, CMD(0x70), cmd_addr); | ||
317 | chip->state = FL_STATUS; | ||
318 | |||
319 | case FL_STATUS: | ||
320 | status = map_read(map, cmd_addr); | ||
321 | if (map_word_andequal(map, status, status_OK, status_OK)) { | ||
322 | map_write(map, CMD(0xff), cmd_addr); | ||
323 | chip->state = FL_READY; | ||
324 | break; | ||
325 | } | ||
326 | |||
327 | /* Urgh. Chip not yet ready to talk to us. */ | ||
328 | if (time_after(jiffies, timeo)) { | ||
329 | spin_unlock_bh(chip->mutex); | ||
330 | printk(KERN_ERR "waiting for chip to be ready timed out in read. WSM status = %lx\n", status.x[0]); | ||
331 | return -EIO; | ||
332 | } | ||
333 | |||
334 | /* Latency issues. Drop the lock, wait a while and retry */ | ||
335 | spin_unlock_bh(chip->mutex); | ||
336 | cfi_udelay(1); | ||
337 | goto retry; | ||
338 | |||
339 | default: | ||
340 | sleep: | ||
341 | /* Stick ourselves on a wait queue to be woken when | ||
342 | someone changes the status */ | ||
343 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
344 | add_wait_queue(&chip->wq, &wait); | ||
345 | spin_unlock_bh(chip->mutex); | ||
346 | schedule(); | ||
347 | remove_wait_queue(&chip->wq, &wait); | ||
348 | timeo = jiffies + HZ; | ||
349 | goto retry; | ||
350 | } | ||
351 | |||
352 | map_copy_from(map, buf, adr, len); | ||
353 | |||
354 | if (suspended) { | ||
355 | chip->state = chip->oldstate; | ||
356 | /* What if one interleaved chip has finished and the | ||
357 | other hasn't? The old code would leave the finished | ||
358 | one in READY mode. That's bad, and caused -EROFS | ||
359 | errors to be returned from do_erase_oneblock because | ||
360 | that's the only bit it checked for at the time. | ||
361 | As the state machine appears to explicitly allow | ||
362 | sending the 0x70 (Read Status) command to an erasing | ||
363 | chip and expecting it to be ignored, that's what we | ||
364 | do. */ | ||
365 | map_write(map, CMD(0xd0), cmd_addr); | ||
366 | map_write(map, CMD(0x70), cmd_addr); | ||
367 | } | ||
368 | |||
369 | wake_up(&chip->wq); | ||
370 | spin_unlock_bh(chip->mutex); | ||
371 | return 0; | ||
372 | } | ||
373 | |||
374 | static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) | ||
375 | { | ||
376 | struct map_info *map = mtd->priv; | ||
377 | struct cfi_private *cfi = map->fldrv_priv; | ||
378 | unsigned long ofs; | ||
379 | int chipnum; | ||
380 | int ret = 0; | ||
381 | |||
382 | /* ofs: offset within the first chip that the first read should start */ | ||
383 | chipnum = (from >> cfi->chipshift); | ||
384 | ofs = from - (chipnum << cfi->chipshift); | ||
385 | |||
386 | *retlen = 0; | ||
387 | |||
388 | while (len) { | ||
389 | unsigned long thislen; | ||
390 | |||
391 | if (chipnum >= cfi->numchips) | ||
392 | break; | ||
393 | |||
394 | if ((len + ofs -1) >> cfi->chipshift) | ||
395 | thislen = (1<<cfi->chipshift) - ofs; | ||
396 | else | ||
397 | thislen = len; | ||
398 | |||
399 | ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); | ||
400 | if (ret) | ||
401 | break; | ||
402 | |||
403 | *retlen += thislen; | ||
404 | len -= thislen; | ||
405 | buf += thislen; | ||
406 | |||
407 | ofs = 0; | ||
408 | chipnum++; | ||
409 | } | ||
410 | return ret; | ||
411 | } | ||
412 | |||
413 | static inline int do_write_buffer(struct map_info *map, struct flchip *chip, | ||
414 | unsigned long adr, const u_char *buf, int len) | ||
415 | { | ||
416 | struct cfi_private *cfi = map->fldrv_priv; | ||
417 | map_word status, status_OK; | ||
418 | unsigned long cmd_adr, timeo; | ||
419 | DECLARE_WAITQUEUE(wait, current); | ||
420 | int wbufsize, z; | ||
421 | |||
422 | /* M58LW064A requires bus alignment for buffer wriets -- saw */ | ||
423 | if (adr & (map_bankwidth(map)-1)) | ||
424 | return -EINVAL; | ||
425 | |||
426 | wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; | ||
427 | adr += chip->start; | ||
428 | cmd_adr = adr & ~(wbufsize-1); | ||
429 | |||
430 | /* Let's determine this according to the interleave only once */ | ||
431 | status_OK = CMD(0x80); | ||
432 | |||
433 | timeo = jiffies + HZ; | ||
434 | retry: | ||
435 | |||
436 | #ifdef DEBUG_CFI_FEATURES | ||
437 | printk("%s: chip->state[%d]\n", __FUNCTION__, chip->state); | ||
438 | #endif | ||
439 | spin_lock_bh(chip->mutex); | ||
440 | |||
441 | /* Check that the chip's ready to talk to us. | ||
442 | * Later, we can actually think about interrupting it | ||
443 | * if it's in FL_ERASING state. | ||
444 | * Not just yet, though. | ||
445 | */ | ||
446 | switch (chip->state) { | ||
447 | case FL_READY: | ||
448 | break; | ||
449 | |||
450 | case FL_CFI_QUERY: | ||
451 | case FL_JEDEC_QUERY: | ||
452 | map_write(map, CMD(0x70), cmd_adr); | ||
453 | chip->state = FL_STATUS; | ||
454 | #ifdef DEBUG_CFI_FEATURES | ||
455 | printk("%s: 1 status[%x]\n", __FUNCTION__, map_read(map, cmd_adr)); | ||
456 | #endif | ||
457 | |||
458 | case FL_STATUS: | ||
459 | status = map_read(map, cmd_adr); | ||
460 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
461 | break; | ||
462 | /* Urgh. Chip not yet ready to talk to us. */ | ||
463 | if (time_after(jiffies, timeo)) { | ||
464 | spin_unlock_bh(chip->mutex); | ||
465 | printk(KERN_ERR "waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n", | ||
466 | status.x[0], map_read(map, cmd_adr).x[0]); | ||
467 | return -EIO; | ||
468 | } | ||
469 | |||
470 | /* Latency issues. Drop the lock, wait a while and retry */ | ||
471 | spin_unlock_bh(chip->mutex); | ||
472 | cfi_udelay(1); | ||
473 | goto retry; | ||
474 | |||
475 | default: | ||
476 | /* Stick ourselves on a wait queue to be woken when | ||
477 | someone changes the status */ | ||
478 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
479 | add_wait_queue(&chip->wq, &wait); | ||
480 | spin_unlock_bh(chip->mutex); | ||
481 | schedule(); | ||
482 | remove_wait_queue(&chip->wq, &wait); | ||
483 | timeo = jiffies + HZ; | ||
484 | goto retry; | ||
485 | } | ||
486 | |||
487 | ENABLE_VPP(map); | ||
488 | map_write(map, CMD(0xe8), cmd_adr); | ||
489 | chip->state = FL_WRITING_TO_BUFFER; | ||
490 | |||
491 | z = 0; | ||
492 | for (;;) { | ||
493 | status = map_read(map, cmd_adr); | ||
494 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
495 | break; | ||
496 | |||
497 | spin_unlock_bh(chip->mutex); | ||
498 | cfi_udelay(1); | ||
499 | spin_lock_bh(chip->mutex); | ||
500 | |||
501 | if (++z > 100) { | ||
502 | /* Argh. Not ready for write to buffer */ | ||
503 | DISABLE_VPP(map); | ||
504 | map_write(map, CMD(0x70), cmd_adr); | ||
505 | chip->state = FL_STATUS; | ||
506 | spin_unlock_bh(chip->mutex); | ||
507 | printk(KERN_ERR "Chip not ready for buffer write. Xstatus = %lx\n", status.x[0]); | ||
508 | return -EIO; | ||
509 | } | ||
510 | } | ||
511 | |||
512 | /* Write length of data to come */ | ||
513 | map_write(map, CMD(len/map_bankwidth(map)-1), cmd_adr ); | ||
514 | |||
515 | /* Write data */ | ||
516 | for (z = 0; z < len; | ||
517 | z += map_bankwidth(map), buf += map_bankwidth(map)) { | ||
518 | map_word d; | ||
519 | d = map_word_load(map, buf); | ||
520 | map_write(map, d, adr+z); | ||
521 | } | ||
522 | /* GO GO GO */ | ||
523 | map_write(map, CMD(0xd0), cmd_adr); | ||
524 | chip->state = FL_WRITING; | ||
525 | |||
526 | spin_unlock_bh(chip->mutex); | ||
527 | cfi_udelay(chip->buffer_write_time); | ||
528 | spin_lock_bh(chip->mutex); | ||
529 | |||
530 | timeo = jiffies + (HZ/2); | ||
531 | z = 0; | ||
532 | for (;;) { | ||
533 | if (chip->state != FL_WRITING) { | ||
534 | /* Someone's suspended the write. Sleep */ | ||
535 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
536 | add_wait_queue(&chip->wq, &wait); | ||
537 | spin_unlock_bh(chip->mutex); | ||
538 | schedule(); | ||
539 | remove_wait_queue(&chip->wq, &wait); | ||
540 | timeo = jiffies + (HZ / 2); /* FIXME */ | ||
541 | spin_lock_bh(chip->mutex); | ||
542 | continue; | ||
543 | } | ||
544 | |||
545 | status = map_read(map, cmd_adr); | ||
546 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
547 | break; | ||
548 | |||
549 | /* OK Still waiting */ | ||
550 | if (time_after(jiffies, timeo)) { | ||
551 | /* clear status */ | ||
552 | map_write(map, CMD(0x50), cmd_adr); | ||
553 | /* put back into read status register mode */ | ||
554 | map_write(map, CMD(0x70), adr); | ||
555 | chip->state = FL_STATUS; | ||
556 | DISABLE_VPP(map); | ||
557 | spin_unlock_bh(chip->mutex); | ||
558 | printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n"); | ||
559 | return -EIO; | ||
560 | } | ||
561 | |||
562 | /* Latency issues. Drop the lock, wait a while and retry */ | ||
563 | spin_unlock_bh(chip->mutex); | ||
564 | cfi_udelay(1); | ||
565 | z++; | ||
566 | spin_lock_bh(chip->mutex); | ||
567 | } | ||
568 | if (!z) { | ||
569 | chip->buffer_write_time--; | ||
570 | if (!chip->buffer_write_time) | ||
571 | chip->buffer_write_time++; | ||
572 | } | ||
573 | if (z > 1) | ||
574 | chip->buffer_write_time++; | ||
575 | |||
576 | /* Done and happy. */ | ||
577 | DISABLE_VPP(map); | ||
578 | chip->state = FL_STATUS; | ||
579 | |||
580 | /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */ | ||
581 | if (map_word_bitsset(map, status, CMD(0x3a))) { | ||
582 | #ifdef DEBUG_CFI_FEATURES | ||
583 | printk("%s: 2 status[%lx]\n", __FUNCTION__, status.x[0]); | ||
584 | #endif | ||
585 | /* clear status */ | ||
586 | map_write(map, CMD(0x50), cmd_adr); | ||
587 | /* put back into read status register mode */ | ||
588 | map_write(map, CMD(0x70), adr); | ||
589 | wake_up(&chip->wq); | ||
590 | spin_unlock_bh(chip->mutex); | ||
591 | return map_word_bitsset(map, status, CMD(0x02)) ? -EROFS : -EIO; | ||
592 | } | ||
593 | wake_up(&chip->wq); | ||
594 | spin_unlock_bh(chip->mutex); | ||
595 | |||
596 | return 0; | ||
597 | } | ||
598 | |||
599 | static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to, | ||
600 | size_t len, size_t *retlen, const u_char *buf) | ||
601 | { | ||
602 | struct map_info *map = mtd->priv; | ||
603 | struct cfi_private *cfi = map->fldrv_priv; | ||
604 | int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; | ||
605 | int ret = 0; | ||
606 | int chipnum; | ||
607 | unsigned long ofs; | ||
608 | |||
609 | *retlen = 0; | ||
610 | if (!len) | ||
611 | return 0; | ||
612 | |||
613 | chipnum = to >> cfi->chipshift; | ||
614 | ofs = to - (chipnum << cfi->chipshift); | ||
615 | |||
616 | #ifdef DEBUG_CFI_FEATURES | ||
617 | printk("%s: map_bankwidth(map)[%x]\n", __FUNCTION__, map_bankwidth(map)); | ||
618 | printk("%s: chipnum[%x] wbufsize[%x]\n", __FUNCTION__, chipnum, wbufsize); | ||
619 | printk("%s: ofs[%x] len[%x]\n", __FUNCTION__, ofs, len); | ||
620 | #endif | ||
621 | |||
622 | /* Write buffer is worth it only if more than one word to write... */ | ||
623 | while (len > 0) { | ||
624 | /* We must not cross write block boundaries */ | ||
625 | int size = wbufsize - (ofs & (wbufsize-1)); | ||
626 | |||
627 | if (size > len) | ||
628 | size = len; | ||
629 | |||
630 | ret = do_write_buffer(map, &cfi->chips[chipnum], | ||
631 | ofs, buf, size); | ||
632 | if (ret) | ||
633 | return ret; | ||
634 | |||
635 | ofs += size; | ||
636 | buf += size; | ||
637 | (*retlen) += size; | ||
638 | len -= size; | ||
639 | |||
640 | if (ofs >> cfi->chipshift) { | ||
641 | chipnum ++; | ||
642 | ofs = 0; | ||
643 | if (chipnum == cfi->numchips) | ||
644 | return 0; | ||
645 | } | ||
646 | } | ||
647 | |||
648 | return 0; | ||
649 | } | ||
650 | |||
651 | /* | ||
652 | * Writev for ECC-Flashes is a little more complicated. We need to maintain | ||
653 | * a small buffer for this. | ||
654 | * XXX: If the buffer size is not a multiple of 2, this will break | ||
655 | */ | ||
656 | #define ECCBUF_SIZE (mtd->eccsize) | ||
657 | #define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1)) | ||
658 | #define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1)) | ||
659 | static int | ||
660 | cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs, | ||
661 | unsigned long count, loff_t to, size_t *retlen) | ||
662 | { | ||
663 | unsigned long i; | ||
664 | size_t totlen = 0, thislen; | ||
665 | int ret = 0; | ||
666 | size_t buflen = 0; | ||
667 | static char *buffer; | ||
668 | |||
669 | if (!ECCBUF_SIZE) { | ||
670 | /* We should fall back to a general writev implementation. | ||
671 | * Until that is written, just break. | ||
672 | */ | ||
673 | return -EIO; | ||
674 | } | ||
675 | buffer = kmalloc(ECCBUF_SIZE, GFP_KERNEL); | ||
676 | if (!buffer) | ||
677 | return -ENOMEM; | ||
678 | |||
679 | for (i=0; i<count; i++) { | ||
680 | size_t elem_len = vecs[i].iov_len; | ||
681 | void *elem_base = vecs[i].iov_base; | ||
682 | if (!elem_len) /* FIXME: Might be unnecessary. Check that */ | ||
683 | continue; | ||
684 | if (buflen) { /* cut off head */ | ||
685 | if (buflen + elem_len < ECCBUF_SIZE) { /* just accumulate */ | ||
686 | memcpy(buffer+buflen, elem_base, elem_len); | ||
687 | buflen += elem_len; | ||
688 | continue; | ||
689 | } | ||
690 | memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen); | ||
691 | ret = mtd->write(mtd, to, ECCBUF_SIZE, &thislen, buffer); | ||
692 | totlen += thislen; | ||
693 | if (ret || thislen != ECCBUF_SIZE) | ||
694 | goto write_error; | ||
695 | elem_len -= thislen-buflen; | ||
696 | elem_base += thislen-buflen; | ||
697 | to += ECCBUF_SIZE; | ||
698 | } | ||
699 | if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */ | ||
700 | ret = mtd->write(mtd, to, ECCBUF_DIV(elem_len), &thislen, elem_base); | ||
701 | totlen += thislen; | ||
702 | if (ret || thislen != ECCBUF_DIV(elem_len)) | ||
703 | goto write_error; | ||
704 | to += thislen; | ||
705 | } | ||
706 | buflen = ECCBUF_MOD(elem_len); /* cut off tail */ | ||
707 | if (buflen) { | ||
708 | memset(buffer, 0xff, ECCBUF_SIZE); | ||
709 | memcpy(buffer, elem_base + thislen, buflen); | ||
710 | } | ||
711 | } | ||
712 | if (buflen) { /* flush last page, even if not full */ | ||
713 | /* This is sometimes intended behaviour, really */ | ||
714 | ret = mtd->write(mtd, to, buflen, &thislen, buffer); | ||
715 | totlen += thislen; | ||
716 | if (ret || thislen != ECCBUF_SIZE) | ||
717 | goto write_error; | ||
718 | } | ||
719 | write_error: | ||
720 | if (retlen) | ||
721 | *retlen = totlen; | ||
722 | return ret; | ||
723 | } | ||
724 | |||
725 | |||
726 | static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) | ||
727 | { | ||
728 | struct cfi_private *cfi = map->fldrv_priv; | ||
729 | map_word status, status_OK; | ||
730 | unsigned long timeo; | ||
731 | int retries = 3; | ||
732 | DECLARE_WAITQUEUE(wait, current); | ||
733 | int ret = 0; | ||
734 | |||
735 | adr += chip->start; | ||
736 | |||
737 | /* Let's determine this according to the interleave only once */ | ||
738 | status_OK = CMD(0x80); | ||
739 | |||
740 | timeo = jiffies + HZ; | ||
741 | retry: | ||
742 | spin_lock_bh(chip->mutex); | ||
743 | |||
744 | /* Check that the chip's ready to talk to us. */ | ||
745 | switch (chip->state) { | ||
746 | case FL_CFI_QUERY: | ||
747 | case FL_JEDEC_QUERY: | ||
748 | case FL_READY: | ||
749 | map_write(map, CMD(0x70), adr); | ||
750 | chip->state = FL_STATUS; | ||
751 | |||
752 | case FL_STATUS: | ||
753 | status = map_read(map, adr); | ||
754 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
755 | break; | ||
756 | |||
757 | /* Urgh. Chip not yet ready to talk to us. */ | ||
758 | if (time_after(jiffies, timeo)) { | ||
759 | spin_unlock_bh(chip->mutex); | ||
760 | printk(KERN_ERR "waiting for chip to be ready timed out in erase\n"); | ||
761 | return -EIO; | ||
762 | } | ||
763 | |||
764 | /* Latency issues. Drop the lock, wait a while and retry */ | ||
765 | spin_unlock_bh(chip->mutex); | ||
766 | cfi_udelay(1); | ||
767 | goto retry; | ||
768 | |||
769 | default: | ||
770 | /* Stick ourselves on a wait queue to be woken when | ||
771 | someone changes the status */ | ||
772 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
773 | add_wait_queue(&chip->wq, &wait); | ||
774 | spin_unlock_bh(chip->mutex); | ||
775 | schedule(); | ||
776 | remove_wait_queue(&chip->wq, &wait); | ||
777 | timeo = jiffies + HZ; | ||
778 | goto retry; | ||
779 | } | ||
780 | |||
781 | ENABLE_VPP(map); | ||
782 | /* Clear the status register first */ | ||
783 | map_write(map, CMD(0x50), adr); | ||
784 | |||
785 | /* Now erase */ | ||
786 | map_write(map, CMD(0x20), adr); | ||
787 | map_write(map, CMD(0xD0), adr); | ||
788 | chip->state = FL_ERASING; | ||
789 | |||
790 | spin_unlock_bh(chip->mutex); | ||
791 | msleep(1000); | ||
792 | spin_lock_bh(chip->mutex); | ||
793 | |||
794 | /* FIXME. Use a timer to check this, and return immediately. */ | ||
795 | /* Once the state machine's known to be working I'll do that */ | ||
796 | |||
797 | timeo = jiffies + (HZ*20); | ||
798 | for (;;) { | ||
799 | if (chip->state != FL_ERASING) { | ||
800 | /* Someone's suspended the erase. Sleep */ | ||
801 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
802 | add_wait_queue(&chip->wq, &wait); | ||
803 | spin_unlock_bh(chip->mutex); | ||
804 | schedule(); | ||
805 | remove_wait_queue(&chip->wq, &wait); | ||
806 | timeo = jiffies + (HZ*20); /* FIXME */ | ||
807 | spin_lock_bh(chip->mutex); | ||
808 | continue; | ||
809 | } | ||
810 | |||
811 | status = map_read(map, adr); | ||
812 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
813 | break; | ||
814 | |||
815 | /* OK Still waiting */ | ||
816 | if (time_after(jiffies, timeo)) { | ||
817 | map_write(map, CMD(0x70), adr); | ||
818 | chip->state = FL_STATUS; | ||
819 | printk(KERN_ERR "waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]); | ||
820 | DISABLE_VPP(map); | ||
821 | spin_unlock_bh(chip->mutex); | ||
822 | return -EIO; | ||
823 | } | ||
824 | |||
825 | /* Latency issues. Drop the lock, wait a while and retry */ | ||
826 | spin_unlock_bh(chip->mutex); | ||
827 | cfi_udelay(1); | ||
828 | spin_lock_bh(chip->mutex); | ||
829 | } | ||
830 | |||
831 | DISABLE_VPP(map); | ||
832 | ret = 0; | ||
833 | |||
834 | /* We've broken this before. It doesn't hurt to be safe */ | ||
835 | map_write(map, CMD(0x70), adr); | ||
836 | chip->state = FL_STATUS; | ||
837 | status = map_read(map, adr); | ||
838 | |||
839 | /* check for lock bit */ | ||
840 | if (map_word_bitsset(map, status, CMD(0x3a))) { | ||
841 | unsigned char chipstatus = status.x[0]; | ||
842 | if (!map_word_equal(map, status, CMD(chipstatus))) { | ||
843 | int i, w; | ||
844 | for (w=0; w<map_words(map); w++) { | ||
845 | for (i = 0; i<cfi_interleave(cfi); i++) { | ||
846 | chipstatus |= status.x[w] >> (cfi->device_type * 8); | ||
847 | } | ||
848 | } | ||
849 | printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n", | ||
850 | status.x[0], chipstatus); | ||
851 | } | ||
852 | /* Reset the error bits */ | ||
853 | map_write(map, CMD(0x50), adr); | ||
854 | map_write(map, CMD(0x70), adr); | ||
855 | |||
856 | if ((chipstatus & 0x30) == 0x30) { | ||
857 | printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus); | ||
858 | ret = -EIO; | ||
859 | } else if (chipstatus & 0x02) { | ||
860 | /* Protection bit set */ | ||
861 | ret = -EROFS; | ||
862 | } else if (chipstatus & 0x8) { | ||
863 | /* Voltage */ | ||
864 | printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus); | ||
865 | ret = -EIO; | ||
866 | } else if (chipstatus & 0x20) { | ||
867 | if (retries--) { | ||
868 | printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus); | ||
869 | timeo = jiffies + HZ; | ||
870 | chip->state = FL_STATUS; | ||
871 | spin_unlock_bh(chip->mutex); | ||
872 | goto retry; | ||
873 | } | ||
874 | printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus); | ||
875 | ret = -EIO; | ||
876 | } | ||
877 | } | ||
878 | |||
879 | wake_up(&chip->wq); | ||
880 | spin_unlock_bh(chip->mutex); | ||
881 | return ret; | ||
882 | } | ||
883 | |||
884 | int cfi_staa_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) | ||
885 | { struct map_info *map = mtd->priv; | ||
886 | struct cfi_private *cfi = map->fldrv_priv; | ||
887 | unsigned long adr, len; | ||
888 | int chipnum, ret = 0; | ||
889 | int i, first; | ||
890 | struct mtd_erase_region_info *regions = mtd->eraseregions; | ||
891 | |||
892 | if (instr->addr > mtd->size) | ||
893 | return -EINVAL; | ||
894 | |||
895 | if ((instr->len + instr->addr) > mtd->size) | ||
896 | return -EINVAL; | ||
897 | |||
898 | /* Check that both start and end of the requested erase are | ||
899 | * aligned with the erasesize at the appropriate addresses. | ||
900 | */ | ||
901 | |||
902 | i = 0; | ||
903 | |||
904 | /* Skip all erase regions which are ended before the start of | ||
905 | the requested erase. Actually, to save on the calculations, | ||
906 | we skip to the first erase region which starts after the | ||
907 | start of the requested erase, and then go back one. | ||
908 | */ | ||
909 | |||
910 | while (i < mtd->numeraseregions && instr->addr >= regions[i].offset) | ||
911 | i++; | ||
912 | i--; | ||
913 | |||
914 | /* OK, now i is pointing at the erase region in which this | ||
915 | erase request starts. Check the start of the requested | ||
916 | erase range is aligned with the erase size which is in | ||
917 | effect here. | ||
918 | */ | ||
919 | |||
920 | if (instr->addr & (regions[i].erasesize-1)) | ||
921 | return -EINVAL; | ||
922 | |||
923 | /* Remember the erase region we start on */ | ||
924 | first = i; | ||
925 | |||
926 | /* Next, check that the end of the requested erase is aligned | ||
927 | * with the erase region at that address. | ||
928 | */ | ||
929 | |||
930 | while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset) | ||
931 | i++; | ||
932 | |||
933 | /* As before, drop back one to point at the region in which | ||
934 | the address actually falls | ||
935 | */ | ||
936 | i--; | ||
937 | |||
938 | if ((instr->addr + instr->len) & (regions[i].erasesize-1)) | ||
939 | return -EINVAL; | ||
940 | |||
941 | chipnum = instr->addr >> cfi->chipshift; | ||
942 | adr = instr->addr - (chipnum << cfi->chipshift); | ||
943 | len = instr->len; | ||
944 | |||
945 | i=first; | ||
946 | |||
947 | while(len) { | ||
948 | ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr); | ||
949 | |||
950 | if (ret) | ||
951 | return ret; | ||
952 | |||
953 | adr += regions[i].erasesize; | ||
954 | len -= regions[i].erasesize; | ||
955 | |||
956 | if (adr % (1<< cfi->chipshift) == ((regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift))) | ||
957 | i++; | ||
958 | |||
959 | if (adr >> cfi->chipshift) { | ||
960 | adr = 0; | ||
961 | chipnum++; | ||
962 | |||
963 | if (chipnum >= cfi->numchips) | ||
964 | break; | ||
965 | } | ||
966 | } | ||
967 | |||
968 | instr->state = MTD_ERASE_DONE; | ||
969 | mtd_erase_callback(instr); | ||
970 | |||
971 | return 0; | ||
972 | } | ||
973 | |||
974 | static void cfi_staa_sync (struct mtd_info *mtd) | ||
975 | { | ||
976 | struct map_info *map = mtd->priv; | ||
977 | struct cfi_private *cfi = map->fldrv_priv; | ||
978 | int i; | ||
979 | struct flchip *chip; | ||
980 | int ret = 0; | ||
981 | DECLARE_WAITQUEUE(wait, current); | ||
982 | |||
983 | for (i=0; !ret && i<cfi->numchips; i++) { | ||
984 | chip = &cfi->chips[i]; | ||
985 | |||
986 | retry: | ||
987 | spin_lock_bh(chip->mutex); | ||
988 | |||
989 | switch(chip->state) { | ||
990 | case FL_READY: | ||
991 | case FL_STATUS: | ||
992 | case FL_CFI_QUERY: | ||
993 | case FL_JEDEC_QUERY: | ||
994 | chip->oldstate = chip->state; | ||
995 | chip->state = FL_SYNCING; | ||
996 | /* No need to wake_up() on this state change - | ||
997 | * as the whole point is that nobody can do anything | ||
998 | * with the chip now anyway. | ||
999 | */ | ||
1000 | case FL_SYNCING: | ||
1001 | spin_unlock_bh(chip->mutex); | ||
1002 | break; | ||
1003 | |||
1004 | default: | ||
1005 | /* Not an idle state */ | ||
1006 | add_wait_queue(&chip->wq, &wait); | ||
1007 | |||
1008 | spin_unlock_bh(chip->mutex); | ||
1009 | schedule(); | ||
1010 | remove_wait_queue(&chip->wq, &wait); | ||
1011 | |||
1012 | goto retry; | ||
1013 | } | ||
1014 | } | ||
1015 | |||
1016 | /* Unlock the chips again */ | ||
1017 | |||
1018 | for (i--; i >=0; i--) { | ||
1019 | chip = &cfi->chips[i]; | ||
1020 | |||
1021 | spin_lock_bh(chip->mutex); | ||
1022 | |||
1023 | if (chip->state == FL_SYNCING) { | ||
1024 | chip->state = chip->oldstate; | ||
1025 | wake_up(&chip->wq); | ||
1026 | } | ||
1027 | spin_unlock_bh(chip->mutex); | ||
1028 | } | ||
1029 | } | ||
1030 | |||
1031 | static inline int do_lock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) | ||
1032 | { | ||
1033 | struct cfi_private *cfi = map->fldrv_priv; | ||
1034 | map_word status, status_OK; | ||
1035 | unsigned long timeo = jiffies + HZ; | ||
1036 | DECLARE_WAITQUEUE(wait, current); | ||
1037 | |||
1038 | adr += chip->start; | ||
1039 | |||
1040 | /* Let's determine this according to the interleave only once */ | ||
1041 | status_OK = CMD(0x80); | ||
1042 | |||
1043 | timeo = jiffies + HZ; | ||
1044 | retry: | ||
1045 | spin_lock_bh(chip->mutex); | ||
1046 | |||
1047 | /* Check that the chip's ready to talk to us. */ | ||
1048 | switch (chip->state) { | ||
1049 | case FL_CFI_QUERY: | ||
1050 | case FL_JEDEC_QUERY: | ||
1051 | case FL_READY: | ||
1052 | map_write(map, CMD(0x70), adr); | ||
1053 | chip->state = FL_STATUS; | ||
1054 | |||
1055 | case FL_STATUS: | ||
1056 | status = map_read(map, adr); | ||
1057 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
1058 | break; | ||
1059 | |||
1060 | /* Urgh. Chip not yet ready to talk to us. */ | ||
1061 | if (time_after(jiffies, timeo)) { | ||
1062 | spin_unlock_bh(chip->mutex); | ||
1063 | printk(KERN_ERR "waiting for chip to be ready timed out in lock\n"); | ||
1064 | return -EIO; | ||
1065 | } | ||
1066 | |||
1067 | /* Latency issues. Drop the lock, wait a while and retry */ | ||
1068 | spin_unlock_bh(chip->mutex); | ||
1069 | cfi_udelay(1); | ||
1070 | goto retry; | ||
1071 | |||
1072 | default: | ||
1073 | /* Stick ourselves on a wait queue to be woken when | ||
1074 | someone changes the status */ | ||
1075 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
1076 | add_wait_queue(&chip->wq, &wait); | ||
1077 | spin_unlock_bh(chip->mutex); | ||
1078 | schedule(); | ||
1079 | remove_wait_queue(&chip->wq, &wait); | ||
1080 | timeo = jiffies + HZ; | ||
1081 | goto retry; | ||
1082 | } | ||
1083 | |||
1084 | ENABLE_VPP(map); | ||
1085 | map_write(map, CMD(0x60), adr); | ||
1086 | map_write(map, CMD(0x01), adr); | ||
1087 | chip->state = FL_LOCKING; | ||
1088 | |||
1089 | spin_unlock_bh(chip->mutex); | ||
1090 | msleep(1000); | ||
1091 | spin_lock_bh(chip->mutex); | ||
1092 | |||
1093 | /* FIXME. Use a timer to check this, and return immediately. */ | ||
1094 | /* Once the state machine's known to be working I'll do that */ | ||
1095 | |||
1096 | timeo = jiffies + (HZ*2); | ||
1097 | for (;;) { | ||
1098 | |||
1099 | status = map_read(map, adr); | ||
1100 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
1101 | break; | ||
1102 | |||
1103 | /* OK Still waiting */ | ||
1104 | if (time_after(jiffies, timeo)) { | ||
1105 | map_write(map, CMD(0x70), adr); | ||
1106 | chip->state = FL_STATUS; | ||
1107 | printk(KERN_ERR "waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]); | ||
1108 | DISABLE_VPP(map); | ||
1109 | spin_unlock_bh(chip->mutex); | ||
1110 | return -EIO; | ||
1111 | } | ||
1112 | |||
1113 | /* Latency issues. Drop the lock, wait a while and retry */ | ||
1114 | spin_unlock_bh(chip->mutex); | ||
1115 | cfi_udelay(1); | ||
1116 | spin_lock_bh(chip->mutex); | ||
1117 | } | ||
1118 | |||
1119 | /* Done and happy. */ | ||
1120 | chip->state = FL_STATUS; | ||
1121 | DISABLE_VPP(map); | ||
1122 | wake_up(&chip->wq); | ||
1123 | spin_unlock_bh(chip->mutex); | ||
1124 | return 0; | ||
1125 | } | ||
1126 | static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, size_t len) | ||
1127 | { | ||
1128 | struct map_info *map = mtd->priv; | ||
1129 | struct cfi_private *cfi = map->fldrv_priv; | ||
1130 | unsigned long adr; | ||
1131 | int chipnum, ret = 0; | ||
1132 | #ifdef DEBUG_LOCK_BITS | ||
1133 | int ofs_factor = cfi->interleave * cfi->device_type; | ||
1134 | #endif | ||
1135 | |||
1136 | if (ofs & (mtd->erasesize - 1)) | ||
1137 | return -EINVAL; | ||
1138 | |||
1139 | if (len & (mtd->erasesize -1)) | ||
1140 | return -EINVAL; | ||
1141 | |||
1142 | if ((len + ofs) > mtd->size) | ||
1143 | return -EINVAL; | ||
1144 | |||
1145 | chipnum = ofs >> cfi->chipshift; | ||
1146 | adr = ofs - (chipnum << cfi->chipshift); | ||
1147 | |||
1148 | while(len) { | ||
1149 | |||
1150 | #ifdef DEBUG_LOCK_BITS | ||
1151 | cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); | ||
1152 | printk("before lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor))); | ||
1153 | cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); | ||
1154 | #endif | ||
1155 | |||
1156 | ret = do_lock_oneblock(map, &cfi->chips[chipnum], adr); | ||
1157 | |||
1158 | #ifdef DEBUG_LOCK_BITS | ||
1159 | cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); | ||
1160 | printk("after lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor))); | ||
1161 | cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); | ||
1162 | #endif | ||
1163 | |||
1164 | if (ret) | ||
1165 | return ret; | ||
1166 | |||
1167 | adr += mtd->erasesize; | ||
1168 | len -= mtd->erasesize; | ||
1169 | |||
1170 | if (adr >> cfi->chipshift) { | ||
1171 | adr = 0; | ||
1172 | chipnum++; | ||
1173 | |||
1174 | if (chipnum >= cfi->numchips) | ||
1175 | break; | ||
1176 | } | ||
1177 | } | ||
1178 | return 0; | ||
1179 | } | ||
1180 | static inline int do_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) | ||
1181 | { | ||
1182 | struct cfi_private *cfi = map->fldrv_priv; | ||
1183 | map_word status, status_OK; | ||
1184 | unsigned long timeo = jiffies + HZ; | ||
1185 | DECLARE_WAITQUEUE(wait, current); | ||
1186 | |||
1187 | adr += chip->start; | ||
1188 | |||
1189 | /* Let's determine this according to the interleave only once */ | ||
1190 | status_OK = CMD(0x80); | ||
1191 | |||
1192 | timeo = jiffies + HZ; | ||
1193 | retry: | ||
1194 | spin_lock_bh(chip->mutex); | ||
1195 | |||
1196 | /* Check that the chip's ready to talk to us. */ | ||
1197 | switch (chip->state) { | ||
1198 | case FL_CFI_QUERY: | ||
1199 | case FL_JEDEC_QUERY: | ||
1200 | case FL_READY: | ||
1201 | map_write(map, CMD(0x70), adr); | ||
1202 | chip->state = FL_STATUS; | ||
1203 | |||
1204 | case FL_STATUS: | ||
1205 | status = map_read(map, adr); | ||
1206 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
1207 | break; | ||
1208 | |||
1209 | /* Urgh. Chip not yet ready to talk to us. */ | ||
1210 | if (time_after(jiffies, timeo)) { | ||
1211 | spin_unlock_bh(chip->mutex); | ||
1212 | printk(KERN_ERR "waiting for chip to be ready timed out in unlock\n"); | ||
1213 | return -EIO; | ||
1214 | } | ||
1215 | |||
1216 | /* Latency issues. Drop the lock, wait a while and retry */ | ||
1217 | spin_unlock_bh(chip->mutex); | ||
1218 | cfi_udelay(1); | ||
1219 | goto retry; | ||
1220 | |||
1221 | default: | ||
1222 | /* Stick ourselves on a wait queue to be woken when | ||
1223 | someone changes the status */ | ||
1224 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
1225 | add_wait_queue(&chip->wq, &wait); | ||
1226 | spin_unlock_bh(chip->mutex); | ||
1227 | schedule(); | ||
1228 | remove_wait_queue(&chip->wq, &wait); | ||
1229 | timeo = jiffies + HZ; | ||
1230 | goto retry; | ||
1231 | } | ||
1232 | |||
1233 | ENABLE_VPP(map); | ||
1234 | map_write(map, CMD(0x60), adr); | ||
1235 | map_write(map, CMD(0xD0), adr); | ||
1236 | chip->state = FL_UNLOCKING; | ||
1237 | |||
1238 | spin_unlock_bh(chip->mutex); | ||
1239 | msleep(1000); | ||
1240 | spin_lock_bh(chip->mutex); | ||
1241 | |||
1242 | /* FIXME. Use a timer to check this, and return immediately. */ | ||
1243 | /* Once the state machine's known to be working I'll do that */ | ||
1244 | |||
1245 | timeo = jiffies + (HZ*2); | ||
1246 | for (;;) { | ||
1247 | |||
1248 | status = map_read(map, adr); | ||
1249 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
1250 | break; | ||
1251 | |||
1252 | /* OK Still waiting */ | ||
1253 | if (time_after(jiffies, timeo)) { | ||
1254 | map_write(map, CMD(0x70), adr); | ||
1255 | chip->state = FL_STATUS; | ||
1256 | printk(KERN_ERR "waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]); | ||
1257 | DISABLE_VPP(map); | ||
1258 | spin_unlock_bh(chip->mutex); | ||
1259 | return -EIO; | ||
1260 | } | ||
1261 | |||
1262 | /* Latency issues. Drop the unlock, wait a while and retry */ | ||
1263 | spin_unlock_bh(chip->mutex); | ||
1264 | cfi_udelay(1); | ||
1265 | spin_lock_bh(chip->mutex); | ||
1266 | } | ||
1267 | |||
1268 | /* Done and happy. */ | ||
1269 | chip->state = FL_STATUS; | ||
1270 | DISABLE_VPP(map); | ||
1271 | wake_up(&chip->wq); | ||
1272 | spin_unlock_bh(chip->mutex); | ||
1273 | return 0; | ||
1274 | } | ||
1275 | static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) | ||
1276 | { | ||
1277 | struct map_info *map = mtd->priv; | ||
1278 | struct cfi_private *cfi = map->fldrv_priv; | ||
1279 | unsigned long adr; | ||
1280 | int chipnum, ret = 0; | ||
1281 | #ifdef DEBUG_LOCK_BITS | ||
1282 | int ofs_factor = cfi->interleave * cfi->device_type; | ||
1283 | #endif | ||
1284 | |||
1285 | chipnum = ofs >> cfi->chipshift; | ||
1286 | adr = ofs - (chipnum << cfi->chipshift); | ||
1287 | |||
1288 | #ifdef DEBUG_LOCK_BITS | ||
1289 | { | ||
1290 | unsigned long temp_adr = adr; | ||
1291 | unsigned long temp_len = len; | ||
1292 | |||
1293 | cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); | ||
1294 | while (temp_len) { | ||
1295 | printk("before unlock %x: block status register is %x\n",temp_adr,cfi_read_query(map, temp_adr+(2*ofs_factor))); | ||
1296 | temp_adr += mtd->erasesize; | ||
1297 | temp_len -= mtd->erasesize; | ||
1298 | } | ||
1299 | cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); | ||
1300 | } | ||
1301 | #endif | ||
1302 | |||
1303 | ret = do_unlock_oneblock(map, &cfi->chips[chipnum], adr); | ||
1304 | |||
1305 | #ifdef DEBUG_LOCK_BITS | ||
1306 | cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); | ||
1307 | printk("after unlock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor))); | ||
1308 | cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); | ||
1309 | #endif | ||
1310 | |||
1311 | return ret; | ||
1312 | } | ||
1313 | |||
1314 | static int cfi_staa_suspend(struct mtd_info *mtd) | ||
1315 | { | ||
1316 | struct map_info *map = mtd->priv; | ||
1317 | struct cfi_private *cfi = map->fldrv_priv; | ||
1318 | int i; | ||
1319 | struct flchip *chip; | ||
1320 | int ret = 0; | ||
1321 | |||
1322 | for (i=0; !ret && i<cfi->numchips; i++) { | ||
1323 | chip = &cfi->chips[i]; | ||
1324 | |||
1325 | spin_lock_bh(chip->mutex); | ||
1326 | |||
1327 | switch(chip->state) { | ||
1328 | case FL_READY: | ||
1329 | case FL_STATUS: | ||
1330 | case FL_CFI_QUERY: | ||
1331 | case FL_JEDEC_QUERY: | ||
1332 | chip->oldstate = chip->state; | ||
1333 | chip->state = FL_PM_SUSPENDED; | ||
1334 | /* No need to wake_up() on this state change - | ||
1335 | * as the whole point is that nobody can do anything | ||
1336 | * with the chip now anyway. | ||
1337 | */ | ||
1338 | case FL_PM_SUSPENDED: | ||
1339 | break; | ||
1340 | |||
1341 | default: | ||
1342 | ret = -EAGAIN; | ||
1343 | break; | ||
1344 | } | ||
1345 | spin_unlock_bh(chip->mutex); | ||
1346 | } | ||
1347 | |||
1348 | /* Unlock the chips again */ | ||
1349 | |||
1350 | if (ret) { | ||
1351 | for (i--; i >=0; i--) { | ||
1352 | chip = &cfi->chips[i]; | ||
1353 | |||
1354 | spin_lock_bh(chip->mutex); | ||
1355 | |||
1356 | if (chip->state == FL_PM_SUSPENDED) { | ||
1357 | /* No need to force it into a known state here, | ||
1358 | because we're returning failure, and it didn't | ||
1359 | get power cycled */ | ||
1360 | chip->state = chip->oldstate; | ||
1361 | wake_up(&chip->wq); | ||
1362 | } | ||
1363 | spin_unlock_bh(chip->mutex); | ||
1364 | } | ||
1365 | } | ||
1366 | |||
1367 | return ret; | ||
1368 | } | ||
1369 | |||
1370 | static void cfi_staa_resume(struct mtd_info *mtd) | ||
1371 | { | ||
1372 | struct map_info *map = mtd->priv; | ||
1373 | struct cfi_private *cfi = map->fldrv_priv; | ||
1374 | int i; | ||
1375 | struct flchip *chip; | ||
1376 | |||
1377 | for (i=0; i<cfi->numchips; i++) { | ||
1378 | |||
1379 | chip = &cfi->chips[i]; | ||
1380 | |||
1381 | spin_lock_bh(chip->mutex); | ||
1382 | |||
1383 | /* Go to known state. Chip may have been power cycled */ | ||
1384 | if (chip->state == FL_PM_SUSPENDED) { | ||
1385 | map_write(map, CMD(0xFF), 0); | ||
1386 | chip->state = FL_READY; | ||
1387 | wake_up(&chip->wq); | ||
1388 | } | ||
1389 | |||
1390 | spin_unlock_bh(chip->mutex); | ||
1391 | } | ||
1392 | } | ||
1393 | |||
1394 | static void cfi_staa_destroy(struct mtd_info *mtd) | ||
1395 | { | ||
1396 | struct map_info *map = mtd->priv; | ||
1397 | struct cfi_private *cfi = map->fldrv_priv; | ||
1398 | kfree(cfi->cmdset_priv); | ||
1399 | kfree(cfi); | ||
1400 | } | ||
1401 | |||
1402 | static char im_name[]="cfi_cmdset_0020"; | ||
1403 | |||
1404 | static int __init cfi_staa_init(void) | ||
1405 | { | ||
1406 | inter_module_register(im_name, THIS_MODULE, &cfi_cmdset_0020); | ||
1407 | return 0; | ||
1408 | } | ||
1409 | |||
1410 | static void __exit cfi_staa_exit(void) | ||
1411 | { | ||
1412 | inter_module_unregister(im_name); | ||
1413 | } | ||
1414 | |||
1415 | module_init(cfi_staa_init); | ||
1416 | module_exit(cfi_staa_exit); | ||
1417 | |||
1418 | MODULE_LICENSE("GPL"); | ||
diff --git a/drivers/mtd/chips/cfi_probe.c b/drivers/mtd/chips/cfi_probe.c new file mode 100644 index 00000000000..cf750038ce6 --- /dev/null +++ b/drivers/mtd/chips/cfi_probe.c | |||
@@ -0,0 +1,445 @@ | |||
1 | /* | ||
2 | Common Flash Interface probe code. | ||
3 | (C) 2000 Red Hat. GPL'd. | ||
4 | $Id: cfi_probe.c,v 1.83 2004/11/16 18:19:02 nico Exp $ | ||
5 | */ | ||
6 | |||
7 | #include <linux/config.h> | ||
8 | #include <linux/module.h> | ||
9 | #include <linux/types.h> | ||
10 | #include <linux/kernel.h> | ||
11 | #include <linux/init.h> | ||
12 | #include <asm/io.h> | ||
13 | #include <asm/byteorder.h> | ||
14 | #include <linux/errno.h> | ||
15 | #include <linux/slab.h> | ||
16 | #include <linux/interrupt.h> | ||
17 | |||
18 | #include <linux/mtd/xip.h> | ||
19 | #include <linux/mtd/map.h> | ||
20 | #include <linux/mtd/cfi.h> | ||
21 | #include <linux/mtd/gen_probe.h> | ||
22 | |||
23 | //#define DEBUG_CFI | ||
24 | |||
25 | #ifdef DEBUG_CFI | ||
26 | static void print_cfi_ident(struct cfi_ident *); | ||
27 | #endif | ||
28 | |||
29 | static int cfi_probe_chip(struct map_info *map, __u32 base, | ||
30 | unsigned long *chip_map, struct cfi_private *cfi); | ||
31 | static int cfi_chip_setup(struct map_info *map, struct cfi_private *cfi); | ||
32 | |||
33 | struct mtd_info *cfi_probe(struct map_info *map); | ||
34 | |||
35 | #ifdef CONFIG_MTD_XIP | ||
36 | |||
37 | /* only needed for short periods, so this is rather simple */ | ||
38 | #define xip_disable() local_irq_disable() | ||
39 | |||
40 | #define xip_allowed(base, map) \ | ||
41 | do { \ | ||
42 | (void) map_read(map, base); \ | ||
43 | asm volatile (".rep 8; nop; .endr"); \ | ||
44 | local_irq_enable(); \ | ||
45 | } while (0) | ||
46 | |||
47 | #define xip_enable(base, map, cfi) \ | ||
48 | do { \ | ||
49 | cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); \ | ||
50 | cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); \ | ||
51 | xip_allowed(base, map); \ | ||
52 | } while (0) | ||
53 | |||
54 | #define xip_disable_qry(base, map, cfi) \ | ||
55 | do { \ | ||
56 | xip_disable(); \ | ||
57 | cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); \ | ||
58 | cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); \ | ||
59 | cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); \ | ||
60 | } while (0) | ||
61 | |||
62 | #else | ||
63 | |||
64 | #define xip_disable() do { } while (0) | ||
65 | #define xip_allowed(base, map) do { } while (0) | ||
66 | #define xip_enable(base, map, cfi) do { } while (0) | ||
67 | #define xip_disable_qry(base, map, cfi) do { } while (0) | ||
68 | |||
69 | #endif | ||
70 | |||
71 | /* check for QRY. | ||
72 | in: interleave,type,mode | ||
73 | ret: table index, <0 for error | ||
74 | */ | ||
75 | static int __xipram qry_present(struct map_info *map, __u32 base, | ||
76 | struct cfi_private *cfi) | ||
77 | { | ||
78 | int osf = cfi->interleave * cfi->device_type; // scale factor | ||
79 | map_word val[3]; | ||
80 | map_word qry[3]; | ||
81 | |||
82 | qry[0] = cfi_build_cmd('Q', map, cfi); | ||
83 | qry[1] = cfi_build_cmd('R', map, cfi); | ||
84 | qry[2] = cfi_build_cmd('Y', map, cfi); | ||
85 | |||
86 | val[0] = map_read(map, base + osf*0x10); | ||
87 | val[1] = map_read(map, base + osf*0x11); | ||
88 | val[2] = map_read(map, base + osf*0x12); | ||
89 | |||
90 | if (!map_word_equal(map, qry[0], val[0])) | ||
91 | return 0; | ||
92 | |||
93 | if (!map_word_equal(map, qry[1], val[1])) | ||
94 | return 0; | ||
95 | |||
96 | if (!map_word_equal(map, qry[2], val[2])) | ||
97 | return 0; | ||
98 | |||
99 | return 1; // "QRY" found | ||
100 | } | ||
101 | |||
102 | static int __xipram cfi_probe_chip(struct map_info *map, __u32 base, | ||
103 | unsigned long *chip_map, struct cfi_private *cfi) | ||
104 | { | ||
105 | int i; | ||
106 | |||
107 | if ((base + 0) >= map->size) { | ||
108 | printk(KERN_NOTICE | ||
109 | "Probe at base[0x00](0x%08lx) past the end of the map(0x%08lx)\n", | ||
110 | (unsigned long)base, map->size -1); | ||
111 | return 0; | ||
112 | } | ||
113 | if ((base + 0xff) >= map->size) { | ||
114 | printk(KERN_NOTICE | ||
115 | "Probe at base[0x55](0x%08lx) past the end of the map(0x%08lx)\n", | ||
116 | (unsigned long)base + 0x55, map->size -1); | ||
117 | return 0; | ||
118 | } | ||
119 | |||
120 | xip_disable(); | ||
121 | cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); | ||
122 | cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); | ||
123 | cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); | ||
124 | |||
125 | if (!qry_present(map,base,cfi)) { | ||
126 | xip_enable(base, map, cfi); | ||
127 | return 0; | ||
128 | } | ||
129 | |||
130 | if (!cfi->numchips) { | ||
131 | /* This is the first time we're called. Set up the CFI | ||
132 | stuff accordingly and return */ | ||
133 | return cfi_chip_setup(map, cfi); | ||
134 | } | ||
135 | |||
136 | /* Check each previous chip to see if it's an alias */ | ||
137 | for (i=0; i < (base >> cfi->chipshift); i++) { | ||
138 | unsigned long start; | ||
139 | if(!test_bit(i, chip_map)) { | ||
140 | /* Skip location; no valid chip at this address */ | ||
141 | continue; | ||
142 | } | ||
143 | start = i << cfi->chipshift; | ||
144 | /* This chip should be in read mode if it's one | ||
145 | we've already touched. */ | ||
146 | if (qry_present(map, start, cfi)) { | ||
147 | /* Eep. This chip also had the QRY marker. | ||
148 | * Is it an alias for the new one? */ | ||
149 | cfi_send_gen_cmd(0xF0, 0, start, map, cfi, cfi->device_type, NULL); | ||
150 | cfi_send_gen_cmd(0xFF, 0, start, map, cfi, cfi->device_type, NULL); | ||
151 | |||
152 | /* If the QRY marker goes away, it's an alias */ | ||
153 | if (!qry_present(map, start, cfi)) { | ||
154 | xip_allowed(base, map); | ||
155 | printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", | ||
156 | map->name, base, start); | ||
157 | return 0; | ||
158 | } | ||
159 | /* Yes, it's actually got QRY for data. Most | ||
160 | * unfortunate. Stick the new chip in read mode | ||
161 | * too and if it's the same, assume it's an alias. */ | ||
162 | /* FIXME: Use other modes to do a proper check */ | ||
163 | cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); | ||
164 | cfi_send_gen_cmd(0xFF, 0, start, map, cfi, cfi->device_type, NULL); | ||
165 | |||
166 | if (qry_present(map, base, cfi)) { | ||
167 | xip_allowed(base, map); | ||
168 | printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", | ||
169 | map->name, base, start); | ||
170 | return 0; | ||
171 | } | ||
172 | } | ||
173 | } | ||
174 | |||
175 | /* OK, if we got to here, then none of the previous chips appear to | ||
176 | be aliases for the current one. */ | ||
177 | set_bit((base >> cfi->chipshift), chip_map); /* Update chip map */ | ||
178 | cfi->numchips++; | ||
179 | |||
180 | /* Put it back into Read Mode */ | ||
181 | cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); | ||
182 | cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); | ||
183 | xip_allowed(base, map); | ||
184 | |||
185 | printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n", | ||
186 | map->name, cfi->interleave, cfi->device_type*8, base, | ||
187 | map->bankwidth*8); | ||
188 | |||
189 | return 1; | ||
190 | } | ||
191 | |||
192 | static int __xipram cfi_chip_setup(struct map_info *map, | ||
193 | struct cfi_private *cfi) | ||
194 | { | ||
195 | int ofs_factor = cfi->interleave*cfi->device_type; | ||
196 | __u32 base = 0; | ||
197 | int num_erase_regions = cfi_read_query(map, base + (0x10 + 28)*ofs_factor); | ||
198 | int i; | ||
199 | |||
200 | xip_enable(base, map, cfi); | ||
201 | #ifdef DEBUG_CFI | ||
202 | printk("Number of erase regions: %d\n", num_erase_regions); | ||
203 | #endif | ||
204 | if (!num_erase_regions) | ||
205 | return 0; | ||
206 | |||
207 | cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL); | ||
208 | if (!cfi->cfiq) { | ||
209 | printk(KERN_WARNING "%s: kmalloc failed for CFI ident structure\n", map->name); | ||
210 | return 0; | ||
211 | } | ||
212 | |||
213 | memset(cfi->cfiq,0,sizeof(struct cfi_ident)); | ||
214 | |||
215 | cfi->cfi_mode = CFI_MODE_CFI; | ||
216 | |||
217 | /* Read the CFI info structure */ | ||
218 | xip_disable_qry(base, map, cfi); | ||
219 | for (i=0; i<(sizeof(struct cfi_ident) + num_erase_regions * 4); i++) | ||
220 | ((unsigned char *)cfi->cfiq)[i] = cfi_read_query(map,base + (0x10 + i)*ofs_factor); | ||
221 | |||
222 | /* Note we put the device back into Read Mode BEFORE going into Auto | ||
223 | * Select Mode, as some devices support nesting of modes, others | ||
224 | * don't. This way should always work. | ||
225 | * On cmdset 0001 the writes of 0xaa and 0x55 are not needed, and | ||
226 | * so should be treated as nops or illegal (and so put the device | ||
227 | * back into Read Mode, which is a nop in this case). | ||
228 | */ | ||
229 | cfi_send_gen_cmd(0xf0, 0, base, map, cfi, cfi->device_type, NULL); | ||
230 | cfi_send_gen_cmd(0xaa, 0x555, base, map, cfi, cfi->device_type, NULL); | ||
231 | cfi_send_gen_cmd(0x55, 0x2aa, base, map, cfi, cfi->device_type, NULL); | ||
232 | cfi_send_gen_cmd(0x90, 0x555, base, map, cfi, cfi->device_type, NULL); | ||
233 | cfi->mfr = cfi_read_query(map, base); | ||
234 | cfi->id = cfi_read_query(map, base + ofs_factor); | ||
235 | |||
236 | /* Put it back into Read Mode */ | ||
237 | cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); | ||
238 | /* ... even if it's an Intel chip */ | ||
239 | cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); | ||
240 | xip_allowed(base, map); | ||
241 | |||
242 | /* Do any necessary byteswapping */ | ||
243 | cfi->cfiq->P_ID = le16_to_cpu(cfi->cfiq->P_ID); | ||
244 | |||
245 | cfi->cfiq->P_ADR = le16_to_cpu(cfi->cfiq->P_ADR); | ||
246 | cfi->cfiq->A_ID = le16_to_cpu(cfi->cfiq->A_ID); | ||
247 | cfi->cfiq->A_ADR = le16_to_cpu(cfi->cfiq->A_ADR); | ||
248 | cfi->cfiq->InterfaceDesc = le16_to_cpu(cfi->cfiq->InterfaceDesc); | ||
249 | cfi->cfiq->MaxBufWriteSize = le16_to_cpu(cfi->cfiq->MaxBufWriteSize); | ||
250 | |||
251 | #ifdef DEBUG_CFI | ||
252 | /* Dump the information therein */ | ||
253 | print_cfi_ident(cfi->cfiq); | ||
254 | #endif | ||
255 | |||
256 | for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { | ||
257 | cfi->cfiq->EraseRegionInfo[i] = le32_to_cpu(cfi->cfiq->EraseRegionInfo[i]); | ||
258 | |||
259 | #ifdef DEBUG_CFI | ||
260 | printk(" Erase Region #%d: BlockSize 0x%4.4X bytes, %d blocks\n", | ||
261 | i, (cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff, | ||
262 | (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1); | ||
263 | #endif | ||
264 | } | ||
265 | |||
266 | printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n", | ||
267 | map->name, cfi->interleave, cfi->device_type*8, base, | ||
268 | map->bankwidth*8); | ||
269 | |||
270 | return 1; | ||
271 | } | ||
272 | |||
273 | #ifdef DEBUG_CFI | ||
274 | static char *vendorname(__u16 vendor) | ||
275 | { | ||
276 | switch (vendor) { | ||
277 | case P_ID_NONE: | ||
278 | return "None"; | ||
279 | |||
280 | case P_ID_INTEL_EXT: | ||
281 | return "Intel/Sharp Extended"; | ||
282 | |||
283 | case P_ID_AMD_STD: | ||
284 | return "AMD/Fujitsu Standard"; | ||
285 | |||
286 | case P_ID_INTEL_STD: | ||
287 | return "Intel/Sharp Standard"; | ||
288 | |||
289 | case P_ID_AMD_EXT: | ||
290 | return "AMD/Fujitsu Extended"; | ||
291 | |||
292 | case P_ID_WINBOND: | ||
293 | return "Winbond Standard"; | ||
294 | |||
295 | case P_ID_ST_ADV: | ||
296 | return "ST Advanced"; | ||
297 | |||
298 | case P_ID_MITSUBISHI_STD: | ||
299 | return "Mitsubishi Standard"; | ||
300 | |||
301 | case P_ID_MITSUBISHI_EXT: | ||
302 | return "Mitsubishi Extended"; | ||
303 | |||
304 | case P_ID_SST_PAGE: | ||
305 | return "SST Page Write"; | ||
306 | |||
307 | case P_ID_INTEL_PERFORMANCE: | ||
308 | return "Intel Performance Code"; | ||
309 | |||
310 | case P_ID_INTEL_DATA: | ||
311 | return "Intel Data"; | ||
312 | |||
313 | case P_ID_RESERVED: | ||
314 | return "Not Allowed / Reserved for Future Use"; | ||
315 | |||
316 | default: | ||
317 | return "Unknown"; | ||
318 | } | ||
319 | } | ||
320 | |||
321 | |||
322 | static void print_cfi_ident(struct cfi_ident *cfip) | ||
323 | { | ||
324 | #if 0 | ||
325 | if (cfip->qry[0] != 'Q' || cfip->qry[1] != 'R' || cfip->qry[2] != 'Y') { | ||
326 | printk("Invalid CFI ident structure.\n"); | ||
327 | return; | ||
328 | } | ||
329 | #endif | ||
330 | printk("Primary Vendor Command Set: %4.4X (%s)\n", cfip->P_ID, vendorname(cfip->P_ID)); | ||
331 | if (cfip->P_ADR) | ||
332 | printk("Primary Algorithm Table at %4.4X\n", cfip->P_ADR); | ||
333 | else | ||
334 | printk("No Primary Algorithm Table\n"); | ||
335 | |||
336 | printk("Alternative Vendor Command Set: %4.4X (%s)\n", cfip->A_ID, vendorname(cfip->A_ID)); | ||
337 | if (cfip->A_ADR) | ||
338 | printk("Alternate Algorithm Table at %4.4X\n", cfip->A_ADR); | ||
339 | else | ||
340 | printk("No Alternate Algorithm Table\n"); | ||
341 | |||
342 | |||
343 | printk("Vcc Minimum: %2d.%d V\n", cfip->VccMin >> 4, cfip->VccMin & 0xf); | ||
344 | printk("Vcc Maximum: %2d.%d V\n", cfip->VccMax >> 4, cfip->VccMax & 0xf); | ||
345 | if (cfip->VppMin) { | ||
346 | printk("Vpp Minimum: %2d.%d V\n", cfip->VppMin >> 4, cfip->VppMin & 0xf); | ||
347 | printk("Vpp Maximum: %2d.%d V\n", cfip->VppMax >> 4, cfip->VppMax & 0xf); | ||
348 | } | ||
349 | else | ||
350 | printk("No Vpp line\n"); | ||
351 | |||
352 | printk("Typical byte/word write timeout: %d µs\n", 1<<cfip->WordWriteTimeoutTyp); | ||
353 | printk("Maximum byte/word write timeout: %d µs\n", (1<<cfip->WordWriteTimeoutMax) * (1<<cfip->WordWriteTimeoutTyp)); | ||
354 | |||
355 | if (cfip->BufWriteTimeoutTyp || cfip->BufWriteTimeoutMax) { | ||
356 | printk("Typical full buffer write timeout: %d µs\n", 1<<cfip->BufWriteTimeoutTyp); | ||
357 | printk("Maximum full buffer write timeout: %d µs\n", (1<<cfip->BufWriteTimeoutMax) * (1<<cfip->BufWriteTimeoutTyp)); | ||
358 | } | ||
359 | else | ||
360 | printk("Full buffer write not supported\n"); | ||
361 | |||
362 | printk("Typical block erase timeout: %d ms\n", 1<<cfip->BlockEraseTimeoutTyp); | ||
363 | printk("Maximum block erase timeout: %d ms\n", (1<<cfip->BlockEraseTimeoutMax) * (1<<cfip->BlockEraseTimeoutTyp)); | ||
364 | if (cfip->ChipEraseTimeoutTyp || cfip->ChipEraseTimeoutMax) { | ||
365 | printk("Typical chip erase timeout: %d ms\n", 1<<cfip->ChipEraseTimeoutTyp); | ||
366 | printk("Maximum chip erase timeout: %d ms\n", (1<<cfip->ChipEraseTimeoutMax) * (1<<cfip->ChipEraseTimeoutTyp)); | ||
367 | } | ||
368 | else | ||
369 | printk("Chip erase not supported\n"); | ||
370 | |||
371 | printk("Device size: 0x%X bytes (%d MiB)\n", 1 << cfip->DevSize, 1<< (cfip->DevSize - 20)); | ||
372 | printk("Flash Device Interface description: 0x%4.4X\n", cfip->InterfaceDesc); | ||
373 | switch(cfip->InterfaceDesc) { | ||
374 | case 0: | ||
375 | printk(" - x8-only asynchronous interface\n"); | ||
376 | break; | ||
377 | |||
378 | case 1: | ||
379 | printk(" - x16-only asynchronous interface\n"); | ||
380 | break; | ||
381 | |||
382 | case 2: | ||
383 | printk(" - supports x8 and x16 via BYTE# with asynchronous interface\n"); | ||
384 | break; | ||
385 | |||
386 | case 3: | ||
387 | printk(" - x32-only asynchronous interface\n"); | ||
388 | break; | ||
389 | |||
390 | case 4: | ||
391 | printk(" - supports x16 and x32 via Word# with asynchronous interface\n"); | ||
392 | break; | ||
393 | |||
394 | case 65535: | ||
395 | printk(" - Not Allowed / Reserved\n"); | ||
396 | break; | ||
397 | |||
398 | default: | ||
399 | printk(" - Unknown\n"); | ||
400 | break; | ||
401 | } | ||
402 | |||
403 | printk("Max. bytes in buffer write: 0x%x\n", 1<< cfip->MaxBufWriteSize); | ||
404 | printk("Number of Erase Block Regions: %d\n", cfip->NumEraseRegions); | ||
405 | |||
406 | } | ||
407 | #endif /* DEBUG_CFI */ | ||
408 | |||
409 | static struct chip_probe cfi_chip_probe = { | ||
410 | .name = "CFI", | ||
411 | .probe_chip = cfi_probe_chip | ||
412 | }; | ||
413 | |||
414 | struct mtd_info *cfi_probe(struct map_info *map) | ||
415 | { | ||
416 | /* | ||
417 | * Just use the generic probe stuff to call our CFI-specific | ||
418 | * chip_probe routine in all the possible permutations, etc. | ||
419 | */ | ||
420 | return mtd_do_chip_probe(map, &cfi_chip_probe); | ||
421 | } | ||
422 | |||
423 | static struct mtd_chip_driver cfi_chipdrv = { | ||
424 | .probe = cfi_probe, | ||
425 | .name = "cfi_probe", | ||
426 | .module = THIS_MODULE | ||
427 | }; | ||
428 | |||
429 | int __init cfi_probe_init(void) | ||
430 | { | ||
431 | register_mtd_chip_driver(&cfi_chipdrv); | ||
432 | return 0; | ||
433 | } | ||
434 | |||
435 | static void __exit cfi_probe_exit(void) | ||
436 | { | ||
437 | unregister_mtd_chip_driver(&cfi_chipdrv); | ||
438 | } | ||
439 | |||
440 | module_init(cfi_probe_init); | ||
441 | module_exit(cfi_probe_exit); | ||
442 | |||
443 | MODULE_LICENSE("GPL"); | ||
444 | MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); | ||
445 | MODULE_DESCRIPTION("Probe code for CFI-compliant flash chips"); | ||
diff --git a/drivers/mtd/chips/cfi_util.c b/drivers/mtd/chips/cfi_util.c new file mode 100644 index 00000000000..2b2ede2bfcc --- /dev/null +++ b/drivers/mtd/chips/cfi_util.c | |||
@@ -0,0 +1,196 @@ | |||
1 | /* | ||
2 | * Common Flash Interface support: | ||
3 | * Generic utility functions not dependant on command set | ||
4 | * | ||
5 | * Copyright (C) 2002 Red Hat | ||
6 | * Copyright (C) 2003 STMicroelectronics Limited | ||
7 | * | ||
8 | * This code is covered by the GPL. | ||
9 | * | ||
10 | * $Id: cfi_util.c,v 1.8 2004/12/14 19:55:56 nico Exp $ | ||
11 | * | ||
12 | */ | ||
13 | |||
14 | #include <linux/module.h> | ||
15 | #include <linux/types.h> | ||
16 | #include <linux/kernel.h> | ||
17 | #include <linux/sched.h> | ||
18 | #include <asm/io.h> | ||
19 | #include <asm/byteorder.h> | ||
20 | |||
21 | #include <linux/errno.h> | ||
22 | #include <linux/slab.h> | ||
23 | #include <linux/delay.h> | ||
24 | #include <linux/interrupt.h> | ||
25 | #include <linux/mtd/xip.h> | ||
26 | #include <linux/mtd/mtd.h> | ||
27 | #include <linux/mtd/map.h> | ||
28 | #include <linux/mtd/cfi.h> | ||
29 | #include <linux/mtd/compatmac.h> | ||
30 | |||
31 | struct cfi_extquery * | ||
32 | __xipram cfi_read_pri(struct map_info *map, __u16 adr, __u16 size, const char* name) | ||
33 | { | ||
34 | struct cfi_private *cfi = map->fldrv_priv; | ||
35 | __u32 base = 0; // cfi->chips[0].start; | ||
36 | int ofs_factor = cfi->interleave * cfi->device_type; | ||
37 | int i; | ||
38 | struct cfi_extquery *extp = NULL; | ||
39 | |||
40 | printk(" %s Extended Query Table at 0x%4.4X\n", name, adr); | ||
41 | if (!adr) | ||
42 | goto out; | ||
43 | |||
44 | extp = kmalloc(size, GFP_KERNEL); | ||
45 | if (!extp) { | ||
46 | printk(KERN_ERR "Failed to allocate memory\n"); | ||
47 | goto out; | ||
48 | } | ||
49 | |||
50 | #ifdef CONFIG_MTD_XIP | ||
51 | local_irq_disable(); | ||
52 | #endif | ||
53 | |||
54 | /* Switch it into Query Mode */ | ||
55 | cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); | ||
56 | |||
57 | /* Read in the Extended Query Table */ | ||
58 | for (i=0; i<size; i++) { | ||
59 | ((unsigned char *)extp)[i] = | ||
60 | cfi_read_query(map, base+((adr+i)*ofs_factor)); | ||
61 | } | ||
62 | |||
63 | /* Make sure it returns to read mode */ | ||
64 | cfi_send_gen_cmd(0xf0, 0, base, map, cfi, cfi->device_type, NULL); | ||
65 | cfi_send_gen_cmd(0xff, 0, base, map, cfi, cfi->device_type, NULL); | ||
66 | |||
67 | #ifdef CONFIG_MTD_XIP | ||
68 | (void) map_read(map, base); | ||
69 | asm volatile (".rep 8; nop; .endr"); | ||
70 | local_irq_enable(); | ||
71 | #endif | ||
72 | |||
73 | if (extp->MajorVersion != '1' || | ||
74 | (extp->MinorVersion < '0' || extp->MinorVersion > '3')) { | ||
75 | printk(KERN_WARNING " Unknown %s Extended Query " | ||
76 | "version %c.%c.\n", name, extp->MajorVersion, | ||
77 | extp->MinorVersion); | ||
78 | kfree(extp); | ||
79 | extp = NULL; | ||
80 | } | ||
81 | |||
82 | out: return extp; | ||
83 | } | ||
84 | |||
85 | EXPORT_SYMBOL(cfi_read_pri); | ||
86 | |||
87 | void cfi_fixup(struct mtd_info *mtd, struct cfi_fixup *fixups) | ||
88 | { | ||
89 | struct map_info *map = mtd->priv; | ||
90 | struct cfi_private *cfi = map->fldrv_priv; | ||
91 | struct cfi_fixup *f; | ||
92 | |||
93 | for (f=fixups; f->fixup; f++) { | ||
94 | if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi->mfr)) && | ||
95 | ((f->id == CFI_ID_ANY) || (f->id == cfi->id))) { | ||
96 | f->fixup(mtd, f->param); | ||
97 | } | ||
98 | } | ||
99 | } | ||
100 | |||
101 | EXPORT_SYMBOL(cfi_fixup); | ||
102 | |||
103 | int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob, | ||
104 | loff_t ofs, size_t len, void *thunk) | ||
105 | { | ||
106 | struct map_info *map = mtd->priv; | ||
107 | struct cfi_private *cfi = map->fldrv_priv; | ||
108 | unsigned long adr; | ||
109 | int chipnum, ret = 0; | ||
110 | int i, first; | ||
111 | struct mtd_erase_region_info *regions = mtd->eraseregions; | ||
112 | |||
113 | if (ofs > mtd->size) | ||
114 | return -EINVAL; | ||
115 | |||
116 | if ((len + ofs) > mtd->size) | ||
117 | return -EINVAL; | ||
118 | |||
119 | /* Check that both start and end of the requested erase are | ||
120 | * aligned with the erasesize at the appropriate addresses. | ||
121 | */ | ||
122 | |||
123 | i = 0; | ||
124 | |||
125 | /* Skip all erase regions which are ended before the start of | ||
126 | the requested erase. Actually, to save on the calculations, | ||
127 | we skip to the first erase region which starts after the | ||
128 | start of the requested erase, and then go back one. | ||
129 | */ | ||
130 | |||
131 | while (i < mtd->numeraseregions && ofs >= regions[i].offset) | ||
132 | i++; | ||
133 | i--; | ||
134 | |||
135 | /* OK, now i is pointing at the erase region in which this | ||
136 | erase request starts. Check the start of the requested | ||
137 | erase range is aligned with the erase size which is in | ||
138 | effect here. | ||
139 | */ | ||
140 | |||
141 | if (ofs & (regions[i].erasesize-1)) | ||
142 | return -EINVAL; | ||
143 | |||
144 | /* Remember the erase region we start on */ | ||
145 | first = i; | ||
146 | |||
147 | /* Next, check that the end of the requested erase is aligned | ||
148 | * with the erase region at that address. | ||
149 | */ | ||
150 | |||
151 | while (i<mtd->numeraseregions && (ofs + len) >= regions[i].offset) | ||
152 | i++; | ||
153 | |||
154 | /* As before, drop back one to point at the region in which | ||
155 | the address actually falls | ||
156 | */ | ||
157 | i--; | ||
158 | |||
159 | if ((ofs + len) & (regions[i].erasesize-1)) | ||
160 | return -EINVAL; | ||
161 | |||
162 | chipnum = ofs >> cfi->chipshift; | ||
163 | adr = ofs - (chipnum << cfi->chipshift); | ||
164 | |||
165 | i=first; | ||
166 | |||
167 | while(len) { | ||
168 | int size = regions[i].erasesize; | ||
169 | |||
170 | ret = (*frob)(map, &cfi->chips[chipnum], adr, size, thunk); | ||
171 | |||
172 | if (ret) | ||
173 | return ret; | ||
174 | |||
175 | adr += size; | ||
176 | ofs += size; | ||
177 | len -= size; | ||
178 | |||
179 | if (ofs == regions[i].offset + size * regions[i].numblocks) | ||
180 | i++; | ||
181 | |||
182 | if (adr >> cfi->chipshift) { | ||
183 | adr = 0; | ||
184 | chipnum++; | ||
185 | |||
186 | if (chipnum >= cfi->numchips) | ||
187 | break; | ||
188 | } | ||
189 | } | ||
190 | |||
191 | return 0; | ||
192 | } | ||
193 | |||
194 | EXPORT_SYMBOL(cfi_varsize_frob); | ||
195 | |||
196 | MODULE_LICENSE("GPL"); | ||
diff --git a/drivers/mtd/chips/chipreg.c b/drivers/mtd/chips/chipreg.c new file mode 100644 index 00000000000..d7d739a108a --- /dev/null +++ b/drivers/mtd/chips/chipreg.c | |||
@@ -0,0 +1,111 @@ | |||
1 | /* | ||
2 | * $Id: chipreg.c,v 1.17 2004/11/16 18:29:00 dwmw2 Exp $ | ||
3 | * | ||
4 | * Registration for chip drivers | ||
5 | * | ||
6 | */ | ||
7 | |||
8 | #include <linux/kernel.h> | ||
9 | #include <linux/config.h> | ||
10 | #include <linux/module.h> | ||
11 | #include <linux/kmod.h> | ||
12 | #include <linux/spinlock.h> | ||
13 | #include <linux/slab.h> | ||
14 | #include <linux/mtd/map.h> | ||
15 | #include <linux/mtd/mtd.h> | ||
16 | #include <linux/mtd/compatmac.h> | ||
17 | |||
18 | static DEFINE_SPINLOCK(chip_drvs_lock); | ||
19 | static LIST_HEAD(chip_drvs_list); | ||
20 | |||
21 | void register_mtd_chip_driver(struct mtd_chip_driver *drv) | ||
22 | { | ||
23 | spin_lock(&chip_drvs_lock); | ||
24 | list_add(&drv->list, &chip_drvs_list); | ||
25 | spin_unlock(&chip_drvs_lock); | ||
26 | } | ||
27 | |||
28 | void unregister_mtd_chip_driver(struct mtd_chip_driver *drv) | ||
29 | { | ||
30 | spin_lock(&chip_drvs_lock); | ||
31 | list_del(&drv->list); | ||
32 | spin_unlock(&chip_drvs_lock); | ||
33 | } | ||
34 | |||
35 | static struct mtd_chip_driver *get_mtd_chip_driver (const char *name) | ||
36 | { | ||
37 | struct list_head *pos; | ||
38 | struct mtd_chip_driver *ret = NULL, *this; | ||
39 | |||
40 | spin_lock(&chip_drvs_lock); | ||
41 | |||
42 | list_for_each(pos, &chip_drvs_list) { | ||
43 | this = list_entry(pos, typeof(*this), list); | ||
44 | |||
45 | if (!strcmp(this->name, name)) { | ||
46 | ret = this; | ||
47 | break; | ||
48 | } | ||
49 | } | ||
50 | if (ret && !try_module_get(ret->module)) | ||
51 | ret = NULL; | ||
52 | |||
53 | spin_unlock(&chip_drvs_lock); | ||
54 | |||
55 | return ret; | ||
56 | } | ||
57 | |||
58 | /* Hide all the horrid details, like some silly person taking | ||
59 | get_module_symbol() away from us, from the caller. */ | ||
60 | |||
61 | struct mtd_info *do_map_probe(const char *name, struct map_info *map) | ||
62 | { | ||
63 | struct mtd_chip_driver *drv; | ||
64 | struct mtd_info *ret; | ||
65 | |||
66 | drv = get_mtd_chip_driver(name); | ||
67 | |||
68 | if (!drv && !request_module("%s", name)) | ||
69 | drv = get_mtd_chip_driver(name); | ||
70 | |||
71 | if (!drv) | ||
72 | return NULL; | ||
73 | |||
74 | ret = drv->probe(map); | ||
75 | |||
76 | /* We decrease the use count here. It may have been a | ||
77 | probe-only module, which is no longer required from this | ||
78 | point, having given us a handle on (and increased the use | ||
79 | count of) the actual driver code. | ||
80 | */ | ||
81 | module_put(drv->module); | ||
82 | |||
83 | if (ret) | ||
84 | return ret; | ||
85 | |||
86 | return NULL; | ||
87 | } | ||
88 | /* | ||
89 | * Destroy an MTD device which was created for a map device. | ||
90 | * Make sure the MTD device is already unregistered before calling this | ||
91 | */ | ||
92 | void map_destroy(struct mtd_info *mtd) | ||
93 | { | ||
94 | struct map_info *map = mtd->priv; | ||
95 | |||
96 | if (map->fldrv->destroy) | ||
97 | map->fldrv->destroy(mtd); | ||
98 | |||
99 | module_put(map->fldrv->module); | ||
100 | |||
101 | kfree(mtd); | ||
102 | } | ||
103 | |||
104 | EXPORT_SYMBOL(register_mtd_chip_driver); | ||
105 | EXPORT_SYMBOL(unregister_mtd_chip_driver); | ||
106 | EXPORT_SYMBOL(do_map_probe); | ||
107 | EXPORT_SYMBOL(map_destroy); | ||
108 | |||
109 | MODULE_LICENSE("GPL"); | ||
110 | MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); | ||
111 | MODULE_DESCRIPTION("Core routines for registering and invoking MTD chip drivers"); | ||
diff --git a/drivers/mtd/chips/fwh_lock.h b/drivers/mtd/chips/fwh_lock.h new file mode 100644 index 00000000000..fbf44708a86 --- /dev/null +++ b/drivers/mtd/chips/fwh_lock.h | |||
@@ -0,0 +1,107 @@ | |||
1 | #ifndef FWH_LOCK_H | ||
2 | #define FWH_LOCK_H | ||
3 | |||
4 | |||
5 | enum fwh_lock_state { | ||
6 | FWH_UNLOCKED = 0, | ||
7 | FWH_DENY_WRITE = 1, | ||
8 | FWH_IMMUTABLE = 2, | ||
9 | FWH_DENY_READ = 4, | ||
10 | }; | ||
11 | |||
12 | struct fwh_xxlock_thunk { | ||
13 | enum fwh_lock_state val; | ||
14 | flstate_t state; | ||
15 | }; | ||
16 | |||
17 | |||
18 | #define FWH_XXLOCK_ONEBLOCK_LOCK ((struct fwh_xxlock_thunk){ FWH_DENY_WRITE, FL_LOCKING}) | ||
19 | #define FWH_XXLOCK_ONEBLOCK_UNLOCK ((struct fwh_xxlock_thunk){ FWH_UNLOCKED, FL_UNLOCKING}) | ||
20 | |||
21 | /* | ||
22 | * This locking/unlock is specific to firmware hub parts. Only one | ||
23 | * is known that supports the Intel command set. Firmware | ||
24 | * hub parts cannot be interleaved as they are on the LPC bus | ||
25 | * so this code has not been tested with interleaved chips, | ||
26 | * and will likely fail in that context. | ||
27 | */ | ||
28 | static int fwh_xxlock_oneblock(struct map_info *map, struct flchip *chip, | ||
29 | unsigned long adr, int len, void *thunk) | ||
30 | { | ||
31 | struct cfi_private *cfi = map->fldrv_priv; | ||
32 | struct fwh_xxlock_thunk *xxlt = (struct fwh_xxlock_thunk *)thunk; | ||
33 | int ret; | ||
34 | |||
35 | /* Refuse the operation if the we cannot look behind the chip */ | ||
36 | if (chip->start < 0x400000) { | ||
37 | DEBUG( MTD_DEBUG_LEVEL3, | ||
38 | "MTD %s(): chip->start: %lx wanted >= 0x400000\n", | ||
39 | __func__, chip->start ); | ||
40 | return -EIO; | ||
41 | } | ||
42 | /* | ||
43 | * lock block registers: | ||
44 | * - on 64k boundariesand | ||
45 | * - bit 1 set high | ||
46 | * - block lock registers are 4MiB lower - overflow subtract (danger) | ||
47 | * | ||
48 | * The address manipulation is first done on the logical address | ||
49 | * which is 0 at the start of the chip, and then the offset of | ||
50 | * the individual chip is addted to it. Any other order a weird | ||
51 | * map offset could cause problems. | ||
52 | */ | ||
53 | adr = (adr & ~0xffffUL) | 0x2; | ||
54 | adr += chip->start - 0x400000; | ||
55 | |||
56 | /* | ||
57 | * This is easy because these are writes to registers and not writes | ||
58 | * to flash memory - that means that we don't have to check status | ||
59 | * and timeout. | ||
60 | */ | ||
61 | cfi_spin_lock(chip->mutex); | ||
62 | ret = get_chip(map, chip, adr, FL_LOCKING); | ||
63 | if (ret) { | ||
64 | cfi_spin_unlock(chip->mutex); | ||
65 | return ret; | ||
66 | } | ||
67 | |||
68 | chip->state = xxlt->state; | ||
69 | map_write(map, CMD(xxlt->val), adr); | ||
70 | |||
71 | /* Done and happy. */ | ||
72 | chip->state = FL_READY; | ||
73 | put_chip(map, chip, adr); | ||
74 | cfi_spin_unlock(chip->mutex); | ||
75 | return 0; | ||
76 | } | ||
77 | |||
78 | |||
79 | static int fwh_lock_varsize(struct mtd_info *mtd, loff_t ofs, size_t len) | ||
80 | { | ||
81 | int ret; | ||
82 | |||
83 | ret = cfi_varsize_frob(mtd, fwh_xxlock_oneblock, ofs, len, | ||
84 | (void *)&FWH_XXLOCK_ONEBLOCK_LOCK); | ||
85 | |||
86 | return ret; | ||
87 | } | ||
88 | |||
89 | |||
90 | static int fwh_unlock_varsize(struct mtd_info *mtd, loff_t ofs, size_t len) | ||
91 | { | ||
92 | int ret; | ||
93 | |||
94 | ret = cfi_varsize_frob(mtd, fwh_xxlock_oneblock, ofs, len, | ||
95 | (void *)&FWH_XXLOCK_ONEBLOCK_UNLOCK); | ||
96 | |||
97 | return ret; | ||
98 | } | ||
99 | |||
100 | static void fixup_use_fwh_lock(struct mtd_info *mtd, void *param) | ||
101 | { | ||
102 | printk(KERN_NOTICE "using fwh lock/unlock method\n"); | ||
103 | /* Setup for the chips with the fwh lock method */ | ||
104 | mtd->lock = fwh_lock_varsize; | ||
105 | mtd->unlock = fwh_unlock_varsize; | ||
106 | } | ||
107 | #endif /* FWH_LOCK_H */ | ||
diff --git a/drivers/mtd/chips/gen_probe.c b/drivers/mtd/chips/gen_probe.c new file mode 100644 index 00000000000..fc982c4671f --- /dev/null +++ b/drivers/mtd/chips/gen_probe.c | |||
@@ -0,0 +1,255 @@ | |||
1 | /* | ||
2 | * Routines common to all CFI-type probes. | ||
3 | * (C) 2001-2003 Red Hat, Inc. | ||
4 | * GPL'd | ||
5 | * $Id: gen_probe.c,v 1.21 2004/08/14 15:14:05 dwmw2 Exp $ | ||
6 | */ | ||
7 | |||
8 | #include <linux/kernel.h> | ||
9 | #include <linux/slab.h> | ||
10 | #include <linux/module.h> | ||
11 | #include <linux/mtd/mtd.h> | ||
12 | #include <linux/mtd/map.h> | ||
13 | #include <linux/mtd/cfi.h> | ||
14 | #include <linux/mtd/gen_probe.h> | ||
15 | |||
16 | static struct mtd_info *check_cmd_set(struct map_info *, int); | ||
17 | static struct cfi_private *genprobe_ident_chips(struct map_info *map, | ||
18 | struct chip_probe *cp); | ||
19 | static int genprobe_new_chip(struct map_info *map, struct chip_probe *cp, | ||
20 | struct cfi_private *cfi); | ||
21 | |||
22 | struct mtd_info *mtd_do_chip_probe(struct map_info *map, struct chip_probe *cp) | ||
23 | { | ||
24 | struct mtd_info *mtd = NULL; | ||
25 | struct cfi_private *cfi; | ||
26 | |||
27 | /* First probe the map to see if we have CFI stuff there. */ | ||
28 | cfi = genprobe_ident_chips(map, cp); | ||
29 | |||
30 | if (!cfi) | ||
31 | return NULL; | ||
32 | |||
33 | map->fldrv_priv = cfi; | ||
34 | /* OK we liked it. Now find a driver for the command set it talks */ | ||
35 | |||
36 | mtd = check_cmd_set(map, 1); /* First the primary cmdset */ | ||
37 | if (!mtd) | ||
38 | mtd = check_cmd_set(map, 0); /* Then the secondary */ | ||
39 | |||
40 | if (mtd) | ||
41 | return mtd; | ||
42 | |||
43 | printk(KERN_WARNING"gen_probe: No supported Vendor Command Set found\n"); | ||
44 | |||
45 | kfree(cfi->cfiq); | ||
46 | kfree(cfi); | ||
47 | map->fldrv_priv = NULL; | ||
48 | return NULL; | ||
49 | } | ||
50 | EXPORT_SYMBOL(mtd_do_chip_probe); | ||
51 | |||
52 | |||
53 | static struct cfi_private *genprobe_ident_chips(struct map_info *map, struct chip_probe *cp) | ||
54 | { | ||
55 | struct cfi_private cfi; | ||
56 | struct cfi_private *retcfi; | ||
57 | unsigned long *chip_map; | ||
58 | int i, j, mapsize; | ||
59 | int max_chips; | ||
60 | |||
61 | memset(&cfi, 0, sizeof(cfi)); | ||
62 | |||
63 | /* Call the probetype-specific code with all permutations of | ||
64 | interleave and device type, etc. */ | ||
65 | if (!genprobe_new_chip(map, cp, &cfi)) { | ||
66 | /* The probe didn't like it */ | ||
67 | printk(KERN_DEBUG "%s: Found no %s device at location zero\n", | ||
68 | cp->name, map->name); | ||
69 | return NULL; | ||
70 | } | ||
71 | |||
72 | #if 0 /* Let the CFI probe routine do this sanity check. The Intel and AMD | ||
73 | probe routines won't ever return a broken CFI structure anyway, | ||
74 | because they make them up themselves. | ||
75 | */ | ||
76 | if (cfi.cfiq->NumEraseRegions == 0) { | ||
77 | printk(KERN_WARNING "Number of erase regions is zero\n"); | ||
78 | kfree(cfi.cfiq); | ||
79 | return NULL; | ||
80 | } | ||
81 | #endif | ||
82 | cfi.chipshift = cfi.cfiq->DevSize; | ||
83 | |||
84 | if (cfi_interleave_is_1(&cfi)) { | ||
85 | ; | ||
86 | } else if (cfi_interleave_is_2(&cfi)) { | ||
87 | cfi.chipshift++; | ||
88 | } else if (cfi_interleave_is_4((&cfi))) { | ||
89 | cfi.chipshift += 2; | ||
90 | } else if (cfi_interleave_is_8(&cfi)) { | ||
91 | cfi.chipshift += 3; | ||
92 | } else { | ||
93 | BUG(); | ||
94 | } | ||
95 | |||
96 | cfi.numchips = 1; | ||
97 | |||
98 | /* | ||
99 | * Allocate memory for bitmap of valid chips. | ||
100 | * Align bitmap storage size to full byte. | ||
101 | */ | ||
102 | max_chips = map->size >> cfi.chipshift; | ||
103 | mapsize = (max_chips / 8) + ((max_chips % 8) ? 1 : 0); | ||
104 | chip_map = kmalloc(mapsize, GFP_KERNEL); | ||
105 | if (!chip_map) { | ||
106 | printk(KERN_WARNING "%s: kmalloc failed for CFI chip map\n", map->name); | ||
107 | kfree(cfi.cfiq); | ||
108 | return NULL; | ||
109 | } | ||
110 | memset (chip_map, 0, mapsize); | ||
111 | |||
112 | set_bit(0, chip_map); /* Mark first chip valid */ | ||
113 | |||
114 | /* | ||
115 | * Now probe for other chips, checking sensibly for aliases while | ||
116 | * we're at it. The new_chip probe above should have let the first | ||
117 | * chip in read mode. | ||
118 | */ | ||
119 | |||
120 | for (i = 1; i < max_chips; i++) { | ||
121 | cp->probe_chip(map, i << cfi.chipshift, chip_map, &cfi); | ||
122 | } | ||
123 | |||
124 | /* | ||
125 | * Now allocate the space for the structures we need to return to | ||
126 | * our caller, and copy the appropriate data into them. | ||
127 | */ | ||
128 | |||
129 | retcfi = kmalloc(sizeof(struct cfi_private) + cfi.numchips * sizeof(struct flchip), GFP_KERNEL); | ||
130 | |||
131 | if (!retcfi) { | ||
132 | printk(KERN_WARNING "%s: kmalloc failed for CFI private structure\n", map->name); | ||
133 | kfree(cfi.cfiq); | ||
134 | kfree(chip_map); | ||
135 | return NULL; | ||
136 | } | ||
137 | |||
138 | memcpy(retcfi, &cfi, sizeof(cfi)); | ||
139 | memset(&retcfi->chips[0], 0, sizeof(struct flchip) * cfi.numchips); | ||
140 | |||
141 | for (i = 0, j = 0; (j < cfi.numchips) && (i < max_chips); i++) { | ||
142 | if(test_bit(i, chip_map)) { | ||
143 | struct flchip *pchip = &retcfi->chips[j++]; | ||
144 | |||
145 | pchip->start = (i << cfi.chipshift); | ||
146 | pchip->state = FL_READY; | ||
147 | init_waitqueue_head(&pchip->wq); | ||
148 | spin_lock_init(&pchip->_spinlock); | ||
149 | pchip->mutex = &pchip->_spinlock; | ||
150 | } | ||
151 | } | ||
152 | |||
153 | kfree(chip_map); | ||
154 | return retcfi; | ||
155 | } | ||
156 | |||
157 | |||
158 | static int genprobe_new_chip(struct map_info *map, struct chip_probe *cp, | ||
159 | struct cfi_private *cfi) | ||
160 | { | ||
161 | int min_chips = (map_bankwidth(map)/4?:1); /* At most 4-bytes wide. */ | ||
162 | int max_chips = map_bankwidth(map); /* And minimum 1 */ | ||
163 | int nr_chips, type; | ||
164 | |||
165 | for (nr_chips = min_chips; nr_chips <= max_chips; nr_chips <<= 1) { | ||
166 | |||
167 | if (!cfi_interleave_supported(nr_chips)) | ||
168 | continue; | ||
169 | |||
170 | cfi->interleave = nr_chips; | ||
171 | |||
172 | /* Minimum device size. Don't look for one 8-bit device | ||
173 | in a 16-bit bus, etc. */ | ||
174 | type = map_bankwidth(map) / nr_chips; | ||
175 | |||
176 | for (; type <= CFI_DEVICETYPE_X32; type<<=1) { | ||
177 | cfi->device_type = type; | ||
178 | |||
179 | if (cp->probe_chip(map, 0, NULL, cfi)) | ||
180 | return 1; | ||
181 | } | ||
182 | } | ||
183 | return 0; | ||
184 | } | ||
185 | |||
186 | typedef struct mtd_info *cfi_cmdset_fn_t(struct map_info *, int); | ||
187 | |||
188 | extern cfi_cmdset_fn_t cfi_cmdset_0001; | ||
189 | extern cfi_cmdset_fn_t cfi_cmdset_0002; | ||
190 | extern cfi_cmdset_fn_t cfi_cmdset_0020; | ||
191 | |||
192 | static inline struct mtd_info *cfi_cmdset_unknown(struct map_info *map, | ||
193 | int primary) | ||
194 | { | ||
195 | struct cfi_private *cfi = map->fldrv_priv; | ||
196 | __u16 type = primary?cfi->cfiq->P_ID:cfi->cfiq->A_ID; | ||
197 | #if defined(CONFIG_MODULES) && defined(HAVE_INTER_MODULE) | ||
198 | char probename[32]; | ||
199 | cfi_cmdset_fn_t *probe_function; | ||
200 | |||
201 | sprintf(probename, "cfi_cmdset_%4.4X", type); | ||
202 | |||
203 | probe_function = inter_module_get_request(probename, probename); | ||
204 | |||
205 | if (probe_function) { | ||
206 | struct mtd_info *mtd; | ||
207 | |||
208 | mtd = (*probe_function)(map, primary); | ||
209 | /* If it was happy, it'll have increased its own use count */ | ||
210 | inter_module_put(probename); | ||
211 | return mtd; | ||
212 | } | ||
213 | #endif | ||
214 | printk(KERN_NOTICE "Support for command set %04X not present\n", | ||
215 | type); | ||
216 | |||
217 | return NULL; | ||
218 | } | ||
219 | |||
220 | static struct mtd_info *check_cmd_set(struct map_info *map, int primary) | ||
221 | { | ||
222 | struct cfi_private *cfi = map->fldrv_priv; | ||
223 | __u16 type = primary?cfi->cfiq->P_ID:cfi->cfiq->A_ID; | ||
224 | |||
225 | if (type == P_ID_NONE || type == P_ID_RESERVED) | ||
226 | return NULL; | ||
227 | |||
228 | switch(type){ | ||
229 | /* Urgh. Ifdefs. The version with weak symbols was | ||
230 | * _much_ nicer. Shame it didn't seem to work on | ||
231 | * anything but x86, really. | ||
232 | * But we can't rely in inter_module_get() because | ||
233 | * that'd mean we depend on link order. | ||
234 | */ | ||
235 | #ifdef CONFIG_MTD_CFI_INTELEXT | ||
236 | case 0x0001: | ||
237 | case 0x0003: | ||
238 | return cfi_cmdset_0001(map, primary); | ||
239 | #endif | ||
240 | #ifdef CONFIG_MTD_CFI_AMDSTD | ||
241 | case 0x0002: | ||
242 | return cfi_cmdset_0002(map, primary); | ||
243 | #endif | ||
244 | #ifdef CONFIG_MTD_CFI_STAA | ||
245 | case 0x0020: | ||
246 | return cfi_cmdset_0020(map, primary); | ||
247 | #endif | ||
248 | } | ||
249 | |||
250 | return cfi_cmdset_unknown(map, primary); | ||
251 | } | ||
252 | |||
253 | MODULE_LICENSE("GPL"); | ||
254 | MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); | ||
255 | MODULE_DESCRIPTION("Helper routines for flash chip probe code"); | ||
diff --git a/drivers/mtd/chips/jedec.c b/drivers/mtd/chips/jedec.c new file mode 100644 index 00000000000..62d235a9a4e --- /dev/null +++ b/drivers/mtd/chips/jedec.c | |||
@@ -0,0 +1,934 @@ | |||
1 | |||
2 | /* JEDEC Flash Interface. | ||
3 | * This is an older type of interface for self programming flash. It is | ||
4 | * commonly use in older AMD chips and is obsolete compared with CFI. | ||
5 | * It is called JEDEC because the JEDEC association distributes the ID codes | ||
6 | * for the chips. | ||
7 | * | ||
8 | * See the AMD flash databook for information on how to operate the interface. | ||
9 | * | ||
10 | * This code does not support anything wider than 8 bit flash chips, I am | ||
11 | * not going to guess how to send commands to them, plus I expect they will | ||
12 | * all speak CFI.. | ||
13 | * | ||
14 | * $Id: jedec.c,v 1.22 2005/01/05 18:05:11 dwmw2 Exp $ | ||
15 | */ | ||
16 | |||
17 | #include <linux/init.h> | ||
18 | #include <linux/module.h> | ||
19 | #include <linux/kernel.h> | ||
20 | #include <linux/mtd/jedec.h> | ||
21 | #include <linux/mtd/map.h> | ||
22 | #include <linux/mtd/mtd.h> | ||
23 | #include <linux/mtd/compatmac.h> | ||
24 | |||
25 | static struct mtd_info *jedec_probe(struct map_info *); | ||
26 | static int jedec_probe8(struct map_info *map,unsigned long base, | ||
27 | struct jedec_private *priv); | ||
28 | static int jedec_probe16(struct map_info *map,unsigned long base, | ||
29 | struct jedec_private *priv); | ||
30 | static int jedec_probe32(struct map_info *map,unsigned long base, | ||
31 | struct jedec_private *priv); | ||
32 | static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start, | ||
33 | unsigned long len); | ||
34 | static int flash_erase(struct mtd_info *mtd, struct erase_info *instr); | ||
35 | static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, | ||
36 | size_t *retlen, const u_char *buf); | ||
37 | |||
38 | static unsigned long my_bank_size; | ||
39 | |||
40 | /* Listing of parts and sizes. We need this table to learn the sector | ||
41 | size of the chip and the total length */ | ||
42 | static const struct JEDECTable JEDEC_table[] = { | ||
43 | { | ||
44 | .jedec = 0x013D, | ||
45 | .name = "AMD Am29F017D", | ||
46 | .size = 2*1024*1024, | ||
47 | .sectorsize = 64*1024, | ||
48 | .capabilities = MTD_CAP_NORFLASH | ||
49 | }, | ||
50 | { | ||
51 | .jedec = 0x01AD, | ||
52 | .name = "AMD Am29F016", | ||
53 | .size = 2*1024*1024, | ||
54 | .sectorsize = 64*1024, | ||
55 | .capabilities = MTD_CAP_NORFLASH | ||
56 | }, | ||
57 | { | ||
58 | .jedec = 0x01D5, | ||
59 | .name = "AMD Am29F080", | ||
60 | .size = 1*1024*1024, | ||
61 | .sectorsize = 64*1024, | ||
62 | .capabilities = MTD_CAP_NORFLASH | ||
63 | }, | ||
64 | { | ||
65 | .jedec = 0x01A4, | ||
66 | .name = "AMD Am29F040", | ||
67 | .size = 512*1024, | ||
68 | .sectorsize = 64*1024, | ||
69 | .capabilities = MTD_CAP_NORFLASH | ||
70 | }, | ||
71 | { | ||
72 | .jedec = 0x20E3, | ||
73 | .name = "AMD Am29W040B", | ||
74 | .size = 512*1024, | ||
75 | .sectorsize = 64*1024, | ||
76 | .capabilities = MTD_CAP_NORFLASH | ||
77 | }, | ||
78 | { | ||
79 | .jedec = 0xC2AD, | ||
80 | .name = "Macronix MX29F016", | ||
81 | .size = 2*1024*1024, | ||
82 | .sectorsize = 64*1024, | ||
83 | .capabilities = MTD_CAP_NORFLASH | ||
84 | }, | ||
85 | { .jedec = 0x0 } | ||
86 | }; | ||
87 | |||
88 | static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id); | ||
89 | static void jedec_sync(struct mtd_info *mtd) {}; | ||
90 | static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, | ||
91 | size_t *retlen, u_char *buf); | ||
92 | static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, | ||
93 | size_t *retlen, u_char *buf); | ||
94 | |||
95 | static struct mtd_info *jedec_probe(struct map_info *map); | ||
96 | |||
97 | |||
98 | |||
99 | static struct mtd_chip_driver jedec_chipdrv = { | ||
100 | .probe = jedec_probe, | ||
101 | .name = "jedec", | ||
102 | .module = THIS_MODULE | ||
103 | }; | ||
104 | |||
105 | /* Probe entry point */ | ||
106 | |||
107 | static struct mtd_info *jedec_probe(struct map_info *map) | ||
108 | { | ||
109 | struct mtd_info *MTD; | ||
110 | struct jedec_private *priv; | ||
111 | unsigned long Base; | ||
112 | unsigned long SectorSize; | ||
113 | unsigned count; | ||
114 | unsigned I,Uniq; | ||
115 | char Part[200]; | ||
116 | memset(&priv,0,sizeof(priv)); | ||
117 | |||
118 | MTD = kmalloc(sizeof(struct mtd_info) + sizeof(struct jedec_private), GFP_KERNEL); | ||
119 | if (!MTD) | ||
120 | return NULL; | ||
121 | |||
122 | memset(MTD, 0, sizeof(struct mtd_info) + sizeof(struct jedec_private)); | ||
123 | priv = (struct jedec_private *)&MTD[1]; | ||
124 | |||
125 | my_bank_size = map->size; | ||
126 | |||
127 | if (map->size/my_bank_size > MAX_JEDEC_CHIPS) | ||
128 | { | ||
129 | printk("mtd: Increase MAX_JEDEC_CHIPS, too many banks.\n"); | ||
130 | kfree(MTD); | ||
131 | return NULL; | ||
132 | } | ||
133 | |||
134 | for (Base = 0; Base < map->size; Base += my_bank_size) | ||
135 | { | ||
136 | // Perhaps zero could designate all tests? | ||
137 | if (map->buswidth == 0) | ||
138 | map->buswidth = 1; | ||
139 | |||
140 | if (map->buswidth == 1){ | ||
141 | if (jedec_probe8(map,Base,priv) == 0) { | ||
142 | printk("did recognize jedec chip\n"); | ||
143 | kfree(MTD); | ||
144 | return NULL; | ||
145 | } | ||
146 | } | ||
147 | if (map->buswidth == 2) | ||
148 | jedec_probe16(map,Base,priv); | ||
149 | if (map->buswidth == 4) | ||
150 | jedec_probe32(map,Base,priv); | ||
151 | } | ||
152 | |||
153 | // Get the biggest sector size | ||
154 | SectorSize = 0; | ||
155 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | ||
156 | { | ||
157 | // printk("priv->chips[%d].jedec is %x\n",I,priv->chips[I].jedec); | ||
158 | // printk("priv->chips[%d].sectorsize is %lx\n",I,priv->chips[I].sectorsize); | ||
159 | if (priv->chips[I].sectorsize > SectorSize) | ||
160 | SectorSize = priv->chips[I].sectorsize; | ||
161 | } | ||
162 | |||
163 | // Quickly ensure that the other sector sizes are factors of the largest | ||
164 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | ||
165 | { | ||
166 | if ((SectorSize/priv->chips[I].sectorsize)*priv->chips[I].sectorsize != SectorSize) | ||
167 | { | ||
168 | printk("mtd: Failed. Device has incompatible mixed sector sizes\n"); | ||
169 | kfree(MTD); | ||
170 | return NULL; | ||
171 | } | ||
172 | } | ||
173 | |||
174 | /* Generate a part name that includes the number of different chips and | ||
175 | other configuration information */ | ||
176 | count = 1; | ||
177 | strlcpy(Part,map->name,sizeof(Part)-10); | ||
178 | strcat(Part," "); | ||
179 | Uniq = 0; | ||
180 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | ||
181 | { | ||
182 | const struct JEDECTable *JEDEC; | ||
183 | |||
184 | if (priv->chips[I+1].jedec == priv->chips[I].jedec) | ||
185 | { | ||
186 | count++; | ||
187 | continue; | ||
188 | } | ||
189 | |||
190 | // Locate the chip in the jedec table | ||
191 | JEDEC = jedec_idtoinf(priv->chips[I].jedec >> 8,priv->chips[I].jedec); | ||
192 | if (JEDEC == 0) | ||
193 | { | ||
194 | printk("mtd: Internal Error, JEDEC not set\n"); | ||
195 | kfree(MTD); | ||
196 | return NULL; | ||
197 | } | ||
198 | |||
199 | if (Uniq != 0) | ||
200 | strcat(Part,","); | ||
201 | Uniq++; | ||
202 | |||
203 | if (count != 1) | ||
204 | sprintf(Part+strlen(Part),"%x*[%s]",count,JEDEC->name); | ||
205 | else | ||
206 | sprintf(Part+strlen(Part),"%s",JEDEC->name); | ||
207 | if (strlen(Part) > sizeof(Part)*2/3) | ||
208 | break; | ||
209 | count = 1; | ||
210 | } | ||
211 | |||
212 | /* Determine if the chips are organized in a linear fashion, or if there | ||
213 | are empty banks. Note, the last bank does not count here, only the | ||
214 | first banks are important. Holes on non-bank boundaries can not exist | ||
215 | due to the way the detection algorithm works. */ | ||
216 | if (priv->size < my_bank_size) | ||
217 | my_bank_size = priv->size; | ||
218 | priv->is_banked = 0; | ||
219 | //printk("priv->size is %x, my_bank_size is %x\n",priv->size,my_bank_size); | ||
220 | //printk("priv->bank_fill[0] is %x\n",priv->bank_fill[0]); | ||
221 | if (!priv->size) { | ||
222 | printk("priv->size is zero\n"); | ||
223 | kfree(MTD); | ||
224 | return NULL; | ||
225 | } | ||
226 | if (priv->size/my_bank_size) { | ||
227 | if (priv->size/my_bank_size == 1) { | ||
228 | priv->size = my_bank_size; | ||
229 | } | ||
230 | else { | ||
231 | for (I = 0; I != priv->size/my_bank_size - 1; I++) | ||
232 | { | ||
233 | if (priv->bank_fill[I] != my_bank_size) | ||
234 | priv->is_banked = 1; | ||
235 | |||
236 | /* This even could be eliminated, but new de-optimized read/write | ||
237 | functions have to be written */ | ||
238 | printk("priv->bank_fill[%d] is %lx, priv->bank_fill[0] is %lx\n",I,priv->bank_fill[I],priv->bank_fill[0]); | ||
239 | if (priv->bank_fill[I] != priv->bank_fill[0]) | ||
240 | { | ||
241 | printk("mtd: Failed. Cannot handle unsymmetric banking\n"); | ||
242 | kfree(MTD); | ||
243 | return NULL; | ||
244 | } | ||
245 | } | ||
246 | } | ||
247 | } | ||
248 | if (priv->is_banked == 1) | ||
249 | strcat(Part,", banked"); | ||
250 | |||
251 | // printk("Part: '%s'\n",Part); | ||
252 | |||
253 | memset(MTD,0,sizeof(*MTD)); | ||
254 | // strlcpy(MTD->name,Part,sizeof(MTD->name)); | ||
255 | MTD->name = map->name; | ||
256 | MTD->type = MTD_NORFLASH; | ||
257 | MTD->flags = MTD_CAP_NORFLASH; | ||
258 | MTD->erasesize = SectorSize*(map->buswidth); | ||
259 | // printk("MTD->erasesize is %x\n",(unsigned int)MTD->erasesize); | ||
260 | MTD->size = priv->size; | ||
261 | // printk("MTD->size is %x\n",(unsigned int)MTD->size); | ||
262 | //MTD->module = THIS_MODULE; // ? Maybe this should be the low level module? | ||
263 | MTD->erase = flash_erase; | ||
264 | if (priv->is_banked == 1) | ||
265 | MTD->read = jedec_read_banked; | ||
266 | else | ||
267 | MTD->read = jedec_read; | ||
268 | MTD->write = flash_write; | ||
269 | MTD->sync = jedec_sync; | ||
270 | MTD->priv = map; | ||
271 | map->fldrv_priv = priv; | ||
272 | map->fldrv = &jedec_chipdrv; | ||
273 | __module_get(THIS_MODULE); | ||
274 | return MTD; | ||
275 | } | ||
276 | |||
277 | /* Helper for the JEDEC function, JEDEC numbers all have odd parity */ | ||
278 | static int checkparity(u_char C) | ||
279 | { | ||
280 | u_char parity = 0; | ||
281 | while (C != 0) | ||
282 | { | ||
283 | parity ^= C & 1; | ||
284 | C >>= 1; | ||
285 | } | ||
286 | |||
287 | return parity == 1; | ||
288 | } | ||
289 | |||
290 | |||
291 | /* Take an array of JEDEC numbers that represent interleved flash chips | ||
292 | and process them. Check to make sure they are good JEDEC numbers, look | ||
293 | them up and then add them to the chip list */ | ||
294 | static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count, | ||
295 | unsigned long base,struct jedec_private *priv) | ||
296 | { | ||
297 | unsigned I,J; | ||
298 | unsigned long Size; | ||
299 | unsigned long SectorSize; | ||
300 | const struct JEDECTable *JEDEC; | ||
301 | |||
302 | // Test #2 JEDEC numbers exhibit odd parity | ||
303 | for (I = 0; I != Count; I++) | ||
304 | { | ||
305 | if (checkparity(Mfg[I]) == 0 || checkparity(Id[I]) == 0) | ||
306 | return 0; | ||
307 | } | ||
308 | |||
309 | // Finally, just make sure all the chip sizes are the same | ||
310 | JEDEC = jedec_idtoinf(Mfg[0],Id[0]); | ||
311 | |||
312 | if (JEDEC == 0) | ||
313 | { | ||
314 | printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]); | ||
315 | return 0; | ||
316 | } | ||
317 | |||
318 | Size = JEDEC->size; | ||
319 | SectorSize = JEDEC->sectorsize; | ||
320 | for (I = 0; I != Count; I++) | ||
321 | { | ||
322 | JEDEC = jedec_idtoinf(Mfg[0],Id[0]); | ||
323 | if (JEDEC == 0) | ||
324 | { | ||
325 | printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]); | ||
326 | return 0; | ||
327 | } | ||
328 | |||
329 | if (Size != JEDEC->size || SectorSize != JEDEC->sectorsize) | ||
330 | { | ||
331 | printk("mtd: Failed. Interleved flash does not have matching characteristics\n"); | ||
332 | return 0; | ||
333 | } | ||
334 | } | ||
335 | |||
336 | // Load the Chips | ||
337 | for (I = 0; I != MAX_JEDEC_CHIPS; I++) | ||
338 | { | ||
339 | if (priv->chips[I].jedec == 0) | ||
340 | break; | ||
341 | } | ||
342 | |||
343 | if (I + Count > MAX_JEDEC_CHIPS) | ||
344 | { | ||
345 | printk("mtd: Device has too many chips. Increase MAX_JEDEC_CHIPS\n"); | ||
346 | return 0; | ||
347 | } | ||
348 | |||
349 | // Add them to the table | ||
350 | for (J = 0; J != Count; J++) | ||
351 | { | ||
352 | unsigned long Bank; | ||
353 | |||
354 | JEDEC = jedec_idtoinf(Mfg[J],Id[J]); | ||
355 | priv->chips[I].jedec = (Mfg[J] << 8) | Id[J]; | ||
356 | priv->chips[I].size = JEDEC->size; | ||
357 | priv->chips[I].sectorsize = JEDEC->sectorsize; | ||
358 | priv->chips[I].base = base + J; | ||
359 | priv->chips[I].datashift = J*8; | ||
360 | priv->chips[I].capabilities = JEDEC->capabilities; | ||
361 | priv->chips[I].offset = priv->size + J; | ||
362 | |||
363 | // log2 n :| | ||
364 | priv->chips[I].addrshift = 0; | ||
365 | for (Bank = Count; Bank != 1; Bank >>= 1, priv->chips[I].addrshift++); | ||
366 | |||
367 | // Determine how filled this bank is. | ||
368 | Bank = base & (~(my_bank_size-1)); | ||
369 | if (priv->bank_fill[Bank/my_bank_size] < base + | ||
370 | (JEDEC->size << priv->chips[I].addrshift) - Bank) | ||
371 | priv->bank_fill[Bank/my_bank_size] = base + (JEDEC->size << priv->chips[I].addrshift) - Bank; | ||
372 | I++; | ||
373 | } | ||
374 | |||
375 | priv->size += priv->chips[I-1].size*Count; | ||
376 | |||
377 | return priv->chips[I-1].size; | ||
378 | } | ||
379 | |||
380 | /* Lookup the chip information from the JEDEC ID table. */ | ||
381 | static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id) | ||
382 | { | ||
383 | __u16 Id = (mfr << 8) | id; | ||
384 | unsigned long I = 0; | ||
385 | for (I = 0; JEDEC_table[I].jedec != 0; I++) | ||
386 | if (JEDEC_table[I].jedec == Id) | ||
387 | return JEDEC_table + I; | ||
388 | return NULL; | ||
389 | } | ||
390 | |||
391 | // Look for flash using an 8 bit bus interface | ||
392 | static int jedec_probe8(struct map_info *map,unsigned long base, | ||
393 | struct jedec_private *priv) | ||
394 | { | ||
395 | #define flread(x) map_read8(map,base+x) | ||
396 | #define flwrite(v,x) map_write8(map,v,base+x) | ||
397 | |||
398 | const unsigned long AutoSel1 = 0xAA; | ||
399 | const unsigned long AutoSel2 = 0x55; | ||
400 | const unsigned long AutoSel3 = 0x90; | ||
401 | const unsigned long Reset = 0xF0; | ||
402 | __u32 OldVal; | ||
403 | __u8 Mfg[1]; | ||
404 | __u8 Id[1]; | ||
405 | unsigned I; | ||
406 | unsigned long Size; | ||
407 | |||
408 | // Wait for any write/erase operation to settle | ||
409 | OldVal = flread(base); | ||
410 | for (I = 0; OldVal != flread(base) && I < 10000; I++) | ||
411 | OldVal = flread(base); | ||
412 | |||
413 | // Reset the chip | ||
414 | flwrite(Reset,0x555); | ||
415 | |||
416 | // Send the sequence | ||
417 | flwrite(AutoSel1,0x555); | ||
418 | flwrite(AutoSel2,0x2AA); | ||
419 | flwrite(AutoSel3,0x555); | ||
420 | |||
421 | // Get the JEDEC numbers | ||
422 | Mfg[0] = flread(0); | ||
423 | Id[0] = flread(1); | ||
424 | // printk("Mfg is %x, Id is %x\n",Mfg[0],Id[0]); | ||
425 | |||
426 | Size = handle_jedecs(map,Mfg,Id,1,base,priv); | ||
427 | // printk("handle_jedecs Size is %x\n",(unsigned int)Size); | ||
428 | if (Size == 0) | ||
429 | { | ||
430 | flwrite(Reset,0x555); | ||
431 | return 0; | ||
432 | } | ||
433 | |||
434 | |||
435 | // Reset. | ||
436 | flwrite(Reset,0x555); | ||
437 | |||
438 | return 1; | ||
439 | |||
440 | #undef flread | ||
441 | #undef flwrite | ||
442 | } | ||
443 | |||
444 | // Look for flash using a 16 bit bus interface (ie 2 8-bit chips) | ||
445 | static int jedec_probe16(struct map_info *map,unsigned long base, | ||
446 | struct jedec_private *priv) | ||
447 | { | ||
448 | return 0; | ||
449 | } | ||
450 | |||
451 | // Look for flash using a 32 bit bus interface (ie 4 8-bit chips) | ||
452 | static int jedec_probe32(struct map_info *map,unsigned long base, | ||
453 | struct jedec_private *priv) | ||
454 | { | ||
455 | #define flread(x) map_read32(map,base+((x)<<2)) | ||
456 | #define flwrite(v,x) map_write32(map,v,base+((x)<<2)) | ||
457 | |||
458 | const unsigned long AutoSel1 = 0xAAAAAAAA; | ||
459 | const unsigned long AutoSel2 = 0x55555555; | ||
460 | const unsigned long AutoSel3 = 0x90909090; | ||
461 | const unsigned long Reset = 0xF0F0F0F0; | ||
462 | __u32 OldVal; | ||
463 | __u8 Mfg[4]; | ||
464 | __u8 Id[4]; | ||
465 | unsigned I; | ||
466 | unsigned long Size; | ||
467 | |||
468 | // Wait for any write/erase operation to settle | ||
469 | OldVal = flread(base); | ||
470 | for (I = 0; OldVal != flread(base) && I < 10000; I++) | ||
471 | OldVal = flread(base); | ||
472 | |||
473 | // Reset the chip | ||
474 | flwrite(Reset,0x555); | ||
475 | |||
476 | // Send the sequence | ||
477 | flwrite(AutoSel1,0x555); | ||
478 | flwrite(AutoSel2,0x2AA); | ||
479 | flwrite(AutoSel3,0x555); | ||
480 | |||
481 | // Test #1, JEDEC numbers are readable from 0x??00/0x??01 | ||
482 | if (flread(0) != flread(0x100) || | ||
483 | flread(1) != flread(0x101)) | ||
484 | { | ||
485 | flwrite(Reset,0x555); | ||
486 | return 0; | ||
487 | } | ||
488 | |||
489 | // Split up the JEDEC numbers | ||
490 | OldVal = flread(0); | ||
491 | for (I = 0; I != 4; I++) | ||
492 | Mfg[I] = (OldVal >> (I*8)); | ||
493 | OldVal = flread(1); | ||
494 | for (I = 0; I != 4; I++) | ||
495 | Id[I] = (OldVal >> (I*8)); | ||
496 | |||
497 | Size = handle_jedecs(map,Mfg,Id,4,base,priv); | ||
498 | if (Size == 0) | ||
499 | { | ||
500 | flwrite(Reset,0x555); | ||
501 | return 0; | ||
502 | } | ||
503 | |||
504 | /* Check if there is address wrap around within a single bank, if this | ||
505 | returns JEDEC numbers then we assume that it is wrap around. Notice | ||
506 | we call this routine with the JEDEC return still enabled, if two or | ||
507 | more flashes have a truncated address space the probe test will still | ||
508 | work */ | ||
509 | if (base + (Size<<2)+0x555 < map->size && | ||
510 | base + (Size<<2)+0x555 < (base & (~(my_bank_size-1))) + my_bank_size) | ||
511 | { | ||
512 | if (flread(base+Size) != flread(base+Size + 0x100) || | ||
513 | flread(base+Size + 1) != flread(base+Size + 0x101)) | ||
514 | { | ||
515 | jedec_probe32(map,base+Size,priv); | ||
516 | } | ||
517 | } | ||
518 | |||
519 | // Reset. | ||
520 | flwrite(0xF0F0F0F0,0x555); | ||
521 | |||
522 | return 1; | ||
523 | |||
524 | #undef flread | ||
525 | #undef flwrite | ||
526 | } | ||
527 | |||
528 | /* Linear read. */ | ||
529 | static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, | ||
530 | size_t *retlen, u_char *buf) | ||
531 | { | ||
532 | struct map_info *map = mtd->priv; | ||
533 | |||
534 | map_copy_from(map, buf, from, len); | ||
535 | *retlen = len; | ||
536 | return 0; | ||
537 | } | ||
538 | |||
539 | /* Banked read. Take special care to jump past the holes in the bank | ||
540 | mapping. This version assumes symetry in the holes.. */ | ||
541 | static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, | ||
542 | size_t *retlen, u_char *buf) | ||
543 | { | ||
544 | struct map_info *map = mtd->priv; | ||
545 | struct jedec_private *priv = map->fldrv_priv; | ||
546 | |||
547 | *retlen = 0; | ||
548 | while (len > 0) | ||
549 | { | ||
550 | // Determine what bank and offset into that bank the first byte is | ||
551 | unsigned long bank = from & (~(priv->bank_fill[0]-1)); | ||
552 | unsigned long offset = from & (priv->bank_fill[0]-1); | ||
553 | unsigned long get = len; | ||
554 | if (priv->bank_fill[0] - offset < len) | ||
555 | get = priv->bank_fill[0] - offset; | ||
556 | |||
557 | bank /= priv->bank_fill[0]; | ||
558 | map_copy_from(map,buf + *retlen,bank*my_bank_size + offset,get); | ||
559 | |||
560 | len -= get; | ||
561 | *retlen += get; | ||
562 | from += get; | ||
563 | } | ||
564 | return 0; | ||
565 | } | ||
566 | |||
567 | /* Pass the flags value that the flash return before it re-entered read | ||
568 | mode. */ | ||
569 | static void jedec_flash_failed(unsigned char code) | ||
570 | { | ||
571 | /* Bit 5 being high indicates that there was an internal device | ||
572 | failure, erasure time limits exceeded or something */ | ||
573 | if ((code & (1 << 5)) != 0) | ||
574 | { | ||
575 | printk("mtd: Internal Flash failure\n"); | ||
576 | return; | ||
577 | } | ||
578 | printk("mtd: Programming didn't take\n"); | ||
579 | } | ||
580 | |||
581 | /* This uses the erasure function described in the AMD Flash Handbook, | ||
582 | it will work for flashes with a fixed sector size only. Flashes with | ||
583 | a selection of sector sizes (ie the AMD Am29F800B) will need a different | ||
584 | routine. This routine tries to parallize erasing multiple chips/sectors | ||
585 | where possible */ | ||
586 | static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) | ||
587 | { | ||
588 | // Does IO to the currently selected chip | ||
589 | #define flread(x) map_read8(map,chip->base+((x)<<chip->addrshift)) | ||
590 | #define flwrite(v,x) map_write8(map,v,chip->base+((x)<<chip->addrshift)) | ||
591 | |||
592 | unsigned long Time = 0; | ||
593 | unsigned long NoTime = 0; | ||
594 | unsigned long start = instr->addr, len = instr->len; | ||
595 | unsigned int I; | ||
596 | struct map_info *map = mtd->priv; | ||
597 | struct jedec_private *priv = map->fldrv_priv; | ||
598 | |||
599 | // Verify the arguments.. | ||
600 | if (start + len > mtd->size || | ||
601 | (start % mtd->erasesize) != 0 || | ||
602 | (len % mtd->erasesize) != 0 || | ||
603 | (len/mtd->erasesize) == 0) | ||
604 | return -EINVAL; | ||
605 | |||
606 | jedec_flash_chip_scan(priv,start,len); | ||
607 | |||
608 | // Start the erase sequence on each chip | ||
609 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | ||
610 | { | ||
611 | unsigned long off; | ||
612 | struct jedec_flash_chip *chip = priv->chips + I; | ||
613 | |||
614 | if (chip->length == 0) | ||
615 | continue; | ||
616 | |||
617 | if (chip->start + chip->length > chip->size) | ||
618 | { | ||
619 | printk("DIE\n"); | ||
620 | return -EIO; | ||
621 | } | ||
622 | |||
623 | flwrite(0xF0,chip->start + 0x555); | ||
624 | flwrite(0xAA,chip->start + 0x555); | ||
625 | flwrite(0x55,chip->start + 0x2AA); | ||
626 | flwrite(0x80,chip->start + 0x555); | ||
627 | flwrite(0xAA,chip->start + 0x555); | ||
628 | flwrite(0x55,chip->start + 0x2AA); | ||
629 | |||
630 | /* Once we start selecting the erase sectors the delay between each | ||
631 | command must not exceed 50us or it will immediately start erasing | ||
632 | and ignore the other sectors */ | ||
633 | for (off = 0; off < len; off += chip->sectorsize) | ||
634 | { | ||
635 | // Check to make sure we didn't timeout | ||
636 | flwrite(0x30,chip->start + off); | ||
637 | if (off == 0) | ||
638 | continue; | ||
639 | if ((flread(chip->start + off) & (1 << 3)) != 0) | ||
640 | { | ||
641 | printk("mtd: Ack! We timed out the erase timer!\n"); | ||
642 | return -EIO; | ||
643 | } | ||
644 | } | ||
645 | } | ||
646 | |||
647 | /* We could split this into a timer routine and return early, performing | ||
648 | background erasure.. Maybe later if the need warrents */ | ||
649 | |||
650 | /* Poll the flash for erasure completion, specs say this can take as long | ||
651 | as 480 seconds to do all the sectors (for a 2 meg flash). | ||
652 | Erasure time is dependent on chip age, temp and wear.. */ | ||
653 | |||
654 | /* This being a generic routine assumes a 32 bit bus. It does read32s | ||
655 | and bundles interleved chips into the same grouping. This will work | ||
656 | for all bus widths */ | ||
657 | Time = 0; | ||
658 | NoTime = 0; | ||
659 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | ||
660 | { | ||
661 | struct jedec_flash_chip *chip = priv->chips + I; | ||
662 | unsigned long off = 0; | ||
663 | unsigned todo[4] = {0,0,0,0}; | ||
664 | unsigned todo_left = 0; | ||
665 | unsigned J; | ||
666 | |||
667 | if (chip->length == 0) | ||
668 | continue; | ||
669 | |||
670 | /* Find all chips in this data line, realistically this is all | ||
671 | or nothing up to the interleve count */ | ||
672 | for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++) | ||
673 | { | ||
674 | if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) == | ||
675 | (chip->base & (~((1<<chip->addrshift)-1)))) | ||
676 | { | ||
677 | todo_left++; | ||
678 | todo[priv->chips[J].base & ((1<<chip->addrshift)-1)] = 1; | ||
679 | } | ||
680 | } | ||
681 | |||
682 | /* printk("todo: %x %x %x %x\n",(short)todo[0],(short)todo[1], | ||
683 | (short)todo[2],(short)todo[3]); | ||
684 | */ | ||
685 | while (1) | ||
686 | { | ||
687 | __u32 Last[4]; | ||
688 | unsigned long Count = 0; | ||
689 | |||
690 | /* During erase bit 7 is held low and bit 6 toggles, we watch this, | ||
691 | should it stop toggling or go high then the erase is completed, | ||
692 | or this is not really flash ;> */ | ||
693 | switch (map->buswidth) { | ||
694 | case 1: | ||
695 | Last[0] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); | ||
696 | Last[1] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); | ||
697 | Last[2] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); | ||
698 | break; | ||
699 | case 2: | ||
700 | Last[0] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); | ||
701 | Last[1] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); | ||
702 | Last[2] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); | ||
703 | break; | ||
704 | case 3: | ||
705 | Last[0] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); | ||
706 | Last[1] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); | ||
707 | Last[2] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); | ||
708 | break; | ||
709 | } | ||
710 | Count = 3; | ||
711 | while (todo_left != 0) | ||
712 | { | ||
713 | for (J = 0; J != 4; J++) | ||
714 | { | ||
715 | __u8 Byte1 = (Last[(Count-1)%4] >> (J*8)) & 0xFF; | ||
716 | __u8 Byte2 = (Last[(Count-2)%4] >> (J*8)) & 0xFF; | ||
717 | __u8 Byte3 = (Last[(Count-3)%4] >> (J*8)) & 0xFF; | ||
718 | if (todo[J] == 0) | ||
719 | continue; | ||
720 | |||
721 | if ((Byte1 & (1 << 7)) == 0 && Byte1 != Byte2) | ||
722 | { | ||
723 | // printk("Check %x %x %x\n",(short)J,(short)Byte1,(short)Byte2); | ||
724 | continue; | ||
725 | } | ||
726 | |||
727 | if (Byte1 == Byte2) | ||
728 | { | ||
729 | jedec_flash_failed(Byte3); | ||
730 | return -EIO; | ||
731 | } | ||
732 | |||
733 | todo[J] = 0; | ||
734 | todo_left--; | ||
735 | } | ||
736 | |||
737 | /* if (NoTime == 0) | ||
738 | Time += HZ/10 - schedule_timeout(HZ/10);*/ | ||
739 | NoTime = 0; | ||
740 | |||
741 | switch (map->buswidth) { | ||
742 | case 1: | ||
743 | Last[Count % 4] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); | ||
744 | break; | ||
745 | case 2: | ||
746 | Last[Count % 4] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); | ||
747 | break; | ||
748 | case 4: | ||
749 | Last[Count % 4] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); | ||
750 | break; | ||
751 | } | ||
752 | Count++; | ||
753 | |||
754 | /* // Count time, max of 15s per sector (according to AMD) | ||
755 | if (Time > 15*len/mtd->erasesize*HZ) | ||
756 | { | ||
757 | printk("mtd: Flash Erase Timed out\n"); | ||
758 | return -EIO; | ||
759 | } */ | ||
760 | } | ||
761 | |||
762 | // Skip to the next chip if we used chip erase | ||
763 | if (chip->length == chip->size) | ||
764 | off = chip->size; | ||
765 | else | ||
766 | off += chip->sectorsize; | ||
767 | |||
768 | if (off >= chip->length) | ||
769 | break; | ||
770 | NoTime = 1; | ||
771 | } | ||
772 | |||
773 | for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++) | ||
774 | { | ||
775 | if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) == | ||
776 | (chip->base & (~((1<<chip->addrshift)-1)))) | ||
777 | priv->chips[J].length = 0; | ||
778 | } | ||
779 | } | ||
780 | |||
781 | //printk("done\n"); | ||
782 | instr->state = MTD_ERASE_DONE; | ||
783 | mtd_erase_callback(instr); | ||
784 | return 0; | ||
785 | |||
786 | #undef flread | ||
787 | #undef flwrite | ||
788 | } | ||
789 | |||
790 | /* This is the simple flash writing function. It writes to every byte, in | ||
791 | sequence. It takes care of how to properly address the flash if | ||
792 | the flash is interleved. It can only be used if all the chips in the | ||
793 | array are identical!*/ | ||
794 | static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, | ||
795 | size_t *retlen, const u_char *buf) | ||
796 | { | ||
797 | /* Does IO to the currently selected chip. It takes the bank addressing | ||
798 | base (which is divisible by the chip size) adds the necessary lower bits | ||
799 | of addrshift (interleave index) and then adds the control register index. */ | ||
800 | #define flread(x) map_read8(map,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift)) | ||
801 | #define flwrite(v,x) map_write8(map,v,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift)) | ||
802 | |||
803 | struct map_info *map = mtd->priv; | ||
804 | struct jedec_private *priv = map->fldrv_priv; | ||
805 | unsigned long base; | ||
806 | unsigned long off; | ||
807 | size_t save_len = len; | ||
808 | |||
809 | if (start + len > mtd->size) | ||
810 | return -EIO; | ||
811 | |||
812 | //printk("Here"); | ||
813 | |||
814 | //printk("flash_write: start is %x, len is %x\n",start,(unsigned long)len); | ||
815 | while (len != 0) | ||
816 | { | ||
817 | struct jedec_flash_chip *chip = priv->chips; | ||
818 | unsigned long bank; | ||
819 | unsigned long boffset; | ||
820 | |||
821 | // Compute the base of the flash. | ||
822 | off = ((unsigned long)start) % (chip->size << chip->addrshift); | ||
823 | base = start - off; | ||
824 | |||
825 | // Perform banked addressing translation. | ||
826 | bank = base & (~(priv->bank_fill[0]-1)); | ||
827 | boffset = base & (priv->bank_fill[0]-1); | ||
828 | bank = (bank/priv->bank_fill[0])*my_bank_size; | ||
829 | base = bank + boffset; | ||
830 | |||
831 | // printk("Flasing %X %X %X\n",base,chip->size,len); | ||
832 | // printk("off is %x, compare with %x\n",off,chip->size << chip->addrshift); | ||
833 | |||
834 | // Loop over this page | ||
835 | for (; off != (chip->size << chip->addrshift) && len != 0; start++, len--, off++,buf++) | ||
836 | { | ||
837 | unsigned char oldbyte = map_read8(map,base+off); | ||
838 | unsigned char Last[4]; | ||
839 | unsigned long Count = 0; | ||
840 | |||
841 | if (oldbyte == *buf) { | ||
842 | // printk("oldbyte and *buf is %x,len is %x\n",oldbyte,len); | ||
843 | continue; | ||
844 | } | ||
845 | if (((~oldbyte) & *buf) != 0) | ||
846 | printk("mtd: warn: Trying to set a 0 to a 1\n"); | ||
847 | |||
848 | // Write | ||
849 | flwrite(0xAA,0x555); | ||
850 | flwrite(0x55,0x2AA); | ||
851 | flwrite(0xA0,0x555); | ||
852 | map_write8(map,*buf,base + off); | ||
853 | Last[0] = map_read8(map,base + off); | ||
854 | Last[1] = map_read8(map,base + off); | ||
855 | Last[2] = map_read8(map,base + off); | ||
856 | |||
857 | /* Wait for the flash to finish the operation. We store the last 4 | ||
858 | status bytes that have been retrieved so we can determine why | ||
859 | it failed. The toggle bits keep toggling when there is a | ||
860 | failure */ | ||
861 | for (Count = 3; Last[(Count - 1) % 4] != Last[(Count - 2) % 4] && | ||
862 | Count < 10000; Count++) | ||
863 | Last[Count % 4] = map_read8(map,base + off); | ||
864 | if (Last[(Count - 1) % 4] != *buf) | ||
865 | { | ||
866 | jedec_flash_failed(Last[(Count - 3) % 4]); | ||
867 | return -EIO; | ||
868 | } | ||
869 | } | ||
870 | } | ||
871 | *retlen = save_len; | ||
872 | return 0; | ||
873 | } | ||
874 | |||
875 | /* This is used to enhance the speed of the erase routine, | ||
876 | when things are being done to multiple chips it is possible to | ||
877 | parallize the operations, particularly full memory erases of multi | ||
878 | chip memories benifit */ | ||
879 | static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start, | ||
880 | unsigned long len) | ||
881 | { | ||
882 | unsigned int I; | ||
883 | |||
884 | // Zero the records | ||
885 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | ||
886 | priv->chips[I].start = priv->chips[I].length = 0; | ||
887 | |||
888 | // Intersect the region with each chip | ||
889 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | ||
890 | { | ||
891 | struct jedec_flash_chip *chip = priv->chips + I; | ||
892 | unsigned long ByteStart; | ||
893 | unsigned long ChipEndByte = chip->offset + (chip->size << chip->addrshift); | ||
894 | |||
895 | // End is before this chip or the start is after it | ||
896 | if (start+len < chip->offset || | ||
897 | ChipEndByte - (1 << chip->addrshift) < start) | ||
898 | continue; | ||
899 | |||
900 | if (start < chip->offset) | ||
901 | { | ||
902 | ByteStart = chip->offset; | ||
903 | chip->start = 0; | ||
904 | } | ||
905 | else | ||
906 | { | ||
907 | chip->start = (start - chip->offset + (1 << chip->addrshift)-1) >> chip->addrshift; | ||
908 | ByteStart = start; | ||
909 | } | ||
910 | |||
911 | if (start + len >= ChipEndByte) | ||
912 | chip->length = (ChipEndByte - ByteStart) >> chip->addrshift; | ||
913 | else | ||
914 | chip->length = (start + len - ByteStart + (1 << chip->addrshift)-1) >> chip->addrshift; | ||
915 | } | ||
916 | } | ||
917 | |||
918 | int __init jedec_init(void) | ||
919 | { | ||
920 | register_mtd_chip_driver(&jedec_chipdrv); | ||
921 | return 0; | ||
922 | } | ||
923 | |||
924 | static void __exit jedec_exit(void) | ||
925 | { | ||
926 | unregister_mtd_chip_driver(&jedec_chipdrv); | ||
927 | } | ||
928 | |||
929 | module_init(jedec_init); | ||
930 | module_exit(jedec_exit); | ||
931 | |||
932 | MODULE_LICENSE("GPL"); | ||
933 | MODULE_AUTHOR("Jason Gunthorpe <jgg@deltatee.com> et al."); | ||
934 | MODULE_DESCRIPTION("Old MTD chip driver for JEDEC-compliant flash chips"); | ||
diff --git a/drivers/mtd/chips/jedec_probe.c b/drivers/mtd/chips/jedec_probe.c new file mode 100644 index 00000000000..30325a25ab9 --- /dev/null +++ b/drivers/mtd/chips/jedec_probe.c | |||
@@ -0,0 +1,2127 @@ | |||
1 | /* | ||
2 | Common Flash Interface probe code. | ||
3 | (C) 2000 Red Hat. GPL'd. | ||
4 | $Id: jedec_probe.c,v 1.61 2004/11/19 20:52:16 thayne Exp $ | ||
5 | See JEDEC (http://www.jedec.org/) standard JESD21C (section 3.5) | ||
6 | for the standard this probe goes back to. | ||
7 | |||
8 | Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com | ||
9 | */ | ||
10 | |||
11 | #include <linux/config.h> | ||
12 | #include <linux/module.h> | ||
13 | #include <linux/init.h> | ||
14 | #include <linux/types.h> | ||
15 | #include <linux/kernel.h> | ||
16 | #include <asm/io.h> | ||
17 | #include <asm/byteorder.h> | ||
18 | #include <linux/errno.h> | ||
19 | #include <linux/slab.h> | ||
20 | #include <linux/interrupt.h> | ||
21 | #include <linux/init.h> | ||
22 | |||
23 | #include <linux/mtd/mtd.h> | ||
24 | #include <linux/mtd/map.h> | ||
25 | #include <linux/mtd/cfi.h> | ||
26 | #include <linux/mtd/gen_probe.h> | ||
27 | |||
28 | /* Manufacturers */ | ||
29 | #define MANUFACTURER_AMD 0x0001 | ||
30 | #define MANUFACTURER_ATMEL 0x001f | ||
31 | #define MANUFACTURER_FUJITSU 0x0004 | ||
32 | #define MANUFACTURER_HYUNDAI 0x00AD | ||
33 | #define MANUFACTURER_INTEL 0x0089 | ||
34 | #define MANUFACTURER_MACRONIX 0x00C2 | ||
35 | #define MANUFACTURER_NEC 0x0010 | ||
36 | #define MANUFACTURER_PMC 0x009D | ||
37 | #define MANUFACTURER_SST 0x00BF | ||
38 | #define MANUFACTURER_ST 0x0020 | ||
39 | #define MANUFACTURER_TOSHIBA 0x0098 | ||
40 | #define MANUFACTURER_WINBOND 0x00da | ||
41 | |||
42 | |||
43 | /* AMD */ | ||
44 | #define AM29DL800BB 0x22C8 | ||
45 | #define AM29DL800BT 0x224A | ||
46 | |||
47 | #define AM29F800BB 0x2258 | ||
48 | #define AM29F800BT 0x22D6 | ||
49 | #define AM29LV400BB 0x22BA | ||
50 | #define AM29LV400BT 0x22B9 | ||
51 | #define AM29LV800BB 0x225B | ||
52 | #define AM29LV800BT 0x22DA | ||
53 | #define AM29LV160DT 0x22C4 | ||
54 | #define AM29LV160DB 0x2249 | ||
55 | #define AM29F017D 0x003D | ||
56 | #define AM29F016D 0x00AD | ||
57 | #define AM29F080 0x00D5 | ||
58 | #define AM29F040 0x00A4 | ||
59 | #define AM29LV040B 0x004F | ||
60 | #define AM29F032B 0x0041 | ||
61 | #define AM29F002T 0x00B0 | ||
62 | |||
63 | /* Atmel */ | ||
64 | #define AT49BV512 0x0003 | ||
65 | #define AT29LV512 0x003d | ||
66 | #define AT49BV16X 0x00C0 | ||
67 | #define AT49BV16XT 0x00C2 | ||
68 | #define AT49BV32X 0x00C8 | ||
69 | #define AT49BV32XT 0x00C9 | ||
70 | |||
71 | /* Fujitsu */ | ||
72 | #define MBM29F040C 0x00A4 | ||
73 | #define MBM29LV650UE 0x22D7 | ||
74 | #define MBM29LV320TE 0x22F6 | ||
75 | #define MBM29LV320BE 0x22F9 | ||
76 | #define MBM29LV160TE 0x22C4 | ||
77 | #define MBM29LV160BE 0x2249 | ||
78 | #define MBM29LV800BA 0x225B | ||
79 | #define MBM29LV800TA 0x22DA | ||
80 | #define MBM29LV400TC 0x22B9 | ||
81 | #define MBM29LV400BC 0x22BA | ||
82 | |||
83 | /* Hyundai */ | ||
84 | #define HY29F002T 0x00B0 | ||
85 | |||
86 | /* Intel */ | ||
87 | #define I28F004B3T 0x00d4 | ||
88 | #define I28F004B3B 0x00d5 | ||
89 | #define I28F400B3T 0x8894 | ||
90 | #define I28F400B3B 0x8895 | ||
91 | #define I28F008S5 0x00a6 | ||
92 | #define I28F016S5 0x00a0 | ||
93 | #define I28F008SA 0x00a2 | ||
94 | #define I28F008B3T 0x00d2 | ||
95 | #define I28F008B3B 0x00d3 | ||
96 | #define I28F800B3T 0x8892 | ||
97 | #define I28F800B3B 0x8893 | ||
98 | #define I28F016S3 0x00aa | ||
99 | #define I28F016B3T 0x00d0 | ||
100 | #define I28F016B3B 0x00d1 | ||
101 | #define I28F160B3T 0x8890 | ||
102 | #define I28F160B3B 0x8891 | ||
103 | #define I28F320B3T 0x8896 | ||
104 | #define I28F320B3B 0x8897 | ||
105 | #define I28F640B3T 0x8898 | ||
106 | #define I28F640B3B 0x8899 | ||
107 | #define I82802AB 0x00ad | ||
108 | #define I82802AC 0x00ac | ||
109 | |||
110 | /* Macronix */ | ||
111 | #define MX29LV040C 0x004F | ||
112 | #define MX29LV160T 0x22C4 | ||
113 | #define MX29LV160B 0x2249 | ||
114 | #define MX29F016 0x00AD | ||
115 | #define MX29F002T 0x00B0 | ||
116 | #define MX29F004T 0x0045 | ||
117 | #define MX29F004B 0x0046 | ||
118 | |||
119 | /* NEC */ | ||
120 | #define UPD29F064115 0x221C | ||
121 | |||
122 | /* PMC */ | ||
123 | #define PM49FL002 0x006D | ||
124 | #define PM49FL004 0x006E | ||
125 | #define PM49FL008 0x006A | ||
126 | |||
127 | /* ST - www.st.com */ | ||
128 | #define M29W800DT 0x00D7 | ||
129 | #define M29W800DB 0x005B | ||
130 | #define M29W160DT 0x22C4 | ||
131 | #define M29W160DB 0x2249 | ||
132 | #define M29W040B 0x00E3 | ||
133 | #define M50FW040 0x002C | ||
134 | #define M50FW080 0x002D | ||
135 | #define M50FW016 0x002E | ||
136 | #define M50LPW080 0x002F | ||
137 | |||
138 | /* SST */ | ||
139 | #define SST29EE020 0x0010 | ||
140 | #define SST29LE020 0x0012 | ||
141 | #define SST29EE512 0x005d | ||
142 | #define SST29LE512 0x003d | ||
143 | #define SST39LF800 0x2781 | ||
144 | #define SST39LF160 0x2782 | ||
145 | #define SST39LF512 0x00D4 | ||
146 | #define SST39LF010 0x00D5 | ||
147 | #define SST39LF020 0x00D6 | ||
148 | #define SST39LF040 0x00D7 | ||
149 | #define SST39SF010A 0x00B5 | ||
150 | #define SST39SF020A 0x00B6 | ||
151 | #define SST49LF004B 0x0060 | ||
152 | #define SST49LF008A 0x005a | ||
153 | #define SST49LF030A 0x001C | ||
154 | #define SST49LF040A 0x0051 | ||
155 | #define SST49LF080A 0x005B | ||
156 | |||
157 | /* Toshiba */ | ||
158 | #define TC58FVT160 0x00C2 | ||
159 | #define TC58FVB160 0x0043 | ||
160 | #define TC58FVT321 0x009A | ||
161 | #define TC58FVB321 0x009C | ||
162 | #define TC58FVT641 0x0093 | ||
163 | #define TC58FVB641 0x0095 | ||
164 | |||
165 | /* Winbond */ | ||
166 | #define W49V002A 0x00b0 | ||
167 | |||
168 | |||
169 | /* | ||
170 | * Unlock address sets for AMD command sets. | ||
171 | * Intel command sets use the MTD_UADDR_UNNECESSARY. | ||
172 | * Each identifier, except MTD_UADDR_UNNECESSARY, and | ||
173 | * MTD_UADDR_NO_SUPPORT must be defined below in unlock_addrs[]. | ||
174 | * MTD_UADDR_NOT_SUPPORTED must be 0 so that structure | ||
175 | * initialization need not require initializing all of the | ||
176 | * unlock addresses for all bit widths. | ||
177 | */ | ||
178 | enum uaddr { | ||
179 | MTD_UADDR_NOT_SUPPORTED = 0, /* data width not supported */ | ||
180 | MTD_UADDR_0x0555_0x02AA, | ||
181 | MTD_UADDR_0x0555_0x0AAA, | ||
182 | MTD_UADDR_0x5555_0x2AAA, | ||
183 | MTD_UADDR_0x0AAA_0x0555, | ||
184 | MTD_UADDR_DONT_CARE, /* Requires an arbitrary address */ | ||
185 | MTD_UADDR_UNNECESSARY, /* Does not require any address */ | ||
186 | }; | ||
187 | |||
188 | |||
189 | struct unlock_addr { | ||
190 | u32 addr1; | ||
191 | u32 addr2; | ||
192 | }; | ||
193 | |||
194 | |||
195 | /* | ||
196 | * I don't like the fact that the first entry in unlock_addrs[] | ||
197 | * exists, but is for MTD_UADDR_NOT_SUPPORTED - and, therefore, | ||
198 | * should not be used. The problem is that structures with | ||
199 | * initializers have extra fields initialized to 0. It is _very_ | ||
200 | * desireable to have the unlock address entries for unsupported | ||
201 | * data widths automatically initialized - that means that | ||
202 | * MTD_UADDR_NOT_SUPPORTED must be 0 and the first entry here | ||
203 | * must go unused. | ||
204 | */ | ||
205 | static const struct unlock_addr unlock_addrs[] = { | ||
206 | [MTD_UADDR_NOT_SUPPORTED] = { | ||
207 | .addr1 = 0xffff, | ||
208 | .addr2 = 0xffff | ||
209 | }, | ||
210 | |||
211 | [MTD_UADDR_0x0555_0x02AA] = { | ||
212 | .addr1 = 0x0555, | ||
213 | .addr2 = 0x02aa | ||
214 | }, | ||
215 | |||
216 | [MTD_UADDR_0x0555_0x0AAA] = { | ||
217 | .addr1 = 0x0555, | ||
218 | .addr2 = 0x0aaa | ||
219 | }, | ||
220 | |||
221 | [MTD_UADDR_0x5555_0x2AAA] = { | ||
222 | .addr1 = 0x5555, | ||
223 | .addr2 = 0x2aaa | ||
224 | }, | ||
225 | |||
226 | [MTD_UADDR_0x0AAA_0x0555] = { | ||
227 | .addr1 = 0x0AAA, | ||
228 | .addr2 = 0x0555 | ||
229 | }, | ||
230 | |||
231 | [MTD_UADDR_DONT_CARE] = { | ||
232 | .addr1 = 0x0000, /* Doesn't matter which address */ | ||
233 | .addr2 = 0x0000 /* is used - must be last entry */ | ||
234 | }, | ||
235 | |||
236 | [MTD_UADDR_UNNECESSARY] = { | ||
237 | .addr1 = 0x0000, | ||
238 | .addr2 = 0x0000 | ||
239 | } | ||
240 | }; | ||
241 | |||
242 | |||
243 | struct amd_flash_info { | ||
244 | const __u16 mfr_id; | ||
245 | const __u16 dev_id; | ||
246 | const char *name; | ||
247 | const int DevSize; | ||
248 | const int NumEraseRegions; | ||
249 | const int CmdSet; | ||
250 | const __u8 uaddr[4]; /* unlock addrs for 8, 16, 32, 64 */ | ||
251 | const ulong regions[6]; | ||
252 | }; | ||
253 | |||
254 | #define ERASEINFO(size,blocks) (size<<8)|(blocks-1) | ||
255 | |||
256 | #define SIZE_64KiB 16 | ||
257 | #define SIZE_128KiB 17 | ||
258 | #define SIZE_256KiB 18 | ||
259 | #define SIZE_512KiB 19 | ||
260 | #define SIZE_1MiB 20 | ||
261 | #define SIZE_2MiB 21 | ||
262 | #define SIZE_4MiB 22 | ||
263 | #define SIZE_8MiB 23 | ||
264 | |||
265 | |||
266 | /* | ||
267 | * Please keep this list ordered by manufacturer! | ||
268 | * Fortunately, the list isn't searched often and so a | ||
269 | * slow, linear search isn't so bad. | ||
270 | */ | ||
271 | static const struct amd_flash_info jedec_table[] = { | ||
272 | { | ||
273 | .mfr_id = MANUFACTURER_AMD, | ||
274 | .dev_id = AM29F032B, | ||
275 | .name = "AMD AM29F032B", | ||
276 | .uaddr = { | ||
277 | [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ | ||
278 | }, | ||
279 | .DevSize = SIZE_4MiB, | ||
280 | .CmdSet = P_ID_AMD_STD, | ||
281 | .NumEraseRegions= 1, | ||
282 | .regions = { | ||
283 | ERASEINFO(0x10000,64) | ||
284 | } | ||
285 | }, { | ||
286 | .mfr_id = MANUFACTURER_AMD, | ||
287 | .dev_id = AM29LV160DT, | ||
288 | .name = "AMD AM29LV160DT", | ||
289 | .uaddr = { | ||
290 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
291 | [1] = MTD_UADDR_0x0555_0x02AA /* x16 */ | ||
292 | }, | ||
293 | .DevSize = SIZE_2MiB, | ||
294 | .CmdSet = P_ID_AMD_STD, | ||
295 | .NumEraseRegions= 4, | ||
296 | .regions = { | ||
297 | ERASEINFO(0x10000,31), | ||
298 | ERASEINFO(0x08000,1), | ||
299 | ERASEINFO(0x02000,2), | ||
300 | ERASEINFO(0x04000,1) | ||
301 | } | ||
302 | }, { | ||
303 | .mfr_id = MANUFACTURER_AMD, | ||
304 | .dev_id = AM29LV160DB, | ||
305 | .name = "AMD AM29LV160DB", | ||
306 | .uaddr = { | ||
307 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
308 | [1] = MTD_UADDR_0x0555_0x02AA /* x16 */ | ||
309 | }, | ||
310 | .DevSize = SIZE_2MiB, | ||
311 | .CmdSet = P_ID_AMD_STD, | ||
312 | .NumEraseRegions= 4, | ||
313 | .regions = { | ||
314 | ERASEINFO(0x04000,1), | ||
315 | ERASEINFO(0x02000,2), | ||
316 | ERASEINFO(0x08000,1), | ||
317 | ERASEINFO(0x10000,31) | ||
318 | } | ||
319 | }, { | ||
320 | .mfr_id = MANUFACTURER_AMD, | ||
321 | .dev_id = AM29LV400BB, | ||
322 | .name = "AMD AM29LV400BB", | ||
323 | .uaddr = { | ||
324 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
325 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
326 | }, | ||
327 | .DevSize = SIZE_512KiB, | ||
328 | .CmdSet = P_ID_AMD_STD, | ||
329 | .NumEraseRegions= 4, | ||
330 | .regions = { | ||
331 | ERASEINFO(0x04000,1), | ||
332 | ERASEINFO(0x02000,2), | ||
333 | ERASEINFO(0x08000,1), | ||
334 | ERASEINFO(0x10000,7) | ||
335 | } | ||
336 | }, { | ||
337 | .mfr_id = MANUFACTURER_AMD, | ||
338 | .dev_id = AM29LV400BT, | ||
339 | .name = "AMD AM29LV400BT", | ||
340 | .uaddr = { | ||
341 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
342 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
343 | }, | ||
344 | .DevSize = SIZE_512KiB, | ||
345 | .CmdSet = P_ID_AMD_STD, | ||
346 | .NumEraseRegions= 4, | ||
347 | .regions = { | ||
348 | ERASEINFO(0x10000,7), | ||
349 | ERASEINFO(0x08000,1), | ||
350 | ERASEINFO(0x02000,2), | ||
351 | ERASEINFO(0x04000,1) | ||
352 | } | ||
353 | }, { | ||
354 | .mfr_id = MANUFACTURER_AMD, | ||
355 | .dev_id = AM29LV800BB, | ||
356 | .name = "AMD AM29LV800BB", | ||
357 | .uaddr = { | ||
358 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
359 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
360 | }, | ||
361 | .DevSize = SIZE_1MiB, | ||
362 | .CmdSet = P_ID_AMD_STD, | ||
363 | .NumEraseRegions= 4, | ||
364 | .regions = { | ||
365 | ERASEINFO(0x04000,1), | ||
366 | ERASEINFO(0x02000,2), | ||
367 | ERASEINFO(0x08000,1), | ||
368 | ERASEINFO(0x10000,15), | ||
369 | } | ||
370 | }, { | ||
371 | /* add DL */ | ||
372 | .mfr_id = MANUFACTURER_AMD, | ||
373 | .dev_id = AM29DL800BB, | ||
374 | .name = "AMD AM29DL800BB", | ||
375 | .uaddr = { | ||
376 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
377 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
378 | }, | ||
379 | .DevSize = SIZE_1MiB, | ||
380 | .CmdSet = P_ID_AMD_STD, | ||
381 | .NumEraseRegions= 6, | ||
382 | .regions = { | ||
383 | ERASEINFO(0x04000,1), | ||
384 | ERASEINFO(0x08000,1), | ||
385 | ERASEINFO(0x02000,4), | ||
386 | ERASEINFO(0x08000,1), | ||
387 | ERASEINFO(0x04000,1), | ||
388 | ERASEINFO(0x10000,14) | ||
389 | } | ||
390 | }, { | ||
391 | .mfr_id = MANUFACTURER_AMD, | ||
392 | .dev_id = AM29DL800BT, | ||
393 | .name = "AMD AM29DL800BT", | ||
394 | .uaddr = { | ||
395 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
396 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
397 | }, | ||
398 | .DevSize = SIZE_1MiB, | ||
399 | .CmdSet = P_ID_AMD_STD, | ||
400 | .NumEraseRegions= 6, | ||
401 | .regions = { | ||
402 | ERASEINFO(0x10000,14), | ||
403 | ERASEINFO(0x04000,1), | ||
404 | ERASEINFO(0x08000,1), | ||
405 | ERASEINFO(0x02000,4), | ||
406 | ERASEINFO(0x08000,1), | ||
407 | ERASEINFO(0x04000,1) | ||
408 | } | ||
409 | }, { | ||
410 | .mfr_id = MANUFACTURER_AMD, | ||
411 | .dev_id = AM29F800BB, | ||
412 | .name = "AMD AM29F800BB", | ||
413 | .uaddr = { | ||
414 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
415 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
416 | }, | ||
417 | .DevSize = SIZE_1MiB, | ||
418 | .CmdSet = P_ID_AMD_STD, | ||
419 | .NumEraseRegions= 4, | ||
420 | .regions = { | ||
421 | ERASEINFO(0x04000,1), | ||
422 | ERASEINFO(0x02000,2), | ||
423 | ERASEINFO(0x08000,1), | ||
424 | ERASEINFO(0x10000,15), | ||
425 | } | ||
426 | }, { | ||
427 | .mfr_id = MANUFACTURER_AMD, | ||
428 | .dev_id = AM29LV800BT, | ||
429 | .name = "AMD AM29LV800BT", | ||
430 | .uaddr = { | ||
431 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
432 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
433 | }, | ||
434 | .DevSize = SIZE_1MiB, | ||
435 | .CmdSet = P_ID_AMD_STD, | ||
436 | .NumEraseRegions= 4, | ||
437 | .regions = { | ||
438 | ERASEINFO(0x10000,15), | ||
439 | ERASEINFO(0x08000,1), | ||
440 | ERASEINFO(0x02000,2), | ||
441 | ERASEINFO(0x04000,1) | ||
442 | } | ||
443 | }, { | ||
444 | .mfr_id = MANUFACTURER_AMD, | ||
445 | .dev_id = AM29F800BT, | ||
446 | .name = "AMD AM29F800BT", | ||
447 | .uaddr = { | ||
448 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
449 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
450 | }, | ||
451 | .DevSize = SIZE_1MiB, | ||
452 | .CmdSet = P_ID_AMD_STD, | ||
453 | .NumEraseRegions= 4, | ||
454 | .regions = { | ||
455 | ERASEINFO(0x10000,15), | ||
456 | ERASEINFO(0x08000,1), | ||
457 | ERASEINFO(0x02000,2), | ||
458 | ERASEINFO(0x04000,1) | ||
459 | } | ||
460 | }, { | ||
461 | .mfr_id = MANUFACTURER_AMD, | ||
462 | .dev_id = AM29F017D, | ||
463 | .name = "AMD AM29F017D", | ||
464 | .uaddr = { | ||
465 | [0] = MTD_UADDR_DONT_CARE /* x8 */ | ||
466 | }, | ||
467 | .DevSize = SIZE_2MiB, | ||
468 | .CmdSet = P_ID_AMD_STD, | ||
469 | .NumEraseRegions= 1, | ||
470 | .regions = { | ||
471 | ERASEINFO(0x10000,32), | ||
472 | } | ||
473 | }, { | ||
474 | .mfr_id = MANUFACTURER_AMD, | ||
475 | .dev_id = AM29F016D, | ||
476 | .name = "AMD AM29F016D", | ||
477 | .uaddr = { | ||
478 | [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ | ||
479 | }, | ||
480 | .DevSize = SIZE_2MiB, | ||
481 | .CmdSet = P_ID_AMD_STD, | ||
482 | .NumEraseRegions= 1, | ||
483 | .regions = { | ||
484 | ERASEINFO(0x10000,32), | ||
485 | } | ||
486 | }, { | ||
487 | .mfr_id = MANUFACTURER_AMD, | ||
488 | .dev_id = AM29F080, | ||
489 | .name = "AMD AM29F080", | ||
490 | .uaddr = { | ||
491 | [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ | ||
492 | }, | ||
493 | .DevSize = SIZE_1MiB, | ||
494 | .CmdSet = P_ID_AMD_STD, | ||
495 | .NumEraseRegions= 1, | ||
496 | .regions = { | ||
497 | ERASEINFO(0x10000,16), | ||
498 | } | ||
499 | }, { | ||
500 | .mfr_id = MANUFACTURER_AMD, | ||
501 | .dev_id = AM29F040, | ||
502 | .name = "AMD AM29F040", | ||
503 | .uaddr = { | ||
504 | [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ | ||
505 | }, | ||
506 | .DevSize = SIZE_512KiB, | ||
507 | .CmdSet = P_ID_AMD_STD, | ||
508 | .NumEraseRegions= 1, | ||
509 | .regions = { | ||
510 | ERASEINFO(0x10000,8), | ||
511 | } | ||
512 | }, { | ||
513 | .mfr_id = MANUFACTURER_AMD, | ||
514 | .dev_id = AM29LV040B, | ||
515 | .name = "AMD AM29LV040B", | ||
516 | .uaddr = { | ||
517 | [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ | ||
518 | }, | ||
519 | .DevSize = SIZE_512KiB, | ||
520 | .CmdSet = P_ID_AMD_STD, | ||
521 | .NumEraseRegions= 1, | ||
522 | .regions = { | ||
523 | ERASEINFO(0x10000,8), | ||
524 | } | ||
525 | }, { | ||
526 | .mfr_id = MANUFACTURER_AMD, | ||
527 | .dev_id = AM29F002T, | ||
528 | .name = "AMD AM29F002T", | ||
529 | .uaddr = { | ||
530 | [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ | ||
531 | }, | ||
532 | .DevSize = SIZE_256KiB, | ||
533 | .CmdSet = P_ID_AMD_STD, | ||
534 | .NumEraseRegions= 4, | ||
535 | .regions = { | ||
536 | ERASEINFO(0x10000,3), | ||
537 | ERASEINFO(0x08000,1), | ||
538 | ERASEINFO(0x02000,2), | ||
539 | ERASEINFO(0x04000,1), | ||
540 | } | ||
541 | }, { | ||
542 | .mfr_id = MANUFACTURER_ATMEL, | ||
543 | .dev_id = AT49BV512, | ||
544 | .name = "Atmel AT49BV512", | ||
545 | .uaddr = { | ||
546 | [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ | ||
547 | }, | ||
548 | .DevSize = SIZE_64KiB, | ||
549 | .CmdSet = P_ID_AMD_STD, | ||
550 | .NumEraseRegions= 1, | ||
551 | .regions = { | ||
552 | ERASEINFO(0x10000,1) | ||
553 | } | ||
554 | }, { | ||
555 | .mfr_id = MANUFACTURER_ATMEL, | ||
556 | .dev_id = AT29LV512, | ||
557 | .name = "Atmel AT29LV512", | ||
558 | .uaddr = { | ||
559 | [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ | ||
560 | }, | ||
561 | .DevSize = SIZE_64KiB, | ||
562 | .CmdSet = P_ID_AMD_STD, | ||
563 | .NumEraseRegions= 1, | ||
564 | .regions = { | ||
565 | ERASEINFO(0x80,256), | ||
566 | ERASEINFO(0x80,256) | ||
567 | } | ||
568 | }, { | ||
569 | .mfr_id = MANUFACTURER_ATMEL, | ||
570 | .dev_id = AT49BV16X, | ||
571 | .name = "Atmel AT49BV16X", | ||
572 | .uaddr = { | ||
573 | [0] = MTD_UADDR_0x0555_0x0AAA, /* x8 */ | ||
574 | [1] = MTD_UADDR_0x0555_0x0AAA /* x16 */ | ||
575 | }, | ||
576 | .DevSize = SIZE_2MiB, | ||
577 | .CmdSet = P_ID_AMD_STD, | ||
578 | .NumEraseRegions= 2, | ||
579 | .regions = { | ||
580 | ERASEINFO(0x02000,8), | ||
581 | ERASEINFO(0x10000,31) | ||
582 | } | ||
583 | }, { | ||
584 | .mfr_id = MANUFACTURER_ATMEL, | ||
585 | .dev_id = AT49BV16XT, | ||
586 | .name = "Atmel AT49BV16XT", | ||
587 | .uaddr = { | ||
588 | [0] = MTD_UADDR_0x0555_0x0AAA, /* x8 */ | ||
589 | [1] = MTD_UADDR_0x0555_0x0AAA /* x16 */ | ||
590 | }, | ||
591 | .DevSize = SIZE_2MiB, | ||
592 | .CmdSet = P_ID_AMD_STD, | ||
593 | .NumEraseRegions= 2, | ||
594 | .regions = { | ||
595 | ERASEINFO(0x10000,31), | ||
596 | ERASEINFO(0x02000,8) | ||
597 | } | ||
598 | }, { | ||
599 | .mfr_id = MANUFACTURER_ATMEL, | ||
600 | .dev_id = AT49BV32X, | ||
601 | .name = "Atmel AT49BV32X", | ||
602 | .uaddr = { | ||
603 | [0] = MTD_UADDR_0x0555_0x0AAA, /* x8 */ | ||
604 | [1] = MTD_UADDR_0x0555_0x0AAA /* x16 */ | ||
605 | }, | ||
606 | .DevSize = SIZE_4MiB, | ||
607 | .CmdSet = P_ID_AMD_STD, | ||
608 | .NumEraseRegions= 2, | ||
609 | .regions = { | ||
610 | ERASEINFO(0x02000,8), | ||
611 | ERASEINFO(0x10000,63) | ||
612 | } | ||
613 | }, { | ||
614 | .mfr_id = MANUFACTURER_ATMEL, | ||
615 | .dev_id = AT49BV32XT, | ||
616 | .name = "Atmel AT49BV32XT", | ||
617 | .uaddr = { | ||
618 | [0] = MTD_UADDR_0x0555_0x0AAA, /* x8 */ | ||
619 | [1] = MTD_UADDR_0x0555_0x0AAA /* x16 */ | ||
620 | }, | ||
621 | .DevSize = SIZE_4MiB, | ||
622 | .CmdSet = P_ID_AMD_STD, | ||
623 | .NumEraseRegions= 2, | ||
624 | .regions = { | ||
625 | ERASEINFO(0x10000,63), | ||
626 | ERASEINFO(0x02000,8) | ||
627 | } | ||
628 | }, { | ||
629 | .mfr_id = MANUFACTURER_FUJITSU, | ||
630 | .dev_id = MBM29F040C, | ||
631 | .name = "Fujitsu MBM29F040C", | ||
632 | .uaddr = { | ||
633 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
634 | }, | ||
635 | .DevSize = SIZE_512KiB, | ||
636 | .CmdSet = P_ID_AMD_STD, | ||
637 | .NumEraseRegions= 1, | ||
638 | .regions = { | ||
639 | ERASEINFO(0x10000,8) | ||
640 | } | ||
641 | }, { | ||
642 | .mfr_id = MANUFACTURER_FUJITSU, | ||
643 | .dev_id = MBM29LV650UE, | ||
644 | .name = "Fujitsu MBM29LV650UE", | ||
645 | .uaddr = { | ||
646 | [0] = MTD_UADDR_DONT_CARE /* x16 */ | ||
647 | }, | ||
648 | .DevSize = SIZE_8MiB, | ||
649 | .CmdSet = P_ID_AMD_STD, | ||
650 | .NumEraseRegions= 1, | ||
651 | .regions = { | ||
652 | ERASEINFO(0x10000,128) | ||
653 | } | ||
654 | }, { | ||
655 | .mfr_id = MANUFACTURER_FUJITSU, | ||
656 | .dev_id = MBM29LV320TE, | ||
657 | .name = "Fujitsu MBM29LV320TE", | ||
658 | .uaddr = { | ||
659 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
660 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
661 | }, | ||
662 | .DevSize = SIZE_4MiB, | ||
663 | .CmdSet = P_ID_AMD_STD, | ||
664 | .NumEraseRegions= 2, | ||
665 | .regions = { | ||
666 | ERASEINFO(0x10000,63), | ||
667 | ERASEINFO(0x02000,8) | ||
668 | } | ||
669 | }, { | ||
670 | .mfr_id = MANUFACTURER_FUJITSU, | ||
671 | .dev_id = MBM29LV320BE, | ||
672 | .name = "Fujitsu MBM29LV320BE", | ||
673 | .uaddr = { | ||
674 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
675 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
676 | }, | ||
677 | .DevSize = SIZE_4MiB, | ||
678 | .CmdSet = P_ID_AMD_STD, | ||
679 | .NumEraseRegions= 2, | ||
680 | .regions = { | ||
681 | ERASEINFO(0x02000,8), | ||
682 | ERASEINFO(0x10000,63) | ||
683 | } | ||
684 | }, { | ||
685 | .mfr_id = MANUFACTURER_FUJITSU, | ||
686 | .dev_id = MBM29LV160TE, | ||
687 | .name = "Fujitsu MBM29LV160TE", | ||
688 | .uaddr = { | ||
689 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
690 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
691 | }, | ||
692 | .DevSize = SIZE_2MiB, | ||
693 | .CmdSet = P_ID_AMD_STD, | ||
694 | .NumEraseRegions= 4, | ||
695 | .regions = { | ||
696 | ERASEINFO(0x10000,31), | ||
697 | ERASEINFO(0x08000,1), | ||
698 | ERASEINFO(0x02000,2), | ||
699 | ERASEINFO(0x04000,1) | ||
700 | } | ||
701 | }, { | ||
702 | .mfr_id = MANUFACTURER_FUJITSU, | ||
703 | .dev_id = MBM29LV160BE, | ||
704 | .name = "Fujitsu MBM29LV160BE", | ||
705 | .uaddr = { | ||
706 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
707 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
708 | }, | ||
709 | .DevSize = SIZE_2MiB, | ||
710 | .CmdSet = P_ID_AMD_STD, | ||
711 | .NumEraseRegions= 4, | ||
712 | .regions = { | ||
713 | ERASEINFO(0x04000,1), | ||
714 | ERASEINFO(0x02000,2), | ||
715 | ERASEINFO(0x08000,1), | ||
716 | ERASEINFO(0x10000,31) | ||
717 | } | ||
718 | }, { | ||
719 | .mfr_id = MANUFACTURER_FUJITSU, | ||
720 | .dev_id = MBM29LV800BA, | ||
721 | .name = "Fujitsu MBM29LV800BA", | ||
722 | .uaddr = { | ||
723 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
724 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
725 | }, | ||
726 | .DevSize = SIZE_1MiB, | ||
727 | .CmdSet = P_ID_AMD_STD, | ||
728 | .NumEraseRegions= 4, | ||
729 | .regions = { | ||
730 | ERASEINFO(0x04000,1), | ||
731 | ERASEINFO(0x02000,2), | ||
732 | ERASEINFO(0x08000,1), | ||
733 | ERASEINFO(0x10000,15) | ||
734 | } | ||
735 | }, { | ||
736 | .mfr_id = MANUFACTURER_FUJITSU, | ||
737 | .dev_id = MBM29LV800TA, | ||
738 | .name = "Fujitsu MBM29LV800TA", | ||
739 | .uaddr = { | ||
740 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
741 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
742 | }, | ||
743 | .DevSize = SIZE_1MiB, | ||
744 | .CmdSet = P_ID_AMD_STD, | ||
745 | .NumEraseRegions= 4, | ||
746 | .regions = { | ||
747 | ERASEINFO(0x10000,15), | ||
748 | ERASEINFO(0x08000,1), | ||
749 | ERASEINFO(0x02000,2), | ||
750 | ERASEINFO(0x04000,1) | ||
751 | } | ||
752 | }, { | ||
753 | .mfr_id = MANUFACTURER_FUJITSU, | ||
754 | .dev_id = MBM29LV400BC, | ||
755 | .name = "Fujitsu MBM29LV400BC", | ||
756 | .uaddr = { | ||
757 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
758 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
759 | }, | ||
760 | .DevSize = SIZE_512KiB, | ||
761 | .CmdSet = P_ID_AMD_STD, | ||
762 | .NumEraseRegions= 4, | ||
763 | .regions = { | ||
764 | ERASEINFO(0x04000,1), | ||
765 | ERASEINFO(0x02000,2), | ||
766 | ERASEINFO(0x08000,1), | ||
767 | ERASEINFO(0x10000,7) | ||
768 | } | ||
769 | }, { | ||
770 | .mfr_id = MANUFACTURER_FUJITSU, | ||
771 | .dev_id = MBM29LV400TC, | ||
772 | .name = "Fujitsu MBM29LV400TC", | ||
773 | .uaddr = { | ||
774 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
775 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
776 | }, | ||
777 | .DevSize = SIZE_512KiB, | ||
778 | .CmdSet = P_ID_AMD_STD, | ||
779 | .NumEraseRegions= 4, | ||
780 | .regions = { | ||
781 | ERASEINFO(0x10000,7), | ||
782 | ERASEINFO(0x08000,1), | ||
783 | ERASEINFO(0x02000,2), | ||
784 | ERASEINFO(0x04000,1) | ||
785 | } | ||
786 | }, { | ||
787 | .mfr_id = MANUFACTURER_HYUNDAI, | ||
788 | .dev_id = HY29F002T, | ||
789 | .name = "Hyundai HY29F002T", | ||
790 | .uaddr = { | ||
791 | [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ | ||
792 | }, | ||
793 | .DevSize = SIZE_256KiB, | ||
794 | .CmdSet = P_ID_AMD_STD, | ||
795 | .NumEraseRegions= 4, | ||
796 | .regions = { | ||
797 | ERASEINFO(0x10000,3), | ||
798 | ERASEINFO(0x08000,1), | ||
799 | ERASEINFO(0x02000,2), | ||
800 | ERASEINFO(0x04000,1), | ||
801 | } | ||
802 | }, { | ||
803 | .mfr_id = MANUFACTURER_INTEL, | ||
804 | .dev_id = I28F004B3B, | ||
805 | .name = "Intel 28F004B3B", | ||
806 | .uaddr = { | ||
807 | [0] = MTD_UADDR_UNNECESSARY, /* x8 */ | ||
808 | }, | ||
809 | .DevSize = SIZE_512KiB, | ||
810 | .CmdSet = P_ID_INTEL_STD, | ||
811 | .NumEraseRegions= 2, | ||
812 | .regions = { | ||
813 | ERASEINFO(0x02000, 8), | ||
814 | ERASEINFO(0x10000, 7), | ||
815 | } | ||
816 | }, { | ||
817 | .mfr_id = MANUFACTURER_INTEL, | ||
818 | .dev_id = I28F004B3T, | ||
819 | .name = "Intel 28F004B3T", | ||
820 | .uaddr = { | ||
821 | [0] = MTD_UADDR_UNNECESSARY, /* x8 */ | ||
822 | }, | ||
823 | .DevSize = SIZE_512KiB, | ||
824 | .CmdSet = P_ID_INTEL_STD, | ||
825 | .NumEraseRegions= 2, | ||
826 | .regions = { | ||
827 | ERASEINFO(0x10000, 7), | ||
828 | ERASEINFO(0x02000, 8), | ||
829 | } | ||
830 | }, { | ||
831 | .mfr_id = MANUFACTURER_INTEL, | ||
832 | .dev_id = I28F400B3B, | ||
833 | .name = "Intel 28F400B3B", | ||
834 | .uaddr = { | ||
835 | [0] = MTD_UADDR_UNNECESSARY, /* x8 */ | ||
836 | [1] = MTD_UADDR_UNNECESSARY, /* x16 */ | ||
837 | }, | ||
838 | .DevSize = SIZE_512KiB, | ||
839 | .CmdSet = P_ID_INTEL_STD, | ||
840 | .NumEraseRegions= 2, | ||
841 | .regions = { | ||
842 | ERASEINFO(0x02000, 8), | ||
843 | ERASEINFO(0x10000, 7), | ||
844 | } | ||
845 | }, { | ||
846 | .mfr_id = MANUFACTURER_INTEL, | ||
847 | .dev_id = I28F400B3T, | ||
848 | .name = "Intel 28F400B3T", | ||
849 | .uaddr = { | ||
850 | [0] = MTD_UADDR_UNNECESSARY, /* x8 */ | ||
851 | [1] = MTD_UADDR_UNNECESSARY, /* x16 */ | ||
852 | }, | ||
853 | .DevSize = SIZE_512KiB, | ||
854 | .CmdSet = P_ID_INTEL_STD, | ||
855 | .NumEraseRegions= 2, | ||
856 | .regions = { | ||
857 | ERASEINFO(0x10000, 7), | ||
858 | ERASEINFO(0x02000, 8), | ||
859 | } | ||
860 | }, { | ||
861 | .mfr_id = MANUFACTURER_INTEL, | ||
862 | .dev_id = I28F008B3B, | ||
863 | .name = "Intel 28F008B3B", | ||
864 | .uaddr = { | ||
865 | [0] = MTD_UADDR_UNNECESSARY, /* x8 */ | ||
866 | }, | ||
867 | .DevSize = SIZE_1MiB, | ||
868 | .CmdSet = P_ID_INTEL_STD, | ||
869 | .NumEraseRegions= 2, | ||
870 | .regions = { | ||
871 | ERASEINFO(0x02000, 8), | ||
872 | ERASEINFO(0x10000, 15), | ||
873 | } | ||
874 | }, { | ||
875 | .mfr_id = MANUFACTURER_INTEL, | ||
876 | .dev_id = I28F008B3T, | ||
877 | .name = "Intel 28F008B3T", | ||
878 | .uaddr = { | ||
879 | [0] = MTD_UADDR_UNNECESSARY, /* x8 */ | ||
880 | }, | ||
881 | .DevSize = SIZE_1MiB, | ||
882 | .CmdSet = P_ID_INTEL_STD, | ||
883 | .NumEraseRegions= 2, | ||
884 | .regions = { | ||
885 | ERASEINFO(0x10000, 15), | ||
886 | ERASEINFO(0x02000, 8), | ||
887 | } | ||
888 | }, { | ||
889 | .mfr_id = MANUFACTURER_INTEL, | ||
890 | .dev_id = I28F008S5, | ||
891 | .name = "Intel 28F008S5", | ||
892 | .uaddr = { | ||
893 | [0] = MTD_UADDR_UNNECESSARY, /* x8 */ | ||
894 | }, | ||
895 | .DevSize = SIZE_1MiB, | ||
896 | .CmdSet = P_ID_INTEL_EXT, | ||
897 | .NumEraseRegions= 1, | ||
898 | .regions = { | ||
899 | ERASEINFO(0x10000,16), | ||
900 | } | ||
901 | }, { | ||
902 | .mfr_id = MANUFACTURER_INTEL, | ||
903 | .dev_id = I28F016S5, | ||
904 | .name = "Intel 28F016S5", | ||
905 | .uaddr = { | ||
906 | [0] = MTD_UADDR_UNNECESSARY, /* x8 */ | ||
907 | }, | ||
908 | .DevSize = SIZE_2MiB, | ||
909 | .CmdSet = P_ID_INTEL_EXT, | ||
910 | .NumEraseRegions= 1, | ||
911 | .regions = { | ||
912 | ERASEINFO(0x10000,32), | ||
913 | } | ||
914 | }, { | ||
915 | .mfr_id = MANUFACTURER_INTEL, | ||
916 | .dev_id = I28F008SA, | ||
917 | .name = "Intel 28F008SA", | ||
918 | .uaddr = { | ||
919 | [0] = MTD_UADDR_UNNECESSARY, /* x8 */ | ||
920 | }, | ||
921 | .DevSize = SIZE_1MiB, | ||
922 | .CmdSet = P_ID_INTEL_STD, | ||
923 | .NumEraseRegions= 1, | ||
924 | .regions = { | ||
925 | ERASEINFO(0x10000, 16), | ||
926 | } | ||
927 | }, { | ||
928 | .mfr_id = MANUFACTURER_INTEL, | ||
929 | .dev_id = I28F800B3B, | ||
930 | .name = "Intel 28F800B3B", | ||
931 | .uaddr = { | ||
932 | [1] = MTD_UADDR_UNNECESSARY, /* x16 */ | ||
933 | }, | ||
934 | .DevSize = SIZE_1MiB, | ||
935 | .CmdSet = P_ID_INTEL_STD, | ||
936 | .NumEraseRegions= 2, | ||
937 | .regions = { | ||
938 | ERASEINFO(0x02000, 8), | ||
939 | ERASEINFO(0x10000, 15), | ||
940 | } | ||
941 | }, { | ||
942 | .mfr_id = MANUFACTURER_INTEL, | ||
943 | .dev_id = I28F800B3T, | ||
944 | .name = "Intel 28F800B3T", | ||
945 | .uaddr = { | ||
946 | [1] = MTD_UADDR_UNNECESSARY, /* x16 */ | ||
947 | }, | ||
948 | .DevSize = SIZE_1MiB, | ||
949 | .CmdSet = P_ID_INTEL_STD, | ||
950 | .NumEraseRegions= 2, | ||
951 | .regions = { | ||
952 | ERASEINFO(0x10000, 15), | ||
953 | ERASEINFO(0x02000, 8), | ||
954 | } | ||
955 | }, { | ||
956 | .mfr_id = MANUFACTURER_INTEL, | ||
957 | .dev_id = I28F016B3B, | ||
958 | .name = "Intel 28F016B3B", | ||
959 | .uaddr = { | ||
960 | [0] = MTD_UADDR_UNNECESSARY, /* x8 */ | ||
961 | }, | ||
962 | .DevSize = SIZE_2MiB, | ||
963 | .CmdSet = P_ID_INTEL_STD, | ||
964 | .NumEraseRegions= 2, | ||
965 | .regions = { | ||
966 | ERASEINFO(0x02000, 8), | ||
967 | ERASEINFO(0x10000, 31), | ||
968 | } | ||
969 | }, { | ||
970 | .mfr_id = MANUFACTURER_INTEL, | ||
971 | .dev_id = I28F016S3, | ||
972 | .name = "Intel I28F016S3", | ||
973 | .uaddr = { | ||
974 | [0] = MTD_UADDR_UNNECESSARY, /* x8 */ | ||
975 | }, | ||
976 | .DevSize = SIZE_2MiB, | ||
977 | .CmdSet = P_ID_INTEL_STD, | ||
978 | .NumEraseRegions= 1, | ||
979 | .regions = { | ||
980 | ERASEINFO(0x10000, 32), | ||
981 | } | ||
982 | }, { | ||
983 | .mfr_id = MANUFACTURER_INTEL, | ||
984 | .dev_id = I28F016B3T, | ||
985 | .name = "Intel 28F016B3T", | ||
986 | .uaddr = { | ||
987 | [0] = MTD_UADDR_UNNECESSARY, /* x8 */ | ||
988 | }, | ||
989 | .DevSize = SIZE_2MiB, | ||
990 | .CmdSet = P_ID_INTEL_STD, | ||
991 | .NumEraseRegions= 2, | ||
992 | .regions = { | ||
993 | ERASEINFO(0x10000, 31), | ||
994 | ERASEINFO(0x02000, 8), | ||
995 | } | ||
996 | }, { | ||
997 | .mfr_id = MANUFACTURER_INTEL, | ||
998 | .dev_id = I28F160B3B, | ||
999 | .name = "Intel 28F160B3B", | ||
1000 | .uaddr = { | ||
1001 | [1] = MTD_UADDR_UNNECESSARY, /* x16 */ | ||
1002 | }, | ||
1003 | .DevSize = SIZE_2MiB, | ||
1004 | .CmdSet = P_ID_INTEL_STD, | ||
1005 | .NumEraseRegions= 2, | ||
1006 | .regions = { | ||
1007 | ERASEINFO(0x02000, 8), | ||
1008 | ERASEINFO(0x10000, 31), | ||
1009 | } | ||
1010 | }, { | ||
1011 | .mfr_id = MANUFACTURER_INTEL, | ||
1012 | .dev_id = I28F160B3T, | ||
1013 | .name = "Intel 28F160B3T", | ||
1014 | .uaddr = { | ||
1015 | [1] = MTD_UADDR_UNNECESSARY, /* x16 */ | ||
1016 | }, | ||
1017 | .DevSize = SIZE_2MiB, | ||
1018 | .CmdSet = P_ID_INTEL_STD, | ||
1019 | .NumEraseRegions= 2, | ||
1020 | .regions = { | ||
1021 | ERASEINFO(0x10000, 31), | ||
1022 | ERASEINFO(0x02000, 8), | ||
1023 | } | ||
1024 | }, { | ||
1025 | .mfr_id = MANUFACTURER_INTEL, | ||
1026 | .dev_id = I28F320B3B, | ||
1027 | .name = "Intel 28F320B3B", | ||
1028 | .uaddr = { | ||
1029 | [1] = MTD_UADDR_UNNECESSARY, /* x16 */ | ||
1030 | }, | ||
1031 | .DevSize = SIZE_4MiB, | ||
1032 | .CmdSet = P_ID_INTEL_STD, | ||
1033 | .NumEraseRegions= 2, | ||
1034 | .regions = { | ||
1035 | ERASEINFO(0x02000, 8), | ||
1036 | ERASEINFO(0x10000, 63), | ||
1037 | } | ||
1038 | }, { | ||
1039 | .mfr_id = MANUFACTURER_INTEL, | ||
1040 | .dev_id = I28F320B3T, | ||
1041 | .name = "Intel 28F320B3T", | ||
1042 | .uaddr = { | ||
1043 | [1] = MTD_UADDR_UNNECESSARY, /* x16 */ | ||
1044 | }, | ||
1045 | .DevSize = SIZE_4MiB, | ||
1046 | .CmdSet = P_ID_INTEL_STD, | ||
1047 | .NumEraseRegions= 2, | ||
1048 | .regions = { | ||
1049 | ERASEINFO(0x10000, 63), | ||
1050 | ERASEINFO(0x02000, 8), | ||
1051 | } | ||
1052 | }, { | ||
1053 | .mfr_id = MANUFACTURER_INTEL, | ||
1054 | .dev_id = I28F640B3B, | ||
1055 | .name = "Intel 28F640B3B", | ||
1056 | .uaddr = { | ||
1057 | [1] = MTD_UADDR_UNNECESSARY, /* x16 */ | ||
1058 | }, | ||
1059 | .DevSize = SIZE_8MiB, | ||
1060 | .CmdSet = P_ID_INTEL_STD, | ||
1061 | .NumEraseRegions= 2, | ||
1062 | .regions = { | ||
1063 | ERASEINFO(0x02000, 8), | ||
1064 | ERASEINFO(0x10000, 127), | ||
1065 | } | ||
1066 | }, { | ||
1067 | .mfr_id = MANUFACTURER_INTEL, | ||
1068 | .dev_id = I28F640B3T, | ||
1069 | .name = "Intel 28F640B3T", | ||
1070 | .uaddr = { | ||
1071 | [1] = MTD_UADDR_UNNECESSARY, /* x16 */ | ||
1072 | }, | ||
1073 | .DevSize = SIZE_8MiB, | ||
1074 | .CmdSet = P_ID_INTEL_STD, | ||
1075 | .NumEraseRegions= 2, | ||
1076 | .regions = { | ||
1077 | ERASEINFO(0x10000, 127), | ||
1078 | ERASEINFO(0x02000, 8), | ||
1079 | } | ||
1080 | }, { | ||
1081 | .mfr_id = MANUFACTURER_INTEL, | ||
1082 | .dev_id = I82802AB, | ||
1083 | .name = "Intel 82802AB", | ||
1084 | .uaddr = { | ||
1085 | [0] = MTD_UADDR_UNNECESSARY, /* x8 */ | ||
1086 | }, | ||
1087 | .DevSize = SIZE_512KiB, | ||
1088 | .CmdSet = P_ID_INTEL_EXT, | ||
1089 | .NumEraseRegions= 1, | ||
1090 | .regions = { | ||
1091 | ERASEINFO(0x10000,8), | ||
1092 | } | ||
1093 | }, { | ||
1094 | .mfr_id = MANUFACTURER_INTEL, | ||
1095 | .dev_id = I82802AC, | ||
1096 | .name = "Intel 82802AC", | ||
1097 | .uaddr = { | ||
1098 | [0] = MTD_UADDR_UNNECESSARY, /* x8 */ | ||
1099 | }, | ||
1100 | .DevSize = SIZE_1MiB, | ||
1101 | .CmdSet = P_ID_INTEL_EXT, | ||
1102 | .NumEraseRegions= 1, | ||
1103 | .regions = { | ||
1104 | ERASEINFO(0x10000,16), | ||
1105 | } | ||
1106 | }, { | ||
1107 | .mfr_id = MANUFACTURER_MACRONIX, | ||
1108 | .dev_id = MX29LV040C, | ||
1109 | .name = "Macronix MX29LV040C", | ||
1110 | .uaddr = { | ||
1111 | [0] = MTD_UADDR_0x0555_0x02AA, /* x8 */ | ||
1112 | }, | ||
1113 | .DevSize = SIZE_512KiB, | ||
1114 | .CmdSet = P_ID_AMD_STD, | ||
1115 | .NumEraseRegions= 1, | ||
1116 | .regions = { | ||
1117 | ERASEINFO(0x10000,8), | ||
1118 | } | ||
1119 | }, { | ||
1120 | .mfr_id = MANUFACTURER_MACRONIX, | ||
1121 | .dev_id = MX29LV160T, | ||
1122 | .name = "MXIC MX29LV160T", | ||
1123 | .uaddr = { | ||
1124 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
1125 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
1126 | }, | ||
1127 | .DevSize = SIZE_2MiB, | ||
1128 | .CmdSet = P_ID_AMD_STD, | ||
1129 | .NumEraseRegions= 4, | ||
1130 | .regions = { | ||
1131 | ERASEINFO(0x10000,31), | ||
1132 | ERASEINFO(0x08000,1), | ||
1133 | ERASEINFO(0x02000,2), | ||
1134 | ERASEINFO(0x04000,1) | ||
1135 | } | ||
1136 | }, { | ||
1137 | .mfr_id = MANUFACTURER_NEC, | ||
1138 | .dev_id = UPD29F064115, | ||
1139 | .name = "NEC uPD29F064115", | ||
1140 | .uaddr = { | ||
1141 | [0] = MTD_UADDR_0x0555_0x02AA, /* x8 */ | ||
1142 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
1143 | }, | ||
1144 | .DevSize = SIZE_8MiB, | ||
1145 | .CmdSet = P_ID_AMD_STD, | ||
1146 | .NumEraseRegions= 3, | ||
1147 | .regions = { | ||
1148 | ERASEINFO(0x2000,8), | ||
1149 | ERASEINFO(0x10000,126), | ||
1150 | ERASEINFO(0x2000,8), | ||
1151 | } | ||
1152 | }, { | ||
1153 | .mfr_id = MANUFACTURER_MACRONIX, | ||
1154 | .dev_id = MX29LV160B, | ||
1155 | .name = "MXIC MX29LV160B", | ||
1156 | .uaddr = { | ||
1157 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
1158 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
1159 | }, | ||
1160 | .DevSize = SIZE_2MiB, | ||
1161 | .CmdSet = P_ID_AMD_STD, | ||
1162 | .NumEraseRegions= 4, | ||
1163 | .regions = { | ||
1164 | ERASEINFO(0x04000,1), | ||
1165 | ERASEINFO(0x02000,2), | ||
1166 | ERASEINFO(0x08000,1), | ||
1167 | ERASEINFO(0x10000,31) | ||
1168 | } | ||
1169 | }, { | ||
1170 | .mfr_id = MANUFACTURER_MACRONIX, | ||
1171 | .dev_id = MX29F016, | ||
1172 | .name = "Macronix MX29F016", | ||
1173 | .uaddr = { | ||
1174 | [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ | ||
1175 | }, | ||
1176 | .DevSize = SIZE_2MiB, | ||
1177 | .CmdSet = P_ID_AMD_STD, | ||
1178 | .NumEraseRegions= 1, | ||
1179 | .regions = { | ||
1180 | ERASEINFO(0x10000,32), | ||
1181 | } | ||
1182 | }, { | ||
1183 | .mfr_id = MANUFACTURER_MACRONIX, | ||
1184 | .dev_id = MX29F004T, | ||
1185 | .name = "Macronix MX29F004T", | ||
1186 | .uaddr = { | ||
1187 | [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ | ||
1188 | }, | ||
1189 | .DevSize = SIZE_512KiB, | ||
1190 | .CmdSet = P_ID_AMD_STD, | ||
1191 | .NumEraseRegions= 4, | ||
1192 | .regions = { | ||
1193 | ERASEINFO(0x10000,7), | ||
1194 | ERASEINFO(0x08000,1), | ||
1195 | ERASEINFO(0x02000,2), | ||
1196 | ERASEINFO(0x04000,1), | ||
1197 | } | ||
1198 | }, { | ||
1199 | .mfr_id = MANUFACTURER_MACRONIX, | ||
1200 | .dev_id = MX29F004B, | ||
1201 | .name = "Macronix MX29F004B", | ||
1202 | .uaddr = { | ||
1203 | [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ | ||
1204 | }, | ||
1205 | .DevSize = SIZE_512KiB, | ||
1206 | .CmdSet = P_ID_AMD_STD, | ||
1207 | .NumEraseRegions= 4, | ||
1208 | .regions = { | ||
1209 | ERASEINFO(0x04000,1), | ||
1210 | ERASEINFO(0x02000,2), | ||
1211 | ERASEINFO(0x08000,1), | ||
1212 | ERASEINFO(0x10000,7), | ||
1213 | } | ||
1214 | }, { | ||
1215 | .mfr_id = MANUFACTURER_MACRONIX, | ||
1216 | .dev_id = MX29F002T, | ||
1217 | .name = "Macronix MX29F002T", | ||
1218 | .uaddr = { | ||
1219 | [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ | ||
1220 | }, | ||
1221 | .DevSize = SIZE_256KiB, | ||
1222 | .CmdSet = P_ID_AMD_STD, | ||
1223 | .NumEraseRegions= 4, | ||
1224 | .regions = { | ||
1225 | ERASEINFO(0x10000,3), | ||
1226 | ERASEINFO(0x08000,1), | ||
1227 | ERASEINFO(0x02000,2), | ||
1228 | ERASEINFO(0x04000,1), | ||
1229 | } | ||
1230 | }, { | ||
1231 | .mfr_id = MANUFACTURER_PMC, | ||
1232 | .dev_id = PM49FL002, | ||
1233 | .name = "PMC Pm49FL002", | ||
1234 | .uaddr = { | ||
1235 | [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ | ||
1236 | }, | ||
1237 | .DevSize = SIZE_256KiB, | ||
1238 | .CmdSet = P_ID_AMD_STD, | ||
1239 | .NumEraseRegions= 1, | ||
1240 | .regions = { | ||
1241 | ERASEINFO( 0x01000, 64 ) | ||
1242 | } | ||
1243 | }, { | ||
1244 | .mfr_id = MANUFACTURER_PMC, | ||
1245 | .dev_id = PM49FL004, | ||
1246 | .name = "PMC Pm49FL004", | ||
1247 | .uaddr = { | ||
1248 | [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ | ||
1249 | }, | ||
1250 | .DevSize = SIZE_512KiB, | ||
1251 | .CmdSet = P_ID_AMD_STD, | ||
1252 | .NumEraseRegions= 1, | ||
1253 | .regions = { | ||
1254 | ERASEINFO( 0x01000, 128 ) | ||
1255 | } | ||
1256 | }, { | ||
1257 | .mfr_id = MANUFACTURER_PMC, | ||
1258 | .dev_id = PM49FL008, | ||
1259 | .name = "PMC Pm49FL008", | ||
1260 | .uaddr = { | ||
1261 | [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ | ||
1262 | }, | ||
1263 | .DevSize = SIZE_1MiB, | ||
1264 | .CmdSet = P_ID_AMD_STD, | ||
1265 | .NumEraseRegions= 1, | ||
1266 | .regions = { | ||
1267 | ERASEINFO( 0x01000, 256 ) | ||
1268 | } | ||
1269 | }, { | ||
1270 | .mfr_id = MANUFACTURER_SST, | ||
1271 | .dev_id = SST39LF512, | ||
1272 | .name = "SST 39LF512", | ||
1273 | .uaddr = { | ||
1274 | [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ | ||
1275 | }, | ||
1276 | .DevSize = SIZE_64KiB, | ||
1277 | .CmdSet = P_ID_AMD_STD, | ||
1278 | .NumEraseRegions= 1, | ||
1279 | .regions = { | ||
1280 | ERASEINFO(0x01000,16), | ||
1281 | } | ||
1282 | }, { | ||
1283 | .mfr_id = MANUFACTURER_SST, | ||
1284 | .dev_id = SST39LF010, | ||
1285 | .name = "SST 39LF010", | ||
1286 | .uaddr = { | ||
1287 | [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ | ||
1288 | }, | ||
1289 | .DevSize = SIZE_128KiB, | ||
1290 | .CmdSet = P_ID_AMD_STD, | ||
1291 | .NumEraseRegions= 1, | ||
1292 | .regions = { | ||
1293 | ERASEINFO(0x01000,32), | ||
1294 | } | ||
1295 | }, { | ||
1296 | .mfr_id = MANUFACTURER_SST, | ||
1297 | .dev_id = SST29EE020, | ||
1298 | .name = "SST 29EE020", | ||
1299 | .uaddr = { | ||
1300 | [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ | ||
1301 | }, | ||
1302 | .DevSize = SIZE_256KiB, | ||
1303 | .CmdSet = P_ID_SST_PAGE, | ||
1304 | .NumEraseRegions= 1, | ||
1305 | .regions = {ERASEINFO(0x01000,64), | ||
1306 | } | ||
1307 | }, { | ||
1308 | .mfr_id = MANUFACTURER_SST, | ||
1309 | .dev_id = SST29LE020, | ||
1310 | .name = "SST 29LE020", | ||
1311 | .uaddr = { | ||
1312 | [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ | ||
1313 | }, | ||
1314 | .DevSize = SIZE_256KiB, | ||
1315 | .CmdSet = P_ID_SST_PAGE, | ||
1316 | .NumEraseRegions= 1, | ||
1317 | .regions = {ERASEINFO(0x01000,64), | ||
1318 | } | ||
1319 | }, { | ||
1320 | .mfr_id = MANUFACTURER_SST, | ||
1321 | .dev_id = SST39LF020, | ||
1322 | .name = "SST 39LF020", | ||
1323 | .uaddr = { | ||
1324 | [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ | ||
1325 | }, | ||
1326 | .DevSize = SIZE_256KiB, | ||
1327 | .CmdSet = P_ID_AMD_STD, | ||
1328 | .NumEraseRegions= 1, | ||
1329 | .regions = { | ||
1330 | ERASEINFO(0x01000,64), | ||
1331 | } | ||
1332 | }, { | ||
1333 | .mfr_id = MANUFACTURER_SST, | ||
1334 | .dev_id = SST39LF040, | ||
1335 | .name = "SST 39LF040", | ||
1336 | .uaddr = { | ||
1337 | [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ | ||
1338 | }, | ||
1339 | .DevSize = SIZE_512KiB, | ||
1340 | .CmdSet = P_ID_AMD_STD, | ||
1341 | .NumEraseRegions= 1, | ||
1342 | .regions = { | ||
1343 | ERASEINFO(0x01000,128), | ||
1344 | } | ||
1345 | }, { | ||
1346 | .mfr_id = MANUFACTURER_SST, | ||
1347 | .dev_id = SST39SF010A, | ||
1348 | .name = "SST 39SF010A", | ||
1349 | .uaddr = { | ||
1350 | [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ | ||
1351 | }, | ||
1352 | .DevSize = SIZE_128KiB, | ||
1353 | .CmdSet = P_ID_AMD_STD, | ||
1354 | .NumEraseRegions= 1, | ||
1355 | .regions = { | ||
1356 | ERASEINFO(0x01000,32), | ||
1357 | } | ||
1358 | }, { | ||
1359 | .mfr_id = MANUFACTURER_SST, | ||
1360 | .dev_id = SST39SF020A, | ||
1361 | .name = "SST 39SF020A", | ||
1362 | .uaddr = { | ||
1363 | [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ | ||
1364 | }, | ||
1365 | .DevSize = SIZE_256KiB, | ||
1366 | .CmdSet = P_ID_AMD_STD, | ||
1367 | .NumEraseRegions= 1, | ||
1368 | .regions = { | ||
1369 | ERASEINFO(0x01000,64), | ||
1370 | } | ||
1371 | }, { | ||
1372 | .mfr_id = MANUFACTURER_SST, | ||
1373 | .dev_id = SST49LF004B, | ||
1374 | .name = "SST 49LF004B", | ||
1375 | .uaddr = { | ||
1376 | [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ | ||
1377 | }, | ||
1378 | .DevSize = SIZE_512KiB, | ||
1379 | .CmdSet = P_ID_AMD_STD, | ||
1380 | .NumEraseRegions= 1, | ||
1381 | .regions = { | ||
1382 | ERASEINFO(0x01000,128), | ||
1383 | } | ||
1384 | }, { | ||
1385 | .mfr_id = MANUFACTURER_SST, | ||
1386 | .dev_id = SST49LF008A, | ||
1387 | .name = "SST 49LF008A", | ||
1388 | .uaddr = { | ||
1389 | [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ | ||
1390 | }, | ||
1391 | .DevSize = SIZE_1MiB, | ||
1392 | .CmdSet = P_ID_AMD_STD, | ||
1393 | .NumEraseRegions= 1, | ||
1394 | .regions = { | ||
1395 | ERASEINFO(0x01000,256), | ||
1396 | } | ||
1397 | }, { | ||
1398 | .mfr_id = MANUFACTURER_SST, | ||
1399 | .dev_id = SST49LF030A, | ||
1400 | .name = "SST 49LF030A", | ||
1401 | .uaddr = { | ||
1402 | [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ | ||
1403 | }, | ||
1404 | .DevSize = SIZE_512KiB, | ||
1405 | .CmdSet = P_ID_AMD_STD, | ||
1406 | .NumEraseRegions= 1, | ||
1407 | .regions = { | ||
1408 | ERASEINFO(0x01000,96), | ||
1409 | } | ||
1410 | }, { | ||
1411 | .mfr_id = MANUFACTURER_SST, | ||
1412 | .dev_id = SST49LF040A, | ||
1413 | .name = "SST 49LF040A", | ||
1414 | .uaddr = { | ||
1415 | [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ | ||
1416 | }, | ||
1417 | .DevSize = SIZE_512KiB, | ||
1418 | .CmdSet = P_ID_AMD_STD, | ||
1419 | .NumEraseRegions= 1, | ||
1420 | .regions = { | ||
1421 | ERASEINFO(0x01000,128), | ||
1422 | } | ||
1423 | }, { | ||
1424 | .mfr_id = MANUFACTURER_SST, | ||
1425 | .dev_id = SST49LF080A, | ||
1426 | .name = "SST 49LF080A", | ||
1427 | .uaddr = { | ||
1428 | [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ | ||
1429 | }, | ||
1430 | .DevSize = SIZE_1MiB, | ||
1431 | .CmdSet = P_ID_AMD_STD, | ||
1432 | .NumEraseRegions= 1, | ||
1433 | .regions = { | ||
1434 | ERASEINFO(0x01000,256), | ||
1435 | } | ||
1436 | }, { | ||
1437 | .mfr_id = MANUFACTURER_SST, /* should be CFI */ | ||
1438 | .dev_id = SST39LF160, | ||
1439 | .name = "SST 39LF160", | ||
1440 | .uaddr = { | ||
1441 | [0] = MTD_UADDR_0x5555_0x2AAA, /* x8 */ | ||
1442 | [1] = MTD_UADDR_0x5555_0x2AAA /* x16 */ | ||
1443 | }, | ||
1444 | .DevSize = SIZE_2MiB, | ||
1445 | .CmdSet = P_ID_AMD_STD, | ||
1446 | .NumEraseRegions= 2, | ||
1447 | .regions = { | ||
1448 | ERASEINFO(0x1000,256), | ||
1449 | ERASEINFO(0x1000,256) | ||
1450 | } | ||
1451 | |||
1452 | }, { | ||
1453 | .mfr_id = MANUFACTURER_ST, /* FIXME - CFI device? */ | ||
1454 | .dev_id = M29W800DT, | ||
1455 | .name = "ST M29W800DT", | ||
1456 | .uaddr = { | ||
1457 | [0] = MTD_UADDR_0x5555_0x2AAA, /* x8 */ | ||
1458 | [1] = MTD_UADDR_0x5555_0x2AAA /* x16 */ | ||
1459 | }, | ||
1460 | .DevSize = SIZE_1MiB, | ||
1461 | .CmdSet = P_ID_AMD_STD, | ||
1462 | .NumEraseRegions= 4, | ||
1463 | .regions = { | ||
1464 | ERASEINFO(0x10000,15), | ||
1465 | ERASEINFO(0x08000,1), | ||
1466 | ERASEINFO(0x02000,2), | ||
1467 | ERASEINFO(0x04000,1) | ||
1468 | } | ||
1469 | }, { | ||
1470 | .mfr_id = MANUFACTURER_ST, /* FIXME - CFI device? */ | ||
1471 | .dev_id = M29W800DB, | ||
1472 | .name = "ST M29W800DB", | ||
1473 | .uaddr = { | ||
1474 | [0] = MTD_UADDR_0x5555_0x2AAA, /* x8 */ | ||
1475 | [1] = MTD_UADDR_0x5555_0x2AAA /* x16 */ | ||
1476 | }, | ||
1477 | .DevSize = SIZE_1MiB, | ||
1478 | .CmdSet = P_ID_AMD_STD, | ||
1479 | .NumEraseRegions= 4, | ||
1480 | .regions = { | ||
1481 | ERASEINFO(0x04000,1), | ||
1482 | ERASEINFO(0x02000,2), | ||
1483 | ERASEINFO(0x08000,1), | ||
1484 | ERASEINFO(0x10000,15) | ||
1485 | } | ||
1486 | }, { | ||
1487 | .mfr_id = MANUFACTURER_ST, /* FIXME - CFI device? */ | ||
1488 | .dev_id = M29W160DT, | ||
1489 | .name = "ST M29W160DT", | ||
1490 | .uaddr = { | ||
1491 | [0] = MTD_UADDR_0x0555_0x02AA, /* x8 */ | ||
1492 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
1493 | }, | ||
1494 | .DevSize = SIZE_2MiB, | ||
1495 | .CmdSet = P_ID_AMD_STD, | ||
1496 | .NumEraseRegions= 4, | ||
1497 | .regions = { | ||
1498 | ERASEINFO(0x10000,31), | ||
1499 | ERASEINFO(0x08000,1), | ||
1500 | ERASEINFO(0x02000,2), | ||
1501 | ERASEINFO(0x04000,1) | ||
1502 | } | ||
1503 | }, { | ||
1504 | .mfr_id = MANUFACTURER_ST, /* FIXME - CFI device? */ | ||
1505 | .dev_id = M29W160DB, | ||
1506 | .name = "ST M29W160DB", | ||
1507 | .uaddr = { | ||
1508 | [0] = MTD_UADDR_0x0555_0x02AA, /* x8 */ | ||
1509 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
1510 | }, | ||
1511 | .DevSize = SIZE_2MiB, | ||
1512 | .CmdSet = P_ID_AMD_STD, | ||
1513 | .NumEraseRegions= 4, | ||
1514 | .regions = { | ||
1515 | ERASEINFO(0x04000,1), | ||
1516 | ERASEINFO(0x02000,2), | ||
1517 | ERASEINFO(0x08000,1), | ||
1518 | ERASEINFO(0x10000,31) | ||
1519 | } | ||
1520 | }, { | ||
1521 | .mfr_id = MANUFACTURER_ST, | ||
1522 | .dev_id = M29W040B, | ||
1523 | .name = "ST M29W040B", | ||
1524 | .uaddr = { | ||
1525 | [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ | ||
1526 | }, | ||
1527 | .DevSize = SIZE_512KiB, | ||
1528 | .CmdSet = P_ID_AMD_STD, | ||
1529 | .NumEraseRegions= 1, | ||
1530 | .regions = { | ||
1531 | ERASEINFO(0x10000,8), | ||
1532 | } | ||
1533 | }, { | ||
1534 | .mfr_id = MANUFACTURER_ST, | ||
1535 | .dev_id = M50FW040, | ||
1536 | .name = "ST M50FW040", | ||
1537 | .uaddr = { | ||
1538 | [0] = MTD_UADDR_UNNECESSARY, /* x8 */ | ||
1539 | }, | ||
1540 | .DevSize = SIZE_512KiB, | ||
1541 | .CmdSet = P_ID_INTEL_EXT, | ||
1542 | .NumEraseRegions= 1, | ||
1543 | .regions = { | ||
1544 | ERASEINFO(0x10000,8), | ||
1545 | } | ||
1546 | }, { | ||
1547 | .mfr_id = MANUFACTURER_ST, | ||
1548 | .dev_id = M50FW080, | ||
1549 | .name = "ST M50FW080", | ||
1550 | .uaddr = { | ||
1551 | [0] = MTD_UADDR_UNNECESSARY, /* x8 */ | ||
1552 | }, | ||
1553 | .DevSize = SIZE_1MiB, | ||
1554 | .CmdSet = P_ID_INTEL_EXT, | ||
1555 | .NumEraseRegions= 1, | ||
1556 | .regions = { | ||
1557 | ERASEINFO(0x10000,16), | ||
1558 | } | ||
1559 | }, { | ||
1560 | .mfr_id = MANUFACTURER_ST, | ||
1561 | .dev_id = M50FW016, | ||
1562 | .name = "ST M50FW016", | ||
1563 | .uaddr = { | ||
1564 | [0] = MTD_UADDR_UNNECESSARY, /* x8 */ | ||
1565 | }, | ||
1566 | .DevSize = SIZE_2MiB, | ||
1567 | .CmdSet = P_ID_INTEL_EXT, | ||
1568 | .NumEraseRegions= 1, | ||
1569 | .regions = { | ||
1570 | ERASEINFO(0x10000,32), | ||
1571 | } | ||
1572 | }, { | ||
1573 | .mfr_id = MANUFACTURER_ST, | ||
1574 | .dev_id = M50LPW080, | ||
1575 | .name = "ST M50LPW080", | ||
1576 | .uaddr = { | ||
1577 | [0] = MTD_UADDR_UNNECESSARY, /* x8 */ | ||
1578 | }, | ||
1579 | .DevSize = SIZE_1MiB, | ||
1580 | .CmdSet = P_ID_INTEL_EXT, | ||
1581 | .NumEraseRegions= 1, | ||
1582 | .regions = { | ||
1583 | ERASEINFO(0x10000,16), | ||
1584 | } | ||
1585 | }, { | ||
1586 | .mfr_id = MANUFACTURER_TOSHIBA, | ||
1587 | .dev_id = TC58FVT160, | ||
1588 | .name = "Toshiba TC58FVT160", | ||
1589 | .uaddr = { | ||
1590 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
1591 | [1] = MTD_UADDR_0x0555_0x02AA /* x16 */ | ||
1592 | }, | ||
1593 | .DevSize = SIZE_2MiB, | ||
1594 | .CmdSet = P_ID_AMD_STD, | ||
1595 | .NumEraseRegions= 4, | ||
1596 | .regions = { | ||
1597 | ERASEINFO(0x10000,31), | ||
1598 | ERASEINFO(0x08000,1), | ||
1599 | ERASEINFO(0x02000,2), | ||
1600 | ERASEINFO(0x04000,1) | ||
1601 | } | ||
1602 | }, { | ||
1603 | .mfr_id = MANUFACTURER_TOSHIBA, | ||
1604 | .dev_id = TC58FVB160, | ||
1605 | .name = "Toshiba TC58FVB160", | ||
1606 | .uaddr = { | ||
1607 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
1608 | [1] = MTD_UADDR_0x0555_0x02AA /* x16 */ | ||
1609 | }, | ||
1610 | .DevSize = SIZE_2MiB, | ||
1611 | .CmdSet = P_ID_AMD_STD, | ||
1612 | .NumEraseRegions= 4, | ||
1613 | .regions = { | ||
1614 | ERASEINFO(0x04000,1), | ||
1615 | ERASEINFO(0x02000,2), | ||
1616 | ERASEINFO(0x08000,1), | ||
1617 | ERASEINFO(0x10000,31) | ||
1618 | } | ||
1619 | }, { | ||
1620 | .mfr_id = MANUFACTURER_TOSHIBA, | ||
1621 | .dev_id = TC58FVB321, | ||
1622 | .name = "Toshiba TC58FVB321", | ||
1623 | .uaddr = { | ||
1624 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
1625 | [1] = MTD_UADDR_0x0555_0x02AA /* x16 */ | ||
1626 | }, | ||
1627 | .DevSize = SIZE_4MiB, | ||
1628 | .CmdSet = P_ID_AMD_STD, | ||
1629 | .NumEraseRegions= 2, | ||
1630 | .regions = { | ||
1631 | ERASEINFO(0x02000,8), | ||
1632 | ERASEINFO(0x10000,63) | ||
1633 | } | ||
1634 | }, { | ||
1635 | .mfr_id = MANUFACTURER_TOSHIBA, | ||
1636 | .dev_id = TC58FVT321, | ||
1637 | .name = "Toshiba TC58FVT321", | ||
1638 | .uaddr = { | ||
1639 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
1640 | [1] = MTD_UADDR_0x0555_0x02AA /* x16 */ | ||
1641 | }, | ||
1642 | .DevSize = SIZE_4MiB, | ||
1643 | .CmdSet = P_ID_AMD_STD, | ||
1644 | .NumEraseRegions= 2, | ||
1645 | .regions = { | ||
1646 | ERASEINFO(0x10000,63), | ||
1647 | ERASEINFO(0x02000,8) | ||
1648 | } | ||
1649 | }, { | ||
1650 | .mfr_id = MANUFACTURER_TOSHIBA, | ||
1651 | .dev_id = TC58FVB641, | ||
1652 | .name = "Toshiba TC58FVB641", | ||
1653 | .uaddr = { | ||
1654 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
1655 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
1656 | }, | ||
1657 | .DevSize = SIZE_8MiB, | ||
1658 | .CmdSet = P_ID_AMD_STD, | ||
1659 | .NumEraseRegions= 2, | ||
1660 | .regions = { | ||
1661 | ERASEINFO(0x02000,8), | ||
1662 | ERASEINFO(0x10000,127) | ||
1663 | } | ||
1664 | }, { | ||
1665 | .mfr_id = MANUFACTURER_TOSHIBA, | ||
1666 | .dev_id = TC58FVT641, | ||
1667 | .name = "Toshiba TC58FVT641", | ||
1668 | .uaddr = { | ||
1669 | [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ | ||
1670 | [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ | ||
1671 | }, | ||
1672 | .DevSize = SIZE_8MiB, | ||
1673 | .CmdSet = P_ID_AMD_STD, | ||
1674 | .NumEraseRegions= 2, | ||
1675 | .regions = { | ||
1676 | ERASEINFO(0x10000,127), | ||
1677 | ERASEINFO(0x02000,8) | ||
1678 | } | ||
1679 | }, { | ||
1680 | .mfr_id = MANUFACTURER_WINBOND, | ||
1681 | .dev_id = W49V002A, | ||
1682 | .name = "Winbond W49V002A", | ||
1683 | .uaddr = { | ||
1684 | [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ | ||
1685 | }, | ||
1686 | .DevSize = SIZE_256KiB, | ||
1687 | .CmdSet = P_ID_AMD_STD, | ||
1688 | .NumEraseRegions= 4, | ||
1689 | .regions = { | ||
1690 | ERASEINFO(0x10000, 3), | ||
1691 | ERASEINFO(0x08000, 1), | ||
1692 | ERASEINFO(0x02000, 2), | ||
1693 | ERASEINFO(0x04000, 1), | ||
1694 | } | ||
1695 | } | ||
1696 | }; | ||
1697 | |||
1698 | |||
1699 | static int cfi_jedec_setup(struct cfi_private *p_cfi, int index); | ||
1700 | |||
1701 | static int jedec_probe_chip(struct map_info *map, __u32 base, | ||
1702 | unsigned long *chip_map, struct cfi_private *cfi); | ||
1703 | |||
1704 | static struct mtd_info *jedec_probe(struct map_info *map); | ||
1705 | |||
1706 | static inline u32 jedec_read_mfr(struct map_info *map, __u32 base, | ||
1707 | struct cfi_private *cfi) | ||
1708 | { | ||
1709 | map_word result; | ||
1710 | unsigned long mask; | ||
1711 | u32 ofs = cfi_build_cmd_addr(0, cfi_interleave(cfi), cfi->device_type); | ||
1712 | mask = (1 << (cfi->device_type * 8)) -1; | ||
1713 | result = map_read(map, base + ofs); | ||
1714 | return result.x[0] & mask; | ||
1715 | } | ||
1716 | |||
1717 | static inline u32 jedec_read_id(struct map_info *map, __u32 base, | ||
1718 | struct cfi_private *cfi) | ||
1719 | { | ||
1720 | map_word result; | ||
1721 | unsigned long mask; | ||
1722 | u32 ofs = cfi_build_cmd_addr(1, cfi_interleave(cfi), cfi->device_type); | ||
1723 | mask = (1 << (cfi->device_type * 8)) -1; | ||
1724 | result = map_read(map, base + ofs); | ||
1725 | return result.x[0] & mask; | ||
1726 | } | ||
1727 | |||
1728 | static inline void jedec_reset(u32 base, struct map_info *map, | ||
1729 | struct cfi_private *cfi) | ||
1730 | { | ||
1731 | /* Reset */ | ||
1732 | |||
1733 | /* after checking the datasheets for SST, MACRONIX and ATMEL | ||
1734 | * (oh and incidentaly the jedec spec - 3.5.3.3) the reset | ||
1735 | * sequence is *supposed* to be 0xaa at 0x5555, 0x55 at | ||
1736 | * 0x2aaa, 0xF0 at 0x5555 this will not affect the AMD chips | ||
1737 | * as they will ignore the writes and dont care what address | ||
1738 | * the F0 is written to */ | ||
1739 | if(cfi->addr_unlock1) { | ||
1740 | DEBUG( MTD_DEBUG_LEVEL3, | ||
1741 | "reset unlock called %x %x \n", | ||
1742 | cfi->addr_unlock1,cfi->addr_unlock2); | ||
1743 | cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); | ||
1744 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL); | ||
1745 | } | ||
1746 | |||
1747 | cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); | ||
1748 | /* Some misdesigned intel chips do not respond for 0xF0 for a reset, | ||
1749 | * so ensure we're in read mode. Send both the Intel and the AMD command | ||
1750 | * for this. Intel uses 0xff for this, AMD uses 0xff for NOP, so | ||
1751 | * this should be safe. | ||
1752 | */ | ||
1753 | cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); | ||
1754 | /* FIXME - should have reset delay before continuing */ | ||
1755 | } | ||
1756 | |||
1757 | |||
1758 | static inline __u8 finfo_uaddr(const struct amd_flash_info *finfo, int device_type) | ||
1759 | { | ||
1760 | int uaddr_idx; | ||
1761 | __u8 uaddr = MTD_UADDR_NOT_SUPPORTED; | ||
1762 | |||
1763 | switch ( device_type ) { | ||
1764 | case CFI_DEVICETYPE_X8: uaddr_idx = 0; break; | ||
1765 | case CFI_DEVICETYPE_X16: uaddr_idx = 1; break; | ||
1766 | case CFI_DEVICETYPE_X32: uaddr_idx = 2; break; | ||
1767 | default: | ||
1768 | printk(KERN_NOTICE "MTD: %s(): unknown device_type %d\n", | ||
1769 | __func__, device_type); | ||
1770 | goto uaddr_done; | ||
1771 | } | ||
1772 | |||
1773 | uaddr = finfo->uaddr[uaddr_idx]; | ||
1774 | |||
1775 | if (uaddr != MTD_UADDR_NOT_SUPPORTED ) { | ||
1776 | /* ASSERT("The unlock addresses for non-8-bit mode | ||
1777 | are bollocks. We don't really need an array."); */ | ||
1778 | uaddr = finfo->uaddr[0]; | ||
1779 | } | ||
1780 | |||
1781 | uaddr_done: | ||
1782 | return uaddr; | ||
1783 | } | ||
1784 | |||
1785 | |||
1786 | static int cfi_jedec_setup(struct cfi_private *p_cfi, int index) | ||
1787 | { | ||
1788 | int i,num_erase_regions; | ||
1789 | __u8 uaddr; | ||
1790 | |||
1791 | printk("Found: %s\n",jedec_table[index].name); | ||
1792 | |||
1793 | num_erase_regions = jedec_table[index].NumEraseRegions; | ||
1794 | |||
1795 | p_cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL); | ||
1796 | if (!p_cfi->cfiq) { | ||
1797 | //xx printk(KERN_WARNING "%s: kmalloc failed for CFI ident structure\n", map->name); | ||
1798 | return 0; | ||
1799 | } | ||
1800 | |||
1801 | memset(p_cfi->cfiq,0,sizeof(struct cfi_ident)); | ||
1802 | |||
1803 | p_cfi->cfiq->P_ID = jedec_table[index].CmdSet; | ||
1804 | p_cfi->cfiq->NumEraseRegions = jedec_table[index].NumEraseRegions; | ||
1805 | p_cfi->cfiq->DevSize = jedec_table[index].DevSize; | ||
1806 | p_cfi->cfi_mode = CFI_MODE_JEDEC; | ||
1807 | |||
1808 | for (i=0; i<num_erase_regions; i++){ | ||
1809 | p_cfi->cfiq->EraseRegionInfo[i] = jedec_table[index].regions[i]; | ||
1810 | } | ||
1811 | p_cfi->cmdset_priv = NULL; | ||
1812 | |||
1813 | /* This may be redundant for some cases, but it doesn't hurt */ | ||
1814 | p_cfi->mfr = jedec_table[index].mfr_id; | ||
1815 | p_cfi->id = jedec_table[index].dev_id; | ||
1816 | |||
1817 | uaddr = finfo_uaddr(&jedec_table[index], p_cfi->device_type); | ||
1818 | if ( uaddr == MTD_UADDR_NOT_SUPPORTED ) { | ||
1819 | kfree( p_cfi->cfiq ); | ||
1820 | return 0; | ||
1821 | } | ||
1822 | |||
1823 | p_cfi->addr_unlock1 = unlock_addrs[uaddr].addr1; | ||
1824 | p_cfi->addr_unlock2 = unlock_addrs[uaddr].addr2; | ||
1825 | |||
1826 | return 1; /* ok */ | ||
1827 | } | ||
1828 | |||
1829 | |||
1830 | /* | ||
1831 | * There is a BIG problem properly ID'ing the JEDEC devic and guaranteeing | ||
1832 | * the mapped address, unlock addresses, and proper chip ID. This function | ||
1833 | * attempts to minimize errors. It is doubtfull that this probe will ever | ||
1834 | * be perfect - consequently there should be some module parameters that | ||
1835 | * could be manually specified to force the chip info. | ||
1836 | */ | ||
1837 | static inline int jedec_match( __u32 base, | ||
1838 | struct map_info *map, | ||
1839 | struct cfi_private *cfi, | ||
1840 | const struct amd_flash_info *finfo ) | ||
1841 | { | ||
1842 | int rc = 0; /* failure until all tests pass */ | ||
1843 | u32 mfr, id; | ||
1844 | __u8 uaddr; | ||
1845 | |||
1846 | /* | ||
1847 | * The IDs must match. For X16 and X32 devices operating in | ||
1848 | * a lower width ( X8 or X16 ), the device ID's are usually just | ||
1849 | * the lower byte(s) of the larger device ID for wider mode. If | ||
1850 | * a part is found that doesn't fit this assumption (device id for | ||
1851 | * smaller width mode is completely unrealated to full-width mode) | ||
1852 | * then the jedec_table[] will have to be augmented with the IDs | ||
1853 | * for different widths. | ||
1854 | */ | ||
1855 | switch (cfi->device_type) { | ||
1856 | case CFI_DEVICETYPE_X8: | ||
1857 | mfr = (__u8)finfo->mfr_id; | ||
1858 | id = (__u8)finfo->dev_id; | ||
1859 | break; | ||
1860 | case CFI_DEVICETYPE_X16: | ||
1861 | mfr = (__u16)finfo->mfr_id; | ||
1862 | id = (__u16)finfo->dev_id; | ||
1863 | break; | ||
1864 | case CFI_DEVICETYPE_X32: | ||
1865 | mfr = (__u16)finfo->mfr_id; | ||
1866 | id = (__u32)finfo->dev_id; | ||
1867 | break; | ||
1868 | default: | ||
1869 | printk(KERN_WARNING | ||
1870 | "MTD %s(): Unsupported device type %d\n", | ||
1871 | __func__, cfi->device_type); | ||
1872 | goto match_done; | ||
1873 | } | ||
1874 | if ( cfi->mfr != mfr || cfi->id != id ) { | ||
1875 | goto match_done; | ||
1876 | } | ||
1877 | |||
1878 | /* the part size must fit in the memory window */ | ||
1879 | DEBUG( MTD_DEBUG_LEVEL3, | ||
1880 | "MTD %s(): Check fit 0x%.8x + 0x%.8x = 0x%.8x\n", | ||
1881 | __func__, base, 1 << finfo->DevSize, base + (1 << finfo->DevSize) ); | ||
1882 | if ( base + cfi_interleave(cfi) * ( 1 << finfo->DevSize ) > map->size ) { | ||
1883 | DEBUG( MTD_DEBUG_LEVEL3, | ||
1884 | "MTD %s(): 0x%.4x 0x%.4x %dKiB doesn't fit\n", | ||
1885 | __func__, finfo->mfr_id, finfo->dev_id, | ||
1886 | 1 << finfo->DevSize ); | ||
1887 | goto match_done; | ||
1888 | } | ||
1889 | |||
1890 | uaddr = finfo_uaddr(finfo, cfi->device_type); | ||
1891 | if ( uaddr == MTD_UADDR_NOT_SUPPORTED ) { | ||
1892 | goto match_done; | ||
1893 | } | ||
1894 | |||
1895 | DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): check unlock addrs 0x%.4x 0x%.4x\n", | ||
1896 | __func__, cfi->addr_unlock1, cfi->addr_unlock2 ); | ||
1897 | if ( MTD_UADDR_UNNECESSARY != uaddr && MTD_UADDR_DONT_CARE != uaddr | ||
1898 | && ( unlock_addrs[uaddr].addr1 != cfi->addr_unlock1 || | ||
1899 | unlock_addrs[uaddr].addr2 != cfi->addr_unlock2 ) ) { | ||
1900 | DEBUG( MTD_DEBUG_LEVEL3, | ||
1901 | "MTD %s(): 0x%.4x 0x%.4x did not match\n", | ||
1902 | __func__, | ||
1903 | unlock_addrs[uaddr].addr1, | ||
1904 | unlock_addrs[uaddr].addr2); | ||
1905 | goto match_done; | ||
1906 | } | ||
1907 | |||
1908 | /* | ||
1909 | * Make sure the ID's dissappear when the device is taken out of | ||
1910 | * ID mode. The only time this should fail when it should succeed | ||
1911 | * is when the ID's are written as data to the same | ||
1912 | * addresses. For this rare and unfortunate case the chip | ||
1913 | * cannot be probed correctly. | ||
1914 | * FIXME - write a driver that takes all of the chip info as | ||
1915 | * module parameters, doesn't probe but forces a load. | ||
1916 | */ | ||
1917 | DEBUG( MTD_DEBUG_LEVEL3, | ||
1918 | "MTD %s(): check ID's disappear when not in ID mode\n", | ||
1919 | __func__ ); | ||
1920 | jedec_reset( base, map, cfi ); | ||
1921 | mfr = jedec_read_mfr( map, base, cfi ); | ||
1922 | id = jedec_read_id( map, base, cfi ); | ||
1923 | if ( mfr == cfi->mfr && id == cfi->id ) { | ||
1924 | DEBUG( MTD_DEBUG_LEVEL3, | ||
1925 | "MTD %s(): ID 0x%.2x:0x%.2x did not change after reset:\n" | ||
1926 | "You might need to manually specify JEDEC parameters.\n", | ||
1927 | __func__, cfi->mfr, cfi->id ); | ||
1928 | goto match_done; | ||
1929 | } | ||
1930 | |||
1931 | /* all tests passed - mark as success */ | ||
1932 | rc = 1; | ||
1933 | |||
1934 | /* | ||
1935 | * Put the device back in ID mode - only need to do this if we | ||
1936 | * were truly frobbing a real device. | ||
1937 | */ | ||
1938 | DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): return to ID mode\n", __func__ ); | ||
1939 | if(cfi->addr_unlock1) { | ||
1940 | cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); | ||
1941 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL); | ||
1942 | } | ||
1943 | cfi_send_gen_cmd(0x90, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); | ||
1944 | /* FIXME - should have a delay before continuing */ | ||
1945 | |||
1946 | match_done: | ||
1947 | return rc; | ||
1948 | } | ||
1949 | |||
1950 | |||
1951 | static int jedec_probe_chip(struct map_info *map, __u32 base, | ||
1952 | unsigned long *chip_map, struct cfi_private *cfi) | ||
1953 | { | ||
1954 | int i; | ||
1955 | enum uaddr uaddr_idx = MTD_UADDR_NOT_SUPPORTED; | ||
1956 | u32 probe_offset1, probe_offset2; | ||
1957 | |||
1958 | retry: | ||
1959 | if (!cfi->numchips) { | ||
1960 | uaddr_idx++; | ||
1961 | |||
1962 | if (MTD_UADDR_UNNECESSARY == uaddr_idx) | ||
1963 | return 0; | ||
1964 | |||
1965 | cfi->addr_unlock1 = unlock_addrs[uaddr_idx].addr1; | ||
1966 | cfi->addr_unlock2 = unlock_addrs[uaddr_idx].addr2; | ||
1967 | } | ||
1968 | |||
1969 | /* Make certain we aren't probing past the end of map */ | ||
1970 | if (base >= map->size) { | ||
1971 | printk(KERN_NOTICE | ||
1972 | "Probe at base(0x%08x) past the end of the map(0x%08lx)\n", | ||
1973 | base, map->size -1); | ||
1974 | return 0; | ||
1975 | |||
1976 | } | ||
1977 | /* Ensure the unlock addresses we try stay inside the map */ | ||
1978 | probe_offset1 = cfi_build_cmd_addr( | ||
1979 | cfi->addr_unlock1, | ||
1980 | cfi_interleave(cfi), | ||
1981 | cfi->device_type); | ||
1982 | probe_offset2 = cfi_build_cmd_addr( | ||
1983 | cfi->addr_unlock1, | ||
1984 | cfi_interleave(cfi), | ||
1985 | cfi->device_type); | ||
1986 | if ( ((base + probe_offset1 + map_bankwidth(map)) >= map->size) || | ||
1987 | ((base + probe_offset2 + map_bankwidth(map)) >= map->size)) | ||
1988 | { | ||
1989 | goto retry; | ||
1990 | } | ||
1991 | |||
1992 | /* Reset */ | ||
1993 | jedec_reset(base, map, cfi); | ||
1994 | |||
1995 | /* Autoselect Mode */ | ||
1996 | if(cfi->addr_unlock1) { | ||
1997 | cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); | ||
1998 | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL); | ||
1999 | } | ||
2000 | cfi_send_gen_cmd(0x90, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); | ||
2001 | /* FIXME - should have a delay before continuing */ | ||
2002 | |||
2003 | if (!cfi->numchips) { | ||
2004 | /* This is the first time we're called. Set up the CFI | ||
2005 | stuff accordingly and return */ | ||
2006 | |||
2007 | cfi->mfr = jedec_read_mfr(map, base, cfi); | ||
2008 | cfi->id = jedec_read_id(map, base, cfi); | ||
2009 | DEBUG(MTD_DEBUG_LEVEL3, | ||
2010 | "Search for id:(%02x %02x) interleave(%d) type(%d)\n", | ||
2011 | cfi->mfr, cfi->id, cfi_interleave(cfi), cfi->device_type); | ||
2012 | for (i=0; i<sizeof(jedec_table)/sizeof(jedec_table[0]); i++) { | ||
2013 | if ( jedec_match( base, map, cfi, &jedec_table[i] ) ) { | ||
2014 | DEBUG( MTD_DEBUG_LEVEL3, | ||
2015 | "MTD %s(): matched device 0x%x,0x%x unlock_addrs: 0x%.4x 0x%.4x\n", | ||
2016 | __func__, cfi->mfr, cfi->id, | ||
2017 | cfi->addr_unlock1, cfi->addr_unlock2 ); | ||
2018 | if (!cfi_jedec_setup(cfi, i)) | ||
2019 | return 0; | ||
2020 | goto ok_out; | ||
2021 | } | ||
2022 | } | ||
2023 | goto retry; | ||
2024 | } else { | ||
2025 | __u16 mfr; | ||
2026 | __u16 id; | ||
2027 | |||
2028 | /* Make sure it is a chip of the same manufacturer and id */ | ||
2029 | mfr = jedec_read_mfr(map, base, cfi); | ||
2030 | id = jedec_read_id(map, base, cfi); | ||
2031 | |||
2032 | if ((mfr != cfi->mfr) || (id != cfi->id)) { | ||
2033 | printk(KERN_DEBUG "%s: Found different chip or no chip at all (mfr 0x%x, id 0x%x) at 0x%x\n", | ||
2034 | map->name, mfr, id, base); | ||
2035 | jedec_reset(base, map, cfi); | ||
2036 | return 0; | ||
2037 | } | ||
2038 | } | ||
2039 | |||
2040 | /* Check each previous chip locations to see if it's an alias */ | ||
2041 | for (i=0; i < (base >> cfi->chipshift); i++) { | ||
2042 | unsigned long start; | ||
2043 | if(!test_bit(i, chip_map)) { | ||
2044 | continue; /* Skip location; no valid chip at this address */ | ||
2045 | } | ||
2046 | start = i << cfi->chipshift; | ||
2047 | if (jedec_read_mfr(map, start, cfi) == cfi->mfr && | ||
2048 | jedec_read_id(map, start, cfi) == cfi->id) { | ||
2049 | /* Eep. This chip also looks like it's in autoselect mode. | ||
2050 | Is it an alias for the new one? */ | ||
2051 | jedec_reset(start, map, cfi); | ||
2052 | |||
2053 | /* If the device IDs go away, it's an alias */ | ||
2054 | if (jedec_read_mfr(map, base, cfi) != cfi->mfr || | ||
2055 | jedec_read_id(map, base, cfi) != cfi->id) { | ||
2056 | printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", | ||
2057 | map->name, base, start); | ||
2058 | return 0; | ||
2059 | } | ||
2060 | |||
2061 | /* Yes, it's actually got the device IDs as data. Most | ||
2062 | * unfortunate. Stick the new chip in read mode | ||
2063 | * too and if it's the same, assume it's an alias. */ | ||
2064 | /* FIXME: Use other modes to do a proper check */ | ||
2065 | jedec_reset(base, map, cfi); | ||
2066 | if (jedec_read_mfr(map, base, cfi) == cfi->mfr && | ||
2067 | jedec_read_id(map, base, cfi) == cfi->id) { | ||
2068 | printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", | ||
2069 | map->name, base, start); | ||
2070 | return 0; | ||
2071 | } | ||
2072 | } | ||
2073 | } | ||
2074 | |||
2075 | /* OK, if we got to here, then none of the previous chips appear to | ||
2076 | be aliases for the current one. */ | ||
2077 | set_bit((base >> cfi->chipshift), chip_map); /* Update chip map */ | ||
2078 | cfi->numchips++; | ||
2079 | |||
2080 | ok_out: | ||
2081 | /* Put it back into Read Mode */ | ||
2082 | jedec_reset(base, map, cfi); | ||
2083 | |||
2084 | printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n", | ||
2085 | map->name, cfi_interleave(cfi), cfi->device_type*8, base, | ||
2086 | map->bankwidth*8); | ||
2087 | |||
2088 | return 1; | ||
2089 | } | ||
2090 | |||
2091 | static struct chip_probe jedec_chip_probe = { | ||
2092 | .name = "JEDEC", | ||
2093 | .probe_chip = jedec_probe_chip | ||
2094 | }; | ||
2095 | |||
2096 | static struct mtd_info *jedec_probe(struct map_info *map) | ||
2097 | { | ||
2098 | /* | ||
2099 | * Just use the generic probe stuff to call our CFI-specific | ||
2100 | * chip_probe routine in all the possible permutations, etc. | ||
2101 | */ | ||
2102 | return mtd_do_chip_probe(map, &jedec_chip_probe); | ||
2103 | } | ||
2104 | |||
2105 | static struct mtd_chip_driver jedec_chipdrv = { | ||
2106 | .probe = jedec_probe, | ||
2107 | .name = "jedec_probe", | ||
2108 | .module = THIS_MODULE | ||
2109 | }; | ||
2110 | |||
2111 | static int __init jedec_probe_init(void) | ||
2112 | { | ||
2113 | register_mtd_chip_driver(&jedec_chipdrv); | ||
2114 | return 0; | ||
2115 | } | ||
2116 | |||
2117 | static void __exit jedec_probe_exit(void) | ||
2118 | { | ||
2119 | unregister_mtd_chip_driver(&jedec_chipdrv); | ||
2120 | } | ||
2121 | |||
2122 | module_init(jedec_probe_init); | ||
2123 | module_exit(jedec_probe_exit); | ||
2124 | |||
2125 | MODULE_LICENSE("GPL"); | ||
2126 | MODULE_AUTHOR("Erwin Authried <eauth@softsys.co.at> et al."); | ||
2127 | MODULE_DESCRIPTION("Probe code for JEDEC-compliant flash chips"); | ||
diff --git a/drivers/mtd/chips/map_absent.c b/drivers/mtd/chips/map_absent.c new file mode 100644 index 00000000000..c6c83833cc3 --- /dev/null +++ b/drivers/mtd/chips/map_absent.c | |||
@@ -0,0 +1,117 @@ | |||
1 | /* | ||
2 | * Common code to handle absent "placeholder" devices | ||
3 | * Copyright 2001 Resilience Corporation <ebrower@resilience.com> | ||
4 | * $Id: map_absent.c,v 1.5 2004/11/16 18:29:00 dwmw2 Exp $ | ||
5 | * | ||
6 | * This map driver is used to allocate "placeholder" MTD | ||
7 | * devices on systems that have socketed/removable media. | ||
8 | * Use of this driver as a fallback preserves the expected | ||
9 | * registration of MTD device nodes regardless of probe outcome. | ||
10 | * A usage example is as follows: | ||
11 | * | ||
12 | * my_dev[i] = do_map_probe("cfi", &my_map[i]); | ||
13 | * if(NULL == my_dev[i]) { | ||
14 | * my_dev[i] = do_map_probe("map_absent", &my_map[i]); | ||
15 | * } | ||
16 | * | ||
17 | * Any device 'probed' with this driver will return -ENODEV | ||
18 | * upon open. | ||
19 | */ | ||
20 | |||
21 | #include <linux/module.h> | ||
22 | #include <linux/types.h> | ||
23 | #include <linux/kernel.h> | ||
24 | #include <linux/errno.h> | ||
25 | #include <linux/slab.h> | ||
26 | #include <linux/init.h> | ||
27 | #include <linux/mtd/mtd.h> | ||
28 | #include <linux/mtd/map.h> | ||
29 | #include <linux/mtd/compatmac.h> | ||
30 | |||
31 | static int map_absent_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); | ||
32 | static int map_absent_write (struct mtd_info *, loff_t, size_t, size_t *, const u_char *); | ||
33 | static int map_absent_erase (struct mtd_info *, struct erase_info *); | ||
34 | static void map_absent_sync (struct mtd_info *); | ||
35 | static struct mtd_info *map_absent_probe(struct map_info *map); | ||
36 | static void map_absent_destroy (struct mtd_info *); | ||
37 | |||
38 | |||
39 | static struct mtd_chip_driver map_absent_chipdrv = { | ||
40 | .probe = map_absent_probe, | ||
41 | .destroy = map_absent_destroy, | ||
42 | .name = "map_absent", | ||
43 | .module = THIS_MODULE | ||
44 | }; | ||
45 | |||
46 | static struct mtd_info *map_absent_probe(struct map_info *map) | ||
47 | { | ||
48 | struct mtd_info *mtd; | ||
49 | |||
50 | mtd = kmalloc(sizeof(*mtd), GFP_KERNEL); | ||
51 | if (!mtd) { | ||
52 | return NULL; | ||
53 | } | ||
54 | |||
55 | memset(mtd, 0, sizeof(*mtd)); | ||
56 | |||
57 | map->fldrv = &map_absent_chipdrv; | ||
58 | mtd->priv = map; | ||
59 | mtd->name = map->name; | ||
60 | mtd->type = MTD_ABSENT; | ||
61 | mtd->size = map->size; | ||
62 | mtd->erase = map_absent_erase; | ||
63 | mtd->read = map_absent_read; | ||
64 | mtd->write = map_absent_write; | ||
65 | mtd->sync = map_absent_sync; | ||
66 | mtd->flags = 0; | ||
67 | mtd->erasesize = PAGE_SIZE; | ||
68 | |||
69 | __module_get(THIS_MODULE); | ||
70 | return mtd; | ||
71 | } | ||
72 | |||
73 | |||
74 | static int map_absent_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) | ||
75 | { | ||
76 | *retlen = 0; | ||
77 | return -ENODEV; | ||
78 | } | ||
79 | |||
80 | static int map_absent_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) | ||
81 | { | ||
82 | *retlen = 0; | ||
83 | return -ENODEV; | ||
84 | } | ||
85 | |||
86 | static int map_absent_erase(struct mtd_info *mtd, struct erase_info *instr) | ||
87 | { | ||
88 | return -ENODEV; | ||
89 | } | ||
90 | |||
91 | static void map_absent_sync(struct mtd_info *mtd) | ||
92 | { | ||
93 | /* nop */ | ||
94 | } | ||
95 | |||
96 | static void map_absent_destroy(struct mtd_info *mtd) | ||
97 | { | ||
98 | /* nop */ | ||
99 | } | ||
100 | |||
101 | static int __init map_absent_init(void) | ||
102 | { | ||
103 | register_mtd_chip_driver(&map_absent_chipdrv); | ||
104 | return 0; | ||
105 | } | ||
106 | |||
107 | static void __exit map_absent_exit(void) | ||
108 | { | ||
109 | unregister_mtd_chip_driver(&map_absent_chipdrv); | ||
110 | } | ||
111 | |||
112 | module_init(map_absent_init); | ||
113 | module_exit(map_absent_exit); | ||
114 | |||
115 | MODULE_LICENSE("GPL"); | ||
116 | MODULE_AUTHOR("Resilience Corporation - Eric Brower <ebrower@resilience.com>"); | ||
117 | MODULE_DESCRIPTION("Placeholder MTD chip driver for 'absent' chips"); | ||
diff --git a/drivers/mtd/chips/map_ram.c b/drivers/mtd/chips/map_ram.c new file mode 100644 index 00000000000..bd2e876a814 --- /dev/null +++ b/drivers/mtd/chips/map_ram.c | |||
@@ -0,0 +1,143 @@ | |||
1 | /* | ||
2 | * Common code to handle map devices which are simple RAM | ||
3 | * (C) 2000 Red Hat. GPL'd. | ||
4 | * $Id: map_ram.c,v 1.22 2005/01/05 18:05:12 dwmw2 Exp $ | ||
5 | */ | ||
6 | |||
7 | #include <linux/module.h> | ||
8 | #include <linux/types.h> | ||
9 | #include <linux/kernel.h> | ||
10 | #include <asm/io.h> | ||
11 | #include <asm/byteorder.h> | ||
12 | #include <linux/errno.h> | ||
13 | #include <linux/slab.h> | ||
14 | #include <linux/init.h> | ||
15 | #include <linux/mtd/mtd.h> | ||
16 | #include <linux/mtd/map.h> | ||
17 | #include <linux/mtd/compatmac.h> | ||
18 | |||
19 | |||
20 | static int mapram_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); | ||
21 | static int mapram_write (struct mtd_info *, loff_t, size_t, size_t *, const u_char *); | ||
22 | static int mapram_erase (struct mtd_info *, struct erase_info *); | ||
23 | static void mapram_nop (struct mtd_info *); | ||
24 | static struct mtd_info *map_ram_probe(struct map_info *map); | ||
25 | |||
26 | |||
27 | static struct mtd_chip_driver mapram_chipdrv = { | ||
28 | .probe = map_ram_probe, | ||
29 | .name = "map_ram", | ||
30 | .module = THIS_MODULE | ||
31 | }; | ||
32 | |||
33 | static struct mtd_info *map_ram_probe(struct map_info *map) | ||
34 | { | ||
35 | struct mtd_info *mtd; | ||
36 | |||
37 | /* Check the first byte is RAM */ | ||
38 | #if 0 | ||
39 | map_write8(map, 0x55, 0); | ||
40 | if (map_read8(map, 0) != 0x55) | ||
41 | return NULL; | ||
42 | |||
43 | map_write8(map, 0xAA, 0); | ||
44 | if (map_read8(map, 0) != 0xAA) | ||
45 | return NULL; | ||
46 | |||
47 | /* Check the last byte is RAM */ | ||
48 | map_write8(map, 0x55, map->size-1); | ||
49 | if (map_read8(map, map->size-1) != 0x55) | ||
50 | return NULL; | ||
51 | |||
52 | map_write8(map, 0xAA, map->size-1); | ||
53 | if (map_read8(map, map->size-1) != 0xAA) | ||
54 | return NULL; | ||
55 | #endif | ||
56 | /* OK. It seems to be RAM. */ | ||
57 | |||
58 | mtd = kmalloc(sizeof(*mtd), GFP_KERNEL); | ||
59 | if (!mtd) | ||
60 | return NULL; | ||
61 | |||
62 | memset(mtd, 0, sizeof(*mtd)); | ||
63 | |||
64 | map->fldrv = &mapram_chipdrv; | ||
65 | mtd->priv = map; | ||
66 | mtd->name = map->name; | ||
67 | mtd->type = MTD_RAM; | ||
68 | mtd->size = map->size; | ||
69 | mtd->erase = mapram_erase; | ||
70 | mtd->read = mapram_read; | ||
71 | mtd->write = mapram_write; | ||
72 | mtd->sync = mapram_nop; | ||
73 | mtd->flags = MTD_CAP_RAM | MTD_VOLATILE; | ||
74 | |||
75 | mtd->erasesize = PAGE_SIZE; | ||
76 | while(mtd->size & (mtd->erasesize - 1)) | ||
77 | mtd->erasesize >>= 1; | ||
78 | |||
79 | __module_get(THIS_MODULE); | ||
80 | return mtd; | ||
81 | } | ||
82 | |||
83 | |||
84 | static int mapram_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) | ||
85 | { | ||
86 | struct map_info *map = mtd->priv; | ||
87 | |||
88 | map_copy_from(map, buf, from, len); | ||
89 | *retlen = len; | ||
90 | return 0; | ||
91 | } | ||
92 | |||
93 | static int mapram_write (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) | ||
94 | { | ||
95 | struct map_info *map = mtd->priv; | ||
96 | |||
97 | map_copy_to(map, to, buf, len); | ||
98 | *retlen = len; | ||
99 | return 0; | ||
100 | } | ||
101 | |||
102 | static int mapram_erase (struct mtd_info *mtd, struct erase_info *instr) | ||
103 | { | ||
104 | /* Yeah, it's inefficient. Who cares? It's faster than a _real_ | ||
105 | flash erase. */ | ||
106 | struct map_info *map = mtd->priv; | ||
107 | map_word allff; | ||
108 | unsigned long i; | ||
109 | |||
110 | allff = map_word_ff(map); | ||
111 | |||
112 | for (i=0; i<instr->len; i += map_bankwidth(map)) | ||
113 | map_write(map, allff, instr->addr + i); | ||
114 | |||
115 | instr->state = MTD_ERASE_DONE; | ||
116 | |||
117 | mtd_erase_callback(instr); | ||
118 | |||
119 | return 0; | ||
120 | } | ||
121 | |||
122 | static void mapram_nop(struct mtd_info *mtd) | ||
123 | { | ||
124 | /* Nothing to see here */ | ||
125 | } | ||
126 | |||
127 | static int __init map_ram_init(void) | ||
128 | { | ||
129 | register_mtd_chip_driver(&mapram_chipdrv); | ||
130 | return 0; | ||
131 | } | ||
132 | |||
133 | static void __exit map_ram_exit(void) | ||
134 | { | ||
135 | unregister_mtd_chip_driver(&mapram_chipdrv); | ||
136 | } | ||
137 | |||
138 | module_init(map_ram_init); | ||
139 | module_exit(map_ram_exit); | ||
140 | |||
141 | MODULE_LICENSE("GPL"); | ||
142 | MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); | ||
143 | MODULE_DESCRIPTION("MTD chip driver for RAM chips"); | ||
diff --git a/drivers/mtd/chips/map_rom.c b/drivers/mtd/chips/map_rom.c new file mode 100644 index 00000000000..624c12c232c --- /dev/null +++ b/drivers/mtd/chips/map_rom.c | |||
@@ -0,0 +1,94 @@ | |||
1 | /* | ||
2 | * Common code to handle map devices which are simple ROM | ||
3 | * (C) 2000 Red Hat. GPL'd. | ||
4 | * $Id: map_rom.c,v 1.23 2005/01/05 18:05:12 dwmw2 Exp $ | ||
5 | */ | ||
6 | |||
7 | #include <linux/module.h> | ||
8 | #include <linux/types.h> | ||
9 | #include <linux/kernel.h> | ||
10 | #include <asm/io.h> | ||
11 | #include <asm/byteorder.h> | ||
12 | #include <linux/errno.h> | ||
13 | #include <linux/slab.h> | ||
14 | #include <linux/init.h> | ||
15 | #include <linux/mtd/mtd.h> | ||
16 | #include <linux/mtd/map.h> | ||
17 | #include <linux/mtd/compatmac.h> | ||
18 | |||
19 | static int maprom_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); | ||
20 | static int maprom_write (struct mtd_info *, loff_t, size_t, size_t *, const u_char *); | ||
21 | static void maprom_nop (struct mtd_info *); | ||
22 | static struct mtd_info *map_rom_probe(struct map_info *map); | ||
23 | |||
24 | static struct mtd_chip_driver maprom_chipdrv = { | ||
25 | .probe = map_rom_probe, | ||
26 | .name = "map_rom", | ||
27 | .module = THIS_MODULE | ||
28 | }; | ||
29 | |||
30 | static struct mtd_info *map_rom_probe(struct map_info *map) | ||
31 | { | ||
32 | struct mtd_info *mtd; | ||
33 | |||
34 | mtd = kmalloc(sizeof(*mtd), GFP_KERNEL); | ||
35 | if (!mtd) | ||
36 | return NULL; | ||
37 | |||
38 | memset(mtd, 0, sizeof(*mtd)); | ||
39 | |||
40 | map->fldrv = &maprom_chipdrv; | ||
41 | mtd->priv = map; | ||
42 | mtd->name = map->name; | ||
43 | mtd->type = MTD_ROM; | ||
44 | mtd->size = map->size; | ||
45 | mtd->read = maprom_read; | ||
46 | mtd->write = maprom_write; | ||
47 | mtd->sync = maprom_nop; | ||
48 | mtd->flags = MTD_CAP_ROM; | ||
49 | mtd->erasesize = 131072; | ||
50 | while(mtd->size & (mtd->erasesize - 1)) | ||
51 | mtd->erasesize >>= 1; | ||
52 | |||
53 | __module_get(THIS_MODULE); | ||
54 | return mtd; | ||
55 | } | ||
56 | |||
57 | |||
58 | static int maprom_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) | ||
59 | { | ||
60 | struct map_info *map = mtd->priv; | ||
61 | |||
62 | map_copy_from(map, buf, from, len); | ||
63 | *retlen = len; | ||
64 | return 0; | ||
65 | } | ||
66 | |||
67 | static void maprom_nop(struct mtd_info *mtd) | ||
68 | { | ||
69 | /* Nothing to see here */ | ||
70 | } | ||
71 | |||
72 | static int maprom_write (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) | ||
73 | { | ||
74 | printk(KERN_NOTICE "maprom_write called\n"); | ||
75 | return -EIO; | ||
76 | } | ||
77 | |||
78 | static int __init map_rom_init(void) | ||
79 | { | ||
80 | register_mtd_chip_driver(&maprom_chipdrv); | ||
81 | return 0; | ||
82 | } | ||
83 | |||
84 | static void __exit map_rom_exit(void) | ||
85 | { | ||
86 | unregister_mtd_chip_driver(&maprom_chipdrv); | ||
87 | } | ||
88 | |||
89 | module_init(map_rom_init); | ||
90 | module_exit(map_rom_exit); | ||
91 | |||
92 | MODULE_LICENSE("GPL"); | ||
93 | MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); | ||
94 | MODULE_DESCRIPTION("MTD chip driver for ROM chips"); | ||
diff --git a/drivers/mtd/chips/sharp.c b/drivers/mtd/chips/sharp.c new file mode 100644 index 00000000000..c3cf0f63bc9 --- /dev/null +++ b/drivers/mtd/chips/sharp.c | |||
@@ -0,0 +1,596 @@ | |||
1 | /* | ||
2 | * MTD chip driver for pre-CFI Sharp flash chips | ||
3 | * | ||
4 | * Copyright 2000,2001 David A. Schleef <ds@schleef.org> | ||
5 | * 2000,2001 Lineo, Inc. | ||
6 | * | ||
7 | * $Id: sharp.c,v 1.14 2004/08/09 13:19:43 dwmw2 Exp $ | ||
8 | * | ||
9 | * Devices supported: | ||
10 | * LH28F016SCT Symmetrical block flash memory, 2Mx8 | ||
11 | * LH28F008SCT Symmetrical block flash memory, 1Mx8 | ||
12 | * | ||
13 | * Documentation: | ||
14 | * http://www.sharpmeg.com/datasheets/memic/flashcmp/ | ||
15 | * http://www.sharpmeg.com/datasheets/memic/flashcmp/01symf/16m/016sctl9.pdf | ||
16 | * 016sctl9.pdf | ||
17 | * | ||
18 | * Limitations: | ||
19 | * This driver only supports 4x1 arrangement of chips. | ||
20 | * Not tested on anything but PowerPC. | ||
21 | */ | ||
22 | |||
23 | #include <linux/kernel.h> | ||
24 | #include <linux/module.h> | ||
25 | #include <linux/types.h> | ||
26 | #include <linux/sched.h> | ||
27 | #include <linux/errno.h> | ||
28 | #include <linux/interrupt.h> | ||
29 | #include <linux/mtd/map.h> | ||
30 | #include <linux/mtd/mtd.h> | ||
31 | #include <linux/mtd/cfi.h> | ||
32 | #include <linux/delay.h> | ||
33 | #include <linux/init.h> | ||
34 | |||
35 | #define CMD_RESET 0xffffffff | ||
36 | #define CMD_READ_ID 0x90909090 | ||
37 | #define CMD_READ_STATUS 0x70707070 | ||
38 | #define CMD_CLEAR_STATUS 0x50505050 | ||
39 | #define CMD_BLOCK_ERASE_1 0x20202020 | ||
40 | #define CMD_BLOCK_ERASE_2 0xd0d0d0d0 | ||
41 | #define CMD_BYTE_WRITE 0x40404040 | ||
42 | #define CMD_SUSPEND 0xb0b0b0b0 | ||
43 | #define CMD_RESUME 0xd0d0d0d0 | ||
44 | #define CMD_SET_BLOCK_LOCK_1 0x60606060 | ||
45 | #define CMD_SET_BLOCK_LOCK_2 0x01010101 | ||
46 | #define CMD_SET_MASTER_LOCK_1 0x60606060 | ||
47 | #define CMD_SET_MASTER_LOCK_2 0xf1f1f1f1 | ||
48 | #define CMD_CLEAR_BLOCK_LOCKS_1 0x60606060 | ||
49 | #define CMD_CLEAR_BLOCK_LOCKS_2 0xd0d0d0d0 | ||
50 | |||
51 | #define SR_READY 0x80808080 // 1 = ready | ||
52 | #define SR_ERASE_SUSPEND 0x40404040 // 1 = block erase suspended | ||
53 | #define SR_ERROR_ERASE 0x20202020 // 1 = error in block erase or clear lock bits | ||
54 | #define SR_ERROR_WRITE 0x10101010 // 1 = error in byte write or set lock bit | ||
55 | #define SR_VPP 0x08080808 // 1 = Vpp is low | ||
56 | #define SR_WRITE_SUSPEND 0x04040404 // 1 = byte write suspended | ||
57 | #define SR_PROTECT 0x02020202 // 1 = lock bit set | ||
58 | #define SR_RESERVED 0x01010101 | ||
59 | |||
60 | #define SR_ERRORS (SR_ERROR_ERASE|SR_ERROR_WRITE|SR_VPP|SR_PROTECT) | ||
61 | |||
62 | /* Configuration options */ | ||
63 | |||
64 | #undef AUTOUNLOCK /* automatically unlocks blocks before erasing */ | ||
65 | |||
66 | struct mtd_info *sharp_probe(struct map_info *); | ||
67 | |||
68 | static int sharp_probe_map(struct map_info *map,struct mtd_info *mtd); | ||
69 | |||
70 | static int sharp_read(struct mtd_info *mtd, loff_t from, size_t len, | ||
71 | size_t *retlen, u_char *buf); | ||
72 | static int sharp_write(struct mtd_info *mtd, loff_t from, size_t len, | ||
73 | size_t *retlen, const u_char *buf); | ||
74 | static int sharp_erase(struct mtd_info *mtd, struct erase_info *instr); | ||
75 | static void sharp_sync(struct mtd_info *mtd); | ||
76 | static int sharp_suspend(struct mtd_info *mtd); | ||
77 | static void sharp_resume(struct mtd_info *mtd); | ||
78 | static void sharp_destroy(struct mtd_info *mtd); | ||
79 | |||
80 | static int sharp_write_oneword(struct map_info *map, struct flchip *chip, | ||
81 | unsigned long adr, __u32 datum); | ||
82 | static int sharp_erase_oneblock(struct map_info *map, struct flchip *chip, | ||
83 | unsigned long adr); | ||
84 | #ifdef AUTOUNLOCK | ||
85 | static void sharp_unlock_oneblock(struct map_info *map, struct flchip *chip, | ||
86 | unsigned long adr); | ||
87 | #endif | ||
88 | |||
89 | |||
90 | struct sharp_info{ | ||
91 | struct flchip *chip; | ||
92 | int bogus; | ||
93 | int chipshift; | ||
94 | int numchips; | ||
95 | struct flchip chips[1]; | ||
96 | }; | ||
97 | |||
98 | struct mtd_info *sharp_probe(struct map_info *map); | ||
99 | static void sharp_destroy(struct mtd_info *mtd); | ||
100 | |||
101 | static struct mtd_chip_driver sharp_chipdrv = { | ||
102 | .probe = sharp_probe, | ||
103 | .destroy = sharp_destroy, | ||
104 | .name = "sharp", | ||
105 | .module = THIS_MODULE | ||
106 | }; | ||
107 | |||
108 | |||
109 | struct mtd_info *sharp_probe(struct map_info *map) | ||
110 | { | ||
111 | struct mtd_info *mtd = NULL; | ||
112 | struct sharp_info *sharp = NULL; | ||
113 | int width; | ||
114 | |||
115 | mtd = kmalloc(sizeof(*mtd), GFP_KERNEL); | ||
116 | if(!mtd) | ||
117 | return NULL; | ||
118 | |||
119 | sharp = kmalloc(sizeof(*sharp), GFP_KERNEL); | ||
120 | if(!sharp) { | ||
121 | kfree(mtd); | ||
122 | return NULL; | ||
123 | } | ||
124 | |||
125 | memset(mtd, 0, sizeof(*mtd)); | ||
126 | |||
127 | width = sharp_probe_map(map,mtd); | ||
128 | if(!width){ | ||
129 | kfree(mtd); | ||
130 | kfree(sharp); | ||
131 | return NULL; | ||
132 | } | ||
133 | |||
134 | mtd->priv = map; | ||
135 | mtd->type = MTD_NORFLASH; | ||
136 | mtd->erase = sharp_erase; | ||
137 | mtd->read = sharp_read; | ||
138 | mtd->write = sharp_write; | ||
139 | mtd->sync = sharp_sync; | ||
140 | mtd->suspend = sharp_suspend; | ||
141 | mtd->resume = sharp_resume; | ||
142 | mtd->flags = MTD_CAP_NORFLASH; | ||
143 | mtd->name = map->name; | ||
144 | |||
145 | memset(sharp, 0, sizeof(*sharp)); | ||
146 | sharp->chipshift = 23; | ||
147 | sharp->numchips = 1; | ||
148 | sharp->chips[0].start = 0; | ||
149 | sharp->chips[0].state = FL_READY; | ||
150 | sharp->chips[0].mutex = &sharp->chips[0]._spinlock; | ||
151 | sharp->chips[0].word_write_time = 0; | ||
152 | init_waitqueue_head(&sharp->chips[0].wq); | ||
153 | spin_lock_init(&sharp->chips[0]._spinlock); | ||
154 | |||
155 | map->fldrv = &sharp_chipdrv; | ||
156 | map->fldrv_priv = sharp; | ||
157 | |||
158 | __module_get(THIS_MODULE); | ||
159 | return mtd; | ||
160 | } | ||
161 | |||
162 | static int sharp_probe_map(struct map_info *map,struct mtd_info *mtd) | ||
163 | { | ||
164 | unsigned long tmp; | ||
165 | unsigned long base = 0; | ||
166 | u32 read0, read4; | ||
167 | int width = 4; | ||
168 | |||
169 | tmp = map_read32(map, base+0); | ||
170 | |||
171 | map_write32(map, CMD_READ_ID, base+0); | ||
172 | |||
173 | read0=map_read32(map, base+0); | ||
174 | read4=map_read32(map, base+4); | ||
175 | if(read0 == 0x89898989){ | ||
176 | printk("Looks like sharp flash\n"); | ||
177 | switch(read4){ | ||
178 | case 0xaaaaaaaa: | ||
179 | case 0xa0a0a0a0: | ||
180 | /* aa - LH28F016SCT-L95 2Mx8, 32 64k blocks*/ | ||
181 | /* a0 - LH28F016SCT-Z4 2Mx8, 32 64k blocks*/ | ||
182 | mtd->erasesize = 0x10000 * width; | ||
183 | mtd->size = 0x200000 * width; | ||
184 | return width; | ||
185 | case 0xa6a6a6a6: | ||
186 | /* a6 - LH28F008SCT-L12 1Mx8, 16 64k blocks*/ | ||
187 | /* a6 - LH28F008SCR-L85 1Mx8, 16 64k blocks*/ | ||
188 | mtd->erasesize = 0x10000 * width; | ||
189 | mtd->size = 0x100000 * width; | ||
190 | return width; | ||
191 | #if 0 | ||
192 | case 0x00000000: /* unknown */ | ||
193 | /* XX - LH28F004SCT 512kx8, 8 64k blocks*/ | ||
194 | mtd->erasesize = 0x10000 * width; | ||
195 | mtd->size = 0x80000 * width; | ||
196 | return width; | ||
197 | #endif | ||
198 | default: | ||
199 | printk("Sort-of looks like sharp flash, 0x%08x 0x%08x\n", | ||
200 | read0,read4); | ||
201 | } | ||
202 | }else if((map_read32(map, base+0) == CMD_READ_ID)){ | ||
203 | /* RAM, probably */ | ||
204 | printk("Looks like RAM\n"); | ||
205 | map_write32(map, tmp, base+0); | ||
206 | }else{ | ||
207 | printk("Doesn't look like sharp flash, 0x%08x 0x%08x\n", | ||
208 | read0,read4); | ||
209 | } | ||
210 | |||
211 | return 0; | ||
212 | } | ||
213 | |||
214 | /* This function returns with the chip->mutex lock held. */ | ||
215 | static int sharp_wait(struct map_info *map, struct flchip *chip) | ||
216 | { | ||
217 | __u16 status; | ||
218 | unsigned long timeo = jiffies + HZ; | ||
219 | DECLARE_WAITQUEUE(wait, current); | ||
220 | int adr = 0; | ||
221 | |||
222 | retry: | ||
223 | spin_lock_bh(chip->mutex); | ||
224 | |||
225 | switch(chip->state){ | ||
226 | case FL_READY: | ||
227 | map_write32(map,CMD_READ_STATUS,adr); | ||
228 | chip->state = FL_STATUS; | ||
229 | case FL_STATUS: | ||
230 | status = map_read32(map,adr); | ||
231 | //printk("status=%08x\n",status); | ||
232 | |||
233 | udelay(100); | ||
234 | if((status & SR_READY)!=SR_READY){ | ||
235 | //printk(".status=%08x\n",status); | ||
236 | udelay(100); | ||
237 | } | ||
238 | break; | ||
239 | default: | ||
240 | printk("Waiting for chip\n"); | ||
241 | |||
242 | set_current_state(TASK_INTERRUPTIBLE); | ||
243 | add_wait_queue(&chip->wq, &wait); | ||
244 | |||
245 | spin_unlock_bh(chip->mutex); | ||
246 | |||
247 | schedule(); | ||
248 | remove_wait_queue(&chip->wq, &wait); | ||
249 | |||
250 | if(signal_pending(current)) | ||
251 | return -EINTR; | ||
252 | |||
253 | timeo = jiffies + HZ; | ||
254 | |||
255 | goto retry; | ||
256 | } | ||
257 | |||
258 | map_write32(map,CMD_RESET, adr); | ||
259 | |||
260 | chip->state = FL_READY; | ||
261 | |||
262 | return 0; | ||
263 | } | ||
264 | |||
265 | static void sharp_release(struct flchip *chip) | ||
266 | { | ||
267 | wake_up(&chip->wq); | ||
268 | spin_unlock_bh(chip->mutex); | ||
269 | } | ||
270 | |||
271 | static int sharp_read(struct mtd_info *mtd, loff_t from, size_t len, | ||
272 | size_t *retlen, u_char *buf) | ||
273 | { | ||
274 | struct map_info *map = mtd->priv; | ||
275 | struct sharp_info *sharp = map->fldrv_priv; | ||
276 | int chipnum; | ||
277 | int ret = 0; | ||
278 | int ofs = 0; | ||
279 | |||
280 | chipnum = (from >> sharp->chipshift); | ||
281 | ofs = from & ((1 << sharp->chipshift)-1); | ||
282 | |||
283 | *retlen = 0; | ||
284 | |||
285 | while(len){ | ||
286 | unsigned long thislen; | ||
287 | |||
288 | if(chipnum>=sharp->numchips) | ||
289 | break; | ||
290 | |||
291 | thislen = len; | ||
292 | if(ofs+thislen >= (1<<sharp->chipshift)) | ||
293 | thislen = (1<<sharp->chipshift) - ofs; | ||
294 | |||
295 | ret = sharp_wait(map,&sharp->chips[chipnum]); | ||
296 | if(ret<0) | ||
297 | break; | ||
298 | |||
299 | map_copy_from(map,buf,ofs,thislen); | ||
300 | |||
301 | sharp_release(&sharp->chips[chipnum]); | ||
302 | |||
303 | *retlen += thislen; | ||
304 | len -= thislen; | ||
305 | buf += thislen; | ||
306 | |||
307 | ofs = 0; | ||
308 | chipnum++; | ||
309 | } | ||
310 | return ret; | ||
311 | } | ||
312 | |||
313 | static int sharp_write(struct mtd_info *mtd, loff_t to, size_t len, | ||
314 | size_t *retlen, const u_char *buf) | ||
315 | { | ||
316 | struct map_info *map = mtd->priv; | ||
317 | struct sharp_info *sharp = map->fldrv_priv; | ||
318 | int ret = 0; | ||
319 | int i,j; | ||
320 | int chipnum; | ||
321 | unsigned long ofs; | ||
322 | union { u32 l; unsigned char uc[4]; } tbuf; | ||
323 | |||
324 | *retlen = 0; | ||
325 | |||
326 | while(len){ | ||
327 | tbuf.l = 0xffffffff; | ||
328 | chipnum = to >> sharp->chipshift; | ||
329 | ofs = to & ((1<<sharp->chipshift)-1); | ||
330 | |||
331 | j=0; | ||
332 | for(i=ofs&3;i<4 && len;i++){ | ||
333 | tbuf.uc[i] = *buf; | ||
334 | buf++; | ||
335 | to++; | ||
336 | len--; | ||
337 | j++; | ||
338 | } | ||
339 | sharp_write_oneword(map, &sharp->chips[chipnum], ofs&~3, tbuf.l); | ||
340 | if(ret<0) | ||
341 | return ret; | ||
342 | (*retlen)+=j; | ||
343 | } | ||
344 | |||
345 | return 0; | ||
346 | } | ||
347 | |||
348 | static int sharp_write_oneword(struct map_info *map, struct flchip *chip, | ||
349 | unsigned long adr, __u32 datum) | ||
350 | { | ||
351 | int ret; | ||
352 | int timeo; | ||
353 | int try; | ||
354 | int i; | ||
355 | int status = 0; | ||
356 | |||
357 | ret = sharp_wait(map,chip); | ||
358 | |||
359 | for(try=0;try<10;try++){ | ||
360 | map_write32(map,CMD_BYTE_WRITE,adr); | ||
361 | /* cpu_to_le32 -> hack to fix the writel be->le conversion */ | ||
362 | map_write32(map,cpu_to_le32(datum),adr); | ||
363 | |||
364 | chip->state = FL_WRITING; | ||
365 | |||
366 | timeo = jiffies + (HZ/2); | ||
367 | |||
368 | map_write32(map,CMD_READ_STATUS,adr); | ||
369 | for(i=0;i<100;i++){ | ||
370 | status = map_read32(map,adr); | ||
371 | if((status & SR_READY)==SR_READY) | ||
372 | break; | ||
373 | } | ||
374 | if(i==100){ | ||
375 | printk("sharp: timed out writing\n"); | ||
376 | } | ||
377 | |||
378 | if(!(status&SR_ERRORS)) | ||
379 | break; | ||
380 | |||
381 | printk("sharp: error writing byte at addr=%08lx status=%08x\n",adr,status); | ||
382 | |||
383 | map_write32(map,CMD_CLEAR_STATUS,adr); | ||
384 | } | ||
385 | map_write32(map,CMD_RESET,adr); | ||
386 | chip->state = FL_READY; | ||
387 | |||
388 | wake_up(&chip->wq); | ||
389 | spin_unlock_bh(chip->mutex); | ||
390 | |||
391 | return 0; | ||
392 | } | ||
393 | |||
394 | static int sharp_erase(struct mtd_info *mtd, struct erase_info *instr) | ||
395 | { | ||
396 | struct map_info *map = mtd->priv; | ||
397 | struct sharp_info *sharp = map->fldrv_priv; | ||
398 | unsigned long adr,len; | ||
399 | int chipnum, ret=0; | ||
400 | |||
401 | //printk("sharp_erase()\n"); | ||
402 | if(instr->addr & (mtd->erasesize - 1)) | ||
403 | return -EINVAL; | ||
404 | if(instr->len & (mtd->erasesize - 1)) | ||
405 | return -EINVAL; | ||
406 | if(instr->len + instr->addr > mtd->size) | ||
407 | return -EINVAL; | ||
408 | |||
409 | chipnum = instr->addr >> sharp->chipshift; | ||
410 | adr = instr->addr & ((1<<sharp->chipshift)-1); | ||
411 | len = instr->len; | ||
412 | |||
413 | while(len){ | ||
414 | ret = sharp_erase_oneblock(map, &sharp->chips[chipnum], adr); | ||
415 | if(ret)return ret; | ||
416 | |||
417 | adr += mtd->erasesize; | ||
418 | len -= mtd->erasesize; | ||
419 | if(adr >> sharp->chipshift){ | ||
420 | adr = 0; | ||
421 | chipnum++; | ||
422 | if(chipnum>=sharp->numchips) | ||
423 | break; | ||
424 | } | ||
425 | } | ||
426 | |||
427 | instr->state = MTD_ERASE_DONE; | ||
428 | mtd_erase_callback(instr); | ||
429 | |||
430 | return 0; | ||
431 | } | ||
432 | |||
433 | static int sharp_do_wait_for_ready(struct map_info *map, struct flchip *chip, | ||
434 | unsigned long adr) | ||
435 | { | ||
436 | int ret; | ||
437 | unsigned long timeo; | ||
438 | int status; | ||
439 | DECLARE_WAITQUEUE(wait, current); | ||
440 | |||
441 | map_write32(map,CMD_READ_STATUS,adr); | ||
442 | status = map_read32(map,adr); | ||
443 | |||
444 | timeo = jiffies + HZ; | ||
445 | |||
446 | while(time_before(jiffies, timeo)){ | ||
447 | map_write32(map,CMD_READ_STATUS,adr); | ||
448 | status = map_read32(map,adr); | ||
449 | if((status & SR_READY)==SR_READY){ | ||
450 | ret = 0; | ||
451 | goto out; | ||
452 | } | ||
453 | set_current_state(TASK_INTERRUPTIBLE); | ||
454 | add_wait_queue(&chip->wq, &wait); | ||
455 | |||
456 | //spin_unlock_bh(chip->mutex); | ||
457 | |||
458 | schedule_timeout(1); | ||
459 | schedule(); | ||
460 | remove_wait_queue(&chip->wq, &wait); | ||
461 | |||
462 | //spin_lock_bh(chip->mutex); | ||
463 | |||
464 | if (signal_pending(current)){ | ||
465 | ret = -EINTR; | ||
466 | goto out; | ||
467 | } | ||
468 | |||
469 | } | ||
470 | ret = -ETIME; | ||
471 | out: | ||
472 | return ret; | ||
473 | } | ||
474 | |||
475 | static int sharp_erase_oneblock(struct map_info *map, struct flchip *chip, | ||
476 | unsigned long adr) | ||
477 | { | ||
478 | int ret; | ||
479 | //int timeo; | ||
480 | int status; | ||
481 | //int i; | ||
482 | |||
483 | //printk("sharp_erase_oneblock()\n"); | ||
484 | |||
485 | #ifdef AUTOUNLOCK | ||
486 | /* This seems like a good place to do an unlock */ | ||
487 | sharp_unlock_oneblock(map,chip,adr); | ||
488 | #endif | ||
489 | |||
490 | map_write32(map,CMD_BLOCK_ERASE_1,adr); | ||
491 | map_write32(map,CMD_BLOCK_ERASE_2,adr); | ||
492 | |||
493 | chip->state = FL_ERASING; | ||
494 | |||
495 | ret = sharp_do_wait_for_ready(map,chip,adr); | ||
496 | if(ret<0)return ret; | ||
497 | |||
498 | map_write32(map,CMD_READ_STATUS,adr); | ||
499 | status = map_read32(map,adr); | ||
500 | |||
501 | if(!(status&SR_ERRORS)){ | ||
502 | map_write32(map,CMD_RESET,adr); | ||
503 | chip->state = FL_READY; | ||
504 | //spin_unlock_bh(chip->mutex); | ||
505 | return 0; | ||
506 | } | ||
507 | |||
508 | printk("sharp: error erasing block at addr=%08lx status=%08x\n",adr,status); | ||
509 | map_write32(map,CMD_CLEAR_STATUS,adr); | ||
510 | |||
511 | //spin_unlock_bh(chip->mutex); | ||
512 | |||
513 | return -EIO; | ||
514 | } | ||
515 | |||
516 | #ifdef AUTOUNLOCK | ||
517 | static void sharp_unlock_oneblock(struct map_info *map, struct flchip *chip, | ||
518 | unsigned long adr) | ||
519 | { | ||
520 | int i; | ||
521 | int status; | ||
522 | |||
523 | map_write32(map,CMD_CLEAR_BLOCK_LOCKS_1,adr); | ||
524 | map_write32(map,CMD_CLEAR_BLOCK_LOCKS_2,adr); | ||
525 | |||
526 | udelay(100); | ||
527 | |||
528 | status = map_read32(map,adr); | ||
529 | printk("status=%08x\n",status); | ||
530 | |||
531 | for(i=0;i<1000;i++){ | ||
532 | //map_write32(map,CMD_READ_STATUS,adr); | ||
533 | status = map_read32(map,adr); | ||
534 | if((status & SR_READY)==SR_READY) | ||
535 | break; | ||
536 | udelay(100); | ||
537 | } | ||
538 | if(i==1000){ | ||
539 | printk("sharp: timed out unlocking block\n"); | ||
540 | } | ||
541 | |||
542 | if(!(status&SR_ERRORS)){ | ||
543 | map_write32(map,CMD_RESET,adr); | ||
544 | chip->state = FL_READY; | ||
545 | return; | ||
546 | } | ||
547 | |||
548 | printk("sharp: error unlocking block at addr=%08lx status=%08x\n",adr,status); | ||
549 | map_write32(map,CMD_CLEAR_STATUS,adr); | ||
550 | } | ||
551 | #endif | ||
552 | |||
553 | static void sharp_sync(struct mtd_info *mtd) | ||
554 | { | ||
555 | //printk("sharp_sync()\n"); | ||
556 | } | ||
557 | |||
558 | static int sharp_suspend(struct mtd_info *mtd) | ||
559 | { | ||
560 | printk("sharp_suspend()\n"); | ||
561 | return -EINVAL; | ||
562 | } | ||
563 | |||
564 | static void sharp_resume(struct mtd_info *mtd) | ||
565 | { | ||
566 | printk("sharp_resume()\n"); | ||
567 | |||
568 | } | ||
569 | |||
570 | static void sharp_destroy(struct mtd_info *mtd) | ||
571 | { | ||
572 | printk("sharp_destroy()\n"); | ||
573 | |||
574 | } | ||
575 | |||
576 | int __init sharp_probe_init(void) | ||
577 | { | ||
578 | printk("MTD Sharp chip driver <ds@lineo.com>\n"); | ||
579 | |||
580 | register_mtd_chip_driver(&sharp_chipdrv); | ||
581 | |||
582 | return 0; | ||
583 | } | ||
584 | |||
585 | static void __exit sharp_probe_exit(void) | ||
586 | { | ||
587 | unregister_mtd_chip_driver(&sharp_chipdrv); | ||
588 | } | ||
589 | |||
590 | module_init(sharp_probe_init); | ||
591 | module_exit(sharp_probe_exit); | ||
592 | |||
593 | |||
594 | MODULE_LICENSE("GPL"); | ||
595 | MODULE_AUTHOR("David Schleef <ds@schleef.org>"); | ||
596 | MODULE_DESCRIPTION("Old MTD chip driver for pre-CFI Sharp flash chips"); | ||